当前位置: 仪器信息网 > 行业主题 > >

能量型荧光光谱仪原理

仪器信息网能量型荧光光谱仪原理专题为您提供2024年最新能量型荧光光谱仪原理价格报价、厂家品牌的相关信息, 包括能量型荧光光谱仪原理参数、型号等,不管是国产,还是进口品牌的能量型荧光光谱仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合能量型荧光光谱仪原理相关的耗材配件、试剂标物,还有能量型荧光光谱仪原理相关的最新资讯、资料,以及能量型荧光光谱仪原理相关的解决方案。

能量型荧光光谱仪原理相关的论坛

  • 波长色散型X射线荧光光谱仪与能量色散型X射线荧光光谱仪的比较

    虽然波长色散型(ED-XRF)X射线荧光光谱仪与能量色散型(WD-XRF)X射线荧光光谱仪同属X射线荧光分析仪,它们产生信号的方法相同,最后得到的波谱或者能谱也极为相似,但由于采集数据的方式不同,ED-XRF(波谱)与ED-XRF(能谱)在原理和仪器结构上有所不同,功能也有区别。  (一)原理区别  X-射线荧光光谱法,是用X-射线管发出的初级线束辐照样品,激发各化学元素发出二次谱线(X-荧光)。波长色散型荧光光仪(WD-XRF)是分光晶体将荧光光束色散后,测定各种元素的含量。而能量色散型X射线荧光光仪(WD-XRF)是借助高分辨率敏感半导体检测器与多道分析器将未色散的X-射线按光子能量分离X-射线光谱线,根据各元素能量的高低来测定各元素的量。由于原理不同,故仪器结构也不同。  (二)结构区别  波长色散型荧光光谱仪(WD-XRF),一般由光源(X-射线管)、样品室、分光晶体和检测系统等组成。为了准确测量衍射光束与入射光束的夹角,分光晶体系安装在一个精密的测角仪上,还需要一庞大而精密并复杂的机械运动装置。由于晶体的衍射,造成强度的损失,要求作为光源的X-射线管的功率要大,一般为2~3千瓦。但X-射线管的效率极低,只有1%的电功率转化为X-射线辐射功率,大部分电能均转化为热能产生高温,所以X-射线管需要专门的冷却装置(水冷或油冷),因此波谱仪的价格往往比能谱仪高。能量色散型荧光光谱仪(WD-XRF),一般由光源(X-射线管)、样品室和检测系统等组成,与波长色散型荧光光谱仪的区别在于它用不分光晶体。由于这一特点,使能量色散型荧光光仪具有如下优点:  ①仪器结构简单,省略了晶体的精密运动装置,也无需精度调整。还避免了晶体衍射所造成的强度损失。光源使用的X-射线管功率低,一般在100W以下,不需要昂贵的高压发生器和冷却系统,空气冷却即可,节省电力。  ②能量色散型荧光光仪的光源、样品、检测器彼此靠得很近,X-射线的利用率很高,不需要光学聚集,在累积整个光谱时,对样品位置变化不象波长色散型荧光光谱仪那样敏感,对样品形状也无特殊要求。  ③在能量色散谱仪中,样品发出的全部特征X-射线光子同时进入检测器,这就奠定了使用多道分析器和荧光屏同时累积和显示全部能谱(包括背景)的基础,也能清楚地表明背景和干扰线。因此,半导体检测器X-射线光谱仪能比晶体X-射线光谱仪快而方便地完成定性分析工作。  ④能量色散法的一个附带优点是测量整个分析线脉冲高度分布的积分程度,而不是峰顶强度。因此,减小了化学状态引起的分析线波长的漂移影响。由于同时累积还减小了仪器的漂移影响,提高净计数的统计精度,可迅速而方便地用各种方法处理光谱。同时累积观察和测量所有元素,而不是按特定谱线分析特定元素。因此,见笑了偶然错误判断某元素的可能性。(选自网络,侵删)

