耐驰热膨胀仪工作原理

仪器信息网耐驰热膨胀仪工作原理专题为您提供2024年最新耐驰热膨胀仪工作原理价格报价、厂家品牌的相关信息, 包括耐驰热膨胀仪工作原理参数、型号等,不管是国产,还是进口品牌的耐驰热膨胀仪工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合耐驰热膨胀仪工作原理相关的耗材配件、试剂标物,还有耐驰热膨胀仪工作原理相关的最新资讯、资料,以及耐驰热膨胀仪工作原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

耐驰热膨胀仪工作原理相关的仪器

  • 产品详情德国Netzsch热膨胀仪DIL 402 耐驰热膨胀仪可以精确测量各种材料(如陶瓷、玻璃与建筑材料)在热处理过程中的膨胀、收缩信息。特别是陶瓷材料,在生产过程中粘合剂的烧失、烧结行为及烧结过程中添加剂的影响都可以通过热膨胀仪测得。热膨胀仪还可以用于釉料的研发,例如瓷器在烧制过程中就需要精确掌握釉料的热膨胀匹配。 通过测试热膨胀系数与玻璃化转变温度,可以快速便捷地了解玻璃的变化。在很多情况下,确保相互接触的不同玻璃的热膨胀行为相近非常重要,可以避免应力集中与开裂。 水分含量和相变都会影响建筑材料的膨胀与收缩行为,例如混凝土的膨胀特性会显著影响建筑的静态稳定性与使用年限。 热膨胀仪能够得到样品尺寸的变化信息,如膨胀、收缩和体积变化。几十年来,这种方法广泛应用于工业领域及研究机构。耐驰所有的热膨胀仪都满足各种相关的国际标准,例如DIN EN 821, DINASTM E831, ASTM E228等。 主要技术参数
    留言咨询
  • 耐驰 DIL 402 Expedis Supreme HT 热膨胀仪 应用领域:- 线膨胀与收缩- 玻璃化温度- 致密化和烧结过程- 热处理工艺优化- 软化点检测- 相转变过程- 添加剂和原材料影响- 反应动力学研究 耐驰 DIL 402 Expedis Supreme HT 热膨胀仪 产品特点:- 可提供超高温炉体,使用范围更广泛- NanoEye位移测量系统,实现全量程范围内高分辨率与完美线性度- 全量程范围内接触力可调,可施加极小的接触力,保证样品不受破坏- 可自动测量样品长度- MultiTouch触控设计,确保样品位置稳固- 独特的真空密封炉体,确保样品测量气氛- 丰富的高级DIL测试分析功能扩展 耐驰 DIL 402 Expedis Supreme HT 热膨胀仪 技术参数:DIL 402 Expedis Supreme HT温度范围-180 … 2800°C(不同炉体)灵敏度0.1nm量程±25000μm真空度10-5mbar测试气氛真空、氧化、还原、惰性支架类型石墨、氧化铝、熔融石英样品形态固体、液体、粉末专利功能c-DTA(选配)、谱图检索(Identify)(选配)、速率控制烧结(RCS)(选配)独创的Nanoeye位移传感及载荷控制技术独创的Multitouch技术详细参数,敬请垂询 *价格范围仅供参考,实际价格与配置、汇率等若干因素有关。如有需要,请向当地销售咨询。我们讲竭尽全力为您制定完善的解决方案。
    留言咨询
  • 耐驰 DIL 402 Expedis Select 热膨胀仪 应用领域:- 线膨胀与收缩- 玻璃化温度- 致密化和烧结过程- 热处理工艺优化- 软化点检测- 相转变过程- 添加剂和原材料影响- 反应动力学研究 耐驰 DIL 402 Expedis Select 热膨胀仪 产品特点:- 多种不同温度的炉体,适用广泛- 可同时安装双炉体- NanoEye位移测量系统,实现全量程范围内高分辨率与完美线性度- 全量程范围内接触力可调,可施加极小的接触力,保证样品不受破坏- 可自动测量样品长度- MultiTouch触控设计,确保样品位置稳固- 独特的真空密封炉体,确保样品测量气氛- 丰富的高级DIL测试分析功能扩展 耐驰 DIL 402 Expedis Select 热膨胀仪 技术参数:DIL 402 Expedis Select温度范围-180 … 2000°C(不同炉体)灵敏度1nm量程±10000μm样品载荷10mN … 3N,可变,可调制(选配)测试模式单样品/双样品,样品长度自动检测支架类型氧化铝、熔融石英、石墨测试气氛真空、氧化、还原、惰性样品形态固体、液体、粉末专利功能c-DTA(选配)、谱图检索(Identify)(选配)、速率控制烧结(RCS)(选配)独创的Nanoeye位移传感及载荷控制技术独创的Multitouch技术详细参数,敬请垂询 *价格范围仅供参考,实际价格与配置、汇率等若干因素有关。如有需要,请向当地销售咨询。我们讲竭尽全力为您制定完善的解决方案。
    留言咨询

