当前位置: 仪器信息网 > 行业主题 > >

简述轮荷仪的工作原理

仪器信息网简述轮荷仪的工作原理专题为您提供2024年最新简述轮荷仪的工作原理价格报价、厂家品牌的相关信息, 包括简述轮荷仪的工作原理参数、型号等,不管是国产,还是进口品牌的简述轮荷仪的工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合简述轮荷仪的工作原理相关的耗材配件、试剂标物,还有简述轮荷仪的工作原理相关的最新资讯、资料,以及简述轮荷仪的工作原理相关的解决方案。

简述轮荷仪的工作原理相关的论坛

  • 【原创】简述自由半浮球蒸汽疏水阀结构特点及工作原理

    自由半浮球蒸汽疏水阀结构特点及工作原理 自由半浮球蒸汽疏水阀未开始工作时,自由半浮球沉落在发射管上,当疏水处于排水状态时,蒸汽经过过滤网和发射管进入阀体,当蒸汽体积增加到一定程度时,浮力使半浮球上浮,在蒸汽压力作用下,半浮球靠向疏水喷咀将其封闭,阻止了蒸汽外逸。当大量凝结水进入自由半浮球蒸汽疏水阀阀体时,半浮球内蒸汽体积减少,此半浮球在自身重力作用下落,半浮球脱离疏水喷咀,完成了一个工作循环。继而周而复始运动,起到自动排水阻汽的目的。 自由半浮球蒸汽疏水阀适用范围:城建、化工、冶金、石油、制药、食品、饮料、环保

  • 【转帖】简述几种气体检测传感器的检测原理

    简述几种气体检测传感器的检测原理此文章由 东方嘉仪仪器网 转发检测气体的浓度依赖于气体检测变送器,传感器是其核心部分,按照检测原理的不同,主要分为金属氧化物半导体式传感器、催化燃烧式传感器、定电位电解式气体传感器、迦伐尼电池式氧气传感器、红外式传感器、PID光离子化传感器等,以下简单阐述各种传感器的原理及特点。 金属氧化物半导体式传感器 金属氧化物半导体式传感器利用被测气体的吸附作用,改变半导体的电导率,通过电流变化的比较,激发报警电路。由于半导体式传感器测量时受环境影响较大,输出线形不稳定。金属氧化物半导体式传感器,因其反应十分灵敏,故目前广泛使用的领域为测量气体的微漏现象。 催化燃烧式传感器 催化燃烧式传感器原理是目前最广泛使用的检测可燃气体的原理之一,具有输出信号线形好、指数可靠、价格便宜、无与其他非可燃气体的交叉干扰等特点。催化燃烧式传感器采用惠斯通电桥原理,感应电阻与环境中的可燃气体发生无焰燃烧,使温度使感应电阻的阻值发生变化,打破电桥平衡,使之输出稳定的电流信号,再经过后期电路的放大、稳定和处理最终显示可靠的数值。 定电位电解式气体传感器 定电位电解式传感器是目前测毒类现场最广泛使用的一种技术,在此方面国外技术领先,因此此类传感器大都依赖进口。定电位电解式气体传感器的结构:在一个塑料制成的筒状池体内,安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体与的电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。 迦伐尼电池式氧气传感器 隔膜迦伐尼电池式氧气传感器的结构:在塑料容器的一面装有对氧气透过性良好的、厚10~30μm的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂、黄金、银等)阴电极,在容器的另一面内侧或容器的空余部分形成阳极(用铅、镉等离子化倾向大的金属)。用氢氧化钾。氧气在通过电解质时在阴阳极发生氧化还原反应,使阳极金属离子化,释放出电子,电流的大小与氧气的多少成正比,由于整个反应中阳极金属有消耗,所以传感器需要定期更换。目前国内技术已日趋成熟,完全可以国产化此类传感器。 红外式传感器 红外式传感器利用各种元素对某个特定波长的吸收原理,具有抗中毒性好,反应灵敏,对大多数碳氢化合物都有反应。但结构复杂,成本高。 PID光离子化气体传感器 PID由紫外灯光源和离子室等主要部分构成,在离子室有正负电极,形成电场,待测气体在紫外灯的照射下,离子化,生成正负离子,在电极间形成电流,经放大输出信号。PID具有灵敏度高,无中毒问题,安全可靠等优点。

  • 简述化学电离的原理

    其原理是:首先使反应气电离,由被电离的反应气离子与被分析物分子发生分子-离子反应,从而使被分析物离子化 。从化学电离的条件分,有低压(0.1Pa)化学电离、中压(1-2000Pa)化学电离和大气压化学电离。从化学反应的类型分,有正化学电离和负化学电离。正化学电离发生的分子-离子反应主要有质子转移反应、电荷交换反应、亲电加成反应;负化学电离发生的分子-离子反应主要有电子捕获反应、负离子加成反应等。

  • 简述四级杆质量分析器原理

    质量分析器是依据不同方式将离子源中生成的样品离子按质荷比m/z的大小分开的仪器,是质谱仪的重要组成部件,位于离子源和检测器之间。质量分析仪器主要包括单聚焦质量分析器、双聚焦质量分析器 、四极杆质量分析器 、离子阱质量分析器、傅立叶变换离子回旋共振(FT-ICR) 以及飞行时间质量分析器(TOF)。  四极杆质量分析器是由四根平行的圆柱形金属极杆组成,相对的极杆被对角地连接起来,构成两组电极。在两电极间加有数值相等方向相反的直流电压Ude和射频交流电压Urf。四根极杆内所包围的空间便产生双曲线形电场。从离子源入射的加速离子穿过四极杆双曲型电场中,会受到电场作用,只有选定的m/z离子以限定的频率稳定地通过四极滤质器,其它离子则碰到极杆上被吸滤掉,不能通过四极杆滤质器,即达到"滤质"的作用。碎片离子的共振频率与四支电极的频率相同时,才可通过电极孔隙到达检测器,改变扫描频率可使不同质荷比的离子通过。实际上在一定条件下,被检测离子(m/z)与电压呈线性关系。因此,改变直流和射频交流电压可达到质量扫描的目的,这就是四极滤质器的工作原理。由于四极滤质器结构紧凑,体积小,扫描速度快,适用于色谱-质谱联用仪器。  优点:  四极杆质量分析器是一种无磁分析器,体积小,重量轻,操作方便,扫描速度快,分辨率较高,适用于色谱—质谱联用仪器。

  • 红外ATR附件有多少种类?简述一下其工作原理,抛砖引玉!

