当前位置: 仪器信息网 > 行业主题 > >

马歇尔电动击实仪原理

仪器信息网马歇尔电动击实仪原理专题为您提供2024年最新马歇尔电动击实仪原理价格报价、厂家品牌的相关信息, 包括马歇尔电动击实仪原理参数、型号等,不管是国产,还是进口品牌的马歇尔电动击实仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合马歇尔电动击实仪原理相关的耗材配件、试剂标物,还有马歇尔电动击实仪原理相关的最新资讯、资料,以及马歇尔电动击实仪原理相关的解决方案。

马歇尔电动击实仪原理相关的论坛

  • 浅谈ARD3电动机保护器设计原理

    浅谈ARD3电动机保护器设计原理 安科瑞 蔡昀羲摘 要:本文着重介绍ARD3电动机保护器的具体设计方法,给出硬件原理图和软件流程图。文章按照产品的各硬件功能模块进行展开说明,介绍硬件功能模块时,对硬件功能模块原理图进行详细分析,结合各种实际应用的情况说明此处硬件是怎样设计的,为什么这样设计以及这样设计的优缺点。通常电动机保护器工作的条件比较恶劣,为使产品性能方面更加稳定可靠,需要使用一些抗干扰措施,文中介绍的这些抗干扰措施在实际使用中被证明是成功的。关键词:电动机保护器;ARD3;保护功能;ModBus0  引言  随着电子技术的发展,电动机保护器正向基于现场总线的智能型方向发展。我公司设计的ARD3电动机保护器立足于国内先进水平,是具有智能保护和可通信功能的电动机保护器。产品系列电流范围齐全,产品系列额定电流范围1.6~800A;可测量的电流范围宽,可以达到10倍电机额定电流;采用先进的软件算法和可靠的硬件设计,对电动机的过载、断相、三相不平衡、堵转、阻塞、过压、欠压等故障进行有效判断和可靠保护,过载保护采用计算分析当前电动机的热容量的方法,根据热容情况判断电动机的过载状态,此种方法可以最大发挥电动机的过载能力;配有可编程开关量输入、继电器输出,用于实现远程主站对电动机运行状态的遥信监视和直接起动、自耦降压、星-三角等起动方式;带有标准RS-485接口ModBus通讯协议实现计算机联网。1  硬件设计   ARD3电动机保护器用H8/3687FP单片机实现电动机的保护功能。在硬件方面主要由三相电流信号采样、漏电流采样、电压信号采样、键盘接口、显示部分、控制输出、报警输出、通信接口等几部分构成,下面分别对其中的关键部分作简要介绍。1.1 信号采集单元  ARD3电动机保护器采用交流采样算法计算被测信号。采样方式是按一定周期(称为采样周期)连续实时采样被测信号一个完整的波形(对于正弦波只需采样半个周期即可),然后将采样得到的离散信号进行真有效值运算,从而得到被测信号的真有效值,这样就避免了被测信号波形畸变对采样值的影响。  信号采集单元的功能取样、整流、放大互感器二次测的输出信号,将这些信号转换为单片机可处理的信号。ARD3电动机保护器中处理三相电流信号、剩余电流信号、电压信号的信号采集放大电路原理都相同,现以一路电流信号采集放大电路为例说明电路工作原理。   信号采集放大电路如图1所示。在图中二极管A1、A7是双向二极管,对后级电路起到过压保护作用。当输入的信号在正常范围内,A1、A7不起作用,当输入信号超出正常范围(或有脉冲干扰信号出现)时,A1、A7导通,防止超出后级电路端口范围的信号进入后级电路,破坏后级A/D电路。CR1为取样电阻,将从CT1输出的电流信号转变为电压信号。LM324和CR4,CR7,CR10,CR13组成同相放大电路将电压信号放大后输入A/D转换电路。  图1中LM324采用双电源供电,这样可以保证LM324输出电压达到5V充分利用A/D转换提高显示精度。图1中通过运放将输入信号进行分档处理,小信号从P1.0输出大信号从P1.1输出。这样处理是因为:电动机保护器要处理的电流范围很宽(要从电动机1倍额定电流到10倍额定电流),分档处理可以提高测量精度。1.2 I/O单元  开关量输入处理电路如图2所示。电路开关量由IN1~IN7输入,通过光藕后产生IS1~IS7,并行信号IS1~IS7输入到74HC165,通过74HC165将并行信号转换为串行信号传送给CPU。电阻R11~R18起到限流作用保护光耦中的二极管不被损坏。RS1~RS8是上拉电阻与电容CS~CS8配合使用既可以稳定光耦输出电平又可以在上电时对光耦起到保护作用。Fig.2 Switching input circuit  继电器控制电路如图3所示。JDQ1~JDQ4与CPU连接,三极管QJ11~QJ14的供电电压是+5V,三极管QJ1~QJ4的供电电压是+24V。现以QJ11,QJ1这路控制电路来说明电路工作原理,当CPU输出高电平时三极管QJ11不导通,OUT11不会输出电流光藕不会导通,JT1也输出高电平,QJ1不会导通继电器不会动作。当CPU输出低电平时三极管QJ11导通,OUT1输出高电平使光耦导通, JT1变为低电平,三极管QJ1导通OUT1输出低电平使继电器发生动作。图3中二极管DJ1~DJ4作为继电器续流二极管。Fig.3 Relay control circuit  控制输出部分可采用机电式继电器或固体继电器。前者价格便宜,市场产品丰富,驱动线路也比较简单,但可靠性和使用寿命有限,且在触点动作时会产生“火花”,严重时可影响系统的正常工作。因此,在PCB板布局时应将继电器尽量远离单片机并靠近仪表的输出端口。另外,在继电器线圈两端应并联续流二极管,否则在继电器线圈断电瞬间会产生较高的感应电压,从而破坏电路。固态继电器具有寿命长、性能稳定,无火花等特点,本产品中考虑到产品的可靠性要求采用固态继电器。1.3 通讯单元  通讯电路如图4所示。通讯电路实现将CPU串口输出电平转换到RS485电平。本电路的巧妙之处在于数据收发直接由硬件来控制,不用CPU参与控制,这样可以节省CPU资源简化程序设计。Fig.4 Communications circuit1.4 CPU单元  CPU单元是电机保护器的核心单元。信号采集,各种报警处理,通信功能,显示功能……都是由它来完成的。本产品采用的CPU芯片是瑞萨公司的H8/3687芯片,该芯片功能如下:62条基本指令; RTC(片上实时时钟,可作为自由运算计数器使用),SCI(异步或者时钟同步串行通信接口)2路,1路IIC接口,8路10位A/D,8位定时器2个(Timer B1,TimerV),16位定时器1个(TimerZ),看门狗定时器,14位PWM,45个I/O引脚(H8/3687N有43个I/O引脚),包括8个可直接驱动LED的大电流引脚(IOL=20mA,@VOL=1.5V),片上复位电源POR电路,片上低电压检测电路(LVD)。该芯片有两种封装形式:LQFP-64(10mm×10mm)FP-64(14mm×14mm) 。CPU单元电路如图5所示。  因为A/D功能,IIC功能,RTC,定时器,看门狗等功能都已经集成到芯片内部,所以CPU单元的外围电路十分简洁,各引脚只需外接增加端口驱动能力的上拉电阻和稳定信号的滤波电容即可。2  软件设计  系统软件要完成三相电流、1路剩余电流、三路电压A/D,各种保护量计算,保护功能判断处理,显示电压、电流,故障记录,按键处理,通讯,变送等功能。只有合理安排程序流程来完成这些功能,保护器才能可靠工作。程序流程图如图6所示:3  抗干扰措施  电动机保护器作为保护电动机装置要具有很强的抗干扰性。在本产品软硬件设计过程中采取如下措施提高产品的抗干扰性:1硬件方面:电源部分加EMC滤波器,高频变压器次级与初级加高压电容,输出部分加滤波电路;信号采集部分增加滤波电路;在作信号处理的各芯片输入口处加端口保护电路;在各芯片电源输入处加去藕电容;继电器两端并联续流二极管,加光耦与CPU端口隔离;不使用的CPU端口定义为输出状态;PCB板布局时模拟部分与数字部分作分区处理,模拟信号在模拟区域内布线,数字信号数字区域内布线,二者不进入彼此区域内;布线时尽量加粗电源线与地线,信号线走线时走145º线,不走直角线;使用CPU内部看门狗监控程序运行。2软件方面:各路信号采集都使用软件滤波,增加采样值的准确性。通过采取一系列的措施,产品的抗干扰性能大幅提高,本产品一次性顺利通过3C安全认证型式试验。4  结论  ARD3电动机保护器采用先进的设计方案,集测量、保护、控制、通讯于一身,产品性能安全可靠,可以对电动机实施可靠有效的保护。ARD3电动机保护器在实际使用中完全可以替热继电器、温度继电器等传统的电动机保护产品,替代各种指针式电量表、信号灯、电量变送器等常规元件,简化电动机控制电路,减少柜内电缆连接及现场施工量。

  • 【米思米机械设备知识分享】- 电动缸工作原理及应用行业

    [align=left]电动缸是用各种电动机(如伺服电动机、步进电动机、电动机)带动各种螺杆(如滑动螺杆、滚珠螺杆)旋转,通过螺母转化为直线运动,并推动滑台沿导轨(如滑动导轨、滚珠导轨、高刚性直线导轨)像气缸那样作往复直线运动。为适应不同的要求,电动缸已有多种品种规格,也有不同的名称,如:电动滑台、直线滑台、工业机械手臂等。[/align][align=left] [/align][align=left]电动缸的特点:[/align][align=left]1、闭环伺服控制:控制精度达到0.01mm;精密控制推力,增加压力传感器,控制精度可达1%;很容易与PLC等控制系统连接,实现高精密运动控制。噪音低,节能,干净,高刚性,抗冲击力,超长寿命,操作维护简单。此外,电动缸可以在恶劣环境下无故障,防护等级可以达到IP66。[/align][align=left] [/align][align=left]2、低成本维护,电动缸在复杂的环境下工作只需要定期的注脂润滑,并无易损件需要维护更换,将比液压系统和气压系统减少了大量的售后服务成本。是液压缸和气缸的最佳替代品,并且实现环境更环保,更节能,更干净的优点。[/align][align=left]选购米思米[b][url=https://www.misumi.com.cn/vona2/maker/misumi/mech/M0500000000/]电动缸[/url][/b] https://www.misumi.com.cn/vona2/maker/misumi/mech/M0500000000/[/align][align=left]3、配置灵活性,可以提供非常灵活的安装配置,全系列的安装组件,安装前法兰,后法兰,侧面法兰,尾部铰接,耳轴安装,导向模块等;可以与伺服电机直线安装,或者平行安装;可以增加各式附件:限位开关,行星减速机,预紧螺母等;驱动可以选择交流制动电机,直流电机,步进电机,伺服电机。[/align][align=left] [/align][align=left]电动缸的广泛应用:[/align][align=left]1、娱乐行业:机械人手臂及关节,动感座椅等;[/align][align=left]2、军工行业:模拟飞行器,模拟仿真等;[/align][align=left]3、汽车行业:压装机,测试仪器等;[/align][align=left]4、工业行业:食品机械,陶瓷机械,焊接机械,升降平台等;[/align][align=left]5、医疗器械。浏览更多机械设备知识,访问[url=https://www.misumi.com.cn/]米思米[/url]官网https://www.misumi.com.cn/[/align]

  • 浅谈ARD3电动机保护器设计原理

    摘 要:本文着重介绍ARD3电动机保护器的具体设计方法,给出硬件原理图和软件流程图。文章按照产品的各硬件功能模块进行展开说明,介绍硬件功能模块时,对硬件功能模块原理图进行详细分析,结合各种实际应用的情况说明此处硬件是怎样设计的,为什么这样设计以及这样设计的优缺点。通常电动机保护器工作的条件比较恶劣,为使产品性能方面更加稳定可靠,需要使用一些抗干扰措施,文中介绍的这些抗干扰措施在实际使用中被证明是成功的。关键词:电动机保护器;ARD3;保护功能;ModBusAbstract: This paper highlights idiographic design methods of the ARD3 motor protector, gives hardware and software flow char diagram. According to hardware modules, the article starts description of the hardware modules schematic for detailed analysis, the combination of practical application note here is how to design the hardware, why this design and the advantages and disadvantages of this design. The conditions that motor protector usually works are poor, for the product more stable and reliable performance, needing to use some anti-jamming measures, described in the text of these anti-jamming measures in practical use has proved to be successful.Key words: motor protector;ARD3;protect function;ModBus0  引言  随着电子技术的发展,电动机保护器正向基于现场总线的智能型方向发展。我公司设计的ARD3电动机保护器立足于国内先进水平,是具有智能保护和可通信功能的电动机保护器。产品系列电流范围齐全,产品系列额定电流范围1.6~800A;可测量的电流范围宽,可以达到10倍电机额定电流;采用先进的软件算法和可靠的硬件设计,对电动机的过载、断相、三相不平衡、堵转、阻塞、过压、欠压等故障进行有效判断和可靠保护,过载保护采用计算分析当前电动机的热容量的方法,根据热容情况判断电动机的过载状态,此种方法可以最大发挥电动机的过载能力;配有可编程开关量输入、继电器输出,用于实现远程主站对电动机运行状态的遥信监视和直接起动、自耦降压、星-三角等起动方式;带有标准RS-485接口ModBus通讯协议实现计算机联网。1  硬件设计   ARD3电动机保护器用H8/3687FP单片机实现电动机的保护功能。在硬件方面主要由三相电流信号采样、漏电流采样、电压信号采样、键盘接口、显示部分、控制输出、报警输出、通信接口等几部分构成,下面分别对其中的关键部分作简要介绍。1.1 信号采集单元  ARD3电动机保护器采用交流采样算法计算被测信号。采样方式是按一定周期(称为采样周期)连续实时采样被测信号一个完整的波形(对于正弦波只需采样半个周期即可),然后将采样得到的离散信号进行真有效值运算,从而得到被测信号的真有效值,这样就避免了被测信号波形畸变对采样值的影响。  信号采集单元的功能取样、整流、放大互感器二次测的输出信号,将这些信号转换为单片机可处理的信号。ARD3电动机保护器中处理三相电流信号、剩余电流信号、电压信号的信号采集放大电路原理都相同,现以一路电流信号采集放大电路为例说明电路工作原理。   信号采集放大电路如图1所示。在图中二极管A1、A7是双向二极管,对后级电路起到过压保护作用。当输入的信号在正常范围内,A1、A7不起作用,当输入信号超出正常范围(或有脉冲干扰信号出现)时,A1、A7导通,防止超出后级电路端口范围的信号进入后级电路,破坏后级A/D电路。CR1为取样电阻,将从CT1输出的电流信号转变为电压信号。LM324和CR4,CR7,CR10,CR13组成同相放大电路将电压信号放大后输入A/D转换电路。  图1中LM324采用双电源供电,这样可以保证LM324输出电压达到5V充分利用A/D转换提高显示精度。图1中通过运放将输入信号进行分档处理,小信号从P1.0输出大信号从P1.1输出。这样处理是因为:电动机保护器要处理的电流范围很宽(要从电动机1倍额定电流到10倍额定电流),分档处理可以提高测量精度。1.2 I/O单元  开关量输入处理电路如图2所示。电路开关量由IN1~IN7输入,通过光藕后产生IS1~IS7,并行信号IS1~IS7输入到74HC165,通过74HC165将并行信号转换为串行信号传送给CPU。电阻R11~R18起到限流作用保护光耦中的二极管不被损坏。RS1~RS8是上拉电阻与电容CS~CS8配合使用既可以稳定光耦输出电平又可以在上电时对光耦起到保护作用。  继电器控制电路如图3所示。JDQ1~JDQ4与CPU连接,三极管QJ11~QJ14的供电电压是+5V,三极管QJ1~QJ4的供电电压是+24V。现以QJ11,QJ1这路控制电路来说明电路工作原理,当CPU输出高电平时三极管QJ11不导通,OUT11不会输出电流光藕不会导通,JT1也输出高电平,QJ1不会导通继电器不会动作。当CPU输出低电平时三极管QJ11导通,OUT1输出高电平使光耦导通, JT1变为低电平,三极管QJ1导通OUT1输出低电平使继电器发生动作。图3中二极管DJ1~DJ4作为继电器续流二极管。  控制输出部分可采用机电式继电器或固体继电器。前者价格便宜,市场产品丰富,驱动线路也比较简单,但可靠性和使用寿命有限,且在触点动作时会产生“火花”,严重时可影响系统的正常工作。因此,在PCB板布局时应将继电器尽量远离单片机并靠近仪表的输出端口。另外,在继电器线圈两端应并联续流二极管,否则在继电器线圈断电瞬间会产生较高的感应电压,从而破坏电路。固态继电器具有寿命长、性能稳定,无火花等特点,本产品中考虑到产品的可靠性要求采用固态继电器。1.3 通讯单元  通讯电路如图4所示。通讯电路实现将CPU串口输出电平转换到RS485电平。本电路的巧妙之处在于数据收发直接由硬件来控制,不用CPU参与控制,这样可以节省CPU资源简化程序设计。1.4 CPU单元  CPU单元是电机保护器的核心单元。信号采集,各种报警处理,通信功能,显示功能……都是由它来完成的。本产品采用的CPU芯片是瑞萨公司的H8/3687芯片,该芯片功能如下:62条基本指令; RTC(片上实时时钟,可作为自由运算计数器使用),SCI(异步或者时钟同步串行通信接口)2路,1路IIC接口,8路10位A/D,8位定时器2个(Timer B1,TimerV),16位定时器1个(TimerZ),看门狗定时器,14位PWM,45个I/O引脚(H8/3687N有43个I/O引脚),包括8个可直接驱动LED的大电流引脚(IOL=20mA,@VOL=1.5V),片上复位电源POR电路,片上低电压检测电路(LVD)。该芯片有两种封装形式:LQFP-64(10mm×10mm)FP-64(14mm×14mm) 。CPU单元电路如图5所示。  因为A/D功能,IIC功能,RTC,定时器,看门狗等功能都已经集成到芯片内部,所以CPU单元的外围电路十分简洁,各引脚只需外接增加端口驱动能力的上拉电阻和稳定信号的滤波电容即可。2  软件设计  系统软件要完成三相电流、1路剩余电流、三路电压A/D,各种保护量计算,保护功能判断处理,显示电压、电流,故障记录,按键处理,通讯,变送等功能。只有合理安排程序流程来完成这些功能,保护器才能可靠工作。程序流程图如图6所示:3  抗干扰措施  电动机保护器作为保护电动机装置要具有很强的抗干扰性。在本产品软硬件设计过程中采取如下措施提高产品的抗干扰性:1硬件方面:电源部分加EMC滤波器,高频变压器次级与初级加高压电容,输出部分加滤波电路;信号采集部分增加滤波电路;在作信号处理的各芯片输入口处加端口保护电路;在各芯片电源输入处加去藕电容;继电器两端并联续流二极管,加光耦与CPU端口隔离;不使用的CPU端口定义为输出状态;PCB板布局时模拟部分与数字部分作分区处理,模拟信号在模拟区域内布线,数字信号数字区域内布线,二者不进入彼此区域内;布线时尽量加粗电源线与地线,信号线走线时走145º线,不走直角线;使用CPU内部看门狗监控程序运行。2软件方面:各路信号采集都使用软件滤波,增加采样值的准确性。通过采取一系列的措施,产品的抗干扰性能大幅提高,本产品一次性顺利通过3C安全认证型式试验。4  结论  ARD3电动机保护器采用先进的设计方案,集测量、保护、控制、通讯于一身,产品性能安全可靠,可以对电动机实施可靠有效的保护。ARD3电动机保护器在实际使用中完全可以替热继电器、温度继电器等传统的电动机保护产品,替代各种指针式电量表

