矿物差热分析鉴定手册

仪器信息网矿物差热分析鉴定手册专题为您提供2024年最新矿物差热分析鉴定手册价格报价、厂家品牌的相关信息, 包括矿物差热分析鉴定手册参数、型号等,不管是国产,还是进口品牌的矿物差热分析鉴定手册您都可以在这里找到。 除此之外,仪器信息网还免费为您整合矿物差热分析鉴定手册相关的耗材配件、试剂标物,还有矿物差热分析鉴定手册相关的最新资讯、资料,以及矿物差热分析鉴定手册相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

矿物差热分析鉴定手册相关的仪器

  • 差热热分析仪(DTA) 差热分析(DIFFERENTIAL THERMAL ANALYSIS, DTA)是在程序控温下,测量物质与参比物之间温度差随温度或时间变化的一种技术。在程序控温下,不断加热或冷却降温,物质将按照它固有的运动规律而发生量变或质变,从而产生吸热或放热,根据吸热或放热便可判定物质内在性质的变化。如:晶型转变、熔化、升华、挥发、还原、分解、脱水或降解等。 天美作为国内享有盛誉从事DTA热分析仪制造的上海天平厂(上海精科)的承继者,在雄厚技术历史积淀的基础上,紧跟国际热分析研发动向,不断创新,运用新材料新技术,为国内各应用领域用户提供了多种档次及需求的高质量DTA仪器。目前天美提供市场的DTA仪器有CRY-1A及CRY-2A两种。 DTA用途:可以对升华、蒸发、热分解、脱水等在测量中质量发生变化的化学、物理变化进行测量。TG(热天平)对于样品的氧化、热分解、脱水等重量变化,耐热性的评价与反应速度的分析的测定十分有效。仪器特点:---炉子体积小、重量轻;炉子的热容量小,升降温速率快,炉温控制精度高;---采样过程全智能化,能实时灵敏准确反应样品特性;---配备数据采样、数据处理(可计算熔点、热焓、玻璃化温度、部分面积、氧化诱导期、动力学参数等)、数据输出功能的全方位专业智能软件包;---用户可方便对仪器进行仪器常数校正,包括温度和热焓校正,减少仪器系统误差;---CRY-1A选配气氛控制单元,可控制双路气氛流量,稳定切换气路;CRY-2A自带保护气氛单元,可提高长期高温工作状态下热电偶的抗老化能力,延长仪器使用寿命;---提供操作方便的仪器校正软件及全套校正标样,便于用户自行校正仪器;---可根据用户需要提供专业软件定制以及软件升级。软件功能:---多任务:可同时执行测量与数据分析---可调的坐标范围---数据导出---存储与恢复分析状态---仪器校正:温度校正,基线校正---提供丰富实用的热分析专业计算功能,可实现:• 焓值、外延起始点结束点温度、峰值温度的计算(Calibrating enthalpy,Texo,Tm)• 氧化诱导期的计算(Calibrating Toi)• 玻璃化温度计算(Calibrating Tg) • 仪器系统常数计算(Calibrating K coefficient)• 计算结果斜率点修正(Adjusting slope point)• 基线拟合(Baseling fitting)及校正• DTA转DSC
    留言咨询
  • 当前,随着油气资源勘探开发纵向深入,研究对象愈发复杂、勘探难度也越来越大,常规、特别是非常规油气勘探开发面临非常严峻的技术挑战。现有录、测井技术,如XRF元素分析、XRD矿物分析、岩屑成像技术、核磁共振等,虽都有特定的优势,但也存在各自的局限性,无法实现储层元素、矿物、形貌、孔隙度等特征的同时表征。因此,在工作效率与技术集成性方面需要一种同时满足制样简单、移动方便、测试精度高、快速定量分析矿物学特征、孔隙裂隙结构特征以及岩石力学性质的智能化、数字化设备。基于上述现状,MaipSCAN( Mineralogy by Artificial intellgence powered Scanning Electron Microscopy )应运而生。MaipSCAN是由中科院地质与地球物理研究所与欧波同中国有限公司强强联合自主研发的高度集成化的全新一代数字智能矿物分析系统(图1),主要由高分辨扫描电子显微镜、高灵敏电子信号探测器、X射线探测器及多功能高级测试分析软件组成。图1 MaipSCAN外观图像MaipSCAN应用概况1、 场景多:卓越的抗震功能保障既可以应用于实验室,也可以应用于钻井现场、岩心库等复杂环境。能够实现对岩芯-侧壁岩芯、岩屑、薄片等多种岩石样品的测试分析,尤其是能够将碎小的岩屑样品“变废为宝”充分利用起来,取样成本大大降低。