    [font=&]目前进行样品测试很多场合推荐采用ATR法,该方法测试过程简单不需要样品前处理,大大减轻了实验室人员的工作负担同时也提高了检测效率。那么国际上到底有多少种ATR附件可以适配各品牌的红外光谱仪呢?从反射的次数来分似乎有单次的?还有多次的?而从ATR晶体的材料种类来分似乎更加科学。希望得到内行的论述解惑。[/font]

  • 温度(差)变送器的工作原理是什么

    简述温度(差)变送器的工作原理 答:在热工测量中,通常用各种标准刻度的热电偶或热电阻检测温度和温差,这些一次元件所显示的是直流毫伏或电阻欧姆等变化数据。温度或温差变送器的作用是把上述一次元件的不同输出转变为统一的“0-10”的直流电流信号,作为调节、控制、记录、显示等装置的标准输入信号。 目前常用DBW型温度(差)变送器实质上是个低电平的直流毫伏变送器。温度(差)变送器。 (3)采用晶体管或磁调制的变送器. 它利用了热电偶由于温度变化可输出变化的毫伏直流电压,热电阻阻值会因温度变化而发生变化的原理。通过上述调制方法使输入量的变化和输出量的变化保持线性关系,经过电子放大器后转换成直流电流输出。

  • 简述红外测温仪的工作原理

    红外测温仪接收多种物体自身发射出的不可见红外能量,红外辐射是电磁频谱的一部分,它包括无线电波、微波、可见光、紫外、R射线和X射线。红外位于可见光和无线电波之间,红外波长常用微米表示,波长范围为0.7微米-1000微米,实际上,0.7微米-14微米波带用于红外测温。

  • 椭圆齿轮流量计的工作原理和特点

    椭圆齿轮流量计又称排量流量计,属于容积式流量计一种,在流量仪表中是精度较高的一类。它利用机械测量元件把流体连续不断地分割成单个已知的体积部分,根据计量室逐次、重复地充满和排放该体积部分流体的次数来测量流量体积总量。椭圆齿轮流量计可以选用不同的材料(铸钢、不锈钢和316)制造,适用于化工、石油、医药、电力、冶金和食品等工业部门的流量计量工作。工作原理工作原理 在仪表测量室进出口两端液体压差的作用下,一对椭圆齿轮在轴上不停地转动并排出液体,测出椭圆齿轮的转数即可知道流经仪表液体的总值。 仪表特点 测量精度高、流量范围宽、重复性好; 螺旋转子转动均匀、震动小、寿命长; 对被测液体的粘度变化不敏感,尤其适合于粘度较高液体的测量; 结构简单、外形尺寸小、重量轻; 安装容易,表前不需要安装直管段。

  • 空心阴极灯的工作原理与构造

    今天在网上看一个关于的文章,感觉不错,贴上来分享一下简述空心阴极灯的工作原理。 在空心阴极灯两个电极间加上一定电压时,阴极灯开始辉光放电,电子从空心阴极射向阳极,并与周围惰性气体碰撞使之电离。带正电荷的惰性气体离子在电场作用下连续轰击阴极表面,阴极表面的金属原子发生溅射,溅射出来的金属原子在阴极区受到高速电子及离子流的撞击而激发,从而辐射出具有特征谱线的锐线光谱。 为什么原子吸收光谱法需要使用待测元素材料相同的锐线光源? 锐线光源是指能发射出谱线半宽度很窄(O.0005~0.002nm)辐射线的光源。 原子吸收分析需要锐线光源是基于下述原因: 当试样喷人火焰经原子化后,原子呈分散状态(多普勒变宽),当不同频率的光通过被测元素的原子蒸气时,所产生的吸收线并不是一条理想的几何直线,而是具有一定宽度的吸收线。 在原子吸收分析中,将原子蒸气所吸收的全部辐射能量称为积分吸收,从理论上讲,如果能测得由连续波长光源获得的积分吸收,即可计算出待测元素的含量。但目前仪器还不能准确地测出积分吸收。 在分析中发现:在通常原子吸收分析条件下,吸收线中心频率的峰值吸收系数K取决于多普勒变宽,而当测定温度恒定时,多普勒变宽为常数,对一定的待测元素其振子强度也是常数,所以极大吸收系数K就仅与单位体积中原子蒸气中吸收特征(中心)辐射的基态原子数Ⅳ0成正比。 要测得极大吸收系数K一是必须使光源发射线的中心频率与吸收线的中心频率相重合;二是必须使光源发射线的宽度小于中心吸收线的宽度。而要实现这两点,使用一个与待测元素相同材料的空心阴影灯即可很好的实现。因为待测元素材料的灯发出的中心频率,必定与待测元素吸收线的中心频率相重合。而空心阴影灯可以发出谱线半峰宽度很窄的辐射线。所以在原子吸收光谱分析中必须使用待测元素相同材料判做的空心阴极灯。

  • 分享视频:安捷伦7700东京探访+7500Ce工作原理

    和大家分享一下我翻墙从Youtube下载的两个视频,每个十分,别嫌贵哈,翻墙也是挺费劲的1 安捷伦(东京)展示7700 ICP-MS视频资料:安捷伦东京仪器生产厂区探班,厂家展示,介绍仪器性能和新技术……很强大,有仪器的抗震抗摔测试 YouTube翻墙下载,不知道国内有没有这个视频?网络公开资料,无侵权。2 安捷伦7500ce-ICP-MS电感耦合等离子质谱工作原理由安捷伦公司制作的精美动画,详细介绍仪器运作原理,熟悉ICP-MS工作流程的完美教程。 The_Principles_of_ICPMS_Agilent7500ce 安捷伦7500ce电感耦合等离子质谱工作原理。英文讲解,从YouTube下载的,网络公开资料,无侵权。