  • 浅谈ARD3电动机保护器设计原理

    浅谈ARD3电动机保护器设计原理 安科瑞 蔡昀羲摘 要:本文着重介绍ARD3电动机保护器的具体设计方法,给出硬件原理图和软件流程图。文章按照产品的各硬件功能模块进行展开说明,介绍硬件功能模块时,对硬件功能模块原理图进行详细分析,结合各种实际应用的情况说明此处硬件是怎样设计的,为什么这样设计以及这样设计的优缺点。通常电动机保护器工作的条件比较恶劣,为使产品性能方面更加稳定可靠,需要使用一些抗干扰措施,文中介绍的这些抗干扰措施在实际使用中被证明是成功的。关键词:电动机保护器;ARD3;保护功能;ModBus0  引言  随着电子技术的发展,电动机保护器正向基于现场总线的智能型方向发展。我公司设计的ARD3电动机保护器立足于国内先进水平,是具有智能保护和可通信功能的电动机保护器。产品系列电流范围齐全,产品系列额定电流范围1.6~800A;可测量的电流范围宽,可以达到10倍电机额定电流;采用先进的软件算法和可靠的硬件设计,对电动机的过载、断相、三相不平衡、堵转、阻塞、过压、欠压等故障进行有效判断和可靠保护,过载保护采用计算分析当前电动机的热容量的方法,根据热容情况判断电动机的过载状态,此种方法可以最大发挥电动机的过载能力;配有可编程开关量输入、继电器输出,用于实现远程主站对电动机运行状态的遥信监视和直接起动、自耦降压、星-三角等起动方式;带有标准RS-485接口ModBus通讯协议实现计算机联网。1  硬件设计   ARD3电动机保护器用H8/3687FP单片机实现电动机的保护功能。在硬件方面主要由三相电流信号采样、漏电流采样、电压信号采样、键盘接口、显示部分、控制输出、报警输出、通信接口等几部分构成,下面分别对其中的关键部分作简要介绍。1.1 信号采集单元  ARD3电动机保护器采用交流采样算法计算被测信号。采样方式是按一定周期(称为采样周期)连续实时采样被测信号一个完整的波形(对于正弦波只需采样半个周期即可),然后将采样得到的离散信号进行真有效值运算,从而得到被测信号的真有效值,这样就避免了被测信号波形畸变对采样值的影响。  信号采集单元的功能取样、整流、放大互感器二次测的输出信号,将这些信号转换为单片机可处理的信号。ARD3电动机保护器中处理三相电流信号、剩余电流信号、电压信号的信号采集放大电路原理都相同,现以一路电流信号采集放大电路为例说明电路工作原理。 http://www.acrel.cn/cn/download/common/upload/2011/02/24/144022tl.jpg图1 信号采集放大电路  信号采集放大电路如图1所示。在图中二极管A1、A7是双向二极管,对后级电路起到过压保护作用。当输入的信号在正常范围内,A1、A7不起作用,当输入信号超出正常范围(或有脉冲干扰信号出现)时,A1、A7导通,防止超出后级电路端口范围的信号进入后级电路,破坏后级A/D电路。CR1为取样电阻,将从CT1输出的电流信号转变为电压信号。LM324和CR4,CR7,CR10,CR13组成同相放大电路将电压信号放大后输入A/D转换电路。  图1中LM324采用双电源供电,这样可以保证LM324输出电压达到5V充分利用A/D转换提高显示精度。图1中通过运放将输入信号进行分档处理,小信号从P1.0输出大信号从P1.1输出。这样处理是因为:电动机保护器要处理的电流范围很宽(要从电动机1倍额定电流到10倍额定电流),分档处理可以提高测量精度。1.2 I/O单元  开关量输入处理电路如图2所示。电路开关量由IN1~IN7输入,通过光藕后产生IS1~IS7,并行信号IS1~IS7输入到74HC165,通过74HC165将并行信号转换为串行信号传送给CPU。电阻R11~R18起到限流作用保护光耦中的二极管不被损坏。RS1~RS8是上拉电阻与电容CS~CS8配合使用既可以稳定光耦输出电平又可以在上电时对光耦起到保护作用。http://www.acrel.cn/cn/download/common/upload/2011/02/28/921bm.jpg图2 开关量输入电路Fig.2 Switching input circuit  继电器控制电路如图3所示。JDQ1~JDQ4与CPU连接,三极管QJ11~QJ14的供电电压是+5V,三极管QJ1~QJ4的供电电压是+24V。现以QJ11,QJ1这路控制电路来说明电路工作原理,当CPU输出高电平时三极管QJ11不导通,OUT11不会输出电流光藕不会导通,JT1也输出高电平,QJ1不会导通继电器不会动作。当CPU输出低电平时三极管QJ11导通,OUT1输出高电平使光耦导通, JT1变为低电平,三极管QJ1导通OUT1输出低电平使继电器发生动作。图3中二极管DJ1~DJ4作为继电器续流二极管。http://www.acrel.cn/cn/download/common/upload/2011/02/28/9147j9.jpg图3 继电器控制电路Fig.3 Relay control circuit  控制输出部分可采用机电式继电器或固体继电器。前者价格便宜,市场产品丰富,驱动线路也比较简单,但可靠性和使用寿命有限,且在触点动作时会产生“火花”,严重时可影响系统的正常工作。因此,在PCB板布局时应将继电器尽量远离单片机并靠近仪表的输出端口。另外,在继电器线圈两端应并联续流二极管,否则在继电器线圈断电瞬间会产生较高的感应电压,从而破坏电路。固态继电器具有寿命长、性能稳定,无火花等特点,本产品中考虑到产品的可靠性要求采用固态继电器。1.3 通讯单元  通讯电路如图4所示。通讯电路实现将CPU串口输出电平转换到RS485电平。本电路的巧妙之处在于数据收发直接由硬件来控制,不用CPU参与控制,这样可以节省CPU资源简化程序设计。http://www.acrel.cn/cn/download/common/upload/2011/02/28/9133sh.jpg图4 通讯电路Fig.4 Communications circuit1.4 CPU单元  CPU单元是电机保护器的核心单元。信号采集,各种报警处理,通信功能,显示功能……都是由它来完成的。本产品采用的CPU芯片是瑞萨公司的H8/3687芯片,该芯片功能如下:62条基本指令; RTC(片上实时时钟,可作为自由运算计数器使用),SCI(异步或者时钟同步串行通信接口)2路,1路IIC接口,8路10位A/D,8位定时器2个(Timer B1,TimerV),16位定时器1个(TimerZ),看门狗定时器,14位PWM,45个I/O引脚(H8/3687N有43个I/O引脚),包括8个可直接驱动LED的大电流引脚(IOL=20mA,@VOL=1.5V),片上复位电源POR电路,片上低电压检测电路(LVD)。该芯片有两种封装形式:LQFP-64(10mm×10mm)FP-64(14mm×14mm) 。CPU单元电路如图5所示。http://www.acrel.cn/cn/download/common/upload/2011/02/28/9112xc.jpg图5 CPU电路Fig.5 Cpu circuit  因为A/D功能,IIC功能,RTC,定时器,看门狗等功能都已经集成到芯片内部,所以CPU单元的外围电路十分简洁,各引脚只需外接增加端口驱动能力的上拉电阻和稳定信号的滤波电容即可。2  软件设计  系统软件要完成三相电流、1路剩余电流、三路电压A/D,各种保护量计算,保护功能判断处理,显示电压、电流,故障记录,按键处理,通讯,变送等功能。只有合理安排程序流程来完成这些功能,保护器才能可靠工作。程序流程图如图6所示:http://www.acrel.cn/cn/download/common/upload/2011/02/28/9059hv.jpg图6 程序流程Fig.6 Flow chart of software3  抗干扰措施  电动机保护器作为保护电动机装置要具有很强的抗干扰性。在本产品软硬件设计过程中采取如下措施提高产品的抗干扰性:1硬件方面:电源部分加EMC滤波器,高频变压器次级与初级加高压电容,输出部分加滤波电路;信号采集部分增加滤波电路;在作信号处理的各芯片输入口处加端口保护电路;在各芯片电源输入处加去藕电容;继电器两端并联续流二极管,加光耦与CPU端口隔离;不使用的CPU端口定义为输出状态;PCB板布局时模拟部分与数字部分作分区处理,模拟信号在模拟区域内布线,数字信号数字区域内布线,二者不进入彼此区域内;布线时尽量加粗电源线与地线,信号线走线时走145º线,不走直角线;使用CPU内部看门狗监控程序运行。2软件方面:各路信号采集都使用软件滤波,增加采样值的准确性。通过采取一系列的措施,产品的抗干扰性能大幅提高,本产品一次性顺利通过3C安全认证型式试验。4  结论  ARD3电动机保护器采用先进的设计方案,集测量、保护、控制、通讯于一身,产品性能安全可靠,可以对电

  • 【原创】转手吉尔森电动单道移液器(全新)

    【原创】转手吉尔森电动单道移液器(全新)

    本人最近采购了2支吉尔森电动单道移液器(一支¥7800元),由于用不上,所以原翻不动,不知道有没有人需要,降价(一支¥5000元或来电洽谈)转手,产品信息如下:产品名称:吉尔森电动单道移液器(Pipetman Concept)产品型号:C型http://ng1.17img.cn/bbsfiles/images/2010/12/201012241525_269650_1690368_3.jpg型号及量程范围: C10ML(1-10ML)主要特点:* 简易化“一步到位”键,一按高搞定; * 独特的多功能指轮,浏览和选择; * 采用PVDF材料制作,最强的化学防腐蚀保障; * 吸嘴弹射器长短可调,增加不同吸嘴兼容性; * 专利G-F.I.T.设计,吸嘴与套筒一按即合,密封可靠,排卸时毫不费力; * 移液器与电脑相联; * 电子内存支援所有GLP要求; * 标准的三点校准,另加特别的第四点,为客户提供纤毫不差的高精度。联系:020-61267101(陆先生)目前已售出一支,仍剩一支,欢迎来电。

