当前位置: 仪器信息网 > 行业主题 > >

光学象限仪测角原理

仪器信息网光学象限仪测角原理专题为您提供2024年最新光学象限仪测角原理价格报价、厂家品牌的相关信息, 包括光学象限仪测角原理参数、型号等,不管是国产,还是进口品牌的光学象限仪测角原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光学象限仪测角原理相关的耗材配件、试剂标物,还有光学象限仪测角原理相关的最新资讯、资料,以及光学象限仪测角原理相关的解决方案。

光学象限仪测角原理相关的论坛

  • 象限仪流星雨将按时上演!

    新年伊始,象限仪流星雨将按时上演!象限仪流星雨是每年年初都会发生的一个较大流星雨,对于我国公众来说,较好的观测时段是1月3日晚至4日凌晨,每小时天空可能划过120颗左右流星

  • 激光共聚焦显微镜系统的原理和应用(光学)

    激光共聚焦显微镜系统的原理和应用激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。一.激光共聚焦显微镜系统应用领域:涉及医学、动植物科研、生物化学、细菌学、细胞生物学、组织胚胎、食品科学、遗传、药理、生理、光学、病理、植物学、神经科学、海洋生物学、材料学、电子科学、力学、石油地质学、矿产学。二.基本原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光点倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。三.应用范围:细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。1.细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化2.生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析3.药理学:药物对细胞的作用及其动力学4.生理学:膜受体、离子通道、细胞内离子含量、分布、动态5.神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布6.微生物学和寄生虫学:细菌、寄生虫形态结构7.病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HIV等8.遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断四.激光共聚焦显微镜在医学领域中的应用A.在细胞及分子生物学中的应用1. 细胞、组织的三维观察和定量测量2. 活细胞生理信号的动态监测3. 粘附细胞的分选4. 细胞激光显微外科和光陷阱功能5. 光漂白后的荧光恢复6. 在细胞凋亡研究中的应用B.在神经科学中的应用1. 定量荧光测定2. 细胞内离子的测定3. 神经细胞的形态观察C.在耳鼻喉科学中的应用1. 在内耳毛细胞亚细胞结构研究上的应用2. 激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用3. 激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用4. 激光扫描共聚焦显微镜在嗅觉研究中的应用D.在肿瘤研究中的应用1. 定量免疫荧光测定2. 细胞内离子分析3. 图像分析:肿瘤细胞的二维图像分析4. 三维重建 E.激光扫描共聚焦显微镜在内分泌领域的应用1. 细胞内钙离子的测定2. 免疫荧光定位及免疫细胞化学研究3. 细胞形态学研究:利用激光扫描共聚焦显微镜 F.在血液病研究中的应用1. 在血细胞形态及功能研究方面的应用2. 在细胞凋亡研究中的应用 G.在眼科研究中的应用1. 利用激光扫描共聚焦显微镜观察组织、细胞结构2. 集合特殊的荧光染色在活体上观察角膜外伤修复中细胞移行及成纤维细胞的出现3. 利用激光扫描共聚焦显微镜观察视网膜中视神经细胞的分布以及神经原的树枝状形态4. 三维重建H. 激光扫描共聚焦显微镜在肾脏病中的应用可以系统观察正常人肾小球系膜细胞的断层扫描影像及三维立体影像水平,使图像更加清晰,从计算机分析系统可从外观到内在结构,从平面到立体,从静态到动态,从形态到功能几个方面对系膜细胞的认识得到提高。北京中科研域科技有限公司(蔡司显微镜代理商)地址:北京市朝阳区建国路15号院甲1号北岸1292,一号楼406室联系人:张辉13911188977 邮编:100024电话:010-57126588 传真:010-85376588E-mail:[email=zhs_8000@126.com][color=#0365bf]zhs_8000@126.com[/color][/email]