  • 气相色谱仪机械控制系统简述

    气相色谱仪机械控制系统简述

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]机械控制系统简述[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体][font=宋体]随着色谱分析应用要求的日益提高,并且伴随着现代机械[/font][font=Times New Roman]-[/font][font=宋体]电子技术的发展,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]([url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url])色谱仪逐渐成为复杂的机械[/font][font=Times New Roman]-[/font][font=宋体]光学[/font][font=Times New Roman]-[/font][font=宋体]电子[/font][font=Times New Roman]-[/font][font=宋体]化学分析系统。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]([url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url])系统中安装的自动进样器单元(包括液体自动进样器、自动阀进样器、顶空进样器、热解析进样器、吹扫捕集进样器、热裂解进样器等)、自动阀切换单元、风扇和柱温箱后开门部分在仪器运行工作中都需要进行精确地机械控制,这些单元需要精确控制的物理量有机械位置、机械位移、旋转角度、速度和加速度等。本文对机械控制系统的基本原理和方法给予简单叙述,希望对色谱工作者和色谱维修工作者的日常工作给予一定帮助。[/font][/font][align=center][font=宋体][font=宋体]简述[/font] [font=宋体]开环和闭环控制[/font][/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url](或[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url])分析系统中存在较多机械运动部件,系统需要根据分析方法的要求,在合适的时间和状态下对运动部件进行合适的控制,例如部件的空间位置和位移、部件的运行速度和角度以及部件运行的加速度。[/font][font=宋体][font=宋体]常见情况下,部件的基本控制方式分开环控制和闭环控制两种,图[/font][font=Times New Roman]1[/font][font=宋体]为开环控制的基本原理框图,控制系统由控制器、执行器(一般为电机或气缸)、传动机构和目标部件组成。信号由输入端向输出端单向传递,没有信号反馈形成闭环的回路,此种控制方式的特点为,输出量不会对输入量产生任何影响。[/font][/font][font=宋体]开环控制方式结构较为简单、调节方便、故障率低,控制器直接给出系统输入量,对系统中可能产生的干扰或者系统中参数变化均不给出补偿,在精度要求不高或者扰动影响较小的场合下较为适用。例如[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱温箱后开门角度的控制、柱温箱或其他部件风扇运转速度的控制或者色谱柱切换阀旋转控制,一般采用开环控制方式。[/font][font=宋体]开环控制方式的缺陷较为明显,当系统出现故障时,目标部件不能完成控制目标,单系统不能识别此故障。例如在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]柱温箱后开门控制系统中,当执行器(电机)不能运转致使柱箱后开门不能开启,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱温箱温度将会产生降温速度异常降低的故障,但系统并不会给出硬件报警信息。[/font][img=,483,40]https://ng1.17img.cn/bbsfiles/images/2023/10/202310242115130118_3723_1604036_3.jpg!w690x57.jpg[/img][font=Calibri] [/font][align=center][font=宋体][font=宋体]图[/font][font=Calibri]1 [/font][font=宋体]开环控制系统原理框图[/font][/font][/align][font=宋体][font=宋体]图[/font][font=Calibri]2[/font][font=宋体]为闭环控制系统原理框图,与开环系统相比,该系统增加了传感器测量回路,使闭环控制系统有较高的精度,但结构更为复杂,系统的分析与设计相应较为困难。[/font][/font][font=宋体]闭环控制的工作原理是基于偏差的控制,在系统工作过程中,系统将传感器反馈的目标部件的实际位置传递给比较器,控制系统将反馈量与设定量进行比较,如果发生正向偏差,系统将向执行器(电机)给出命令,使其旋转或者降低速度,最终减小偏差。[/font][img=,503,114]https://ng1.17img.cn/bbsfiles/images/2023/10/202310242115216501_132_1604036_3.jpg!w690x157.jpg[/img][font=宋体] [/font][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]闭环控制系统原理框图[/font][/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url](或[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url])的温度、流量、进样器位置、角度、速度的控制一般采用闭环控制方式,用以实现高稳定性、高速、高准确性的控制。例如某些型号的自动进样器,可以对进样针的空间位置实现[/font][font=Times New Roman]0.01mm[/font][font=宋体]精度的控制。[/font][/font][font=宋体] [/font][font='Times New Roman'] [/font]