  • 【原创大赛】机械式UJ25仪器与数字式SDC-Ⅱ在原电池电动势测定实验中的对比研究

    【原创大赛】机械式UJ25仪器与数字式SDC-Ⅱ在原电池电动势测定实验中的对比研究

    [align=center][size=18px][font='黑体']机械式UJ[/font][font='黑体']25仪器[/font][font='黑体']与数字式SDC-Ⅱ[/font][font='黑体']在原电池[/font][font='黑体']电动势[/font][font='黑体']测定实验中的[/font][font='黑体']对比研究[/font][/size][/align][align=center][size=18px][font='楷体']范[/font][font='楷体']亨利[/font][font='楷体']1[/font][font='楷体'],叶姝琴[/font][font='楷体']1[/font][font='楷体'],崔猛[/font][font='楷体']2,[/font][font='楷体']*[/font][font='楷体'] [/font][/size][/align][align=center][size=18px][font='楷体'](1[/font][font='楷体'].[/font][font='楷体']北京化工大学,生命科学与技术学院,北京,1[/font][font='楷体']00029[/font][font='楷体'];2.北京化工大学,化学学院,北京,1[/font][font='楷体']00029[/font][font='楷体'])[/font][/size][/align][align=left][font='楷体'][size=18px]作者简介:[/size][/font][/align][align=left][size=18px][font='楷体']崔猛([/font][font='楷体']1980[/font][font='楷体']年4月[/font][font='楷体'])[/font][font='楷体'],男,实验师,理学博士,cuimeng[/font][font='楷体']@mail.[/font][font='楷体']buct.edu.cn,[/font][font='楷体']通讯联系人。[/font][/size][/align][align=left][size=18px][font='楷体']范[/font][font='楷体']亨利([/font][font='楷体']2001[/font][font='楷体']年[/font][font='楷体']1[/font][font='楷体']月),男,生物工程专业本科在读。[/font][/size][/align][align=left][size=18px][font='楷体']叶姝琴([/font][font='楷体']2002[/font][font='楷体']年[/font][font='楷体']1[/font][font='楷体']月),女,生物[/font][font='楷体']医学[/font][font='楷体']工程专业本科在读。[/font][/size][/align][size=18px][font='等线 light']摘要[/font][font='华文仿宋']原电池电动势的测定实验是经典的物理化学实验,学生通过进行本实验能够理解和学会对消法的基本原理,了解原电池电动势的测定和应用。UJ25型直流高电势电位差计是使用于该实验的传统测量仪器,但在测量过程中操作繁琐。同时,指针式检流计的使用,也会带来一定的不利影响。本文为探究该实验的改进方案,进一步提高实验的准确度及精确度,提升学生的实验体验,引入新型数字化仪器进行对比,分别通过传统机械式仪器和新型数字化仪器进行了原电池电动势测定。实验发现与传统机械式仪器相比,新型数字化仪器的操作更简单而且智能化,测量值的准确性和灵敏度较高,可以较好地替代传统机械式仪器。[/font][font='等线 light']关键[/font][font='等线 light']词:[/font][font='等线 light']原电池、实验教学改进[/font][/size][align=center][size=18px][font='cambria math']The Comparison [/font][font='cambria math']Re[/font][font='cambria math']search of UJ25 Mechanical Instrument And SDC-[/font][font='cambria math']Ⅱ[/font][font='cambria math']D[/font][font='cambria math']igital Instrument U[/font][font='cambria math']se[/font][font='cambria math']d in [/font][font='cambria math']Galvanic Cell Electromotive Force Measurement Experiment[/font][/size][/align][size=18px][font='等线 light']Abstract[/font][font='cambria math']Galvanic cell electromotive force measurement experiment is a classic physical chemistry experiment, students can understand and learn the basic principle of [/font][font='cambria math']elimination method[/font][font='cambria math'] through this experiment, as well as understand galvanic cell electromotive force measurement and application. [/font][font='cambria math']UJ25 DC High Potential Potentiometer [/font][font='cambria math']is a traditional measuring instrument used in this experiment, but the operation is cumbersome in the measurement process. At the [/font][font='cambria math']same time, the use of pointer galvanometer will also bring some adverse effects. In this paper, in order to explore the improvement scheme of the experiment, further improve the accuracy and precision of the experiment, and enhance students’ experimental experience, a new digital instrument is introduced for this experiment and comparison,[/font] [font='cambria math']respectively through the traditional mechanical instrument and the new digital instrument for galvanic cell electromotive force measurement. Experimental results show that compared with the traditional mechanical instrument, the new digital instrument is [/font][font='cambria math']more simple[/font][font='cambria math'] to operate and intelligent, the accuracy and sensitivity of the measurement value is higher, and it can better replace the traditional mechanical instrument.[/font][font='等线 light']Keyword: [/font][font='等线 light']galvanic cell, improvement in experimental teaching[/font][font='等线 light']0[/font][font='等线 light']引言[/font][font='华文仿宋']物理化学是一门培养高素质化学化工专业人才的学科基础课,生活中它无处不在,学好这门课程是每一个工科学子所必备的素质。而物理化学实验由物理化学延伸出来,旨在培养学生动手能力,提升学生自主思考、用于创新的科研水平。电化学在现实中应用广泛,电池、酸度计的使用等都运用到电化学知识,生活中随处可见原电池,了解其电动势大小和放电充电原理有助于我们更高效地利用和保存它们。原电池电动势的测定是经典的物理化学实验,目前在大学实验教学中是将UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型直流高电势电位差计和检流计组合使用,采用对消法测量待测电池电动势,这种方法不用测量电流大小,具有较高的准确性,但在使用时连接线路较麻烦,学生易出错。此外,该仪器在调节阻值大小时需要判断检流计指针变化,容易造成误差。同时,锌棒、铜棒以及惰性电极的选择和处理也会对原电池电动势的测定造成一定的影响。[/font][font='华文仿宋']目前,人们针对该实验的改进已经进行了较多的探索,使实验更加符合绿色化学的要求。锌[/font][font='华文仿宋']棒作为[/font][font='华文仿宋']电极其上发生电极反应会产生表面极化现象[/font][font='华文仿宋'],[/font][font='华文仿宋']李[/font][font='华文仿宋']苞[/font][font='华文仿宋'][[/font][font='华文仿宋']1][/font][font='华文仿宋']等人利用微米压印技术制备[/font][font='华文仿宋']锌[/font][font='华文仿宋']电极,采用[/font][font='华文仿宋']150[/font][font='华文仿宋']和[/font][font='华文仿宋']280[/font][font='华文仿宋']微米压印电极能使测定结果的绝对误差相对小。饱和甘汞电极由于底部较细容易损坏,赵会玲[/font][font='华文仿宋'][[/font][font='华文仿宋']2][/font][font='华文仿宋']等人在保持饱和甘汞电极电极面积不变的情况下将底部较细部分改造为较粗的形状[/font][font='华文仿宋'],[/font][font='华文仿宋']大大增强了其抗损坏能力。为了加强恒温效果,胡俊平[/font][font='华文仿宋'][[/font][font='华文仿宋']3][/font][font='华文仿宋']等人设计了一种同时测定三电极体系的电池电动势的装置[/font][font='华文仿宋'],[/font][font='华文仿宋']在循环水恒温的密闭装置内可以保持整个装置的恒温环境[/font][font='华文仿宋'],[/font][font='华文仿宋']从而有效提高测量数据的重复性[/font][font='华文仿宋']。[/font][font='华文仿宋']此外,为克服对消法本身测量程序复杂[/font][font='华文仿宋']、[/font][font='华文仿宋']实验时间长的缺陷[/font][font='华文仿宋'],[/font][font='华文仿宋']宋江闯[/font][font='华文仿宋'][[/font][font='华文仿宋']4][/font][font='华文仿宋']等人使用高阻抗法测定原电池电动势及其温度系数[/font][font='华文仿宋'],[/font][font='华文仿宋']测量结果准确且大大降低了实验操作的复杂程度节省了实验时间。而范国康[/font][font='华文仿宋'][[/font][font='华文仿宋']5][/font][font='华文仿宋']等人利用离心管架作为支架[/font][font='华文仿宋']、[/font][font='华文仿宋']离心管作为容器[/font][font='华文仿宋'],[/font][font='华文仿宋']铜丝[/font][font='华文仿宋']、[/font][font='华文仿宋']锌[/font][font='华文仿宋']、[/font][font='华文仿宋']改造的银[/font][font='华文仿宋']-[/font][font='华文仿宋']氯化银电极来测量各原电池电动势[/font][font='华文仿宋'],[/font][font='华文仿宋']使得本实验成本大大降低[/font][font='华文仿宋'],[/font][font='华文仿宋']浪费减少[/font][font='华文仿宋']。[/font][font='华文仿宋']针对测量仪器本身,人们已经使用过较多种类的仪器,但未曾明确阐述过仪器的优势和缺陷。本文采用更加智能化数字化的测量仪器来替换传统机械式仪器,并进行了一系列的对比实验,旨在简化实验流程,加深学生对该实验原理的理解,探索该实验的应用层面。[/font][font='等线 light']1[/font][font='等线 light']实验原理[/font][font='华文仿宋']1.1[/font][font='华文仿宋']可逆电池电动势的测量[/font][font='华文仿宋']可逆电池[/font][font='华文仿宋'][[/font][font='华文仿宋']6][/font][font='华文仿宋']要求化学反应可逆、能量转换和传递可逆,即电池的充电反应是放电反应的逆反应,且电池中不存在液体接界电势等因素引起的实际不可逆性,可逆电动势即平衡电动势。本实验其中一个待测电池丹聂耳电池[/font][font='华文仿宋']是双液电池[/font][font='华文仿宋'],液体接界处存在不可逆的离子扩散过程,但测量过程中通过电池的电流[/font][font='华文仿宋'],可忽略此微小差异,因此该电池可近似看成可逆电池,测量其电池电势。[/font][font='华文仿宋']可逆电池电动势可与热力学函数联系起来,恒温恒压过程,可逆放电过程中所做的非体积功等于系统吉布斯自由能的变化[/font][font='华文仿宋'],由法拉第定律得通过电池的电荷量为[/font][font='华文仿宋'],则可逆电功为[/font][font='华文仿宋'],可得到[/font][font='华文仿宋']。又[/font][font='华文仿宋'],且由热力学定律可知,[/font][/size][align=center][size=18px][/size][/align][align=center][size=18px][/size][/align][size=18px][font='华文仿宋']其中[/font][font='华文仿宋']称为电动势的温度系数。[/font][font='华文仿宋']1.2[/font][font='华文仿宋']波根多夫([/font][font='华文仿宋']Poggendorff)[/font][font='华文仿宋']对消法[/font][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820167996_390_5439527_3.png[/img][font='华文仿宋']波根多夫([/font][font='华文仿宋']Poggendorff)[/font][font='华文仿宋']对消法[/font][font='华文仿宋'][[/font][font='华文仿宋']6][/font][font='华文仿宋']是人们常采用的测量电池电动势的方法,其原理是利用一个与待测电动势大小相等、方向相反的外加电压对抗待测电池所产生的电动势,使被测量回路不再有电流通过,此时的外加电压即等于待测电池电动势。[/font][font='华文仿宋']本实验电路图如下所示[/font][/size][align=center][size=18px][font='华文仿宋']图1[/font][font='华文仿宋'].[/font][font='华文仿宋']波根多夫对消法实验电路图[/font][/size][/align][align=center][size=18px][font='times new roman']P[/font][font='times new roman']icture 1. Poggendorff elimination method experimental circuit diagram[/font][/size][/align][align=left][size=18px][font='华文仿宋']E[/font][font='华文仿宋']N[/font][font='华文仿宋']为标准电池,R[/font][font='华文仿宋']N[/font][font='华文仿宋']为可调节电阻,E[/font][font='华文仿宋']X[/font][font='华文仿宋']为待测电池,K为换向开关。[/font][/size][/align][align=left][size=18px][font='华文仿宋']本实验[/font][font='华文仿宋'][[/font][font='华文仿宋']6[/font][font='华文仿宋']、7[/font][font='华文仿宋']][/font][font='华文仿宋']中工作回路的工作电流I保持恒定。首先,调节电阻R[/font][font='华文仿宋']N[/font][font='华文仿宋']使标准电池电动势[/font][/size][/align][align=left][size=18px][font='华文仿宋'], 随后将测量电路中的开关K拨向E[/font][font='华文仿宋']N[/font][font='华文仿宋']端,调节内阻r使工作电路的电流为I[/font][font='华文仿宋'],[/font][font='华文仿宋']即使滑动电阻R[/font][font='华文仿宋']N[/font][font='华文仿宋']两端电势差与标准电池电动势对消,此时测量电路中电流趋近于零。将开关K拨向待测电池E[/font][font='华文仿宋']X[/font][font='华文仿宋'],保证R[/font][font='华文仿宋']N[/font][font='华文仿宋']不变,调节AB间的电阻值,使检流计G的指针指向0。此时有[/font][/size][/align][align=center][size=18px][/size][/align][align=left][font='华文仿宋'][size=18px]则有[/size][/font][/align][align=center][size=18px][/size][/align][size=18px][font='华文仿宋']可得到[/font][/size][align=center][size=18px][/size][/align][size=18px][font='华文仿宋']本实验不需要测定电流值,E[/font][font='华文仿宋']N[/font][font='华文仿宋']已知,因此只需要知道R[/font][font='华文仿宋']X[/font][font='华文仿宋']与R[/font][font='华文仿宋']N[/font][font='华文仿宋']的比值即可计算得到待测电池电动势的数值。通常,电阻值的测量精度较高,利用对消法测定原电池电动势具有较高的精度[/font][font='华文仿宋'][[/font][font='华文仿宋']8][/font][font='华文仿宋']。[/font][font='等线 light']2[/font][font='等线 light']实验部分[/font][font='华文仿宋']2.1[/font][font='华文仿宋']仪器与试剂[/font][font='华文仿宋']UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型直流高电势电位差计;[/font][font='华文仿宋']SDC-[/font][font='华文仿宋']Ⅱ数字[/font][font='华文仿宋']电位差综合测试仪[/font][font='华文仿宋'];S[/font][font='华文仿宋']YC-158[/font][font='华文仿宋']超级恒温水浴;BC[/font][font='华文仿宋']9[/font][font='华文仿宋']a便携式饱和标准电池;AZ[/font][font='华文仿宋']19[/font][font='华文仿宋']直流检流计;电源([/font][font='华文仿宋']2.9-3.3[/font][font='华文仿宋']V[/font][font='华文仿宋'])[/font][font='华文仿宋'][color=#ff0000];[/color][/font][font='华文仿宋']硫酸锌;硫酸铜;邻苯二甲酸氢钾;醌氢醌;铜棒;锌棒;甘汞电极;[/font][font='华文仿宋']铂[/font][font='华文仿宋']电极;盐桥[/font][font='华文仿宋'][color=#ff0000]。[/color][/font][font='华文仿宋']2.2[/font][font='华文仿宋']实验步骤[/font][font='华文仿宋']恒温水浴中,分别使用UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型直流高电势电位差计和SDC-[/font][font='华文仿宋']Ⅱ数字[/font][font='华文仿宋']电位差综合测试[/font][font='华文仿宋']仪按照[/font][font='华文仿宋']标准实验步骤[/font][font='华文仿宋'][[/font][font='华文仿宋']7][/font][font='华文仿宋']步骤测量以下电池电势,其中铜棒和锌棒在经过充分的打磨使其表面光滑铮亮后使用,待测醌氢醌溶液由[/font][font='华文仿宋']邻苯[/font][font='华文仿宋']二甲氢钾[/font][font='华文仿宋']溶液加少量醌氢醌粉末配置而成。[/font][font='华文仿宋']电池([/font][font='华文仿宋']1)[/font][font='华文仿宋']:[/font][font='华文仿宋'](饱和水溶液[/font][font='华文仿宋'])[/font][font='华文仿宋'](待测[/font][font='华文仿宋'])[/font][/size][align=left][size=18px][font='华文仿宋']电池(2[/font][font='华文仿宋'])[/font][font='华文仿宋']:[/font][font='华文仿宋'](饱和水溶液[/font][font='华文仿宋'])[/font][font='华文仿宋']([/font][font='华文仿宋'])[/font][/size][/align][align=left][size=18px][font='华文仿宋']电池(3[/font][font='华文仿宋'])[/font][font='华文仿宋']:[/font][font='华文仿宋']([/font][font='华文仿宋'])[/font][font='华文仿宋'](饱和水溶液[/font][font='华文仿宋'])[/font][/size][/align][align=left][size=18px][font='华文仿宋']电池(4[/font][font='华文仿宋']):[/font][font='华文仿宋']([/font][font='华文仿宋'])[/font][font='华文仿宋']([/font][font='华文仿宋'])[/font][/size][/align][align=left][size=18px][font='华文仿宋']使用UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型直流高电势电位差计时,首先需要调节温度补偿旋钮是其示数等于标准电池电势,而标准电池电势与温度的关系如下,[/font][/size][/align][align=center][size=18px][/size][/align][size=18px][font='华文仿宋']其中,T为环境温度,单位为[/font][font='华文仿宋']。然后接入电源、待测电池、检流计等进行调零和测量。[/font][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820170731_6190_5439527_3.png[/img][/size][align=center][size=18px][font='华文仿宋']图2[/font][font='华文仿宋'].[/font][font='华文仿宋']UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型直流高电势电位差计示意图[/font][/size][/align][align=center][size=18px][font='times new roman']P[/font][font='times new roman']icture 2. UJ25 DC High Potential Potentiometer diagram[/font][/size][/align][align=center][size=18px][/size][/align][size=18px][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820171699_3268_5439527_3.png[/img][font='华文仿宋']而SDC[/font][font='华文仿宋']-[/font][font='华文仿宋']Ⅱ数字[/font][font='华文仿宋']电位差综合测试仪与UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型电位差计使用方法略有不同。该仪器在使用前应先进行1[/font][font='华文仿宋']5min[/font][font='华文仿宋']的预热。本文在采用内标法测量电池电动势时,只需用导线将待测电池连接入电路中即可,不需要使用标准电池。测量时,首先旋至内标状态,接入[/font][font='华文仿宋']测试线[/font][font='华文仿宋']并调节五个数值旋钮使电位指示显示为“1[/font][font='华文仿宋'].000000[/font][font='华文仿宋']”V,补偿旋钮逆时针[/font][font='华文仿宋']旋[/font][font='华文仿宋']到底,随后将两测量线短接,待检零指示[/font][font='华文仿宋']示[/font][font='华文仿宋']数稳定后按下“归零”使指示为“0[/font][font='华文仿宋']000”[/font][font='华文仿宋']。然后接入待测电池,在仪器测量状态下由大到小调节测量旋钮,尽可能[/font][font='华文仿宋']使检零[/font][font='华文仿宋']指示接近于零,最后调节至补偿旋钮[/font][font='华文仿宋']时检零[/font][font='华文仿宋']指示[/font][font='华文仿宋']示[/font][font='华文仿宋']数基本不变或者变化很缓慢时即可记录下电位示数,此时示数就是待测电池电动势。外标法测量时除了不用外接检流计外,使用步骤与UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型电位差计相同,本文并未使用。[/font][/size][align=center][size=18px][font='华文仿宋']图3[/font][font='华文仿宋'].[/font][font='华文仿宋'] [/font][font='华文仿宋']SDC[/font][font='华文仿宋']-[/font][font='华文仿宋']Ⅱ[/font][font='华文仿宋']数字[/font][font='华文仿宋']电位差综合测试仪示意图[/font][/size][/align][align=center][size=18px][font='times new roman']P[/font][font='times new roman']icture 3. [/font][font='times new roman']SDC[/font][font='times new roman']-[/font][font='times new roman']Ⅱ[/font][font='times new roman']D[/font][font='times new roman']igital Potential Difference Comprehensive Test Instrument diagram[/font][/size][/align][size=18px][font='等线 light']3[/font][font='等线 light']实验结果和讨论[/font][font='华文仿宋']3.1[/font][font='华文仿宋']溶液p[/font][font='华文仿宋']H[/font][font='华文仿宋']的测定[/font][/size][align=left][size=18px][font='华文仿宋']醌氢醌电池测量溶液pH的原理同酸度计([/font][font='华文仿宋']pH[/font][font='华文仿宋']计[/font][font='华文仿宋'])[/font][font='华文仿宋']一样,都是由电极反应包含氢离子的指示电极和参比电极组成,其中参比电极的电极电势是确定已知的[/font][font='华文仿宋'][[/font][font='华文仿宋']9][/font][font='华文仿宋']。