电容器测试仪技术原理

仪器信息网电容器测试仪技术原理专题为您提供2024年最新电容器测试仪技术原理价格报价、厂家品牌的相关信息, 包括电容器测试仪技术原理参数、型号等,不管是国产,还是进口品牌的电容器测试仪技术原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电容器测试仪技术原理相关的耗材配件、试剂标物,还有电容器测试仪技术原理相关的最新资讯、资料,以及电容器测试仪技术原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

电容器测试仪技术原理相关的仪器

  • 使用DCI接口可控制外部直流偏流源,偏置电流可达120A。一、 概述介质损耗和介电常数是各种电瓷、装置瓷、电容器等陶瓷,还有复合材料等的一项重要的物理性质,通过测定介质损耗角正切tanδ及介电常数(ε),可进一步了解影响介质损耗和介电常数的各种因素,为提高材料的性能提供依据;该仪器用于科研机关、学校、工厂等单位对无机非金属新材料性能的应用研究。 二、 测试原理采用高频谐振法,并提供了,通用、多用途、多量程的阻抗测试。它以单片计算机作为仪器的控制,测量核心采用了频率数字锁定,标准频率测试点自动设定,谐振点自动搜索,Q值量程自动转换,数值显示等新技术,改进了调谐回路,使得调谐测试回路的残余电感减至最低,并保留了原Q表中自动稳幅等技术,使得新仪器在使用时更为方便,测量值更为精确。仪器能在较高的测试频率条件下,测量高频电感或谐振回路的Q值,电感器的电感量和分布电容量,电容器的电容量和损耗角正切值,电工材料的高频介质损耗,高频回路有效并联及串联电阻,传输线的特性阻抗等。 本测试装置是由二只测微电容器组成,平板电容器一般用来夹持被测样品,园筒电容器是一只分辨率高达0.0033pF的线性可变电容器,配用仪器作为指示仪器,绝缘材料的损耗角正切值是通过被测样品放进平板电容器和不放进样品的Q值变化,由园筒电容器的刻度读值变化值而换算得到的。同时,由平板电容器的刻度读值变化而换算得到介电常数。 三、仪器的技术指标1.Q值测量范围:2~10232.Q值量程分档:30、100、300、1000、自动换档或手动换档;3.电感测量范围:自身残余电感和测试引线电感的自动扣除功能4.5nH-100mH 分别有0.1μH、0.5μH、2.5μH、10μH、50μH、100μH、1mH、5mH、10mH九个电感组成。4.电容直接测量范围:1~460pF 5.主电容调节范围: 30~500pF 6.电容准确度 150pF以下±1.5pF;150pF以上±1% 7.信号源频率覆盖范围10KHz-70MHz (双频对向搜索 确保频率不被外界干扰)另有GDAT-C 频率范围10KHz-70MHz及200KHZ-160M 8、型号频率指示误差:1*10-6 ±1 Q值合格指示预置功能范围:5~1000Q值自动锁定,无需人工搜索
    留言咨询
  • 电容器薄膜工频介电常数测试仪是本公司推出的新一代高压电桥,主要用于测量工业绝缘材料的介质损耗(tgδ)及介电常数(ε)。符合GB1409、GB5654及GB/T1693, ASTM D150-1998(2004) 固体电绝缘材料的交流损耗特性及介电常数的试验方法其采用了西林电桥的经典线路,内附0-2500的数显高压电源及100PF标准电容器,并可按用户要求扩装外接标准电容线路。电容器薄膜工频介电常数测试仪是本公司推出的新一代高压电桥,主要用于测量工业绝缘材料的介质损耗(tgδ)及介电常数(ε)。