  • 气相色谱仪机械控制系统简述——传动部分

    气相色谱仪机械控制系统简述——传动部分

    [align=center][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]机械控制系统简述[/font][font=宋体]——传动部分[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url](或[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url])的机械控制系统中,传动部分是重要组成单元,较为常见的是以皮带、齿轮、蜗杆等方式实现的机械传动单元。通过传动部分的工作,色谱系统将来自执行器的旋转或者直线运动,转换成精确地目标部件的空间位置、位移或速度信号。本文对常见的机械传动方法予以简单说明,希望对于色谱工作者或色谱维修工作者的日常工作予以一定程度帮助。[/font][align=center][font=宋体]简述[/font][/align][font=宋体]将动力通过中间媒介或者机构传递给终端设备,传递动力是机器或机器部件运动或运转,此中间媒介或者机构即称为传动。机械系统中,传动机构为重要组成部分,其主要作用为:[/font][font=宋体]1. [/font][font=宋体][font=宋体]目标部件要求的速度或转矩与执行器不同。[/font] [/font][font=宋体]2. [/font][font=宋体]目标部件可能需要改变速度。[/font][font=宋体]3. [/font][font=宋体]执行器一般只能做回转或者往复运动,目标部件则需要其他的运动方式,例如直线运动、螺旋运动或者间歇运动等。[/font][font=宋体]4. [/font][font=宋体]多个目标部件可能需要使用一个执行器进行工作。[/font][align=center][font=宋体]常见的传动方式[/font][/align][font=宋体]1. [/font][font=宋体]皮带传动[/font][font=宋体][font=宋体]如图[/font][font=Times New Roman]1[/font][font=宋体]所示,传动系统主要由主动轮、从动轮、传动带和机架组成。其机构简单、维护方便、传动平稳、传动安全并具有减震功能,常见于自动进样器的注射器运动控制中。[/font][/font][font=宋体]其缺点为传动比不能严格保证(即打滑现象),外形尺寸较大,色谱仪经常啮合型皮带(同步齿形带)传动的方式,可以对此缺陷予以较好的补偿。[/font][align=center][img=,212,97]https://ng1.17img.cn/bbsfiles/images/2023/10/202310242213284773_2622_1604036_3.jpg!w690x315.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]1 [/font][font=宋体]皮带传动[/font][/font][/align][font=宋体]2. [/font][font=宋体]齿轮传动[/font][font=宋体][font=宋体]齿轮传动是现代机械中传递运动和动力的主要形式之一,利用齿轮副的一对轮齿依次交替接触(即啮合),从而实现一定规律的相对运动,由主动轮、从动轮和机架组成,如图[/font][font=Times New Roman]2[/font][font=宋体]所示。[/font][/font][font=宋体]齿轮传动的传动比准确、效率高、工作可靠、寿命长,在色谱仪内小型空间内需要精确控制的部件中使用广泛。但其成本较高,传动的中心距离不能太大。[/font][align=center][img=,155,118]https://ng1.17img.cn/bbsfiles/images/2023/10/202310242213358504_4310_1604036_3.jpg!w655x500.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]齿轮传动[/font][/font][/align][font='Times New Roman'] [/font][font=宋体]3. [/font][font=宋体]链条传动[/font][font=宋体][font=宋体]链条传动由主动链轮、从动链轮、链条和机架组成,如图[/font][font=Calibri]3[/font][font=宋体]所示,靠链条和链轮齿之间的啮合来传递动力和运动。[/font][/font][align=center][img=,327,157]https://ng1.17img.cn/bbsfiles/images/2023/10/202310242213422091_1175_1604036_3.jpg!w505x243.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]3 [/font][font=宋体]链条传动[/font][/font][/align][font=宋体]其传动比较为准确、传动效率较高、可以在较恶劣工作状况下运行,但工作时有噪声,无过载保护功能。[/font][font=宋体]4. [/font][font=宋体]螺旋传动[/font][font=宋体]螺旋传动由螺杆、螺母和机架组成,通过螺纹副的传递运动和动力,可以将螺杆的旋转运动转换成直线运动,传动效率较高,可用于微调机构和自锁机构。[/font][align=center][img=,216,167]https://ng1.17img.cn/bbsfiles/images/2023/10/202310242213476057_563_1604036_3.jpg!w517x399.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]4 [/font][font=宋体]螺旋传动[/font][/font][/align][font=宋体]5. [/font][font=宋体]气压传动[/font][font=宋体]气压传动是以压缩空气为工作介质进行能量传递和信号传递的一门技术,一般由气源装置、控制元件和辅助元件组成。其传动速度较快、传动安全、可靠性好、维护成本低,但由于工作压力较低,输出力或者力矩收到限制。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用的自动进样阀或者分析流路切换阀经常采用气压传动的工作方式。[/font][font=宋体]6. [/font][font=宋体]液压传动[/font][font=宋体]液压传动以液体为工作介质,在密封回路中以液体压力传递进行传动。一般由动力元件、执行元件、控制元件、辅助元件和工作介质组成。[/font]