2、 参数全:MaipSCAN可以提供丰富的数据结果,包括岩石的矿物和元素定量数据、高清电子图像、伽马元素、孔隙度、孔隙结构、微裂缝(弱面指数)、弹性参数及脆性指数等多个勘探开发关键参数。3、 用途广:在地质方面,MaipSCAN提供的高分辨率图像可以实现地层准确检测,根据定量的矿物和元素数据能够确定岩性、划分地层、精细划分岩相、评价物性特征、识别地质甜点,依靠岩性、矿物、元素来对比地层,对物源、沉积环境进行分析等;在地球物理方面,MaipSCAN提供的参数可以用于标定常规电缆测井、校正岩石物理模型、生成高质量的弹性属性曲线;在工程方面,MaipSCAN可以实现钻测深度归位,准确卡层,进行井壁稳定性分析,辅助水平井地质导向,完成工程甜点预测,评价岩石脆性,优化水平井压裂选段等。技术特色强大的软件系统MaipSCAN软件分析系统包括测量软件(Inspector)、矿物标准库管理软件(RockSTDManager)和分析报告软件(iCustomer)三个强大模块。1、Inspector:可以快速设定岩样测试参数、实现高效高清BSE图像采集、元素和矿物的准确定量测试,大幅提升样品测试速度。高效易操作的测量模块(Inspecteor) 2、RockSTDManager:包含专利技术的矿物识别算法保障了矿物识别的准确性,尤其是难以识别的粘土矿物;此外,提供了矿物标准库的管理功能,可以新增和更改为符合研究区的矿物库,使得矿物分析更具适应性和准确性。精确识别矿物的矿物标准库管理模块(RockSTDManager)3、iCustomer:具有强大的后处理和报告能力,从图像处理、定量分析、数学模拟到成果图绘制,一个软件可以实现全部功能,极大地优化了后期数据分析的效率。可以定量分析元素含量、矿物含量、矿物颗粒尺寸、矿物相关系、微裂缝密度(弱面指数)、孔隙度及孔隙结构等关键参数;根据工况建立数字岩石模型并计算弹性参数,用于脆塑性分析;根据用户定义的矿物库进行重新分类;实现多个样品的批量处理,且处理速度较快。分析处理与报告生成模块(iCustomer)MaipSCAN岩石力学模型MaipSCAN可以通过分析现场岩屑微观结构和成分特征,经过科学缜密的数据算法,得到研究区的岩石力学参数,建立研究区地层岩石力学模型,可根据工况建立数字岩石模型并计算弹性参数,用于脆塑性分析。
    留言咨询
  • 综合(同步)热分析法 STA(Differential thermal analysis):同步热分析将热重分析 TG 与差热分析 DTA 或差示扫描量热 DSC 结合为一体,在同一次测量中利用同一样品可同步得到重量变化与差热(或热量变化)信息。STA热分析相比单独的TG与DTA/ DSC 测试,具有如下显著优点:a)通过一次测量,即可获取质量变化与热效应两种信息,不仅方便而节省时间,同时由于只需要更少的样品,对于样品很昂贵或难以制取的场合非常有利。b)根据某一热效应是否对应质量变化,有助于判别该热效应所对应的物化过程(如区分熔融峰、结晶峰、相变峰与分解峰、氧化峰等)。c)实时跟踪样品质量随温度/时间的变化,在计算热焓时可以样品的当前实际质量(而非测量前原始质量)为依据,有利于相变热、反应热等的准确计算。用途:广泛应用于陶瓷、玻璃、金属/合金、矿物、催化剂、含能材料、塑胶高分子、涂料、医药、食品等各种领域。ZRY-1A/2A仪器功能及特点:加热炉体积小、重量轻,其独特设计使得炉子的热容量小,升降温速率快,炉温控制精度高高品质PT/RH加热丝,使得加热炉能承受长期高温工作状态天平测试系统采用下皿式结构,由铂丝及轻质金属材质组成的悬挂系统结构简单,重量轻天平系统采用了隔热处理,大大降低基线漂移量,可在各种实验室环境下实现高灵敏度的精确称重,其高分辨率则可分离zui具挑战性的TGA样品成分独特设计的保护气氛气路即可减少升温过程中基线的漂移量,保证测量的精度,又能很好的保护高灵敏度天平传感器的不受样品溢出腐蚀性气体的损害,延长天平使用寿命采样过程全智能化,能实时灵敏准确反应样品特性配备双路气氛控制单元,可稳定切换气氛提供操作方便的仪器校正软件及全套校正标样,便于用户自行校正仪器ZRY-1A/2A软件功能:多任务:可同时执行测量与数据分析可调的坐标范围数据导出存储与恢复分析状态仪器校正:温度校正,基线校正DTA/TG/DTG/T曲线绘制、输出DTA转换DSCDTA/DSC相关特性:测定起始点,峰温,拐点与终止温度;分析放热与吸热峰面积(热焓);玻璃化温度的综合分析;OIT(氧化诱导时间) TG相关特性:质量变化,单位 % 或 mg;分析质量变化,包括计算残余质量;外推的起始点与结束点
    留言咨询