  • 波长色散型X射线荧光光谱仪与能量色散型X射线荧光光谱仪的区别

    一.X射线荧光分析仪简介 X射线荧光分析仪是一种比较新型的可以对多元素进行快速同事测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(X-荧光)。波长和能量是从不同的角度来观察描述X射线所采用的两个物理量。波长色散型X射线荧光光谱仪(WD-XRF)。是用晶体分光而后由探测器接受经过衍射的特征X射线信号。如果分光晶体和控测器做同步运动,不断地改变衍射角,便可获得样品内各种元素所产生的特征X射线的波长及各个波长X射线的强度,可以据此进行特定分析和定量分析。该种仪器产生于50年代,由于可以对复杂体进行多组同事测定,受到关注,特别在地质部门,先后配置了这种仪器,分析速度显著提高,起了重要作用。随着科学技术的进步在60年代初发明了半导体探测仪器后,对X荧光进行能谱分析成为可能。能谱色散型X射线荧光光谱仪(ED-XRF),用X射线管产生原级X射线照射到样品上,所产生的特征X射线(荧光)这节进入SI(LI)探测器,便可以据此进行定性分析和定量分析,第一胎ED-XRF是1969年问世的。近几年来,由于商品ED-XRF仪器及仪表计算机软件的发展,功能完善,应用领域拓宽,其特点,优越性日益搜到认识,发展迅猛。 二.波长色散型X射线荧光光谱仪与能量色散型X射线荧光光谱仪的区别 虽然光波色散型(ED-XRF)X射线荧光光谱仪与能量色散型(ED-XRF)X射线荧光光谱仪同属于X射线荧光分析仪,它产生信号的方法相同,最后得到的波谱也极为相似,单由于采集数据的方式不同,WD-XRF(波谱)与WD-XRF(能谱)在原理和仪器结构上有所不同,功能也有区别。(一)原理区别 X射线荧光光谱法,是用X射线管发出的初级线束辐照样品,激发各化学元素发出二次谱线(X-荧光)。波长色散型荧光光仪(WD-XRF)是用分光近体将荧光光束色散后,测定各种元素的特征X射线波长和强度,从而测定各种元素的含量。而能量色散型荧光光仪(ED-XRF)是借组高分辨率敏感半导体检查仪器与多道分析器将未色散的X射线荧光按光子能量分离X色线光谱线,根据各元素能量的高低来测定各元素的量,由于原理的不同,故仪器结构也不同。(二)结构区别 波长色散型荧光光谱仪(WD-XRF),一般由光源(X-射线管),样品室,分光晶体和检测系统等组成。为了准且测量衍射光束与入射光束的夹角,分光晶体系安装在一个精密的测角仪上,还需要一庞大而精密并复杂的机械运动装置。由于晶体的衍射,造成强度的损失,要求作为光源的X射线管的功率要打,一般为2-3千瓦,单X射线管的效率极低,只有1%的功率转化为X射线辐射功率,大部分电能均转化为而能产生高温,所以X射线管需要专门的冷却装置(水冷或油冷),因此波谱仪的价格往往比能谱仪高。 能量色散型荧光光谱仪(DE-XRF)

  • 能量型荧光光谱仪哪个品牌好

    分析含量为10~50%铝中间合金,用什么品牌的荧光光谱仪好?波长型和能量型哪一个更合适?能量型荧光光谱仪哪个品牌的口碑好些?预算最好不超过100W

  • 能量色散X荧光谱仪(EDXRF) --- X荧光光谱仪是什么?

    X荧光光谱仪(XRF测试仪)由激发源(X射线管)、高压电源、探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品,产生X荧光(二次X射线),探测器对X荧光进行检测。工作原理 X光管发射的X射线,经过滤光片后,X射线的背景射线被滤光片吸收而减弱,然后经准直器变成平行光束,照射在样品上.样品受到激发,随即产生含有被测元素的特征X射线荧光的复合光束.再经过准直器的准直进入半导体探测器,探测器本身具有能量分辨能力,可以甄别样品所有发射的不同能量特征的X射线荧光,探测器输出的信号经放大器的放大后进入运算装置,由于探测器输出的信号与入射的X射线荧光的能力成正比,因此可以得到定性、定量分析的能量谱图。注:X射线荧光(X Ray Fluorescence)是一种电磁波,是原子内层电子受到激发,在跃迁的时候,产生的一种电磁辐射。lXRF:X射线荧光(XRayFluorescence) 通常把照射在物质上的X射线的原级X射线和照射在物质上而产生的次级X射线叫X射线荧光。 X射线,激发被测物料,受激发的物料中不同元素发出的特征波长的X射线和能量差。 X射线荧光光谱仪有两种基本类型: 波长色散型(WD-XRF)和能量色散型(ED-XRF)更多相关文献: 请点击