符合GB1409、GB5654及GB/T1693, ASTM D150-1998(2004) 固体电绝缘材料的交流损耗特性及介电常数的试验方法其采用了西林电桥的经典线路,内附0-2500的数显高压电源及100PF标准电容器,并可按用户要求扩装外接标准电容线路。 电桥的特点; l桥体内附电位跟踪器及指零仪,外围接线及少。l电桥采用接触电阻小,机械寿命长的十进开关,保证测量的稳定性l仪器具有双屏蔽,能有效防止外部电磁场的干扰。l仪器内部电阻及电容元件经特殊老化处理,使仪器技术性能稳定可靠。l内附高压电源精度3%l内附标准电容损耗﹤0.00005,名义值100pF一、 技术指标测量范围及误差本电桥的环境温度为20±5℃,相对湿度为30%-80%条件下,应满足下列表中的技术指示要求。在Cn=100 pF R4=3183.2(Ω)时电桥测量灵敏度 电桥在使用过程中,灵敏度直接影响电桥平稳衡的分辨程度,为保证测量准确度,希望电桥灵敏度达到一定的水平。通常情况下电桥灵敏度与测量电压,标准电容量成正比。 在下面的计算公式中,用户可根据实际情况估算出电桥灵敏度水平,在这个水平上的电容与介质损耗因数的微小变化都能够反应出来。 ΔC/C或Δtgδ=Ig/UωCn(1+Rg/R4+Cn/Cx)式中: U 为测量电压 伏特 (V) ω为角频率2πf=314(50Hz) Cn标准电容器容量 法拉(F) Ig通用指零仪的电流5×10-10 安培(A) Rg平衡指零仪内阻约1500 欧姆(Ω) R4桥臂R4阻值3183 欧姆(Ω) Cx被测试品电容值 法拉(pF)工作电压说明在使用中,本电桥顶A,B对V点的电压不超过11V,R3桥臂各盘的电流不超过下列规定:10×1kΩ 1max≤15mA10×100Ω 1max≤120mA10×10Ω l max≤150mA用户在使用前应注意以上的问题。如不清楚,可根据实验电压及标准电容量,按以下公式来计算出大概的工作电流。 I=ω V C 辅桥的技术特性:不失真跟踪电压0~11V(有效值)指零装置的技术特性:在50Hz时电压灵敏度不低于1×10-6V/格 电流灵敏度不低于2×10-9 A/格二次谐波 减不小于25dB三次谐波 减不小于50dB一、 电桥工作原理电容器薄膜工频介电常数测试仪采用典型的西林电桥线路。C4桥臂在基本量程时,与R4桥臂并联,测量数值为正损耗因数。结构采用了双层屏蔽。并通过辅桥的辅助平衡,消除寄生参数对电桥平衡的影响。辅桥由电位自动电位跟踪器与内层屏蔽(S)组成。自动跟踪器由电子元器件组成。它在桥顶B处取一输入电压,通过放大后,在内屏蔽(S)产生一个与B电位相等的电压。当电桥在平衡时,A,B,S三点电位必然相等,从而达到自动跟踪的目的。本电桥在平衡过程中,辅桥采用自动电位跟踪,在主桥平衡过程的同时,辅桥也自动跟踪始终处于平衡的状态,用户只要对主桥平衡进行操作就能得到可靠的所需数据。同时也有效的抑制了电压波动对平衡所带来的影响。在指零部分,采用了指针 桥各臂的组成***臂:由被测对象Cx组成Z1。第二臂:由高压标准电容器Cn组成Z2。第三臂:由十进电阻器10×(1000+100+10+1+0.1)欧姆和滑线电阻(0-0.13)欧姆组成Z3。第四臂:由十进电容臂10×(0.1+0.01+0.001+0.0001)uf和可变电容器100pF组成C4再与电组R4并联组成Z4。 计算公式Cx=R4× Cn / R3 R4[Ω] R3[Ω] Cn[pF] Cx[pF]tgδ=ωR4C4 R4[Ω] C4[F]当R4=10K/πtgδ=C4 当R4=1K/πtgδ=0.1C4 我们采取相对固定R4电阻,分别调节R3和C4使桥跟平衡,从而测得试品的电容值Cx和介质损耗tg。