耐驰热膨胀仪工作原理相关的方案

  • 用推杆式热膨胀仪检测玻璃的热膨胀系数、玻璃化转变温度和软化点性能
    热膨胀系数(CTE)、玻璃化转变温度和软化点是表征玻璃材料性能的关键参数。而推杆式热膨胀仪则能简便快速的测试这些性能。差动传感器的最优化设计使得仪器即使是在没有额外恒温设备时都可以提供超高重现性。仪器采用卧式设计,这种设计的优点在于炉子容易操作,装载样品简便。即使非理想尺寸的样品都可以很轻松的放进管状样品支架的凹槽中。热电偶直接接近样品测温,保证温度测量的重复性。同时该仪器的 c-DTA 功能使得仪器在测试热膨胀系数的同时还能测得样品的吸放热效应。
  • 基于感应加热试样的高速激光干涉热膨胀仪
    本方案设计了一种高速热膨胀仪用于固体试样热膨胀和热收缩的高精度测量。试样长度的测量采用差分干涉法,具有0.3nm的分辨率和30nm的测量重复性。温度控制则采用感应加热和气体冷却方式实现,最大加热速度约为100K/s,最大冷却速度为50K/s。对于非导体试样的加热则在试样周围增加金属环的间接加热方式。整个测试系统可以在不同气氛环境下进行运行,包括氧气环境气氛,最大温度可以达到1600℃。
  • 耐驰:使用推杆式热膨胀仪测量固态/熔融金属的体积膨胀与密度变化
    随着金属工业的飞速发展,人们越来越多地使用电子计算机参与模具设计,进行铸造过程的模拟。由此,需要对金属材料的热物理性能,包括材料在固、液与熔融区的导热系数、热扩散系数、比热、密度变化等物性参数有很深入的了解。本文介绍了一种新的测量方法,通过使用标准的推杆式膨胀仪,对金属在固态、液态与熔融过程中的体积膨胀与密度变化进行测量。并使用该方法,对Cu、Fe、铝合金LM-25 及以镍为主要成分的超耐热合金 Inconel 718 进行了测试。

耐驰热膨胀仪工作原理相关的论坛

  • 热膨胀仪的校准

    我司有几台德国耐驰的热膨胀仪需要校准,可以做的请与我联系13922528826

  • 热膨胀仪(干涉计法)

    关于有关顶杆热膨胀仪的几个问题作者美国安特公司的王恒博士1.如果想达到更高的准确度,应该用非接触干涉膨胀仪。干涉膨胀仪的优点是,光学非接触、绝对测量、测量准确度高。但造价昂贵、仪器结构及操作都很复杂、温度不容易超过1000℃,对样品形状及表面要求苛刻,不适用于材料的烧结过程的研究。一般,为建立一级热膨胀标准的权威机构采用非接触干涉膨胀仪为主要手段。请注意一下,干涉计本身的测长很准,但组装在膨胀仪上后,因为与样品有关的热系统的关系,对于样品的随温度变化的真正伸长量的测量准确度会随温度升高而下降。比如在日本计量所作的双路差频干涉计和在美国西海岸的Precision Mesurement and Instrument Corp作的迈可耳逊干涉计,其本身的位移变化量可测到1nm到3nm左右,但用在热膨胀测量应用上,因热系统的各部份的热变形等原因,“零点漂移”在几百度时就达到了30至50nm,属于随机误差,不能修正的。请见国际热物理杂志Internation1 J. Thermophys. Vo1 23, No.2,2002年3月的文章“Development of a Laser Interferometric Dilatometer for Measurment of Thermal Expansion of Solid in Temperature range 300 to 1300K”d在的549页关于干涉仪的零漂的3.2节中的图4中,在300 to 1300K的温度范围内的零漂达到了50nm。这是不能修正的,必须考虑在误差分析内。因此,对于干涉法热膨胀仪来讲,伸长量的测量准确度受系统的热稳定性影响而不能达到干涉计本身的测长准确度的。商品化的干涉膨胀仪的最高温度是700℃。2.作为最传统的热膨胀仪的测量手段的顶杆法热膨胀仪的优点是,使用容易、结构简单适用各种形状的样品等。缺点是,属于接触、相对测量方法,需要用标准样品对系统定标,测长准确度低,但可达到很高温度,适用于材料的烧结过程的研究。顶杆法热膨胀仪结构特点是,用比样品长几倍的顶杆与试样接触,把试样的长度变化传递给加热炉外的与其接触的位移传感器。这样,在顶杆上存在从高温(试样)到室温(位移传感器)的温度变化,整体的热稳定性或者说“热环境”与干涉膨胀仪的情况比,就“差”了更多,温度超高越严重,这是自然引起而不可避免的。这是不能用标准样品的定标来完全消除的。这将导致位移传感器读数的波动,在有些情况下,甚至导致测量结果的突变。在文章“Examination of Thermal Expansion Uniformity of Glassy Carbon as a Candidate Standard Reference Material For Thermal Expansion Measurements”中的第94页第一段,指出对于玻璃碳材料的测量,第一次的测量结果不可靠而必须取消,在高温段和低温段的数据也要取消。即使顶杆法热膨胀仪的位移传感器本身测量准确度能达到了0.1微米以下,对试样的热膨胀量引起的真正伸长量测量准确度也很难说达到0.1微米。日本计量所曾把一个双路差频干涉计组装到一台顶杆法热膨胀仪的位移测量的头部作过实验,表明了这一点。当时的课题是考核顶杆法热膨胀仪的特性。就好比是用微伏电压表接一般的热电偶测温,尽管电压表可以读到微伏,但在毫伏读数以下对测温已没有任何意义了。3.LVDV本身的测量位移量的准确度达不到nm量级(1)目前最好螺旋测微仪的准确度是±1微米。Nech用于标定LVDT的是螺旋测微仪,所有的被定标的仪器的测量准确度不可能超过用于定标的仪器的测量准确度,所以即使用最好的螺旋测微仪定标,其热膨胀仪的LVDT也不可能得到优于1微米的准确度。离开准确度,来谈灵敏度是没有实际意义的。在日本计量所考核Netzsch的DIL402时,为了修正LVDT的读数,正是基于这个道理,用双路差频干涉计而不用螺旋测微仪。(2)LVDT的线性度用双路差频干涉计对Netzsch 的DIL402的LVDT的考察的结果表明,当位移量为105.23微米时,LVDV的读数与干涉计的读数的偏差达到0.69微米。因此,线性度实际上为0.66%之大,已排出了热效应的影响。而在NETZSCH的所有产品中,并没有对线性度进行修正的。这也说明了所谓nm量级读数的不正确性,是没有意义的。(3)在TN105中提到的其它因素,如对电压、温度、处理电路等极其敏感,易引起漂移,等等,其nm量级的读数在噪声之中。需要经常进行定标等。4.采用数字位移传感器在顶杆热膨胀仪上,比LVDV有很多的优点,请见TN105数字位移传感器的0.5微米的测长分辨率(也可以说准确度),对于顶杆热膨胀仪来讲,具有实际的意义,完全满足顶杆热膨胀仪的各种应用场合。5.对于低膨胀(如10-7/K)量级的材料在有限的温度范围内(如几十度)内的热膨胀的高精度的测量,顶杆热膨胀仪不适用,应采用非接触绝对的干涉热膨胀仪,并用阶梯等温的加热方式。我们接到过超低膨胀(如10-7/K)的材料在有限的温度范围内的高精度的测量的课题,比如说,一组10-7/K的量级的玻璃,要求分辨出不同成份、工艺下对热膨胀的影响。曾用Netzsch的DIL402和双路差频干涉膨胀仪进行了研究,同时也对DIL402的测量误差进行分析。结果表明,干涉膨胀仪能在10℃的温度间隔内,分辨到1.5X10-8/K,这里的分辨指的是在可能 的最大测量误差范围(或者说是极限误差,3σ程度)外。如果最大测量误差大于1.5X10-8/K,就不能说分辨到1.5X10-8/K。而DIL402的结果(加热范围为300℃,已得到足够的膨胀量),对于所有的材料都没有给出意义的分辨,因所测的各种材料的热膨胀率都在其测量误差范围内,即在12X10-8/K(最大误差,3σ)的误差带内。作为这一课题的附带结果再次表明,Netzsch关于达到1.25nm/digit的测长sensitivity的声称是没有实际意义的。如果有意义的话,已达到了干涉热膨胀仪的测长精度,而为什么实际的测量误差却是干涉热膨胀仪的测量误差的10倍?!有任何问题,欢迎随时交流。

