当前位置: 仪器信息网 > 行业主题 > >

透光率测试仪遵循标准

仪器信息网透光率测试仪遵循标准专题为您提供2024年最新透光率测试仪遵循标准价格报价、厂家品牌的相关信息, 包括透光率测试仪遵循标准参数、型号等,不管是国产,还是进口品牌的透光率测试仪遵循标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合透光率测试仪遵循标准相关的耗材配件、试剂标物,还有透光率测试仪遵循标准相关的最新资讯、资料,以及透光率测试仪遵循标准相关的解决方案。

透光率测试仪遵循标准相关的资讯

  • 彩谱发布彩谱透光率雾度仪TH-100新品
    彩谱雾度计TH-100产品特性:1. 符合以下测试标准:GB/T 2410标准、ASTM D 1003标准、ISO 13468标准、ISO 14782标准2. 仪器无需预热,即用即测;测试时间短,3秒即出结果3. 满足CIE-A、CIE-C、CIE-D65三种标准照明光源下的雾度与全透过率测量4. 拥有雾度值自定标功能,实现仪器测量数据与目标数据一致5. 拥有垂直测量和卧式测量两种测量状态,适合片材、薄膜、液体等样品测量6. 拥有开放式的测量区域,可以满足任意大小的样品测量7. 人性化设计,配置附件收纳抽屉8. 采用5.0寸TFT显示屏,拥有良好的人机交互界面9. 采用LED光源,寿命长,十年无需更换10. 体积小,重量轻,方便携带彩谱雾度计TH-100技术参数: 型号TH-100光源CIE-A、CIE-C、CIE-D65遵循标准ASTM D1003/D1044,ISO13468/ISO14782,JIS K 7105,JIS K 7361,JIS K 7136,GB/T 2410-08测量参数雾度(HAZE),透过率(T)光谱响应CIE光谱函数Y/V(λ)光路结构0/d照明与样品孔径尺寸15mm/21mm量程0-100%雾度分辨率0.01%透过率分辨率0.01%雾度重复性雾度<10%,重复性≤0.05%;雾度≥10%,重复性≤0.1%透过率重复性≤0.1%样品大小厚度≤145mm存储数据20000个数值接口USB接口电源DC24V工作温度10~40℃,相对湿度80%或更低(在35℃下),无水气凝结储藏温度-20℃~50℃,相对湿度80%或更低(在35℃下),无水气凝结体积长X宽X高:310mmX215mmX540mm标配PC管理软件(Haze QC )选配测量夹具、雾度标准片、5/7/10mm定制口径板、40*10比色皿彩谱雾度计TH-100应用领域:1、玻璃:AG玻璃、手机盖板、导光板、眼镜镜片、汽车玻璃、屏幕… … 2、塑胶:光学薄膜、农业薄膜、包装膜、扩散片、灯罩、塑胶板… … 创新点:1.仪器无需预热,即用即测,测试时间仅需2秒 2.开放式的测试区域,解放了对样品尺寸的限制 3.支持双标准,ASTM和ISO标准 彩谱透光率雾度仪TH-100
  • 海洋光学推高透光率低杂散光全息光谱
    海洋光学(Ocean Optics – www.oceanopticschina.cn) 推出像差校正全息凹面衍射光栅光谱仪 – Torus 系列。该光谱仪具有透光率高、杂散光更低、热稳定性好的特点,可用于液体、固体等的吸收、荧光测量。Torus 可见波段光谱仪(360nm-825nm),杂散光水平:在400nm 处,约0.015%,较平面光栅等微型光纤光谱仪更低。   平场光学设计及全息凹面光栅用于光的色散:Torus 光栅的凹面用于光的反射及汇聚 光栅刻线用于光的色散 光栅的环形设计用于像差校正,提高衍射效率。   Torus 并且具有较高的光学分辨率(1.6nm FWHM,25um 狭缝)和优良的热稳定性(在0-50℃范围内,波长漂移更小,峰型保持基本一致)。   Torus 系列光谱仪可以通过 USB 接口与计算机进行交互控制,可以根据客户需要更改狭缝、滤光片及其它配件来优化配置 也可以通过 C-mount 接口与显微镜等配合使用。与海洋光学的其它光学配件一起,使您的测量更方便,更灵活。   Torus 通过海洋光学的 Spectrasuite 光谱操作软件来进行操作与分析,并且可用于 Windows, Macintosh,及 Linux 操作平台。并且还与海洋光学的 OmniDriver,SeaBreeze 软件开发平台相兼容。
  • 水蒸气透过率测试仪在制药行业的关键应用
    在制药行业的精密制造与质量控制体系中,水蒸气透过率测试仪(Water Vapor Transmission Rate Tester, 简称WVTR Tester)扮演着举足轻重的角色。它不仅关乎药品包装材料的密封性能评估,还直接影响到药品的稳定性与保质期,是确保药品安全有效的重要工具。本文将从WVTR测试仪的基本原理、在制药行业中的具体应用、测试流程与标准、以及未来发展趋势四个方面进行详细探讨。一、WVTR测试仪的基本原理WVTR测试仪基于物理吸附与渗透原理,通过模拟特定环境条件下(如温度、湿度、压力),测量单位时间内通过材料表面或内部的水蒸气质量,从而计算出材料的水蒸气透过率。这一过程通常包括三个关键步骤:样品准备、环境控制及数据收集与分析。仪器内部精密的传感器和控制系统能够精确模拟各种环境条件,确保测试结果的准确性和可靠性。二、在制药行业中的具体应用1. 包装材料筛选与优化药品包装需具备良好的阻隔性能,以防止外部水分侵入,影响药品的理化性质和药效。WVTR测试仪帮助制药企业筛选出低水蒸气透过率的包装材料,如铝箔复合膜、高阻隔塑料等,并通过不断优化材料配方与结构,进一步提升包装性能,延长药品保质期。2. 药品稳定性研究药品在储存和运输过程中,若包装材料的水蒸气透过率过高,会导致药品吸湿、潮解、变质等问题,影响药品质量和安全性。利用WVTR测试仪,可以对不同包装条件下的药品进行稳定性研究,评估其长期储存性能,为制定科学合理的包装方案提供依据。3. 法规遵从与质量控制随着全球药品监管政策的日益严格,对药品包装材料的水蒸气透过率提出了明确的限量要求。WVTR测试仪作为合规性测试的重要工具,帮助制药企业确保产品符合国际国内相关法规标准,提升产品市场竞争力。三、测试流程与标准测试流程样品准备:根据测试标准准备合适的样品尺寸和数量,确保样品表面清洁无损伤。仪器校准:使用标准样品对WVTR测试仪进行校准,确保测量精度。环境设置:根据测试标准设定测试温度、湿度等环境条件。测试运行:将样品置于测试室内,启动仪器进行测试,记录数据。数据分析:对测试数据进行处理,计算出水蒸气透过率,并与标准值进行比较。标准遵循制药行业通常遵循国际标准化组织(ISO)、美国药典(USP)、欧洲药典(EP)等制定的相关标准进行测试,如ISO 15106、ASTM E96等,以确保测试结果的国际互认性。四、未来发展趋势1. 技术创新与升级随着科技的进步,WVTR测试仪将向更高精度、更高效率、更多功能方向发展。例如,采用更先进的传感器技术提高测量精度,引入自动化控制系统简化操作流程,以及开发多功能测试平台满足复杂测试需求。2. 智能化与远程监控未来,WVTR测试仪将更多地融入物联网、大数据等现代信息技术,实现远程监控、数据分析与预警功能。制药企业可通过云端平台实时查看测试数据,及时发现潜在问题,提高质量控制的时效性和精准度。3. 绿色环保与可持续发展在环保意识的推动下,制药行业对包装材料的环保性能要求日益提高。WVTR测试仪将更多地关注可降解、可回收等环保材料的测试研究,推动制药包装行业的绿色转型与可持续发展。综上所述,水蒸气透过率测试仪在制药行业中的应用广泛而深入,不仅保障了药品的质量与安全,还促进了包装材料的创新与升级。随着技术的不断进步和应用领域的不断拓展,WVTR测试仪将在制药行业的未来发展中发挥更加重要的作用。
  • Alicona新品InfiniteFocus和MeX遵循新ISO标准
    新的ISO标准25178第一次包括基于测量对光学区域进行分类的标准参数。作为ISO委员会的成员,Alicona的专家在确定表面测量技术的分类方法中发挥了重要的作用。同时,Alicona拥有对表面参数的最终决定权。   光学表面测量仪InfiniteFocus的无限变焦技术和MeX的基本技术都作为光学表面测量技术包含在ISO 25178中。   新的ISO标准包含表征表面测量结果的许多参数,InfiniteFocu和MeX遵循以下标准:   1.描述高度分布的参数:Sa, Sq, Sp, Sv, Sz, Ssk, Sdq, Sdr   2.描述材料面积比率的参数:Sk, Spk, Svk, Smr1, Smr2   3.用自动相关功能、傅里叶光谱、混合参数测量空间参数:Sal, Str, Std, Stdi   4.体积测量的参数:Vmp, Vmc, Vvc, Vvv, Vvc/Vmc   5.梯度分布
  • 我国自主知识产权薄膜透光组件研制成功
    从启动项目至今,仅仅经过 31天的时间,该公司天威薄膜研发检测中心自主研发的具有我国自主知识产权太阳能薄膜透光组件,于今日正式下线。   试验和检测数据表明,该太阳能薄膜透光组件电池性能达到国际同行业领先水平,表明中国企业开发掌握了大面积硅基薄膜透光光伏组件的关键制造技术与工艺,为未来开发更多满足客户个性化需求的产品奠定了坚实的基础,标志着天威集团进军太阳能光伏发电行业迈出了坚实的一步。   据天威薄膜研发检测中心副主任贾海军博士介绍说,该透光组件透光率达 30%,可用于立面透明幕墙,相比于晶体硅透光组件,太阳能薄膜透光组件外观更加优美,高温和弱光性能好,可以在阴天微弱光线下发电,同标称功率下发电量最多。   据悉,天威薄膜研发检测中心是全世界技术最先进、涵盖工艺最全面的薄膜太阳能技术研发中心之一,不仅可以进行大面积硅薄膜太阳能电池的试制生产,还可以进行新一代高效率太阳能电池的基础研究和产品研发。同时,该中心还可为本企业、华北乃至整个中国其他企业提供符合行业相关标准的样品试制、产品检测检验等服务,对于拉动中国光伏行业发展具有重要意义。
  • 利用XRF技术来遵循IPC-4556
    IPC-4556是关于印刷电路板化学镀镍/化学镀钯/浸金(ENEPIG)表面处理的规范。该规范于2013年1月发布,其中给出了IPC对于实现可靠的PCB表面处理的详细指南,旨在确保PCB在金、铜和铝线镀层应用中保持最佳的使用寿命、可焊性和引线键合。该规范涵盖了一系列PCB表面处理参数,用于确保PCB实现可靠的接触性能,其包括:视觉参考、附着力、可焊性、清洁度和电解腐蚀。然而,该文件主要侧重于镍、钯和金层的特定厚度范围。一方面,钯层必须足够厚,以阻止镍扩散到金表面,从而防止化学镀镍层过度腐蚀。(过度腐蚀会导致焊点变得不可靠)。而另一方面,如果钯层太厚,焊点会变脆,最终可能会失效。因此需要金层来保护钯层免受可能对引线键合和焊接产生不利影响的污染,而且金层必须大于规定的厚度。遵守该规范有助于PCB制造商交付的产品符合IPC第三类有关寿命至少为12个月。镀层厚度的测量IPC-4556规定,镀层厚度必须使用x射线荧光(XRF)方法来测量。IPC在开发该规范时采用XRF进行了大量的测试,因此制定出了一套详细的测量标准,包括设备设置、测量报告和校准建议。要想确保准确可靠地进行厚度测量,使用XRF仪器的人员必须了解影响测量结果的许多因素。其包括以下方面:样品大小镀层厚度会随镀层面积而变化,区域面积越小,镀层越厚。因此,对于校准和生产读数而言,用于测量的焊盘大小必须一致。校准标准对于类似于在生产设备上测量的厚度,IPC建议使用国家标准可追溯校准标准。同时应当采用量具R & R或等效统计方法。此外,还应经常检查校准标准片。XRF仪器软件许多XRF仪器配有背景校正软件,该软件旨在消除可能产生不正确读数的基底中的背景散射。该功能可能需要激活,如果适用,用户需要确定如何激活。探测器类型检测器必须能够测量三层薄镀层。虽然固态检测器(SSD)的分辨率比正比计数系统更好,但根据XRF仪器的使用年限和性能,SSD的测量时间会更长,因此可能需要进行权衡。IPC-4556指南有助于确保ENEPIG表面处理实现良好质量,同时让其保质期达到可预测、可重复水平。不过,还要仔细考虑并了解XRF仪器和相关软件以及使用正确的校准程序,这对于确保使用XRF来准确地进行镀层厚度测量而言至关重要。日立分析仪器是IPC成员,我们强烈建议遵循IPC的指南,以实现印刷电路板制造的质量和可靠性。我们的XRF仪器与PCB技术的快速发展保持同步,旨在帮助您在生产中获得一致性和可靠性。
  • 数图详解|如何遵循QbD进行冻干工艺设计与优化?