  • 能量色散X荧光光谱仪是什么仪器

    能量色散X荧光光谱仪是什么仪器

    [size=16px][font=-apple-system, BlinkMacSystemFont, &][color=#05073b]能量色散X荧光光谱仪是什么仪器[/color][/font]能量色散X荧光光谱仪是一种用于化学和物理领域的分析仪器。它的工作原理是利用小功率X射线管激发被测样品,并产生X荧光。探测器对X荧光进行检测,然后仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。这种仪器具有高效端窗发射X-光管、数字高压电源系统、Si(Li)电制冷探测器、全数字脉冲处理器等技术指标,可优化不同能量段元素的采谱条件,提高痕量元素检出能力。此外,能量色散型X射线荧光光谱仪具有5位置滤光片自动切换功能,以保证分析精度,并对各种样品进行快速准确的分析,包括大样品、小样品、金属碎屑、线材、棒材、管道、容器、焊缝等。设备检测元素范围为镁Mg – 铀U,校准程序可同时对35种元素进行回归计算。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/02/202402040948224614_1966_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 能量色散X荧光谱仪(EDXRF) --- 工作原理

    能量色散X荧光谱仪(EDXRF) --- 工作原理

    前面我们说过EDXRF的--x射线管的工作原理,这里写写XRF仪器的工作原理: X光管发射的X射线,经过滤光片后,X射线的背景射线被滤光片吸收而减弱,然后经准直器变成平行光束,照射在样品上.样品受到激发,随即产生含有被测元素的特征X射线荧光的复合光束.再经过准直器的准直进入半导体探测器,探测器本身具有能量分辨能力,可以甄别样品所有发射的不同能量特征的X射线荧光,探测器输出的信号经放大器的放大后入运算装置,由于探测器输出的信号与入射的X射线荧光的能力成正比,因此可以得到定时、定量分析的能量谱图。 工作原理图如下:http://ng1.17img.cn/bbsfiles/images/2015/03/201503201412_539002_1617349_3.png 其它更多知识汇总请见--- 【原创】能量色散X荧光光谱仪-知识汇总内容

  • 【转帖】能量色散X荧光光谱仪原理

    当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为 (10)-12-(10)-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子。 它的能量是特征的,与入射辐射的能量无关。当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X 射线荧光,其能量等于两能级之间的能量差。因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。 K层电子被逐出后,其空穴可以被外层中 任一电子所填充,从而可产生一系列的谱线,称为K系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。 同样,L层电子被逐出可以产生L系辐射。如果入射的X 射线使某元素的K层电子激发成光电子后L层电子跃迁到K层,此时就有能量ΔE释放出来,且ΔE=EK-EL,这个能量是以X射线形式释放,产生的就是Kα 射线,同样还可以产生Kβ射线 ,L系射线等。莫斯莱(H.G.Moseley) 发现,荧光X射线的波长λ与元素的原子 序数Z有关,其数学关系如下: λ=K(Z-s)-2   这就是莫斯莱定律,式中K和S是常数,因此,只要测出荧光X射线的波长,就可以知道元素的种类,这就是荧光X射线定性分析的基础。此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以 进行元素定量分析。 X射线的产生 利用X射线管(图2),施加高电压以加速电子,使其冲撞金属阳极(对阴极)从而产生X射线。从设计上分为横窗型(side window type)和纵窗型(end window type)两种X射线管,都是设计成能够把X射线均匀得照射在样品表面的结构。 X射线窗口,一般使用的是铍箔。阴极(也叫做:靶材)则多使用是钨(W)、铑(Rh)、钼(Mo)、铬(Cr)等材料。这些靶材的使用是依据分析元素的不同而使用不同材质。原则上分析目标元素与靶材的材质不同。 如何利用荧光X射线进行定量分析 在包含某种元素1的样品中,照射一次X射线,就会产生元素1的荧光X射线,不过这个时候的荧光X射线的强度会随着样品中元素A的含量的变化而改变。元素1的含量多,荧光X射线的强度就会变强。注意到这一点,如果预先知道已知浓度样品的荧光X射线强度,就可以推算出样品中元素A的含量。 利用荧光X射线进行定量分析的时候,大致分为3个方法。一个是制作测量线的方法(经验系数法)。这个方法是测定几点实际的已知浓度样品,寻求想测定元素的荧光X射线强度和浓度之间的关系,以其结果为基础测定未知样品取得荧光X射线,从而得到浓度值。 另一个方法是理论演算的基础参数法(FP法)。这个方法在完全了解样品的构成和元素种类前提,利用计算的各个荧光X射线强度的理论值,推测测定得到未知样品各个元素的荧光X射线强度的组成一致。 NBS-GSC法也称作理论Alpha系数法。它是基于荧光X射线激发的基本原理,从理论上使用基本物理参数计算出样品中每个元素的一次和二次特征X射线荧光强度的。基于此再计算Lachance综合校正系数,然后使用这些理论α系数去校正元素间的吸收增强效应。它与经验系数法不同,这些校正系数是从“理论”上取得的,而非建立在“经验”上。因而它也不需要那么多的标样,只要少数标样来校准仪器因子。