  • 林赛斯热膨胀仪-激光-相变-----自荐

    热膨胀仪用于测量样品随温度变化而产生的膨胀;测量样品随温度或时间变化的函数关系,测得样品长度变化(Delta L)或CTE值(热膨胀系数)的膨胀信息。激光热膨胀--未来热膨胀测量技术的趋势—高精度和高分辨率。L75 激光热膨胀仪的优越性体现在精度是传统顶杆热膨胀仪的33倍。测量原理是麦克尔逊(Michelson)干涉计,因而消除了系统误差,专利保护的测量技术可以研究最新的高科技超低膨胀材料(ULE),Linseis成功地将最新的技术应用于此系列热膨胀仪和优化设计系统,使之易用性和传统的热膨胀仪一样。相变热膨胀仪--L78 RITA 是特别适合于研究和测量TTT,CHT和CCT图表。特殊的加热炉可以加热和制冷速度高于400°C/s。系统符合标准 ASTM A1033。所有的关键参数,如加热制冷速度,气体控制和安全保护都通过软件控制。专业的32-Bit 软件 Linseis TA- WIN 兼容Windows 系统,所有的常规(如TTT,CHT和CCT图表的建立)和应用要求可以通过仪器的软件包来实现。图解和ASCII格式可以输出,方便用户测量数据和图表导出。