    随着具有潜在疗效的生物分子数量不断增加,对了解这些生物分子结构复杂性和稳定性的需求也在与日俱增。相对于其它干燥技术,冷冻干燥依然是*的稳定的技术,原因很简单:它是一个低温的过程,可以用于处理生物溶液而使其免遭破坏,提高药物制剂的稳定性和货架期。然而,冷冻干燥又是一个复杂的过程,如果设计不当,容易在处理过程与储存过程中产生不稳定性。 图1:QbD质量源于设计理念 基于PAT ICH Q8/Q9/Q10准则对QbD的规范法案中可以看出,产品与过程的性能特征都需要经过科学设计以满足特定目标,而不是凭经验从实验中推导。一、为什么要遵循QbD进行冷冻干燥?法规要求ICH指南Q8、Q9、Q10要求。FDA及GMP近年来也强烈建议遵循QbD理念,以*程度上保证产品质量,减少和控制风险。美国FDA在2004年"Pharmaceutical cGMP for 21st-A Risk Based Approach" 报告中正式提出了QbD的概念,并且被人用药品注册规定国际协调会议(ICH)纳入质量体系当中。在ICH质量体系框图中,明确提出了要求达到理想的质量控制状态,必须从药物研发以及质量源于设计、质量风险管理以及药物质量体系三方面入手,即Q8,Q9和Q10 的结合;其中Q8 中明确说明质量不是通过检验注入到产品中,而是通过设计赋予的。产品注册- FDA/EMEA/MHRA认为基于实证或经验的方法不再足够好;- 可重复性与稳健性不一样;- 你需要知道边界值在哪里,你离失败的边缘有多近。生产效益用科学的原理来支撑你的冻干工艺,从而得到好的工艺和产品。经济效益您可以将生产经济融入到你的工艺设计,提高生产放大和技术转移的信心和工艺稳健性。二、QbD相关术语——冻干过程关键参数相关术语 关键质量属性(CQAs)目标产品质量概况((Q)TPP)关键工艺参数(CPPs)设计空间 ( DS )可接受空间( AS )操作空间( OS )这就需要基于目标产品的情况(Q)TPP和CQAs得出CPPs,得到对目标过程的定义,再结合相关技术去建立设计空间和控制整个过程,按照既定的目标设计出合格的产品。示例:冻干产品关键质量属性与目标产品质量冻干关键工艺参数(CPPs)关键过程参数 CPsP(表2)关键产品参数 CPtP(表3) 其他● 小瓶/容器尺寸、传热系数(Kv);● 灌装深度、浓度;● 辐射热 / 冷却。冻干关键工艺参数与产品质量的关系: 三、如何遵循QbD进行冻干工艺设计,在冻干过程中降低风险?设备:深入了解你的冷冻干燥机- 仔细阅读制造商的规格- IQ / OQ测试–确认机器是否合格- 阻塞流研究,了解设备的极限性能(*升华速率)(图2) 图2:设备能力曲线(蓝色)设备极限性能测试方法:(1) 最小可控压力法;(2) 气流受阻点方法;(两种方法比较见图3)设备极限性能测试技术:LyoFlux(TDLAS)/MTM 图3:最小可控压力法和气流受阻点方法比较配方:理解配方关键温度*冷冻干燥显微镜图4:冻干显微镜及塌陷温度测定 - 定义配方塌陷温度和共晶点/共熔点;- 微塌陷? 退火的影响?表面结壳?*差示热分析/阻抗 图5:差示热分析/阻抗DTA或DSC:测定显著的吸热和放热事件,如:结晶,熔化,玻璃化转变,吸热松弛等。阻抗分析:热技术可能无法发现分子迁移率的变化,阻抗分析能在更复杂的非晶态产品中提供玻璃化化过渡等事件。工艺动态了解不断变化的平衡过程中的风险,用完善且先进的PAT工具,对冻干过程中所有的关键工艺参数(关键过程参数CPsP和关键产品参数CPtP进行实时在线的监测和控制),建立设计空间,确定边界值及合理且优化的工艺空间。理解变化的风险(图6) 图6:一次干燥关键工艺参数实时在线监测与控制,深入理解冻干过程(图7) 图7:冻干过程关键工艺参数实时在线监测与控制冻干工艺设计空间DS(图8)建立冻干工艺设计空间DS,确定边界值、可接受空间、操作和优化空间。详细步骤如下: 图8:如何建立冻干工艺设计空间基于QbD理念的冻干工艺设计整体流程图9:基于QbD理念的冻干工艺设计整体流程图总结● QbD以预先设定的目标产品质量特性作为研发起点,在了解关键物质属性的基础上,通过试验设计,研究产品的关键质量属性,确立关键工艺参数。在多影响因素下,建立能满足产品性能且工艺稳健的设计空间(Design Space)。并根据设计空间,建立质量风险管理,确立质量控制策略和药品质量体系;● 实施QbD是将PAT过程分析技术与风险管理综合应用于药品工艺开发的过程,它的目的不是消灭生产过程中的偏差,而是建立一种可以在一定范围内调节偏差来保证产品质量稳定性的生产工艺;● QbD是cGMP的基本组成部分,是科学的,基于风险的全面主动的药物开发方法,从产品概念到工业化均精心设计,是对产品属性、生产工艺与产品性能之间关系的透彻理解;● 基于QbD理念进行冻干工艺设计和优化,用CQA/QTPP/CPP来识别关键和非关键阶段以及每个阶段的相对风险。用“约束理论”识别*风险点(主干燥),提供*风险的解决方案,并将其它风险一起控制。对冻干配方、设备和工艺进行深入的理解和控制,*按照即定的工艺目标设计并生产出合格且*的产品,并将风险降至*。这就是QbD所追求的!
  • 农业部副部长:中国转基因产品遵循“三可”原则
    中国农业部副部长张桃林博士12月3日强调,中国的转基因产品必须遵循“三可”原则,即源头可控,所有转基因产品都要保证可追溯到它的源头在哪里 可标识,所有转基因产品进入市场必须按法律要求进行标识 可控制,根据需要可控制在特定区域,以保证所有公民对转基因产品的知情权与选择权。   张桃林当天下午作客中国科学院研究生院“中国科学与人文论坛”,以“中国农业科技发展的回顾与展望”为题发表演讲,就备受社会关注的转基因产品安全性相关问题回答提问时作上述表示。   他说,中国搞转基因出发点是为了造福农民、造福全国公民,“而且转基因上面我们要立法先行、依法保障、有法可依、违法必究,这是非常明确的”。至于市场上出现没有标识的转基因产品,则需要相关部门依据法律对市场进行严格管理。   技术层面上,中国对转基因产品有严格的安全评价程序,包括从环境释放、生产性试验,一环一环都要按严格标准进行评价,并进行试验,以保证转基因产品的先进性、安全性。同时,选择农学、医学等跨学科、多学科的专家作为转基因产品安全性评价的评审专家,而且这一选择过程也遵循科学的严密的程序。   这位学者型高官称,转基因技术本身不能简单评价其好坏,转基因种类很多,关键是要把基因、转基因技术朝着人类文明、科技进步、社会发展这样的方向推进。
  • 安捷伦科技成功举办2012年医药行业法规遵循趋势技术和服务方案研讨周
    安捷伦科技成功举办2012年医药行业法规遵循趋势技术和服务方案研讨周 2012年11月19日, 2012安捷伦医药行业法规遵循趋势技术和服务方案研讨周在重庆市隆重开启,紧接着三天分别在上海、北京、连云港相继举办。本次研讨周特邀了全球法规遵循领域的高级资深专家 Ludwig Huber博士,安捷伦科技液相分离业务部的全球行业营销经理Michael Kraft, 以及安捷伦科技亚太地区 CrossLab 服务经理Dick Fregin前来介绍美国和欧盟对实验室认证的要求等法规遵循方面的相关议题,和针对医药行业各种最新的方案和服务。本次医药行业法规研讨周采用了现场研讨会、网络研讨会、以及大会报告的多种形式和与会者进行交流。全国各地的众多制药厂商和相关专家都积极参与了会议并进行了相互交流和探讨。 重庆会议现场 上海会议现场 北京会议现场 在本次巡回研讨会上,全球法规遵循领域的高级资深专家 Ludwig Huber博士作了&ldquo 八个基本步骤 &ndash 让您的实验室节省成本并符合法规要求&rdquo ,&ldquo 分析仪器认证和系统验证&rdquo 以及&ldquo 互动工作坊:FDA的警告信&rdquo 的精彩报告,另外,在11月20日的上海现场,同时是网络研讨会上,Ludwig Huber博士还作了题为&ldquo PIC/S-EU GMP 附录 11&mdash &mdash 计算机验证和管理的全新黄金监管标准&rdquo 的报告。 全球法规遵循领域的高级资深专家&mdash &mdash Ludwig Huber 安捷伦科技液相分离业务部的全球行业营销经理Michael Kraft为与会者作了&ldquo 全球监管趋势&mdash &mdash 美国 FDA、欧洲、PIC/S 和 USP 的最新消息和举措&rdquo 、&ldquo 适用于制药开发和质量控制实验室的最新 HPLC 解决方案&rdquo 以及&ldquo 符合 USP 1224 的分析方法转换&rdquo 的精彩报告。 安捷伦科技液相分离业务部的全球行业营销经理&mdash &mdash Michael Kraft 此外,安捷伦科技亚太地区 CrossLab 服务经理Dick Fregin为各位参会者作了&ldquo 安捷伦CrossLab与法规服务让您的实验室更有效率和个案分享&rdquo 报告。 安捷伦科技亚太地区 CrossLab 服务经理&mdash &mdash Dick Fregin 会上,许多与会者对讲课内容非常感兴趣,不时提出问题,我们Ludwig Huber博士、Michael Kraft博士和Dick Fregin博士, 张之旭博士和肖尧博士都详细地作了解答。另外,针对FDA警告信,会议现场还进行了小组讨论,气氛非常热烈,每一位与会者都认真积极地参与,效果良好。 研讨会互动现场 会议分组讨论现场 除了安捷伦自己举办的研讨会外,在 20-21日期间还参加了在上海所举办的2012年第二届新版GMP峰会&mdash 制药工程与药品质量.来自全球领先的生物制药公司专家们被邀请来分享他们的见解. 该大会重点讨论的论题有在新版GMP环境下加强工程项目的生命周期管理, 符合新版GMP的生物制剂生产设施设计, 在新版GMP的要求下优化设备选型等. 安捷伦作为主要赞助商, 也应邀在第一天的大会报告中分享了安捷伦在符合计算机验证法规方面的经验, 以及介绍CrossLab服务如何帮助医药行业实验室更有效率. 同时在现场有展位设置, 与现场用户交流. 2012年第二届新版GMP峰会&mdash 制药工程与药品质量大会 安捷伦科技参会嘉宾 与现场客户交流 在这研讨周期间, 安捷伦向客户展现了我们协助用户实现法规遵循, Crosslab服务方案提升实验室效率的能力.并与医药, 生物制药等相关行业的用户做了许多交流, 并获得广大的回响。 关于安捷伦科技 安捷伦科技公司(NYSE:A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20,500 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2012财年,安捷伦的净收入达到 69亿美元。如欲了解关于安捷伦的详细信息,请访问www.agilent.com。
