当前位置: 仪器信息网 > 行业主题 > >

差热分析仪的基本原理

仪器信息网差热分析仪的基本原理专题为您提供2024年最新差热分析仪的基本原理价格报价、厂家品牌的相关信息, 包括差热分析仪的基本原理参数、型号等,不管是国产,还是进口品牌的差热分析仪的基本原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合差热分析仪的基本原理相关的耗材配件、试剂标物,还有差热分析仪的基本原理相关的最新资讯、资料,以及差热分析仪的基本原理相关的解决方案。

差热分析仪的基本原理相关的资讯

  • 简介差热分析基本原理
    p style=" text-align: center " strong 原创: 王昉【南师大】 江苏热分析 /strong /p p style=" text-align: center " img title=" 简介差热分析基本原理.jpg" alt=" 简介差热分析基本原理.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/a583219e-fc52-4730-be7a-b8c049b9da17.jpg" / /p p style=" text-align: center " strong 简介差热分析基本原理 /strong /p p span style=" color: rgb(255, 0, 0) " strong · 热分析 /strong /span /p p   热分析是指在程序控制温度下,测量物质的物理性质随温度变化的一种技术。其中,它可以测定一个重要的热力学参数—热焓的变化。根据热力学的基本原理,物质的焓、熵和自由能都是物质的一种特性,可用Gibbs-Helmholts方程表达他们之间的关系: /p p style=" text-align: center " ΔG=ΔH-TΔS /p p   其中: T绝对温度 ΔG吉布斯能变 ΔH焓变 ΔS熵变 /p p   由于在给定温度下每个体系总是趋向于达到自由能最小状态,所以,当逐渐加热试样时,它可转变成更稳定的晶体结构,或具有更低自由能的另一个状态。伴随着这种转变,会有热焓的变化。这就是差热分析和差示扫描量热法的基础。 /p p   当然,热分析还可以给出有一定参考价值的动力学、质量、比热熔、纯度和模量变化等数据,所以它是分析和表征各类物质物理转变与化学反应基本特性的重要手段,在高分子材料、含能材料、药物、食品、矿物、金属/合金、陶瓷、考古以及资源利用等众多领域有着极其广泛的应用。 /p p span style=" color: rgb(255, 0, 0) " strong · 差热分析 /strong /span /p p   早在1887年法国的Le Chatelier首先利用热电偶经检流计记录了粘土类矿物在升温时的电动势变化。热电偶(thermocouple)是常用的测温传感器,它可以直接测量温度,并把温度信号转换成热电动势信号,进行记录。接着,1899年英国人Roberts-Austen利用参比热电偶制成了有实用价值的差热实验装置,最先以差示的形式成功地观测到试样与参比物之间的温差ΔT,这为DTA技术奠定了基础。以后的发展基本上都是在此基础上进行改进,例如:试样与参比物的配置、热电偶的形式、记录方法、控温方式和数据处理等方面,从而形成各种差示扫描量热仪。图1为差热分析示意图,图2为差热曲线。 /p p   实验过程中,处在加热炉内的试样和参比物在相同条件下,同时加热或冷却,炉温控制由控温热电偶监控。试样与参比物之间的温差用对接的两支热电偶进行测定,热电偶的两个接点分别与盛放试样和参比物的坩埚底部接触。参比物是一种热容与试样相接近而在研究的温度范围没有相变的物质,常用α –Al sub 2 /sub O sub 3 /sub ,或者空坩埚。 /p p style=" text-align: center " img title=" 图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶).jpg" alt=" 图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶).jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/17afd1c0-ca11-4433-ac7c-7404a8f9ea9b.jpg" / /p p style=" text-align: center " strong 图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶) /strong /p p style=" text-align: center " img title=" 图2: 差热曲线.jpg" alt=" 图2: 差热曲线.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/e2c5d8b8-1ed6-42f6-9f3b-2e15857bc77c.jpg" / /p p style=" text-align: center " strong 图2: 差热曲线 /strong /p p   在加热或冷却过程中,如果试样没有任何热效应产生,即试样与参比物无温差,ΔT=TS-TR=0 (TS为试样温度,TR为参比物温度 )。由于热电偶的热电势与试样和参比物之间的温差成正比,两对热电偶的电势大小相等,方向相反(由于是反相连接),热电偶无电势输出,所得到的差热曲线就是一条水平直线。称作基线。如果试样有某种变化,并伴有热效应的产生,则TS≠TR,差示热电偶就会有电势输出,差热曲线偏离基线,直至变化结束,差热曲线重新回到基线。这样,便可得到一条ΔT=f(T)的差热曲线。通常峰尖向上表示放热,向下表示吸热。 /p p & nbsp /p p a href=" https://www.instrument.com.cn/zt/TAT" target=" _blank" 更多热分析相关知识请见专题:《热分析方法与仪器原理剖析》 /a /p