  • 光学3D表面轮廓仪的测量原理

    光学3D表面轮廓仪的测量原理

    SuperView W11200[b][color=#3366ff]光学3D表面轮廓仪[/color][/b]是一款用于对各种精密器件表面进行亚纳米级测量的检测仪器。它是以白光干涉技术为原理、结合精密Z向扫描模块、3D 建模算法等对器件表面进行非接触式扫描并建立表面3D图像,通过系统软件对器件表面3D图像进行数据处理与分析,并获取反映器件表面质量的2D、3D参数,从而实现器件表面形貌的3D测量的光学检测仪器。[align=center][img=,690,604]http://ng1.17img.cn/bbsfiles/images/2017/07/201707201529_01_3712_3.jpg[/img][/align]  SuperView W11200光学3D表面轮廓仪只需操作者装好被测器件,在软件测量界面上设置好视场参数,调整镜头到接近器件表面,选择自动聚焦,仪器会对器件表面进行自动对焦并找到干涉条纹,调节好干涉条纹宽度后即可开始进行扫描测量;扫描结束后,软件分析界面自动生成器件3D图像,操作者可通过软件对生成的3D形貌进行数据处理与分析,获取表征器件表面线、面粗糙度和轮廓的2D、3D参数。  SuperViewW1 1200 光学3D表面轮廓仪采用光学非接触式测量方法,它具有测量精度高、使用方便、分析功能强大、测量参数齐全等优点,其独特的光源模式,保证了它能够适用于从光滑到粗糙等各种精密器件的表面质量检测。  系统软件为简体中文操作系统,操作方便。应用范例:[align=center][img=,690,352]http://ng1.17img.cn/bbsfiles/images/2017/07/201707201530_01_3712_3.jpg[/img][/align][align=center][img=,690,543]http://ng1.17img.cn/bbsfiles/images/2017/07/201707201530_02_3712_3.jpg[/img][/align] 性能特点:1、 高精度、高重复性、高稳定性1) 采用光学干涉技术、精密Z向扫描模块组成测量系统,保证测量精度高;2) 精密的Z向扫描模块和独特的测量模式,保证测量重复性高;3) 高性能的内部抗震设计,为测量高稳定性保驾护航。2、 自动化操作的测量分析软件1)测量初始的自动聚焦,帮助操作者省却繁琐的调节过程;2)独特测量模式,帮助操作者快速测量不同形貌的待检样品;3)可视化窗口,便于操作者实时观察扫描过程;4)直观的软件分析界面,便于操作者第一时间获悉样品参数信息;5)强大的数据处理与分析功能,帮助操作者深入了解被测样品情况;6)一键分析,便于操作者快速实现大批量测量;7)同步分析,实现对样品分析操作的所见即所得;8)可视化的报表导出(可选择导出的图像与数据结果到word、pdf等文档)。3、 测量参数齐全根据四大国内外标准(ISO/ASME/EUR/GBT)的多达300余种2D、3D参数,让操作者对被测样品的认识更加全面具体。4、 精密操纵手柄集成X、Y、Z三个方向位移调整功能的操纵手柄,可快速完成载物台平移、Z向聚焦、找条纹等测量前工作。

  • 【转帖】光学显微镜原理应用及维修

    一、 光学显微镜的发展历史  早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。  1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。  17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展做出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部件经过不断改进,成为现代显微镜的基本组成部分。  1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出成就。  19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。  在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。  古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄像管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图像信息采集和处理系统。  目前全世界最主要的显微镜厂家主要有:蔡司、徕卡、奥林巴斯、尼康。国内厂家主要有:麦克奥迪、江南、重庆光电、奥特光电等。二、 显微镜的基本光学原理(一) 折射和折射率  光线在均匀的各向同性介质中,两点之间以直线传播,当通过不同密度介质的透明物体时,则发生折射现像,这是由于光在不同介质的传播速度不同造成的。当与透明物面不垂直的光线由空气射入透明物体(如玻璃)时,光线在其介面改变了方向,并和法线构成折射角。(二) 透镜的性能  透镜是组成显微镜光学系统的最基本的光学元件,物镜目镜及聚光镜等部件均由单个和多个透镜组成。依其外形的不同,可分为凸透镜(正透镜)和凹透镜(负透镜)两大类。  当一束平行于光轴的光线通过凸透镜后相交于一点,这个点称”焦点”,通过交点并垂直光轴的平面,称”焦平面”。焦点有两个,在物方空间的焦点,称”物方焦点”,该处的焦平面,称”物方焦平面”;反之,在像方空间的焦点,称”像方焦点”,该处的焦平面,称”像方焦平面”。  光线通过凹透镜后,成正立虚像,而凸透镜则成正立实像。实像可在屏幕上显现出来,而虚像不能。(三) 凸透镜的五种成像规律1. 当物体位于透镜物方二倍焦距以外时,则在像方二倍焦距以内、焦点以外形成缩小的倒立实像;2. 当物体位于透镜物方二倍焦距上时,则在像方二倍焦距上形成同样大小的倒立实像;3. 当物体位于透镜物方二倍焦距以内,焦点以外时,则在像方二倍焦距以外形成放大的倒立实像;4. 当物体位于透镜物方焦点上时,则像方不能成像;5. 当物体位于透镜物方焦点以内时,则像方也无像的形成,而在透镜物方的同侧比物体远的位置形成放大的直立虚像。三、 光学显微镜的成像(几何成像)原理  只有当物体对人眼的张角不小于某一值时,肉眼才能区别其各个细部,该量称为目视分辨率ε。在最佳条件下,即物体的照度为50~70lx及其对比度较大时,可达到1’。为易于观测,一般将该量加大到2’,并取此为平均目镜分辨率。  物体视角的大小与该物体的长度尺寸和物体至眼睛的距离有关。有公式y=Lε距离L不能取得很小,因为眼睛的调节能力有一定限度,尤其是眼睛在接近调节能力的极限范围工作时,会使视力极度疲劳。对于标准(正视)而言,最佳的视距规定为250mm(明视距离)。这意味着,在没有仪器的条件下,目视分辨率 ε=2’的眼睛,能清楚地区分大小为0.15mm的物体细节。  在观测视角小于1’的物体时,必须使用放大仪器。放大镜和显微镜是用于观测放置在观测人员近处应予放大的物体的。(一)放大镜的成像原理  表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光路图如图1所示。位于物方焦点F以内的物AB,其大小为y,它被放大镜成一大小为y’的虚像A’B’。放大镜的放大率Γ=250/f’式中250--明视距离,单位为mmf’—放大镜焦距,单位为mm该放大率是指在250mm的距离内用放大镜观察到的物体像的视角同没有放大镜观察到的物体视角的比值。 。。。。。。。。。。。。。。 [URL=http://www.microscopeline.com/art.asp?id=252&did=56]...........[/URL]资料来源[URL=http://www.microscopeline.com]显微在线[/URL]