  • 涡轮分子泵的工作原理

    涡轮分子泵是高或者超高真空泵,可以提供无油的超高真空度,因此是质谱仪的重要组成部分,想要更好的使用质谱仪,就不得不了解涡轮分子泵工作原理的基础及合适的(前级)泵的择。第一台涡轮分子泵是在1955年发明的。当时,Willi Becker博士在Arthur Pfeiffer Vakuumtechnik GmbH(现在的Pfeiffer Vacuum)已经任职13年,担任技术实验室负责人。他关注的问题是如何防止扩散泵中的油回流到泵壳中。为此,他将一个旋转风扇轮作为挡板。通过这种方式,气体粒子沿压力梯度方向流动,没有明显的传导损失。在这相反方向,倒流的油分子被旋转的风扇轮反射。这阻止了分子到达高真空一侧。在进一步的研究中,贝克尔博士注意到,这种设计不仅减少了扩散泵油回流的问题,同时还产生了较低的总压力。然后,他应用了一个转子-定子组合和多个串联的泵级。在这种设计中,他使用了左右两侧对称流模式--一个由皮带驱动的转子,速度达到16,000转/分钟。该泵重62公斤,抽速为900立方米/小时,在1956年获得专利,是今天所有涡轮分子泵的先驱。1958年,在比利时纳穆尔举行的国际真空大会上,该泵首次被展示。如果没有这项发明,我们的现代生活将是不可想象的--因为没有涡轮分子泵,半导体生产的许多制造步骤以及无数的真空镀膜工艺将不可能实现。[img]https://file.jgvogel.cn/134/upload/resources/image/323927.jpeg?x-oss-process=image/resize,w_700,h_700[/img]* 威利-贝克尔博士,1958年在阿瑟-普发真空技术有限公司(今天的普发真空)的实验室里[color=#222222]工作原理和压缩比[/color]涡轮分子泵是如何工作的?从快速旋转的叶片到被抽气的气体分子的动量转移是转子和定子叶片排列的泵送作用的基本原理,如图1。[img]https://file.jgvogel.cn/134/upload/resources/image/323928.jpeg?x-oss-process=image/resize,w_700,h_700[/img] 图1 涡轮分子泵的工作原理[color=#222222]撞击到叶片上的分子被吸附在那里,并在短时间内再次离开叶片。叶片速度v被叠加到分子热运动速度c。分子热运动速度c是分子离开泵的速度。分子流动必须在泵中占主导地位。否则,叶片传递的速度分量将通过与其他分子的碰撞而丢失。因此,平均自由路径T必须大于通道高度h。在泵送气体的过程中,动能泵中会出现背压,导致倒流。S[/color] [font=&][color=#222222]0 [/color][/font] [color=#222222]表示没有前级压力的抽速。它随着前级压力的增加而减少,在最大压缩比K时达到0值。[/color]压缩比K0,可以根据Gaede来估计。对于视觉密集型叶片结构,Gaede的公式适用。[img]https://file.jgvogel.cn/134/upload/resources/image/323929.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图2 转子和定子叶片的排列方式Gaede的公式[align=center][img]https://file.jgvogel.cn/134/upload/resources/image/323930.png?x-oss-process=image/resize,w_700,h_700[/img][/align]其中: p[size=11px]V[/size] = 前级真空压力 p[size=11px]A[/size] = 吸气压力 v = 叶片速度[font=微软雅黑, &][size=14px] = 平均分子热运动速度[/size][/font] L = 通道长度 h = 通道高度 g = 用于指定平均冲击距离的系数,是通道高度的倍数(1g3)在图中用v-cos α替换公式v,用b替换L,用t-sin α替换h,我们可以得到[font=微软雅黑, &][size=14px][size=18px] [/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px] [/size][/size][/font]根据Gaede的估计,假设叶片是视觉密集的,因此满足cos α = t/b的条件(见图1)。对于较大的叶片间距,这意味着压缩量减少。[font=微软雅黑, &][size=14px][size=18px] [/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px] [/size][/size][/font][font=微软雅黑, &][size=14px]几何比率取自图1。因子g在1到3之间[2]。K[size=11px]0 [/size]因此,随着叶片速度v和 [/size][/font][font=微软雅黑, &][size=14px] aaan的增加呈指数增长。[/size][/font][font=微软雅黑, &][size=14px][size=18px] [/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px] [/size][/size][/font]R 是通用气体常数。T 是热力学温度和。M 是分子质量。因此,氮气的压缩比要比氢气的压缩比高得多。抽气速度的计算抽气速度S [size=11px]0 [/size]与吸气面积A和叶片的平均圆周速度v,即旋转速度成正比。如果考虑到叶片角度α,就可以得到这个结果。[img]https://file.jgvogel.cn/134/upload/resources/image/323931.png?x-oss-process=image/resize,w_700,h_700[/img][font=微软雅黑, &][size=14px][color=#222222]图3 的Y轴上画出了以[/color][i]l[/i][color=#222222]s[/color][font=&]-1[/font][color=#222222] cm-2为单位的比抽速,X轴上画出了循环频率f和叶片的外半径(Ra)和内半径(Ri)的平均叶片速度v=π-f-(Ra+Ri) 。从X轴上的一个选定点垂直向上移动,与曲线的交点显示了该速度下泵SA的最大特征泵送速度。乘以输入盘的叶片面积:[i]A[/i]=(Ra2-Ri2)π ,就可以得到抽气速度。[/color][/size][/font][img]https://file.jgvogel.cn/134/upload/resources/image/323932.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图3 涡轮泵的具体泵送速度[img]https://file.jgvogel.cn/134/upload/resources/image/323933.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图4|泵送速度是相对分子量的函数[color=#222222]图3中输入的点是根据所示的Pfeiffer Vacuum泵的测量值确定的。远高于曲线的点在实际上是不可能的。以这种方式确定的泵送速度还不能说明轻质气体的数值,例如氢气(图4)。如果涡轮分子泵是为低极限压力而设计的,就会使用不同叶片角度的泵级,并对氢气的最大泵速进行分级优化。这样就能同时为氢气(约1000)和氮气提供足够的压缩比的泵。由于空气中的氮气分压很高,压缩比应该在10的9次方左右。