当前位置: 仪器信息网 > 行业主题 > >

静电迁移率分析仪原理

仪器信息网静电迁移率分析仪原理专题为您提供2024年最新静电迁移率分析仪原理价格报价、厂家品牌的相关信息, 包括静电迁移率分析仪原理参数、型号等,不管是国产,还是进口品牌的静电迁移率分析仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合静电迁移率分析仪原理相关的耗材配件、试剂标物,还有静电迁移率分析仪原理相关的最新资讯、资料,以及静电迁移率分析仪原理相关的解决方案。

静电迁移率分析仪原理相关的论坛

  • 薄膜综合物性分析仪(导热,赛贝克,电阻率,霍尔,迁移率

    薄膜综合物性分析仪(导热,赛贝克,电阻率,霍尔,迁移率

    薄膜综合物性分析仪(导热系数,电导率,电阻率,赛贝克系数,霍尔系数,迁移率 载流子浓度 发射率)同步测量苏需要的热物性参数,消除样品的几何尺寸,样品物质组分和热分布不均的影响,结果非常具有可靠性。可测量30nm-30μm的涂层与薄膜样品,样品面积约25mm²采用芯片式设计,样品于传感器紧密接触,构成一个缩小的热带发导热测量模型,可配置锁相放大器,以适应3ω法对样品的in-plance和cross-plance导热进行测量。可以适应不同材质样品。无论是金属,陶瓷,半导体等无机薄膜还是有机薄膜,都可以用TFA测量模块化设计, 根据需求,添加测量模块。1:瞬态导热测量磨坏:锁相放大器 配置3ω测量单元,可测平面,交叉面导热系数,比热等2: 霍尔效应测量模块: 配置磁场单元,可测霍尔电压,迁移率,载流子浓度。3 低温附件模块:-150°-400°C 样品两侧均安装LN2管道, 有利于样品两侧温度控制。导热系数:稳态热带法,3ω法。电阻于霍尔系数:范德堡法赛贝克:静态直流法http://ng1.17img.cn/bbsfiles/images/2016/01/201601151255_581948_3060548_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/01/201601151255_581949_3060548_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/01/201601151255_581950_3060548_3.png

  • 求助离子迁移谱与飞行时间质谱的区别

    离子迁移谱和飞行时间质谱 都是依靠时间来确定物质,前者依靠迁移率来分辨,后者依靠质荷比判定。哪位分析下二者的区别,是不是飞行时间质谱在常压下,原理就与离子迁移谱一样了。

  • 【讨论】离子迁移检测技术在国内的发展与应用

    离子迁移谱技术是20 世纪 60 年代发展起来的一种痕量探测技术,国外 20 世纪 80 年代将 IMS 技术应用于现场分析检测。 IMS 技术的原理是通过气态离子的迁移率来表征各种不同的化学物质,达到对各种物质分析检测的目的,具有极高的探测灵敏度。 离子迁移率谱仪方法(IMS)是一种高效的毒品、爆炸品、生化武器等的检测方法,可以在秒级别时间内对邮件、包裹等物品内是否有爆炸物品、毒品等做出判别,同时能对人体是否隐匿爆炸物品直接进行检测,有效提高打击恐怖活动力度,确保人民生命和财产安全。因此IMS技术为各级安全机构的检测,提供了很好的检测手段。可广泛应用于机场、海关、边防、车站、码头及体育场馆等反恐缉私场所本公司对离子迁移谱仪在国内的使用情况非常感兴趣,希望使用离子迁移谱仪的用户或有兴趣的朋友共同探讨,email:[email]xiaoyixiao0@163.com[/email],QQ:543694183欢迎大家的参与和讨论。

  • 【求助】离子迁移谱仪用户调查

    离子迁移谱技术是20 世纪 60 年代发展起来的一种痕量探测技术,国外 20 世纪 80 年代将 IMS 技术应用于现场分析检测。 IMS 技术的原理是通过气态离子的迁移率来表征各种不同的化学物质,达到对各种物质分析检测的目的,具有极高的探测灵敏度。 离子迁移率谱仪方法(IMS)是一种高效的毒品、爆炸品、生化武器等的检测方法,可以在秒级别时间内对邮件、包裹等物品内是否有爆炸物品、毒品等做出判别,同时能对人体是否隐匿爆炸物品直接进行检测,有效提高打击恐怖活动力度,确保人民生命和财产安全。因此IMS技术为各级安全机构的检测,提供了很好的检测手段。可广泛应用于机场、海关、边防、车站、码头及体育场馆等反恐缉私场所 本人对离子迁移谱仪在国内的使用情况非常感兴趣,希望使用离子迁移谱仪的坛友能支持我的问卷调研,并将填好后的问卷反馈给我,email:luomeina2003@163.com,欢迎大家的参与和讨论。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=61734]离子迁移谱仪用户调查[/url]

  • 蒸汽吸附分析仪在气溶胶吸湿性研究中的应用

    [font=arial, helvetica, sans-serif][color=#000000]大气气溶胶是指悬浮在大气中的固体和液体颗粒共同组成的多相体系。人们所处的大气环境实际就是由不同相态的颗粒物均匀分散在空气中形成的一个气溶胶体系。常见的大气气溶胶包括直接排放至大气的沙尘、道路扬尘和黑炭等一次颗粒物,以及通过化学反应形成的二次颗粒物,例如二氧化硫和氮氧化物通过大气氧化形成的硫酸盐和硝酸盐等。由于大气气溶胶的环境、气候及健康效应,在过去几十年里,对它的理化性质的研究正日益受到包括化学家、环境学家等科学家等的重视。[/color][/font][font=arial, helvetica, sans-serif][color=#000000]吸湿性是气溶胶最重要的物理化学性质之一(Tang et al., 2019a)。例如对于研究大气化学来说,吸湿性会影响实际环境条件下大气颗粒物的含水量,从而会影响颗粒物的大气化学反应活性;从大气能见度和直接辐射强迫的角度来看,在实际大气环境中,颗粒物吸水会导致其粒径增大,从而影响颗粒物的光学性质,继而影响气溶胶的消光系数、对能见度的影响以及对直接辐射强迫的影响;另外,气溶胶的吸湿性也与气溶胶颗粒物的云凝结核活性和冰核活性密切相关。[/color][/font][font=arial, helvetica, sans-serif][color=#0070c0]1. 已有吸湿性测量技术的局限性[/color][/font][font=arial, helvetica, sans-serif][color=#000000]现有研究中常用的吸湿性测量技术主要有吸湿性分级差分迁移率分析仪(H-TDMA)、电动力天平、显微镜以及红外光谱等(Tang et al., 2019a)。目前最常用的吸湿性测量技术为H-TDMA,该仪器是通过测定不同相对湿度下气溶胶的电迁移率直径来研究其吸湿性。使用该仪器对气溶胶的吸湿性进行表征时,必须假设气溶胶为球形,但某些颗粒物的形貌并不规则,例如花粉、烟炱以及矿质颗粒物等。另外,H-TDMA的测量精度较为有限,仅可测定颗粒物大于1%的直径变化。[/color][/font][font=arial, helvetica, sans-serif][color=#000000]电动力天平是通过测量单个颗粒物的质量变化来研究其吸湿性,虽然它对颗粒物的形貌没有要求,但该仪器的灵敏度同样比较有限,一般只能测量大于1%的质量变化。此外,显微镜也常用于测量颗粒物的吸湿性,它可以通过测量颗粒物的形貌变化来直接观察颗粒物粒径的大小变化从而研究其吸湿性。然而该技术同样基于球形颗粒物的假设,且灵敏度有限。另外,红外光谱是一个非常灵敏的吸湿性测量方法,该方法通过测量颗粒物中水的红外光谱来研究吸湿性,但把颗粒物中水的红外吸收光谱定量转换为颗粒物的含水量时存在一定的限制。[/color][/font][font=arial, helvetica, sans-serif][color=#0070c0]2. 蒸汽吸附分析仪[/color][/font][font=arial, helvetica, sans-serif][color=#000000]虽然目前用于颗粒物吸湿性的测量手段较为丰富,但准确测定非球形的或者吸湿性较弱的颗粒物的吸湿性仍然是一个很大的挑战。本课题组自主开发和建立了使用蒸汽吸附分析仪测量大气颗粒物吸湿性的新方法,相关研究成果由Atmospheric Measurement Techniques发表(Gu et al., 2017a)。该方法通过测定不同相对湿度下颗粒物的质量变化来研究其吸湿性,其原理如图1所示。[/color][/font][align=center][img=图片1.png]https://img1.17img.cn/17img/images/202104/uepic/616e1c5d-0f0c-45d0-8af1-47ca370a87e5.jpg[/img][/align][align=left]更多详见:[url]https://www.instrument.com.cn/news/20210420/578041.shtml[/url][/align]