耐驰热膨胀仪工作原理相关的耗材

  • 热膨胀芯(TEC)光纤跳线
    热膨胀芯(TEC)光纤跳线特性热膨胀芯增大了模场直径(MFD),便于耦合不仅更容易进行自由空间耦合,还能保持单模光纤的光学性能工作波长范围:980 - 1250 nm或1420 - 1620 nm光纤的TEC端镀有增透膜,以减少耦合损耗库存的光纤跳线:2.0 mm窄键FC/PC(TEC)到FC/PC接头2.0 mm窄键FC/PC(TEC)到FC/APC接头具有带槽法兰的?2.5 mm插芯到可以剪切的裸纤如需定制配置,请联系技术支持Thorlabs的热膨胀芯(TEC)光纤跳线进行自由空间耦合时,对位置的偏移没有单模光纤那样敏感。利用我们的Vytran® 光纤熔接技术,通过将传统单模光纤的一端加热,使超过2.5 mm长的纤芯膨胀,就可制成这种光纤。在自由空间耦合应用中,光纤经过这样处理的一端可以接受模场直径较大的光束,同时还能保持光纤的单模和光学性能(有关测试信息,请看耦合性能标签)。TEC光纤经常应用于构建基于光纤的光隔离器、可调谐波长的滤光片和可变光学衰减器。我们库存有带TEC端的多种光纤跳线可选。我们提供两种波长范围:980 nm - 1250 nm 和1460 nm - 1620 nm。光纤的TEC端镀有增透膜,在指定波长范围内平均反射率小于0.5%,可以减少进行自由空间耦合时的损耗。光纤的这一端具有热缩包装标签,上面列出了关键的规格。接头选项有2.0 mm窄键FC/PC或FC/APC接头、?2.5 mm插芯且可以剪切熔接的裸光纤。?2.5 mm插芯且可以剪切的光纤跳线具有?900 μm的护套,而FC/PC与FC/APC光纤跳线具有?3 mm的护套(请看右上表,了解可选的组合)。我们也提供定制光纤跳线。更多信息,请联系技术支持。 自由空间耦合到P1-1550TEC-2光纤跳线光纤跳线镀有增透膜的一端适合自由空间应用(比如,耦合),如果与其他接头端接触,会造成损伤。此外,由于镀有增透膜,TEC光纤跳线不适合高功率应用。清洁镀增透膜的接头端且不损坏镀膜的方法有好几种。将压缩空气轻轻喷在接头端是比较理想的做法。其他方法包括使用浸有异丙醇或甲醇的无绒光学擦拭纸或FCC-7020光纤接头清洁器轻轻擦拭。但是请不要使用干的擦拭纸,因为可能会损坏增透膜涂层。Item #PrefixTECEnd(AR Coated)UncoatedEndP1FC/PC (Black Boot)FC/PCP5FC/PC (Black Boot)FC/APCP6?2.5 mm Ferrule with Slotted FlangeScissor CutCoated Patch Cables Selection GuideSingle Mode AR-Coated Patch CablesTEC Single Mode AR-Coated Patch CablesPolarization-Maintaining AR-Coated Patch CablesMultimode AR-Coated Patch CablesHR-Coated Patch CablesStock Single Mode Patch Cables Selection GuideStandard CablesFC/PC to FC/PCFC/APC to FC/APCHybridAR-Coated Patch CablesThermally-Expanded-Core (TEC) Patch CablesHR-Coated Patch CablesBeamsplitter-Coated Patch CablesLow-Insertion-Loss Patch CablesMIR Fluoride Fiber Patch Cables耦合性能由于TEC光纤一端的纤芯直径膨胀,进行自由空间耦合时,它们对位置的偏移没有标准的单模光纤那样敏感。为了进行比较,我们改变x轴和z轴上的偏移,并测量自由空间光束耦合到TEC光纤跳线和标准光纤跳线时的耦合损耗(如右图所示)。使用C151TMD-C非球面透镜,将光耦合到标准光纤和TEC光纤。在980 nm 和1064 nm下,测试使用1060XP光纤的跳线和P1-1060TEC-2光纤跳线,同时,在1550 nm下,测试使用1550BHP光纤的跳线和P1-1550TEC-2光纤跳线。通过MBT616D 3轴位移台,让光纤跳线相对于入射光移动。 下面的曲线图展示了所测光纤跳线的光纤耦合性能。一般而言,对于相同的x轴或z轴偏移,TEC光纤跳线比标准跳线的耦合损耗低。而在x轴或z轴偏移为0 μm 时,标准跳线与TEC跳线的性能相似。总而言之,这些测试结果表明,TEC光纤对光纤位置的偏移远远没有标准光纤那样敏感,同时还能在zui佳光纤位置保持相同的耦合损耗。请注意,这些测量为典型值,由于制造公差的存在,不同批次跳线的性能可能有所差异。测量耦合性能装置的示意图。上图显示了用于测量耦合性能的测试装置。1060XP标准光纤和P1-1060TEC-2热膨胀芯光纤之间的耦合性能比较图。1060XP标准光纤和P1-1060TEC-2热膨胀芯光纤之间的耦合性能比较图。11550BHP标准光纤和P1-1550TEC-2热膨胀芯光纤之间的耦合性能比较图。 损伤阀值激光诱导的光纤损伤以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的zui大功率始终受到这些损伤机制的zui小值的限制。虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的jue对损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算zui大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在指定的zui大功率水平以下操作光纤元件;如果有元件并未指定zui大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。关于特定应用中光纤功率适用能力的深入讨论,请联系技术支持。