对于由转子和定子盘组成的纯涡轮分子泵,由于其分子流的要求,前级真空压力需要达到约10[/color][font=&][color=#222222]-2[/color][/font][color=#222222] hPa(图5)。[/color][img]https://file.jgvogel.cn/134/upload/resources/image/323934.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图5|抽速与抽气压力的关系[img]https://file.jgvogel.cn/134/upload/resources/image/323935.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图6|霍尔韦克级的工作原理[color=#222222]霍尔韦克级的特殊功能[/color]Holweck级(图6)是一个多级Gaede分子泵,有一个螺旋形的泵通道。由于转子的旋转,进入泵通道的气体分子在泵通道的牵引方向上得到一个速度。由于转子和分离分隔Holweck级的挡板之间存在间隙,因此会出现回流损失。为了尽量减少回流,间隙的宽度必须保持较小。圆柱形套筒(1)被用作霍尔韦克平台的转子,它在定子(2)的螺旋通道中旋转。如果定子被安排在转子的外部和内部,两个霍尔韦克级可以很容易地被整合到一个泵中。这样,被泵送的气体颗粒首先通过转子外侧的定子通道,然后再通过转子内侧的定子通道向上输送。从那里,它们通过一个收集通道,到达前级泵。现代涡轮分子泵有时有几个这样的"折叠式"霍尔韦克级,其泵送速度S [size=11px]0[/size]是相同的。[font=微软雅黑, &][size=14px] [/size][/font]这里,b - h是通道的横截面,v - cos α是通道方向的速度分量。随着通道长度L和速度v - cos α[align=center][img]https://file.jgvogel.cn/134/upload/resources/image/323936.png?x-oss-process=image/resize,w_700,h_700[/img][/align]压缩比就会增加。[img]https://file.jgvogel.cn/134/upload/resources/image/323937.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图7|纯涡轮分子泵和涡轮拖动泵的压缩比今天,涡轮泵配备了Holweck级,是为了使极限压力在0.5-5hpa之间,以隔膜泵为前级建立起涡轮分子泵系统,这些被称为涡轮拖动泵。由于涡轮泵的高压缩比,只需要很小的泵送速度就可以为Holweck级产生低的本底压力。因此,排气通道--特别是通道高度和到转子的间隙--可以保持得非常小,分子流可以保持在1 hPa范围内。氮气的压缩比同时增加了所需的10的3次方数量级。在图9中,我们可以看到压缩比曲线向更高压力的方向移动了大约10的2次方。在为高气体吞吐量而设计的涡轮分子泵中,在气体吞吐量、前真空兼容性和颗粒容忍度之间做出了妥协。在这种情况下,Holweck级的间隙距离尺寸要大一些。[img]https://file.jgvogel.cn/134/upload/resources/image/323938.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图9|纯涡轮分子泵和涡轮拖动泵对氢气的压缩比[font=&]选择正确的前级泵[/font]涡轮分子泵和前级泵的压缩在获得最低的压力范围方面起着重要作用。这对于氢气等轻质气体来说尤其如此。在以前的超高真空应用中,前级泵已经能够提供10-2hPa左右的低压。涡轮分子泵的压缩比可以在此基础上确定。旋片泵、多级罗茨泵或泵站等前级泵可以提供这样的低前级压力。尽管旋片泵是比较经济的选择,但当涡轮泵关闭时,有油倒流的风险,特别是在错误操作的情况下。干式前级泵甚至泵站,能产生很低的前级真空,其价格要高得多,而且需要相对较大的空间,这在许多应用中是一个不利因素。这里最理想的解决方案是使用一个小型的、低成本的干式前级泵。大多数涡轮分子泵是全能型的。除了良好的压缩性能,它们还提供大的泵送速度和高的气体吞吐量。然而,在极少数超高真空应用中,高气体吞吐量根本没有发挥任何作用。相反,泵送速度和对轻质气体的出色压缩比才是最重要的。涡轮分子泵的霍尔韦克级为最大压缩值进行了优化,这不可避免地减少了泵的气体吞吐量。然而,这对上述应用来说是次要的。然而,备用泵和涡轮分子泵的总压缩比的很大一部分可以转移到涡轮泵上的事实是非常有利的。因此,带有压缩优化的霍尔韦克级的涡轮分子泵可以在明显高于前级压力的情况下排气,以达到相同的极限压力。因此,在使用带有压缩优化的霍尔韦克级的涡轮分子泵时,一个小型隔膜泵就足以产生超高真空(见图9,表1)。[font=微软雅黑, &][size=14px][font=&][img]https://file.jgvogel.cn/134/upload/resources/image/323939.jpeg?x-oss-process=image/resize,w_700,h_700[/img][/font][/size][/font][font=&][/font][font=微软雅黑, &][size=14px][font=&]表1|使用Hipace300H和不同的前级泵所能达到的极限压力[/font][/size][/font] [img]https://file.jgvogel.cn/134/upload/resources/image/323940.gif?x-oss-process=image/resize,w_700,h_700[/img][align=left]这种优化的涡轮分子泵具有很高的真空兼容性,因此隔膜泵毫无疑问仍然可以在间歇模式下运行。只有当前级的真空压力达到一个不允许的高值时,才需要开启它。众多的应用表明,隔膜泵的运行时间不到总时间的10%。除了由此带来的能源节约外,前级泵较低的热辐射和最终在实验室中几乎无噪音的运行也不应被低估。[/align][align=left]此外,为了保持极低的压力(见图9和表1),通常连接在涡轮分子泵下游的离子捕集泵就不再需要了。[/align][align=left]因此,通过现代涡轮分子泵中Holweck级的智能互连,可以大大增加压缩比,特别是对轻质气体。简单、小型的前级泵可用于在低UHV范围内产生非常低的压力。与过去使用的选择相比,这是一个非常大的优势。然而,同样重要的是指出这些解决方案的局限性。高压缩比的涡轮泵不太适合大气体负荷。[/align]激光平衡技术[img]https://file.jgvogel.cn/134/upload/resources/image/323941.jpeg?x-oss-process=image/resize,w_700,h_700[/img]2021年,Pfeiffer真空公司已经推出了激光平衡技术。最后,小析姐分享给大家几个涡轮分子泵在使用小tips:1、为防止涡轮分子泵返油,开机前先将前级泵抽至2托,然后再启动涡轮分子泵。2、在涡轮分子泵与前级泵之间可串入一只挡油阱以防止机械泵油蒸汽的返油。3、不能在前级泵工作时(前级管路接通)和真空室处于真空状态时将涡轮分子泵停掉,否则将会使油蒸汽迅速从前级管路返流到泵的清洁端。4、选择系统前级泵大小时,应使涡轮分子泵的前级泵保持在分子流状态下。5、不能让涡轮分子泵在低于额定工作转速下运行。6、分子泵入口应装设防护网,以免异物进入泵内损坏转子和定子叶片。7、规范使用涡轮分子泵,可有效提升真空泵的使用效率,延长使用寿命