  • 常用光学计量仪器分类

    [font=宋体]在实际应用中,尽管光学计量仪器多种多样,但它们的光学原理却[color=blue]都基于四种基本原[/color][/font][font=宋体][color=blue]理[/color][/font][font=宋体],它们是:[color=blue]望远光学原理、显微光学原理、投影光学原理、干涉光学原理。[/color][/font][font=宋体]基于应用不同的光学原理,光学计量仪器可分为[color=blue]:自准直类光学计量仪器、显微镜类光学计量仪器、投影类光学计量仪器、光干涉类光学计量仪器四大类。[/color][/font][font=宋体]望远系统主要性能是视角放大率,在观察时用来扩大眼睛对远处物体的视角,用以观察物体。在测量时常被用来产生平行光以进行各种用途的测量,应用此原理的光学计量仪器有:自准直光管、测角仪、立[/font]([font=宋体]卧[/font])[font=宋体]式光学计等。[/font][font=宋体]显微系统的主要性能是较高的放大率。它与放大镜相比,有较高的放大率和分辨本领。可清楚地观察和分辨微小物体和物体的细小部位。应用此原理的光学计量仪器有:工具显微镜、光学分度头、测长仪、测长机、双管显微镜等;[/font][font=宋体]投影系统的主要性能:是较高的、准确的横向放大率。[/font][font=宋体]被测量的形状复杂、细小的物体或物体表面缺陷等经强投射光或强反射光照射,再经投影物镜放大成像在影屏上后进行测量。应用此原理的光学计量仪器有:大、中、小型投影仪、专用的公差带投影仪等。[/font][font=宋体]光干涉系统主要性能是有很高的检测精度。它是以光波波长作:“尺子”,实现了对表面粗糙度、长度微小变化等几何量的高精度测量。应用此原理的光学计量仪器有平面平晶等厚干涉仪、接触式干涉仪、干涉显微镜等。[/font]

  • 光学仪器分析的基本概念和原理

    [color=blue][b]光学仪器分析的基本概念和原理[/b][/color]1. 原子光谱:原子的核外电子一般处在基态运动,当获取足够的能量后,就会从基态跃迁到激发态,处于激发态不稳定(寿命小于10-8 s),迅速回到基态时,就要释放出多余的能量,若此能量以光的形式出现,即得到发射光谱。[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法AAS的基本原理是基于物质所产生的原子蒸气对特定谱线的吸收作用来进行定量分析。2. 激发电位是指从低能级到高能级需要的能量。第一激发态,又回到基态,发射出光谱线,称共振发射线。同样从基态跃迁至第一激发态所产生的吸收谱线称为共振吸收线(简称为共振线),即具有最低激发电位的谱线。由激发态直接跃迁至基态所辐射的谱线称为共振线。由较低级的激发态(第一激发态)直接跃迁至基态的谱线称为第一共振线,一般也是元素的最灵敏线。当该元素在被测物质里降低到一定含量时,出现的最后一条谱线,这是最后线,也是最灵敏线。用来测量该元素的谱线称分析线。3. 实际分辨率:指摄谱仪的每毫米感光板上所能分辨开的谱线的条数。或在感光板上恰能分辨出来的两条谱线的距离。理论分辨率R=λ/Δλλ为两谱线的平均值,Δλ为它们的差值。4. 锐线光产生原理在高压电场下阴极向正极高速飞溅放电,与载气原子碰撞,使之电离放出二次电子而使场内正离子和电子增加以维持电流。载气离子在电场中大大加速获得足够的能量轰击阴极表面时可将被测元素原子从晶格中轰击出来即谓溅射,溅射出的原子大量聚集在空心阴极内与其它粒子碰撞而被激发发射出相应元素的特征谱线——共振谱线。

  • 直读光谱光学系统手动描迹的原理

    直读光谱光学系统手动描迹的原理

    【为什么要进行直读光谱光学系统的描迹功能】: 入射狭缝是分光系统的重要组成部分,由于环境的温度、湿度及震动的影响,引起入射狭缝的漂移,直接影响光谱仪的照度和分辨率。入射狭缝一般为20微米左右,通常安装在一个带有螺杆的驱动装置上,转动鼓轮带动螺杆移动,可将确定入射狭缝的中心位置。【直读光谱光学系统手动描迹的原理】: 转动描迹鼓轮,检测器记录下选定通道的光强,光强呈钟形分布(如图所示)。为定位更准确,不是直接找光强的最大值(Point1),而是选定距离最大值等距离的两点(Point3、Point4),然后计算平均值,确定入射狭缝的中心位置(Point6)。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191700_667443_1841897_3.png