Quick LinksDamage at the Air / Glass InterfaceIntrinsic Damage ThresholdPreparation and Handling of Optical Fibers空气-玻璃界面的损伤空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成yong久性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。损伤的光纤端面未损伤的光纤端面裸纤端面的损伤机制光纤端面的损伤机制可以建模为大光学元件,紫外熔融石英基底的工业标准损伤阈值适用于基于石英的光纤(参考右表)。但是与大光学元件不同,与光纤空气/璃界面相关的表面积和光束直径都非常小,耦合单模(SM)光纤时尤其如此,因此,对于给定的功率密度,入射到光束直径较小的光纤的功率需要比较低。右表列出了两种光功率密度阈值:一种理论损伤阈值,一种"实际安全水平"。一般而言,理论损伤阈值代表在光纤端面和耦合条件非常好的情况下,可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。而"实际安全水平"功率密度代表光纤损伤的zui低风险。超过实际安全水平操作光纤或元件也是有可以的,但用户必须遵守恰当的适用性说明,并在使用前在低功率下验证性能。计算单模光纤和多模光纤的有效面积单模光纤的有效面积是通过模场直径(MFD)定义的,它是光通过光纤的横截面积,包括纤芯以及部分包层。耦合到单模光纤时,入射光束的直径必须匹配光纤的MFD,才能达到良好的耦合效率。例如,SM400单模光纤在400 nm下工作的模场直径(MFD)大约是?3 μm,而SMF-28 Ultra单模光纤在1550 nm下工作的MFD为?10.5 μm。则两种光纤的有效面积可以根据下面来计算:SM400 Fiber:Area= Pi x (MFD/2)2 = Pi x (1.5μm)2 = 7.07 μm2= 7.07 x 10-8cm2 SMF-28 Ultra Fiber: Area = Pi x (MFD/2)2 = Pi x (5.25 μm)2= 86.6 μm2= 8.66 x 10-7cm2为了估算光纤端面适用的功率水平,将功率密度乘以有效面积。请注意,该计算假设的是光束具有均匀的强度分布,但其实,单模光纤中的大多数激光束都是高斯形状,使得光束中心的密度比边缘处更高,因此,这些计算值将略高于损伤阈值或实际安全水平对应的功率。假设使用连续光源,通过估算的功率密度,就可以确定对应的功率水平:SM400 Fiber: 7.07 x 10-8cm2x 1MW/cm2= 7.1 x10-8MW =71 mW (理论损伤阈值) 7.07 x 10-8cm2x 250 kW/cm2= 1.8 x10-5kW = 18 mW (实际安全水平)SMF-28 UltraFiber: 8.66 x 10-7cm2x 1MW/cm2= 8.7 x10-7MW =870mW (理论损伤阈值)8.66 x 10-7cm2x 250 kW/cm2= 2.1 x10-4kW =210 mW (实际安全水平)多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得zui佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。 Estimated Optical Power Densities on Air / Glass InterfaceaTypeTheoretical Damage ThresholdbPractical Safe LevelcCW(Average Power)~1 MW/cm2~250 kW/cm210 ns Pulsed(Peak Power)~5 GW/cm2~1 GW/cm2a. 所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。b. 这是可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。c. 这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。插芯/接头终端相关的损伤机制有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。为了zui大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。确定具有多种损伤机制的功率适用性光纤跳线或组件可能受到多种途径的损伤(比如,光纤跳线),而光纤适用的zui大功率始终受到与该光纤组件相关的zui低损伤阈值的限制。例如,右边曲线图展现了由于光纤端面损伤和光学接头造成的损伤而导致单模光纤跳线功率适用性受到限制的估算值。有终端的光纤在给定波长下适用的总功率受到在任一给定波长下,两种限制之中的较小值限制(由实线表示)。在488 nm左右工作的单模光纤主要受到光纤端面损伤的限制(蓝色实线),而在1550 nm下工作的光纤受到接头造成的损伤的限制(红色实线)。对于多模光纤,有效模场由纤芯直径确定,一般要远大于SM光纤的有效模场。因此,其光纤端面上的功率密度更低,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到光纤中(图中未显示)。而插芯/接头终端的损伤限制保持不变,这样,多模光纤的zui大适用功率就会受到插芯和接头终端的限制。请注意,曲线上的值只是在合理的操作和对准步骤几乎不可能造成损伤的情况下粗略估算的功率水平值。值得注意的是,光纤经常在超过上述功率水平的条件下使用。不过,这样的应用一般需要专业用户,并在使用之前以较低的功率进行测试,尽量降低损伤风险。但即使如此,如果在较高的功率水平下使用,则这些光纤元件应该被看作实验室消耗品。光纤内的损伤阈值除了空气玻璃界面的损伤机制外,光纤本身的损伤机制也会限制光纤使用的功率水平。这些限制会影响所有的光纤组件,因为它们存在于光纤本身。光纤内的两种损伤包括弯曲损耗和光暗化损伤。