本电桥为了直读出损耗值,取电阻R4的阻值为角频率(f=50Hz)若干倍。公式说明.频率对介质损耗正公式:本电桥额定的工作频率f=50Hz,在实际工作频率偏离额定频率时可用修正式进行修正:tg=f’tgδ / f式中:f 为额定工作频率(f=50Hz)f’ 为实际工作频率tgδ 电桥测得损耗值tgδ 为被测试品介质损耗角正切的实际值 四、安全操作规程1. 本仪器必须有专人负责保管,使用,非专职操作者应在使用前了解和熟悉本说明书,以免造成不必要的损失和事故。2. 每次使用前应仔细检查接地线是否完好,确保以后方可通电使用。3. 接通电源前应将灵敏度开关调到***位置。4. 测量试品前应先对试品进行高压试验,证明在电桥工作电压下无噪声,电离等现象出现,然后才能进行测试(若试品己做过高压试验,该项可不必每次测量都做)。5. 对试品施加高压时缓慢升高,不可以加突变电压。6. 测试时操作人员必须集中思想,工作前做好一切准备工作,测试地点周围应有明显的标记或金属屏蔽围成高压危险区,以防止非操作人员闯入。7. 在测量过程中,如有放电管发光时,则必须及时切断电源,仔细检查接线及试品都无击穿,待检查排除故障后,再进行高压测量工作。 五.操作方法 5.1 测试前的准备工作①按图(3)所示,连接标准电容Cn(选用外接标准电容时),与被测电容Cx,并且将标准电容与被测电容尽可能远离,以防止互相之间干扰。如选用内部标准电容器,只需连接被测试品即可。②检查周围是否有强电磁场干扰,应尽量避免。③检查大地线是否牢靠,以保证操作人员的安全,应检查电桥上的(⊥)与大地是否接触良好。④检查电桥的灵敏度开关是否已回另位。⑤检查试品的绝缘强度,应符合大于2U+1的标准。⑥对试品施加试验电压(按部标或国际所规定的专业标准进行)。 5.2 试品的测试①在不知道被测试品的大概容量及损耗时,可先施加少许的电压,找到粗平衡点后,再把工作电压升到所需的值,然后再寻找细平衡点。②在测量时,灵敏度开关是按从小到大的规律来调节的。③在测量时,R3开关时按从左至右的规律来调节的。④在测量时,C4开关时按从右至左的规律来调节的。⑤整个测量步絮:首先检查接线无误后,方可通电试验。第二升起试验电压,并调节灵敏度开关,使UA表头有明显的指示。此时表明电桥没有平衡。第三调节R3开关,顺序从左至右。这时通过观察表头来观察电桥的平衡状况。如表头已回另,可再加大灵敏度。应总保持能明显地观察到调节R3时,电桥的平衡状况。第四在某一点上用户会发现,调节R3已无法使表头再回到另位。这时可调节C4开关,顺序时从右至左,把表头指针调节到***小位。第五用户在调节C4到某一点时又会发现无法将指针调回另位。这时又要去调节R3开关,调节的位数是上一次调节R3的***后位,然后又会出现第四点时的问题,又必须要调节C4开关...就这样来回往复地调节R3和C4两组开关,直至灵敏度开关时,并指针回另(或指另仪指示到***小)。表明电桥已达到平衡。 ⑥测量完毕后或在暂停测量时,应将另仪的灵敏度开关降至“0”,再将测量电压降至另并切断电源开关,根据计算公式,算出被测试品的容量及介损值。六、装置成套性1.BQS-37a型高压电桥 一台 2. 试验电极 一台3.使用说明书 一份4.电源线 二根5.测试线 三根北广精仪公司简介北广精仪公司是一家专业从事检测仪器,自动化设备生产的高新科技企业公司,“精细其表,精湛于内”是北广精仪一惯秉承的原则。其先进的设计风格,卓越的制造技术和完善的服务体系,为科研机构、大专院校,企业和质量检测机构提供的产品和优质的服务。北广公司保持以发展与中国测试产业相适应的应用技术为主线,通过与产业界协调发展的方式提高本公司的竞争实力和技术含量。