  • 农产品检测仪检测原理

    [size=18px]  农产品检测仪检测原理  农产品检测仪的检测原理主要可以归纳为以下几种:  一、光学原理  测量光在物质中的传输特性:农产品检测仪中的光学系统通过测量光在物质中的传输特性来检测农产品中的农药残留。这个过程包括光源照射农产品表面,样品吸收部分光线并反射部分光线。  光电转换:经过透镜聚焦后的光线进入检测器,被检测器转化为电信号。  信号处理:电信号经过处理,由计算机系统转化为数字信号。  结果分析:通过比对和分析这些数字信号,可以得出农产品中农药残留的含量。  二、化学原理  样品前处理:涉及样品分散、去杂、分储等步骤,目的是为后续的化学分析做好准备。  农药提取:将农产品中的化学成分(如农药)提取出来。  蒸发浓缩:将提取得到的溶液浓缩至一定体积,便于后续分析。  色谱分析:依据成分的物理化学特性分离并检测成分。通过色谱分析,可以准确检测出农产品中的农药残留。  三、酶抑制率法  抑制原理:基于有机磷和氨基甲酸酯类农药可以抑制昆虫神经中枢和四周神经系统中乙酰胆碱酯酶的活性。这种抑制率与农药浓度呈正相关。  反应过程:在正常情况下,酶催化神经传导代谢产物(乙酰胆碱)水解,其水解产物与显色剂反应,产生黄色物质。当存在农药残留时,酶的活性受到抑制,导致产生的黄色物质减少。  结果判定:通过测量吸光度随时间的变化值,计算出抑制率,从而判断出样品中是否含有有机磷或氨基甲酸酯类农药的残留。  四、光电比色法  光电比色法是在一定条件下,通过测量样品中特定物质的吸光度来定量分析其含量。在农药残留检测中,它主要用于检测有机磷和氨基甲酸酯类农药对胆碱酯酶的抑制程度,从而判断农药残留情况。  总结:农产品检测仪的检测原理主要基于光学原理、化学原理和酶抑制率法等多种方法。通过这些方法的综合运用,可以实现对农产品中农药残留的快速、准确检测,为农产品安全提供有力保障。[/size]

  • 【分享】UV-754型紫外可见分光光度计光学原理与日常维护

    一、光学系统原理 光学系统采用光栅自准式色散系统和单光束结构光路,卤钨灯或氘灯发出的连续辐射通过截止滤光片组成反光镜选择,聚光镜聚光后经自动光门投向单色器入射狭缝,此狭缝处于聚光镜及单色器内准直镜的焦平面上,因此进入单色器的复合光通过平面反射镜反射及准直镜准直变成平行光射向色散元件光栅,由于光栅的衍射作用,使此平行光形成按照一定顺序均匀排列的连续的单色光谱重新回射到准直镜上.由于仪器的光出射狭缝设置在准直镜的焦平面上,这样,从光栅色散的匀排光谱经准直镜后聚光在出射狭缝上.随着选择波长的变化,光栅角度也随之改变,因此在固定的出射狭缝上选出指定带宽的单色光通过聚光镜聚焦在试样室被测样品的中心位置,样品吸收后透射的光经光门射向光电管阴极面,其中保护玻璃是为防止灰尘进入单色器而设.[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=161776]UV-754型紫外可见分光光度计光学原理与日常维护[/url]

  • 普通光学显微镜的结构和基本原理,使用与维护

    1.结构:  标本的放大主要由物镜完成,物镜放大倍数越大,它的焦距越短。焦距越小,物镜的透镜和玻片间距离(工作距离)也小。油镜的工作距离很短,使用时需格外注意。目镜只起放大作用,不能提高分辨率,标准目镜的放大倍数是十倍。聚光镜能使光线照射标本后进入物镜,形成一个大角度的锥形光柱,因而对提高物镜分辨率是很重要的。聚光镜可以上下移动,以调节光的明暗,可变光阑可以调节入射光束的大小。  显微镜用光源,自然光和灯光都可以,以灯光较好,因光色和强度都容易控制。一般的显微镜可用普通的灯光,质量高的显微镜要用显微镜灯,才能充分发挥其性能。有些需要很强照明,如暗视野照明、摄影等,常常使用卤素灯作为光源。光学显微镜是由光学放大系统和机械装置两部分组成。光学系统一般包括目镜、物镜、聚光器、光源等;机械系统一般包括镜筒、物镜转换器、镜台、镜臂和底座等。2.原理:  显微镜的放大效能(分辨率)是由所用光波长短和物镜数值口径决定,缩短使用的光波波长或增加数值口径可以提高分辨率,可见光的光波幅度比较窄,紫外光波长短可以提高分辨率,但不能用肉眼直接观察。所以利用减小光波长来提高光学显微镜分辨率是有限的,提高数值口径是提高分辨率的理想措施。要增加数值口径,可以提高介质折射率,当空气为介质时折射率为1,而香柏油的折射率为1.51,和载片玻璃的折射率(1.52)相近,这样光线可以不发生折射而直接通过载片、香柏油进入物镜,从而提高分辨率。显微镜总的放大倍数是目镜和物镜放大倍数的乘积,而物镜的放大倍数越高,分辨率越高。

  • 【求助】分析金属的固相线和液相线吗?

    差热分析仪能分析金属的固相线和液相线吗?今天买了台差热分析仪DTA,由于测试的是合金,有固相线和液相线。怎样测试才能得到固相线和液相线啊??求助!! [b]问题补充:[/b]怎样测试说下,不精确不要紧。