本实验中,参比电极为甘汞电极,指示电极为铂电极,铂电极上发生的电极反应为,[/font][/size][/align][align=center][size=18px][/size][/align][size=18px][font='华文仿宋']稀溶液状态下,[/font][font='华文仿宋']醌[/font][font='华文仿宋']和氢醌浓度相等且活度近似为[/font][font='华文仿宋']1[/font][font='华文仿宋'],可得,[/font][/size][align=center][size=18px][/size][/align][size=18px][font='华文仿宋']而在甘汞电极同样有电极反应发生,产生一定电极电势,由此可计算得到醌氢醌电极和甘汞电极构成的原电池的电动势为,[/font][font='华文仿宋']将式[/font][font='华文仿宋'](1[/font][font='华文仿宋'])和([/font][font='华文仿宋']2)[/font][font='华文仿宋']联立可得溶液[/font][font='华文仿宋']pH[/font][font='华文仿宋']的计算公式。[/font][font='华文仿宋']将恒温水浴调节至[/font][font='华文仿宋']时,测得醌氢醌电池电动势如下,利用公式[/font][font='华文仿宋']计算得到溶液[/font][font='华文仿宋']pH[/font][font='华文仿宋'],其中,[/font][/size][align=center][size=18px][/size][/align][align=center][size=18px][/size][/align][size=18px][font='华文仿宋']将计算结果与文献值([/font][font='华文仿宋'])[/font][font='华文仿宋']相比较,得到下列数据。[/font][/size][align=center][size=18px][font='华文仿宋']表1[/font][font='华文仿宋'].[/font][font='华文仿宋']UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型仪器测量数据[/font][/size][/align][align=center][size=18px][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820175057_6309_5439527_3.png[/img][font='times new roman']Figure 1. UJ25 Instrument measure data[/font][/size][/align][align=center][size=18px][/size][/align][align=center][size=18px][/size][/align][align=center][size=18px][/size][/align][align=center][size=18px][/size][/align][align=center][size=18px][/size][/align][align=center][size=18px][/size][/align][align=center][size=18px][font='华文仿宋']表2[/font][font='华文仿宋'].[/font][font='华文仿宋'] [/font][font='华文仿宋']SDC[/font][font='华文仿宋']-[/font][font='华文仿宋']Ⅱ[/font][font='华文仿宋']型仪器测量数据[/font][/size][/align][align=center][size=18px][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820175771_6426_5439527_3.png[/img][font='times new roman']F[/font][font='times new roman']igure 2. [/font][font='times new roman']SDC[/font][font='times new roman']-[/font][font='times new roman']Ⅱ[/font][font='times new roman']I[/font][font='times new roman']nstrument measure data[/font][/size][/align][size=18px][font='华文仿宋']分别计算使用两种仪器测量时[/font][font='华文仿宋']pH[/font][font='华文仿宋']计算结果的平均值,并采用如下方法计算出本实验测量结果同文献值的偏离程度S,[/font][/size][align=center][size=18px][/size][/align][size=18px][font='华文仿宋']可得到以下结果,[/font][font='华文仿宋']此外,根据以上计算结果可以计算得到平均值的相对误差,分别为[/font][font='华文仿宋'],[/font][font='华文仿宋']。从计算结果来看,[/font][font='华文仿宋'],[/font][font='华文仿宋'],很明显针对测量溶液pH这一实验步骤,使用SDC[/font][font='华文仿宋']-[/font][font='华文仿宋']Ⅱ数字[/font][font='华文仿宋']电位差综合测试仪的计算结果更加准确和稳定。除此之外,利用p[/font][font='华文仿宋']H[/font][font='华文仿宋']计测定所配制醌氢醌溶液的pH时,其示数稳定在4[/font][font='华文仿宋'].0[/font][font='华文仿宋']左右。将9组pH计算结果绘制成如下图表,可以看到,相比于UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型电位差计,使用SDC[/font][font='华文仿宋']-[/font][font='华文仿宋']Ⅱ数字式仪器的计算结果更多地稳定在相对误差1[/font][font='华文仿宋'].0%[/font][font='华文仿宋']之内,而前者则部分稳定在0[/font][font='华文仿宋'].5%[/font][font='华文仿宋']之内,但相对来说[/font][font='华文仿宋']SDC[/font][font='华文仿宋']-[/font][font='华文仿宋']Ⅱ型仪器[/font][font='华文仿宋']稳定性较高一点,这与两种仪器测量过程中的使用方式有关。UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型仪器使用时需要不断按压按键有关,[/font][font='华文仿宋']有时会因对检流计指针偏转观察不到位,而导致按压时间过长,使待测电池通过较大电流,破坏了电池的平衡条件,使测量结果产生误差。同时,使用UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型仪器时,误差同样会出现在对检流计指针是否指向零和指针偏向的判断上,这难以避免,但系统误差出现于每一次测量中,不过在本实验中这样的误差影响很小,可以忽略。SDC[/font][font='华文仿宋']-[/font][font='华文仿宋']Ⅱ型仪器使用时不用判断指针偏转,而是[/font][font='华文仿宋']通过检流指示[/font][font='华文仿宋']的数值来确定被测电动势的值,大大简化了调节和测量过程。理想状态下,调节补偿旋钮[/font][font='华文仿宋']至检流[/font][font='华文仿宋']指示为“0[/font][font='华文仿宋']000[/font][font='华文仿宋']”时可记录下被测电动势的值,但在实际情况中,示数会不断变动,使得测量时不易判断测量电路电流为零的时刻,这对仪器测量结果的稳定性有一定影响。[/font][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820177860_9891_5439527_3.png[/img][/size][align=center][size=18px][font='华文仿宋']图4[/font][font='华文仿宋']. [/font][font='华文仿宋']UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型与SDC[/font][font='华文仿宋']-[/font][font='华文仿宋']Ⅱ型仪器计算结果距离图[/font][/size][/align][align=center][size=18px][font='times new roman']P[/font][font='times new roman']icture 4. UJ25 and [/font][font='times new roman']SDC[/font][font='times new roman']-[/font][font='times new roman']Ⅱ[/font][font='times new roman']I[/font][font='times new roman']nstrument result distance diagram[/font][/size][/align][align=center][size=18px][/size][/align][size=18px][font='华文仿宋']一定温度下,醌氢醌电池电动势仅与溶液中氢离子活度有关,温度改变时溶液氢离子活度会发生变化,这种变化则会反应在电池电势上,因此可以利用电化学方法测定溶液酸碱度,本实验所搭建的醌氢醌电池是测定溶液p[/font][font='华文仿宋']H[/font][font='华文仿宋']比较准确的方法。为探究温度对电池电势及溶液p[/font][font='华文仿宋']H[/font][font='华文仿宋']的影响,本文分别利用UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型仪器和SDC[/font][font='华文仿宋']-[/font][font='华文仿宋']Ⅱ型仪器测定了不同温度下电池[/font][font='华文仿宋'](1)[/font][font='华文仿宋']的电池电势,结果如下,[/font][/size][align=center][size=18px][font='华文仿宋']表3[/font][font='华文仿宋']. [/font][font='华文仿宋']两种仪器醌氢醌电池电势测量数据表[/font][/size][/align][align=center][size=18px][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820178506_4759_5439527_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820180106_1033_5439527_3.png[/img][font='times new roman']F[/font][font='times new roman']igure 3. The Q/HQ battery potential measure data of two instrument [/font][/size][/align][size=18px][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820180926_4920_5439527_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820182088_5502_5439527_3.png[/img][font='楷体'] [/font][font='楷体'] [/font][font='华文仿宋'] [/font][font='华文仿宋'] [/font][font='华文仿宋']UJ[/font][font='华文仿宋']25[/font][font='楷体'] [/font][font='楷体'] [/font][font='华文仿宋'] [/font][font='华文仿宋']SDC[/font][font='华文仿宋']-[/font][font='华文仿宋']Ⅱ[/font][/size][align=center][size=18px][font='华文仿宋']图5[/font][font='华文仿宋'].[/font][font='华文仿宋']两种仪器醌氢醌电池电势随温度的变化趋势图[/font][/size][/align][align=center][size=18px][font='times new roman']P[/font][font='times new roman']icture 5. The variation [/font][font='times new roman']t[/font][font='times new roman']rend diagram on battery potential with temperature of two instrument[/font][/size][/align][align=center][size=18px][/size][/align][size=18px][font='华文仿宋']观察到电池电势随温度的升高而下降,并且[/font][font='华文仿宋']UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型直流高电势电位差计和SDC-[/font][font='华文仿宋']Ⅱ[/font][font='华文仿宋']数字[/font][font='华文仿宋']电位差综合测试仪所测得的电动势随温度变化的拟合效果都比较好,均可以应用于该实验当中。以SDC[/font][font='华文仿宋']-[/font][font='华文仿宋']Ⅱ数字[/font][font='华文仿宋']电位差综合测试仪为例,以温度为横坐标,电池电势为纵坐标作图可得到一条电势随温度变化曲线,其斜率为该电池的温度系数,即[/font][font='华文仿宋'],利用温度系数即可计算得到不同温度下电池反应的[/font][font='华文仿宋']、[/font][font='华文仿宋']、[/font][font='华文仿宋'],计算结果如下[/font][font='华文仿宋'],[/font][font='华文仿宋']时,[/font][/size][align=center][size=18px][/size][/align][align=center][size=18px][/size][/align][size=18px][font='华文仿宋']3.2[/font][font='华文仿宋']铜、[/font][font='华文仿宋']锌标准[/font][font='华文仿宋']电极电势及丹聂耳电池电势的测定[/font][font='华文仿宋']查阅文献可知,[/font][font='华文仿宋']溶液的离子活度系数分别为0[/font][font='华文仿宋'].016[/font][font='华文仿宋']和0[/font][font='华文仿宋'].015[/font][font='华文仿宋'][6][/font][font='华文仿宋']。可利用下列公式计算得到铜、[/font][font='华文仿宋']锌标准[/font][font='华文仿宋']电极电势及丹聂耳电池电势的数值,[/font][font='华文仿宋']已知文献值([/font][font='华文仿宋']),可计算得到相对误差如下表所示,[/font][/size][align=center][size=18px][font='华文仿宋']表4[/font][font='华文仿宋'].[/font][font='华文仿宋']甘汞-铜电池电势测量数据[/font][/size][/align][align=center][size=18px][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820182685_4381_5439527_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820183789_1957_5439527_3.png[/img][font='times new roman']F[/font][font='times new roman']igure 4. Calomel-Copper Cell potential measure data[/font][/size][/align][align=center][size=18px] [/size][/align][align=center][size=18px][/size][/align][align=center][size=18px][/size][/align][align=center][size=18px][font='华文仿宋']表5[/font][font='华文仿宋']. [/font][font='华文仿宋']锌-甘汞电池电势测量数据[/font][/size][/align][align=center][size=18px][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820184600_8826_5439527_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820185635_5928_5439527_3.png[/img][font='times new roman']F[/font][font='times new roman']igure 5. Zinc-Calomel Cell potential measure data[/font][/size][/align][align=center][size=18px][/size][/align][align=center][size=18px][font='华文仿宋']表6[/font][font='华文仿宋'].[/font][font='华文仿宋']锌-铜电池电势测量数据[/font][/size][/align][align=center][size=18px][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820187225_2491_5439527_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820187510_1403_5439527_3.png[/img][font='times new roman']F[/font][font='times new roman']igure 6. Zn-Cu Cell potential measure data[/font][/size][/align][size=18px][font='华文仿宋']由这些图表我们观察到,使用SDC-Ⅱ型仪器测量时相对误差要小于使用UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型仪器时的相对误差,整体来看其测量结果准确性略高,可以用于代替传统仪器进行原电池实验的测定。此外,我们发现配制浓度为[/font][font='华文仿宋']溶液同样可以计算得到铜电极和锌电极的标准电极电势,且相对误差均较小,在一定程度上可以节省金属盐类试剂用量,减轻实验废液回收的压力。[/font][/size][align=center][size=18px][font='华文仿宋']表7[/font][font='华文仿宋'].[/font][font='华文仿宋']低浓度溶液电池电势测量数据[/font][/size][/align][align=center][size=18px][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820188359_6793_5439527_3.png[/img][font='times new roman']F[/font][font='times new roman']igure 7. low-concentration solution cell potential measure data[/font][/size][/align][align=center][size=18px][/size][/align][size=18px][font='华文仿宋']此外,本次实验记录了完成四个电池电势测量所需要的完整时长,如下表所示。[/font][font='华文仿宋']UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']仪器配合检流计使用,检流计指针[/font][font='华文仿宋']转动对实验有一定影响,而[/font][font='华文仿宋']SDC[/font][font='华文仿宋']-[/font][font='华文仿宋']Ⅱ[/font][font='华文仿宋']仪器的[/font][font='华文仿宋']“检零示数”[/font][font='华文仿宋']常出现数值左右摆动的情况,做实验时[/font][font='华文仿宋']无法快速记录数据[/font][font='华文仿宋'],[/font][font='华文仿宋']会[/font][font='华文仿宋']在一定程度上延长实验操作时间,[/font][font='华文仿宋']所以总体来说[/font][font='华文仿宋']使用两种仪器进行实验的耗时相差不大,但是使用SDC[/font][font='华文仿宋']-[/font][font='华文仿宋']Ⅱ型[/font][font='华文仿宋']仪器[/font][font='华文仿宋']相对于UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型电位差计在操作上会[/font][font='华文仿宋']更加简便和智能化[/font][font='华文仿宋']。[/font][/size][align=center][size=18px][font='华文仿宋']表8[/font][font='华文仿宋']. [/font][font='华文仿宋']原电池电动势测定实验时间统计数据[/font][/size][/align][align=center][size=18px][font='times new roman']F[/font][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820189764_6869_5439527_3.png[/img][font='times new roman']igure 8. Galvanic Cell Electromotive Force Measurement Experiment time data[/font][/size][/align][align=center][size=18px][/size][/align][align=center][size=18px][/size][/align][size=18px][font='等线 light']4[/font][font='等线 light']结论与展望[/font][font='华文仿宋']UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型直流高电势电位差计使用时需要与检流计连接,通过观察检流计指针变化来调节测量旋钮测定待测电池电动势。在测量过程中,UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型仪器需要不断按压使测量电路中通过电流,使检流计指针偏转从而调节阻值旋钮,而这容易出现按压时间过长的情况,使通过原电池的电流不趋于零,产生较大的极化电势,影响实验结果。此外,对检流计指针是否[/font][font='华文仿宋']指零易产生[/font][font='华文仿宋']误判,从而记录下不准确的测量结果。标准电池精确与否也容易给实验带来大的误差。使用UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型仪器开始测量前,需要用导线将检流计、标准电池、电源、待测电池连接进电路中,这一过程比较繁琐,导线数量的增多可能会对仪器内部阻值分布造成影响。长久以来,该仪器一直被使用于原电池电动势的测定实验中,具有一定的准确性,且经过验证其测量结果的相对误差较小,符合实验规范。[/font][font='华文仿宋']SDC-[/font][font='华文仿宋']Ⅱ数字[/font][font='华文仿宋']电位差综合测试[/font][font='华文仿宋']仪相对[/font][font='华文仿宋']于传统仪器使用更加方便,不需要连接繁琐的电路,其配备有专门的导线,使导线对实验的影响降到最低。该仪器采用数字化的表盘,避免了判断指针偏向的失误,其相对于UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型仪器更加智能化,更加灵敏,能够检测到由于微小扰动所造成的电池电动势变化。但在判断测量电路中电流为零的时间点的把握上,[/font][font='华文仿宋']即检流示[/font][font='华文仿宋']数何时算是趋近于零,SDC-Ⅱ型仪器主观性更大。实验过程中,[/font][font='华文仿宋']检流示[/font][font='华文仿宋']数时常晃动,干扰结果判定,无法准确确定测量结果,在无形中会延长实验时间。此外,相较于UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型仪器,SDC-[/font][font='华文仿宋']Ⅱ数字[/font][font='华文仿宋']电位差综合测试仪采用内标法测量时,不用接入标准电池,不会受到标准电池老化、受潮等因素的影响,测量结果准确,相对误差小。[/font][font='华文仿宋']总体来看,SDC-Ⅱ型仪器操作更加简单方便,准确性较高,可以在原电池电动势的测定实验中代替UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型仪器作为测量仪器使用。[/font][font='华文仿宋']对于物理化学实验来说,掌握测量过程和实验步骤是次要的,理解每一个实验的物理化学原理才是主要的。只有真正理解实验原理,运用原理于实践中才能得心应手。现代社会中,智能化是大趋势,然而在许多智能化仪器的帮助下,学生们只知道如何使用,却往往不会去了解实验背后的化学原理,因此,如何权衡数字化仪器带来简便快捷的同时又不利于加深学生对实验原理理解的矛盾,是需要进一步深入思考的问题。[/font][font='等线 light']5[/font][font='等线 light']参考文献[/font][font='宋体'][[/font][font='宋体']1][/font][font='宋体']李[/font][font='宋体']苞[/font][font='宋体'],张虎成,张树霞,等.对消法测定原电池电动势实验中电极制备的改进[[/font][font='宋体']J].[/font][font='宋体']大学化学,2[/font][font='宋体']014,29([/font][font='宋体']2[/font][font='宋体']):59-63.[/font][font='宋体'][[/font][font='宋体']2][/font][font='宋体']赵会玲,宋江闯,[/font][font='宋体']熊焰[/font][font='宋体'].“原电池电动势的测定”实验的几点改进[[/font][font='宋体']J][/font][font='宋体'].广州化工,2[/font][font='宋体']015,(9):196-197.[/font][/size][align=left][size=18px][font='宋体'][[/font][font='宋体']3[/font][font='宋体']]胡俊平,刘妍,毕慧敏,等.物理化学实验项目改进创新——以“原电池电动势的测定及在热力学上的应用”为例[J].化学教育,2016,37(10):32-34. [/font][/size][/align][size=18px][font='宋体'][[/font][font='宋体']4[/font][font='宋体']]宋江闯,赵会玲,马淑然,等.高阻抗法测定原电池电动势及其温度系数[J][/font][font='宋体'].[/font][font='宋体']电源技术,2013,37(12):2182-2184,2264. [/font][font='宋体'][[/font][font='宋体']5[/font][font='宋体']]范国康,方卉慧.原电池电动势测定实验的微量化改进[J].科教导刊-电子版(中旬),2020(6):175.[/font][font='宋体'][[/font][font='宋体']6][/font][font='宋体']天津大学物理化学教研室编.物理化学第六版(下)[/font][font='宋体'][M].[/font][font='宋体']北京:高等教育出版社,[/font][font='宋体'] [/font][font='宋体']2[/font][font='宋体']017[/font][font='宋体'].[/font][font='宋体'][[/font][font='宋体']7][/font][font='宋体']柯以侃,王桂花.大学化学实验第二版[[/font][font='宋体']M].[/font][font='宋体']北京:化学工业出版社,[/font][font='宋体'] 2010.[/font][font='宋体'][[/font][font='宋体']8]杨小勇,蔡飞宇,高康康,等.《原电池电动势测定》教学方法思考[J].课程教育研究[/font][font='宋体']([/font][font='宋体']新教师教学[/font][font='宋体'])[/font][font='宋体'],2013(34):314-314.[/font][font='宋体'][[/font][font='宋体']9]刘金峰.pH计的原理、使用方法和维护[J].口腔护理用品工业,2019,29(2):35-36.[/font][/size]