弯曲损耗光在纤芯内传播入射到纤芯包层界面的角度大于临界角会使其无法全反射,光在某个区域就会射出光纤,这时候就会产生弯曲损耗。射出光纤的光一般功率密度较高,会烧坏光纤涂覆层和周围的松套管。有一种叫做双包层的特种光纤,允许光纤包层(第二层)也和纤芯一样用作波导,从而降低弯折损伤的风险。通过使包层/涂覆层界面的临界角高于纤芯/包层界面的临界角,射出纤芯的光就会被限制在包层内。这些光会在几厘米或者几米的距离而不是光纤内的某个局部点漏出,从而zui大限度地降低损伤。Thorlabs生产并销售0.22 NA双包层多模光纤,它们能将适用功率提升百万瓦的范围。光暗化光纤内的第二种损伤机制称为光暗化或负感现象,一般发生在紫外或短波长可见光,尤其是掺锗纤芯的光纤。在这些波长下工作的光纤随着曝光时间增加,衰减也会增加。引起光暗化的原因大部分未可知,但可以采取一些列措施来缓解。例如,研究发现,羟基离子(OH)含量非常低的光纤可以抵抗光暗化,其它掺杂物比如氟,也能减少光暗化。即使采取了上述措施,所有光纤在用于紫外光或短波长光时还是会有光暗化产生,因此用于这些波长下的光纤应该被看成消耗品。制备和处理光纤通用清洁和操作指南建议将这些通用清洁和操作指南用于所有的光纤产品。而对于具体的产品,用户还是应该根据辅助文献或手册中给出的具体指南操作。只有遵守了所有恰当的清洁和操作步骤,损伤阈值的计算才会适用。安装或集成光纤(有终端的光纤或裸纤)前应该关掉所有光源,以避免聚焦的光束入射在接头或光纤的脆弱部分而造成损伤。光纤适用的功率直接与光纤/接头端面的质量相关。将光纤连接到光学系统前,一定要检查光纤的末端。端面应该是干净的,没有污垢和其它可能导致耦合光散射的污染物。另外,如果是裸纤,使用前应该剪切,用户应该检查光纤末端,确保切面质量良好。如果将光纤熔接到光学系统,用户首先应该在低功率下验证熔接的质量良好,然后在高功率下使用。熔接质量差,会增加光在熔接界面的散射,从而成为光纤损伤的来源。对准系统和优化耦合时,用户应该使用低功率;这样可以zui大程度地减少光纤其他部分(非纤芯)的曝光。如果高功率光束聚焦在包层、涂覆层或接头,有可能产生散射光造成的损伤。高功率下使用光纤的注意事项一般而言,光纤和光纤元件应该要在安全功率水平限制之内工作,但在理想的条件下(ji佳的光学对准和非常干净的光纤端面),光纤元件适用的功率可能会增大。用户首先必须在他们的系统内验证光纤的性能和稳定性,然后再提高输入或输出功率,遵守所有所需的安全和操作指导。以下事项是一些有用的建议,有助于考虑在光纤或组件中增大光学功率。要防止光纤损伤光耦合进光纤的对准步骤也是重要的。在对准过程中,在取得zui佳耦合前,光很容易就聚焦到光纤某部位而不是纤芯。如果高功率光束聚焦在包层或光纤其它部位时,会发生散射引起损伤使用光纤熔接机将光纤组件熔接到系统中,可以增大适用的功率,因为它可以zui大程度地减少空气/光纤界面损伤的可能性。用户应该遵守所有恰当的指导来制备,并进行高质量的光纤熔接。熔接质量差可能导致散射,或在熔接界面局部形成高热区域,从而损伤光纤。连接光纤或组件之后,应该在低功率下使用光源测试并对准系统。然后将系统功率缓慢增加到所希望的输出功率,同时周期性地验证所有组件对准良好,耦合效率相对光学耦合功率没有变化。由于剧烈弯曲光纤造成的弯曲损耗可能使光从受到应力的区域漏出。在高功率下工作时,大量的光从很小的区域(受到应力的区域)逃出,从而在局部形成产生高热量,进而损伤光纤。请在操作过程中不要破坏或突然弯曲光纤,以尽可能地减少弯曲损耗。用户应该针对给定的应用选择合适的光纤。例如,大模场光纤可以良好地代替标准的单模光纤在高功率应用中使用,因为前者可以提供更佳的光束质量,更大的MFD,且可以降低空气/光纤界面的功率密度。阶跃折射率石英单模光纤一般不用于紫外光或高峰值功率脉冲应用,因为这些应用与高空间功率密度相关。MFD定义模场直径的定义模场直径(MFD)是对在单模光纤中传播的光的光束尺寸的一种量度。它与波长、纤芯半径以及纤芯和包层的折射率具有函数关系。虽然光纤中的大部分光被限制在纤芯内传播,但仍有极小部分的光在包层中传播。对于高斯功率分布,MFD是指光功率从峰值水平降到1/e2时的直径。MFD的测量通过在远场使用变孔径法来完成MFD的测量。在光纤输出的远场处放置一个通光孔径,然后测量强度。在光路中放置连续变小的通光孔径,测量每个通光孔径下的强度水平;然后以功率和孔径半角(或数值孔径)的正弦为坐标作图得到数据。使用彼得曼第二定义确定MFD,该数学模型没有假设功率分布的特定形状。使用汉克尔变换可以从远场测量值确定近场处的MFD大小TEC光纤跳线,980 nm - 1250 nmItem #Fiber TypeOperating WavelengthMode Field DiameteraAR CoatingbMax AttenuationcNAdCladding/Coating DiameterConnectorsJacketTECStandardTECStandardP1-1060TEC-21060XP980 - 1250 nm12.4 ± 1.0 μm6.2 ± 0.5 μm850 - 1250 nm≤2.1 dB/km @980 nm≤1.5 dB/km @ 1060 nm0.070.14125 ± 0.5 μm /245 ± 10 μmFC/PC (TEC) to FC/PC?3 mmFT030-YP5-1060TEC-2TEC光纤跳线,1460 - 1620 nm,镀增透膜,FC/PC(TEC)到FC/APC,2 mP6-1550TEC-2TEC光纤跳线,1460 - 1620 nm,镀增透膜,?2.5 mm插芯(TEC)到裸纤,2 m
  • 耐驰热分析仪器专用 标准铝坩埚
    这是DSC测试用的标准型坩埚-非常浅且底部十分平,确保尽可能小的温度梯度,密封后可抑制挥发性物质的蒸发、汽化或升华。匹配德国耐驰DSC仪器。50PCS/盒。显示价格为整盒单盒报价,更多折扣欢迎来电咨询下单。
  • 耐驰热分析仪器专用 Concavus铝坩埚
    这是耐驰公司研发的DSC测试用的最新型坩埚-底部十分平,确保尽可能小的温度梯度,密封后可抑制挥发性物质的蒸发、汽化或升华。