  • 同步热分析仪:基本原理、工作流程及实际应用
    同步热分析仪是一种重要的材料科学研究工具,它可以同时提供热重(TG)和差热(DSC)信息,对于材料科学研究与开发具有重要意义。本文将介绍同步热分析仪的基本原理、工作流程及其在实际应用中的意义和作用。上海和晟 HS-STA-002 同步热分析仪同步热分析仪的基本原理是基于热重和差热分析技术的结合。热重分析是一种测量样品质量变化与温度关系的分析技术,可以研究样品的热稳定性、分解行为等。差热分析是一种测量样品与参比物之间的温度差与时间关系的分析技术,可以研究样品的相变、反应热等。同步热分析仪将这两种分析技术结合在一起,可以在同一次测量中获得样品的热重和差热信息,从而更全面地了解样品的热性质。同步热分析仪的工作流程包括实验前的准备、实验过程中的操作和数据处理等步骤。实验前需要选择合适的坩埚、样品和实验条件,将样品放入坩埚中,然后将坩埚放置在仪器中进行测量。在实验过程中,仪器会记录样品的重量变化和温度变化,并将这些数据传输到计算机中进行处理和分析。数据处理包括绘制热重曲线和差热曲线、计算样品的热性质等。同步热分析仪在实际应用中具有广泛的意义和作用。它可以帮助科学家们更好地了解材料的热性质和化学性质,从而为材料的开发和应用提供重要的参考。例如,在研究高分子材料的合成和加工过程中,同步热分析仪可以用来研究材料的熔融、结晶、氧化等行为,从而指导材料的制备和加工过程。此外,同步热分析仪还可以在药物研发、陶瓷材料等领域得到广泛应用。
  • 综合热分析仪:基本原理、应用场景
    综合热分析仪是一种广泛应用于材料科学、化学、物理等领域的仪器,能够同时测量物质的多种热学性质、设备综合热重分析仪TGA及差示扫描量热仪DSC等。本文将介绍综合热分析仪的基本原理、应用场景及其优劣比较。上海和晟 HS-STA-002 综合热分析仪综合热分析仪的基本原理是热平衡法,即通过加热和冷却待测物质,并记录物质在不同温度下的热学性质。在具体操作中,将待测物质放置在加热炉中,加热炉会按照设定的程序进行加热和冷却,并使用热电偶等传感器记录物质在不同温度下的热学性质。通过数据处理软件,可以将这些数据转化为物质的热容、热导率、热膨胀系数等参数。综合热分析仪在各个领域都有广泛的应用。在材料科学领域,可以利用综合热分析仪研究材料的热稳定性、相变行为等性质,以确定其加工和制备工艺;在化学领域,可以利用综合热分析仪研究化学反应的动力学过程和反应速率常数,为新材料的开发和优化提供依据;在物理领域,可以利用综合热分析仪研究物质的热学性质和物理性能,为新技术的开发和应用提供支持。综合热分析仪的优点在于其能够同时测量物质的多种热学性质,且测量精度高、重复性好。此外,综合热分析仪还具有操作简便、自动化程度高等特点,可以大大减少实验操作的时间和人力成本。然而,综合热分析仪也存在一些缺点,如价格昂贵、维护成本高、对实验条件要求严格等。总之,综合热分析仪是一种重要的仪器,具有广泛的应用场景和优劣比较。在实际使用中,应根据具体需求选择合适的综合热分析仪,以获得更准确的实验结果。随着科技的不断发展,相信未来综合热分析仪将会在更多领域得到应用,并推动材料研究和开发的进步。
  • 网络讲堂 | 热分析的基本原理及案例分析
    热分析是在程序控温下,测量物质的某种物理性质与温度或时间关系的一种技术。随着科技的发展,新领域的诞生,各行各业对于新材料的需求日益加剧。热分析作为研究材料性能的常见手段,也在飞速发展。热分析可用于分析各种材料,从航空航天材料到平时喝的矿泉水瓶,从研究领域到品质管理都可以用到热分析。 本讲座旨在梳理热分析的基本知识点,如果您刚接触热分析相关工作,欢迎参加我们在7月28日14:00-15:00举办的直播网络讲堂,您将了解到: 1. DSC的基本原理及案例分析 2. STA的基本原理及案例分析3. TMA的基本原理及案例分析4. DMA的基本原理及案例分析5. 问题和答疑 微信扫描下方二维码或点击链接,即可报名参加。日立高新技术公司是日立集团旗下的一家仪器设备子公司。全球雇员超过10,000人,在世界上26个国家及地区共有百余处经营网点。企业发展目标是"成为独步全球的高新技术和解决方案提供商",即兼有掌握先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料。其中,生命科学领域产品包括电子显微镜、原子力显微镜和分析仪器(色谱、光谱、热分析)等。咨询热线:400-630-5821。
  • 各种仪器分析的基本原理及谱图表示方法
    紫外吸收光谱UV   分析原理:吸收紫外光能量,引起分子中电子能级的跃迁   谱图的表示方法:相对吸收光能量随吸收光波长的变化   提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息   荧光光谱法FS   分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光   谱图的表示方法:发射的荧光能量随光波长的变化   提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息   红外吸收光谱法IR   分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁   谱图的表示方法:相对透射光能量随透射光频率变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   拉曼光谱法Ram   分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射   谱图的表示方法:散射光能量随拉曼位移的变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   核磁共振波谱法NMR   分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁   谱图的表示方法:吸收光能量随化学位移的变化   