  • 能量色散X荧光光谱仪-知识汇总内容

    原理&方法01 能量色散X荧光谱仪(EDXRF) --- X射线管02 能量色散X荧光谱仪(EDXRF) --- 工作原理03 RoHS检测仪维修 --- 更换探头03 RoHS检测仪维修03 RoHS检测仪结构介绍 1800法律法规01 环保指令汇总 02 欧盟WEEE指令2002/96/EC 欧盟REACH法规指令 EC 1907/2006 欧盟ELV指令2000/53/EEC 欧盟包装物和废弃包装物指令94/62/EC 欧盟新电池指令2006/66/EC 欧盟Eup指令2005/32/EC 欧盟镉指令91/338/EEC 欧盟镍指令94/27/EC 欧盟偶氮染料指令2002/61/EC 欧盟邻苯二甲酸盐指令2005/84/EC 挪威PoHS 文献资料01 能量色散X荧光谱仪(EDXRF) --- 六种有害成分的存在形式及其替代方法02 能量色散X荧光谱仪(EDXRF) --- X荧光光谱仪是什么?03 能量色散X荧光谱仪(EDXRF) --- RoHS培训-手机产品04 能量色散X荧光谱仪(EDXRF) --- 术语05 能量色散X荧光谱仪(EDXRF) --- 元素之间干扰06 能量色散X荧光谱仪(EDXRF) --- 物料分类与拆分07 能量色散X荧光谱仪(EDXRF) --- RoHS1.0,2.0指令区别08 能量色散X荧光谱仪(EDXRF) --- X射线分析仪(电子版书籍)09 能量色散X荧光谱仪(EDXRF) --- 辐射小知识10 RoHS检测仪器---欧盟RoHS指令豁免条款11 RoHS检测仪器---卤素简介12 中国RoHS与欧盟RoHS之比较表资料目录为:第一章 简单原理第二章 X射线的发生、衍射和吸收原理第三章 X射线的激发第四章 波长色散分光计和晶体性质第五章 探测器和电路第六章 能量色散第七章 分析的精密度和准确度……内容持续更新中……09 能量色散X荧光谱仪(EDXRF) --- 各國玩具重金屬要求對照表

  • 【讨论】偏振能量色散型X射线荧光光谱仪

    对这类仪器我有两个问题,请专家给解释一下,谢谢!1、偏振能量色散型X射线荧光光谱仪中使用偏振光的特点(包括优点和缺点)是什么?2、这种偏振光是指光源是偏振光还是产生的荧光是偏振光?