矿物差热分析鉴定手册相关的方案

矿物差热分析鉴定手册相关的论坛

  • 差热分析仪的原理和特点介绍

    差热分析仪的工作原理是将待测试样和参比物(热惰性物质)置于同一条件的炉体中,按给定程序等速升温或降温,当加热试样在不同温度下产生物理、化学性质的变化(如相变,结晶构造转变,结晶作用,沸腾,升华,气化,熔融,脱水,分解,氧化,还原……及其他反应)时,伴随吸热或放热,试样自身的温度低于或高于参比物质的温度,即两者之间产生温差。温差的大小(反应前和反应后二者的温差为零)和极性由热电偶检测,并转换为电能,经放大器放大输入记录仪,记录下的曲线即为差热曲线。差热分析仪是研究细小的粘土矿物和含水矿物的必不可少的工具。差热分析仪的特点:1、热流式DSC数据采集方式,绘制出能量与温度的曲线。2、用户可以自行利用标准样品对温度、能量、热重准确性进行校正。3、气氛控制系统采用质量流量控制器,三路稳压、稳流气体可以在实验过程中自动切换,精度高、重复性好、响应速度快(可以定制耐各种腐蚀性气体的气氛控制系统)。4、从微量样品到大剂量样品均可满足(更换支撑杆,最大样品可达5g)。可满足各种样品在不同条件下的测试要求。5、全部测量过程自动完成,自动绘图,丰富的软件功能可完成DTA、 TG、 DTG 、DTTG 常规数据处理;特殊数据处理(DTA峰面积、热焓计算、动力学参数计算、数据比较、多种算法计算活化能、玻璃化温度、比较法测量比热等)。6、差热分析仪的系统采集试样过程中,可任意时刻截图,根据输出信号大小自动变换量程。7、大屏幕液晶显示,实时显示仪器的状态和数据,两套测温电偶,一套电偶实时显示炉温(无论加热炉工作与否)另一套电偶显示工作时样品温度。8、用户给出计算的公式或计算方法,我厂能及时提供相应的软件研制产品。9、自主研发的恒温控制器;恒温气相色谱、质谱连接头;恒温带;可充分保证焦油及各种反应气体的二次检测。

  • 推荐一些热分析的书籍

    ANSYS 8.0热分析教程与实例解析张朝晖主编;范群波 ... [等] 编著北京:中国铁道出版社,2005NX Master FEM热分析教程叶宏主编;焦冬生 ... [等] 编译北京:清华大学出版社,2005差热分析:DTA技术及其应用指导(英) 波普, 尤德著;王世华, 杨红征译北京:北京师范大学出版社,1982常用热分析仪器徐国华,袁靖编著上海:上海科学技术出版社,1990传热分析与计算钱壬章等编北京:高等教育出版社,1987高分子材料热分析曲线集高家武等编著北京:科学出版社,1990高聚物与复合材料的动态力学热分析过梅丽编著北京:化学工业出版社,2002建筑围护结构非稳定传热分析新方法陈友明, 王盛卫著北京:科学出版社,2004矿物差热分析鉴定手册黄伯龄编著北京:科学出版社,1987[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]和热分析技术傅若农, 常永福编著北京:国防工业出版社,1989分析化学手册.6:热分析(日) 〓山立子主编;刘振海译北京:化学工业出版社,1994热分析李余增编北京:清华大学出版社,1987热分析Wendlandt, W.W.著;陈道达译台北:渤海堂文化事业有限公司,1979热分析(日) 神户博太郎;刘振海等译北京:化学工业出版社,1982热分析蔡正千编北京:高等教育出版社,1993分析化学手册.第八分册:热分析刘振海, 畠山立子主编北京:化学工业出版社,2000热分析导论刘振海主编北京:化学工业出版社,1991热分析动力学胡荣祖, 史启祯主编北京:科学出版社,2001热分析法及其在陶瓷领域中的应用陈建邦著北京:中国建筑工业出版社,1981热分析及其应用陈镜泓, 李传儒编著北京:科学出版社,1985热分析质谱法陆昌伟, 奚同庚编著上海:上海科学技术文献出版社,2002实用热分析于伯龄, 姜胶东编著北京:纺织工业出版社,1990药物热分析图谱魏觉珍, 陈国玺著北京:化学工业出版社,2001炸药热分析楚士晋著北京:科学出版社,1994不断修补中.......