  • 214万!佛山检测院不透光烟度计等采购项目
    项目编号:440001-2022-35641项目名称:佛山检测院2022年度仪器设备采购(第二批)项目采购方式:公开招标预算金额:2,144,600.00元采购需求:合同包1(应力分析仪等):合同包预算金额:333,600.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他专用仪器仪表应力分析仪1(套)详见采购文件172,000.00-1-2其他专用仪器仪表不透光烟度计1(套)详见采购文件16,000.00-1-3其他专用仪器仪表微型起重机综合测试仪1(套)详见采购文件145,600.00-本合同包不接受联合体投标合同履行期限:自合同签订生效之日起60个日历天内完成合同包2(杂散电流记录仪等):合同包预算金额:1,618,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1记录电表、电磁示波器杂散电流记录仪1(套)详见采购文件168,000.00-2-2危险化学品安全设备智能燃气PE管道定位仪1(套)详见采购文件360,000.00-2-3无损探伤机数字式超声波探伤仪5(套)详见采购文件290,000.00-2-4无损探伤机相控阵超声检测仪1(套)详见采购文件800,000.00-本合同包不接受联合体投标合同履行期限:自合同签订生效之日起60个日历天内完成合同包3(橡胶及金属软管校验台):合同包预算金额:193,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)3-1其他专用仪器仪表橡胶及金属软管检验台1(套)详见采购文件193,000.00-本合同包不接受联合体投标合同履行期限:自合同签订生效之日起60个日历天内完成
  • 最新公布的光谱仪器相关标准(含下载链接)
    4月15日,国家市场监督管理总局 国家标准化管理委员会公布了245项推荐性国家标准,其中与光谱技术相关的共有5项。标准将于2022年11月1日正式已于近日上线,标准全文已于近日公布,点击下方标准名称可直接查看标准全文。注:GB/T 6730.60-2022采用了ISO、IEC等国际国外组织的标准,由于涉及版权保护问题,系统暂不提供在线阅读服务。标准号标准名称GB/T 6730.60-2022铁矿石 镍含量的测定 火焰原子吸收光谱法GB/T 41456-2022纳米技术 生产环境纳米二氧化钛粉尘浓度检测方法 分光光度法 GB/T 41442-2022山羊绒净绒率试验方法 近红外光谱法 GB/T 14571.4-2022工业用乙二醇试验方法 第4部分:紫外透光率的测定 紫外分光光度法 GB/T 41497-2022钒铁 钒、硅、磷、锰、铝、铁含量的测定 波长色散X射线荧光光谱法 以下重点展示标准中涉及仪器的部分:GB/T 41456-2022 纳米技术 生产环境纳米二氧化钛粉尘浓度检测方法 分光光度法GB/T 41442-2022 山羊绒净绒率试验方法 近红外光谱法GB/T 14571.4-2022 工业用乙二醇试验方法 第4部分:紫外透光率的测定 紫外分光光度法GB/T 41497-2022 钒铁 钒、硅、磷、锰、铝、铁含量的测定 波长色散X射线荧光光谱法在线预览|GB/T 16597-2019 冶金产品分析方法 X射线荧光光谱法通则
  • 兰光发布高精度C230H氧气透过率测试仪新品
    C230H氧气透过率测试系统——本产品基于库仑氧气分析传感器和等压法测试原理,参照ASTM D3985标准设计制造,为高、中气体阻隔性材料提供高精度和高效率的氧气透过率检测试验。适用于食品、药品、医疗器械、日用化学、光伏电子等领域的薄膜、片材、包装件及相关材料的氧气透过性能测试。产品优势:只为精准——先进流体力学和热力学设计的专利测试集成块;空间立体恒温技术;独立监测各腔测试情况的温湿度传感器;高效合规——同时测试3个相同试样,符合平行试验的标准要求;支持同一条件下3个不同试样测试;节省人力——自动温度、湿度控制;简便易用——搭载Windows10系统的12寸触控平板操作;快速自动测试;自动数据管理的DataShieldTM数据盾系统;产品特点:1、新一代先进测试集成块——先进热力学和流体力学分析设计的专利三腔一体测试集成块结构,大幅缩小三腔之间温度、湿度和流量差异。支持三个相同或不同试样的同步测试。2、自动温度、湿度控制——设备内部温度、湿度自动调节。测试腔各自安装温湿度传感器监测温湿度情况,控制测试过程更加精准。3、易用高效的系统功能——搭载高性能处理器和Windows10操作系统,通用各种软件和设备;自动测试模式,不需人工调整快速获得精确结果;专业测试模式,提供了灵活丰富的仪器控制功能,满足个性化科研需要;独有DataShieldTM数据盾系统,对接用户数据集中管理要求,支持多种数据格式导出;采用可靠安全算法,防止数据泄露;支持通用有线和无线局域网,选配专用无线网,支持接4、入第三方软件。先进的用户服务意识——坚持以用户为中心的服务理念使Labthink造就了成熟的产品定制系统流程,可以提供灵活周到的个性化定制服务。测试原理:将预先处理好的试样夹紧于测试腔之间,氧气或空气在薄膜的一侧流动,高纯氮气在薄膜的另一侧流动,氧分子穿过薄膜扩散到另一侧中的高纯氮气中,被流动的氮气携带至传感器,通过对传感器测量到的氧气浓度进行分析,计算出氧气透过率等结果;对于包装件而言,高纯氮气则在包装件内流动,空气或氧气包围在包装件外侧。参照标准:ASTM D3985、ASTM F1307、ASTM F1927、GB/T 19789、GB/T 31354、DIN 53-3、JIS K7126-2-B、YBB 00082003-2015技术参数:测试范围:0.01~200cm3/(m2day) (标准);0.0007~12.9cc/(100in2day);0.00005~1cm3/(pkgday)(包)分辨率:0.001cm3/(m2day)重复性:0.01cm3/(m2day)或2%,取大者测试温度:10~55℃±0.2℃测试湿度:0%RH,5%RH~90%RH±1%RH,100%RH附加功能:包装件测试(最大3L):可选DataShieldTM数据盾:可选GMP计算机系统要求:可选CFR21 Part11:可选技术规格:测试腔:3样品尺寸:108mm×108mm样品厚度:≤3mm标准测试面积:50cm2载气规格:99.999%高纯氮气(气源用户自备)气源压力:≥0.28MPa/40.6psi接口尺寸:1/8 英寸金属管创新点:C230H氧气透过率测试系统基于库仑氧气分析传感器和等压法测试原理,参照ASTM D3985标准设计制造,为高、中气体阻隔性材料提供高精度和高效率的氧气透过率检测试验。 创新技术特点: (1)新一代先进测试集成块——先进热力学和流体力学分析设计的专利三腔一体测试集成块结构,大幅缩小三腔之间温度、湿度和流量差异。支持三个相同或不同试样的同步测试。 (2)搭载Windows10系统的12寸触控平板操作;快速自动测试;自动数据管理的DataShieldTM数据盾系统; 高精度C230H氧气透过率测试仪
  • 兰光发布塑料包材水蒸气透过率测试仪新品
    塑料包装水蒸气透过率测试仪 C360H水蒸气透过率测试系统——本产品基于重量法水蒸气透过的测试原理,参照ASTME96,GB 1037标准设计制造,为低、中、高水蒸气阻隔性材料提供宽范围、高效率的水蒸气透过率检测试验。适用于食品、药品、医疗器械、日用化学等领域的薄膜、片材、纸张、织物、无纺布及相关材料的水蒸气透过性能测试。塑料包装水蒸气透过率测试仪产品优势:只为精准——先进流体力学和热力学设计的专利测试舱和透湿杯;立体空间恒温技术;精密科学的测试条件调节计算;高效合规——12个测试工位;支持增重法和减重法测试模式;节省人力——风速自动调节;湿度自动调节;无需更换内芯的气体干燥装置和高效水蒸气发生装置;简便易用——搭载Windows10系统的12寸触控平板操作;快速自动测试;自动数据管理的DataShieldTM数据盾系统;产品特点:1、新一代先进测试舱与透湿杯——先进流体力学和热力学结构分析设计的专利测试舱和透湿杯,温度和湿度更加均匀稳定,测试周期更短,结果更精准。2、出色的高低阻隔性材料的测试能力——实时测量测试环境条件进行精密调节计算,使高阻隔材料的测试更精准,低阻隔材料测试重复性更优。3、温度、湿度、风速自动精密控制——舱体空间立体恒温;风速实时测定和自动调节;配备高效率无水雾湿度自动调节装置,满足长时间连续测试需要;气体干燥装置无需更换内芯,连续工作寿命可达两万小时。4、易用高效的系统功能——搭载高性能处理器和Windows10操作系统,通用各种软件和设备;自动测试模式,不需人工调整快速获得精确结果;专业测试模式,提供了灵活丰富的仪器控制功能,满足个性化科研需要;独有DataShieldTM数据盾系统,对接用户数据集中管理要求,支持多种数据格式导出;采用可靠安全算法,防止数据泄露;支持通用有线和无线局域网,选配专用无线网,支持接入第三方软件。5、先进的用户服务意识——坚持以用户为中心的服务理念使Labthink造就了成熟的产品定制系统流程,可以提供灵活周到的个性化定制服务。塑料包装水蒸气透过率测试仪测试原理:在预先处理好的测试杯中放置水或者干燥剂,然后将预先处理好的试样夹紧在测试杯上,测试杯放置于测试舱当中。测试舱根据指定测试条件生成稳定的温度、湿度和气流吹扫环境。水蒸气通过试样进入干燥一侧,通过测定测试杯整体重量随时间的变化量,计算试样水蒸气透过量等结果。参照标准:ASTM E96、GB 1037、GB/T 16928、ASTM D1653、ISO 2528、TAPPIT464、DIN 53122-1、YBB00092003-2015塑料包装水蒸气透过率测试仪技术参数:最大量程:减重法:10000/n(1-12件)g/(m2day);645/n(1-12件)g/(100in2day)增重法:每件1200 g/(m2day);每件77g/(100in2day)测试工位:12个测试温度:20℃~55℃±0.2测试湿度:10%RH~90%RH±1%扩展功能:DataShieldTM数据盾:可选GMP计算机系统要求:可选CFR21 Part11:可选技术规格:样品尺寸:Φ74mm样品厚度:≤3mm测试方法:增重法,减重法标准测试面积:33cm2载气规格:压缩空气载气干燥:长寿命干燥装置,不需要更换内芯载气加湿:内置高效无水雾加湿气源压力:≥0.6MPa接口尺寸:Φ6mm聚氨酯管创新点:1、新一代先进测试舱与透湿杯——先进流体力学和热力学结构分析设计的专利测试舱和透湿杯,温度和湿度更加均匀稳定,测试周期更短,结果更精准。 2、出色的高低阻隔性材料的测试能力——实时测量测试环境条件进行精密调节计算,使高阻隔材料的测试更精准,低阻隔材料测试重复性更优。 3、温度、湿度、风速自动精密控制——舱体空间立体恒温;风速实时测定和自动调节;配备高效率无水雾湿度自动调节装置,满足长时间连续测试需要;气体干燥装置无需更换内芯,连续工作寿命可达两万小时。 塑料包材水蒸气透过率测试仪