与此同时,本公司自成立以来,坚持走"研发生产"相结合的道路,借助国家工业研究院的理论知识和强劲的科研实力,在消化、吸收国际先进生产技术的基础上,大胆创新、锐意改革、努力创造,开发出具有中国特色的新产品,为提高中国的科研及产品质量作出了应有的贡献。经营理念: 一、诚信待户 顾客至上 全心全意为顾客考虑,使顾客能切身感受到人性化的仪器。 二、检测 保质保量 检测是我们的责任 保质保量是我们对客户的郑重承诺 三、技术 创新理念 储备的开发人才,引进世界技术,采用先进的设计理念,打造最精良的检测仪器。 北广产品广泛应用于国防、大专院校以及检测所等行业,本公司以技术的创新为企业的发展方向,以新型实用的产品引导客户的需求北广公司所供产品严格按照国家标准生产制造,严谨的制造环节确保每一台出厂仪器质量和性能的卓越,服务优质,质优价廉 确保您的放心 !
    留言咨询
  • 电容器介电常数及介质损耗测试仪GCSTD-A/Bj主要用途:主要用于测量非金属材料的介电常数(ε)和介质损耗(tanδ)应用对象:该仪器用于科研机关、学校、工厂等单位对无机非金属新材料性能的应用研究。满足标准:GB/T1409-2006测量电气绝缘材料在工频、音频、高频下电容率和介质损耗因数的推荐方法GB/T 5654-2007液体绝缘材料 相对电容率、介质损耗因数和直流电阻率的测量GB/T 21216-2007绝缘液体 测量电导和电容确定介质损耗因数的试验方法GB/T 1693-2007硫化橡胶 介电常数和介质损耗角正切值的测定方法GB/T 5594.4-1985__电子元器件结构陶瓷材料性能测试方法介质损耗角正切值的测试方法GBT 1409-2006测量电气绝缘材料在工频、音频、高频(包括米波波长在内)下电容率和介质损耗因数的推荐方法ASTM D150/IEC 60250固体电绝缘材料的(恒久电介质)的交流损耗特性和介电常数的测试方法方法概述:介质损耗和介电常数是各种电瓷、装置瓷、电容器等陶瓷,还有复合材料等的一项重要的物理性质,通过测定介质损耗角正切tanδ及介电常数(ε),可进一步了解影响介质损耗和介电常数的各种因素,为提高材料的性能提供依据;仪器的基本原理是采用高频谐振法,并提供了,通用、多用途、多量程的阻抗测试。它以单片计算机作为仪器的控制,测量核心采用了频率数字锁定,标准频率测试点自动设定,谐振点自动搜索,Q值量程自动转换,数值显示等新技术,改进了调谐回路,使得调谐测试回路的残余电感减至最低,并保留了原Q表中自动稳幅等技术,使得新仪器在使用时更为方便,测量值更为精确。仪器能在较高的测试频率条件下,测量高频电感或谐振回路的Q值,电感器的电感量和分布电容量,电容器的电容量和损耗角正切值,电工材料的高频介质损耗,高频回路有效并联及串联电阻,传输线的特性阻抗等。备注说明:三种不同型号的仪器,主要区别是频率不同,根据自己测试频率,选择合适的型号电极规格固体:材料测量直径Φ38mm 可选;厚度可调 ≥ 15mm 液体:测量极片直径Φ38mm; 液体杯内径Φ48mm 、深7mm(选配)粉体:测量极片直径Φ38mm; 液体杯内径Φ48mm 、深7mm(选配)试样要求:固体样品厚度要求:0.5-15MM产品配置:1、测试主机:一台2、测试电感:9个3、测试夹具:1套(标配固体测试夹具一套)其它规格:1、环境温度:0℃~+40℃; 2、相对湿度:80%; 3、电源:220V±22V,50Hz±2.5Hz。4、消耗功率:约25W; 5、净重:约7kg;6、外型尺寸:(长宽高):380×280×132(mm)
    留言咨询