提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息   电子顺磁共振波谱法ESR   分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁   谱图的表示方法:吸收光能量或微分能量随磁场强度变化   提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息   质谱分析法MS   分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离   谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化   提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息   气相色谱法GC   分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:峰的保留值与组分热力学参数有关,是定性依据 峰面积与组分含量有关   反气相色谱法IGC   分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力   谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线   提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数   裂解气相色谱法PGC   分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型   凝胶色谱法GPC   分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:高聚物的平均分子量及其分布   热重法TG   分析原理:在控温环境中,样品重量随温度或时间变化   谱图的表示方法:样品的重量分数随温度或时间的变化曲线   提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区   热差分析DTA   分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化   谱图的表示方法:温差随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   TG-DTA图   示差扫描量热分析DSC   分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化   谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   静态热―力分析TMA   分析原理:样品在恒力作用下产生的形变随温度或时间变化   谱图的表示方法:样品形变值随温度或时间变化曲线   提供的信息:热转变温度和力学状态   动态热―力分析DMA   分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化   谱图的表示方法:模量或tg&delta 随温度变化曲线   提供的信息:热转变温度模量和tg&delta   透射电子显微术TEM   分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象   谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象   提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等   扫描电子显微术SEM   分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象   谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等   提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等   原子吸收AAS   原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。   (Inductivecouplinghighfrequencyplasma)电感耦合高频等离子体ICP   原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。   X-raydiffraction,x射线衍射即XRD   X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。   满足衍射条件,可应用布拉格公式:2dsin&theta =&lambda   应用已知波长的X射线来测量&theta 角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量&theta 角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。   高效毛细管电泳(highperformancecapillaryelectrophoresis,HPCE)   CZE的基本原理   HPLC选用的毛细管一般内径约为50&mu m(20~200&mu m),外径为375&mu m,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象 电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。   MECC的基本原理   MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。   扫描隧道显微镜(STM)   扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。   原子力显微镜(AtomicForceMicroscopy,简称AFM)   原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。   俄歇电子能谱学(Augerelectronspectroscopy),简称AES   俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。