  • 各种质谱仪的分析器的基础知识汇总

    分析器起着分离或区分导入离子的功能,是质谱仪的核心部件,也是我们学习和使用质谱仪必须了解掌握的知识点,今天小析姐整理了分析器:四级杆和扇形磁场部分的基础知识分享给大家,希望能对你有所帮助。[size=14px]四级杆[/size][size=14px]在1953年,西德物理科学家Wolfgang Paul和Helmut Steinwedel描述了四级杆质谱仪。[/size][size=14px]在4根平行杆之间,叠加的射频(RF)和恒定的直流(DC)电势能够作为质谱分离器,或过滤器,仅限于特点质量范围的离子,以恒定振幅振荡,能够在分析器上收集。现代仪器制造商将四级杆瞄准到特定的应用中。单四级杆质谱仪要求基质干净,以避免无用离子的干扰,表现出非常好的灵敏度。[/size][size=14px][/size][size=14px]三重四级杆或串联四级杆(参见四级杆),是将一个四级杆加到另一个附加的四级杆上,四级杆串联后能以各种方式发挥作用。一种途径是通过离子独有的质荷比(m/z)分离并检测复杂混合物中的目标离子。证实串联四级杆有效的另一途径是当与可控裂解分析联用时。这些分析通常将目标离子与其它分子(典型的气体,如氩)进行碰撞,母离子裂解成产物离子,MS/MS质谱仪通过其独特组成部分鉴别目标化合物。[/size][align=center][img]https://file.jgvogel.cn/134/upload/resources/image/234484.jpeg?x-oss-process=image/resize,w_700,h_700[/img][/align][size=14px]如上图所示,[/size][size=14px]当设置过滤某一特定离子,那么其它质量的离子则会以多种方式中丢失,比如撞击到四级杆上,或直接偏离去检测器的轨道。[/size][size=14px][/size][size=14px]四级杆分析器由四根杆组成,通常平行排列,材质为金属,比如钼合金。已投入了大量的技术和研究,设计开发四级杆。按照离子在DC和RF场中的运动,将质量分类。通过在软件上改变参数,系统可改变场强,在任何指定时间内,某一m/z值的离子被过滤掉,或通过四级杆到达检测器。[/size][size=14px][/size][color=#ff4c41][size=14px]相比于一些质谱仪的设计,比如飞行时间(TOF)质谱仪,四级杆分辨率较低。而四级杆相对简单,容易使用,是具有较高实用性的质谱仪,能以相对低的成本提供各种接口。[/size][/color][size=14px][/size][size=14px]在比较和说明MS的分析能力时,一些专业用语是必需的,在该入门指南的后续内容中将会给出完整的定义:[/size][size=14px]分辨力(通常缩写为"res"-质谱仪分离两种质量的能力):[/size][size=14px][/size][size=14px][color=#ff4c41]- 低分辨力=单位质量=1000- 较高或中等分辨力=1000到10000- 高分辨力=10000+- 非常高的分辨力=高达3-5百万Fragmentation[/color][/size][size=14px]"精确质量"(Exact Mass)是化合物质量的理论值,而准确质量(Accurate Mass)是化合物质量的测量值,有相关的误差范围,比如5ppm。准确质量也经常用于针对具体的技术,而不是测得的质量。[/size][size=14px][/size][size=14px]MS/MS - [/size][size=14px][color=#ff4c41]描述了监测前体离子或碎片向产物离子转变的多种实验(多反应监测[MRM]和单反应监测[SRM])[/color][/size][size=14px],总的趋势是在一台仪器上提高检测的选择性、专一性或灵敏度。即前后两个质量分析器,两极质谱分析在一台质谱仪器中实现。[/size][size=14px][/size][size=14px]在三重四级杆质谱仪中有3套四级杆过滤器,但是仅有第1和第3套四极杆用作质量分析器。近来的设计完全将中间设备区分开(取代早期设计的四级杆),增加了更多的功能,通常将其改称为串联四级杆。[/size][size=14px][/size][size=14px]第一套四级杆(Q1),作为质量过滤器,传输并加速选定离子,将其送向Q2(被称为碰撞室)。虽然在一些设计中,Q2类似于其它两套四级杆,[/size][size=14px][color=#ff4c41]RF施加在杆上的作用仅是传输,而不是质量选择。[/color][/size][size=14px]Q2中的压力较高,离子在碰撞室内与中性气体相碰撞。结果经CID发生裂解。碎片随后加速进入Q3,另一个质量过滤器,离子被排列后,进入检测器。[/size][size=14px][/size][size=14px]裂解CID也称为碰撞激活解离(CAD),为一种裂解机制,通过该机制在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]中,分子离子裂解,通常在真空区域经电势加速到高动能,接着与中性气体分子碰撞,比如[/size][size=14px][color=#ff4c41]氦、氮或氩[/color][/size][size=14px]。部分动能通过碰撞而转化(或内化),这引起化学键的断裂,分子离子减小形成较小的碎片。一些类似的‘特别目的'的裂解方法,包括电子转移解离(ETD)和电子捕获解离(ECD)。[/size][size=14px][/size][align=center][img]https://file.jgvogel.cn/134/upload/resources/image/234485.jpeg?x-oss-process=image/resize,w_700,h_700[/img][/align][size=14px]上面是硫丹-β产物离子质谱图。237Da的前体离子从左边进入,在MS/MS碰撞室内裂解。关于MS谱的全扫描,数据系统仅能够显示目标碎片(不是得到的所有碎片),得到相对简单的图谱。我们能控制破碎的限度,因此能选择前体离子。[/size][align=center][img]https://file.jgvogel.cn/134/upload/resources/image/234486.png?x-oss-process=image/resize,w_700,h_700[/img][/align][size=14px]这张图MRM响应(左)和SIR响应(右)的比较图表明,由于基质的化学背景,被测物即使在溶液中,也不能由SIR数据确定被测物峰。使用相同的GC/MS/MS质谱仪,选择m/z=146的丁基化离子作为前体离子,裂解该离子,得到产物离子(显示为57m/z),定量鉴别它的存在。[/size][size=14px][/size][size=14px]在一些控制工业中,为了满足阳性化合物的鉴别要求,每个MRM计为1.5"鉴别点",而每个SIR计为1.0。因此,为满足选择性要求,得到3"IPS",每个化合物需要2个MRM转换,或3个SIR。[/size][size=14px]扇形磁场[/size][size=14px]扇形磁场或扇形磁场质量分析器,是早期仪器,一直用到现今,尽管用的较少[/size][size=14px][color=#ff4c41](已被现代的能以ESI电离模式工作的质谱仪取代)[/color][/size][size=14px]。[/size][size=14px][/size][size=14px]扇形磁场弯曲成弧形离子轨道。离子的"动能与电荷"比率决定了轨道的半径,可通过电或磁场测定。较大m/z的离子比较小m/z通过的轨道路径长。通过改变磁场强度,可控制轨道路径。双聚焦质谱仪可按各种组合方式,将磁场和电场结合起来,但扇形电场后接磁场更常见。[/size][size=14px][/size][size=14px]两种场最初联用时,按照离子流出离子源的动能采用扇形电场聚焦离子。角度聚焦之前的能量聚焦,使相同质量,但分子式不同的离子实现分离。[/size][size=14px]离子阱[/size][size=14px]离子阱和其它非扫描质谱仪离子阱质谱仪的原理类似于四级杆质谱仪。不同于过滤式的四级杆质谱仪,离子阱和功能更强的离子回旋(ICR)质谱仪一样,将离子存储在三维空间中。在饱和之前,离子阱或回旋加速器将选定离子射出以进行检测。在离子阱范围内,可实现一系列实验分析,裂解目标离子,通过形成的碎片,以准确的确定前体离子。[/size][size=14px][/size][size=14px]RF电压产生的电场作用于排列成"三明治"几何构形(端盖相对的端盖电极)离子阱的两电极之间的空间。扫描RF电压,改变某离子的固有频率使其逸出。有时动态范围不宽。[/size][size=14px][/size][size=14px]离子阱对捕获存储离子的有限体积和容量,限制了该种质谱的使用范围,尤其对于复杂基质中的样品。[/size][size=14px][/size][size=14px]离子阱质谱仪于1980年推出,但是早期这类质谱仪采用内部电离,具有一定的局限性,限制了其在很多领域的应用。仅当出现外部电离技术后,这类质谱仪才得到了越来越广泛的使用。[/size][size=14px][/size][size=14px]多级碎裂的能力,从一个被测物中可衍生出更多结构信息(即,碎裂-碎片离子-选择-特定片段-碎裂,并重复这一过程)被称为MSn。[/size][size=14px][/size][size=14px]GC色谱峰不够宽,不允超过一个碎裂过程的进行(MS/MS或MS2)。离子阱质谱仪的MS/MS分析或裂解是根据时间,而不是空间,与四级杆和扇形磁场相同。因此,离子阱不能用于某些MS/MS分析,比如中性丢失和前体离子的比较。[/size][size=14px][/size][size=14px]而且,在离子阱质谱仪的MS/MS图谱中,低质量端约1/3母离子m/z的碎片离子丢失,这是离子阱设计本身造成的结果。为了抵消这一损失,一些制造商通过软件加宽扫描要求弥补了这一损失。加宽扫描要求在数据采集时转换工作参数。[/size][size=14px][/size][color=#ff4c41][size=14px]离子阱的设计设置了前体质荷比(m/z)和最低俘获碎片离子之间的比率上限,通常称为"三分之一规则"。[/size][/color][size=14px]例如,一个m/z1500的母离子,其m/z500以下的碎片离子检测不到,这大大限制了多肽的人工测序分析。当太多离子进入离子阱的空间,由于空间电荷效应,动态范围受到限制。制造商已经开发了自动扫描技术,在离子进入离子阱之前,能够对离子进行计数,或门控制允许离子进入的数量。在大量背景离子共存目标离子很少时,仍然会遇到困难。因为功能设计类似,杂交型串联质谱仪吸收了四级杆和离子阱两方面的长处,提高了灵敏度,并可以进行快速实验分析,实现两种质谱仪单独使用不能实现的功能。[/size][size=14px][/size][size=14px]这种质谱仪有时称为线性离子肼(或Q-TRAPs)。[/size][size=14px]线性离子阱质谱仪离子阱体积的增加(与三维离子阱相比),提高了动态的范围。[/size][size=14px]离子阱质谱仪不能像四级杆质谱仪那样扫描,因此使用单离子监测(SIM)或单离子记录(SIR)技术不能像四级杆和扇形质谱仪那样提高离子阱的灵敏度。[/size][size=14px][/size][size=14px]快速傅里叶变换离子回旋加速器(FTICR)具有极高的质量测量能力,能够分辨紧密靠近的质量。[/size][size=14px]虽然对大多数应用还不可行,但是14.5特斯拉的磁场能够取得超过350万的分辨率,因此能够区分质量相差小于单个电子质量的化合物。[/size][size=14px]回旋加速器采用恒定磁场,通过静电平衡作用捕获离子。[/size][size=14px]RF电压脉冲引起轨道离子运动,然后,在轨道上运动的离子在捕获单元的检测板上产生一微弱信号(离子轨道频率)。[/size][size=14px]该频率与离子的m/z成反比,信号强度与单元中该m/z离子的数量成比例。[/size][size=14px][/size][size=14px]在非常低的气压下,回旋加速器能够保持恒定的离子轨道,这样在长时间里,都能够进行超高分辨率的测量。[/size][size=14px]持续非共振,辐射(SORI)是在傅立叶变换离子回旋共振质谱技术中使用的CID技术。[/size][size=14px]在回旋加速运动中压力增加,离子被加速,引起碰撞,得到离子碎片。[/size][size=14px]离子裂解后,压力减小,恢复高真空,以分析碎片离子。[/size][size=14px]TOF质谱仪[/size][size=14px]TOF质谱仪已开发多年,因其快速、准确的电子组件和现代的电离技术(如ESI),已成为很多现代研究工作的基础。TOF质谱仪能提供准确的质量测量,误差范围是分子真实质量的几个ppm。TOF质谱仪为时间分散质量分析仪,使用时以线性方式,或需静电网格和透镜(作为反射板)的辅助。当以反射式操作时,分辨率增加,且无灵敏度的显著损失,或不需要增加飞行管(或漂移管)的大小。[/size][align=center][img]https://file.jgvogel.cn/134/upload/resources/image/234487.jpeg?x-oss-process=image/resize,w_700,h_700[/img][/align][size=14px]TOF分析通过脉冲加速一组离子到达检测器。离开离子源后,每个离子从"推进"电得到一个相同的电荷或电势,离子被加速射进超低压管。因为所有带类似电荷的离子具有相同的动能(动能=mv2,m为离子质量,v是速度),在撞击到检测器前,较低质量的离子具有较高的速度和更小的间隔。[/size][size=14px][/size][size=14px]因为质量、电荷和动能决定了离子到达检测器的时间,离子的速度可表示为v=d/t=(2KE/m)1/2。离子通过指定的距离(d)的时间(t)取决于质荷比(m/z)。[/size][size=14px][/size][size=14px]因为每次"电压推动"后,TOF测量的是所有质量数,所有相对于扫描型质谱仪,TOF质谱仪可得到非常高的灵敏度。[/size][size=14px][/size][size=14px]如今,四级杆MS系统常规扫描速度为每秒10000Da(或原子质量单位)。因此一次全扫描,即使持续时间短的一次扫描(例如,1秒钟的LC或GC峰),在每秒内捕获每个离子的次数达不到10次或更多。TOF质谱仪检测器记录离子轰击检测板的数目,轰击彼此间隔时间为纳秒级。[/size][size=14px][/size][size=14px]当直接与扫描质谱仪(比如四级杆)相比较,TOF的分辨率扩宽了动态范围,提供更高的分辨率。总的来说,当检测复杂混合物中的目标被测物时,四级杆类的仪器更灵敏感,通常是更好的定量工具。[/size][size=14px]一些仪器,像离子阱,具有组合功能,但直到杂交型质谱仪出现前,没有单个质谱仪表现出全方位的高效性能。[/size][size=14px][/size][size=14px]早期的MALDI-TOF的设计加快了离子离开离子源。[/size][size=14px]该技术分辨率相对低,准确性有限。[/size][size=14px]延迟提取技术(DE)是为MALDI-TOF质谱仪开发的一项技术,在离子形成后,加速离子在进入飞行管之前冷却"并聚焦离子大约150纳秒。[/size][size=14px]与未冷却的离子相比,冷却的离子具有较低的动能分布,当冷却离子进入TOF分析器时,降低离子时间展宽,结果增加了分辨率和准确度。[/size][size=14px]DE对大分子成效不显著(例如,蛋白质30000Da)。[/size][align=center][img]https://file.jgvogel.cn/134/upload/resources/image/234488.png?x-oss-process=image/resize,w_700,h_700[/img][/align][size=14px]适合的指定条件下(比如,无基质干扰),当选择扫描模式工作时,TOF比串联四级杆的灵敏度高很多倍,因为TOF不用‘扫描',不会牺牲"占空比"。[/size][size=14px][/size][size=14px]最后咱们聊一聊上文提到的杂交技术。[/size][size=14px]"杂交"适用于各种质谱仪设计,杂交技术是现存技术的集成,比如双聚焦、扇形磁场和近来的"前端"回旋加速的离子阱。最值得注意的一种杂交方式是四级杆飞行时间(QTOF)质谱仪,将TOF质谱仪和四级杆质谱仪组合在一起。这种是几种性能特征的最佳组合:准确的质量检测、裂解分析的功能以及高质量的定量分析。[/size][align=center][img]https://file.jgvogel.cn/134/upload/resources/image/234489.jpeg?x-oss-process=image/resize,w_700,h_700[/img][/align][size=14px][/size][size=14px]串联质谱技术的进一步发展,产生了离子迁移率测量和分离相结合的串联质谱技术技术。离子迁移率质谱法(或IMMS法,通常缩写为‘IMS')是基于多种因素的组合来区分离子的技术,这些因素包括:离子大小、形状、电荷和质量。IMMS通常在机场和手持领域的元件中使用,可对迁移率已知的小分子实现快速(20毫秒)检测:例如某些毒品和炸药的检测。当采用更高位的质谱仪,IMMS提供正交分离(对LC和MS),以及一些独特功能,包括:[/size][size=14px]- 分离异构体、同重化合物和构象异构体(从蛋白质到小分子),测定其平均转动碰撞横截面。- 增强复杂化合物的分离(通过MS或LC/MS),引起峰容量增加和样品清洁度的增加(离子的物理分离,尤其是化学噪音和干扰目标分析物的离子)。- 在结构分析研究中,通过CID/IMMS、IMMS/CID或CID/IMMS/CID等性能获得更多有用信息。[/size][size=14px][/size][size=14px]在所有的3个分析方案中,高效离子迁移率和串联质谱法的组合有助于克服分析中存在的问题,其它分析方法,包括传统的质谱分析法或[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]测试设备,可能也无法解决这些现存的问题。[/size][size=14px][/size][size=14px]结尾引用H.H.Hill Jr.等人的评论文章,比较各种类型的离子迁移率,各种被测物应用离子迁移率的益处。目前在质谱分析中,应用的4种离子迁移率分离方法:- 漂移时间离子迁移率质谱法(DTIMS)- 吸入离子迁移率质谱法(AIMS)- 差异迁移率质谱法(DMS),也称为不对称场波形离子迁移率质谱(FAIMS)- 行波离子迁移率质谱(TWIMS)[/size][size=14px]按照作者的观点,"DTIMS能提供最高的IMS分辨力,它是仅有的(IMMS)能够直接测量截面碰撞的方法。AIMS是低分辨的迁移率分离方法,但是它只能连续监测离子。DMS和FAIMS具有连续的离子监测能力,以及正交离子迁移率分离的功能,能够实现高分离选择性。TWIMS是一种新(IMMS)方法,其分辨能力相对低,但具有较好的灵敏度,能很好地与商品化的质谱仪工作结合。"[/size][align=center][img]https://file.jgvogel.cn/134/upload/resources/image/234490.png?x-oss-process=image/resize,w_700,h_700[/img][/align][size=14px]用彩球表示的,不同迁移率的无差异离子被俘获、累积,然后释放到T-波离子迁移率分离(IMS)装置中。[/size][align=center][img]https://file.jgvogel.cn/134/upload/resources/image/234491.png?x-oss-process=image/resize,w_700,h_700[/img][/align][size=14px]一旦释放进入T-波区域,行波波形驱动离子通过中性缓冲气(通常是0.5毫巴的氮气),按照离子迁移率分离离子。[/size][align=center][img]https://file.jgvogel.cn/134/upload/resources/image/234492.png?x-oss-process=image/resize,w_700,h_700[/img][/align][size=14px]离子迁移与MS联用,也应用在生物分子[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]结构的研究。Pringle等(在此引用)应用杂交型四级杆-行波离子迁移分离器-正交加速TOF质谱仪,考察了一些肽和蛋白离子的迁移率分离。将从行波(TWIMS)分离设备上获取的离子迁移率数据与使用其它类型迁移率分离器获取的数据比较表明:"当迁移率特点类似时,新的杂交技术的质谱仪提供的迁移率分离不影响质谱仪的基本灵敏度。该功能在显著分析水平上有利于样品迁移率的研究[/size]