  • 能量色散X荧光光谱仪是什么仪器

    [size=16px]  能量色散X荧光光谱仪是什么仪器  能量色散X荧光光谱仪(EDXRF)是一种用于分析材料中元素组成的非破坏性分析仪器。它利用X射线照射待测样品,激发样品中的原子或分子,然后测量由这些原子或分子发射出的X射线能量和强度,从而确定样品中各元素的种类和含量。  这种仪器的主要特点包括:  非破坏性:不会对样品造成损伤。  灵敏度高:能够检测到极低浓度的元素。  分析速度快:可以在几秒钟内完成一次分析。  具有广泛的适用范围:可以应用于地质、矿物、环保、材料科学等领域。  在实际应用中,能量色散X射线荧光光谱仪常常与计算机相结合,可以通过软件对数据进行处理和分析,以提供的结果。同时,该仪器也可以配备多种附件,如高压电源、样品架等,以满足不同的实验需求。  此外,能量色散X荧光光谱仪还适用于材料科学和考古学领域,例如用于陶瓷及原料化学组成的检测。  请注意,具体的仪器性能和应用领域可能会因设备型号、生产厂家等因素而有所差异。因此,在使用能量色散X荧光光谱仪时,应参考设备的使用说明书和相关标准,以确保测试结果的准确性和可靠性。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/03/202403060952348590_3596_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 如何评价能量色散型X射线荧光光谱仪的性能技术指标?

    现在市场上针对RoHS的能量色散型X射线荧光光谱仪很多,如何去评价它的性能、技术指标,如何去购买适合自己的仪器,有如何公正地评价仪器地优劣?请大家发表自己的看法?[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=17151]能量色散型X射线荧光光谱仪校准办法[/url]

  • 直读光谱仪和X荧光光谱仪本质区别

    一、两者分析原理 直读火花光谱仪工作原理则是用电弧(火花)的高温使样品中各种元素从固态直接气化并被激发而射出各元素的特征波长,用光栅分光后,成为按波长排列的“光谱”,这些元素的特征光谱线通过通过出射狭缝,射入各自的光电倍增管,光信号变成电信号,经仪器的控制测量系统将电信号积分并进行模/数转换,然后由计算机处理,并打印出各元素的百分含量。 而X荧光光谱仪工作原理介绍用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。二、分析特点差异 火花直读光谱仪要求试样具有导电性,且只能是固体样品,简单地说就是火花直读只能分析金属固体样品中的元素。 而X射线荧光光谱仪由计算机控制,自动化水平高,分析速度快,它对样品要求不高,可以分析粉末样品、固体样品、熔融样品、液体样品,不需要样品具有导电性,金属及非金属样品均可分析。从这点看出X荧光光谱仪适用范围更广。

  • 【原创】能量色散X射线荧光光谱(电源)

    能量色散X射线荧光光谱开关电源能量色散X射线荧光光谱采取脉冲高度剖析器将不同能量的脉冲离开并测量。能量色散X射线荧光光谱仪可分为具备高分别率的光谱仪,分别率较低的便携式光谱仪,和介于两者之间的台式光谱仪。高分别率光谱仪通常采取液氮冷却的半导体探测器,如Si(Li)和高纯锗探测器等。低分别便携式光谱仪经常采取反比计数器或闪耀计数器为探测器,它们不须要液氮冷却。近年来,采取电致冷的半导体探测器,高分别率谱仪已不必液氮冷却。同步辐射光激起X射线荧光光谱、质子激起X射线荧光光谱、喷射性同位素激起X射线荧光光谱、全反射X射线荧光光谱、微区X射线荧光光谱等较多采取的是能量色散方法。编纂本段非色散谱仪  非色散谱仪不是采取将不同能量的谱线分别开来,而是通过抉择激起、抉择滤波和抉择探测等方法使测量剖析线而消除其余能量谱线的搅扰,因而个别只实用于测量一些简朴和组成基础固定的样品。假如n1n2,则介质1相关于介质2为光密介质,介质2相关于介质1为光疏介质。关于X射线,个别固体与空气相比都是光疏介质。所以,假如介质1是空气,那么α1α2(图2。20右图),即折射线会倾向界面。假如α1足够小,并使α2=0,此时的掠射角α1称为临界角α临界。当α1α临界时,界面就象镜子一样将入射线整个反射回介质1中,这就是全反射景象。X射线荧光光谱法有如下特征:剖析的元素规模广,从4Be到92U均可测定;   荧光X射线谱线简朴,互相搅扰少,样品不必分别,剖析方法对比简便;   剖析浓度规模较宽,从常量到微量都可剖析。重元素的检测限可达ppm量级,轻元素稍差。待续。。。。。非色散?不是很理解。楼主,你有示意图来介绍一下吗。