  • 用落镖冲击测试仪检测药用pvc硬片的耐冲击性能相较于落球冲击测试仪,哪个更好
    药用PVC硬片的耐冲击性能检测是一个关键的质量控制步骤,以确保药品包装的完整性和保护药品免受运输和处理过程中的冲击。落镖冲击测试仪和落球冲击测试仪都是用于评估材料耐冲击性能的设备,但它们在设计和应用方面存在差异。落镖冲击测试仪落镖冲击测试仪通常用于评估软包装材料如薄膜、复合膜等的抗冲击穿透能力。它使用一个或多个特定重量和形状的落镖,从一定高度落下冲击试样。这种测试方法更多地侧重于材料的抗穿透性能,适用于检测软包装材料在实际使用中抵抗尖锐物体冲击的能力。落球冲击测试仪落球冲击测试仪则通常用于测试硬质塑料材料如药用PVC硬片的冲击强度。它使用一定质量的球体从预设高度自由落体,冲击试样,以此来模拟实际使用中可能遇到的冲击情况。落球冲击试验可以检测药用PVC硬片的耐用性、硬度、强度和韧性等性能。比较与选择在选择落镖冲击测试仪还是落球冲击测试仪时,需要考虑以下因素:材料特性:药用PVC硬片作为一种硬质塑料材料,更适合使用落球冲击测试仪进行测试。测试目的:如果测试目的是评估材料的耐冲击能力以及硬度和强度,落球冲击测试仪可能更为合适。标准遵循:应参考相关的医药包装材料测试标准或国际标准,如YBB00212005-2015等,这些标准可能指定了特定的测试方法。设备能力:确保所选设备能够满足药用PVC硬片的测试要求,包括试样尺寸、冲击高度和能量等。结论根据上述信息,对于药用PVC硬片的耐冲击性能检测,落球冲击测试仪 更为适合,因为它专门设计用于评估硬质塑料材料的冲击强度,并且符合药用PVC硬片的测试标准和要求。
  • 遵循《中国科协科普发展规划》 2022南京科学仪器与实验室装备展杨帆起航
    遵循《中国科协科普发展规划》2022南京科学仪器与实验室装备展杨帆起航根据《中华人民共和国科学技术普及法》、《全民科学素质行动规划纲要(2021—2035年)》、《中国科学技术协会事业发展“十四五”规划(2021—2025年)》,为提高全民科学素质,构建高质量科普服务体系,更好服务于世界科技强国和社会主义现代化国家建设,2021年11月17日中国科协研究制定并发布《中国科协科普发展规划(2021-2025)》。习近平总书记指出:“科技创新、科学普及是实现创新发展的两翼,要把科学普及放在与科技创新同等重要的位置。没有全民科学素质普遍提高,就难以建立起宏大的高素质创新大军,难以实现科技成果快速转化。”这是新发展阶段科普事业发展的根本遵循。规划指出八大重点工程:科普信息化提升工程、科普基础设施工程、科技教育能力提升工程、基层科普服务能力提升工程、科技资源科普化助力工程、科普规范化建设工程、科普队伍建设工程、科普对外交流合作工程。2022第十九届南京科学仪器与实验室装备展创办于2004年,历经十八年发展从始至终,不忘初心,以“创建平台,创造价值”为宗旨,以推动科学产业发展为目标,以促进行业交流为己任,先后获得了“江苏省优秀品牌展会”和“南京市优秀品牌展会”的称号,已然成长为全国知名的综合性科教技术暨仪器设备类专业展会,形成了显著的品牌效应,是国内外厂商展示推广科教仪器与设备的最佳平台。2022年第十九届科学仪器与实验室装备展将于4月13-15日,在南京国际展览中心盛大召开。展会组委会紧跟时事,遵循《中国科协科普发展规划》将科技创新,科学普及放在首位,以建设高标准化的展会平台为目标。2022年展馆将增加至3个馆,近800个展位,吸引来自全球科学仪器、实验室装备、实验室耗材、试剂、实验室基础设施等业内优秀企业,包括安捷伦、赛默飞世尔、岛津、艾本德、珀金埃尔默、上海天能、江苏埃德伯格、上海埃松、英帝克、无锡赛弗、尤尼柯、上海台雄、天瑞仪器、科大讯飞、海康威视等知名公司。目前,2022年实验室装备展招展工作正在火热进行中,在此邀请行业内各大企业共襄盛举,欢迎全国教育工作者及科研人员莅临展会现场,参观交流,共同为推进科教事业发展做出贡献。咨询:陈经理 139 1388 5323(同微信)网址:www.njky-exh.com
  • 上海交大李侠教授:国家实验室建设应遵循四个原则
    国家实验室建设应遵循四个原则李侠 鲁世林在国际形势波诡云谲的当下,国家之间的竞争已经演变为科技水平与创新能力高低的较量。因此,当前提高国家科技水平与创新能力的关键切入点就是大力推进国家实验室建设及国家重点实验室体系建设。回顾历史,我国自1984年开始建设国家重点试验室以来,截止2020年底已经建成522个国家重点实验室,看似数量不少,但是实力相对而言都比较薄弱、学科单一,真正具有全球影响力和知名度的更少。那么,如何建设高水平的国家实验室呢?以往的教训在于,作为知识生产的头部研究机构的国家实验室仍难以遏制脱离知识生产主战场,越界到科技界知识生产的腰部地带以降维收割的方式哄抢科技资源的惯性发展路径,这实在是偏离了国家实验室设立的初衷。我们研究认为,国家实验室建设在操作层面应该遵循四个原则。政府主导原则。国家实验室作为大国重器,其性质决定了国家实验室必须要以满足国家和社会的紧迫需求为主要目的,这是原则性和方向性问题。因此,国家实验室的设计、投资、建设及评价都必须以国家相关部门为主导。对于国际顶尖国家实验室很多研究者存在认知误区,他们认为政府拥有、委托运营模式(简称GOCO)是主流模式也较为普遍,其实真实情况并非如此,真正体现国家意志的国家实验室的运营模式大多是政府拥有、政府运营模式(简称GOGO)。以美国国家实验室为例,国土安全部及NASA的国家实验室全部直接隶属于相关部委及其下属部门,能源部的国家实验室虽然只有一个实验室采取GOGO模式,但是其他实验室隶属的单位要么是大学及学会、要么是与国家相关部门关系密切的大型公司,看似代管但其实这些大学、学会及公司与政府之间的关系极其紧密。刚成立不久的实验室、尤其是关涉到国家关键领域的实验室其实都直接隶属于政府相关部门,如国土安全部下属的成立刚10年左右的5个实验室、NASA下属的10个关系国家安全的国家实验室等。协同创新原则。过去三十多年建设国家重点实验室的探索并没有完全使我国建成具有较好协同创新能力的国家实验室体系,甚至很多实验室的研究方向和领域存在一定的交叉和重复,实验室因管理体制、评估体系的原因导致彼此之间竞争激烈甚至各自为战,协同创新能力较弱。建设国家实验室,必须要实现国家实验室之间的协同创新,而非以往同质化的内卷式竞争,这就需要主管国家实验室的政府部门统筹规划本部门所属的实验室,同时加强与其他政府部门之间的协同合作。我国接下来建设国家实验室必须以科技部为主加强政府各部门之间的联系,同时对下属的国家实验室的功能和任务形成清晰的定位。这样就可以形成以在建的国家实验室为中心与现有的522家国家重点实验室之间,通过分类与联盟形成一个知识生产与分工协作的完整体系,从而盘活现有的国家重点实验室资源。重点突出原则。国家实验室作为前沿知识生产的源头,必须要有高精尖的设备和充足的人财物资源,这才能支撑起国家实验室在科技链条头部的地位。因此,必须重点突出地建设相关核心设施及突出研究亮点。虽然我国投入国家重点实验室体系及国家实验室建设的财政拨款逐年增加,但是相较美国等发达国家的国家实验室而言在投入规模方面还有较大的差距;此外,我国之前建设的国家实验室及国家重点实验室的数量规模已位居世界前列,但是实验室的人员规模普遍偏小(国外国家实验室人员平均规模是我们的10倍以上),实验室内部难以形成学科交叉、协同合作的条件,有的甚至和院(系)成了“一套班子、两块牌子”。国外顶尖实验室一般都有自身的独特科研设施及研究亮点,不管是单项目还是多功能实验室大都在其所属领域达到了国际顶尖水平,吸引了大量国内外的顶尖科学家和访问学者,大规模、跨学科的科研团队人员配备齐整,促进了实验室的协同创新。因此,接下来我们建设国家实验室必须做到两个突出,一是资源突出,尤其是先进大型科研设施及科研装置,着力建设具有国际顶尖水平的实验室,做到规模适当、学科交叉;二是重点突出,国家实验室功能定位准确、形成独特研究特色,在所属科研领域达到国际领先水平,同时加强国际交流与合作。长效评价原则。国家实验室作为我国基础研究和前沿研究的蓄水池和压舱石,必须给其充分的自由和时间深入科学前沿领域进行探索性和持久性研究。目前国家重点实验室的科研人员在招聘、评价、选拔、管理等方面与其所属单位几乎采用同样的标准,评价体制不够灵活、单调的短期绩效模式以及深层激励机制的错位,导致四唯/五唯盛行(唯帽子、唯论文、唯项目、唯职称甚至唯奖项),这套僵化的不匹配评价体系造成国家实验室的功能出现失灵,更为严重的是,其运行偏差对实验室科研人员尤其是年轻人造成了很大的生存和发展压力。我国建设国家实验室也应该逐步采取长效评价原则,实验室负责承接大项目,科研人员主要负责承担子项目的科研任务,科研评价重视科研成果的理论意义和实际价值,放弃那些饮鸩止渴式的过频过滥的短期评价,从评价机制角度入手给予国家实验室的科研人员以更多的自由、时间和发展机会。国家实验室的建设是中国科技体制在新时代推进范式转型的一次主动尝试,希望以此构建国家战略科技力量的基本格局,为了实现这个宏伟战略目标,总结以往经验教训,厘清关键原则势在必行。由于实验室的生态链相对简单与独立,改革起来便于控制环境变量,如果能够取得成功,对于后续的科技体制改革推进具有重大的示范作用,因此,基于历史经验得出的规则而行可以保证改革行稳致远。【作者按】这篇小文章发表在《光明日报》2021-7-8的科学版,我们小组关于国家实验室写了一组文章,这是第一篇发出来的。注:本文来自李侠科学网博客,已获得作者转载授权。链接地址:https://blog.sciencenet.cn/blog-829-1294595.html
  • 你问我答-遵循21 CFR Part 11 法规的实验室用软件问题大解析!