电容器测试仪技术原理相关的方案

电容器测试仪技术原理相关的论坛

  • [推荐] 电化学超级电容器:科学原理及技术应用

    [推荐] 电化学超级电容器:科学原理及技术应用

    电化学超级电容器:科学原理及技术应用 作者 : B.E.康维 ISBN : 7502573755 页数 : 625 开本 : 大32开 封面形式 : 简裝本 出版社 : 化学工业 出版日期 : 2005-9-1 定价 : 58 元 内容简介 "电化学超级电容器是介于传统静电电容器与电池之间的全新的能量贮存器件,由于其容量密度极大,从而适合工作于要求瞬间释放超大电流的场合。本书给出了这种电容器系统及其应用技术的综合描述。其中包括背景科学的基本细节,以及电极动力学和界面电化学的基本概念、电极化理论、多孔电极以及用以提高比率容量的导电聚合物。这样,了解和学习本书提出的资料,将不需要频繁地去参考其他物理化学或电化学的教科书。本书收集资料广泛,内容新颖,并纳入了作者本人多年来的实验成果。对从事电化学及能源领域研究与应用的技术人员具有较强的参考价值。 [img]http://ng1.17img.cn/bbsfiles/images/2006/07/200607071817_21157_1604910_3.jpg[/img][em17]

  • 超级电容器的自放电测试

    请教一下如何做超级电容器的自放电测试,我们只有电化学工作站,能否用电化学工作站测超级电容器的自放电,如何测?非常感谢!

  • 双电层电容器有什么特点?智能电容器与普通电容器有何区别?