  • 《能量色散X光射线荧光光谱仪计量校准规范》是否有统一规范

    今天有看到一篇信息,摘录如下:“省计量院《能量色散X光射线荧光光谱仪计量校准规范》通过审定 文章来源:福建省计量科学研究院 更新时间:2011-10-8 14:35:09 9月27日,省计量院《能量色散X射线荧光光谱仪校准规范》通过审定。由此建立的能量色散X射线荧光光谱仪计量校准方法,具有较强的实用性和可操作性。能量色散X射线荧光光谱仪是公认的RoHs(关于限制在电子电器设备中使用某些有害成分的指令)筛选检测首选仪器,可以检测出RoHs法案中规定的所有物质,具有检测速度快、分辨率高、可实现无损检测、无需专门人员等特点。但该仪器相关技术指标没有国家规程,缺乏统一的技术规范。省计量院根据该仪器的计量性能和实际检测要求,制定了能量色散X射线荧光光谱仪的计量校准方法。该规程的运用,将有效提升能量色散X射线荧光光谱仪的检测质量,并保障该行业的健康发展,具有较好的社会及经济效益。”目前有关能量色散X光射线荧光光谱仪计量校准规范是不是没有一个统一的标准? 那大家公司一年一次或两次的校准都是依据哪个规范进行的呢?http://simg.instrument.com.cn/bbs/images/brow/emyc1010.gif

  • 【转帖】X射线荧光光谱仪原理用途

    X射线荧光衍射:利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X射线能谱法(能量色散)。 当原子受到X射线光子(原级X射线)或其他微观粒子的激发使原子内层电子电离而出现空位,原子内层电子重新配位,较外层的电子跃迁到内层电子空位,并同时放射出次级X射线光子,此即X射线荧光。较外层电子跃迁到内层电子空位所释放的能量等于两电子能级的能量差,因此,X射线荧光的波长对不同元素是特征的。 根据色散方式不同,X射线荧光分析仪相应分为X射线荧光光谱仪(波长色散)和X射线荧光能谱仪(能量色散)。 X射线荧光光谱仪主要由激发、色散、探测、记录及数据处理等单元组成。激发单元的作用是产生初级X射线。它由高压发生器和X光管组成。后者功率较大,用水和油同时冷却。色散单元的作用是分出想要波长的X射线。它由样品室、狭缝、测角仪、分析晶体等部分组成。通过测角器以1∶2速度转动分析晶体和探测器,可在不同的布拉格角位置上测得不同波长的X射线而作元素的定性分析。探测器的作用是将X射线光子能量转化为电能,常用的有盖格计数管、正比计数管、闪烁计数管、半导体探测器等。记录单元由放大器、脉冲幅度分析器、显示部分组成。通过定标器的脉冲分析信号可以直接输入计算机,进行联机处理而得到被测元素的含量。 X射线荧光能谱仪没有复杂的分光系统,结构简单。X射线激发源可用X射线发生器,也可用放射性同位素。能量色散用脉冲幅度分析器 。探测器和记录等与X射线荧光光谱仪相同。 X射线荧光光谱仪和X射线荧光能谱仪各有优缺点。前者分辨率高,对轻、重元素测定的适应性广。对高低含量的元素测定灵敏度均能满足要求。后者的X射线探测的几何效率可提高2~3数量级,灵敏度高。可以对能量范围很宽的X射线同时进行能量分辨(定性分析)和定量测定。对于能量小于2万电子伏特左右的能谱的分辨率差。 X射线荧光分析法用于物质成分分析,检出限一般可达10-5~10-6克/克(g/g),对许多元素可测到10-7~10-9g/g,用质子激发时 ,检出可达10-12g/g;强度测量的再现性好;便于进行无损分析;分析速度快;应用范围广,分析范围包括原子序数Z≥3的所有元素。除用于物质成分分析外,还可用于原子的基本性质如氧化数、离子电荷、电负性和化学键等的研究。