  • 【转帖】氧分析仪原理

    常用的氧分析仪主要有热磁式和氧化锆式两种。(1)热磁式氧分析仪  其原理是利用烟气组分中氧气的磁化率特别高这一物理特性来测定烟气中含氧量。氧气为顺磁性气体(气体能被磁场所吸引的称为顺磁性气体),在不均匀磁场中受到吸引而流向磁场较强处。在该处设有加热丝,使此处氧的温度升高而磁化率下降,因而磁场吸引力减小,受后面磁化率较高的未被加热的氧气分子推挤而排出磁场,由此造成“热磁对流”或“磁风”现象。在一定的气样压力、温度和流量下,通过测量磁风大小就可测得气样中氧气含量。由于热敏元件(铂丝)既作为不平衡电桥的两个桥臂电阻,又作为加热电阻丝,在磁风的作用下出现温度梯度,即进气侧桥臂的温度低于出气侧桥臂的温度。不平衡电桥将随着气样中氧气含量的不同,输出相应的电压值。(2)氧化锆传感器式氧分析仪  氧化锆(ZrO2)是一种陶瓷,一种具有离子导电性质的固体。在常温下为单斜晶体,当温度升高到1150℃时,晶型转变为立方晶体,同时约有7%的体积收缩;当温度降低时,又变为单斜晶体。若反复加热与冷却,ZrO2就会破裂。因此,纯净的ZrO2不能用作测量元件。如果在ZrO2中加入一定量的氧化钙(CaO)或氧化钇(Y2O3)作稳定剂,再经过高温焙烧,则变为稳定的氧化锆材料,这时,四价的锆被二价的钙或三价的钇置换,同时产生氧离子空穴,所以ZrO2属于阴离子固体电解质。ZrO2主要通过空穴的运动而导电,当温度达到600℃以上时,ZrO2就变为良好的氧离子导体。  在氧化锆电解质的两面各烧结一个铂电极,当氧化锆两侧的氧分压不同时,氧分压高的一侧的氧以离子形式向氧分压低的一侧迁移,结果使氧分压高的一侧铂电极失去电子显正电,而氧分压低的一侧铂电极得到电子显负电,因而在两铂电极之间产生氧浓差电势。此电势在温度一定时只与两侧气体中氧气含量的差(氧浓差)有关。若一侧氧气含量已知(如空气中氧气含量为常数),则另一侧氧气含量(如烟气中氧气含量)就可用氧浓差电势表示,测出氧浓差电势,便可知道烟气中氧气含量。

  • 【分享】热磁式氧分析仪和氧化锆传感器式氧分析仪原理

    氧分析仪原理常用的氧分析仪主要有热磁式和氧化锆式两种。(1)热磁式氧分析仪  其原理是利用烟气组分中氧气的磁化率特别高这一物理特性来测定烟气中含氧量。氧气为顺磁性气体(气体能被磁场所吸引的称为顺磁性气体),在不均匀磁场中受到吸引而流向磁场较强处。在该处设有加热丝,使此处氧的温度升高而磁化率下降,因而磁场吸引力减小,受后面磁化率较高的未被加热的氧气分子推挤而排出磁场,由此造成“热磁对流”或“磁风”现象。在一定的气样压力、温度和流量下,通过测量磁风大小就可测得气样中氧气含量。由于热敏元件(铂丝)既作为不平衡电桥的两个桥臂电阻,又作为加热电阻丝,在磁风的作用下出现温度梯度,即进气侧桥臂的温度低于出气侧桥臂的温度。不平衡电桥将随着气样中氧气含量的不同,输出相应的电压值。(2)氧化锆传感器式氧分析仪  氧化锆(ZrO2)是一种陶瓷,一种具有离子导电性质的固体。在常温下为单斜晶体,当温度升高到1150℃时,晶型转变为立方晶体,同时约有7%的体积收缩;当温度降低时,又变为单斜晶体。若反复加热与冷却,ZrO2就会破裂。因此,纯净的ZrO2不能用作测量元件。如果在ZrO2中加入一定量的氧化钙(CaO)或氧化钇(Y2O3)作稳定剂,再经过高温焙烧,则变为稳定的氧化锆材料,这时,四价的锆被二价的钙或三价的钇置换,同时产生氧离子空穴,所以ZrO2属于阴离子固体电解质。ZrO2主要通过空穴的运动而导电,当温度达到600℃以上时,ZrO2就变为良好的氧离子导体。  在氧化锆电解质的两面各烧结一个铂电极,当氧化锆两侧的氧分压不同时,氧分压高的一侧的氧以离子形式向氧分压低的一侧迁移,结果使氧分压高的一侧铂电极失去电子显正电,而氧分压低的一侧铂电极得到电子显负电,因而在两铂电极之间产生氧浓差电势。此电势在温度一定时只与两侧气体中氧气含量的差(氧浓差)有关。若一侧氧气含量已知(如空气中氧气含量为常数),则另一侧氧气含量(如烟气中氧气含量)就可用氧浓差电势表示,测出氧浓差电势,便可知道烟气中氧气含量。[color=#fe2419]非常好的参考[/color]

  • 【第三届原创参赛】新一代液相色谱通用检测器——电雾式检测器

    【第三届原创参赛】新一代液相色谱通用检测器——电雾式检测器

    新一代液相色谱通用检测器——电雾式检测器 高效液相(HPLC)检测是一种可以通过HPLC体系将被分析物质分别分离并检测的方法。其检测原理是依据被分析物质在流动相与分离柱之间分配系数不同通过分离柱的时间不同,进而将其单独分离并检测。HPLC体系主要包括三大部分:泵、分离柱和检测器,其中检测器分为通用型和专用型。通用型检测器要求对大部分物质都有响应,专用型检测器仅对一部分物质有响应信号。随着检测技术的发展,人们对检测器的要求也越来越高。检测器的发展经历了从最初的紫外、示差、荧光到现在的电化学、蒸发光散射及本文所要介绍的电雾式检测器。1 、检测原理 第一篇有关电雾式检测器(charged aerosol detector, CAD)的论文发表于2002年,当时将该技术称为aerosol charging detector。其技术的基础是evaporative light scattering detection (ELSD)、condensation nucleation light-scattering detection (CNLSD)、electrical aerosol analyzer (EAA)三者的结合。ELSD实际上是指我们所熟知的溶剂的蒸发通过采用相当高温的短漂移管和预加热的雾化载气,或者是高导热性载气的蒸发光散射检测器,而CNLSD实际上是指利用低温蒸发室,联合盘绕的曲长漂移管和惰性载气,可以有效的蒸发大多数低挥发性的溶质的低温分流型蒸发光散射检测器。EAA是一种在70年代就发展起来的用于测量溶胶离子大小的技术。 就其检验的原理图见图一。步骤如下:HPLC洗脱液经雾化器中氮气的作用而雾化,其中较大的液滴在碰撞器的作用下经废液管流出,较小的溶质(分析物)液滴在室温下干燥,形成溶质颗粒。同时,用于载气的氮气分流形成的第二股氮气流经过电晕式装置(含高压铂金丝电极)形成带正电荷的氮气颗粒,与溶质颗粒反向相遇时经碰撞使溶质颗粒带上正电。为了消除由带有过多正电荷的氮气所引起的背景电流,在含溶质颗粒的气流流入静电检测计之前,通过一种称之为离子井的装置(带有低负电压)使迁移率较大的颗粒(即粒度较小的氮气颗粒)的电荷中和,而迁移率小的带电颗粒把它们的电荷转移给一个颗粒收集器,最后用一个高灵敏度的静电检测器测出带电溶质的信号电流。由此产生的信号电流与溶质(分析物质)的含量成正比。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191652_629334_1848528_3.jpg图一 CAD检测原理图 2003年ESA公司推出了商品化的CAD,并名称称为charged aerosol detector。2009年ESA被Dionex(戴安)收购后,又推出了CAD的新的改进型号,并结合Dionex在HPLC方面的优势衍生出了一些新的技术。2 、 特点 电雾式检测器(Corona)是新一代的通用型检测器。相对于示差和蒸发光两种通用型检测器而言,电雾式检测器具有灵敏度高、动态检测范围宽、应用范围广、重复性好、信号响应一致性好等特点。其检测原理是响应信号只与被分析物质的质量有关,而与被分析物质的化学结构无关。而对于其他选择性检测器如UV、电化学检测器,它也显示出了一定的优势。下面本文结合一些实例探讨CAD与其他各型检测器的优势和弱点。2.1 CAD VS ELSD CAD与ELSD同出一脉,都利用气溶胶的原理,所以在应用方面具有很多的相似性,但比较而言CAD的动态范围要比ELSD高一个数量级,而且灵敏度也更高,特别是同样是检测雾化的颗粒(气溶胶),他们的响应曲线理论上都不是线性的,但[font=Times