  • 差热分析法(DTA)简介

    差热分析法(DTA)简介 (Differential Thermal Analysis) 1.DTA的基本原理 差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线是描述样品与参比物之间的温差(ΔT)随温度或时间的变化关系。在DAT试验中,样品温度的变化是由于相转变或反应的吸热或放热效应引起的。如:相转变,熔化,结晶结构的转变,沸腾,升华,蒸发,脱氢反应,断裂或分解反应,氧化或还原反应,晶格结构的破坏和其它化学反应。一般说来,相转变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分解反应产生放热效应。差热分析的原理如图Ⅱ-3-1所示。将试样和参比物分别放入坩埚,置于炉中以一定速率 进行程序升温,以 表示各自的温度,设试样和参比物(包括容器、温差电偶等)的热容量Cs、Cr不随温度而变。则它们的升温曲线如图Ⅱ-3-2所示。若以 对t作图,所得DTA曲线如图Ⅱ-3-3所示,在0-a区间,ΔT大体上是一致的,形成DTA曲线的基线。随着温度的增加,试样产生了热效应(例如相转变),则与参比物间的温差变大,在DTA曲线中表现为峰。显然,温差越大,峰也越大,试样发生变化的次数多,峰的数目也多,所以各种吸热和放热峰的个数、形状和位置与相应的温度可用来定性地鉴定所研究的物质,而峰面积与热量的变化有关。图Ⅱ-3-1差热分析的原理图 II-3-1 差热分析的原理图 图II-3-2试样和参比物的升温曲线  1.参比物 2.试样 3.炉体 4.热电偶 (包括吸热转变) 图Ⅱ-3-3 DTA吸热转变曲线  TA曲线所包围的面积S可用下式表示   式中m是反应物的质量,ΔH是反应热,g是仪器的几何形态常数,C是样品的热传导率ΔT是温差,t1是DTA曲线的积分限。这是一种最简单的表达式,它是通过运用比例或近似常数g和C来说明样品反应热与峰面积的关系。这里忽略了微分项和样品的温度梯度,并假设峰面积与样品的比热无关,所以它是一个近似关系式。2.DTA曲线起止点温度和面积的测量 (1)DTA曲线起止点温度的确定如图Ⅱ-3-3所示,DTA曲线的起始温度可取下列任一点温度:曲线偏离基线之点Ta;曲线的峰值温度Tp;曲线陡峭部分切线和基线延长线这两条线交点Tp (外推始点,extrapolatedonset)。其中Ta与仪器的灵敏度有关,灵敏度越高则出现得越早,即Ta值越低,故一般重复性较差,Tp和Te的重复性较好,其中Te最为接近热力学的平衡温度。从外观上看,曲线回复到基线的温度是Tf(终止温度)。而反应的真正终点温度是T’f,由于整个体系的热惰性,即使反应终了,热量仍有一个散失过程,使曲线不能立即回到基线。Tf’可以通过作图的方法来确定,Tf’之后,ΔT即以指数函数降低,因而如以ΔT-(ΔT)a的对数对时间作图,可得一直线。当从峰的高温侧的底沿逆查这张图时,则偏离直线的那点,即表示终点T’f。(2)DTA峰面积的确定DTA的峰面积为反应前后基线所包围的面积,其测量方法有以下几种:(1)使用积分仪,可以直接读数或自动记录下差热峰的面积。(2)如果差热峰的对称性好,可作等腰三角形处理,用峰高乘以半峰宽峰高12处的宽度的方法求面积。(3)剪纸称重法,若记录纸厚薄均匀,可将差热峰剪下来,在分析天平上称其质量,其数值可以代表峰面积。对于反应前后基线没有偏移的情况,只要联结基线就可求得峰面积,这是不言而喻的。对于基线有偏移的情况,下面两种方法是经常采用的。1)分别作反应开始前和反应终止后的基线延长线,它们离开基线的点分别是Ta和Tf,联结Ta,Tp,Tf各点,便得峰面积,这就是ICTA(国际热分析协会)所规定的方法(见图II-3-4(1))。 图Ⅱ-3-4 峰面积求法 2)由基线延长线和通过峰顶Tp作垂线,与DTA曲线的两个半侧所构成的两个近似三角形面积S1,S2(图II-3-4(2)中以阴影表示)之和S=S1+S2 表示峰面积,这种求面积的方法是认为在S1中丢掉的部分与S2中多余的部分可以得到一定程度的抵消。