    一、双电层电容器 (一)双电层电容器的工作基本原理 双电层电容是在德国物理学家亥姆霍兹提出的界面双电层理论基础上发展起来的一种新型电容。数字电位器 众所周知,插入电解质溶液中的金属电极将在金属电极的表面和液体表面的两侧上具有过量电荷的相反符号,从而导致相之间的电势差。 如果同时将两个电极插入电解质溶液中,且在其间施加小于电解质溶液分解电压的电压,则电解质溶液中的正离子和负离子将通过电场快速地向两极移动,且在两个电极的表面上分别形成致密的电荷层,即双电层, 由双电层形成的双电层类似于传统电容器中电介质在电场作用下产生的极化电荷,从而产生电容效应,致密的双电层类似于平板电容器, 但是具有比普通电容器更大的容量,因为致密电荷层间隔比普通电容器的电荷层之间的距离小得多。 双电层电容器与铝电解电容器技术相比内阻较大,因此,可在无负载电阻一般情况下可以直接影响充电,如果没有出现系统过电压充电的情况,双电层电容器发展将会开路而不致损坏电子器件,这一重要特点与铝电解电容器的过电压击穿不同。同时,双电层电容器与可充电电池企业相比,可进行不限流充电,且充电使用次数可达10^6次以上,因此双电层电容不但需要具有一个电容的特性,数模转换器(DAC)同时也具有中国电池工作特性,是一种方法介于电池和电容数据之间的新型国家特殊元器件。 其基本原理是,当电极充电时,电极在理想极化状态下的表面电荷将吸引周围电解质溶液中的杂离子,使这些离子附着在电极表面形成一个双电荷层,构成一个双电荷层电容器。由于两个电荷层之间的距离很小(通常小于0.5 nm) ,并且由于特殊的电极结构,电极的表面积增加了10,000倍,从而产生了巨大的电容。 (2)双电层电容器的特性 (1)功率密度高 其功率密度可达102 ~ 104W/kg,远远高于蓄电池的功率密度水平。 (2)循环寿命长 经过几秒钟50万至100万次的高速深度充放电循环后,双电层电容器的特性变化不大,容量和内阻仅下降10% ~ 20%。 (3)工作温限宽 由于在低温环境状态下进行双层电容器中离子的吸附和脱附速度发展变化影响不大,模数转换器(ADC)因此其容量不断变化远小于蓄电池。商业化双层电容器的工作过程中温度控制范围一般可达-40℃~+80℃。 智能电容器与普通电容器的区别 智能电容器相比中国传统电容器,有以下我们几个主要优点: 1.模块化结构智能电容器是一种体积小、现场接线简单、维护方便的模块化结构。无功补偿系统的扩展只能通过增加模块的数量来实现。 2.高品质电容器可以采用自愈式低压补偿电容器,电容器内置温度控制传感器,反映一个电容器系统内部出现发热严重程度,实现过温保护。 3.嵌入投切开关模块智能电容器内置投切开关模块。投切开关模块由晶闸管、磁保持继电器、过零触发导通电路和晶闸管保护电路构成,实现电容器“零投切”,保障投切过程无涌流冲击,无操作过电压。开关模块动作响应速度快,可频繁操作。 四个。完善的保护设计智能电容器具有断电保护、短路保护、电压相损保护、电容器过温保护等功能,有效保证了电容器的安全,延长了设备的使用寿命。 5.先进的控制技术控制的物理量为无功功率,采用无功潮流预测和延时多点采样技术,保证投切无振荡。在重负载下,无功功率得到充分补偿。 6.防投切振荡培养技术可以采用自己独特的设计工作原理,防止系统控制器死机而产生的不补偿或过补偿进行现场,防止电容器投切振荡。 7. 自动补偿无功功率智能电容器根据负载的无功功率自动开关,动态补偿无功功率,提高电能质量。 智能电容器可以作为一个单元使用,也可以作为多个单元使用。 8.人机界面友好,显示电流、电压、无功等设备运行参数。显示开关状态,复合开关模块故障状态,通信状态。实现调试/工作状态切换和手动/自动操作功能方便。 [b]创芯为电子[/b]为不同规模的企业提供电子元器件采购的平台。主要产品包括[url=https://www.szcxwdz.com][b]电源管理芯片[/b][/url]、处理器及微控制器、接口芯片、放大器、存储器 、逻辑器件、[url=https://www.szcxwdz.com][b]数据转换芯片[/b][/url]、电容、二极管、三极管 、电阻、电感、晶振等,并提供相关的技术咨询。在售商品超60万种,原?或代理货源直供,绝对保证原装正品,并满?客??站式采购要求,当天订单,当天发货,还可免费供样!