  • 【资料】气体检测仪与分析仪的原理和区别

    气体检测仪是一种气体泄露浓度检测的仪器仪表工具,主要是指便携式/手持式的,相对比较简易。常用的传感器原理有催化燃烧、电化学、PID光离子化、半导体技术。 气体分析仪是测量气体成分的流程分析仪表。在很多生产过程中,特别是在存在化学反应的生产过程中,仅仅根据温度、压力、流量等物理参数进行自动控制常常是不够的。例如,在合成氨生产中,仅控制合成塔的温度、压力、流量并不能保证最高的合成率,必须同时分析进气的化学成分,控制氢气和氮气的最佳比例,才能获得较高的生产率。又如在锅炉的燃烧控制中除需控制燃料与助燃空气的比例外,还必须在线分析烟道的化学成分,据此改变助燃空气的供给量,使炉子获得最高的热效率。此外,在排出有害气体的工厂中,也必须采用气体分析仪对有害气体进行连续监视,以防止危害工人健康或污染环境或引起爆炸等恶性事故。由于被分析气体的千差万别和分析原理的多种多样,气体分析仪的种类繁多。常用的有热导式气体分析仪、电化学式气体分析仪和红外线吸收式分析仪等。

  • SIMION-静电透镜分析软件

    SIMION-静电透镜分析软件谁有可否提供一下。SIMION简介:SIMION是一款静电透镜分析模拟软件,能在给定透镜电压及粒子初始条件的情况下,计算静电场及场中带电离子的运动轨迹。广泛用于2D/3D静态低频射频场中,从简单的离子飞行、静电/磁透镜、粒子枪,到高度复杂的仪器,如飞行时间质谱、离子阱质谱、四极杆质谱、ICR池及其它质谱,离子源及检测器部件。其官方网站上有Simion 8.0说明书manual的电子版,虽然只有前2章Chapter One - SIMION Overview,Chapter Two - SIMION Basics http://www.simion.com/manual/官方网站:http://simion.com/

  • 【分享】气体分析仪的各种分析原理

    测量气体成分的流程分析仪表。在很多生产过程中,特别是在存在化学反应的生产过程中,仅仅根据温度、压力、流量等物理参数进行自动控制常常是不够的。例如,在合成氨生产中,仅控制合成塔的温度、压力、流量并不能保证最高的合成率,必须同时分析进气的化学成分,控制氢气和氮气的最佳比例,才能获得较高的生产率。又如在锅炉的燃烧控制中除需控制燃料与助燃空气的比例外,还必须在线分析烟道的化学成分,据此改变助燃空气的供给量,使炉子获得最高的热效率。此外,在排出有害气体的工厂中,也必须采用气体分析仪对有害气体进行连续监视,以防止危害工人健康或污染环境或引起爆炸等恶性事故。由于被分析气体的千差万别和分析原理的多种多样,气体分析仪的种类繁多。常用的有热导式气体分析仪、电化学式气体分析仪和红外线吸收式分析仪等。1、热导式气体分析仪  一种物理类的气体分析仪表。它根据不同气体具有不同热传导能力的原理,通过测定混合气体导热系数来推算其中某些组分的含量。这种分析仪表简单可靠,适用的气体种类较多,是一种基本的分析仪表。但直接测量气体的导热系数比较困难,所以实际上常把气体导热系数的变化转换为电阻的变化,再用电桥来测定。热导式气体分析仪的热敏元件主要有半导体敏感元件和金属电阻丝两类。半导体敏感元件体积小、热惯性小,电阻温度系数大,所以灵敏度高,时间滞后小。在铂线圈上烧结珠形金属氧化物作为敏感元件,再在内电阻、发热量均相等的同样铂线圈上绕结对气体无反应的材料作为补偿用元件(图1)。这两种元件作为两臂构成电桥电路,即是测量回路。半导体金属氧化物敏感元件吸附被测气体时,电导率和热导率即发生变化,元件的散热状态也随之变化。元件温度变化使铂线圈的电阻变化,电桥遂有一不平衡电压输出,据此可检测气体的浓度。热导式气体分析仪的应用范围很广,除通常用来分析氢气、氨气、二氧化碳、二氧化硫和低浓度可燃性气体含量外,还可作为色谱分析仪中的检测器用以分析其他成分。

  • 激光粒度分析仪在静电喷涂粉末涂料行业应用过程中的常见问题

    1、认识激光粒度分析仪的测试报告    常规测试报告的内容有测试参数、特征粒径、分布曲线、分布表格等。静电喷涂粉末涂料行业比较关注的是特征粒径(D50)、10μm以下颗粒含量和70μm以上颗粒含量等数据。这些数据在粒度测试报告中都会有明确显示。如有不是很清楚的地方可以致电仪器供应商的售后服务咨询。一般来说还可根据行业自身特点提出定制特别关注参数,有实力的厂商应该是能够满足用户的一些数据需求的。图二是某涂料粒度分布数据表。大家可以看出里面清楚显示了粉体的10μm以下颗粒含量和70μm以上颗粒含量。    2、干、湿法测试结果的差异分析    目前,部分客户(尤其是外商或外资企业)习惯使用干法激光粒度分析仪,大部分国内客户目前使用欧美克的湿法激光粒度分析仪。由于进样方式不同,干法测试结果一般大于湿法结果,由此产生了一些疑问。其实两个结果之间不存在谁更准的问题,因为涂料粒度分布没有绝对真值,测试结果的细微差别是允许存在的。如有强烈需求,也可以通过校正方法使两种仪器测试结果更接近一点。干、湿法测试结果的差异不会成为激光粒度仪应用过程中的障碍。    3、如何对仪器状态进行客观评价    仪器的状态不良会严重影响测试结果可靠性。激光粒度仪的仪器状态主要包括光路校准情况、激光光能稳定性、光学器件是否清洁、进样器工作是否稳定。一般来说激光粒度仪软件都会有背景光能显示窗口,前三个项目问题都可以通过此窗口得到答案。不同厂家的仪器判断方法会有细微的区别,在此以较普及的LS—POP系列仪器为例介绍一下。仪器光路是否校准是以“0环”和“1环”光能信号的高低判断的,一般要求“0环”调节到光能刻度60左右(至少能达到40以上),“1环”要在20以下(这里的“某环”其实代表的就是一个个顺序排列的光电探测器)。光能稳定性通过观察“0环”稳定性判断。“0环”在一分钟的周期内波动幅度不应该超过5%。光学器件是否清洁主要通过观察15—25环的高度判断,一般要求这些环的高度不超过5。进样器是否稳定,一是听水泵运转声音是否平稳,二是观察测试窗口镜头内是否有气泡,这两项正常进样器就基本没问题。    4、湿法激光粒度仪测试静电喷涂粉末涂料的分散方法及检测技巧    静电喷涂粉末涂料亲水性不佳,在水中有漂浮现象。分散过程中,通常加入少量十二烷基苯磺酸钠或者洗洁精的水溶液(浓度1—2%)作为分散剂,这样就可以保证涂料颗粒充分浸润到水中。为保证团聚颗粒被分散开,还需要将涂料颗粒悬浮液放在超声波中振荡分散1—2分钟。往进样器中添加样品时注意手法,既要保证取样均匀又要保证不将气泡带进进样器导致影响测试结果。关于仪器参数测设置,折射率选择2.6,分析模式选择Rosin-Ram模式(单峰分布模式)即可。样品添加量保证遮光比在10%左右,遮光比太小或者太小都会影响测试结果真实性。粉末涂料颗粒在进样系统中也不宜循环太长时间。因为时间过长会有部分颗粒重新粘结团聚,导致测试结果不正确。仪器不是万能的,它只是我们手中的工具。只有注意了前面所说的要点,对样品进行了充分的分散,使用正确的测试手法和测试参数,才能得出可靠的测试结果。粒度仪,激光粒度仪,粒度分析仪,激光粒度ben

  • 离子迁移谱技术在快速检测有毒有害物中的应用

    背景:离子迁移谱(ion mobility spectrometry,IMS),也叫做离子迁移率谱,它并不是最近才开发的新技术,而是由Cohen和Karasek两位科学家于20世纪70年代初提出,最初是作为实验室分析化学技术发展起来的。因为它以离子漂移时间的差别来进行离子的分离定性,借助类似于色谱保留时间的概念,所以起初又被称为等离子体色谱。近年来,这一技术日臻完善,已被应用在多个领域,其中包括各国军事领域的化学战剂监测,各级安全部门的爆炸物监测,海关和机场人口安检部门对毒品、麻醉剂等违禁物品的监测以及环境监测部门对有毒有害气体的监测。随着应用范围的拓宽,IMS技术引起了世界各国专家的研究兴趣,因此使得这一技术不断得到更新和发展,同时它是当今世界最先进的舰用化学战剂侦检系统。对于中国来说,由于此技术开发起步晚和发达国家技术保护,与国外同类产品相比相对落后,无法区分各类型和精度较差,误差和故障率高。目前,离子迁移谱(IMS)技术已经跃升至“快速检测有毒有害物的十大技术”之首,主要应用于食品安全、农药残留物、爆炸物、毒品、化学毒剂的检测以及环境监测。所以此技术21世纪初商业化后,得到了广大科研者的认同,我相信不久将来其必将成为快速检测行业的必备仪器。优势:可以提供更快的速度和降低运营成本的高效液相色谱法相当的性能。此外, IMS无需使用有机溶剂,相关的分离过程中的溶剂处置成本也为零。IMS更加绿色环保,替代了高效液相色谱法。独特的样品引入系统,完全消除交叉污染,并在几秒钟内实现真正意义上的快速分析。它是集速度,特异性和灵敏度的理想应用。IMS具有体积小,探测能力强,快速准确检测的特点。其对环境要求不高,无须使用有机溶剂即可达到液相色谱的分离效果。除实验室快速筛查外,现场无需任何调试即可快速进入工作状态,其紧凑的仪器结构和资本运营成本低的优势非常适合质量安全风险评估中心的实验室和现场快速分析(如农,兽药残留物、非法添加物及水质污染的机动式检测)。IMS基本上涵盖所有的高效液相色谱法或高效液相色谱-质谱分析的化合物分析方法,其分析效率更高,样品前处理更加简单。以下是液相离子迁移谱HRIMS相对于传统液相分析系统的优势应用功能:1.超越分子物理分离,提供额外的化学信息给出了未知分子的近似分子量;提供有关分子三级结构的信息;2.对高效液相色谱法的正交技术分析色谱灵敏的分子;分析没有吸收的分子;最佳异构体的分离;(特别适合同分异构体及热不稳定性化合物与记性化合物的分离分析)3.与高效液相色谱法相比有投资资本,但运营成本大大节约,消耗在减少通过过滤空气分离;不需要洗脱溶剂;减少日常维护需要的费用;不要购买HPLC色谱柱;4.绿色技术不需要溶剂流动相辅助,节约溶剂处理费用,仅需少量的空气或氮气;