3.影响差热分析的主要因素 差热分析操作简单,但在实际工作中往往发现同一试样在不同仪器上测量,或不同的人在同一仪器上测量,所得到的差热曲线结果有差异。峰的最高温度、形状、面积和峰值大小都会发生一定变化。其主要原因是因为热量与许多因素有关,传热情况比较复杂所造成的。一般说来,一是仪器,二是样品。虽然影响因素很多,但只要严格控制某种条件,仍可获得较好的重现性。(1)气氛和压力的选择气氛和压力可以影响样品化学反应和物理变化的平衡温度、峰形。因此,必须根据样品的性质选择适当的气氛和压力,有的样品易氧化,可以通入N2、Ne等惰性气体。(2)升温速率的影响和选择升温速率不仅影响峰温的位置,而且影响峰面积的大小,一般来说,在较快的升温速率下峰面积变大,峰变尖锐。但是快的升温速率使试样分解偏离平衡条件的程度也大,因而易使基线漂移。更主要的可能导致相邻两个峰重叠,分辨力下降。较慢的升温速率,基线漂移小,使体系接近平衡条件,得到宽而浅的峰,也能使相邻两峰更好地分离,因而分辨力高。但测定时间长,需要仪器的灵敏度高。一般情况下选择8度min-1~12度min-1为宜。(3)试样的预处理及用量试样用量大,易使相邻两峰重叠,降低了分辨力。一般尽可能减少用量,最多大至毫克。样品的颗粒度在100目~200目左右,颗粒小可以改善导热条件,但太细可能会破坏样品的结晶度。对易分解产生气体的样品,颗粒应大一些。参比物的颗粒、装填情况及紧密程度应与试样一致,以减少基线的漂移。(4)参比物的选择要获得平稳的基线,参比物的选择很重要。要求参比物在加热或冷却过程中不发生任何变化,在整个升温过程中参比物的比热、导热系数、粒度尽可能与试样一致或相近。常用α-三氧化二铝Al2O3)或煅烧过的氧化镁(MgO)或石英砂作参比物。如分析试样为金属,也可以用金属镍粉作参比物。如果试样与参比物的热性质相差很远,则可用稀释试样的方法解决,主要是减少反应剧烈程度;如果试样加热过程中有气体产生时,可以减少气体大量出现,以免使试样冲出。选择的稀释剂不能与试样有任何化学反应或催化反应,常用的稀释剂有SiC、铁粉、Fe2O3、玻璃珠Al2O等。(5)纸速的选择在相同的实验条件下,同一试样如走纸速度快,峰的面积大,但峰的形状平坦,误差小 走纸速率小,峰面积小。因此,要根据不同样品选择适当的走纸速度。不同条件的选择都会影响差热曲线,除上述外还有许多因素,诸如样品管的材料、大小和形状、热电偶的材质以及热电偶插在试样和参比物中的位置等。市售的差热仪,以上因素都已固定,但自己装配的差热仪就要考虑这些因素。4.DTA的仪器结构典型的DTA装置如图II-3-5所示。(1)温度程序控制单元使炉温按给定的程序方式(升温、降温、恒温、循环)以一定速度上升、下降或恒定。 (2)差热放大单元 用以放大温差电势,由于记录仪量程为毫伏级,而差热分析中温差信号很小,一般只有几微伏到几十微伏,因此差热信号须经放大后再送入记录仪中记录。(3)记录单元由双笔自动记录仪将测温信号和温差信号同时记录下来。例如锡在加热熔化时的差热图如图Ⅱ-3-6所示。 图II-3-5 典型DTA装置的框块图 1.气氛控制 2.炉子 3.温度敏感器 4.样品 5.参比物 6.炉腔程序控温 7.记录仪 8.微伏放大器。 图Ⅱ-3-6 锡加热时的差热图 在进行差热分析过程中,如果升温时试样没有热效应,则温差电势应为常数,差热曲线为一直线,称为基线。但是由于两个热电偶的热电势和热容量以及坩埚形态、位置等不可能完全对称,在温度变化时仍有不对称电势产生。此电势随温度升高而变化,造成基线不直,这时可以用斜率调整线路加以调整。方法是,坩埚内不放参比物和样品,将差热放大量程置于100μV,升温速度置于10度min-1,用移位旋钮使温差记录笔处于记录纸中部,这时记录笔应画出一条直线。在升温过程中如果基线偏离原来的位置,则主要是由于热电偶不对称电势引起基线漂移。待炉温升到750度时,通过斜率调整旋钮校正到原来位置即可。此外,基线漂移还和样品杆的位置、坩埚位置、坩埚的几何尺寸等因素有关。