电容器测试仪技术原理相关的耗材

  • 信昌贴片电容
    产品概述:信昌贴片电容信昌贴片电容尺寸范围:0201,0402, 0603, 0805, 1206, 1210, 1608, 1812, 2220,2225信昌贴片电容材料种类:X5R, X7R, X6S, COG信昌贴片电容工作电压:6.3V~5000V信昌贴片电容容量区间:0.2pF~220uF信昌贴片电容温度耐受:-55°C~+125°CLED阻容降压电路常用高压贴片和大容量贴片电容规格-(代替插件CBB)1210、1812、2220封装1210 224K 250V X7R1210 104K 250V X7R1210 334K 250V X7R1210 474K 250V X7R应用范围:高压贴片电容广泛应用于多种电子设备中,包括照明电源系统、高低频无极灯电源、通信电源适配器、LED日光灯恒流驱动电源、汽车HID灯(镇流器)、模块化电源、医疗设备电源、LED电阻降压电路、ADSL语音分离装置、RJ45以太网接口、数码相机闪光模块、LED节日灯光,以及各种节能灯具和电子产品。产品概述:高压贴片电容,亦称为陶瓷多层片式电容器,采用陶瓷粉末制造技术,内部含有贵金属钯金,通过高温烧结工艺将银镀在陶瓷上形成电极。该产品分为高频瓷介NPO(COG)和低频瓷介X7R两种主要类型。NPO电容以其小巧的封装、高耐温系数和优越的高频特性,常用于高稳定振荡电路和滤波电容。而X7R电介质电容器适合在普通频率的工作回路中作为旁路或隔直元件,在对稳定性和损耗要求不高的情况下使用。需要注意的是,这类电容器不适合应用于交流脉冲电路,因为它们容易被脉冲电压击穿。高压贴片电容按照功能分为三大类别:1.温度补偿型NPO介质NPO介质,又称COG,提供极高的稳定性,其电性能几乎不受温度、电压和时间变化的影响,是超高稳定性和低损耗材料的代表,适用于要求严苛的高频至甚高频电路。2.高介电常数型X7R介质X7R介质拥有较强的电介质特性,能够制造出比NPO介质更大容量的电容器。它在稳定性方面表现良好,适用于隔直、耦合、旁路、滤波电路以及中高频电路中对可靠性有较高要求的应用。3.半导体型X5R介质X5R介质具有高介电常数,适用于制作大容量电容器。尽管其稳定性不如X7R,但在振荡、耦合、滤波和旁路电路中仍然广泛应用。请注意,由于我们提供的物料规格超过十万种,无法在此一一列举。如果您需要了解更多规格或有任何疑问,请随时联系我们。 深圳谷京科技有限公司随时准备为您提供优质的电子元器件解决方案。
  • TDK高压电容
    TDK高压电容已经是市场一种常见的电子元器件,一般是指1KV或者10KV以上的电容。高压陶瓷电容的主要优异性在于其,尺寸小,耐压高,性能稳定,不含油,不含气,不会产生污染和不会有易燃易爆的隐患。那么高压电容器的主要作用是什么了呢?TDK高压电容的作用:1、在输电线路中,利用高压电容器可以组成串补站,提高输电线路的输送能力;2、在大型变电站中,利用高压电容器可以组成SVC,提高电能质量;3、在配电线路末端,利用高压电容器可以提高线路末端的功率因数,**线路末端的电压质量;4、在变电站的中、低压各段母线,均会装有高压电容器,以补偿负荷消耗的无功,提高母线侧的功率因数;5、在有非线性负荷的负荷终端站,也会装设高压电容器,作为滤波之用。 高压电容的优点:1,容量损耗随温度频率具高稳定性2,特殊的串联结构适合于高电压较长期工作可靠性3,高电流爬升速率并适用于大电流回路无感型结构代理:TDK/村田/JOHANSON/禾伸堂/信昌高压陶瓷贴片电容,安规贴片电容,贴片电感,蜂鸣器,滤波器等全系列产品TDK贴片电容、TDK安规贴片电容、TDK压电蜂鸣器、murata贴片电容、信昌PDC贴片电容、禾伸堂HEC贴片电容、JOHANSON约翰逊贴片电容等全系列我司为深圳TDK一级代理 代理全系列TDK产品。 购买提示:由于电子产品种类繁多,型号无法一一展示。若未找到所需型号,请联系我们的业务员。产品图片仅供参考,具体以实际收到的物品为准。深圳谷京科技有限公司随时准备为您提供优质的电子元器件解决方案。您可以通过Q:25008630 或TEL:136-130-77949与我们取得联系。我们期待您的垂询!
  • 硬度测试仪配件
    硬度测试仪配件和欧洲进口的便携式硬度测试仪,使用高硬度的金属平台代替了传统的玻璃平台,有效避免了玻璃平台易碎的缺点,硬度测试仪配件结构更紧凑、合理,操作简单。 硬度测试仪配件特点 专用于配套SHORE A,SHORE D型橡胶硬度计, 其测试原理更科学,结构更紧凑、合理,使测试的稳定性和准确度进一步得到提高 使用高硬度的金属平台代替了传统的玻璃平台,有效避免了玻璃平台易碎的缺点 。 硬度测试仪配件参数 E A/C型橡胶硬度计组合成专业的试验机; 外形尺寸: 100*212*250(mm) 便携式硬度测试仪参数 可选配SHOR结构更紧凑、合理,操作简单 净重:10 Kgs 孚光精仪是全球领先的进口科学仪器和实验室仪器领导品牌服务商,产品技术和性能保持全球领先,拥有包括硬度计,硬度测量仪在内的全球最为齐全的实验室和科学仪器品类,世界一流的生产工厂和极为苛刻严谨的质量控制体系,确保每个一产品是用户满意的完美产品。 我们海外工厂拥有超过3000种仪器的大型现代化仓库,可在下单后12小时内从国外直接空运发货,我们位于天津保税区的进口公司众邦企业(天津)国际贸易公司为客户提供全球零延误的进口通关服务。 关于便携式硬度测试仪参数,硬度测试仪参数的更多消息,孚光精仪将在第一时间更新并呈现,想了解更多内容,关注孚光精仪等你来体验!