  • SDS-PAGE蛋白质电泳常见问题分析1

    Q:SDS-PAGE电泳的基本原理?A:SDS-聚丙烯酰胺凝胶电泳,是在聚丙烯酰胺凝胶系统中引进SDS(十二烷基硫酸钠),SDS会与变性的多肽,并使蛋白带负电荷,由于多肽结合SDS的量几乎总是与多肽的分子量成正比而与其序列无关,因此SDS多肽复合物在丙稀酰胺凝胶电泳中的迁移率只与多肽的大小有关,在达到饱和的状态下,每克多肽可与1.4g去污剂结合。当分子量在15KD到200KD之间时,蛋白质的迁移率和分子量的对数呈线性关系,符合下式:logMW=K-bX,式中:MW为分子量,X为迁移率,k、b均为常数,若将已知分子量的标准蛋白质的迁移率对分子量对数作图,可获得一条标准曲线,未知蛋白质在相同条件下进行电泳,根据它的电泳迁移率即可在标准曲线上求得分子量。

  • 激光粒度分析仪在静电喷涂粉末涂料应用过程中常见问题

    1、认识激光粒度分析仪的测试报告  常规测试报告的内容有测试参数、特征粒径、分布曲线、分布表格等。静电喷涂粉末涂料行业比较关注的是特征粒径(D50)、10μm以下颗粒含量和70μm以上颗粒含量等数据。这些数据在粒度测试报告中都会有明确显示。如有不是很清楚的地方可以致电仪器供应商的售后服务咨询。一般来说还可根据行业自身特点提出定制特别关注参数,有实力的厂商应该是能够满足用户的一些数据需求的。图二是某涂料粒度分布数据表。大家可以看出里面清楚显示了粉体的10μm以下颗粒含量和70μm以上颗粒含量。http://www.omec-instruments.com/uploadfiles/2013082723422771966.jpghttp://www.omec-instruments.com/uploadfiles/20130827234150.jpg  2、干、湿法测试结果的差异分析  目前,部分客户(尤其是外商或外资企业)习惯使用干法激光粒度分析仪,大部分国内客户目前使用欧美克的湿法激光粒度分析仪。由于进样方式不同,干法测试结果一般大于湿法结果,由此产生了一些疑问。其实两个结果之间不存在谁更准的问题,因为涂料粒度分布没有绝对真值,测试结果的细微差别是允许存在的。如有强烈需求,也可以通过校正方法使两种仪器测试结果更接近一点。干、湿法测试结果的差异不会成为激光粒度仪应用过程中的障碍。  3、如何对仪器状态进行客观评价  仪器的状态不良会严重影响测试结果可靠性。激光粒度仪的仪器状态主要包括光路校准情况、激光光能稳定性、光学器件是否清洁、进样器工作是否稳定。一般来说激光粒度仪软件都会有背景光能显示窗口,前三个项目问题都可以通过此窗口得到答案。不同厂家的仪器判断方法会有细微的区别,在此以较普及的LS—POP系列仪器为例介绍一下。仪器光路是否校准是以“0环”和“1环”光能信号的高低判断的,一般要求“0环”调节到光能刻度60左右(至少能达到40以上),“1环”要在20以下(这里的“某环”其实代表的就是一个个顺序排列的光电探测器)。光能稳定性通过观察“0环”稳定性判断。“0环”在一分钟的周期内波动幅度不应该超过5%。光学器件是否清洁主要通过观察15—25环的高度判断,一般要求这些环的高度不超过5。进样器是否稳定,一是听水泵运转声音是否平稳,二是观察测试窗口镜头内是否有气泡,这两项正常进样器就基本没问题。  4、湿法激光粒度仪测试静电喷涂粉末涂料的分散方法及检测技巧  静电喷涂粉末涂料亲水性不佳,在水中有漂浮现象。分散过程中,通常加入少量十二烷基苯磺酸钠或者洗洁精的水溶液(浓度1—2%)作为分散剂,这样就可以保证涂料颗粒充分浸润到水中。为保证团聚颗粒被分散开,还需要将涂料颗粒悬浮液放在超声波中振荡分散1—2分钟。往进样器中添加样品时注意手法,既要保证取样均匀又要保证不将气泡带进进样器导致影响测试结果。关于仪器参数测设置,折射率选择2.6,分析模式选择Rosin-Ram模式(单峰分布模式)即可。样品添加量保证遮光比在10%左右,遮光比太小或者太小都会影响测试结果真实性。粉末涂料颗粒在进样系统中也不宜循环太长时间。因为时间过长会有部分颗粒重新粘结团聚,导致测试结果不正确。仪器不是万能的,它只是我们手中的工具。只有注意了前面所说的要点,对样品进行了充分的分散,使用正确的测试手法和测试参数,才能得出可靠的测试结果。