  • 【分享】分析显微镜的光学原理与性能

    传统的光学[URL=http://yiqi.jixie.com]显微镜[/URL]主要由光学系统及支撑它们的机械结构组成,光学系统包括物镜、目镜和聚光镜,都是由各种光学玻璃做成的复杂化了的放大镜。物镜将标本放大成像,其放大倍率M物由下式决定:M物=Δ∕f’物 ,式中f’物是物镜的焦距,Δ可理解为物镜与目镜间的距离。目镜将物镜所成之像再次放大,成一个虚像在人眼前250mm处供人观察,这是多数人感觉最舒适的观察位置,目镜的倍率M目=250/f’目,f’目是目镜的焦距。显微镜的总放大倍率是物镜与目镜的乘积,即M=M物*M目=Δ*250∕f’目*f 物。可见,减小物镜及目镜焦距将使总放大倍率提高,这是用显微镜可以看到细菌等微生物的关键,也是其与普通放大镜的区别所在。  那么,是否可以设想无限制地减少f’物f’目,以便提高放大倍率,使我们能看到更加细微的物体呢?回答是否定的!这是因为用以成像的光本质是一种电磁波,因而在传播过程中免不了产生衍射和干涉现象,就像日常所见水面的波纹遇到障碍时能绕行,两列水波相遇时能互相加强或削弱一样。当从一个点状的发光物点发出的光波进入物镜时,物镜的边框阻碍了光的传播,产生衍射和干涉,经物镜后无法再会集于一点,而是形成有一定大小的光斑,外围还有强度微弱并逐渐减弱的一系列光环,我们称中心亮斑为艾里斑,两个发光点靠近到一定距离时两光斑就会重叠,直至无法确认为两个光斑。瑞利提出了一个判定标准,认为当两光斑中心相距等于艾里斑半径时,两光斑是能分辨的,经计算,这时候两个发光点间的距离e=0.61入∕n.sinA=0.61入∕N.A,式中,入为光波波长,人眼可接收的光波波长约为0.4—0.7um,n为发光点所处介质的折射率,如处在空气中,n≈1,处在水中,n≈1.33,而A为发光点对物镜边框张角之半,N.A称为物镜的数值孔径。从上式可见,物镜能分辨的两点间的距离受到了光的波长和数值孔径的限制,由于人眼视觉最敏锐的波长约为0.5um,而A角不可能超过90度,sinA总小于1,对于可用的透光介质最大折射率约为1.5,故 e值始终大于0.2um,这是光学显微镜能分辨的最小极限距离。通过[URL=http://WWW.JXIIE.COM]光学显微镜[/URL]放大成像,若想将能被具有某些N.A值的物镜分辨率的物点间距e放大到足以被人眼分辨,则需M.e≥0.15mm,此处0.15mm为实验得出的人眼能分辨的置于眼前250mm处两微物间的最小距离,故M≥(0.15∕0.61入)N.A≈500N.A ,为使观察不致太费力,M扩大一倍便足够了,即500N.A≤M≤1000N.A,是显微镜总倍率的合理选取范围,再大的总放大倍率是没有意义的,因为[URL=http://yiqi.jixie.com]物镜[/URL]数值孔径已经限制了最小可分辨距离,提高放大倍率已不可能分辨出更小的物体细节了。  成像衬度是[URL=http://WWW.JXIIE.COM]光学显微镜[/URL]的另一个关键问题,所谓衬度,即是像面上相邻部份间的黑白对比度或颜色差,人眼对于0.02以下的亮度差别是很难判定的,对颜色差别则稍微敏感一些。有些[URL=http://WWW.JXIIE.COM]光学显微镜[/URL]观察对象,如生物标本,其细节间亮度差别甚小,加之显微镜光学系统设计制造误差使其成像衬度进一步降低而难于分辨,此时,看不清物体细节,不是总放大倍率过低,也不是物镜数值孔径太小,而是由于像面衬度太低的缘故。[URL=http://yiqi.jixie.com][IMG]http://forum.yidaba.com/attachments/20080818_4bc5ca56d10a099a7184A9ekahrt5sBT.gif[/IMG][/URL]  多少年来,人们为提高[URL=http://WWW.JXIIE.COM]光学显微镜[/URL]的分辨能力和成像衬度付出了艰辛的劳动,随着计算机技术和工具的不断进步,光学设计的理论和方法也在不断改进,加上原材料性能的提高,工艺和检测手段的不断完善,观察方法的创新,使光学[URL=http://WWW.JXIIE.COM]光学显微镜[/URL]的成像质量已经接近衍射极限的完善程度,人们将用标本染色、暗场、相衬、荧光、干涉、偏光等观察技术,使得光学显微镜已能适应形形色色标本的研究,虽然近年来电子显微镜,超声显微镜等放大成像[URL=http://yiqi.jixie.com]仪器[/URL]先后问世,在某些方面具有优势的性能,但在廉价、方便、直观、特别是适合生物活体的研究等方面仍无法与光学显微镜匹敌,光学显微镜仍然牢固地占据着自己的阵地。另一方面,与激光、计算机、新材料技术、信息技术相结合,古老的[URL=http://WWW.JXIIE.COM]光学显微镜[/URL]正焕发青春,显示了旺盛的生命力,数码显微镜、激光共焦扫描显微镜、近场扫描[URL=http://WWW.JXIIE.COM]显微镜[/URL]、双光子显微镜及具有各种新的功能或能适应各种新的环境条件的[URL=http://yiqi.jixie.com]仪器[/URL]层出不穷,更加扩大了光学显微镜的应用领域,作为最新的例子。从火星探测车上传回的岩层显微图片是多么令人振奋!我们完全可以相信,光学显微镜将会以更新的姿态,造福人类。

  • 理学、帕纳科、布鲁克三家XRD的测角仪使用15年以上之后,精度差别大吗?