  • 【第二届网络原创大赛作品】简述HPLC测定药品含量的步骤

    【第二届网络原创大赛作品】简述HPLC测定药品含量的步骤

    [size=4]简述HPLC测定药品含量的步骤[/size][U]目 的:[/U]对于刚接触HPLC(液相色谱仪)的工作人员来说,在实验前感觉有很多事情都要同时去做,且思路不是很清晰。现在,我就用十个步骤来说明用HPLC测定药品含量的全过程,供大家参考。[U]仪 器:[/U]安捷伦1100型HPLC(A、B、C、D四元泵,配200mm的C18柱)[U]药 品:[/U]头孢噻肟钠(头孢类无菌原料)[U]关键词:[/U]HPLC、色谱柱、步骤、流动相、基线、平衡、天平、溶解、校正因子、含量测定安捷伦1100型HPLC图1:[img]http://ng1.17img.cn/bbsfiles/images/2009/08/200908192122_166853_1622024_3.jpg[/img]

  • 【分享】对四极杆和离子阱的工作原理不太熟悉的同志请仔细观看《天下无贼》

    希望大家能笑一笑也希望斑主的脸不用老绷着.[转贴]:对四极杆和离子阱的工作原理不太熟悉的同志请仔细观看《天下无贼》 王薄(德哥)用酒杯剥鸡蛋的那一节。 本来杯口朝下,鸡蛋在重力作用下肯定是会掉下来的,就如离子在一个稳定的电场中肯定只能直线向前运动一样。但王薄把杯子以一定的频率旋摇时,杯壁会轮番给鸡蛋以作用力,使它的运动达到一个动态的平衡,因而不会掉下来,就好比四极杆的交变电压能够使特定质荷比的离子稳定通过,离子阱的射频信号能使特定质荷比的离子在阱中稳定存在一样。这个道理同赌场摇色子一个道理,只不过它的杯子更大而色子更小,所以需要更高的频率才能保证色子不掉下来。 那么我为何要举剥鸡蛋的例子而不是摇色子的例子呢?因为摇色子不能体现二级质谱的原理,剥鸡蛋可以。当振摇频率不变力度却加大时,鸡蛋壳在外力作用下开始破碎,就好比离子阱中的离子被打得更碎而产生了碎片,由于此时频率没有增加而鸡蛋壳却成了较小的碎片,因而它不能在杯子中稳定存在,而是会一个一个从杯子里掉出来到烟灰缸里去,就好比离子被打碎成质荷比更小的离子,再从阱里一个个被甩出来一样。如果把烟灰缸换成天平,记录每一个鸡蛋壳碎片的质量,再把它画成棒图,我们也可以得到类似于质谱图的“蛋壳谱图”。 看了这个贴子还是不太明白的同学,建议买个杯子(最好是方形的杯子)一篮鸡蛋每天在家里多摇几遍,仔细揣摩,功到自然成! 不建议买色子玩哦!要搞就搞多级的,一级的已经落伍了!当然你有足够的力气把色子都摇成碎片的另当别论。

  • 【分享】简述几种气体检测传感器的检测原理

    检测气体的浓度依赖于气体检测变送器,传感器是其核心部分,按照检测原理的不同,主要分为金属氧化物半导体式传感器、催化燃烧式传感器、定电位电解式气体传感器、迦伐尼电池式氧气传感器、红外式传感器、PID光离子化传感器等,以下简单阐述各种传感器的原理及特点。     金属氧化物半导体式传感器   金属氧化物半导体式传感器利用被测气体的吸附作用,改变半导体的电导率,通过电流变化的比较,激发报警电路。由于半导体式传感器测量时受环境影响较大,输出线形不稳定。金属氧化物半导体式传感器,因其反应十分灵敏,故目前广泛使用的领域为测量气体的微漏现象。   催化燃烧式传感器   催化燃烧式传感器原理是目前最广泛使用的检测可燃气体的原理之一,具有输出信号线形好、指数可靠、价格便宜、无与其他非可燃气体的交叉干扰等特点。催化燃烧式传感器采用惠斯通电桥原理,感应电阻与环境中的可燃气体发生无焰燃烧,使温度使感应电阻的阻值发生变化,打破电桥平衡,使之输出稳定的电流信号,再经过后期电路的放大、稳定和处理最终显示可靠的数值。   定电位电解式气体传感器   定电位电解式传感器是目前测毒类现场最广泛使用的一种技术,在此方面国外技术领先,因此此类传感器大都依赖进口。定电位电解式气体传感器的结构:在一个塑料制成的筒状池体内,安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体与的电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。   迦伐尼电池式氧气传感器   隔膜迦伐尼电池式氧气传感器的结构:在塑料容器的一面装有对氧气透过性良好的、厚10~30μm的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂、黄金、银等)阴电极,在容器的另一面内侧或容器的空余部分形成阳极(用铅、镉等离子化倾向大的金属)。用氢氧化钾。氧气在通过电解质时在阴阳极发生氧化还原反应,使阳极金属离子化,释放出电子,电流的大小与氧气的多少成正比,由于整个反应中阳极金属有消耗,所以传感器需要定期更换。目前国内技术已日趋成熟,完全可以国产化此类传感器。   红外式传感器   红外式传感器利用各种元素对某个特定波长的吸收原理,具有抗中毒性好,反应灵敏,对大多数碳氢化合物都有反应。但结构复杂,成本高。   PID光离子化气体传感器   PID由紫外灯光源和离子室等主要部分构成,在离子室有正负电极,形成电场,待测气体在紫外灯的照射下,离子化,生成正负离子,在电极间形成电流,经放大输出信号。PID具有灵敏度高,无中毒问题,安全可靠等优点。

  • 简述评价质量体系的三种方式?

    今天看到两个考题:但不知道这样的回到是否合适:一、 简述评价质量体系的三种方式?1、审核,包括第一方审核,第二方审核,第三方审核。2、管理评审3、自我评定二、什么是程序?程序文件一般规定哪些内容?程序是为完成某项活动所规定的方法;描述程序的文件称为程序文件;程序文件作为质量手册的支持性文件,规定本公司有效完成各项职能活动的方法和途径。一般规定具体的工作事项和要求,及描述谁在何时何地总什么,具体要求是什么不知道这么回答是否合适?

  • 计量管理——发展简述

    计量是实现单位统一、量值准确可靠的活动。 而计量管理则是为提供计量保证而开展的各项管理活动。计量是国民经济的一项技术基础,计量管理也是国民经济管理的一个重要组成部分。一般地理解,计量管理的涵义是指协调计量技术管理、计量经济管理、计量行政管理和计量法制管理之间关系的总称。它是在充分和了解研究当前科学技术发展特点和规律的前提下,应用科学技术和法制手段,以实现国家的计量方针、政策和目标。 计量管理发展简述 在抗美援朝战争时期,由于我国还没有建立统一的长度计量基准和有效的量值传递系统,致使制造火炮和枪弹工厂的量值不统一,在战场上曾发生火炮炸膛和近炸等严重事故。1952年2月,主管国防工业的重工业兵部工局,决定筹建精密机械加工车间和精密计量室,应用精确的校准样板来统一各生产厂所生产军工产品的量值。新中国的国防军工计量工作从此开始。 1953年初,我国历史上第一个以计“计量”命名的计量机构——第一机械工业部计量检定所筹备处成立。主要开展长度、力学和热工等计量检定工作,以确保我国机械工业中量具与计量单位的量值统一、准确和正确使用,提高产品质量。随着地方、部门和企事业单位计量工作的迅速发展,成立一个统一管理全国计量工作的权威机构,尽快改变分散管理的局面,已提到政府的议事日程上。