  • 电喷雾离子源原理-离子迁移搬运机理的应用探讨

    电喷雾离子源原理-离子迁移搬运机理的应用探讨

    [align=center][b][font=黑体]电喷雾离子源原理与离子迁移搬运机理的应用探讨[/font][/b][/align][align=center][font=宋体]罗杰鸿[/font][sup]1*[/sup][/align][align=center](1.[font=宋体]广东安纳检测技术有限公司,[/font][font=宋体]广东[/font][font=宋体]广州[/font]510000)[/align][b][font=宋体]摘要[/font]: [/b][font=宋体]自从[/font][font=宋体]电喷雾现象被发现,对于以[/font]ESI[font=宋体]为代表的软电离现象中,物质如何带电荷依然存在着争论。科学家们从不同的角度描述了这一个过程,但现今的理论依然无法完全解释众多的实验现象。同时,由于理论的不成熟,制约了软电离在技术方面的应用,比较直接地表现为,理论的缓慢发展,制约了离子源的设计与研制工作,使得离子源从实验室走向商业化遇上了不少的瓶颈。本文通过简述现有的离子源原理,并对离子迁移搬运机理的应用进行了探讨和展望。[/font][b][font=宋体]关键词[/font]:[/b] [font=宋体]电喷雾现象;[/font][font=宋体]离子源理论;离子源的设计;商业化;[/font][b][font='Times New Roman',serif]The principle of ionspray ion source -- Application of ion migrate and transport mechanism[/font][/b][align=center]Luo Jiehong[sup]1*[/sup][/align][align=center](1.Guangdong Anna testing co, ltd[font=宋体],[/font] Guangzhou510000[font=宋体],[/font] China)[/align][b]Abstract:[/b]Since the discovery ofelectrospray spray phenomenon, there is still a debate about how to chargesubstances in the soft ionization phenomenon represented by ESI. Scientistshave described this process from different perspectives, but the current theorystill cannot fully explain many experimental phenomena. At the same time, dueto the immaturity of the theory, the application of soft ionization intechnology is restricted, which is directly reflected in the slow developmentof the theory, which restricts the design and development of the ion source,and makes the ion source meet many bottlenecks from the laboratory tocommercialization. In this paper, the principle of existing ion sources isbriefly described, and the application of ion migration and transportationmechanism is discussed and prospected.[b]Key words[/b]: electric spray phenomenon Ion source theory Design of ionsource Commercialization 1913[font=宋体]年,著名英国物理学家汤姆逊采用一台简陋的抛物线装置研究[/font] “[font=宋体]正电[/font]”[font=宋体]射线,非有意之中诞生了质谱学。[/font]1917[font=宋体]年,电喷雾物理现象被发现(一个伟大的发现,可是当时并非为了在质谱仪器上使用),人们使用静电喷雾法进行喷漆、燃料物化、静电乳化等。区别于[/font]EI[font=宋体]等高能量碰撞使得物质带电的硬电离模式,电喷雾带电等模式被称为软电离模式。[/font][font=宋体]自从学者们发明电喷雾离子源[/font]ESI[font=宋体]以来,其气相离子形成的机理一直争论了很长一段时间[/font][1-9][font=宋体]。其中,离子蒸发机理[/font](IEM )[font=宋体]、带电残基机理[/font](CRM)[font=宋体]、链弹射理论[/font](CEM)[font=宋体]是比较常见的气相离子形成机理。最近,基于相关实验结果,笔者等提出[/font]“[font=宋体]离子迁移搬运[/font]”[font=宋体]的机理[/font][10][font=宋体]。本文对近年来关于离子源原理的研究工作进行简述,并对离子迁移搬运机理的应用进行探讨和展望。[/font][b]1 [font=宋体]电喷雾离子源的基本原理[/font][/b][font=宋体]电喷雾离子源[/font]ESI[font=宋体]利用电场产生带电液滴,经过各种作用最终实现待测物质的分子离子化。待测物质能够成功地实现电喷雾离子化,一般经过几个步骤[/font][11][font=宋体]:形成带电液滴、液滴变小、最后形成气相离子。带电液滴形成过程、带电液滴变小过程已经得到相关实验的验证,但怎样形成气相离子,受限于缺乏精密仪器,依然存在着争论。对于最后步骤,学者们从不同的角度去说明这个过程[/font][11-12][font=宋体],[/font]IEM[font=宋体],[/font]CRM[font=宋体],[/font]CEM[font=宋体]等三个理论,有一定的适用范围,也能应用于解释一些的实验现象,但依然存在许多实验现象无法应用这些理论来解释。[/font][b]1.1 [font=宋体]朱一心的实验与理论[/font] [/b]IEM[font=宋体],[/font]CRM[font=宋体],[/font]CEM[font=宋体]是比较常见的几种观点,许多论文已经详细讲述这些原理[/font][1-9][font=宋体]。[/font]IEM[font=宋体],[/font]CRM[font=宋体],[/font]CEM[font=宋体]等理论,至今也无法解释以下两个问题:[/font]1[font=宋体]、为什么电喷雾离子源中存在多电荷现象,尤其是蛋白质电荷分布近似于高斯分布[/font]? 2[font=宋体]、为什么电喷雾离子源存在离子抑制现象[/font]? [font=宋体]而且,在解释热裂解测定,负离子模式测定等常见的实验现象中,也存在着一定的困难。[/font][font=宋体]朱一心等认为,根据电磁场理论,介质在电场中,正负电荷是以成对的形式存在的,不可能形成正负离子分离,在电极的同一端更不可能产生正、负离子分离的现象,因此并不认为多余的电荷是来自于液滴[/font][13,14][font=宋体]。通过其研制的一款新型离子源[/font](Coanda Effect ESI Source)[font=宋体]进行实验分析,朱一心等[/font][14][font=宋体]提出并证明:电喷雾离子化过程中的质子来自于[/font]Taylor Cone[font=宋体]外的气氛,离子化室的氛围是影响电喷雾离子化过程的重要因素,通过有效控制离子化室的氛围,可以提高分析物分子离子化的效率。[/font][b]1.2 “[font=宋体]离子迁移搬运[/font]”[font=宋体]的机理[/font][/b][font=宋体]朱一心等认为质子来源于泰勒锥外的空气中,而实际上,我们常用离子加合进行待测物测定[/font][15][font=宋体],离子加合,例如铵根离子加合,其中的铵根离子,来源于通过在流动相添加乙酸铵,可以看出,大部分情况下,质子等加合离子是来源于流动相的。常见的钠离子、钾离子等正离子加合,空气中一般不存在钠离子、钾离子等,离子源的负离子模式测定或者热裂解测定,更是不需要任何的质子来源。[/font][font=宋体]笔者长期从事离子加合测定和热裂解测定,结合笔者的相关研究内容[/font] [16-18][font=宋体],笔者等提出[/font]“[font=宋体]离子迁移搬运[/font]”[font=宋体]的机理。新机理表述归纳为三点。[/font][font=宋体]首先,在离子源里,通过各种脱溶剂作用,在毛细管尖端周围空间迅速形成存在大量的[/font]H[sup]+[/sup][font=宋体]、[/font]NH[sub]4[/sub][sup]+[/sup][font=宋体]、[/font]Ac[sup]-[/sup][font=宋体]、[/font]Cl[sup]-[/sup][font=宋体](加三氯甲烷等)、[/font]NO[sub]2[/sub][sup]-[/sup][font=宋体](添加含[/font]NO[sub]2[/sub][sup]-[/sup][font=宋体]离子的物质)、[/font]Na[sup]+[/sup][font=宋体]等加合离子[/font][font=宋体]的流动相蒸气[/font]-[font=宋体]氮气辅助气氛围。这些条件,为离子在空气中的迁移提供了电泳条件。假设当毛细管电压为正时,检测器电压看作负,加合离子在这样含有流动相蒸汽的脱溶剂气氛围中发生迁移。[/font][font=宋体]而此时流动相里的待测物在相似的脱溶剂条件下形成裸露的分子。在一定温度下,这些裸露的分子有可能进一步裂解成离子,发生迁移后被测定,如灭菌丹[/font][10][font=宋体]。热裂解测定需要离子源达到一定的温度,对离子源有一定的要求。[/font][font=宋体]最后,[/font]H[sup]+[/sup][font=宋体]、[/font]NH[sub]4[/sub][sup]+[/sup][font=宋体]等加合离子,与不带电荷的裸露小分子通过氢键、范德华力、离子键等作用力结合在一起,发生迁移而到达质谱检测器。加合离子和裂解产生的离子(包括热裂解产生的离子,负离子模式产生的离子)是迁移的主体,是实际上产生迁移物质,它们充当着[/font]“[font=宋体]搬运工[/font]”[font=宋体]的角色,通过作用力,它们能够把蛋白质等待测物质迁移到质谱。示意图如图[/font]1[font=宋体]所示。[/font][font=宋体]离子迁移搬运机理可以简述为:假设当毛细管为正,而质谱检测器为负时,由流动相、脱溶剂气或者空气等提供电泳条件。此时,[/font]H[sup]+[/sup][font=宋体]、[/font]NH[sup]4+[/sup][font=宋体]等加合离子发生迁移,当它们迁移的时候,通过作用力,把裸露的小分子或者蛋白质搬运到质谱检测器。搬运的对象可以是裸露的小分子或者蛋白质,也可以是团簇小溶剂,也可以是空气中的小分子物质。[/font][font=宋体]迄今为止,软电离技术关于物质如何带电这个现象的解释,强调的是物质是如何带电荷,但离子迁移搬运理论指出,并不是物质带电荷,而是电荷带物质,迁移的中心是电荷,而不是待测物质,电荷才是真正迁移的主体。同时[color=black]我们认为[/color][/font][font=宋体][color=black],[/color][/font][font=宋体]电荷带物质的[/font][font=宋体][color=black]原理同样适用于与[/color][/font][color=black]ESI[/color][font=宋体][color=black]类似的化学电离[/color][/font][color=black](Chemical ionization, CI)[/color][font=宋体][color=black]。[/color][/font][align=center][img=,639,181]https://ng1.17img.cn/bbsfiles/images/2022/12/202212151536523466_4523_3237657_3.png!w690x196.jpg[/img][/align][align=center][font=宋体]图[/font]1 “[font=宋体]离子迁移搬运[/font]”[font=宋体]机理示意图[/font][/align][align=center]Fig. 1 Schematic diagram of "ion migrate andtransport" mechanism [/align][b][color=black]2[/color][font=宋体]多电荷现象、离子抑制现象的初步解释[/font][/b][font=宋体]利用[/font]“[font=宋体]离子迁移搬运[/font]”[font=宋体]机理对离子源的某些实验现象,例如多电荷现象、离子抑制现象等等,进行初步的解释。蛋白质在结构紧凑时,内部形成内核,加合离子只能结合在其外部的位点,而当蛋白质结构展开时,加合离子能够结合其链条上的位点,从而产生不同的多电荷现象。[/font]“[font=宋体]离子迁移搬运[/font]”[font=宋体]机理可以对多电荷的电荷分布现象进行初步解释,当迁移一定的距离时,对于一定分子量的大分子,需要一定量的加合离子,通过其相互作用力,使得其实现向离子源的迁移,但当加合离子数量过多的时候,相互之间的排斥力增大,因此,蛋白质的多电荷呈现中间高,两端低的类似于高斯分布现象。从原理进行推论,能够检测到的蛋白质的电荷分布,与接口到检测器之间的距离有关,与形成的加合离子数目有关(加合离子数目与接口的氧化还原反应等因素有关,与流动相添加的物质有关),与蛋白质的结构有关。辅助气氛围中含有一定数量的加合离子,不同分析物会竞争结合这些加合离子,从而出现离子抑制现象。[/font][b][color=black]3 [/color][font=宋体][color=black]离子源设计思路的探讨[/color][/font][/b][color=black] [/color][font=宋体][color=black]上世纪[/color][/font][color=black]60[/color][font=宋体][color=black]年代,[/color][/font][color=black]Dole[/color][font=宋体][color=black]等研制了第一台采用电喷雾现象的质谱仪,并用于分析了聚苯乙烯大分子,但仍然不能测定蛋白质[/color][/font][color=black][5][/color][font=宋体][color=black]。之后[/color][/font][color=black], Fenn[/color][font=宋体][color=black]等[/color][/font][color=black][21][/color][font=宋体][color=black]发现了[/color][/font][color=black] Dole[/color][font=宋体][color=black]所设计的离子源存在的问题,修正了离子源喷针和端板之间的距离[/color][/font][color=black], [/color][font=宋体][color=black]从而降低了喷针电压。自从[/color][/font][color=black]1917[/color][font=宋体][color=black]年以来,软电离模式(主要为电喷雾,[/color][/font][color=black]CI[/color][font=宋体][color=black])中物质如何带电成为了一个争论不休的领域,其一定程度上制约了科学家们研制新的离子源。[/color][/font][font=宋体][color=black]待测物质能够被检测,一般情况下采用三种方式。[/color][/font][color=black]1. [/color][font=宋体][color=black]电场、热、光等物理因素直接裂解待测物质,产生离子,例如灭菌丹测定[/color][/font][20][font=宋体][color=black]。[/color][/font][color=black]2.[/color][font=宋体][color=black]电场、热、光等物理因素通过各种反应,产生待测物质的单电子离子。[/color][/font][color=black]3.[/color][font=宋体][color=black]通过不同的方式产生加合离子,再与待测物质结合后,产生迁移而被测定。现今主流离子源设计一般采用以上三种方式。[/color][/font][color=black] “[/color][font=宋体][color=black]离子迁移搬运[/color][/font][color=black]”[/color][font=宋体][color=black]机理指出,以质子为代表的加合离子是否来源于流动相并不是最重要的,关键的问题是怎样形成含有加合离子的电泳条件,对于辅助气氛围是否含有流动相及其对灵敏度的影响,有待进一步研究。提高离子源的分子离子化率,怎样使得待测物质分子离子化率的效率更高,响应值更高,依然是现今离子源研制的一项重要工作,也是蛋白质组学最大的技术瓶颈之一[/color][/font][color=black][22][/color][font=宋体][color=black]。[/color][/font][color=black] [/color][b][color=black]4 [/color][font=宋体][color=black]质谱仪等其它部件研制思路的探讨[/color][/font][color=black] [/color][/b][color=black] [/color][font=宋体]从原理进行推论,[color=black]我们认为,待测物质在加上加合离子后,加合离子与待测物质之间存在[/color]一定的作用力,而待测物质在被搬运的过程中,经过质谱仪等各个核心部件时,如果作用力不够强或者受到的外力过大,可能导致加合离子与待测物质分离。因此,[/font][color=black]“[/color][font=宋体][color=black]离子迁移搬运[/color][/font][color=black]”[/color][font=宋体][color=black]机理有望应用于液相质谱的其它部件的研制上。[/color][/font][b]5 [font=宋体]总结与展望[/font] [/b][font=宋体]本文提出,软电离技术的基本原理并不是物质带电荷,而是电荷带物质,迁移的中心是电荷,而不是待测物质,电荷才是真正迁移的主体。[/font][font=宋体]离子源原理的研究,对于离子源的设计与研制有着重要的作用,理论的发展,为解决当前离子源设计上的问题提供了良好的发展基础。当前离子源的设计与研制,在某些问题的解决上发展缓慢[/font][23-25][font=宋体]。离子源理论发展的缓慢,制约了离子源的设计与研制工作,使得离子源从实验室走向商业化遇上了不少的瓶颈。因此,发展离子源的理论具有重要意义,将是未来研究的重要方向。[/font][b][font=宋体]参考文献:[/font][/b][1] [font=宋体]赵霞[/font],[font=宋体]步芬[/font],[font=宋体]邹丽敏[/font],[font=宋体]李博[/font].[font=宋体]电喷雾解吸质谱及其应用[/font][J]. [font=宋体]价值工程[/font], 2012, 31(02): 326-328.[2] [font=宋体]张维冰,高方园,关亚风,张玉奎[/font]. [font=宋体]电喷雾离子源中样品离子化能量转移理论的初探[/font][J]. [font=宋体]色谱,[/font]2014[font=宋体],[/font]32(04): 395-401.[align=left][3] Cech N B,Enke C G. Practicalimplications of some recent studies in electrospray ionization fundamentals.[J].Mass spectrometry reviews,2001,20(6).362-387.[/align][align=left][4] Iribarne J V[font=宋体],[/font]Thomson B A[font=宋体].[/font]On the evaporation ofsmall ions from charged droplets[J]. The Journal of Chemical Physics[font=宋体],[/font]1976[font=宋体],[/font]64(6):2287-2294.[/align][align=left][color=black][back=white][5] [/back][/color][color=black][back=white]Dole[/back][/color][font=宋体][color=black][back=white],[/back][/color][/font][color=black][back=white]Malcolm. Molecular Beams of Macroions[J]. Journal of ChemicalPhysics[/back][/color][font=宋体][color=black][back=white],[/back][/color][/font][color=black][back=white]1968[/back][/color][font=宋体][color=black][back=white],[/back][/color][/font][color=black][back=white]49(5):2240.[/back][/color][/align][align=left][6] Iavarone A T,Williams E R.Mechanism of charging and supercharging molecules in electrosprayionization.[J]. Journal of the American Chemical Society[font=宋体],[/font]2003[font=宋体],[/font]125(8)[font=宋体],[/font]2319-2327.[/align][align=left][7] Ahadi E[font=宋体],[/font]Konermann L.Modelingthe behavior of coarse-grained polymer chains in charged water droplets: implications for the mechanism ofelectrospray ionization[J]. J Phys Chem B[font=宋体],[/font]2011[font=宋体],[/font]116: 104-112[color=black][back=white].[/back][/color][/align][align=left][8] Konermann L[font=宋体],[/font]Rodriguez A D[font=宋体],[/font]Liu J . On the Formationof Highly Charged Gaseous Ions from Unfolded Proteins by ElectrosprayIonization[J]. Analytical Chemistry[font=宋体],[/font]2012[font=宋体],[/font]84(15):6798-6804.[/align][align=left][9] [font=宋体]裴继影[/font],[font=宋体]侯壮豪[/font].[font=宋体]质谱电喷雾离子源中电化学与电晕放电氧化还原反应的研究进展[/font][J].[font=宋体]分析测试学报[/font],2018,37(12):1508-1513.[/align][align=left][10] [font=宋体]罗杰鸿[/font]. [font=宋体]电喷雾离子源原理的一些理论探讨[/font][J].[font=宋体]广东化工,[/font]2020[font=宋体],[/font]47(13):78-79.[/align][align=left][11] [font=宋体]高方园,张维冰,关亚风,张玉奎[/font]. [font=宋体]电喷雾离子源原理与研究进展[/font][J].[font=宋体]中国科学[/font]:[font=宋体]化学,[/font]2014[font=宋体],[/font]44(07):1181-1194.[/align][align=left][12][font=宋体]张维冰,高方园,关亚风,张玉奎[/font]. [font=宋体]电喷雾离子源中样品离子化能量转移理论的初探[/font][J]. [font=宋体]色谱,[/font]2014[font=宋体],[/font]32(04):395-401.[/align][align=left][13]de la Mora J F. Electrosprayionization of large multiply charged species proceeds via Dole’s chargedresidue mechanism[J]. Anal Chim Acta. 2000 406:93-104.[/align][align=left][14][font=宋体]朱一心[/font],Georgia Dolios,Rong Wong,[font=宋体]张玉奎[/font]. [font=宋体]电喷雾离子化过程中的质子来源分析[/font][C]. [font=宋体]中国化学会、国家自然科学基金委员会[/font].[font=宋体]中国化学会第二届全国质谱分析学术报告会会议摘要集[/font].[font=宋体]中国化学会、国家自然科学基金委员会[/font]:[font=宋体]中国化学会[/font],2015:175.[/align][align=left][15]Richard B. Cole,Junhua Zhu.Chloride anion attachment in negative ion electrospray ionization mass spectrometry[J].Rapid Communications in Mass Spectrometry,1999,13(7),607-611.[/align][align=left][16][font=宋体]罗羚丰[/font],[font=宋体]罗杰鸿[/font].[font=宋体]液相质谱测定中离子加合应用的一些研究[/font][J].[font=宋体]食品安全导刊[/font],2019(17):72.[/align][align=left][17][font=宋体]李健文[/font],[font=宋体]罗杰鸿[/font].[font=宋体]液相质谱中离子加合现象与原位化学反应测定研究进展[/font][J].[font=宋体]广东化工[/font],2019,46(07):134-135.[/align][align=left][18] [font=宋体]刘纲勇[/font],[font=宋体]罗杰鸿[/font],[font=宋体]黄锦波[/font].[font=宋体]液相质谱测定非极性或弱极性物质的研究进展[/font][J].[font=宋体]广州化学[/font],2020,45(01):60-65.[/align][align=left][19] [font=宋体]农有全[/font],[font=宋体]罗杰鸿[/font].[font=宋体]液相质谱原位化学反应测定研究进展[/font][J].[font=宋体]广东化工[/font],2020,47(10):151-152.[/align][align=left][20] [font=宋体]汤祝华,梁晓涵,王海灵,等[/font]. [font=宋体]超高效液相色谱串联质谱测定苹果中灭菌丹残留量[/font][J]. [font=宋体]热带农业科学,[/font] 2018[font=宋体],[/font]38(12):99-102.[/align][align=left][21]Yamashita M, Fenn JB.Electrospray ion source. Another variation on the free-jet theme. J Phys Chem,1984, 88: 4451–4459.[/align][align=left][22][font=宋体]朱一心[/font],[font=宋体]吕婷婷[/font],[font=宋体]葛林泽[/font]. [font=宋体]一种应用于质谱仪的电喷雾离子源及质谱分析方法[/font][P]. [font=宋体]浙江省:[/font]CN105304451B,2017-06-16.[/align][align=left][23][font=宋体]李宝强[/font],[font=宋体]张众垚[/font],[font=宋体]孔景临[/font],[font=宋体]张琳[/font],[font=宋体]郭成海[/font],[font=宋体]李翠萍[/font].[font=宋体]敞开式离子化质谱技术研究进展[/font][J].[font=宋体]质谱学报[/font],2020,41(03):221-235.[/align][align=left][24][font=宋体]贺玖明[/font],[font=宋体]李铁钢[/font],[font=宋体]何菁菁[/font],[font=宋体]罗志刚[/font],[font=宋体]再帕尔[/font][font=宋体]阿不力孜[/font].[font=宋体]常压敞开式离子化质谱技术研究进展[/font][J].[font=宋体]分析测试学报[/font],2012,31(09):1151-1160.[/align][align=left][25][font=宋体]丁薛璐[/font],[font=宋体]段忆翔[/font].[font=宋体]等离子体常压解吸离子源质谱[/font][J].[font=宋体]中国科学[/font]:[font=宋体]化学[/font],2014,44(05):672-679.[/align]