  • 热分析仪核心部件原理简介
    p   常规的热分析仪器主要有热重分析仪(TGA),差热分析仪(DTA),差示扫描量热仪(DSC),热机械分析仪(TMA)和动态热机械分析仪(DMA)。 /p p   热分析仪器测量各种各样的物理量需要靠其核心部件来实现。这些部件有电子天平、热电偶传感器、位移传感器等。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 电子天平 /strong /span /p p   电子天平是热重分析仪(TGA)和同步热分析仪(STA)的核心部件,是测量试样质量的关键。 /p p   电子天平采用了现代电子控制技术,利用电磁力平衡原理实现称重。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/b44413c9-13e5-46ab-a916-78c021d42f3e.jpg" title=" 电压式微量热天平.png" / /p p style=" text-align: center " strong 电压式微量热天平 /strong /p p   天平的秤盘通过支架连杆与线圈连接,线圈置于磁场内,当向秤盘中加入试样或被测试样发生质量变化时,天平梁发生倾斜,用光学方法测定天平梁的倾斜度,光传感器产生信号以调整安装在天平系统和磁场中线圈的电流,线圈转动恢复天平梁的倾斜。在称量范围内时,磁场中若有电流通过,线圈将产生一个电磁力F,可用下式表示: /p p style=" text-align: center " F=KBLI /p p   其中K为常数(与使用单位有关),B为磁感应强度,L为线圈导线的长度,I为通过线圈导线的电流强度。电磁力F和秤盘上被测物体重力的力矩大小相等、方向相反而达到平衡。即处在磁场中的通电线圈,流经其内部的电流I与被测物体的质量成正比,只要测出电流I即可知道物体的质量m。 /p p   无论采用何种控制方式和电路结构,其称量依据都是电磁力平衡原理。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 热电偶传感器 /strong /span /p p   热电偶传感器是所有热分析仪器均会用到的部件,用于测定不同部位(试样、炉体)的温度。 /p p   热电偶传感器是工业中使用最为普遍的接触式测温装置。这是因为热电偶具有性能稳定、测温范围大、信号可以远距离传输等特点,并且结构简单、使用方便。热电偶能够将热能直接转换为电信号,并且输出直流电压信号,使得显示、记录和传输都很容易。 /p p   热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应(Seebeck effect),即热电效应。热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度。 /p p   热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数 热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关 当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关 若热电偶冷端的温度保持一定,热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A和B连接起来,构成一个闭合回路,当导体A和B的两个连接点之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 位移传感器 /strong /span /p p   位移传感器是热膨胀仪(DIL)、热机械分析仪(TMA)和动态热机械分析仪(DMA)中会用到的核心部件。通过测定直接放置于试样上或覆盖于试样的石英片上的探头的移动,来测定试样的尺寸变化。 /p p   LVDT位移传感器,LVDT(Linear Variable Differential Transformer)是线性可变差动变压器缩写,属于直线位移传感器。LVDT的结构由铁心、衔铁、初级线圈、次级线圈组成。初级线圈、次级线圈分布在线圈骨架上,线圈内部有一个可自由移动的杆状衔铁。当衔铁处于中间位置时,两个次级线圈产生的感应电动势相等,这样输出电压为0 当衔铁在线圈内部移动并偏离中心位置时,两个线圈产生的感应电动势不等,有电压输出,其电压大小取决于位移量的大小。为了提高传感器的灵敏度,改善传感器的线性度、增大传感器的线性范围,设计时将两个线圈反串相接、两个次级线圈的电压极性相反,LVDT输出的电压是两个次级线圈的电压之差,这个输出的电压值与铁心的位移量成线性关系。线圈系统内的铁磁芯与测量探头连接,产生与位移成正比的电信号。电磁线性马达可消除部件的重力,保证探头传输希望的力至试样。使用的力通常为0~1N。 /p
  • 质粒抽提的基本原理及操作流程