矿物差热分析鉴定手册相关的耗材

  • 气相色谱柱〖Select Mineral Oil 矿物油分析〗
    气相色谱柱〖Select Mineral Oil 矿物油分析〗 .安捷伦(Agilent) 色谱科 瓦里安(Varian) SGE 毛细柱 毛细管柱 金属毛细柱 保护柱 惰性 手性 极性 耗材. 在许多环境实验中,矿物油分析是一项日常的工作,样品需要过滤。因此需要简单可靠的色谱方法,以缩短分析时间。Varian Select Mineral Oil色谱柱是一种合适的温度稳定性键合色谱柱,最适合于矿物油快速分析。温度稳定达400℃,在10分钟内可分析C4-C40烃类。色谱柱的高温稳定性允许快速烘烤老化色谱柱。 为了优化进样性能,请务必使用如下专用的4米长保留间隙。 特点: ◆ 稳定的非极性键合固定相,是矿物油分析的最佳选择 ◆ 最高操作温度375/400℃ ◆ 快速分析矿物油,用于DIN H53和DIN-EN-ISO9377-2方法 产品应用: 专用于矿物油总烃的分析。 应用范围:C5-C40 烃类化合物 气相色谱柱〖Select Mineral Oil 矿物油分析〗 Tmax-iso/Tmax-prog 325/350 ℃, Tmin &ndash 60 ℃ 0.10 1 CP7491 0.32 15 0.10 3 CP749103 内径(mm) 长度(m) 膜厚(&mu m) 数量/包装 部件号 0.32 15 0.32 15 0.10 6 CP749106 气相色谱柱〖Select Mineral Oil 矿物油分析〗不锈钢柱 Tmax-iso/Tmax-prog 325/350 ℃, Tmin &ndash 60 ℃ 内径(mm) 长度(m) 膜厚(&mu m) 数量/包装 部件号 0.32 15 0.1 N/A CP7493 保留间隙 内径(mm) 长度(m) 膜厚(&mu m) 数量/包装 部件号 0.53 4 N/A 3 CP8015
  • Select Mineral Oil 矿物油分析专用柱
    毛细管柱 Select Mineral Oil 矿物油分析专用柱许多环境实验室中,石油烃分析是一项日常的工作,需要对许多样品进行筛查。因此需要一种简单可靠的色谱方法,以获得最短的分析时间。Agilent J&W Select Mineral Oil 色谱柱满足这一需求,它具有稳定的非极性键合固定相,尤其适用于矿物油快速分析。温度上限可达 375/400 °C,并根据 DIN H53 和 DIN-EN-ISO 9377-2 方法提供快速分析。由于 Select Mineral Oil 的温度稳定性,您在 10 分钟内即可分析 C4-C40 烃类。色谱柱的高温稳定性允许快速烘烤老化色谱柱。注意:为了优化进样性能,请使用专用的 4 米长保留间隙管(部件号:CP8015)。
  • XRD Mineralogy Sets XRD 矿物学分析用标准样品套装
    XRD Mineralogy SetsXRD 矿物学分析用标准样品套装 产品货号产品描述3000XRD 矿物学分析用标准样品套装