    理学、帕纳科、布鲁克三家XRD的测角仪经过15年的使用时间后,测量精度差别大吗?请各位用过15年以上的专家和前辈们,分享分享你们宝贵的经验。以下内容是从某家销售那里听说的,在原理上来讲基本是这样的:[font=微软雅黑]帕纳科Empyrean: [font=微软雅黑][font=微软雅黑]直接光学定位系统([/font]DOPS)编码器,固定于测角仪轴上,直接测量实际角度(绝对角度),闭环反馈系统;不随时间磨损。无级直流马达驱动 [/font][/font][font=微软雅黑]理学SmartLab:直接光学定位系统、[font=微软雅黑]高精度三重光学编码测角仪系统,无闭环反馈系统,步进马达驱动。[/font][/font][font=微软雅黑][font=微软雅黑]布鲁克D8 Advance DAVINCI:[font=微软雅黑]步进马达驱动辅助以光学编码校准,无闭环反馈系统,容易受振动的影响[/font][font=微软雅黑]。[/font][font=微软雅黑] [/font][/font][/font][font=微软雅黑][/font][font=微软雅黑]在经过十几年的使用之后,步进马达会有齿轮磨损,齿轮间隙变大,就会造成误差,这样就会造成测角仪精度变差。[/font][font=微软雅黑]请问各位专家和前辈有这方面的体会吗?[/font][font=微软雅黑][/font][font=微软雅黑][font=微软雅黑][/font][/font][font=微软雅黑][font=微软雅黑][/font][/font]

  • 【原创】【第三届原创作品】光学显微镜在环境监测中的应用

    [align=left][size=5][font=宋体][size=3]维权声明:本文为54943110原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。[/size][b] 光学显微镜在环境监测中的应用[/b][/font][/size][size=5][font=Arial][/font][/size][/align][align=center][b][font=Arial][size=3][/size][/font][/b][/align][align=center][size=3][b][font=宋体]水源守护者[/font][font=Arial][/font][/b][/size][/align][size=4][font=宋体] 光学显微镜由一个透镜或几个透镜的组合构成,是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。在环境监测领域中,其应用可谓非常广泛。很多高环境监测的接触显微镜的做一辈子可能也只是窥见其一角,现将我实践过的或者了解的[/font][/size][size=4][font=宋体]光学显微镜在环境监测中的[/font][/size][size=4][font=宋体]应用情况做一个简单的介绍,让大家对这个应用分支有一个感性的认识。[/font][/size][size=4][/size]

  • 【光学仪器组件】精密技术的结晶与科学探索的窗口

    【光学仪器组件】精密技术的结晶与科学探索的窗口 在探索自然奥秘、推动科技进步的征途中,光学仪器作为连接微观世界与宏观宇宙的重要桥梁,扮演着不可或缺的角色。从显微镜下的细胞结构解析,到望远镜中的星辰大海观测,再到激光技术引领的工业革命,光学仪器的每一次进步都离不开其内部精密组件的协同工作。本文将深入探讨光学仪器中几个关键组件的工作原理、技术特点及其在科学研究和工业应用中的重要意义。 https://ng1.17img.cn/bbsfiles/images/2024/09/202409182258389282_8779_5405157_3.jpeg 一、镜头系统:光线的捕捉与聚焦 镜头系统是光学仪器的核心,它负责捕捉光线并将其准确聚焦到特定的平面上,形成清晰的图像或光斑。根据应用需求的不同,镜头系统可设计为凸透镜、凹透镜、反射镜等多种形式,通过组合使用以实现不同的成像效果。例如,在显微镜中,通过多组精密的透镜组合,能够将微小的物体放大数千倍,让科学家得以窥探微观世界的奥秘。 镜头系统的制造需要极高的精度和工艺水平。现代光学加工技术如超精密抛光、离子束刻蚀等,使得镜头表面的平整度、曲率半径等关键参数达到纳米级别,从而确保了成像质量的极致提升。此外,随着计算机辅助设计和仿真技术的发展,镜头系统的设计也变得更加科学、高效,能够根据不同应用场景的需求进行定制化设计。 https://ng1.17img.cn/bbsfiles/images/2024/09/202409182258391042_934_5405157_3.jpeg 二、分光系统:光谱的解析与分离 分光系统是另一类重要的光学仪器组件,它能够将混合的光波按照波长或频率的不同进行分离,形成光谱图。这一过程不仅有助于科学家研究物质的组成、结构和性质,还为光谱分析、环境监测等领域提供了有力的技术支持。 分光系统的核心部件是色散元件,如棱镜、光栅等。这些元件利用光的色散原理,将不同波长的光波以不同的角度折射或反射出来,从而实现光谱的分离。随着技术的发展,现代分光系统已经能够实现连续光谱的高分辨率测量,为科学研究提供了更为精确的数据支持。 三、探测器与成像系统:光信号的转换与记录 探测器与成像系统是光学仪器中负责将光信号转换为电信号并记录下来的关键组件。它们通常包括光电传感器、电荷耦合器件(CCD)、互补金属氧化物半导体(CMOS)等元件。当光线照射到探测器上时,光子会激发探测器内部的电子产生电流或电荷变化,从而实现对光信号的检测。 成像系统则进一步将探测器输出的电信号转换为可视化的图像或数据。通过图像处理技术,可以对图像进行增强、滤波、分析等处理,提取出有用的信息。在现代科学研究和工业应用中,高灵敏度、高分辨率的探测器与成像系统已经成为不可或缺的工具,为科研人员提供了强大的数据支持。 https://ng1.17img.cn/bbsfiles/images/2024/09/202409182258392273_1989_5405157_3.jpeg 四、光学调整与稳定系统:确保成像质量的稳定 光学调整与稳定系统是保障光学仪器成像质量稳定的重要一环。由于外界环境如温度、湿度、振动等因素的变化都会对光学系统的成像质量产生影响,因此需要通过精密的调整与稳定机制来消除这些干扰。 光学调整系统通常包括调焦机构、准直机构等部件,用于调整镜头系统的焦距、光轴等参数,确保成像的清晰度和准确性。而稳定系统则采用主动或被动的方式,通过减震、隔振等技术手段来减少外界振动对光学系统的影响,保障成像的稳定性和可靠性。 五、结语 综上所述,光学仪器组件作为精密技术的结晶,不仅为科学探索提供了强大的技术支持,还推动了工业生产的智能化和自动化进程。随着科技的不断发展,光学仪器组件的性能将不断提升,应用领域也将更加广泛。未来,我们有理由相信,在光学仪器组件的助力下,人类将能够揭开更多自然界的秘密,创造更加美好的明天。