  • 电动搅拌器出现故障时应注意哪些

    1、动口再动手:对于电动搅拌器出现故障时,不应急于先动手,应先询问产生故障的前后经过及故障现象。对于生疏的设备,还应先熟悉电路原理和结构特点,遵守相应规则。拆卸前要充分熟悉每个电气部件的功能、位置、连接方式以及与周围其他器件的关系,在没有组装图的情况下,应一边拆卸,一边画草图,并记上标记。2、先外部后内部:应先检查设备有无明显裂痕、缺损,了解其维修史、使用年限等,然后再对机内进行检查。拆前应排除周边的故障因素,确定为机内故障后才能拆卸,否则,盲目拆卸,可能将设备越修越坏。3、机械后电气:只有在确定机械零件无故障后,再进行电气方面的检查。检查电路故障时,应利用检测仪器寻找故障部位,确认无接触不良故障后,再有针对性地查看线路与机械的运作关系,以免误判。4、先静态后动态:在设备未通电时,判断电气设备按钮、变压器、热继电器以及保险丝的好坏,从而判定故障的所在。通电试验,听其声、测参数、判断故障,zui后进行维修。如在电动机缺相时,若测量三相电压值无法着判别时,就应该听其声,单独测每相对地电压,方可判断哪一相缺损。5、先清洁后维修:对污染较重的电气设备,先对其按钮、接线点、接触点进行清洁,检查外部控制键是否失灵。许多故障都是由脏污及导电尘块引起的。6、磁力搅拌器先电源后设备:电源部分的故障率在整个故障设备中占的比例很高,所以先检修电源往往可以事半功倍。7、先故障后调试:对于调试和故障并存的电气设备,应先排除故障,再进行调试,调试必须在电气线路速的前提下进行。8、先普遍后特殊:因装配配件质量或其他设备故障而引起的故障,一般占常见故障的50%左右。电气设备的特殊故障多为软故障,要靠经验和仪表来测量和维修。

  • 电动搅拌器出现故障时处理方法

    1、动口再动手:对于电动搅拌器出现故障时,不应急于先动手,应先询问产生故障的前后经过及故障现象。对于生疏的设备,还应先熟悉电路原理和结构特点,遵守相应规则。拆卸前要充分熟悉每个电气部件的功能、位置、连接方式以及与周围其他器件的关系,在没有组装图的情况下,应一边拆卸,一边画草图,并记上标记。2、先外部后内部:应先检查设备有无明显裂痕、缺损,了解其维修史、使用年限等,然后再对机内进行检查。拆前应排除周边的故障因素,确定为机内故障后才能拆卸,否则,盲目拆卸,可能将设备越修越坏。3、机械后电气:只有在确定机械零件无故障后,再进行电气方面的检查。检查电路故障时,应利用检测仪器寻找故障部位,确认无接触不良故障后,再有针对性地查看线路与机械的运作关系,以免误判。4、先静态后动态:在设备未通电时,判断电气设备按钮、变压器、热继电器以及保险丝的好坏,从而判定故障的所在。通电试验,听其声、测参数、判断故障,zui后进行维修。如在电动机缺相时,若测量三相电压值无法着判别时,就应该听其声,单独测每相对地电压,方可判断哪一相缺损。5、先清洁后维修:对污染较重的电气设备,先对其按钮、接线点、接触点进行清洁,检查外部控制键是否失灵。许多故障都是由脏污及导电尘块引起的。6、磁力搅拌器先电源后设备:电源部分的故障率在整个故障设备中占的比例很高,所以先检修电源往往可以事半功倍。7、先故障后调试:对于调试和故障并存的电气设备,应先排除故障,再进行调试,调试必须在电气线路速的前提下进行。8、先普遍后特殊:因装配配件质量或其他设备故障而引起的故障,一般占常见故障的50%左右。电气设备的特殊故障多为软故障,要靠经验和仪表来测量和维修。

  • 离心机电动机转速达不到设定转速 ,还有就是使用离心机时应该注意些什么呀?

    一、电源电路部分故障。首先,对电源线、插座、插头、变阻器、继电器等易坏部件进行检修。然后,检查开关电源以及电路、空气开关、整流器、滤波器、变压器,直至电动机部分。 二、电动机自身故障。电动机是离心机的主要部件之一,电动机分为带碳刷电动机和无碳刷电动机。现在大多数电动机都是无碳刷电动机。电动机转速达不到设定转速,首先检查轴承,需更换时就更换,需要维护时(比如加注润滑油和清洗时)就维护。如是带碳刷电动机,则检查电动机整流子和电刷是否匹配、电刷磨损是否厉害、是否需要更换等。 三、转速控制部分故障。转速控制系统有一个集成芯片能确保离心机安全准确的运行。如果转速故障排除以上二个原因,可更换芯片或者控制面板。

  • 电动自行车电池要过三道坎儿(第二部分)

    第二部分■普通消费者对电池使用和维护保养知识知之甚少,在使用和维护时,常常出现一些误区。 今年4月,消费者金先生家突然发生爆炸。事后调查发现,爆炸是由电动自行车电池充电引起的。 据金先生说,发生爆炸的电池用了两年,是锂电池。因为原装的充电器坏了,刚刚买了个新的充电器。当时,还拿电池试充了一下,红灯亮了,店主说,这表明能充电。不想第一次充电才一个多小时就发生了爆炸。查看充电器说明书,才发现上面写着“主要供电动自行车专用24v、36v、48v铅酸蓄电池所用” 。 业内专家指出,锂电池跟铅酸电池的充电器不能通用的。金先生的电池发生爆炸的原因是充电器电流太大,使电池不能承受,于是爆炸了。 一般来说,普通消费者对电池使用和维护保养知识知之甚少,在使用和维护时,常常出现一些误区。而专家认为,电池使用不当,不仅会缩短寿命,还有可能出现危险,就像金先生家发生爆炸一样。为此,使用电池要注意几点:一是不要长时间充电,那种认为充的时间越长电量越足的想法是错误的。二是电池使用到50%至70%时就要进行充电,不要等完全没有电了再充,否则,将对电池造成损伤,缩短电池使用寿命。三是充电时,要把电源开关关上,否则,尽管没有行驶,可车的线路依然连通,长时间充电会引起短路,造成车的自燃。四是要按说明书要求正确操作。五是骑车时,在起步的一刹那,最好用脚蹬一下地面,靠外力让车子起步,这样能减少电池压力,延长其使用寿命。 ■在一些废品收购站,毒性很大的酸液被小贩随意倾倒,造成周围花草枯萎,树叶变黄,居民怨声载道。 电动自行车自发明之日起,就命运多悖,在许多国家和城市都被禁止,原因是电池会造成严重的环境污染。据中国自行车协会工作人员介绍,我国的电动自行车90%都使用铅酸电池。电池内的酸液含有大量的铅,随意倾倒、排放会污染土壤和水资源,并产生铅蒸气,在空气中蒸发。而铅超标会影响孩子生长发育,导致其智力下降,诱发儿童恶性肿瘤。成人铅中毒则会产生身体疲软、腹部绞痛等。严重者,如不及时医治,会造成肝、肾等损伤。 据业内人士介绍,铅酸电池属易耗品,品牌电池一般使用1~2年,一些杂牌电池只有半年左右寿命。据四川新闻网报道,以成都为例,该市目前电动自行车保有量已突破70万辆,每年要产生数千吨废旧铅酸电池。 2003年10月,国家曾出台相关规定,要求电动自行车生产企业和销售商必须承担废旧电池的回收责任。但在实际操作中,由于运输和保管等环节的费用花销较大,此规定几乎成了一纸空文。 按国家有关规定,电池运输须按“危险品”征收各种费用。如果厂家派专车回收电池,每公斤需要支付近0.8元的运输、保管费用。因此,厂家承诺的旧电池回收往往不能兑现。据知情人透露,一些专卖店里回收来的旧电池,并没有运回厂家,而是论斤卖给了废品收购站或电池维修店。 在一些废品收购站,毒性很大的酸液被小贩随意乱倒,造成周围花草枯萎,树叶变黄,居民怨声载道。 据悉,废旧电动自行车电池回收并非无利可图。铅酸电池中的废铅、酸液以及塑料壳体都可再生利用。关键是如何形成一个废电池处理的“产业链条”,才是当务之急。 记者从中国自行车协会了解到,我国对铅酸电池已有符合环保要求的回收利用技术,上海、湖北等地均有回收工厂。电动自行车行业也制定了废旧电池回收公约,企业与经销商签订回收协议。在珠海,电动自行车经销店回收一块废旧电池的价格为45元,基本上无人遗弃。目前,全国许多城市也都有了各自的废旧电池回收规定。 今年,北京对电动自行车实行“解禁”,紧接着,相应的废旧电池回收规定也出台了。 北京市要求电动自行车铅酸电池生产企业要负责回收废旧电池,回收率连续两年不达标的产品将被逐出北京市场。 此外,生产厂家在政府部门登记时,还须提交一份企业承诺书,承诺妥善处理废电池。其中,包括保证废铅酸电池的回收率2006年不低于50%,2007年不低于70%,2008年以后不低于85%。 ●电动自行车的研究始于20世纪40年代,经过60多年的研发,耗资数十亿美元,但至今在全世界范围内没有取得突破性进展。主要原因是废电池对环境的污染。 ●目前,连续上涨的油价促使电动自行车销售高峰提前到来。在无锡、郑州、河北等地,电动自行车出现供不应求的状况,更有一些地方还发生断货现象。但是,在一些对电动自行车设限的城市,销售情况并未发生好转。在这些城市,电动自行车产业被陷入可以生产销售,却不准社会使用的窘境。 ●关于电动自行车的安全问题,国家《电动自行车通用技术条件》对电动自行车的最高时速、空车重量、制动性能等都已作出具体规定,因此,产品本身并不存在不安全问题。据调查,上海电动自行车拥有量全国最大,但交通事故率仅为0.17%,同期机动车的事故率则为1.6%。 ●业内人士认为,由于各个地区对电动自行车的管理采取不同的措施,致使一些地区市场准入制度没有建立。由于缺乏监管,一些杂牌厂商借此从中牟取暴利,直接导致存在安全隐患的产品流向市场,使正规品牌的产品利润被抢占。