矿物差热分析鉴定手册相关的资料

矿物差热分析鉴定手册相关的资讯

  • 简介差热分析基本原理
    p style=" text-align: center " strong 原创: 王昉【南师大】 江苏热分析 /strong /p p style=" text-align: center " img title=" 简介差热分析基本原理.jpg" alt=" 简介差热分析基本原理.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/a583219e-fc52-4730-be7a-b8c049b9da17.jpg" / /p p style=" text-align: center " strong 简介差热分析基本原理 /strong /p p span style=" color: rgb(255, 0, 0) " strong · 热分析 /strong /span /p p   热分析是指在程序控制温度下,测量物质的物理性质随温度变化的一种技术。其中,它可以测定一个重要的热力学参数—热焓的变化。根据热力学的基本原理,物质的焓、熵和自由能都是物质的一种特性,可用Gibbs-Helmholts方程表达他们之间的关系: /p p style=" text-align: center " ΔG=ΔH-TΔS /p p   其中: T绝对温度 ΔG吉布斯能变 ΔH焓变 ΔS熵变 /p p   由于在给定温度下每个体系总是趋向于达到自由能最小状态,所以,当逐渐加热试样时,它可转变成更稳定的晶体结构,或具有更低自由能的另一个状态。伴随着这种转变,会有热焓的变化。这就是差热分析和差示扫描量热法的基础。 /p p   当然,热分析还可以给出有一定参考价值的动力学、质量、比热熔、纯度和模量变化等数据,所以它是分析和表征各类物质物理转变与化学反应基本特性的重要手段,在高分子材料、含能材料、药物、食品、矿物、金属/合金、陶瓷、考古以及资源利用等众多领域有着极其广泛的应用。 /p p span style=" color: rgb(255, 0, 0) " strong · 差热分析 /strong /span /p p   早在1887年法国的Le Chatelier首先利用热电偶经检流计记录了粘土类矿物在升温时的电动势变化。热电偶(thermocouple)是常用的测温传感器,它可以直接测量温度,并把温度信号转换成热电动势信号,进行记录。接着,1899年英国人Roberts-Austen利用参比热电偶制成了有实用价值的差热实验装置,最先以差示的形式成功地观测到试样与参比物之间的温差ΔT,这为DTA技术奠定了基础。以后的发展基本上都是在此基础上进行改进,例如:试样与参比物的配置、热电偶的形式、记录方法、控温方式和数据处理等方面,从而形成各种差示扫描量热仪。图1为差热分析示意图,图2为差热曲线。 /p p   实验过程中,处在加热炉内的试样和参比物在相同条件下,同时加热或冷却,炉温控制由控温热电偶监控。试样与参比物之间的温差用对接的两支热电偶进行测定,热电偶的两个接点分别与盛放试样和参比物的坩埚底部接触。参比物是一种热容与试样相接近而在研究的温度范围没有相变的物质,常用α –Al sub 2 /sub O sub 3 /sub ,或者空坩埚。 /p p style=" text-align: center " img title=" 图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶).jpg" alt=" 图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶).jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/17afd1c0-ca11-4433-ac7c-7404a8f9ea9b.jpg" / /p p style=" text-align: center " strong 图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶) /strong /p p style=" text-align: center " img title=" 图2: 差热曲线.jpg" alt=" 图2: 差热曲线.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/e2c5d8b8-1ed6-42f6-9f3b-2e15857bc77c.jpg" / /p p style=" text-align: center " strong 图2: 差热曲线 /strong /p p   在加热或冷却过程中,如果试样没有任何热效应产生,即试样与参比物无温差,ΔT=TS-TR=0 (TS为试样温度,TR为参比物温度 )。由于热电偶的热电势与试样和参比物之间的温差成正比,两对热电偶的电势大小相等,方向相反(由于是反相连接),热电偶无电势输出,所得到的差热曲线就是一条水平直线。称作基线。如果试样有某种变化,并伴有热效应的产生,则TS≠TR,差示热电偶就会有电势输出,差热曲线偏离基线,直至变化结束,差热曲线重新回到基线。这样,便可得到一条ΔT=f(T)的差热曲线。通常峰尖向上表示放热,向下表示吸热。 /p p & nbsp /p p a href=" https://www.instrument.com.cn/zt/TAT" target=" _blank" 更多热分析相关知识请见专题:《热分析方法与仪器原理剖析》 /a /p
  • 差热分析(DTA)技术在材料研究中的应用