    质粒抽提的基本原理及操作流程⒈质粒抽提基本原理在其中采用几种水溶液及其硅酸化学纤维膜(超滤膜柱)。 水溶液Ⅰ:50 mM果糖 / 25 mMTris-HCl/ 10 mMEDTA,pH 8.0;水溶液Ⅱ:0.2 N NaOH / 1%SDS; 水溶液Ⅲ:3 M 醋酸钾/ 2 M 醋酸/75%乙醇。水溶液Ⅰ果糖是使飘浮后的大肠埃希菌不容易迅速堆积到水管的底端;EDTA是Ca2+和Mg2+等二价金属材料正离子的螯合剂,其关键目地是以便鳌合二价金属材料正离子进而达到抑制DNase的特异性;可加上RNase A消化吸收RNA。水溶液Ⅱ此步为碱解决。在其中NaOH关键是以便融解体细胞,释放出来DNA,由于在强偏碱的状况下,细胞质产生了从两层膜结构工程向微囊构造的转变。SDS与NaOH联用,其目地是以便提高NaOH的强偏碱,一起SDS做为阳离子表活剂毁坏脂两层膜。那步要记牢二点:首位,时间不可以太长,由于在那样的偏碱标准下基因组DNA-p段也会渐渐地破裂;其次,务必温柔混和,要不然基因组DNA会破裂。水溶液Ⅲ水溶液III的功效是沉定蛋白质和中和反应。在其中醋酸钾是以便使钾离子换置SDS中的钾离子而产生了PDS,由于十二烷基硫酸钠(sodium dodecylsulfate)碰到钾离子后变为了十二烷基硫酸钾 (potassium dodecylsulfate, PDS),而PDS不是溶水的,一起1个SDS分子结构均值融合2个碳水化合物,钾钠正离子换置所造成的很多沉定大自然就将绝大多数蛋白沉定了。2 M的醋酸是以便中合NaOH。基因组DNA如果产生破裂,要是是50-100 kb尺寸的片段,就没有方法再被 PDS共沉淀了,因此碱解决的时间要短,并且不可猛烈震荡,要不然蕞终获得的质粒上都会有很多的基因组DNA渗入,琼脂糖电泳能够 观查到这条浓浓总DNA条带。75%乙醇关键是以便清理盐分和抑止Dnase;一起水溶液III的强酸碱性都是以便使DNA尽快融合在硅酸化学纤维膜上⒉质粒抽提流程⑴应用质粒提取试剂盒获取质粒时请参照实际试剂盒的操作指南。如Omega企业的E.Z.N.A.? Plasmid Mini Kit I, Q(capless) Spin (质粒提取盒)。⑵碱裂解手提式法:此方式适用少量质粒DNA的获取,获取的质粒DNA可立即用以酶切、PCR测序、银染编码序列分析。方式给出:①接1%含质粒的大肠埃希菌体细胞于2mlLB培养液。②37℃震荡塑造留宿。③取1.5ml菌体于Ep管(离心管),以4000rpm抽滤3min,弃上清液。④加0.lml水溶液I(1%果糖,50mM/LEDTApH8.0,25mM/LTris-HClpH8.0)充足混和。⑤添加0.2ml水溶液II(0.2mM/LNaOH,1%SDS),轻轻地旋转搅拌,放置冰浴5min.⑥添加0.15m1预冷水溶液III(5mol/LKAc,pH4.8),轻轻地旋转搅拌,放置冰浴5min.⑦以10,000rpm抽滤20min,取上清液于另翻新Ep管。⑧添加等容积的异戊醇,搅拌后静放10min.⑨以10,000rpm抽滤20min,弃上清。⑩用70%酒精0.5ml清洗一回,吸干全部液体。待沉定干躁后,溶解50ulTE缓冲液中(或60℃温育双蒸水)。
  • 炭黑含量测试仪:基本原理、使用方法及应用场景
    炭黑含量测试仪是一种用于测量材料中炭黑含量的仪器。本文将介绍炭黑含量测试仪的基本原理、使用方法及其优缺点,并结合实际应用场景阐述其重要性和应用价值。上海和晟 HS-TH-3500 炭黑含量测试仪基本原理炭黑含量测试仪的基本原理是通过在氧气环境中燃烧样品中炭黑,对材料中的炭黑进行定量分析。使用方法使用炭黑含量测试仪需要按照以下步骤进行:准备样品:将待测1g样品,并按照测试并放入燃烧舟。开机预热:打开测试仪,通几分钟氮气,设置升温程序。放置样品:将准备好的样品放入石英管中。开始测试:按下测试按钮,试验结束后拿出样品。数据处理:根据公式计算出测试结果。炭黑含量测试仪的优点包括:精度高:可以精确测量材料中的炭黑含量。快速方便:测试速度快,操作简单方便。适用范围广:可以用于测量各种材料中的炭黑含量,如塑料、橡胶、涂料等。炭黑含量测试仪的缺点包括:价格较高:仪器价格相对较高,不是所有用户都能承担。需要专业操作:需要对操作人员进行专业培训,否则会影响测试结果的准确性和可靠性。实际应用炭黑含量测试仪在工业生产、科学研究、质量检测等领域有广泛的应用。在工业生产中,可以利用炭黑含量测试仪对原材料中的炭黑进行定量分析,从而控制生产过程中的原料配比和产品质量。在科学研究领域,可以利用炭黑含量测试仪对新型材料中的炭黑进行定量分析,从而了解材料的物理和化学性质。在质量检测中,可以利用炭黑含量测试仪对产品中的炭黑进行定量分析,从而保证产品的质量和安全性。结论未来,随着科学技术的不断发展和进步,炭黑含量测试仪将会更加完善和先进,为材料研究和生产提供更加准确和可靠的数据支持。同时,随着人们对材料性质和反应过程的理解不断深入,炭黑含量测试仪将会发挥更加重要的作用,为科学研究和社会发展做出更大的贡献。
  • 快速水份测定仪基础知识一:定义与基本原理
    快速水份测定仪基础知识一,定义与基本原理1. 什么是快速水份测定仪? 快速水份测定仪利用热失重法测定样品的水份含量,由称量与加热装置(红外)组成。 它通常亦称作水份天平或水份测定仪。 2. 快速水份测定仪的工作方式?卤素快速水份测定仪按照热重原理(通常亦称作“热失重”(LOD)原理)运行。 快速水份测定仪由两个组件构成,即:天平装置与加热装置。 为了测量水份含量,首先记录样品的初始重量,然后在内置天平持续记录样品重量的同时,卤素灯对样品进行加热和烘干。 当样品不再失重时,仪器关闭并且计算水份含量。 总失重量用于计算水份含量。 3. 什么是“热失重”(LOD)原理?LOD表示热失重。 大多数标准方法属于热失重法。 热失重法是一种通过分析加热时样品的失重测定样品水份含量的方法。 将失重解释为样品的水份损失。 当所有水份从样品中排出时,样品的重量不再发生变化。 然后,通过将样品的初始重量同干重或样品最终重量进行比较,计算出样品的水份含量。 4. 如何加热样品? 样品吸收卤素快速水份测定仪的红外辐射,因此可快速升温。 另外,样品的温度取决于其吸收特点,因此一定不是显示温度。 这与烘箱不同,烘箱是通过对流方式对样品加热,并且需要很长时间才能烘干。 5. 卤素技术与红外技术之间的区别是什么? 卤素加热也是红外技术。 采用卤素辐射体进行干燥是红外干燥法的进一步发展。 加热元件由充满卤素气体的玻璃灯管组成, 由于卤素辐射体远轻于传统红外辐射体,因此可以快速获得最大热量输出,并实现卓越的可控性甚至是热分布。 6. 快速水份测定仪的适合对象?烘箱是测定水份含量的正规方法。 如今,许多客户使用快速水份测定仪,因为他们希望使用更快速的方法分析水份含量。 快速水份测定仪在许多行业中使用,例如:食品、化学、制药与塑料制造行业。 由于水份含量会对产品的质量和保质期产生影响,因此测定食品中的水份含量尤为重要。 7. 什么是水份? 水份指加热时蒸发(“热失重”)的所有物质。 除了水之外,分析的水份含量还包括脂肪、酒精与溶剂。 8. 水份与水是否一样?不一样,这两种概念经常被混淆。 水份指加热时蒸发的所有物质。 水专门指水分子(H20)。 为了测定水份含量,最好使用卡尔费休滴定仪。