    在制药行业中,满足21 CFR Part 11 法规至关重要。它涵盖了对电子系统合规性的总体要求,包括管理控制、程序管制和技术控制。但是如果没有其他控制要素的开发和执行,软件本身是无法满足合规性要求的。那么,遵循21 CFR Part 11 法规的实验室用软件又有哪些问题是值得实验室人员关注的呢?如果您也在寻找一款合规软件,以下问题是否是您想要了解的信息?是否可以在系统上查看记录是否已被修改?系统是否可以识别无效记录?系统是否能够生成准确完整,且适合美国FDA检查、审核、拷贝要求的电子记录备份?是否有安全的,计算机自动生成的,带时间标记的审计追踪,记录操作者登录和操作的日期和时间,包括电子记录的创建,修改和删除?电子记录一旦更改后,之前的记录信息是否仍然可用(即修改后未被覆盖)?可以有多个人使用相同的登录信息吗?签名要求是否有管控?特别是要执行一系列签名操作时? 珀金埃尔默以满足21 CFR Part 11 法规中封闭系统电子记录与电子签名相关要素的Syngistix Enhanced Security 软件为例,为您全方位解析一款合规的实验室软件,编制了《常见问题问答合集》无论您的软件是想使用在ICP、ICP-MS还是AA,都可以在这里找到您想要提出问题的答案!还等什么,扫描下方二维码即刻获取问答文集,快来一探究竟吧!关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • MOCON渗透率测试仪配件选购指南(一)
    为了满足用户特定的渗透测试需求,MOCON一直致力于持续创新,提供适合用户的解决方案以帮助用户提高效率和准确性。本期MOCON将带来渗透率测试仪配件标准膜和铝箔面罩选购指南。标准膜用于验证渗透分析仪操作和校准的认证参考膜定期使用MOCON® 认证的参考膜可验证结果的准确性。每个参考膜都是在特定条件下以实际渗透率单独制作、序列化和标记的。这些参考膜采用N.I.S.T可追溯的方法和经过认证的仪器进行单独测试。性能验证当测试产生不一致或意外的结果时,使用经过认证的参考膜测试有助于缩小可能的问题。应用广泛确保分析仪都经过校准并正常工作是每个质量体系的重要步骤。这些薄膜可根据您的需求提供各种气体渗透率,如二氧化碳、氧气或水蒸气。功能优点MOCON参考膜在工厂阶段就进行了单独制作和测试和序列化,并标明在规定条件下的实际渗透率水平。由上下面罩构成,使用专有粘合剂将薄膜夹在中间。这种设计在生产日期后的15个月内提供了稳定、准确和一致的渗透率。面罩设计用于小样本或高渗透材料测试的一次性面罩对于无法以更大的尺寸制作的小样品,或高渗透性材料(如涂布纸),可通过使用MOCON® 的面罩获得准确的测试结果,它们专为您的MOCON渗透仪而设计。提供剪裁和未剪裁两种选择坚固的铝材MOCON的面罩由5mil炼铝制成,在测试舱中形成有效的密封,抗弯曲或翘曲。可靠的结果MOCON专有的粘合剂提供优异的附着力,并能抵抗测试气体的吸收或放气,有助于确保准确的结果。扩大测试范围由于高渗透性材料超过了大多数渗透分析仪的测试范围,因此通过使用铝箔面罩可以对涂层纸或包装等材料进行准确的样品检测,大大提高了设备的检测水平。扩展测试应用范围:如涂布、纸基等材料设计适合仪器使用大部分面罩都是为适合MOCON渗透分析仪而设计的,通常无需修剪。面罩规格每包10个,根据渗透仪的型号都有指定的尺寸。如需了解详情,可直接联系MOCON技术服务工程师,或拨打销售热线联系我们。
  • 追求用户体验--思克WVTR水蒸气透过率测试仪人工智能产品介绍
    思克WVTR系列水蒸气透过率测试仪 济南思克测试技术有限公司生产的WVTR系列水蒸气透过率测试仪应用范围非常广,小编列举了我们最经常接触的两个行业:一方面是食品包装行业会应用到,比如饼干、薯片,酸奶、纯牛奶等固体液体的包装袋,还有就是盒装酸奶,纯牛奶用的包装盒;另一方面就是药品包装用的铝塑板,泡罩包装等,瓶装药品用的塑料瓶等外包装材料都可以用到思克WVTR系列水蒸气透过率测试仪。 为什么食品要控制水分含量呢?我们大家都知道,像是饼干薯片等食品,如果暴露在空气中的时间久了,空气中充满了大量的水蒸气,空气中的水汽就会进入饼干里面导致饼干发绵发软,吃的时候就会觉得不脆不香了,很影响口感。所以饼干薯片等食品在出厂前都会对其进行水分含量的测定,如果水分含量过高就会影响口感。 为什么要测试食品包装的水蒸气透过率呢?测试水蒸气透过率的目的大概是三方面,一是水蒸气透过率过大的话会影响产品的货架期,直接给厂家带来严重的损失;另一方面就是控制成本,如果一层包装的水蒸气透过量过大,有的工厂会在外面再加一层包装,多层包装的成本就高了。还有最重要的一方面,近年来国家相关部门严查食品安全问题,如果包材水蒸气透过量过大,就会导致食品里面的细菌生长从而导致食品变质,从而直接影响消费者的身体健康 为什么要购买思克WVTR系列水蒸气透过率测试仪呢?首先我们先看一下操作系统,思克WVTR系列水蒸气透过率测试仪将AI人工智能技术应用于水蒸气透过率测试仪等阻隔系列检测仪器,以边缘计算为特点的嵌入式人工智能技术赐予了仪器更高的智能性。在对塑料薄膜、薄片、复合膜等软包装材料进行气体透过率测试时,测试过程高度自动化,无需人工干预,测量结果更准确。 其次我们就来看一下思克WVTR系列水蒸气透过率测试仪的技术参数薄膜测试容器测试(选购)测量范围:0.001~52g/m224h(常规) 0.01~1100 g/m224h(可选)0.0001~0.3g/pkg.d分 辨 率:0.001 g/m224h0.00001g/pkg.d控温范围:5℃~95℃另购控温精度:±0.1℃湿腔湿度:0%RH、35%RH~90%RH、百分之一百RH,标准90%RH (标配)控湿精度:±1%RH 试样数量:1 件测试面积:48cm2/试样尺寸:150 mm×94mm更大:Φ180mm*400mm试样厚度:≤3mm/载 气:99.999%高纯氮气 (气源用户自备)载气压力:≥0.16MPa 控温方式:水浴控温载气流量:0~200ml/min气源接口:1/8英寸金属管电 源:AC 220V 50Hz主机尺寸:330mm(L)×600mm(B)×330mm(H)主机净重:28kg 技术参数是衡量仪器的综合能力的重要指标之一,思克WVTR系列水蒸气透过率测试仪无论是从控温范围上还是从控温方式上,都把测试精度提高了一大截。 经过小编的介绍,大家是不是对思克WVTR水蒸气透过率测试仪有一定的了解了,如果各位老板需要更加深入的了解我们的产品,抓紧联系我们吧
  • 三泉中石参与起草的《鲁尔圆锥接头性能测试仪校准规范》开始实施
    三泉中石参与起草的《鲁尔圆锥接头性能测试仪校准规范》开始实施Sumspring三泉中石作为检测仪器行业的佼佼者,以其强大的技术实力努力推动本行业国家标准的建立和更新。近日,Sumspring三泉中石参与起草的JJF(京) 139-2024《鲁尔圆锥接头性能测试仪校准规范》已通过严格的审核程序,于2024年7月1日开始实施,适用于鲁尔圆锥接头性能测试仪的校准。这一规范填补了我国对于鲁尔圆锥接头性能测试仪校准方法的空白。JJF(京) 139-2024《鲁尔圆锥接头性能测试仪校准规范》的制定过程,充分参考了国内外相关标准要求,如药包材标准《4040 预灌封注射器鲁尔圆锥接头检查法》、GB/T 1962.1-2015《注射器、注射针及其他医疗器械 6%(鲁尔) 圆锥接头》、GB/T 1962.2-2001《注射器、注射针及其他医疗器械 6%(鲁尔)圆锥接头》,以及YY/T 0916.1-2021《医用液体和气体用小孔径连接件》和YY/T 0916.20-2019《医用液体和气体用小孔径连接件》等。这些标准均为药品及医疗器械领域的重要指导文件,此次校准规范的制定,对于规范行业、提升产品品质,为我国在此领域与国际标准接轨具有重要意义。在规范编制过程中,三泉中石充分发挥了其在药包材和医疗器械测试领域的专业优势,结合实际使用情况,对校准流程、参数设置、测试方法等进行了细致的梳理和优化。同时,该规范还严格遵循了国家计量技术规范JJF1071-2010《国家计量校准规范编写规则》、JJF 1001-2011《通用计量术语及定义》以及JJF1059.1-2012《测量不确定度评定与表示》等标准,确保了校准结果的准确性和可靠性。随着JJF(京) 139-2024《鲁尔圆锥接头性能测试仪校准规范》的实施,将有力推动我国药包材和医疗器械校准工作的规范化、标准化进程。同时,这也将有助于提高药品和医疗器械的安全性和有效性,保障人民群众的生命健康。作为参与起草单位之一的Sumspring三泉中石,将继续秉承“专业、精准、高效”的服务理念,为中国包装和医疗器械检测技术与世界同步而不懈努力。
  • 肉类水分快速测试仪需要用检测试剂吗