  • 【讨论】中国自行车协会申请电动车国标缓行

    2009-12-06 来源: 新华报业网-扬子晚报(南京)核心提示:中国自行车协会助力车专业委员会主任委员陆金龙5日称,将申请暂缓实施《电摩条件》,并提出暂缓实施申请有5大理由,包括“《电摩条件》是强势利益集团利用标准手段设置技术壁垒和准入壁垒,易造成社会不公平性”。“强势利益集团”是指摩托车集团、摩托车行业。扬子晚报12月6日报道 近日国家标准管理委员会出台《电动摩托车和电动轻便摩托车通用技术条件》(以下简称《电摩条件》),引来坊间议论纷纷。因为这意味着明年1月1日起,众多车主必须经过考驾照、上牌、买保险等一系列冗长手续才能骑电动车了(本报昨日有报道)。中国自行车协会助力车专业委员会主任委员陆金龙昨透露,将暂缓实施《电摩条件》,目前中国自行车协会的相关申请已经拟好,预计10日前提交国家标准管理委员会。陆金龙强调,中国自行车协会之所以提出暂缓实施申请主要基于五个方面的考虑。第一,参与《电摩条件》制定的单位不具有广泛的代表性 第二,《电摩条件》与10年前出台的《电动自行车通用技术条件》无缝对接的说法缺乏严谨的科学发展观精神 第三,《电摩条件》缺乏公信力、公共精神,不具备普遍服从性 第四,《电摩条件》是强势利益集团利用标准的手段设置技术壁垒和准入壁垒,容易造成社会的不公平性 第五,《电摩条件》可能造成城市交通拥堵混乱,人民生命隐含巨大危险,不安全因素倍增。当记者询问陆金龙“强势利益集团”的具体所指,他明确表示,“就是指摩托车集团、摩托车行业”。陆金龙承认“协会要考虑本行业的利益”,“不回避这个问题”。中国电动车新国标出台 500万工人面临失业红网12月4日报道 您是骑电动自行车上班的么?不,您骑的是电动摩托车。即将于2010年1月1日起实施的《电动摩托车和电动轻便摩托车通用技术条件》(以下简称《电摩条件》)新国标,规定“40公斤以上、时速20公里以上的电动自行车,将称为轻便电动摩托车或电动摩托车,划入机动车范畴”。这意味着,大街上常见的电动车将被纳入摩托车管理,而按照现行交规,摩托车必须行驶在机动车道上,届时电动自行车与汽车争路的景象将不可避免。如果交警部门采纳这一新国标,在现已禁摩的城市,比如长沙,超过标准的电动车或将无路可走,事实上,这一标准的影响可能还不仅如此,若认真执行,超过2000家电动车生产企业将变成无证生产的非法企业,超过500万就业工人将面临失业,按现有1.2亿电动自行车保有量计算,近亿人出行将受到影响——要么选择考驾照上牌买保险,要么放弃骑行。电动车一标准就成电摩,这事靠谱么?住在长沙市天心区的市民黄芳每日骑行上海立马电动自行车上下班,前段时间,为了响应市政府“禁摩限电“的号召,她还专门到车管所为心爱的电动自行车办了牌照。3日记者告诉她新国标将电动自行车归为电动摩托车时,她第一句话便是:“这事靠谱么?”不过国家标准管理委员确实在近期发布了消息,关于电动摩托车和电动轻便摩托车四个标准将于2010年1月1日开始实施,它们具体分别是:GB24155-2009《电动摩托车和电动轻便摩托车安全要求》、GB/T24156-2009《电动摩托车和电动轻便摩托车动力性能试验方法》、GB/T24157-2009《电动摩托车和电动轻便摩托车能量消耗率和续驶里程试验方法》和GB/T24158-2009《电动摩托车和电动轻便摩托车通用技术条件》。记者检索相关内容,《电摩条件》确实注明“40公斤以上、时速20公里以上的电动自行车,称为轻便电动摩托车或电动摩托车,划入机动车范畴”。就这样,电动车“被标准”为电动摩托车了,对此,黄芳乐呵呵的说:“我稍微加一下油门,时速就在30公里了,是不是以后也要像汽车一样买交强险?”其实,关于电动车早在1999年便有一项行业标准——《电动自行车通用技术条件》,规定“最高时速不超过20公里,整车质量(重量)不大于40公斤”。据说,新国标是正是在这项旧标准的基础上创新而来,不过长沙市雨花区的一电动车销售代理商却告诉本报记者,现在市场上所有畅销的电动车都在40公斤以上,平均速度超过20公里。“电池续航时间越久越重,加上其他部件,低于40公斤高速行驶时车身不稳,再说速度低了还不如自行车,谁会买呀?要知道普通自行车一小时还可以跑15公里呢!”制定者:新国标拟定程序合法那么,新国标究竟是如何出炉的呢?3日下午,本报记者电话联系了中国汽车技术研究中心,不过工作人员称该中心领导正在开会,无法做出回应。根据公开资料,《电摩条件》系中国汽车技术研究中心下属的全国汽车标准化委员会拟定,那么这个标准化委员会在制定这份标准时有无征求公众意见?接电话的工作人员告诉本报记者:“暂时无法答复,但可以肯定的告诉您的是,标准拟定的程序合法,征求了相关企业意见,也征求了政府意见,否则无法通过国家标准管理委员会的审核。”有趣的是,部分电动车从业者却并不这样认为。一些电动车销售代理商在接受本报记者采访时,感觉十分突然。“我也是看网上才知道的,按说,这样的规定,厂家应该事先和我们说,毕竟马上就要执行了。可问了厂家,厂家也不知道。”江苏新日电动车股份有限公司副总经理兼新闻发言人胡刚昨日公开表示,新标准或将会使得行业内出现一轮破产高潮,众多的中小电动车企业由于不符合摩托车生产条件而将破产。根据工信部最新规定,获得摩托车牌照的企业必须满足以下条件,项目总投资不得低于2亿元人民币,固定资产投资(不含土地使用权等无形资产)不得低于1亿元,其中设备投资不得低于8000万元;注册资本不得低于8000万元。胡刚认为,目前1000多家电动车企业很难有达到这个标准的。“如果标准真的实施,必将给行业带来一次洗牌。”知名评论人士、中国人民大学教授张鸣昨日亦在其博客上撰文,称:“这个标准的出台,道路安全也许只是一个借口,一个堂皇的借口,在这个借口之下,实际上是摩托车厂家,看上了电动自行车庞大的市场,想用电动摩托车取而代之。”中自协:将尽快提交暂缓申请张鸣教授的分析是否有道理,暂时很难给予评价。但已经有行业协会主动站出来表示反对意见,比如中国自行车协会。该协会官网上的介绍显示,她是中国自行车行业的全国性组织,由自行车、电动自行车及其零部件生产企业,以及与其相关的生产、商贸企业,科研、教学单位和地方性协会自愿组成。3日,该协会下属的助力车专业委员会主任委员陆金龙接受记者电话采访时说,他们将建议暂缓实施《电摩条件》新国标。“目前中国自行车协会的相关申请已经拟好,预计本月10日前提交国家标准管理委员会。”令人惊讶的是,中国自行车行业协会作为电动自行车行业的代言者之一,《电摩条件》新国标的制定却并未征求该协会首席专家的意见。公开报道显示,《电摩条件》新国标由全国汽车标准化技术委员会的电动车分标委与摩托车分标委共同制定。此前,清华大学教授、中国自行车协会首席专家马贵龙公开表示,“电摩新国标是由摩托车行业主导的,作为电动车行业的专家,我并没有参与该标准的工作。”马贵龙说,“按照已有标准划分,电动自行车属于非机动车辆,而电动摩托车属于机动车辆。”对此,陆金龙昨日也发表了同样的看法,他告诉记者,《电摩条件》是强势利益集团利用标准的手段设置技术壁垒和准入壁垒,容易造成社会的不公平性;而且可能造成城市交通拥堵混乱,使人民生命面临巨大危险,让不安全因素倍增。由此看来,新国标已经成为利益集团的利益平衡的工具,可是近亿人的出行却被这些标准绑架了去,谁又来为普通市民考虑呢?正如张鸣教授所质疑的:“一种产品的生产标准,属于公共政策的范围,可是,电动摩托车标准的出台,既不问行业中人,也不管自行车企业的死活,更不管广大消费者的意愿……这样的政策叫什么呢?”所幸,湖南省质监局标准处相关负责人昨日在接受本报记者采访时表示,这一标准仅是推荐性标准,并非强制执行,执行的具体情况如何以及会产生什么影响,还要看交警部门出台的细则。[em09505][em09505][em09505]

  • 【转帖】如何延长电动车铅酸蓄电池寿命?

    注意电动车的电池电不能用光了再充,他的原理跟手机电池原理不一样,如果电用尽再充的话,会大大损伤电池,从而影响电动车电池的正常使用,综合使用寿命,电动车电池使用把握一点,勤充电,如果长期不使用的话,也要定期进行充电,切不过长期放置不充电,如果放上几个月不充电的话,可能你的电池直接就OVER了,技术文章:如何延长电动车铅酸蓄电池寿命?一、令人头痛的电动车电池问题 对于电动车来说,发展势头异常迅猛。近几年每年的实际产量都超过社会保有量,这是一个惊人的数据,但是,每个优势行业都有“软肋”,如果要问什么是电动车最头痛的问题,唯一的答案就是电池寿命短。 现在大部分厂家都承诺电池质保一年,可是半年后问题出来了,根据电池的设计及循环放电试验都表明,电池的循环寿命的确是一年半甚至三年,生产时也严格按照工艺流程控制质量,可半年后很多电池就会老化。我们都知道,诸如电视、计算机等很多电子产品的寿命可长达十年,但厂家也只提供一年的质保,而电动车电池最多就2-3年的寿命,电池制造商们却要硬撑着质保一年,这个“硬着头皮”质保的方法短期内还能抵挡片刻,时间长了,问题总会凸现出来。那么如何提高电池的寿命,如何改进电池的的使用环境等等问题都是大家非常失望但又关心的问题。为了弄清楚延长电池寿命的途径,首先就要弄清楚电池的失效机理,以便对症下药。

  • 电动自行车电池要过三道坎儿(第一部分)

    第一部分电动自行车电池投诉多 ●每年有关电动自行车的投诉中,80%左右是对电池的投诉。反映出来的问题主要有四个方面:一是虚假标示。有的标称充一次电能行驶40公里,实际只有20公里;二是充电器不配套,缩短了电池使用寿命;三是个别厂家或售后服务部门将回收的旧电池翻修后当新电池卖;四是劣质电池冒充名牌电池。 ●电动自行车电池品牌很多,市场上常见的有十几种。好一些的电池和差一些的电池价格相差100元左右。 ●专家提醒消费者,挑选电动自行车电池首先要看电池容量、行驶里程和使用寿命。要尽量选择知名品牌,并注意查看电池出厂日期及是否原装配套。 ●使用电池要注意:不要长时间充电;电动自行车电池与手机电池不一样,不要等用完再充,使用到50%至70%时就要充电了;充电时,要把电源开关关上。 ●目前,电动自行车90%都使用铅酸电池,电池内的酸液含有大量的铅,随意倾倒会污染环境。 ■一些酸量超标、酸比重过大的电池,往往标示的容量很大,但一般使用三四个月后,其容量便迅速衰减。 去年8月,殷先生在南京一家商场花1588元购买了一辆电动自行车。几个月后的一天,殷先生骑着这辆车外出,没跑多远就发现没电了。他很纳闷,因为电池是出门前才充的电。随后几天,同样的事接连发生。殷先生找到商场,检修人员对该车一番检查后,确认是电池出了故障。 吴女士新买的电动自行车第一个月行驶正常。可一个月以后,吴女士发现电池耗电量逐渐加大,有时充4个小时的电,只能行驶几公里路程。经维修人员检查,鉴定为电池有问题,并当场为她更换了新电池。可新换电池后,情况却一点儿没改变。不光是每天需要充电,有时早上骑着车上班去,下午回家的路上电池就罢了工。 据各地消费者维权部门统计显示,每年有关电动自行车的投诉中,80%左右都是对电池的投诉。反映出来的问题主要有:一是虚假标示,夸大电池容量。有的标称充一次电能行驶40公里,实际只有20公里。二是充电器不配套,缩短了电池使用寿命。三是个别厂家或售后服务部门将回收的旧电池翻修后当新电池卖。四是劣质电池冒充名牌电池。 电动自行车电池应由专业的电池生产厂家提供,不同品牌、不同厂家生产的电池质量优劣有别,价格也有高低之分。而一些电动自行车生产厂家恶意竞争,在产品销售上玩价格战;在生产环节则偷工减料,采用低价购进的劣质电池组装整车。这样造出的电动自行车,往往电池质量不高,功率普遍不足。 据业内专家介绍,目前,消费者对电动自行车电池的要求一般是容量大、使用寿命长、安全性能好。在同等体积的情况下,如何增加电池容量?对这一问题,不同厂家有不同的解决方法。比如增加酸量、改进板栅合金、改进铅膏配方、调整酸的比重等。但由于改进板栅合金、改进铅膏配方等技术含量较高,一般规模的工厂没有这个能力。一些小厂往往采用增加酸量、增大酸比重等较为简单的方法。但是,酸量是应该有限额的,游离酸是不允许存在的。有游离酸的电池只能正面放置,而且容易漏酸,造成电池甚至整车的损伤。有的工厂认为增大酸比重可以提高电池的容量。的确,在电池使用初期可以达到此目的,但酸比重过大却会缩短电池寿命。一些酸量超标、酸比重过大的电池,往往标示的容量很大,但一般使用三四个月后,其容量便迅速衰减,很快便无法正常使用。 记者从中国自行车协会了解到,目前,我国还没有统一的电动自行车“三包”规定。一些地方有自己的暂时管理办法,如今年3月太原制定了《太原市电动自行车商品修理更换退货责任暂行办法》,规定电动自行车电池更换两次仍不能使用,消费者可整车退货。 ■消费者去维修部换电池,一般先问价格,很少有问品牌的。一些维修人员也就装糊涂,将低价电池以高价卖出。 “说明书上说充一次电能行驶30公里,可每次15公里不到就没电了。”王女士的电动自行车自购买之日起,电池容量就一直没能达到其标称程度。王女士找到厂家维修部,维修人员说:“电池没问题,是因为天气太凉。”可是,等天气慢慢转暖后,电池的容量却没能增加一点。感觉受骗的王女士向当地消协投诉,在消协的调解下,厂家最终承认了自己的产品质量有问题,为王女士更换了新电池。 与王女士相比,梁先生的遭遇更让人同情。 梁先生买的电动自行车使用了不到一年,电池就充不上电。购车时,商家承诺保修期一年。于是,梁先生将车推到维修部,要求免费更换电池。可是,维修人员说电池没问题,只是没电解液了,给加了些电解液就算了事。然而,车骑了没几天,电池又充不上电了。再找维修部,对方又给加了些电解液。几个回合下来,一年保修期到。这时,维修人员经过一番“仔细”检查后,得出结论:电池真的有问题。梁先生只得乖乖地掏腰包换了一组新电池。明明知道受骗,可因为上几次维修都没有记录,无凭无据,梁先生只好自认吃哑巴亏。 电动自行车电池品牌很多,市场上常见的就有十几种。好一些的电池和差一些的电池价格相差100元左右。一位修车工人说,一般消费者去维修部换电池,主要都是问换一组电池多少钱,很少有问品牌的。一些维修人员也就装糊涂,将低价电池以高价卖出。更有一些维修部将回收的旧电池翻新后,当新电池换给消费者。 这位修车工人还提醒消费者,旧电池可以回收,根据不同型号,每组回收价在40元至120元之间。一些维修部往往是客人不问,绝不主动告诉,而将客人换下的旧电池免费据为己有。 有关专家提醒消费者,购买电动自行车首先要注意电池容量、行驶里程和使用寿命。 要尽量挑选知名品牌的电池;要注意查看电池出厂日期及是否原装配套。单独购买电池时,一定要索取正规发票; 在“三包”期内电池出现质量问题,要抓紧时间与商家协商解决。协商不成,要及时到相关部门投诉;进行电池维修、更换时,一定要问清品牌,并要求相关人员在保修单上如实填写。