  • X射线荧光光谱分析的基本原理 及应用

    X射线荧光光谱分析的基本原理   当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12-10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子。它的能量是特征的,与入射辐射的能量无关。当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差。因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。图10.1给出了X射线荧光和俄歇电子产生过程示意图。   K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。同样,L层电子被逐出可以产生L系辐射(见图10.2)。如果入射的X射线使某元素的K层电子激发成光电子后L层电子跃迁到K层,此时就有能量ΔE释放出来,且ΔE=EK-EL,这个能量是以X射线形式释放,产生的就是Kα射线,同样还可以产生Kβ射线 ,L系射线等。莫斯莱(H.G.Moseley) 发现,荧光X射线的波长λ与元素的原子序数Z有关,其数学关系如下: λ=K(Z-s)-2   这就是莫斯莱定律,式中K和S是常数,因此,只要测出荧光X射线的波长,就可以知道元素的种类,这就是荧光X射线定性分析的基础。此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析。

  • 能量色散荧光光谱仪特点讨论

    目前由于ROHS/WEEE指令的原因,很多电子电气产品生产企业购买了许多能量色散荧光光谱仪,仅我知道的型号就有日本的精工、岛津、HORIBA,热电公司QUANT、帕纳克公司MINIPAL4等,只看仪器标称的指标好像所有的样品都能进行分析,但我觉得这里面误差很难控制,所以非常希望已经购买相关检测设备并有使用经验的人员提供应用新的,也为后续购买相关检测设备的公司提供参考。

  • 原子荧光光度计优点及原理

    原子荧光光度计是利用硼氢化钾或硼氢化钠作为还原剂,将样品溶液中的待分析元素还原为挥发性共价气态氢化物(或原子蒸汽),然后借助载气将其导入原子化器,在氩—氢火焰中原子化而形成基态原子。原子荧光光度计优点:1.非色散系统、光程短、能量损失少2.结构简单,故障率低3.灵敏度高,检出限低,与激发光源强度成正比4.接收多条荧光谱线5.适合于多元素分析6.采用日盲管检测器,降低火焰噪声7.线性范围宽,3个量级8.原子化效率高,理论上可达到100%9.没有基体干扰10.可做价态分析11.只使用氩气,运行成本低12.采用氩氢焰,紫外透射强,背景干扰小原子荧光光度计原理:是利用硼氢化钾或硼氢化钠作为还原剂,将样品溶液中的待分析元素还原为挥发性共价气态氢化物(或原子蒸汽),然后借助载气将其导入原子化器,在氩—氢火焰中原子化而形成基态原子。基态原子吸收光源的能量而变成激发态,激发态原子在去活化过程中将吸收的能量以荧光的形式释放出来,此荧光信号的强弱与样品中待测元素的含量成线性关系,因此通过测量荧光强度就可以确定样品中被测元素的含量。(选自网络)

  • 【资料】X射线荧光光谱仪的分析基本原理及详解

    X射线荧光光谱仪主要由激发、色散、探测、记录及数据处理等单元组成。激发单元的作用是产生初级X射线。它由高压发生器和X光管组成。后者功率较大,用水和油同时冷却。色散单元的作用是分出想要波长的X射线。它由样品室、狭缝、测角仪、分析晶体等部分组成。通过测角器以1∶2速度转动分析晶体和探测器,可在不同的布拉格角位置上测得不同波长的X射线而作元素的定性分析。探测器的作用是将X射线光子能量转化为电能,常用的有盖格计数管、正比计数管、闪烁计数管、半导体探测器等。记录单元由放大器、脉冲幅度分析器、显示部分组成。通过定标器的脉冲分析信号可以直接输入计算机,进行联机处理而得到被测元素的含量。X射线荧光能谱仪没有复杂的分光系统,结构简单。X射线激发源可用X射线发生器,也可用放射性同位素。能量色散用脉冲幅度分析器 。探测器和记录等与X射线荧光光谱仪相同。X射线荧光光谱仪和X射线荧光能谱仪各有优缺点。前者分辨率高,对轻、重元素测定的适应性广。对高低含量的元素测定灵敏度均能满足要求。后者的X射线探测的几何效率可提高2~3数量级,灵敏度高。可以对能量范围很宽的X射线同时进行能量分辨(定性分析)和定量测定。对于能量小于2万电子伏特左右的能谱的分辨率差。X射线荧光分析法用于物质成分分析,检出限一般可达10-5~10-6克/克(g/g),对许多元素可测到10-7~10-9g/g,用质子激发时 ,检出可达10-12g/g;强度测量的再现性好;便于进行无损分析;分析速度快;应用范围广,分析范围包括原子序数Z≥3的所有元素。除用于物质成分分析外,还可用于原子的基本性质如氧化数、离子电荷、电负性和化学键等的研究。 [~104490~]