    差热分析(DTA)已成为一种流行的热分析技术,通常用于测量材料的温度,进而用于测量材料的吸热相变和放热相变。这项技术已在制药、有机化工、无机材料、食品、水泥、矿物学和考古学领域得到广泛应用。差热分析(DTA)过程原则上,差热分析是一种类似于差示扫描量热(DSC)的技术,在差热分析中作为研究对象的材料经历了各种热循环(加热和冷却循环),并使用惰性参考材料确定研究材料和参考材料之间的温差。在整个加热循环中,研究材料和参考材料都保持在相同的温度,以确保测试环境一致。差热分析(DTA)中的元件差热分析通常在熔炉中进行,尤其是在现代熔炉中,因为这是在周围环境中获得均匀温度的最有效方法。温度本身是用两个热电偶记录的,这两个热电偶是专门(和通用)类型的温度传感器,传感器使用金属线形成热接点和冷接点。热接点测量材料的温度,而冷接点提供了将分析温度与之比较的参考。这是每个热电偶内部用来确定材料温度的过程。在这种情况下,参考温度不是DTA分析的参考温度,而是每个热电偶装置内的参考温度。因此,需要有两个热电偶,一个热电偶测量样品的温度,另一个测量参考温度。除了热电偶和熔炉外,还使用电压表测量热电偶之间的电压(这是它们确定温度的方式),以及通常用作材料支撑的坩埚(尤其是在分析小的样品时)。在熔炉内部,也使用氩气或氦气等惰性气体,因为它们不会与样品或参考材料发生反应,这确保了测量过程中没有干扰。在大多数情况下,防止污染物影响分析结果是非常重要的。现代DTA方法中使用的大多数熔炉也可以提供-150°C至2400°C的温度环境。此外,可以使用许多不同的坩埚,这两个因素的组合可以对各种材料进行分析,这就是为什么差热分析能够跨越很多不同的工业部门的原因。分析是将样品和参考材料对称放置在熔炉中进行。然后,这两种材料在程序控温下经过加热和冷却的过程,在每个循环中,这两种温度尽可能保持恒定(在合理误差范围内)。由于熔炉加热,数据记录通常会有轻微延迟(延迟的长度通常取决于材料的热容)。差热分析(DTA)图谱在分析过程中,将温差相对时间的曲线绘制在图表上。在某些情况下,也可以绘制温差相对于温度的曲线。从这(以及曲线如何显示)可以确定材料的吸热和放热转变温度,更多的信息还包括材料的玻璃化转变温度、材料的结晶温度、材料的熔化温度和材料的升华温度。这些通常都能推断出来,因为相对于参考材料的温度变化可以确定材料是吸收热量(吸热)还是释放热量(放热)。热电偶的存在也有助于轻松识别是否发生了相变,因为当发生相变时,连接到参考热电偶上的电压表将轻微跳变。这是由于材料相变产生的潜热导致惰性气体温度略微升高(进而影响参考热电偶的电压)。除了传统的温度相变外,当两个惰性样品对热循环的响应不同时,还可以使用差热分析来测量它们。在这些特定情况下,DTA还可用于识别任何不基于焓变的相变。这些通常通过DTA图上曲线的间断来识别。结论虽然差热分析被正式定义为一种确定样品和参考材料之间温差的方法,但在实践中,它可以告诉用户材料在很多不同温度下的相特性。差热分析获得的信息量对很多行业都有很大的好处,因此被广泛使用。本文作者:Liam Critchley,Liam Critchley是一名作家和记者,专攻化学和纳米技术,拥有化学和纳米技术硕士学位和化学工程硕士学位。
  • 报名开启!“第六届现代地质及矿物分析测试新技术与应用”网络会议正式上线
    地矿资源作为国家不可或缺的战略基石,在驱动经济繁荣与强化国防安全中占据重要地位。地矿行业正积极迈向高质量发展新阶段,承担能源资源稳定供应的重任。矿石分析检测是矿产资源勘探、开发与利用的关键环节,通过运用先进的检测方法与科学技术手段,更好的掌握矿产资源的分布格局与储量情况,为资源的合理、高效开发提供坚实的技术支撑与决策依据。为进一步激发地矿分析测试技术的创新活力,促进领域内知识与经验的广泛交流,仪器信息网将于2024年8月22日举办“第六届现代地质及矿物分析测试新技术与应用”网络研讨会,旨在搭建一个高效、便捷的互动平台,分享最新研究成果,探讨技术应用前沿。一、主办单位仪器信息网二、会议时间2024年8月22日三、会议形式网络在线研讨四:会议官网(点击图片进入)五、报名方式(1)官网报名https://www.instrument.com.cn/webinar/meetings/geoanalysis240822/ (2)二维码报名 温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。六、 会议联系1. 会议内容李编辑:13261695749,lirui@instrument.com.cn2. 会议赞助刘经理,15718850776,liuyw@instrument.com.cn附:往届会议页面2023年:https://www.instrument.com.cn/webinar/meetings/geoanalysis230824/2022年:https://www.instrument.com.cn/webinar/meetings/geoanalysis20220826/2020年:https://www.woyaoce.cn/webinar/meetings/xddz2020/2019年:https://www.instrument.com.cn/webinar/meetings/Geo/2018年:https://www.instrument.com.cn/webinar/meetings/XDDZ/2017年:https://www.instrument.com.cn/webinar/meetings/Geology/关于矿物分析矿物分析是指根据矿物的物理化学性质的差异,利用机械、仪器或试剂进行定性和定量分析方法的总称。研究方法通常为物相分析和岩矿鉴定。通过矿物分析,可以阐明矿物的成因及其在不同地质作用下的富集规律。矿物分析方法包括机械分离方法:分选、水洗、重液分离、磁重分离、电化学分离等;物理方法:双目立体显微镜鉴定、偏光显微镜鉴定、X射线差热分析、电子显微镜鉴定、电子探针等;化学方法:吹管分析、显微化学分析、全化学分析、光谱分析、极谱分析等。通过矿物分析,可以阐明矿物的成因及其在不同地质作用下的富集规律。光谱分析和化学分析只能查明矿石中所含元素的种类和含量,矿物分析则可进一步查明矿石中各种元素呈何种矿物存在,以及各种矿物的含量、嵌布粒度特性和相互间的共生关系。其研究方法通常为物相分析和岩矿鉴定。

矿物差热分析鉴定手册相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制