  • 高效液相色谱(HPLC)的基本原理和系统组成
    高效液相色谱(HPLC)是色谱法的一个重要分支,其应用范围广泛,对样品的适用性广,且不受分析对象的挥发性和热稳定性的限制。 几乎所有的化合物,包括高沸点、极性、离子化合物和大分子物质都可以用高效液相色谱法进行分析测定,从而弥补了气相色谱法的缺点。 目前已知的有机化合物中,约20%可以通过气相色谱法进行分析,而80%需要通过高效液相色谱法进行分析。 高效液相色谱法具有分离效率高、分析速度快、检测灵敏度好等特点,可以分析分离高沸点且不能汽化的热不稳定生理活性物质。 分离与分析技术在该领域的重要应用。基本原理色谱法的分离原理是:溶于流动相中的各组分经过固定相时,由于与固定相(stationphase)发生作用(吸附、分配、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。又称为色层法、层析法。高效液相色谱法以经典的液相色谱为基础,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有颗粒极细的高效固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。系统组成HPLC 系统一般由输液泵、进样器、色谱柱、检测器、数据记录及处理装置等组成。其中输液泵、色谱柱、检测器是关键部件。此外,还可根据需要配置梯度洗脱装置、在线脱气机、自动进样器、预柱或保护柱、柱温控制器等,现代HPLC 仪还有微机控制系统,进行自动化仪器控制和数据处理。制备型HPLC 仪还备有自动馏分收集装置。
  • 电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应
    这里是TESCAN电镜学堂第三期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第四节 各种信号与衬度的总结前面两节详细的介绍了扫描电镜中涉及到的各种电子信号、电流信号、电磁波辐射信号和各种衬度的关系,下面对常见的电子信号和衬度做一个总结,如图2-36和表2-4。图2-36 SEM中常见的电子信号和衬度关系表2-4 SEM中常见的电子信号和衬度关系第五节 荷电效应扫描电镜中还有一种不希望发生的现象,如荷电效应,它也能形成某些特殊的衬度。不过在进行扫描电镜的观察过程中,我们需要尽可能的避免。§1. 荷电的形成根据前面介绍的扫描电镜原理,电子束源源不断的轰击到试样上,根据图2-6,只有原始电子束能量在v1和v2时,二次电子产额δ才为1,即入射电子和二次电子数量相等,试样没有增加也没减少电子,没有吸收电流的形成。而只要初始电子束不满足这个条件,都要形成吸收电流以满足电荷的平衡, i0= ib+is+ia。要实现电荷平衡,就需要试样具备良好的导电性。对于导体而言,观察没有什么问题。但是对于不导电或者导电不良、接地不佳的试样来说,多余的电荷不能导走,在试样表面会形成积累,产生一个静电场干扰入射电子束和二次电子的发射,这就是荷电效应。荷电效应会对图像产生一系列的影响,比如:① 异常反差:二次电子发射受到不规则影响,造成图像一部分异常亮,一部分变暗;② 图像畸变:由于荷电产生的静电场作用,使得入射电子束被不规则偏转,结果造成图像畸变或者出现阶段差;③ 图像漂移:由于静电场的作用使得入射电子束往某个方向偏转而形成图像漂移;④ 亮点与亮线:带点试样经常会发生不规则放电,结果图像中出现不规则的亮点与亮线;⑤ 图像“很平”没有立体感:通常是扫描速度较慢,每个像素点驻留时间较长,而引起电荷积累,图像看起来很平,完全丧失立体感。如图2-37都是典型的荷电效应。图2-37 典型的荷电效应§2. 荷电的消除荷电的产生对扫描电镜的观察有很大的影响,所以只有消除或降低荷电效应,才能进行正常的扫描电镜观察。消除和降低荷电的方法有很多种,这里介绍一下常用的方法。首先,在制样环节就要注意以便减小荷电:1) 缩小样品尺寸、以及尽可能减少接触电阻:这样可以增加试样的导电性。2)镀膜处理:给试样镀一层导电薄膜,以改善其导电性,这也是使用的最多的方法。常用的镀膜有蒸镀和离子溅射两种,常用的导电膜一般是金au和碳,如果追求更好的效果,还可使用铂pt、铬cr、铱ir等。镀导电膜不但可以有效的改善导电性,还能提高二次电子激发率,而且现在的膜厚比较容易控制,一定放大倍数内不会对试样形貌产生影响。不过镀膜也有其缺点,镀膜之后会有膜层覆盖,影响样品的真实形貌的,严重的话还会产生假象,对一些超高分辨的观察或者一些细节(如孔隙、纤维)的测量以及eds、ebsd分析产生较大影响。如图2-38,石墨在镀pt膜后,产生假象;如图2-39,纤维在镀金之后,导致显微变粗,孔隙变小。图2-38 石墨镀金膜之后的假象图2-39 纤维在镀金前(左)后(右)的图像除了制样外,还要尽可能寻找合适的电镜工作条件,以消除或减弱荷电的影响:3) 减小束流:降低入射电子束的强度,可以减小电荷的积累。4) 减小放大倍数:尽可能使用低倍观察,因为倍数越大,扫描范围越小,电荷积累越迅速。5) 加快扫描速度:电子束在同一区域停留时间较长,容易引起电荷积累;此时可以加快电子束的扫描速度,在不同区域停留的时间变短,以减少荷电。6) 改变图像采集策略:扫描速度变快后,图像信噪比会大幅度降低,此时利用线积累或者帧叠加平均可以减小荷电效应同时提升信噪比。线积累对轻微的荷电有较好的抑制效果;帧叠加对快速扫描产生的高噪点有很好的抑制作用,但是图像不能有漂移,否则会有重影引起图像模糊。如图2-40,样品为高分子球,在扫描速度较慢时,试样很容易损伤而变形,而快速扫描同时进行线积累的采集方式,试样完好且图像依然有很好的信噪比。