耐驰热膨胀仪工作原理相关的资料

耐驰热膨胀仪工作原理相关的资讯

  • 德国耐驰热膨胀仪 DIL 402 Expedis:突破量程与分辨率的局限
    对于传统的热膨胀仪,测试量程与分辨率这两个参数很难两全。如果分辨率上升,测量范围通常下降,反之亦然。德国耐驰公司热膨胀仪DIL 402 Expedis通过新型自反馈光电位移测量系统 NanoEye 克服了这一技术上的矛盾。Nanoeye是一种新型的自反馈光电位移测量系统,在过去尚不可能实现的测量范围内具有良好的线性度和最大的分辨率。这是市场上第一个支持调制力(振荡型载荷)的水平膨胀仪系列,藉此打破了膨胀测量和热机械分析(TMA)之间的鸿沟。  热膨胀仪DIL 402 Expedis分为:Classic,Select ,Supreme三个版本。后两个版本是专门为研发和复杂的工业应用而设计的:即全面的、配置齐全的Supreme版本和可升级的Select版本。       功能原理  在测试中,如果样品膨胀,图形中的所有绿色部分都会在线性导轨(蓝色)的引导下向后移动。光电解码器直接在适当的刻度上确定相应的长度变化。     识别功能与数据库  用于识别和解释DIL测量的包括几个耐驰的数据库,其中有来自陶瓷、无机、金属、合金和聚合物或有机领域的上百条数据。此外,还可以创建特定于用户的库。它们可以与计算机网络中的其他用户共享。  识别允许从测量曲线的绝对值、斜率或形状中识别未知样本。这也为比较已知的样品与未知样品、评价材料质量提供了可能性。所有测量值都可以存储在庞大的数据库中,并且始终可用于识别或质量评价。
  • 德国耐驰60周年回顾系列(三):膨胀计到底能用来做什么?
    本文作者:Aileen Sammler 作为德国耐驰60周年纪念的宣传活动的一部分,本文将详细介绍膨胀计的不同应用领域。  耐驰获得专利的最新技术  德国耐驰拥有极佳的膨胀测量系统——测量单元的功能设置在许多国家获得专利,并具有许多优点,例如:  初始样品长度不限范围以及在更高分辨率下的长度变化  明确的低恒定接触力  力控制调节,推杆无冲击且可重复移动  初始样品长度的自动识别  图:DIL 402 Expedis®  Supreme代表了顶尖的膨胀计技术:自动测定样品长度、在非常广的测量范围内保持恒定的分辨率、测量系统极好的温度稳定性以及双吊炉扩展的温度范围。除此之外,测量系统还可以进行力调制,从而连接热机械分析(TMA)。图:DIL 402 HT Expedis® –2800°C高温版本:无论在航空航天、发电、石油和天然气行业还是要求极严的研究项目中,最高温度可达2400°C或2800°C的石墨炉都能为金属、合金、陶瓷和复合材料的热膨胀测定提供了恰到好处的配置。图:手套箱版本的DIL 402 Expedis® Supreme,适用于对氧气或水分敏感的材料,以及用户必须避免接触样品的情况。膨胀计的外壳完全由不锈钢制成。因此,不存在与样品或环境相互作用的塑料零件。膨胀计可以测量各种材料如今,膨胀计可用于测量各种材料——从塑料、陶瓷、玻璃到建筑材料。玻璃成分的变化也可以通过测量热膨胀系数或测定玻璃化转变温度快速而容易地确定。此外,相变会影响建筑材料(如混凝土)的膨胀和收缩行为。这些对使用它们的系统的统计可靠性和使用寿命有重大影响。通过膨胀计,可以研究膨胀和收缩等尺寸变化,以及体积变化。几十年来,这些方法已成功地在工业和研究中心应用了数十年,如瑞士日内瓦附近的欧洲核子研究中心。耐驰期待着膨胀测量未来数十年依然可以“发光发热”。你知道吗?德国耐驰(NETZSCH-Gerätebau)不仅仅在高温领域表现极佳,在低温膨胀计领域也处于第一梯队,可以实现最低至-260°C的膨胀测量。例如,这些膨胀计用于磁悬浮列车的功能测试。图:DIL 402ED点击直达:热膨胀仪专场德国耐驰展位
  • 德国耐驰60周年回顾系列(一):最古老!陶瓷行业诞生的膨胀计
    本文作者:Aileen Sammler德国耐驰公司(NETZSCH-Gerätebau GmbH)将在2022年正式庆祝公司成立60周年的纪念日。为此,我们将关注耐驰仪器背后的故事——耐驰分析仪器及其在过去几十年中的发展。1月份,我们将从膨胀计开始,它是德国耐驰历史上最古老的仪器之一。1962年,德国耐驰公司(NETZSCH-Gerätebau GmbH,NGB)在塞尔布成立。在过去的60年里,德国耐驰已经成为世界领先的热分析制造商之一。我们为我们的员工感到自豪,他们以非凡的决心和毅力推动着耐驰前进。我们感谢与我们的客户和合作伙伴间彼此信任和富有成效的合作。我们共同倡导质量、专业、创新和可持续性,并将在未来几十年继续坚守。德国耐驰多年来一直由Thomas Denner博士和Jürgen Blumm博士成功地管理。Thomas Denner博士非常清晰地记得他在塞尔布的开始:“当我2004年开始在耐驰工作时,我对员工的积极特别印象深刻。从公司成立的第一天起,我还偶然结识了一些同事。一方面,我感觉到他们有着精明的头脑,另一方面非常愿意探索未知。他们对过去取得的成就的自豪感和可持续发展的追寻今天也能感受得到。