  • 气相色谱仪温度控制系统简述

    气相色谱仪温度控制系统简述

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]温度控制系统简述[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体]温度控制的准确和可靠,对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析结果的可靠性而言至关重要。尤其是环境分析、生命科学、食品安全、石化分析、电子工业等样品较为复杂、分析方法较为复杂或者分析要求较高的领域,样品分析保留时间重现性的要求较高,对色谱系统温度的要求也比较高。本文简述色谱温度控制系统的基本原理和参与温度控制的主要元器件。[/font][align=center][font=宋体]简述[/font][/align][font=宋体]随着社会科技进步,分析工作者面临着日益增多的分析要求较高的工作,例如食品安全、环境分析、石化分析等方面存在较多复杂样品,一般对组分保留时间的重复性有较高的要求,这就要求[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]有更好的温度控制系统。[/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的温度控制系统属于典型的反馈控制系统,控制装置对目标部件的温度施加的控制作用,是取自目标部件温度的反馈信息,用来不断修正设定温度与实际温度之间的偏差,从而实现目标部件的控制任务,温度系统的结构如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][img=,503,129]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300836001297_3118_1604036_3.jpg!w690x176.jpg[/img][font=宋体] [/font][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]温度控制系统框图[/font][/font][/align][font=宋体][font=宋体]以[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]柱温箱为例对控制系统的工作过程予以说明,在分析工作过程中,如果柱温箱的实际温度发生异常扰动,温度传感器将测定温度值反馈给比较点,温度控制系统将设置温度与测定温度的偏差[/font][font=Times New Roman]e[/font][font=宋体]发送给温度控制器,温度控制器向执行器发出对应的指令——调节加热功率和冷却部件,执行器接受指令使柱温箱温度恢复为设定值。[/font][/font][align=center][font=宋体]温度控制系统元器件组成[/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]温度控制元器件组成如图[/font][font=Times New Roman]2[/font][font=宋体]所示,被控部件(柱温箱、进样口、检测器或者其他部件)内安装的温度传感器测定其实际温度传送给控制器,控制器调节执行器(包括加热器和冷却器)的工作,使加热器释放的热量与被控部件耗散热量(包括部件自身耗散热量和冷却器消耗热量)达到平衡,被控部件的温度即可达到稳定状态。[/font][/font][align=center][img=,323,158]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300836089450_6453_1604036_3.jpg!w690x338.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]2 [/font][font=宋体]温度控制系统元件示意图[/font][/font][/align][font=宋体][font=Times New Roman]1 [/font][font=宋体]温度传感器[/font][/font][font=宋体]常用的温度传感器为铂电阻、热敏电阻和热电偶。温度传感器可以及时准确的测定被控部件的温度反馈给控制器。[/font][font=宋体][font=Times New Roman]2 [/font][font=宋体]执行器[/font][/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]通常使用加热器、柱箱风扇、冷却组件、冷却风扇、液氮或液体二氧化碳控制器作为温度执行器。[/font][font=宋体]加热器一般选用加热丝、加热棒等电阻式加热器为进样口、色谱柱、检测器或者其他部件提供加热源,以升高各部件温度。[/font][font=宋体]柱箱一般采用流动空气浴方式加热,柱箱风扇可以使柱箱内温度分布更加均匀,并加快柱箱升温降温速度。[/font][font=宋体]柱箱冷却组件包括柱箱后开门、后开门控制电机、风道、辅助降温风扇以及液氮、液体二氧化碳等部件,以降低柱温箱温度。[/font][font=宋体]某些特殊场合下,某些形式的进样口带有冷却风扇、液氮、液体二氧化碳部件降低进样口温度。[/font][font=宋体][font=Times New Roman]3 [/font][font=宋体]控制器[/font][/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]温度控制器通常情况下由晶闸管之类的电器元件和控制线路组成。色谱系统工作时,由控制器协调加热器和冷却器工作,以获得稳定温度。[/font][font=宋体][font=Times New Roman]4 [/font][font=宋体]其他部件[/font][/font][font=宋体]保护器(温度熔断器、热电偶或温度开关),当温度控制出现严重故障时,迅速切换系统加热。[/font][align=center][font=宋体]温度控制系统的需要注意的问题[/font][/align][font=宋体][font=Times New Roman]1 [/font][font=宋体]控制系统的时间常数[/font][/font][font=宋体]温度控制系统稳定工作需要传感器与执行器之间的响应时间配合良好,否则将会出现温度震荡的现象。色谱柱温箱要求控制系统响应速度较快,以满足高精度、高速度温度控制要求。一般需要选择响应速度快的薄膜铂电阻符合高速度的控制器工作要求。而检测器、进样口或者其他金属基体的部件,一般需要系统响应时间不要过快。[/font][font=宋体]以进样口为例,常见的进样口使用金属块作为基体,当温度传感器测量到进样口温度低于设定值,控制器发出指令使加热器提高加热功率提高进样口温度。但是进样口温度升高到设定值并不能瞬间完成,即进样口接收到加热指令直至温度上升到设定值之间需要一定的时间差异,如果系统控制时间常数过短,在此期间控制器仍旧发出加热指令,那么进样口温度就会较多超出设定值,降温过程也同样会存在此问题。色谱工作者就会观察到加样口温度在设定值附近发生震荡。[/font][font=宋体]进样口一般使用装配式铂电阻,感知温度也存在一定延迟,与金属块升温延迟都是进样口温度时间常数的重要组成部分,温控系统必须设定有良好的控制信号时间延迟。[/font][font=宋体]也就是说,对于进样口此类的加热惯性较大的部件,当温度控制系统检测到进样口温度发生偏差时,并非迅速给出加热或降温指令,而是首先延迟一段时间,然后再进行调节。[/font][font=宋体]柱温箱系统的加热惯性较小,温控系统需要较短的时间常数。[/font][font=宋体]温度控制不稳定,从而干扰色谱图基线和待测组分的保留时间,比较典型的结果是正弦波状态的基线。[/font][font=宋体][font=Times New Roman]2 [/font][font=宋体]故障和保护[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简述[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]温度系统的基本原理和常用元器件功能。[/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制