  • DNA测序仪原理和方法

    DNA序列测定分手工测序和自动测序,手工测序包括Sanger双脱氧链终止法和Maxam-Gilbert化学降解法。自动化测序实际上已成为当今DNA序列分析的主流。美国PE ABI公司已生产出373型、377型、310型、3700和3100型等DNA测序仪,其中310型是临床检测实验室中使用最多的一种型号。本实验介绍的是ABI PRISM 310型DNA测序仪的测序原理和操作规程。【原理】ABI PRISM 310型基因分析仪(即DNA测序仪),采用毛细管电泳技术取代传统的聚丙烯酰胺平板电泳,应用该公司专利的四色荧光染料标记的ddNTP(标记终止物法),因此通过单引物PCR测序反应,生成的PCR产物则是相差1个碱基的3'''端为4种不同荧光染料的单链DNA混合物,使得四种荧光染料的测序PCR产物可在一根毛细管内电泳,从而避免了泳道间迁移率差异的影响,大大提高了测序的精确度。由于分子大小不同,在毛细管电泳中的迁移率也不同,当其通过毛细管读数窗口段时,激光检测器窗口中的CCD(charge-coupled device)摄影机检测器就可对荧光分子逐个进行检测,激发的荧光经光栅分光,以区分代表不同碱基信息的不同颜色的荧光,并在CCD摄影机上同步成像,分析软件可自动将不同荧光转变为DNA序列,从而达到DNA测序的目的。分析结果能以凝胶电泳图谱、荧光吸收峰图或碱基排列顺序等多种形式输出。它是一台能自动灌胶、自动进样、自动数据收集分析等全自动电脑控制的测定DNA片段的碱基顺序或大小和定量的高档精密仪器。PE公司还提供凝胶高分子聚合物,包括DNA测序胶(POP 6)和GeneScan胶(POP 4)。这些凝胶颗粒孔径均一,避免了配胶条件不一致对测序精度的影响。它主要由毛细管电泳装置、Macintosh电脑、彩色打印机和电泳等附件组成。电脑中则包括资料收集,分析和仪器运行等软件。它使用最新的CCD摄影机检测器,使DNA测序缩短至2.5h,PCR片段大小分析和定量分析为10~40min。由于该仪器具有DNA测序,PCR片段大小分析和定量分析等功能,因此可进行DNA测序、杂合子分析、单链构象多态性分析(SSCP)、微卫星序列分析、长片段PCR、RT-PCR(定量PCR)等分析,临床上可除进行常规DNA测序外,还可进行单核苷酸多态性(SNP)分析、基因突变检测、HLA配型、法医学上的亲子和个体鉴定、微生物与病毒的分型与鉴定等。【试剂与器材】1.BigDye测序反应试剂盒 主要试剂是BigDye Mix,内含PE专利四色荧光标记的ddNTP和普通dNTP,AmpliTaq DNA polymerase FS,反应缓冲液等。  2.pGEM-3Zf(+)双链DNA对照模板0.2g/L,试剂盒配套试剂。  3.M13(-21)引物TGTAAAACGACGGCCAGT,3.2μmol/L,即3.2pmol/μl,试剂盒配套试剂。  4.DNA测序模板 可以是PCR产物、单链DNA和质粒DNA等。模板浓度应调整在PCR反应时取量1μl为宜。本实验测定的质粒DNA,浓度为0.2g/L,即200ng/μl。  5.引物 需根据所要测定的DNA片段设计正向或反向引物,配制成3.2μmol/L,即3.2pmol/μl。如重组质粒中含通用引物序列也可用通用引物,如M13(-21)引物,T7引物等。  6.灭菌去离子水或三蒸水。  7.0.2ml或和0.5ml的PCR管,盖体分离,PE公司产品。  8.3mol/L 醋酸钠(pH5.2)称取40.8g NaAc·3H2O溶于70ml蒸馏水中,冰醋酸调pH至5.2,定容至100ml,高压灭菌后分装。  9.70%乙醇和无水乙醇。  10.NaAc/乙醇混合液 取37.5ml无水乙醇和2.5ml 3mol/L NaAc混匀,室温可保存1年。  11.POP 6测序胶 ABI产品。  12.模板抑制试剂(TSR)ABI产品。  13.10×电泳缓冲液 ABI产品。  14.ABI PRISM 310型全自动DNA测序仪。  15.2400型或9600型PCR仪。  16.台式冷冻高速离心机。  17.台式高速离心机或袖珍离心机。

  • 【分享】元素分析仪原理

    [size=4]元素分析仪属于光电比色分析仪器,光是一种电磁波,具有一定的波长或者频率,如果按照波长或频率,如果按照波长或频率排列波长在200-400nm范围的光称为紫外光;人眼能感觉到光的波长介于400-760nm的电磁波,称为可见光。白色光是由各种不同颜色的光按一定的强度比例混合而成的。如果让一束光通过三棱镜和分解成红、橙、黄、绿、青、蓝、紫等七种颜色的光。每种颜色的光具有一定的波长范围,紫色光波长短,红色光波长长,只具有一种波长的光称为单色光。许多物质都具有一定的颜色。例如:高锰酸钾溶液呈紫红色,硫酸铜溶液呈蓝色等等。也有许多本身不具备颜色,但加入适当试剂后能生成有特征颜色的化合物,如锰元素的测定,假如硝酸-硝酸银溶液溶解后是淡黄色,接近无色,加入过硫酸铵后与溶液中锰元素反应生成红色的化合物,当锰元素在溶液改变时,溶液颜色也随之改变,锰元素越高颜色越深,反之颜色越浅。元素分析仪采用比色法对某种元素进行颜色对比,比色法是基于测量溶液中物质对光的选择性吸收程度而建立起来的分析方法,目前广泛用于机械工业理化试验室中。元素分析仪采用定量的标准物质测其吸光度,通过同一种溶液及同一环境温度进行吸光对比,含量越高吸光度越高,它们之间的关系是:标样含量÷标样吸光度×试样吸光度=试样含量。[/size]