图2-40 高分子球试样在不同扫描方式下的对比7)降低电压:减少入射电子束的能量(降至v2以内)也能有效的减少荷电效应。如图2-41,试样是聚苯乙烯球,加速电压在5kV下有明显的荷电现象,降到2kV下荷电基本消除。不过随着加速电压的降低,也会带来分辨率降低的副作用。图2-41 降低加速电压消除荷电影响8)用非镜筒内二次电子探测器或者背散射电子探测器观察:在有大量荷电产生的时候,会有大量的二次电子被推向上方,倒是镜筒内二次电子接收的电子信号量过多,产生荷电,尤其在浸没式下,此时使用极靴外的探测器,其接收的电子信号量相对较少,可以减弱荷电效应,如图2-42;另外,背散射电子能量高,其产额以及出射方向受荷电的影响相对二次电子要小很多,所以用bse像进行观察也可以有效的减弱荷电效应,如图2-43,氧化铝模板在二次电子和背散射图像下的对比。图2-42 镜筒内(左)和镜筒外(右)探测器对荷电的影响图2-43 SE(左)和BSE(右)图像对荷电的影响9) 倾转样品:将样品进行一定角度的倾转,这样可以增加试样二次电子的产额,从而减弱荷电效应。 除此之外,电镜厂商也在发展新的技术来降低或消除荷电,最常见的就是低真空技术。低真空技术是消除试样荷电的非常有效的手段,但是需要电镜自身配备这种技术。10)低真空模式:低真空模式下可以利用电离的离子或者气体分子中和产生的荷电,从而在不镀膜或者不用苛刻的电镜条件即可消除荷电效应。不过低真空条件下,原始电子束会被气体分子散射,所以分辨率、信噪比、衬度都会有一定的降低。如图2-44,生物样品在不镀导电膜的情况下即可实现二次电子和背散射电子的无荷电效应的观察。图2-44 低真空BSE(左)和SE(右)的效果对比福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。奖品公布上期获奖的这位童鞋,请您关注“TESCAN公司”微信公众号,后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。【本期问题】低真空模式下,空气浓度高低对消除荷电能力的强弱有什么影响?(快关注微信去留言区回答问题吧~)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。↓ 往期课程,请关注微信查阅以下文章:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理
  • 什么是热分析(TA)及热分析实验技巧
    热分析(thermal analysis,TA)是在程序控温和一定气氛下,测量试样的某种物理性质与温度或时间关系的一类技术。常用的热分析术语1)热重thermogravimetry, TG;热重分析 thermogravimetric analysis, TGA在程序控温和一定气氛下,测量试样的质量与温度或时间关系的技术。2)差热分析differential thermal analysis,DTA在程序控温和一定气氛下,测量试样和参比物温度差与温度(扫描型)或时间(恒温型)关系的技术。3)差示扫描量热法differential scanning calorimetry,DSC在程序控温和一定气氛下,测量输给试样和参比物能量(差)[热流量(差)、热流速率(差)或功率(差)] 与温度或时间关系的技术。a. 热流型(heat-flux) DSC按程序控温改变试样和参比物温度时,测量与试样和参比物温差相关的热流量与温度或时间的关系。热流量与试样和参比物的温差成比例。b. 功率补偿型(power-compensation) DSC在程序控温并保持试样和参比物温度相等时,测量输给试样和参比物热流速率差与温度或时间的关系。4)温度调制式差示扫描量热法modulated temperature differential scanningcalorimetry, MTDSC 或 MDSCMDSC 是由 DSC 演变的一种方法,该法是对温度程序施加正弦扰动,形成热流量和温度信号的非线性调制,从而可将总热流信号分解成可逆和不可逆热流成分。即在传统线性变温基础上叠加一个正弦振荡温度程序,最后效果是可随热容变化同时测量热流量。利用傅立叶变换可将热流量即时分解成可逆的热容成分(如玻璃化转变、熔化)和不可逆的动力学成分(如固化、挥发、分解)。5)联用技术multiple techniques在程序控温和一定气氛下,对一个试样采用两种或多种分析技术。6)热重曲线thermogravimetric curve, TG curve由热重法测得的数据以质量(或质量分数)随温度或时间变化的形式表示的曲线。曲线的纵坐标为质量 m (或质量百分数),向上表示质量增加,向下表示质量减小;横坐标为温度 T 或时间 t ,自左向右表示温度升高或时间增长。7)微商热重曲线derivative thermogravimetric curve, DTG curve以质量变化速率与温度(扫描型)或时间(恒温型)的关系图示由热天平测得的数据。当试样质量增加时,DTG 曲线峰朝上;质量减小时,峰应朝下。8)差热分析曲线differential thermal analysis curve, DTA curve由差热分析测得的记录是差热分析曲线(DTA 曲线)。曲线的纵坐标是试样和参比物的温度差(Δ T ),按以往已确定的习惯,向上表示放热效应(exothermic effect),向下表示吸热效应(exothermic effect)。9)差示扫描量热曲线differential scanning calorimetry curve, DSC curve图示由差示扫描量热仪测得的输给试样和参比物的能量(差)与温度(扫描型)或时间(恒温型)的关系曲线。曲线的纵坐标为热流量(heat flow)或热流速率(heat flow rate),单位为 mW(mJ/s);横坐标为温度或时间。按热力学惯例,曲线向上为正,表示吸热效应;向下为负,表示放热效应。热重分析、差热分析和差示扫描量热分析是在催化研究领域应用较多的热分析技术。