  • 火焰光度检测器的工作原理是什么?

    火焰光度检测器(FPD)是一种对硫、磷化合物具有高选择性和高灵敏度的质量型检测器,因此也叫硫磷检测器。它主要包括燃烧系统和光学系统两大部分。燃烧系统与氢火焰离子化检测器一样,若在火焰上附加一个收集极,就成了氢火焰离子化检测器。光学系统包括石英窗口、滤光片和光电倍增管。火焰光度检测器工作原理是,当含有硫、磷的有机化合物进入富氢-空气火焰中燃烧时,将发射出不同波长的特征光,特征光通过石英板、滤光片投射到光电倍增管的阴极,产生光电流,经静电计放大后记录下来

  • 在线检测粒度仪原理有哪些,欢迎大家不吝赐教!

    在线检测粒度仪原理有哪些,欢迎大家不吝赐教!目前已知的在线检测仪器,测量原理,如下:1、在线显微镜成像原理2、激光测试弦长原理3、在线超声衰减原理欢迎大家继续补充,优势特点,代表公司就不写了,免得有广告嫌疑![img]https://simg.instrument.com.cn/bbs/images/default/emyc1004.gif[/img]

  • 光学玻璃、光学仪器防霉技术解答

    光学玻璃、光学仪器防霉技术解答

    光学玻璃、光学仪器生产厂家在每年的5月开始就遇到头疼的玻璃发霉问题,通常空气相对湿度大于65%,玻璃就会长霉,要始终保持干燥,是不现实的,霉雨季节,刚磨好的玻璃,发霉的速度是20分钟。客户也反映,在使用一些市场上现有除霉产品时会腐蚀原有膜层,时间上也不理想。现有的玻璃真空镀膜是利用氟化物疏水特性,只是减少霉菌的水分供应,但是不具有主动杀伤霉菌的作用,因此现有镀膜的防霉效果很不理想。http://ng1.17img.cn/bbsfiles/images/2014/05/201405231622_500287_2704993_3.gif汉雄科技新型防霉镀膜技术,是选用特定结构的分子,采用自组装单分子膜技术,在光学玻璃的表面利用特定的化学键,让特定结构的分子按照一定的头尾一致的排列规则,以化学键的方式连接到玻璃上去,形成一层防水,抗菌,防霉,耐溶剂,耐摩擦,耐腐蚀,耐洗涤的单分子防霉菌镀膜层。膜层的厚度可以控制在几个纳米之间,不影响光线的通过,它和玻璃表层分子发生化学键接,使光学玻璃表面具有永久性的防霉菌特性,同时还可以增加玻璃表面的机械强度。镀膜层外侧的分子团,对单细胞生物具有杀伤作用,霉菌、细菌、藻类等单细胞生物无法在这层镀膜层上顺利繁殖。光学仪器发霉问题是个头疼的事情,由于各类仪器难免要置于潮湿多尘的恶劣环境中使用,工作繁忙时也难免疏忽保养,长霉就难以避免了。用户还是希望,光学仪器本身的抗霉菌性能更强些,防霉时间更长,最好是长效的。现有的技术,多是采用释放防霉挥发性气体的药包法,但是这种毒性气体的实际使用效果有缺陷,并且对人体健康不利。http://ng1.17img.cn/bbsfiles/images/2015/11/201511261608_575169_2704993_3.jpg在光学玻璃上做上一层永久性的防霉单分子膜层,不仅完全不影响光线通透,而且也可以耐酒精溶剂擦拭,这是最理想的办法了。同时对仪器的其它材料部分也采用防霉液涂覆,同样可以极大提高长效防霉效果。防霉液实际用于最易于长霉的家用冰箱门密封胶条缝隙,结果原来极端顽固的黑色霉菌,已经彻底不再出现了,这是非常理想的效果。过去冰箱门的密封胶条缝隙处,无论使用什么样的消毒剂擦拭,经过3个月的使用后,黑色的霉菌总会顽固的再次生长出来,而这次的防霉液实验表面,长效的防霉效果已经持续一年以上,根据防霉液的原理,胶条可以获得永久性的防霉特性。对于光学仪器来说,这个防霉液的效果会出乎意料的好,仪器的使用环境不会比家用冰箱门缝隙更加糟糕了吧。以上内容供大家参考,有需要样品试用的朋友,请给我留言