  • 【转帖】食品中苯并[a]芘的恒能量同步荧光光谱测定法研究

    食品中苯并[a]芘的恒能量同步荧光光谱测定法研究多环芳烃(PAHs)是一种重要的环境污染物,目前已知的2-7环PAHs就有数百种,其中很多种具有致突变性和致癌性。 目前,国家标准关于测定食品中苯并[a]芘的方法有荧光分光光度法和目测比色法。荧光分光光度法是先采用薄层法(TEE)定性,实验人员必须近距离在365nm或254nm的紫外光下操作,然后再用荧光分光光度计定量。而目测比色法其实就是薄层定性法,具有操作复杂、灵敏度低、重复性差、对实验人员身体健康损害较大等缺点。 近期出版的《食品科技》杂志,龙岩学院化学与材料工程系的研究人员发表研究成果,用恒能量同步荧光光谱法测定食品中的苯并[a]芘的含量,可以定量测定苯并[al芘的含量。并对特性基本相同的各种样品进行了加标回收检验,其回收率在85%以上,相关系数 0.9995,相对标准偏差为0.86%。 该方法操作简单,快速,费用低廉,定量检测结果比较令人满意,并且有较好的重现性。同时,避免了实验人员遭受紫外光照射,有益于分析实验人员身体健康。但对于苯并[a]芘含量较低的实际样品的定量检测的准确性,有待进一步的考察。 我国烟熏食品风味独特,为广大消费者所青睐,但是国内这方面的报道较少。因此,分析检测烟熏食品中PAHs含量,了解我国烟熏食品中PAHs的污染程度并制订相应的卫生标准,有着重要的卫生学意义。

  • 《能量色散X荧光光谱仪》标准制定工作会议在天瑞召开

    《能量色散X荧光光谱仪》标准制定工作会议在天瑞召开

    5月18日,全国分析仪器标准化委员会秘书长马雅娟、主任委员郑增德来到天瑞仪器,就《能量色散X荧光光谱仪》行业标准的编制实施进行深入研讨。《能量色散X荧光光谱仪》行业标准是由全国分析仪器标准化技术委员会推动,共分为“通用技术”、“元素分析仪”、“镀层厚度分析仪”三章。目前,该标准已完成草稿工作。5月18日,在天瑞仪器二楼会议室,分析仪器标准化委员会秘书长马雅娟、主任委员郑增德,与天瑞仪器副总经理余正东、应用研发中心负责人姚栋梁博士、研发部部长吴升海博士、研发部副部长周晓辉、应用研发工程师吴敏、李强、盛敏等人,共同就标准的制定执行进行深入探讨。分析仪器标准化委员会秘书长马雅娟在会议中表示:“能量色散X射线荧光光谱仪作为一种定性及定量的无损测试技术,可广泛应用于电子、机械制造、医疗卫生、环保和生态研究、冶金、食品工业、珠宝首饰、地质勘探、考古、商检、电镀、钢铁、石化、稀土等行业。但该技术目前在国内外却缺少相关标准。本次行标的编撰实施,对促进民族工业发展、促进与国际先进技术的接轨,具有重要意义。”天瑞仪器副总经理余正东表示,天瑞仪器作为专业的X荧光光谱仪研发生产厂商,在技术研发、仪器制造、应用开发、产品服务等方面拥有深厚的经验。天瑞仪器希望能够发挥优势,为行业标准的规范完善作出贡献。http://ng1.17img.cn/bbsfiles/images/2012/05/201205231600_368298_2090336_3.jpg合影留念

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制