    肉类水分快速测试仪需要用检测试剂吗,肉类水分快速测试仪一般不需要使用检测试剂。这种仪器通常采用物理方法,如烘干法或电阻法等,来直接测量肉类的水分含量。在使用肉类水分快速测试仪时,用户需要将仪器的检测探头针状电极插入被测样品的肌肉中(避免插入脂肪、筋腱、骨头和空气中),然后按照仪器的操作步骤进行测量。测量过程中,仪器会自动计算出基准值并显示结果。然而,需要注意的是,不同的肉类水分快速测试仪可能具有不同的操作方法和测量原理,因此在使用前建议仔细阅读仪器的说明书,并遵循正确的操作步骤和注意事项。此外,还有一种肉类水分检测试纸盒的方法,这种方法需要使用检测试纸来间接判断肉类是否注水。这种方法虽然简便快速,但并不能直接测量肉类的水分含量。因此,如果需要准确测量肉类的水分含量,建议使用肉类水分快速测试仪。
  • 泉科瑞达新款水蒸气透过率测试仪都包含哪些测试方法
    水蒸气透过量测试仪是用于测量材料或包装对水蒸气渗透性的重要工具,它广泛应用于食品、药品、化妆品等行业的包装检测中。本文将详细介绍水蒸气透过量测试仪的三种测试方法,并探讨它们之间的不同之处。一、杯式法测试杯式法测试是水蒸气透过量测试仪常用的一种测试方法。该方法通过模拟自然环境中的水蒸气渗透过程,来评估材料或包装对水蒸气的阻隔性能。测试原理:杯式法测试将待测材料或包装置于一个装有干燥剂的密封杯中,然后将该杯子置于恒定的温度和湿度环境中。随着时间的推移,水蒸气会从待测材料或包装中渗透出来,与杯中的干燥剂发生反应。通过测量干燥剂的质量变化,可以计算出待测材料或包装的水蒸气透过量。特点与优势:接近实际环境:杯式法测试模拟了自然环境中的水蒸气渗透过程,因此测试结果具有较高的参考价值。操作简便:该方法操作简单,无需复杂的设备或技术。适用范围广:杯式法测试适用于各种形状和尺寸的材料或包装。局限性:测试时间较长:由于需要模拟自然渗透过程,因此测试时间相对较长。受环境影响大:测试结果可能受到环境温度、湿度等因素的影响。二、电解法测试电解法测试是另一种常用的水蒸气透过量测试方法,它基于电解原理来测量水蒸气透过量。测试原理:电解法测试通过测量待测材料或包装两侧的水蒸气浓度差,利用电解原理将水蒸气转化为可测量的电流信号。通过测量电流信号的大小,可以计算出待测材料或包装的水蒸气透过量。特点与优势:测试速度快:电解法测试具有较快的测试速度,能够在短时间内得出结果。灵敏度高:该方法对水蒸气透过量的测量具有较高的灵敏度。自动化程度高:电解法测试设备通常具有较高的自动化程度,能够实现自动测量和数据处理。局限性:对样品要求高:电解法测试对样品的要求较高,需要确保样品的密封性和完整性。设备成本较高:电解法测试设备通常较为昂贵,不适合小型企业或实验室使用。三、红外光谱法测试红外光谱法测试是一种新型的水蒸气透过量测试方法,它利用红外光谱技术来测量水蒸气透过量。测试原理:红外光谱法测试通过测量待测材料或包装两侧的红外光谱信号,利用红外光谱分析技术来确定水蒸气透过量。该方法通过分析红外光谱信号中的特定波长段的强度变化,来评估材料或包装对水蒸气的阻隔性能。特点与优势:非接触式测量:红外光谱法测试无需与待测材料或包装直接接触,因此不会对样品造成损伤。高精度测量:该方法具有较高的测量精度和稳定性。适用于特殊环境:红外光谱法测试适用于高温、高压等特殊环境下的水蒸气透过量测量。局限性:设备成本高:红外光谱法测试设备通常较为昂贵,需要较高的投资成本。技术难度大:红外光谱分析技术较为复杂,需要专业的技术人员进行操作和分析。结论水蒸气透过量测试仪的三种测试方法各有特点与优势,同时也存在一定的局限性。在实际应用中,应根据具体的测试需求和条件选择合适的测试方法。例如,对于需要快速获取测试结果的场合,可以选择电解法测试;对于需要模拟实际环境进行测试的场合,可以选择杯式法测试;而对于特殊环境下的水蒸气透过量测量,可以选择红外光谱法测试。通过选择合适的测试方法,可以更准确地评估材料或包装对水蒸气的阻隔性能,为产品质量控制和改进提供有力支持。
  • 应用解读|光伏组件封装用乙烯-醋酸乙烯酯共聚物(EVA)胶膜的热分析标准解读
    1. 技术背景图1. 晶体硅太阳能电池结构晶体硅太阳能电池结构由钢化玻璃板/EVA膜/太阳能电池板/EVA膜/背板构成,如图1所示。其中,太阳能电池封装用EVA是以乙烯/醋酸乙烯共聚物(醋酸乙烯含量为30%-33%)为基料,辅以数种改性剂,经成膜设备热轧成薄膜型产品,厚度约0.4 mm。封装过程中EVA受热,交联剂(通常为过氧化物)分解产生自由基,引发EVA分子之间的结合,形成三维网状结构,导致EVA胶层交联固化,交联机理如图2 所示。固化后的胶膜具有相当高的透光率、粘接强度、热稳定性、气密性及耐老化性能。图2. EVA加热过程中在交联剂过氧化物下的交联机理EVA固化不足可直接导致光伏组件在其近20年的使用中性能恶化,这将意味着重大的经济风险。因此为实现经济有效的层压,快速可靠的EVA交联度分析方法至关重要。以往的化学法测交联度耗时长(30小时左右),结果重复性差,并且使用有毒的溶剂(甲苯或二甲苯),无法准确测试较低交联度和较高交联度的EVA。根据国家标准:1)GB/T 29848-2018:光伏组件封装用乙烯-醋酸乙烯酯共聚物(EVA)胶膜2)GB/T 36965-2018:光伏组件用乙烯-醋酸乙烯共聚物交联度测试方法--差示扫描量热法(DSC)采用差示扫描量热法(DSC)是目前较为可靠的分析方法,应用DSC测定光伏组件在层压过程中已交联的EVA的交联度,仅需1小时时间即可获得重复性良好的结果,是一种快速简便的产品质量控制方法。2.方法设计1)DSC:称取未交联和交联EVA样品5~10mg至40μL铝坩埚内,以10 K/min从−60℃加热到250°C,后以20 K/min的速度从250℃冷却至-60℃,再以10 K/min进行第二次升温,全程惰性氩气氛围。交联EVA的交联度可由以下方程计算获得:梅特勒-托利多差示扫描量热仪 DSC2)此外,醋酸乙烯组分的分解机理如下所示:根据上述计算公式,可通过热重法(TGA)分析计算得到EVA中VA的百分含量,从而帮助对EVA来料进行质检,以判定EVA的优劣。TGA/DSC:称取优质和劣质的交联EVA样品至陶瓷坩埚内,以10 K/min从30℃加热到600°C,全程惰性氩气氛围。3.数据分析1)DSC分析计算EVA的交联度图3为未交联EVA样品的升降升循环DSC测试曲线。在第一次升温曲线上可观察到明显的三个热效应,从低温至高温,依次是未交联EVA的玻璃化转变、结晶部分的熔融以及高温处的固化交联放热峰,所呈现的固化放热焓值为ΔH1(17.49 J/g)。由第二次升温曲线在高温处所表现处的平直基线可以得出结论,ΔH1为未交联EVA完全固化所释放出的热焓。图3. 未交联EVA样品的DSC测试曲线图4为交联EVA样品的DSC第一次升温曲线,第二次升温在高温处同样为平直的基线,故未呈现。温度从室温开始,可观察到结晶部分的熔融以及高温处的后固化交联放热峰,所呈现的后固化放热焓值为ΔH2(8.47 J/g)。因此,该交联EVA样品的交联度根据上述计算公式为51.55%。图4. 交联EVA样品的DSC第一次升温曲线1)TGA分析计算EVA中VA的百分含量图5为优质与劣质EVA的TGA/DSC测试曲线。根据EVA的分解机理,TGA曲线上的第一个失重台阶为醋酸乙烯分解产生醋酸的过程,因此失重量为醋酸的质量。第二个失重台阶为EVA中原有的乙烯组分和醋酸乙烯分解产生的乙烯的分解。因此,EVA中醋酸乙烯的含量可由第一个失重台阶即醋酸的失重百分含量的1.43倍计算而得。如图所示,优质EVA的VA含量为29.5%(太阳能电池封装用EVA的醋酸乙烯含量为30-33%),劣质EVA的VA含量仅为16.6%。与此同时,同步的DSC曲线上亦可找到相关判断依据。由于劣质EVA含有更高含量的乙烯组分,因此其结晶能力更强,所呈现的结晶熔融过程表现在更高的温度范围。图5. 优质与劣质EVA的TGA/DSC测试曲线4.小结由此可见,光伏组件封装用EVA胶膜的相关热性能的鉴定可由DSC、TGA或同步热分析TGA/DSC快速给出判断依据。此外,工艺上EVA固化通常采用层压实现,而层压的温度和时间作如何优化可由DSC动力学模块给出科学且精准的预测,为层压工艺提供数据和理论指导。
  • 塑料包装袋和铝塑包装袋在使用热封试验仪测试热封性能时的区别