  • 电动车起火的几个阶段与应对策略

    电动汽车由于使用锂电池,存在一定的起火风险,电池起火事件也屡见不鲜,由于人们环保意识增强以及政府大力扶持,电动汽车销量逐年攀升,每个电动汽车司机都应该有科学应对电池起火的意识。以与大家分享锂电池起火的几个阶段。[b]一、[b]过热警告[/b][/b]锂电池在起火之前会发热,大部分电动汽车的电池管理器都有温度检测报警功能,电动汽车仪表上有一个故障灯用于警示电池过温,不同品牌的电动汽车的高温故障灯不一样,但基本上背景是一个电池符号,外加一个警示符号。如果发现仪表上有这种故障灯,一定要尽快到4S店检测。电池过热情况在快充和夏季高温时比较容易发生,高温会触发电池管理保护机制而切断整车高压,如果你的电动汽车经常出现莫名其妙的断电,那就一定要注意是不是电池过温导致的。电池发热是动力电池发生事故之前的重要信号,一定要引起足够的重视,尽早发现尽早处理,可以避免人身伤害和经济损失。[b][b]二、释放烟雾[/b][/b]当锂电池内部短路已经不可控时,电解液受热气化分解,最终由于压力太大导致电池外壳破裂,高压气体从外壳破裂处喷出,气体很快扩散到电池包薄弱处,在车内、底盘可见烟雾。如果发现电动汽车内部出现不明烟雾,应该立即停车并迅速离开,一般锂电池从释放烟雾到起火只有数十秒时间,烟雾中含有的电解液蒸汽、酸性气体对人体有害,少量吸入会刺激呼吸道粘膜,大量吸入会导致中毒。因此,在发现电动汽车出现冒烟的情况,一定要迅速远离事发地点,等待专业的消防力量去处理。[b][b]三、出现明火[/b][/b]当车内或底盘开始喷出明火时,说明电动汽车的动力电池已经完全失控,故障的电池已经将火势波及到其它正常单体,已经起火电池开始引燃周围其它电池,导致火势越来越猛烈,高温迅速将正常的电池破坏,电池内的易燃物剧烈燃烧并向外喷出火焰。在电池已经出现明火的情况下,个人或专业消防已经无法控制局面,由于火源在电池包内部,几乎没有办法可以控制火势,消防部门对于电动汽车起火的惯用做法是任其燃烧,同时建立隔离区防止火势蔓延到周围环境和车辆。[b][b]四、发生爆炸[/b][/b]爆炸是剧烈燃烧的一种表现形式,爆炸由膨胀的单体锂电池瞬间炸裂导致,爆炸产生的能量会引爆其它膨胀的单体电池,导致爆炸愈演愈烈,对周围车辆和人员造成威胁。一旦电动汽车电池发生爆炸,意味着电动汽车彻底报废。电池爆炸是电动汽车最为严重的极端事故,客观地说,目前市面上发生的电动汽车电池爆炸事故远比我们从新闻中看到的多,如果不幸碰上类似事故,我们需要做的就是远离事故现场。[url=http://news.isweek.cn/wp-content/uploads/2020/04/%E5%9B%BE%E7%89%8719.png][img=图片1,470,279]http://news.isweek.cn/wp-content/uploads/2020/04/%E5%9B%BE%E7%89%8719.png[/img][/url]目前锂电池产业逐渐形成增加一道防火墙的安全意识,采用气体传感器来监测锂电池起火,锂电池起火前通常会产生大量一氧化碳,因此监控CO的浓度无疑是一种有效的解决方案。采用此种方案,通常对CO传感器的灵敏度、可靠性等要求比较高,在此,工采网推荐一款可靠的CO传感器TGS5141,该传感器具有灵敏度高、可靠性好、寿命长等优点,非常适用于电动车起火检测。[b][b]TGS5141的基本参数:[/b][/b]检测对象:一氧化碳检测范围:0~5000ppm响应时间:60s预期寿命:10年温度范围:-20~70˚ C湿度范围:10~95%RH(不结露)[b][b]TGS5141的优点:[/b][/b]体积小、零功耗、寿命长;对CO的选择性、重复性好;对CO浓度线性输出特性好;满足UL2034、EN50291认证;TGS5141具体积小、功耗低、寿命长等优势,非常适合用于高集成、电池供电产品,不仅可以用于锂电池生产、存储环境,也可以用于新能源汽车等产品应用端,TGS5141对CO灵敏度非常高,而且对甲烷、酒精等可燃气体抗干扰能力强,保证了电池起火检测的准确性。

  • 电动式转速仪

    电动式转速仪由小型交流发电机、电缆、电动机和磁性表头组成。小型交流发电机产生交流电,交流电通过电缆输送,驱动小型交流电动机,小型交流电动机的转速与被测轴的转速一致。磁性转速头与小型交流电动机同轴连接在一起,磁性表头指示的转速自然就是被测轴的转速;电动式转速,异地安装非常方便,抗振性能好,广泛运用于柴油机和船舶设备。

  • 对高、低压电动机过热保护

    1.高压电动机过热保护 JW1型双金属温度继电器由测温元件(温控管)及执行元件(出口继电器)两部分组成。温控管用双金属片作为感温元件,用三只温控管串联对称埋人电动机定子绕组端部,并用环氧树脂胶粘牢。将连接导线(用屏蔽导线,屏蔽层与电动机外壳相接)引至电动机高压控制柜。由于JW1型专用继电器容量较亦选用Jwl型双金属温度表继电器。其组成结构及工作原理与高压电动机过热保护装置基本相同。不同之处为选择执行继电器时应选用交流操作的中间继电器。其电压线圈额定值与电动机控制回路电压相一致。可选用DZJ-204X(线圈电压-220V,线圈流0. 5A)间继电器。其二利用执行继电器常闭触点与电动机运行接触器线圈相串联。电动机正常运行时温控管触点开启,中间继电器不动作,而当电动机温度达到温控管动作整定值(该电动机为F级绝缘,为安全起见,实际选用动作值为105度的温控元件)时,温控管触点闭合。此时,执行继电器线圈得电吸合,常闭触点打开,切断电动机主回路接触器电源,使电动机退出运行,达到保护电动机的目的。2.温控管动作整定参考值及执行继电器选择原则 (1)温控管动作整定参考值温控管动作值应与电动机绝缘等级所能承受的最高温度相适应。对于电动机各种不同绝缘等级,在选用温控管时建议采用以下范围内的元件,即A级选用85-95~C,E级选用95100℃,B级选用100-105℃,F级选用120-125℃(2的温控元件。但为安全可靠起见,对温控管动作值选择时最好降低一级使用,以确保电动机安全。同时;也应考虑电动机正常工作温度,因此选择温控管动作值应与所配电动机的绝缘等级及使用环境等因素综合全面考虑,选择最佳动作值来决定温控管的动作整定范围。 (2)执行继电器选择原则 ①由于温控管双金属片触点容量很小,其额定电流在60mA以下,所以执行继电器动作额定电流应选择≤60mA。当控制回路电流很小,满足原配JW1型执行继电器的要求时,也可用原配继电器。因此,选择执行继电器应视实际情况来决定。 ②继电器额定电压应与电动机控制回路电压等级相一致,在交、直流操作情况下其额定电压一般应选择220V似下的电压等级。 ③继电器常开、常闭触点容量应满足控制回路电流的要求。3.温控管安装注意事项 (1)温控管一般采用埋人式安装,安装前应对温控管进行模拟试验,以确定其动作的可靠性。 (2)温控管一般选用3只串联对称埋人电动机定子绕组端部,并固定牢固。 (3)连接导线应选择铜一占线。高压电动机内导线用屏蔽线,屏蔽层与电动机外壳可靠连接,以防感应电压。为了加强导线与高压电动机端部绕组间的绝缘强度,在屏蔽线外部紧密缠绕三层薄云母带,云母带外缠绕一层白纱带,外刷环氧树脂漆一道,烘干即可。低压电动机用BV-105℃耐温线。导线应与温控管管脚紧密连接。电动机内部的连接导线应套上耐温的黄蜡软管,导线绝缘合格,固定平整可靠.

  • 热电偶温度计的应用范围及工作原理介绍

    热电偶是一种感温元件。它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。下面我们来了解下热电偶温度计的工作原理及应用范围。  一、热电偶温度计的工作原理及应用范围    热电偶温度计的工作原理丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。国能仪表专业生产压力表:压力表,精密压力表,不锈钢压力表,双针压力表,膜盒压力表,隔膜压力表、耐震压力表,电接点压力表,防爆电接点压力表等系列压力表。    二、热电偶温度计的应用范围    采用双金属温度计、热电偶或热电阻一体化温度变送的方式,既满足现场测温需求,亦满足远距离传输需求,可以直接测量各种生产过程中的-80-+500℃范围内液体、蒸气和气体介质以及固体表面测温。    用途:用于测量各种温度物体,测量范围极大,远远大于酒精、水银温度计。它适用于炼钢炉、炼焦炉等高温地区,也可测量液态氢、液态氮等低温物体。    上述的内容就是热电偶温度计的工作原理及应用范围,常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。

  • 电动二通O型球阀的适应范围

    电动二通O型球阀采用一体化结构,与R等角行程电动履行机构相配,有输入节制灯号记号(4~20mADC或1-5VDC)及单相电源便可节制运转,存在功效强、体积小、精练宜人、性能靠得住、配套简略、通顺能力大、出格合适于介质是黏稠,含颗粒,纤维性质的场合 电动二通O型球阀采用一体化结构,与R等角行程电动执行机构相配,有输入控制信号(4~20mADC或1-5VDC)及单相电源即可控制运转, 气动球阀具有功能强、体积小、轻便宜人、性能可靠、配套简单、流通能力大、特别适合于介质是粘稠,含颗粒,纤维性质的场合。目前该阀广泛应用于食品、环保、轻工、石油、造纸、化工、教学和科研设备、电力等行业的工业自动控制系统中。

  • 电动车三包规定亟待出台

    今年3月,工商部门就公布了本市流通领域电动自行车及车用动力电池质量监测结果,5批次样品不达标。但是记者调查发现,由于目前我国还没有针对电动自行车的“三包”政策,消费者维权存在一定困难。 新买的电动自行车,商家当时明明说一次充满电可以行驶60公里,可是每次骑不到40公里就没电了。”日前,市民田先生给本报打来电话称,一个月前在商家极力推荐下,自己购买了一款宣称行驶里程更远的48V电动自行车,可谁知实际里程和商家的说法相差这么远,感觉被忽悠了。  记者注意到,电动自行车里程“打折”的现象并非个例,今年3月,工商部门就公布了本市流通领域电动自行车及车用动力电池质量监测结果,5批次样品不达标。但是记者调查发现,由于目前我国还没有针对电动自行车的“三包”政策,消费者维权存在一定困难。  现象电动车上路频“偷懒”  记者走访看到,商家销售电动自行车时都会强调两个重要指标,骑行速度和行驶里程。对于里程“打折”的现象,不少销售人员称,这很常见,不必大惊小怪。并说,影响行驶里程的因素很多,如电池新旧程度、实际负载重量、路面是否平坦、风速风向、启动次数、轮胎是否充足气等。  有着多年维修电动自行车经验的马师傅透露,目前市面上销售的电动自行车主要为36V、48V和60V三种,如果是正规厂家质量合格的产品,以48V为例,充一次电可以行驶50公里左右。但一些作坊式厂家生产出来的产品质量并不可靠,商家也往往用理论上的最大值和厂家模拟理想状态下得出的测试结果给消费者以承诺,然而在实际行驶中很难实现。“此外,电池分三个等级,新车的电池是一级,周转、备用的电池是二级,维护的电池是三级。备用电池是由旧电池拼凑而成,和新电池的质量没法比。”马师傅说。

  • 梅雨季节:电动车仪表盘、控制器等的灾难日

    汽车是娇贵的,在保养中要面对诸多问题,不仅要应对车祸这类人祸,还要抵抗地段气候的侵袭。比如说最近的梅雨。梅雨季节来了,雨中出行的确有很多不便,尤其对行驶车辆的车主来说。下雨路上总是会有积水,而这也经常会导致很多车辆熄火。电动车能够在积水中行驶么?暴雨对电动车有什么影响? 很多人印象里都会有电动车在积水中穿行的画面,电动车为何能够在积水中行驶而不会像汽车那样容易熄火呢?其实电动车生产厂家会根据行业标准,会对电动车进行防水、防潮、绝缘处理,这就是为什么我们看到很多电动车能够在水中短时间潜行。 一般来说,电动车仪表盘、控制器、蓄电池、电动机最怕水。仪器仪表供应商也会告知这类情况。当电动车后轮的电动机完全没入水中后,短时间内不会造成故障。而当仪表盘如果没入水中后,电动车就很难行驶了。因为电动车的转把是通过仪表系统中的一些线路和控制器建立连接的,因此仪表盘受潮会导致电动车自动断电保护控制器。 尽管电动车在积水中短时间行驶不会趴窝,但是这并不代表对电动车没有影响。电动车上时间泡在水中,会使电动机受到腐蚀,传感器损坏、蓄电池电容量严重下降等。同时电动车内部电子器件也很容易因受潮而损坏。因此,还是爱护你的电动车吧。