  • 兽药胶体金检测仪是什么仪器

    兽药胶体金检测仪是什么仪器

    [size=16px]  兽药胶体金检测仪是什么仪器  兽药胶体金检测仪是一种用于检测兽药残留的仪器,通常采用胶体金纳米颗粒技术结合免疫测定原理。这种仪器用于检测食品、农产品、水产品等中是否存在兽药残留物,以确保兽药残留在食品和农产品中的浓度在安全范围内。  兽药胶体金检测仪的工作原理通常涉及以下步骤:  样品处理:首先,从待检测的样品中提取兽药残留物。  免疫测定:样品中的兽药残留物与特定的抗体或免疫试剂结合。这是通过免疫反应实现的,其中抗体或免疫试剂与兽药残留物特定的抗原发生特异性结合。  胶体金标记:通常,检测中使用的免疫试剂或抗体会与胶体金纳米颗粒结合,使这些颗粒成为可视化的标记物。  检测:标记的胶体金颗粒会产生特定的光学信号,这些信号可以通过检测仪器测量。信号的强度与样品中兽药残留物的浓度成正比。  结果分析:检测仪器将测量的光学信号转化为数值结果,指示样品中的兽药残留物浓度。  这种检测仪器通常具有高度灵敏性和特异性,能够检测到非常低浓度的兽药残留物。它在食品安全监测、农产品质量控制、水产品安全检测和农业兽药合规性监测等领域非常有用。通过使用这种仪器,可以确保食品和农产品中的兽药残留物不会对消费者的健康产生潜在的风险。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/10/202310201100138216_9725_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 光学3D表面轮廓仪测量磨损定量的原理

    “摩擦,摩擦,在这光滑的地上摩擦…..”还记得庞麦郎的一首《我的滑板鞋》风靡大街小巷,广场上卷起了一股溜滑板鞋的浪潮。尔今浪潮已退,但摩擦声却未消失,作为一柄对社会发展起着双刃剑作用的武器,各大高校和科研机构一直都在对摩擦学进行着持续的研究,而中图仪器[b]SuperView W1光学3D表面轮廓仪[/b],就是该领域最时尚的滑板鞋,载着研究人员疾驰,手持武器,所向披靡。  摩擦学是一门研究物体相对运动时其表面摩擦、润滑、磨损三者间相互关系的交叉学科,摩擦学实验研究的重点和难点之一在于对磨损量的定量分析。磨损量涵盖了磨损区的轮廓尺寸、粗糙度、体积这线、面、体三个维度方面的参数,量级从纳米到毫米不等,又由于不可破坏性测量,传统的低精度接触式轮廓仪和影像仪无法适用,而以白光干涉为原理、具备高精度、非接触式测量能力的光学3D表面轮廓仪登上了摩擦学研究的舞台。[align=center][img]http://www.chotest.com/Upload/2018/8/201808238760989.jpg[/img][/align][align=center][img]http://www.chotest.com/Upload/2018/8/201808231572145.jpg[/img][/align][align=center]图1 工作中的CSM摩擦磨损测试仪[/align]  上图展示的是一款工作中的CSM摩擦磨损测试仪,经过十数小时的摩擦,铜板表面出现了一圈圈摩擦痕迹,即为磨损区域,对磨损区域进行尺寸上的定量分析,是研究的重要组成部分,下面我们使用中图仪器SuperView W1光学3D表面轮廓仪对一块经过摩擦试验处理的铜板进行线、面、体三个维度的定量分析。一、一维:线_轮廓尺寸  取一块摩擦处理过的铜板,使用SuperView W1光学3D表面轮廓仪对其中未摩擦过的光滑区域和摩擦过的磨损区域进行扫描,获取其3D图像。[align=center][img]http://www.chotest.com/Upload/2018/8/201808239913954.jpg[/img][/align][align=center][img]http://www.chotest.com/Upload/2018/8/201808234541029.jpg[/img][/align][align=center]图5 磨损区的剖面轮廓曲线[/align]  从图中可以看到,相对光滑区细致较浅的划痕,磨损区充满了坑坑洼洼的槽,在磨损区3D图像上提取一条剖面轮廓曲线,可以获取槽深和槽宽的轮廓尺寸数据。二、二维:面_粗糙度  分别在光滑区和磨损区选取若干点,测量分析显示经过摩擦磨损试验过的区域线粗糙度和面粗糙度均增大了至少十几倍。[align=center][img]http://www.chotest.com/Upload/2018/8/201808235791766.jpg[/img][/align][align=center]图6 光滑区域粗糙度[/align][align=center][img]http://www.chotest.com/Upload/2018/8/201808237197020.jpg[/img][/align][align=center]图7 磨损区域粗糙度[/align]三、三维:体_体积[align=center][img]http://www.chotest.com/Upload/2018/8/201808238604911.jpg[/img][/align][align=center]图8 磨损区3D图像&孔洞体积测量[/align]  如右上图,利用分析工作“孔洞体积”对磨损区进行区域体积分析。在选择的分析区域中,位于基准面(蓝色方框)上面的顶点区域显示为红色,位于基准面下方显示为绿色,利用“孔洞体积”分析工具可直接获取该区域内上下两部分的面积、体积、深度数据。  一线二面三体,中图仪器SuperView W1光学3D表面轮廓仪能让研究人员掌握三个维度精确的数据信息,从而对摩擦磨损区进行全面的分析判断,如同穿上了酷炫的滑板鞋,在摩擦学研究这个舞台秀出华丽的舞步。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制