电容器测试仪技术原理相关的资料

电容器测试仪技术原理相关的资讯

  • 高性能石墨烯基锂离子电容器研究获进展
    近日,电工研究所马衍伟团队联合大连化学物理研究所研究员吴忠帅在高性能石墨烯复合材料制备、石墨烯基锂离子电容器研制方面取得进展。相关研究成果以2D Graphene/MnO Heterostructure with Strongly Stable Interface Enabling High-Performance Flexible Solid-state Lithium-Ion Capacitors为题,发表在《先进功能材料》(Adv. Funct. Mater., 2022, 2202342)上。 锂离子电容器作为一种有效结合锂离子电池与超级电容器的新型电化学储能器件,具有高功率密度、高能量密度以及长循环寿命,有效弥补了锂离子电池和超级电容器之间的性能差异。电极材料作为锂离子电容器的重要组成部分,是影响锂离子电容器性能的关键因素。 精细的结构设计工程被认为是提高电极材料电化学性能的有效方式之一。马衍伟团队提出了一种通用静电自组装策略,在还原氧化石墨烯上原位生长了具有卷心菜结构的MnO复合纳米材料(rGO/MnO)。通过深入的原位实验表征以及理论计算,证实了rGO/MnO异质结构具有较强的界面作用和良好的储锂动力学。由于rGO/MnO复合纳米材料具有高电荷转移速率、丰富的反应位点以及稳定的异质结构,基于rGO/MnO复合纳米材料制备的电极具有高比容量(0.1 A/g电流密度下比容量为860 mAh/g)、优异的倍率性能(10 A/g下比容量为211 mAh/g)以及长循环稳定性。因此rGO/MnO复合纳米材料可作为高性能锂离子电容器理想的负极材料。 通过将这种高性能石墨烯基复合材料作为负极与活性炭正极进行组装,马衍伟团队成功制备出柔性固态锂离子电容器(AC//rGO/MnO)。经测试,这一电容器基于电极活性材料总质量的能量密度最高达到194 Wh/kg,功率密度最高可达40.7 kW/kg。这是迄今为止报道柔性固态锂离子电容器能量密度和功率密度的最高值。此外,在10000次充放电循环后,AC//rGO/MnO电容器的容量保持率可达77.8%,并且安全性能高。 科研团队表示,这一研究提出的金属氧化物/石墨烯复合材料设计策略在高能量密度和高功率密度的柔性锂离子电容器中具有很好的应用前景。 该研究工作得到国家自然科学基金、中科院大连洁净能源研究院合作基金、中科院青年促进会等的支持。 论文链接: https://doi.org/10.1002/adfm.202202342 石墨烯复合材料结构示意图和锂离子电容器原理性能图
  • 哈工大(深圳)魏军团队 AFM综述:3D打印超级电容器 - 技术、材料、设计及应用
    便携式、柔性和可穿戴电子设备的发展促进了高性能的电化学储能设备的快速发展。与电池和燃料电池相比,超级电容器表现出显著的优势,具有优异的倍率性能、杰出的循环寿命和卓越的安全性。然而,超级电容器的能量密度相对较低,不足以为电子设备提供连续且稳定的电源。为了提高能量密度,厚电极设计是有效的手段。而在传统的三明治结构的超级电容器中,平面电极的活性材料质量负载是相当有限的。设计三维多孔电极可以有效地提高活性物质的质量负载,同时保持较短的离子/电子传输距离和快速的反应动力学。但传统的制备三维多孔电极的方法通常复杂、昂贵、耗时,并且很难精确控制电极的结构。3D打印技术,通过计算机辅助设计/制造模型,对预定义的3D模型进行数字化控制,使得在短时间内精确控制和制造复杂结构成为可能。区别于传统的等材和减材制造技术, 3D打印技术可以实现几乎任何所需的立体几何形状,不需要所谓的模具或光刻掩模。这使得打印的超级电容器具有可调整的几何结构、高度集成、节省时间和低成本、以及卓越的功率和能量密度。为了总结这一领域的最新进展并为未来的研究提供设想,来自哈尔滨工业大学(深圳)的魏军教授团队,在Advanced Functional Materials上发表题为“3D Printed Supercapacitor: Techniques, Materials, Designs and Applications”的综述文章,回顾了3D打印超级电容器的最新进展,如图1所示。 图1. 3D打印超级电容器研究进展首先,介绍了用于制备超级电容器的代表性的3D打印技术,不同技术的原理图和特点如图2所示。 图2. 制备超级电容器的各种3D打印技术的原理图和特点接下来,文章重点介绍了超级电容器的可打印模块,包括电极、电解液和集流体,如图3所示。 图3. 用于3D打印超级电容器的材料在研究合适的可打印材料的同时,制造中的打印设计对于优化超级电容器的性能也是重要的。因此,文章总结了电极的设计(图4)、打印电极的后处理,并概括了3D打印超级电容器的不同构型(图5)。图4. 3D打印电极的不同结构设计 图5. 3D打印超级电容器的构型此外,还总结了3D打印超级电容器的各种应用,包括柔性可穿戴电子设备(图6)、自供电集成电子设备和传感系统(图7)。 图6. 不同类型的智能响应型超级电容器 图7. 3D打印的自供电集成系统,和超级电容器驱动的传感器系统。如图8可知,目前制备的3D打印超级电容器的能量密度与铅酸、镍氢电池和锂电池相当,有的甚至更高。 图8. 3D打印超级电容器的 (a)质量Ragone图, (b) 面积Ragone图最后,总结了目前3D打印技术的局限性和未来3D打印超级电容器的研究面临的挑战,并提出了一些可能的研究方向。 图9. 3D打印超级电容器的未来展望文章信息:Mengrui Li, Shiqiang Zhou, Lukuan Cheng, Funian Mo, Lina Chen,* Suzhu Yu,* Jun Wei,* 3D Printed Supercapacitor: Techniques, Materials, Designs and Applications, Advanced Functional Materials, 2022, 202208034.原文链接:https://doi.org/10.1002/adfm.202208034
  • 比奥罗杰参展2016年超级电容器关键材料与技术专题会议
    为发展超级电容器器件及关键材料,促进解决关键科学问题,突破应用瓶颈,进一步推动超级电容器关键材料及技术的发展,促进我国超级电容器行业的健康有序融合与发展,由中国化工学会储能工程专业委员会主办,燕山大学环境与化学工程学院承办的“2016超级电容器关键材料与技术专题会议”于2016年8月25-27日在秦皇岛召开。比奥罗杰携SP-300系列高性能电化学工作站参展了本次会议, SP-300电化学工作站现场测试超级电容器样品表现出的稳定性及精确性让参会的超级电容器科研老师对bio-logic系列电化学工作站表现出浓厚的兴趣,并非常欣赏EC-LAB电化学软件在超级电容器应用上的优化。第一分会场报告实况 Bio-Logic仪器展示 晚宴黄晟副校长致辞 报到大厅

电容器测试仪技术原理相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制