  • 市场监管总局发布电动自行车等5类产品消费提示

    在“315”国际消费者权益日来临之际,市场监管总局发布电动自行车、电动自行车头盔、家用电磁灶、移动电源和电子门锁5类产品消费提示。希望通过介绍以上产品选购和使用常识,帮助广大消费者科学购买和使用相关产品,防范可能发生的安全风险。市场监管总局将继续聚焦公众关心关注的消费品,加强产品质量安全监管,切实维护消费者合法权益。  电动自行车属于非机动车,是以车载蓄电池作为辅助能源,具有脚踏骑行能力,能实现电助动或电驱动功能的两轮自行车。消费者在购买和使用时应注意以下几点:  一、选购常识  1.选择信誉良好、证照齐全的正规商家购买电动自行车,同时记得索要发票,这是日后消费者维权的重要凭证。  2.电动自行车依法实施强制性产品认证(CCC认证),需查看产品的CCC认证证书以及产品合格证信息,并与实物进行核对。  3.注意查看电动自行车电池是否具备欠压、过流保护和短路保护功能,仔细检查随机附件是否包括说明书、合格证、用户警示说明等。  4.确认产品具有脚踏骑行能力,车载蓄电池是作为辅助能源,且标称电压应小于或等于48V。  二、使用常识  1.使用前仔细阅读产品说明书,按照说明书要求正确使用电动自行车。  2.充电时应采用原车的配套充电器,严禁混用不同电池种类的充电器。  3.电动自行车充电应远离易燃易爆物品,请勿在低温、高温环境或室内、楼梯间、过道充电,不能飞线充电或一板多充。充电过程中,严禁在充电器上覆盖任何物品。  4.在接通或断开充电器与电池的连接前,先断开电源。若充电指示已完成,应及时取下充电器,防止过充。  5.行驶中,不要将充电器放在车上,避免路面颠簸导致充电器内部发生短路,充电时引起自燃 避免在雨天、积水路段行驶,以防电机进水,充电时短路着火。  6.电动自行车骑行结束后,电池需冷却20分钟以上,待恢复正常温度再进行充电。  7.经常检查电池是否有鼓包现象,充电器是否完好,如需更换,请选择电动自行车说明书上配套的型号。  8.电动自行车长时间不使用时,建议定期对电池进行充电,以保持适当的电荷水平。  电动自行车头盔消费提示  电动自行车头盔是交通事故中降低乘员头部伤害程度的装具,一般由壳体、缓冲层和佩戴装置等组成。消费者在购买和使用时应注意以下几点:  一、选购常识  1.选购专用头盔。驾乘电动自行车时应佩戴电动自行车头盔,不要购买和使用自行车、滑板、轮滑等运动头盔或用安全帽替代电动自行车头盔。  2.查看重要信息。购买时,注意查看产品名称、厂名厂址、执行标准、产品型号规格、生产日期、使用说明等信息是否齐全。选购执行标准符合GB 811-2022《摩托车、电动自行车乘员头盔》新标准的头盔,且购买时应向商家索取发票等有效凭证。  3.查看外观结构。选购时,注意壳体应坚固平滑、边沿圆钝,无不合理凸出物。缓冲层应手感密实无异味。外表面应有反光材料,以便在光线不佳时,容易被识别,减少交通事故发生。  4.提前试戴试用。要根据头围尺寸选择合适规格的产品,头盔应与头部贴合,稳定舒适并具有足够的视野,重量不宜过重。注意头盔的壳体和缓冲层要能够覆盖额头至后脑的主要保护区域 佩戴装置应牢固,且不会因为误操作而被打开。如果有护目镜,应有卡槽等定位功能,打开后不应自行滑落。  二、使用常识  1.正确佩戴。使用前仔细阅读产品说明书,按照说明书中的使用条件和佩戴方法正确使用 使用时应系紧系带,对于有调节器的头盔应将调节器旋紧,直到头盔不晃动,按要求确认头盔是否戴牢、系带是否紧实、卡扣是否松动等。  2.注意保管。日常存放时避免长时间暴晒。在清洁时,不要用有腐蚀性的溶剂擦洗头盔外表面。  3.定期更换。头盔如果发生过一次较大撞击事故或有破损,应停止使用。若产品说明书中有建议使用期限,超过期限应及时更换。  家用电磁灶消费提示  家用电磁灶是通过电磁感应现象产生热量而进行烹饪的厨房电器。消费者在购买和使用时应注意以下几点:  一、选购常识  1.通过正规渠道购买。选择信誉良好、证照齐全的正规商家,注意查看产品名称、制造商名称、额定电压或额定电压范围、额定输入功率、电源性质符号等产品信息,并注意看产品是否具有能效标识。  2.家用电磁灶依法实施强制性产品认证(CCC认证),应选购有CCC标志的产品。购买时应向经营者索取发票或其他购物凭证,作为日后维权的重要凭证。  3.电磁灶外观应光洁、无变形、毛刺、无明显划痕等。  二、使用常识  1.使用前仔细阅读产品使用说明书,按照使用说明书要求正确操作和使用产品。  2.使用时将电磁灶水平放置于稳定台面,避免放置在燃气灶、电炉、金属台面等物品上面,远离易燃物品和燃气灶等高温发热器具,并保持周围空气通畅。  3. 使用时避免超负荷用电,避免锅具承载过重,禁止锅具干烧。  4. 使用过程中避免将手或其他物体放置在电磁灶加热区域,以免烫伤或过热引起火灾风险。  5. 清洁时需切断电源,避免用水直接冲洗,防止进风口和排风口进水而损坏电磁灶。  移动电源消费提示  移动电源,俗称“充电宝”,是由锂电池或电池组、相应的电路及外壳组合而成,可以提供稳定直流输出的电源系统。消费者在购买和使用时应注意以下几点:  一、选购常识  1.选择信誉良好、证照齐全的正规商家购买。注意查看产品名称、型号,制造商名称、商标或识别标志,额定输入电压及电流、额定输出电压及电流等产品信息。  2.购买移动电源时,应选购执行有关强制性国家标准的产品,向经营者索取发票或其他购物凭证,作为日后维权的重要凭证。  3.检查产品外观。产品表面应清洁,无明显变形,无机械损伤,接口触点无锈蚀。  二、使用常识  1.使用前仔细阅读产品使用说明书,按照要求正确操作和使用。  2.充电时,检查充电口是否接触良好,放置于远离易燃易爆物品的地方进行充电。  3.充满电后应及时拔下充电插头。  4.使用时若发现移动电源、接口、充电线等异常发热,应立即停止使用。  5. 如移动电源不慎跌落或撞击,检查其外壳是否有开裂、鼓胀,内部是否有松动器件产生异响,如发生此类现象,应停止使用。不要私自拆卸、改装、维修移动电源。  6. 移动电源长时间不使用时,置于常温干燥处,防止接口与其他金属物品接触发生短路或异常放电。  7.废旧的移动电源应按环保和垃圾分类要求,置于电池类产品的回收箱或有害垃圾分类箱,不可随意丢弃。  电子门锁消费提示  电子门锁因其智能、便捷、安全等优点受到广大消费者青睐,消费者在购买和使用时应注意以下几点:  一、选购常识  1.购买电子门锁时注意查看产品标签上产品名称、生产厂名厂址、执行标准等内容是否完整,产品合格证、说明书、保修单等是否齐全,购买时应向商家索取发票等有效凭证,拒绝购买“三无”产品。  2.选购符合国家标准GB 21556-2008《锁具安全通用技术条件》的产品。  3.选购具有应急开启功能的电子门锁,以便应急情况下使用。  4.选购具有输入错误报警和防破坏报警功能的电子门锁。当连续多次实施错误操作或防护面板遭受外力破坏时,电子门锁应有相应报警信号提示。  5.选购时关注电子门锁使用寿命。  二、使用常识  1.首次安装电子门锁后,应修改默认密码,避免使用连续数字或相同数字的密码,以防不法分子非法打开门锁。  2.开启电子门锁组合验证的开锁方式。比如,采用“密码+指纹”、“密码+刷卡”、“人脸+指纹”等双重验证方式。  3.使用信息识别卡开锁功能的电子门锁,应妥善保管好信息识别卡 使用指纹开门功能的电子门锁时,应留意是否存在可疑痕迹或划痕,防止被非法读取和复制。  4.定期检查电子门锁电量,及时充电或更换电池,检查锁芯孔和应急充电口是否堵塞。  5.若使用过程中出现故障,切勿自己拆卸,需联系专业人士上门维修。  6.妥善保管应急钥匙,以备不时之需。[size=14px][color=#707d8a][ 来源:市说新语 ][/color][/size][size=14px][color=#707d8a][i]编辑:张圣斌[/i][/color][/size]

  • 钳形表的工作原理

    钳形表的工作原理钳形电流表一般可分为磁电式和电磁式两类。其中测量工频交流电的是磁电式,而电磁式为交、直流两用式。本文主要介绍磁电式钳形电流表的测量原理和使用方法。  1.磁电式钳形电流表结构  磁电式钳形电流表主要由一个特殊电流互感器、一个整流磁电系电流表及内部  线路等组成。一般常见的型号为:T301型和T302型。T301型钳形电流表只能测量交流电流,而T302型即可测交流电流也可测交流电压。还有交、直流两用袖珍钳形电流表,如:MG20、MG26、MG36等型号。T301型钳形表外形如图1所示。它的准确度为2.5级,电流量程为:10 A、50 A、250 A、1000 A。  2.钳形电流表的工作原理  钳形表的工作原理是:建立在电流互感器工作原理的基础上的,当握紧钳形电流表扳手时,电流互感器的铁心可以张开,被测电流的导线进入钳口内部作为电流互感器的一次绕组。当放松扳手铁心闭合后,根据互感器的原理而在其二次绕组上产生感应电流,电流表指针偏转,从而指示出被测电流的数值。  值得注意的是:由于其原理是利用互感器的原理,所以铁心是否闭合紧密,是否有大量剩磁,对测量结果影响很大,当测量较小电流时,会使得测量误差增大。这时,可将被测导线在铁心上多绕几圈来改变互感器的电流比,以增大电流量程。此时,被测电流Ix应为:  式中,Ia为电流表上读数;N为缠绕的圈数。  3.钳形电流表的使用步骤  (1)根据被测电流的种类电压等级正确选择钳形电流表。一般交流500V以下的线路,选用T301型。测量高压线路的电流时,应选用与其电压等级相符的高压钳形电流表。  (2)正确检查钳形电流表的外观情况,钳口闭合情况及表头情况等是否正常。若指针没在零位,应进行机械调零。  (3)根据被测电流大小来选择合适的钳型电流表的量程。选择的量程应稍大于被测电流数值。若不知道被测电流的大小,应先选用最大量程估测。  (4)正确测量。测量时,应按紧扳手,使钳口张开。将被测导线放入钳口中央,松开扳手并使钳口闭合紧密。  (5)读数后,将钳口张开,将被测导线退出,将档位置于电流最高档或OFF档。  测量实例:测量运行中笼型异步电动机工作电流。根据电流大小,可以检查判断电动机工作情况是否正常,以保证电动机安全运行,延长使用寿命。首先正确选择钳型电流表的电压等级,检查其外观绝缘是否良好,有无破损,指针是否摆动灵活,钳口有无锈蚀等。根据电动机功率估计额定电流,以选择表的量程。测量时,可以每相测一次,也可以三相测一次,此时表上数字应为零,(因三相电流相量和为零),当钳口内有两根相线时,表上显示数值为第三相的电流值,通过测量各相电流可以判断电动机是否有过载现象(所测电流超过额定电流值),电动机内部或电源电压是否有问题,即三相电流不平衡是否超过10%的限度。  4.使用钳型表时应注意的问题  (1)由于钳型表要接触被测线路,所以测量前一定检查表的绝缘性能是否良好。即外壳无破损,手柄应清洁干燥。  (2)测量时,应带绝缘手套或干净的线手套。  (3)测量时,应注意身体各部分与带电体保持安全距离(低压系统安全距离为0.1~0.3 m)。  (4)钳形电流表不能测量裸导体的电流。  (5)严格按电压等级选用钳形电流表:低电压等级的钳形电流表只能测低压系统中的电流,不能测量高压系统中的电流。  (6)严禁在测量进行过程中切换钳形电流表的档位;若需要换档时,应先将被测导线从钳口退出再更换档位。

  • 实验室电动移液器有哪些特点?

    实验室电动移液器有哪些特点?

    实验室[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]不仅容易“撒手没”还很“费手”而这款力辰[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]电动移液器[/color][/url]适合简单的移液、分液实验操作生物、化学、药物实验室的朋友们可以用科研院所、高校、医院等等也能适用[img=,300,400]https://ng1.17img.cn/bbsfiles/images/2023/02/202302111322085337_9100_5522334_3.jpg!w690x920.jpg[/img]【人性化设计】◇ 根据人体工程学原理,吻合手握式设计,即使长期使用也能操作自如。◇ 包含支撑架,可放松手部,还可防治[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]污染,确保安全可靠舒适地操作。【功能强大】◇ 指尖控制的吸液和分液按钮,保证了移液的准确性◇ 大功率马达可快速充满100ml液体◇ 吸液端具有过滤膜,防止吸液过猛引起过吸而损坏电机,吸液端及过滤膜可高温灭菌。◇ 采用PVDF材料,耐腐蚀◇ 可更换的锂电池使用时间长,可间歇工作8小时,充电时间2-3小时。◇ 两种排液模式:重力自然流出和动力泵出模式[img=,300,400]https://ng1.17img.cn/bbsfiles/images/2023/02/202302111322266828_8462_5522334_3.jpg!w690x920.jpg[/img]【加分项】◇ 液晶大显示屏显示6个速度档和电量信息◇ 有电力不足时警告功能◇ 适用0.1-100ml移液管◇ 可配合5mL、10mL吸头使用【力辰】深耕实验室通用仪器设备领域12载,自主研发,生产,销售,服务;产品齐全,专业,超值,高效

  • 电动微操作仪优势特色及详细参数

    [url=http://www.f-lab.cn/micromanipulators/micromanipulator-3.html][b][b]电动微操作仪[/b][/b][/url]是德国制造的高精度[b]电动显微操作仪[/b],具有德国精密制造的先天优势,采用步进电机驱动使用,电动控制的精度较高,采用优质电极,操作平滑而无电子噪音,可达亚微米精度。[url=http://www.f-lab.cn/micromanipulators/micromanipulator-3.html][b]电动微操作仪[/b][/url]特点采用步进电机驱动使用,电动控制的精度较高,采用优质电极,操作平滑而无电子噪音,可达亚微米精度。配备有良好的控制器,最小步长高达0.01微米,这种极小的步进长度确保步进电机的每一次运动绝对没有振动产生.结构超级紧凑,可以直接放到显微镜载物台上使用[img=电动微操作仪]http://www.f-lab.cn/Upload/micromanipulator-3.jpg[/img][b]电动微操作仪参数[/b]XYZ三轴行程:25mm分辨率:0.025微米材料:铝驱动器:2相步进电机滚珠丝杠螺距: 1mm表面:阳极镀膜,黑色漆重量:1.7kg标准配置:电动显微操作仪, 安装夹具,工具夹[b]电动微操作仪特色[/b]超级凑凑,可以直接安装到显微镜上使用X轴可倾斜90度

  • 仪器仪表技术:变频器定义及工作原理概述

    变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。变频调速是通过改变电机定子绕组供电的频率来达到调速的目的。 变频技术是应交流电机无级调速的需要而诞生的。20世纪60年代以后,电力电子器件经历了SCR(晶闸管)、GTO(门极可关断晶闸管)、BJT(双极型功率晶体管)、MOSFET(金属氧化物场效应管)、SIT(静电感应晶体管)、 SITH(静电感应晶闸管)、MGT(MOS控制晶体管)、MCT(MOS控制晶闸管)、IGBT(绝缘栅双极型晶体管)、HVIGBT(耐高压绝缘栅双极型晶闸管)的发展过程,器件的更新促进了电力电子变换技术的不断发展。20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的 PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,其中以鞍形波PWM模式效果最佳。20世纪80年代后半期开始,美、日、德、英等发达国家的VVVF变频器已投入市场并获得了广泛应用。 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。 VVVF:改变电压、改变频率 CVCF:恒电压、恒频率。各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均为400V/50Hz或200V/60Hz(50Hz),等等。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC)。 用于电机控制的变频器,既可以改变电压,又可以改变频率。 变频器的工作原理 我们知道,交流电动机的同步转速表达式位: n=60 f(1-s)/p (1) 式中 n———异步电动机的转速; f———异步电动机的频率; s———电动机转差率; p———电动机极对数。 由式(1)可知,转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在0~50Hz的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。 变频器控制方式 低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。其控制方式经历了以下四代。 1U/f=C的正弦脉宽调制(SPWM)控制方式 其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。 2电压空间矢量(SVPWM)控制方式 它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。 矢量控制(VC)方式 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流 Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。 直接转矩控制(DTC)方式 1985年,德国鲁尔大学的DePenbrock教授首次提出了直接转矩控制变频技术。该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展。目前,该技术已成功地应用在电力机车牵引的大功率交流传动上。 直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。它不需要将交流电动机等效为直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。 矩阵式交—交控制方式 VVVF变频、矢量控制变频、直接转矩控制变频都是交—直—交变频中的一种。其共同缺点是输入功率因数低,谐波电流大,直流电路需要大的储能电容,再生能量又不能反馈回电网,即不能进行四象限运行。为此,矩阵式交—交变频应运而生。由于矩阵式交—交变频省去了中间直流环节,从而省去了体积大、价格贵的电解电容。它能实现功率因数为l,输入电流为正弦且能四象限运行,系统的功率密度大。该技术目前虽尚未成熟,但仍吸引着众多的学者深入研究。其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。具体方法是:——控制定子磁链引入定子磁链观测器,实现无速度传感器方式;——自动识别(ID)依靠精确的电机数学模型,对电机参数自动识别;——算出实际值对应定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;——实现Band—Band控制按磁链和转矩的Band—Band控制产生PWM信号,对逆变器开关状态进行控制。 矩阵式交—交变频具有快速的转矩响应(2ms),很高的速度精度(±2%,无PG反馈),高转矩精度(+3%);同时还具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150%~200%转矩。

  • 电动车恒温恒湿试验箱作用

    电动车恒温恒湿试验箱作用

    电动车恒温恒湿试验箱是专门给电动车行业检查产品在不同温湿度环境下使用情况的试验设备,但实际上设备的性能和标准试验箱几乎都是相同的,可能就是设备的体积更大一些。而现在国内能够出售这款设备的厂家数量也有很多,但实际上真正能够生产出高质量设备的厂家数量并不多。[align=center][img=,690,517]http://ng1.17img.cn/bbsfiles/images/2018/06/201806081411594590_6583_3222217_3.jpg!w690x517.jpg[/img][/align]因为很多厂家为了能够获得更多利润,放弃了产品的研发创新工作,试验箱质量、性能的提高全靠借鉴国外的试验设备。但是国内很多厂家在生产时都不愿意使用优质的零配件和控制系统,所以导致出售的设备质量并不是非常可靠,不过这些厂家会为了吸引用户降低设备的价格,如果用户因为他们价格低廉就购买了他们的试验设备,那么可能在之后使用过程中设备会经常出现故障,让用户只能联系生产厂家让技术人员上门处理之后才能继续使用。恒温恒湿试验箱在电动车行业中有着非常重要的地位,所以大家不要因为价格便宜就轻易选择,因为这样非常容易耽误用户的时间和精力,而且还有可能给企业造成无法挽回的损失。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制