这将使我们能够在未来几个月里向你们展示我们的许多不同的系统和设备,它们最初出现在热的材料表征,目前采用了当今最先进的技术延续至今。我们将从一个仪器开始,这个仪器在很多年前就已经是一篇博士论文的焦点,最近又在一篇论文的背景下得到了解决,并立即带来了专利技术。我自豪地期待着接下来的耐驰60年主题月。”耐驰历史回顾早在20世纪50年代,在Netzsch兄弟的管理下,就建立了完整的陶瓷产品生产线。在向精细陶瓷行业的客户提供完整的生产设备的过程中,这些客户还要求能够购买相关的测试或实验室设备。这就是决定开发和制造用于建立陶瓷实验室的专用仪器的原因。这种设备的开发最初是从小规模做起的:这些想法被纳入了前耐驰公司(Maschinenfabrik Gebrüder Netzsch)学徒车间的测试仪器中。为了加强“测试仪器”部门的开发、生产和销售活动,耐驰公司(NETZSCH-Gerätebau GmbH)于1962年6月27日成立,总部设在塞尔布。随后,最早陶瓷行业实验室仪器的研制成果之一是:通过热膨胀测量装置,促进陶瓷碎片和釉料膨胀系数的协调。为此,研制了膨胀计。膨胀计——过去和现在德国耐驰膨胀计(简称DIL)的发展可以追溯到瓷器行业,也可以追溯到耐驰的诞生地——德国上UpperFranconi的塞尔布。使用膨胀计的目的是能够准确了解瓷碟在烧制过程中可能发生的膨胀,以防止裂纹和断裂的形成,并确定最终产品的准确尺寸。如今,膨胀计是研究陶瓷、玻璃、金属、复合材料和聚合物以及其他建筑材料长度变化的首选方法。它用于获取有关热行为和工艺参数或烧结和交联动力学的信息。膨胀计用于质量保证、产品开发和基础研究。第一台膨胀计在塞尔布使用图:60年代最早使用的膨胀计之一,曾在Rosenthal使用,现在在塞尔布Porzellanikon德国陶瓷博物馆展出(Porzellanikon德国陶瓷博物馆,位于象征欧陆三百年瓷器发展的历史重镇—德国塞尔布市(Selb),由德国名瓷罗森塔(Rothantal)1866年创立的厂房改建,总占地11,000平方米。Porzellanikon不仅是德国首家陶瓷博物馆,更是全欧洲最大的陶瓷博物馆,其不同于一般博物馆,展示的不只是瓷器的过去,更是它的现在与未来,从艺术、历史、商业到尖端科技,勾勒出一个清晰完整的瓷器现代新风貌,更是承载着欧洲陶瓷历史与艺术的珍贵宝库。)塞尔布——世界瓷都。Rosenthal、Hutschenreuther或Villeroy&Boch等名字在国际上都很有名,与Upper Franconia的这座小城有着密切的联系。60多年前,这家瓷器厂的前所有者Philipp Rosenthal给Erich Netzsch打电话。“我们杯子的把手在烧制过程后会断裂。我们需要一些东西来确定瓷器的膨胀行为,以优化生产过程,”这次谈话可能就是一切的开始。这就是膨胀计的诞生!顺带一提,在Rosenthal工作了近30年后,第一台测量设备于1996年移交给了塞尔布Porzellanikon德国陶瓷博物馆,在那里仍然可以欣赏它。从X-Y绘图仪的打印输出到Digital Proteus® 评估图:Stefan Thumser(前排,左三)和服务部门的同事(1997年)Stefan Thumser于1984年开始他作为能源设备的机电和电子技术员的学徒生涯。作为德国耐驰客户服务部门的长期支柱,他负责耐驰设备的调试、故障排除和基础培训,目前拥有38年的经验和专业知识。几十年来,他积极参与了膨胀计的开发,今天,他随时报告膨胀计取得的进展。Stephan Thumser回忆道:“过去操作膨胀计是真正的手工工作。除了插入样本,许多设置都必须手动选择。这些有时就要花一个小时。如今,你不必再担心这个问题了。只需插入样本,然后通过软件控制开始测量。”图:1979年为陶瓷制造商 Rosenthal定制的膨胀计。这种膨胀计仍然可以在塞尔布的Rosenthal 直销中心看到。“在膨胀计的历史发展过程中,最显著的差异是在测量评估领域。这过去是通过记录仪器以模拟格式进行的,例如2通道记录仪、X-Y绘图仪或所谓的KBK-6彩色点阵打印机。获得的测量数据无法 1:1转换为测量结果,因为样品架和推杆的固有膨胀作为误差包含在记录中。而手动校正这些测量值很费力,通常需要数小时的详细工作。如今,只需点击鼠标和/或通过Proteus® 软件即可完成。在测量后的几秒钟内,自动校正后完整曲线出现在计算机上。一次测量的准备工作,包括设置测量范围和开始位置,以及通过质量流量控制器调节气体,现在只需按下一个按钮即可完成。”即使在早期,质量、创新和客户满意度也是耐驰的首要任务。因此,膨胀计多年来不断改进。Stefan Thumser接着说:“2015年,随着新的DIL 402 Expedis® 仪器系列的开发,在一台仪器上安装两个熔炉也成为可能,可以进行更快、更灵活的操作。”图:用于手动测量评估的旧KBK打印机(6色多通道打印机)点击下方链接直达:热膨胀仪专场德国耐驰展位

耐驰热膨胀仪工作原理相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制