    在快节奏的现代生活中,包装袋的密封性能直接关系到商品的质量和保质期。塑料包装袋和铝塑包装袋是两种常见的包装材料,它们在结构和材料特性上有所不同,因此在使用热封试验仪测试热封性能时,也需要采取不同的测试策略和参数配置。材料特性塑料包装袋:通常由单一塑料材料制成,如PE(聚乙烯)、PP(聚丙烯)等。具有较好的柔韧性和透明度。热封温度和热封强度通常较低。铝塑包装袋:由铝箔和塑料薄膜复合而成,具有金属层。阻隔性好,不透光,适合保护敏感物质。热封温度和热封强度通常较高。测试目的塑料包装袋:测试塑料包装袋的热封性能,主要评估其密封的可靠性和一致性。重点在于确保包装的完整性和内容物的保护。铝塑包装袋:测试铝塑包装袋的热封性能,除了评估密封性外,还需考虑铝层的保护作用。重点在于确保包装的气密性和光阻隔性。测试参数配置塑料包装袋:热封温度:根据塑料材料的熔点和热稳定性设定。热封速度:通常较快,以适应塑料材料的热封特性。热封压力:适中,以确保密封而不损伤材料。铝塑包装袋:热封温度:需要更高的温度以确保铝层和塑料层的充分粘合。热封速度:可能较慢,以保证铝层和塑料层之间的良好结合。热封压力:较高,以确保金属层的热封效果。测试方法塑料包装袋:通常采用直线热封或脉冲热封。测试时,可能需要关注热封后的平整度和密封线的连续性。铝塑包装袋:可能需要采用特殊的热封技术,如超声波热封或高频热封。测试时,除了关注密封性,还需评估铝层的完整性和热封后的阻隔性能。结果评估塑料包装袋:结果评估通常基于热封强度和密封质量。可能需要进行气密性测试和视觉检查。铝塑包装袋:结果评估除了热封强度外,还需考虑铝层的保护性能。可能需要进行阻隔性能测试,如氧气透过率测试。安全与维护塑料包装袋和铝塑包装袋:在测试过程中,都应遵循安全操作指南,确保操作人员的安全。定期对热封试验仪进行维护和校准,以保证测试结果的准确性。通过上述分析,我们可以看到,塑料包装袋和铝塑包装袋在使用热封试验仪测试热封性能时,需要根据它们的材料特性和测试目的来选择合适的测试参数和方法。正确的测试策略不仅能确保包装的质量和性能,还能提高产品的市场竞争力。
  • 膜康发布MOCON氧气透过率测试仪OX-TRAN® 2/40 新品
    OX-TRAN® 2/40 氧气透过率测试仪适用于测试食品/饮料/药品/保健品等的整体包装氧气透过率 OX-TRAN® 2/40是专门为客户量身定制的第一台测试整体包装的氧气透过率测试系统,可以在受控的湿度和温度条件下准确地测试整个包装的OTR值。 在过去,如果直接用室内空气对整个包装进行测试,通常难以准确及稳定地控制整个实验室的环境温度和湿度。如果单独使用温控箱,操作又比较繁琐,这样整个包装的氧气渗透测试就会受到影响。 OX-TRAN® 2/40测试支架是利用气动加紧安装在舱室内的,操作简单,安装和移除非常方便。测试舱采用氮气环流吹扫技术来时刻保证测试腔边缘的密封,防止环境空气中氧气的渗入干扰,从而也节省了测试时间。其应用包括热成型托盘、瓶子、杯子、软包装、软木塞、瓶盖等的渗透测试。只需放置好样品,设定测试温度和相对湿度后开始测试,仪器就可以自主决定测试参数并自动执行检测。也可设置很多组不同温度湿度条件下的自动连续测试,减少了设备的闲置时间。 OX-TRAN® 2/40采用MOCON广受业内好评的库伦计氧气传感器,这个库仑电量传感器是一种符合法拉第定律,是绝对值传感器,因此无需校准,并且符合ASTM等国际相关测试标准和要求。 产品优势l 各种类型测试舱,可容纳各种包装件和薄膜的 全自动测试l 操作简单,触摸屏界面l 简化样品预处理l 同时可以测试4个大包装件样品l 测试支架卸下方便,测试各种包装样品l 节省测试时间l 准确及稳定地控制整个实验中的环境温度和湿 度l 无需校准 符合标准l ASTM D 3985(薄膜,干燥), ASTM F1927(薄膜,干燥), ISO 15105-2(薄膜), JIS K-7126(薄膜), ASTM F1307(包装件), GB/T 31354-2014(包装件) 技术参数型号2/40 H2/40 L2/40 10X 测试范围 薄膜空气20.9%氧气 0.05-200 cc/ m2day 0.005-200 cc/ m2day 0.0005-200 cc/ m2day软件补偿到100%氧气 0.25-1000 cc/ m2day 0.025-1000 cc/ m2day 0.0025-1000 cc/ m2day 容器空气20.9%氧气 0.00025-1.0 cc/pkgday 0.000025-1.0cc/pkgday 0.0000025-1.0cc/pkgday软件补偿到100%氧气 0.00125-5 cc/pkgday 0.000125-5 cc/pkgday 0.0000125-5cc/pkgday分辨率0.0001cc/pkgday0.00001cc/pkgday0.000001cc/pkgday测试重复性±0.0001 cc/pkgday±0.00001 cc/pkgday±0.0000025 cc/pkgday %检测时间30分钟45分钟60分钟测试温度10-50℃(±0.2℃)测试湿度5-90%RH(±4%) 创新点:OX-TRAN® 2/40测试支架是利用气动夹紧安装在舱室内的,操作简单,安装和移除非常方便。测试舱采用氮气环流吹扫技术来时刻保证测试腔边缘的密封,防止环境空气中氧气的渗入干扰,从而也节省了测试时间。由于样品的应用比较广,改进和提高了各种测试支架,从而提高了数据的准确性。其应用包括热成型托盘、瓶子、杯子、软包装、软木塞、瓶盖等的渗透测试。 MOCON氧气透过率测试仪OX-TRAN® 2/40
  • 标准集团---纽扣撞击强度(力)测试仪/纽扣性能测试仪器
    纽扣撞击强度测试仪︳纽扣撞击强力测试仪︳标准集团品质供应︳咨询电话:13671843966纽扣撞击强度测试仪,又称纽扣撞击强力测试仪,是通过检测塑钮、胶钮的抗撞击阻力从而检测所有类型纽扣(直径10mm或以上)在服装制造或日常使用过程中对强拉或撞击的承载能力的仪器。标准集团(香港)有限公司自主研发的Gellwoen G289 纽扣撞击强度测试仪是严格符合ASTM D5171标准的纽扣测试仪器。测试时,将质量为0.84kg(29.5oz)重物从67mm(2.625英寸)或其他规定高度(至多200mm(8英寸))落下,以纽扣的破裂程度作为考核。该仪器包括一个轴承套,其内配合一个标准质量的冲击头,用于从指定高度下落以冲击纽扣试样。纽扣依据其莱尼尺寸放置于底座金属平台的中心位置,并用定位夹具夹持,冲击强度由重物的质量和下落的高度来评估。详情请访问:http://www.lalianniukou.com/product/2015/98.html 标准集团(香港)有限公司是一家提供材料测试仪器设备的综合供应商,成立于2003年,公司总部在中国香港,在上海设有分公司,在长沙、武汉、济南、沈阳、成都、杭州等地设有办事处及售后维修中心。上海泛标纺织品检测技术有限公司为标准集团上海分公司,全面负责中国大陆地区的销售和售后服务。一直以来,公司始终坚持引进国际最先进的产品,依赖专业高效的服务团队,整合技术和资源优势,为客户解决科研生产中遇到问题提供支持,从而带动国内科研及相关行业水平的提高。通过个性化的售前产品咨询,高效率的售后安装、维护和维修,专业级的技术支持及应用支持,标准集团正赢得越来越多制造商和客户的双重信赖。24小时服务热线:021-64208466、13671843966或登录:http://www.standard-groups.com/
  • 50um的胶带可以使用泉科瑞达初粘性测试仪测试吗?测试要求有什么变化?
    泉科瑞达初粘性测试仪是专门设计用于测量压敏胶带、不干胶标签、保护膜等相关产品的初粘性测试。这种测试仪通常采用国家标准如GB 4852(压敏胶胶带初粘性测试方法——斜面滚球法)等,通过斜面滚球法的原理来测试胶带的初粘性能。对于50um(微米)厚度的胶带,理论上可以使用泉科瑞达初粘性测试仪进行测试,但需要注意以下几点测试要求和可能的变化:测试要求胶带宽度:确保50um厚的胶带宽度符合测试仪的最小和最大宽度要求。大多数初粘性测试仪对胶带宽度有一定的限制,以确保测试的准确性。测试标准:遵循适用的国家标准或行业标准进行测试,例如GB/T 4852-2002《压敏胶粘带初粘性试验方法》。这些标准规定了测试的具体步骤和条件。环境条件:测试应在规定的环境条件下进行,包括温度、湿度等,以确保测试结果的准确性和可重复性。操作规程:按照测试仪的操作手册进行操作,确保测试过程的标准化和规范化。测试变化胶带厚度:虽然50um的胶带可以使用初粘性测试仪进行测试,但胶带的厚度可能会影响其粘附性能。因此,对于不同厚度的胶带,可能需要调整测试参数或条件以获得准确的测试结果。测试速度:胶带的厚度可能会影响测试速度的选择。较厚的胶带可能需要调整测试速度以更好地模拟实际应用中的粘附情况。测试角度:对于不同厚度的胶带,测试角度(即斜面滚球法中的倾斜角度)可能需要调整,以确保测试结果的准确性。测试重复性:由于胶带厚度的不同,可能需要增加测试次数以确保结果的稳定性和可靠性。样品准备:对于50um厚的胶带,可能需要特别注意样品的准备和处理,以避免厚度变化对测试结果的影响。总之,50um厚的胶带可以使用泉科瑞达初粘性测试仪进行测试,但需要注意上述测试要求和可能的变化。通过精确的测试和合理的参数调整,可以确保获得胶带初粘性的准确测量结果。
  • 西林瓶胶塞密封性测试有必要选择微生物侵入法密封性测试仪吗?