  • 【转】常用气体分析仪的各种分析原理介绍

    测量气体分析仪的流程分析仪表。在很多生产过程中,特别是在存在化学反应的生产过程中,仅仅根据温度、压力、流量等物理参数进行自动控制常常是不够的。例如,在合成氨生产中,仅控制合成塔的温度、压力、流量并不能保证最高的合成率,必须同时分析进气的化学成分,控制氢气和氮气的最佳比例,才能获得较高的生产率。又如在锅炉的燃烧控制中除需控制燃料与助燃空气的比例外,还必须在线分析烟道的化学成分,据此改变助燃空气的供给量,使炉子获得最高的热效率。此外,在排出有害气体的工厂中,也必须采用气体分析仪对有害气体进行连续监视,以防止危害工人健康或污染环境或引起爆炸等恶性事故。由于被分析气体的千差万别和分析原理的多种多样,气体分析仪的种类繁多。常用的有热导式气体分析仪、电化学式气体分析仪和红外线吸收式分析仪等。   1、热导式气体分析仪   一种物理类的气体分析仪表。它根据不同气体具有不同热传导能力的原理,通过测定混合气体导热系数来推算其中某些组分的含量。这种分析仪表简单可靠,适用的气体种类较多,是一种基本的分析仪表。但直接测量气体的导热系数比较困难,所以实际上常把气体导热系数的变化转换为电阻的变化,再用电桥来测定。热导式气体分析仪的热敏元件主要有半导体敏感元件和金属电阻丝两类。半导体敏感元件体积小、热惯性小,电阻温度系数大,所以灵敏度高,时间滞后小。在铂线圈上烧结珠形金属氧化物作为敏感元件,再在内电阻、发热量均相等的同样铂线圈上绕结对气体无反应的材料作为补偿用元件(图1)。这两种元件作为两臂构成电桥电路,即是测量回路。半导体金属氧化物敏感元件吸附被测气体时,电导率和热导率即发生变化,元件的散热状态也随之变化。元件温度变化使铂线圈的电阻变化,电桥遂有一不平衡电压输出,据此可检测气体的浓度。热导式气体分析仪的应用范围很广,除通常用来分析氢气、氨气、二氧化碳、二氧化硫和低浓度可燃性气体含量外,还可作为色谱分析仪中的检测器用以分析其他成分。   2、电化学式气体分析仪   一种化学类的气体分析仪表。它根据化学反应所引起的离子量的变化或电流变化来测量气体成分。为了提高选择性,防止测量电极表面沾污和保持电解液性能,一般采用隔膜结构。常用的电化学式分析仪有定电位电解式和伽伐尼电池式两种。定电位电解式分析仪(图2)的工作原理是在电极上施加特定电位,被测气体在电极表面就产生电解作用,只要测量加在电极上的电位,即可确定被测气体特有的电解电位,从而使仪表具有选择识别被测气体的能力。伽伐尼电池式分析仪(图3)是将透过隔膜而扩散到电解液中的被测气体电解,测量所形成的电解电流,就能确定被测气体的浓度。通过选择不同的电极材料和电解液来改变电极表面的内部电压从而实现对具有不同电解电位的气体的选择性。   3、红外线吸收式分析仪   根据不同组分气体对不同波长的红外线具有选择性吸收的特性而工作的分析仪表。测量这种吸收光谱可判别出气体的种类;测量吸收强度可确定被测气体的浓度。红外线分析仪的使用范围宽,不仅可分析气体成分,也可分析溶液成分,且灵敏度较高,反应迅速,能在线连续指示,也可组成调节系统。工业上常用的红外线气体分析仪的检测部分由两个并列的结构相同的光学系统组成。   一个是测量室,一个是参比室。两室通过切光板以一定周期同时或交替开闭光路。在测量室中导入被测气体后,具有被测气体特有波长的光被吸收,从而使透过测量室这一光路而进入红外线接收气室的光通量减少。气体浓度越高,进入到红外线接收气室的光通量就越少;而透过参比室的光通量是一定的,进入到红外线接收气室的光通量也一定。因此,被测气体浓度越高,透过测量室和参比室的光通量差值就越大。这个光通量差值是以一定周期振动的振幅投射到红外线接收气室的。接收气室用几微米厚的金属薄膜分隔为两半部,室内封有浓度较大的被测组分气体,在吸收波长范围内能将射入的红外线全部吸收,从而使脉动的光通量变为温度的周期变化,再可根据气态方程使温度的变化转换为压力的变化,然后用电容式传感器来检测,经过放大处理后指示出被测气体浓度。除用电容式传感器外,也可用直接检测红外线的量子式红外线传感器,并采用红外干涉滤光片进行波长选择和配以可调激光器作光源,形成一种崭新的全固体式红外气体分析仪。这种分析仪只用一个光源、一个测量室、一个红外线传感器就能完成气体浓度的测量。此外,若采用装有多个不同波长的滤光盘,则能同时分别测定多组分气体中的各种气体的浓度。   与红外线分析仪原理相似的还有紫外线分析仪、光电比色分析仪等,在工业上也用得较多。

  • 差热分析仪的原理和特点介绍

    差热分析仪的工作原理是将待测试样和参比物(热惰性物质)置于同一条件的炉体中,按给定程序等速升温或降温,当加热试样在不同温度下产生物理、化学性质的变化(如相变,结晶构造转变,结晶作用,沸腾,升华,气化,熔融,脱水,分解,氧化,还原……及其他反应)时,伴随吸热或放热,试样自身的温度低于或高于参比物质的温度,即两者之间产生温差。温差的大小(反应前和反应后二者的温差为零)和极性由热电偶检测,并转换为电能,经放大器放大输入记录仪,记录下的曲线即为差热曲线。差热分析仪是研究细小的粘土矿物和含水矿物的必不可少的工具。差热分析仪的特点:1、热流式DSC数据采集方式,绘制出能量与温度的曲线。2、用户可以自行利用标准样品对温度、能量、热重准确性进行校正。3、气氛控制系统采用质量流量控制器,三路稳压、稳流气体可以在实验过程中自动切换,精度高、重复性好、响应速度快(可以定制耐各种腐蚀性气体的气氛控制系统)。4、从微量样品到大剂量样品均可满足(更换支撑杆,最大样品可达5g)。可满足各种样品在不同条件下的测试要求。5、全部测量过程自动完成,自动绘图,丰富的软件功能可完成DTA、 TG、 DTG 、DTTG 常规数据处理;特殊数据处理(DTA峰面积、热焓计算、动力学参数计算、数据比较、多种算法计算活化能、玻璃化温度、比较法测量比热等)。6、差热分析仪的系统采集试样过程中,可任意时刻截图,根据输出信号大小自动变换量程。7、大屏幕液晶显示,实时显示仪器的状态和数据,两套测温电偶,一套电偶实时显示炉温(无论加热炉工作与否)另一套电偶显示工作时样品温度。8、用户给出计算的公式或计算方法,我厂能及时提供相应的软件研制产品。9、自主研发的恒温控制器;恒温气相色谱、质谱连接头;恒温带;可充分保证焦油及各种反应气体的二次检测。

  • LED被静电击穿的现象及原理分析

    LED内部的PN结在应用到电子产品的制造、组装筛选、测试、包装、储运及安装使用等环节,难免不受静电感应影响而产生感应电荷。若电荷得不到及时释放,将在两个电极上形成的较高电位差,当电荷能量达到LED的承受极限值(即LED抗静电指标值),电荷将会在瞬间释放。在极短的瞬间(纳秒级)对LED芯片的两个电极之间进行放电,瞬间将在两个电极之间(阻值最小的地方,往往是电极周围)的导电层、发光层等芯片内部物质产生局部的高温,温度高达1400℃,这种极端高温下将两电极之间的材料层熔融,熔成一个小洞,从而造成各类漏电、死灯、变暗的异常现象。 不同企业、不同工艺、不同衬底材质、不同设计制造的LED芯片抗静电也很不相同,当前市场抗静电高度更是千差万别、鱼目混珠。LED的抗静电高低与LED的封装无关、取决于芯片本身。有些企业采取加接齐纳二极管的来保护,这是在较早期采用的一个补救方法,现在,LED芯片工艺不断进步,这个方法逐渐显得成本高、可操作性减弱。 生产车间一旦遇到LED死灯漏电暗亮等事故,想到的往往是加强车间静电管理,如接地、铺设静电台垫、离子风机等等,但这并不是一个根治的办法,静电是无处不在,可以说是‘躲过了初一躲不了十五’。因为所用的LED抗静电指标就低,类似于一个健康缺陷的新生儿后天再医治都是难以根治的。 企业选用抗静电指标较高的LED(芯片),能够解决因为静电带来LED的漏电、死灯等质量事故,因为抗静电高的LED,它能适应各种环境,例如LED抗静电在2000V以上,它一般都能承受我们普通的环境下的静电,达到3000V以上的LED更是能在不刻意加强静电管控的环境下,永放光芒。

  • 煤气在线分析仪的工作原理图

    监测目的:冶炼产生的烟气中含CO,CO2,N2,O2等成分,通过煤气分析仪将烟气中的CO,CO2,O2等含量分析出来,再选择C0含量、02含量合格的烟气进行回收利用,将大大降低冶炼的成本。 分析仪组成:煤气分析仪系统一般由取样单元、气体处理单元、气体分析仪、标校单元、反吹单元、PLC控制单元组成。 工作原理:样气从采样探头进来后分2个支管,一支到放散管路,另一支经过采样泵、过滤器、冷却器,然后分两路分别进人氧气分析仪及红外分析仪,出来的气体经过缓冲罐后进行放散。 红外分析仪用来分析C0、C02的成分。氧分析仪采用磁力机械式原理。 煤气分析仪维护要点:1) 排水:每天检查冷凝器、汽水分离器、排水蠕动泵的状态,确保流量计内无积水,如有积水应查明原因并排除;2) 流量调整:进人分析仪的流量确保在1L/min,放散流量计的流量等于泵的额定流量减去进人分析仪的流量;3) 探头:每2个月对探头不锈钢烧结滤芯进行清洗,并对采集管进行清灰除尘;4) 滤芯、滤纸更换:雾过滤器滤芯应2月更换一次,高分子薄膜过滤器滤纸每周更换一次;5) 标定:每3个月对氧分析仪和红外线分析仪进行一次标定。

  • 电阻率、防静电性能、介电常数、击穿电压测试

    我分析测试中心是国家认可实验室,通过国家计量认可,拥有国内先进的电性能测试仪器:测量范围很广的高阻计,可以测试各种材料的电阻率、防静电性能、绝缘电阻等;介质损耗和电容率测试仪,可以在高频和音频下测量介质损耗因数和相对电容率(介电常数);击穿电压试验机可以在100KV范围内测量样品的电气强度和耐压性能等等。

  • 碳硫分析仪的原理及测定方法

    碳硫分析仪的原理,就是将试样在高温炉中(如电阻炉也称管式炉、电弧炉、高频感应燃烧炉等)通氧燃烧,生成并逸出CO2和SO2气体,用此法实现碳硫元素与金属元素及其化合物的分离,然后测定CO2和SO2的含量,再换算出试样中的碳硫含量。一般的测定方法有以下几种: 1.红外光度法:试样中的碳、硫经过富氧条件下的高温加热,氧化为二氧化碳、二氧化硫气体。该气体经处理后进入相应的吸收池,对相应的红外辐射进行吸收,由探测器转发为信号,经计算机处理输出结果。此方法具有准确、快速、灵敏度高的特点,高低碳硫含量均使用,采用此方法的红外碳硫分析仪,自动化程度较高,价格也比较高,适用于分析精度要求较高的场合。 2.容量法:常用的有测碳为气体容量法和非水滴定法,测硫为碘量法、酸碱滴定法。特别是气体容量法测碳、碘量法定硫,既快速又准确,是我国碳、硫联合测定最常用的方法,采用此方法的碳硫分析仪的精度,碳含量下限为0.050%,硫含量下限为0.005%,可满足大多数场合的需要。 3.重量法:常用碱石棉吸收二氧化碳,由“增量”求出碳含量。硫的测定常用湿法,试样用酸分解氧化,转变为硫酸盐,然后在盐酸介质中加入氯化钡,生成硫酸钡,经沉淀、过滤、洗涤、灼烧,称量最后计算得出硫的含量。重量法的缺点是分析速度慢,所以不可能用于企业现场碳硫分析,优点是具有较高的准确度,至今仍被国内外作为标准方法推荐,适用于标准实验室和研究机构。 4.电导法:用电导法测定碳、硫,其特点是准确,快速、灵敏。多用于低碳、低硫的测定 5.测定金属中的碳、硫含量,还有ICP法、直读光谱法、X光荧光法、质谱法、色谱法、活化分析法等,各有其优点和适用范围。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制