    西林瓶,又称为安瓿瓶,是医药行业常用的一种玻璃容器,通常用于储存注射剂、疫苗、血液制品等无菌药品。胶塞作为西林瓶的密封组件,其密封性能直接关系到药品的质量和安全性。微生物侵入法是一种评估包装密封性的测试方法,特别是针对无菌药品包装。微生物侵入法密封性测试仪的优势模拟实际条件:微生物侵入法通过模拟实际使用中可能遇到的微生物污染情况,评估包装的密封性能。全面性:该方法不仅能够检测包装的物理完整性,如微小的孔洞和裂缝,还能够评估包装材料对微生物的阻隔能力。符合药典要求:许多国家的药典,如中国药典、美国药典等,都推荐或要求使用微生物挑战测试来评估无菌药品包装的密封性。高灵敏度:微生物侵入法对于检测包装密封性的微小缺陷非常敏感,有助于确保药品的无菌保障水平。质量控制:使用微生物侵入法密封性测试仪可以作为药品生产过程中质量控制的重要环节,确保每批次产品的密封性能符合标准。其他密封性测试方法除了微生物侵入法,还有其他几种常用的密封性测试方法:压力衰减法:通过测量包装内部压力的变化来评估密封性能。气泡法:通过观察包装浸入水中时气泡的产生来判断密封性。色水法:使用染色液体来检测包装是否有泄漏。选择考虑因素在选择是否使用微生物侵入法密封性测试仪时,需要考虑以下因素:药品类型:对于无菌药品,特别是注射剂、疫苗等高风险药品,微生物侵入法是推荐的选择。法规要求:遵循相关法规和药典标准,确保测试方法的合规性。成本效益:考虑测试成本与获得的质量保证之间的关系。操作便利性:评估测试方法的操作复杂性、所需时间和技术要求。设备可用性:确保实验室具备相应的设备和条件进行微生物侵入法测试。结论对于西林瓶胶塞的密封性测试,选择微生物侵入法密封性测试仪是有必要的,特别是对于那些对无菌保障水平要求极高的药品。这种方法能够提供更为全面和严格的密封性能评估,有助于确保药品的质量和安全性,满足法规要求,并作为药品生产过程中重要的质量控制手段。然而,最终的选择应基于药品的具体类型、法规要求以及成本效益分析。
  • 水蒸气透过率测试仪适用于哪些方面的包装材料
    水蒸气透过率测试仪,作为一种精密的实验设备,在包装材料的评估与质量控制中发挥着不可或缺的作用。其应用范围广泛,涵盖了从食品包装到医药包装,再到日用品包装等多个领域。本文将深入探讨水蒸气透过率测试仪在这些方面的具体应用及其重要性。一、食品包装在食品包装领域,水蒸气透过率测试仪的应用尤为关键。食品在储存和运输过程中,若包装材料的水蒸气透过率过高,则容易导致食品受潮、发霉甚至变质,严重影响食品的安全性和保质期。因此,准确测量包装材料的水蒸气透过率,对于确保食品品质至关重要。通过水蒸气透过率测试仪,我们可以对各类食品包装材料(如塑料膜、纸袋、铝箔等)进行精确测量,评估其防潮性能。这有助于生产厂家选择适合的包装材料,确保食品在储存和运输过程中保持干燥,延长保质期。同时,对于已经上市的食品包装,定期进行水蒸气透过率测试,也有助于及时发现潜在问题,保障消费者的权益。二、医药包装在医药包装领域,水蒸气透过率测试仪同样具有重要应用价值。药品作为一种特殊商品,对包装材料的防潮性能要求极高。若药品包装材料的水蒸气透过率过高,容易导致药品受潮、变质,从而影响药效和安全性。因此,对医药包装材料进行水蒸气透过率测试,是确保药品品质的必要手段。通过水蒸气透过率测试仪,我们可以对各类医药包装材料(如玻璃瓶、塑料瓶、铝箔袋等)进行精确测量,评估其防潮性能。这有助于药品生产厂家选择符合要求的包装材料,确保药品在储存和运输过程中保持干燥、稳定。同时,对于已经上市的药品包装,定期进行水蒸气透过率测试,也有助于及时发现潜在问题,保障患者的用药安全。三、日用品包装除了食品和医药领域外,水蒸气透过率测试仪在日用品包装领域也有广泛应用。日用品如化妆品、洗涤剂、清洁用品等,在储存和使用过程中同样需要良好的防潮性能。若包装材料的水蒸气透过率过高,容易导致产品变质、失效,从而影响使用效果。因此,对日用品包装材料进行水蒸气透过率测试,也是确保产品品质的重要手段。通过水蒸气透过率测试仪,我们可以对各类日用品包装材料(如塑料瓶、玻璃瓶、软管等)进行精确测量,评估其防潮性能。这有助于生产厂家选择适合的包装材料,确保产品在储存和使用过程中保持干燥、稳定。同时,对于已经上市的日用品包装,定期进行水蒸气透过率测试,也有助于及时发现潜在问题,提升产品质量和消费者满意度。四、结论综上所述,水蒸气透过率测试仪在包装材料的评估与质量控制中发挥着重要作用。无论是食品包装、医药包装还是日用品包装领域,都需要对包装材料的水蒸气透过率进行精确测量和评估。通过水蒸气透过率测试仪的应用,我们可以选择适合的包装材料、确保产品品质、延长保质期并保障消费者权益。因此,在未来的发展中,水蒸气透过率测试仪将继续发挥重要作用,为包装行业的发展提供有力支持。
  • 国家市场监督管理总局关于对《动物和动物产品沙门氏菌检测方法》等285项拟立项国家标准项目公开征求意见的通知
    各有关单位:经研究,国家标准委决定对《动物和动物产品沙门氏菌检测方法》等285项拟立项国家标准项目公开征求意见,征求意见截止时间为2023年8月6日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001309,查询项目信息和反馈意见建议。2023年7月7日相关标准如下:# 项目中文名称 制修订 截止日期1 动物和动物产品沙门氏菌检测方法 制定 2023-08-062 工业锅炉技术规范 修订 2023-08-063 工业锅炉综合能效评价技术规范 制定 2023-08-064 工业氯化钙分析方法 修订 2023-08-065 工业碳酸氢钠 修订 2023-08-066 工业用二甲基二氯硅烷 修订 2023-08-067 工业用甲醇 修订 2023-08-068 工业用六次甲基四胺 修订 2023-08-069 锅炉温室气体排放测试与计算方法 制定 2023-08-0610 锅炉温室气体排放监测技术指南 制定 2023-08-0611 甲醇纯度及其微量有机杂质的测定 气相色谱法 制定 2023-08-0612 奶粉定量充填包装机 修订 2023-08-0613 农业拖拉机 机具用液压压力 制定 2023-08-0614 起重机 分级 第3部分:塔式起重机 修订 2023-08-0615 起重机 检查 第3部分:塔式起重机 修订 2023-08-0616 起重机 司机培训 第3部分:塔式起重机 修订 2023-08-0617 气体分析 纯度分析和纯度数据的处理 修订 2023-08-0618 全自动旋转式PET瓶吹瓶机 修订 2023-08-0619 输送带 基于带宽的压陷滚动阻力 技术条件和试验方法 制定 2023-08-0620 输送带 实验室规模的燃烧特性 要求和试验方法 修订 2023-08-0621 水处理剂 阳离子型聚丙烯酰胺 修订 2023-08-0622 塑料 胺类环氧固化剂 伯、仲、叔胺基氮含量的测定 制定 2023-08-0623 塑料 苯乙烯-丙烯腈(SAN)模塑和挤出材料 第1部分:命名系统和分类基础 修订 2023-08-0624 塑料 苯乙烯-丙烯腈(SAN)模塑和挤出材料 第2部分:试样制备和性能测定 修订 2023-08-0625 塑料 标准气候老化试验方法中性能变化的表观活化能测定 制定 2023-08-0626 塑料 丙烯腈-苯乙烯-丙烯酸酯(ASA)、丙烯腈-(乙烯-丙烯-二烯烃)-苯乙烯(AEPDS)、丙烯腈-(氯化聚乙烯)-苯乙烯(ACS)模塑和挤出材料 第1部分:命名系统和分类基础 制定 2023-08-0627 塑料 丙烯腈-苯乙烯-丙烯酸酯(ASA)、丙烯腈-(乙烯-丙烯-二烯烃)-苯乙烯(AEPDS)、丙烯腈-(氯化聚乙烯)-苯乙烯(ACS)模塑和挤出材料 第2部分:试样制备和性能测定 制定 2023-08-0628 塑料 丙烯腈-丁二烯-苯乙烯 (ABS)模塑和挤出材料 第2部分:试样制备和性能测定 修订 2023-08-0629 塑料 差示扫描量热法(DSC)第8部分:导热系数的测定 制定 2023-08-0630 塑料 弹性指数 熔体弹性性能的测定 制定 2023-08-0631 塑料 导热系数和热扩散系数的测定 第2部分:瞬时平面热源(发热盘)法 制定 2023-08-0632 塑料 动态力学性能的测定 第12部分:非共振压缩振动法 制定 2023-08-0633 塑料 动态力学性能的测定 第2部分:扭摆法 制定 2023-08-0634 塑料 动态力学性能的测定 第3部分:共振弯曲振动法 制定 2023-08-0635 塑料 对火反应 垂直方向试样的火焰蔓延和燃烧产物释放的试验方法 制定 2023-08-0636 塑料 酚醛树脂 分类和试验方法 制定 2023-08-0637 塑料 酚醛树脂 六次甲基四胺含量的测定 凯式定氮法、高氯酸法和盐酸法 修订2023-08-0638 塑料 酚醛树脂 游离甲醛含量的测定 修订 2023-08-0639 塑料 粉状不饱和聚酯模塑料(UP-PMCs) 第2部分:试样制备和性能测定 制定 2023-08-0640 塑料 粉状不饱和聚酯模塑料(UP-PMCs) 第3部分:选定模塑料的要求 制定 2023-08-0641 塑料 粉状不饱和聚酯模塑料(UP-PMCs)第1部分:命名系统和分类基础 制定 2023-08-0642 塑料 粉状三聚氰胺/酚醛模塑料(MP-PMCs) 第1部分:命名系统和分类基础 制定 2023-08-0643 塑料 粉状三聚氰胺/酚醛模塑料(MP-PMCs) 第2部分: 试样制备和性能测定 制定 2023-08-0644 塑料 粉状三聚氰胺/酚醛模塑料(MP-PMCs) 第3部分:选定模塑料的要求 制定 2023-08-0645 塑料 滑动摩擦和磨损 试验参数 制定 2023-08-0646 塑料 环氧树脂硬化剂和促进剂 酸酐中游离酸的测定 制定 2023-08-0647 塑料 环氧树脂用硬化剂和促进剂 第1部分:命名 制定 2023-08-0648 塑料 甲基丙烯酸甲酯-丙烯腈-丁二烯-苯乙烯 (MABS)模塑和挤出材料 第2部分:试样制备和性能测定 制定 2023-08-0649 塑料 甲基丙烯酸甲酯-丙烯腈-丁二烯-苯乙烯(MABS) 模塑和挤出材料 第1部分:命名系统和分类基础 制定 2023-08-0650 塑料 聚氨酯生产用多元醇 近红外光谱法测定羟值 制定 2023-08-0651 塑料 聚丙烯(PP)等规指数的测定 低分辨率核磁共振光谱法 制定 2023-08-0652 塑料 聚乙烯(PE)和聚丙烯(PP)树脂中金属含量的测定 电感耦合等离子体发射光谱法 制定 2023-08-0653 塑料 模塑和挤出用热塑性聚氨酯 第3部分:用于区分聚醚型聚氨酯和聚酯型聚氨酯的测定方法 制定 2023-08-0654 塑料 磨料磨损性能的测定 往复线性滑动法 制定 2023-08-0655 塑料 燃烧试验 标准点火源 制定 2023-08-0656 塑料 热固性粉末模塑料(PMCs)试样的制备 第1部分: 一般原理及多用途试样的制备 制定 2023-08-0657 塑料 热固性粉末模塑料(PMCs)试样的制备 第2部分: 小板 制定 2023-08-0658 塑料 生产质量控制 采用单次测量的统计方法 制定 2023-08-0659 塑料 使用毛细管黏度计测定聚合物稀溶液黏度 第2部分:聚氯乙烯树脂 修订 2023-08-0660 塑料 透明材料总透光率的测定 第1部分:单光束仪器 制定 2023-08-0661 塑料 透明材料总透光率的测定 第2部分:双光束仪器 制定 2023-08-0662 塑料 鲜映度的测定 制定 2023-08-0663 塑料 液体环氧树脂 结晶倾向的测定 制定 2023-08-0664 塑料 用氧指数法测定燃烧行为 第4部分:高气体流速试验 制定 2023-08-0665 塑料 中高加载速率(1m/s)下断裂韧性(GIC和KIC)的测定 制定 2023-08-0666 塑料 总透光率和反射率的测定 制定 2023-08-0667 塑料/橡胶 聚合物分散体和橡胶胶乳(天然和合成)测试方法 制定 2023-08-0668 无机化工产品中总碳和总有机碳含量测定通用方法 制定 2023-08-0669 循环冷却水节水技术规范 修订 2023-08-0670 压力管道规范 长输管道 修订 2023-08-0671 医疗保健产品灭菌 辐射 第2部分:建立灭菌剂量 修订 2023-08-0672 医疗保健产品灭菌 辐射 第3部分:开发、确认和常规控制的剂量测量指南 修订 2023-08-0673 育苗纸 修订 2023-08-0674 纸和纸板 耐脂度的测定 第3部分:松节油法 制定 2023-08-0675 纸和纸浆 印刷纸产品的脱墨性试验方法 制定 2023-08-0676 纸浆 丙酮可溶物的测定 修订 2023-08-06
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制