热分析技术1、 热重法原理:热重法(TG)是测量试样的质量随温度或时间变化的一种技术。如分解、升华、氧化还原、吸附、解吸附、蒸发等伴有质量改变的热变化可用 TG 来测量。TG 测量使用的气体有:Ar、Cl2 、CO2 、H2 、N2 、O2 、空气等气体。热重曲线:热重分析得到的是程序控制温度下物质质量与温度关系的曲线,即热重曲线(TG 曲线)。图1:TG与DTG曲线2、 差热分析原理:差热分析仪一般由加热炉、试样容器、热电偶、温度控制系统及放大、记录系统等部份组成,其基本原理见图 2。将样品和参比放在相同的加热或冷却条件下,同时测温热电偶的一个端插在被测试样中,另一个热端插在待测温度区间内不发生热效应的参比物中,因此试样和参比物在同时升温或降温时,测温热电偶可测定升温或降温过程中二者随温度变化所产生的温差(ΔT),并将温差信号输出,就构成了差热分析的基本原理。由于记录的是温差随温度的变化,故称差热分析。按以往已确定的习惯,向上表示放热效应(exothermic effect),向下表示吸热效应(endothermic effect)。图2:热电偶和温差热电偶差热曲线DTA 曲线的记录曲线如图 3。图3:典型DTA曲线3、差示扫描量热法原理:差示扫描量热法(DSC)就是为克服差热分析在定量测定上存在的这些不足而发展起来的一种新的热分析技术。它测量与试样热容成比例的单位时间功率输出与程序温度或时间的关系,通过对试样因发生热效应而发生的能量变化进行及时的应有的补偿,保持试样与参比物之间温度始终保持相同,无温差、无热传递,使热损失小,检测信号大。图4:功率补偿DSC示意图差示扫描量热曲线差示扫描量热曲线(DSC 曲线)与 DTA 曲线十分相似,这里不再重复。固体催化剂表面酸碱性表征对于许多化学反应,催化剂的选择和它的转化率与其固体表面酸性活性中心的数量、强度密切相关。因此,对催化剂酸/碱性的评价是非常重要的。固体催化剂表面酸碱性的测量目前主要是利用碱性气体吸附-色谱程序升温热脱附技术,但是在吸附质有分解的情况下,此法准确性差。然而,若利用碱性气体吸附-热重程序升温热脱附技术则可以弥补这一缺陷。同样,采用酸性气体吸附-热重或差热程序升温热脱附技术可以实现对固体催化剂表面碱性的表征。热分析实验技巧1 、升温速率的影响快速升温易产生反应滞后,样品内温度梯度增大,峰(平台)分离能力下降;DSC 基线漂移较大,但能提高灵敏度、峰形较大;而慢速升温有利于DTA、DSC、DTG相邻峰的分离;TG相邻失重平台的分离;DSC 基线漂移较小,但峰形也较小。对于 TG 测试,过快的升温速率有时会导致丢失某些中间产物的信息。一般以较慢的升温速率为宜。对于 DSC 测试,在传感器灵敏度足够、且不影响测样效率的情况下,一般也以较慢的升温速率为佳。2 、样品用量的控制样品量小可减小样品内的温度梯度,测得特征温度较低些也更“真实”一些;有利于气体产物扩散,使得化学平衡向正向发展;相邻峰(平台)分离能力增强,但 DSC 峰形也较小。而样品量大能提高 DSC 灵敏度,有利于检测微小的热量变化,但峰形加宽,峰值温度向高温漂移,相邻峰(平台)趋向于合并在一起,峰分离能力下降;且样品内温度梯度较大,气体产物扩散亦稍差。一般在 DSC与热天平的灵敏度足够的情况下,亦以较小的样品量为宜。3、 气氛的选择3.1 动态气氛、静态气氛与真空根据实际的反应模拟需要,结合考虑动力学因素,选择动态气氛、静态气氛或真空气氛。静态、动态与真空气氛的比较:静态下气体产物扩散不易,分压升高,反应移向高温;且易污染传感器。真空下加热源(炉体)与样品之间只通过辐射进行传热,温度差较大。且在两者情况下天平室都缺乏干燥而持续的惰性气氛的保护。一般非特殊需要,推荐使用动态吹扫气氛。若需使用真空或静态气氛,须保证反应过程中释出的气体无危害性。3.2 气氛的类别对于动态气氛,根据实际反应需要选择惰性(N2 、Ar、He)、氧化性(O2 、air)、还原性与其他特殊气氛等,并作好气体之间的混合与切换。为防止不期望的氧化反应,对某些测试必须使用惰性的动态吹扫气氛,且在通入惰性气氛前往往须作抽真空-惰性气氛置换操作,以确保气氛的纯净性。常用惰性气氛如N 2 ,在高温下亦可能与某些样品(特别是一些金属材料)发生反应,此时应考虑使用“纯惰性”气氛(Ar、He)气体密度的不同影响到热重测试的基线漂移程度(浮力效应大小)。为确保基线扣除效果,使用不同的气氛须单独作热重基线测试。3.3 气体的导热性常用气氛的导热性顺序为:He N2 ≈ air O2 Ar选择导热性较好的气氛,有利于向反应体系提供更充分的热量,降低样品内部的温度梯度,降低反应温度,提高反应速率;能使峰形变尖变窄,提高峰分离能力,使峰温向低温方向漂移;在相同的冷却介质流量下能加快冷却速率;缺点是会降低DSC灵敏度。若采用不同导热性能的气氛,需要作单独的温度与灵敏度标定。3.4 气体的流量提高惰性吹扫气体的流量,有利于气体产物的扩散,有利化学反应向正反应方向发展,减少逆反应;但带走较多的热量,降低灵敏度。对于需要气体切换的反应(如反应中从惰性气氛切换为氧化性气氛),提高气体流量能缩短炉体内气体置换的过程。不同的气体流量,影响到热重测试的基线漂移程度(浮力效应)。因此对TG测试必须确保气体流量的稳定性,不同的气体流量须作单独的基线测试(浮力效应修正)。4 、坩埚加盖与否的选择坩埚加盖的优点:a. 改善坩埚内的温度分布,有利于反应体系内部温度均匀。b. 有效减少辐射效应与样品颜色的影响。c. 防止极轻的微细样品粉末的飞扬,避免其随动态气氛飘散,或在抽取真空过程中被带走。d. 在反应过程中有效防止传感器受到污染(如样品的喷溅或泡沫的溢出)。坩埚盖扎孔的目的:a. 使样品与气氛保持一定接触,允许一定程度的气固反应,允许气体产物随动态气氛带走。b. 使坩埚内外保持压力平衡。坩埚加盖的缺点:a. 减少了反应气氛与样品的接触,对气固反应(氧化、还原、吸附)有较大碍。b. 对于有气相产物生成的化学反应,由于产物气体带走较慢,导致其在反应物周围分压较高,可能影响反应速率与化学平衡(DTG峰向高温漂移),或对于某些竞争反应机理可能影响产物的组成(改变TG失重台阶的失重率)。了解了加盖的目的、优缺点,那么具体做实验时,应如何决定呢?下面简单介绍几种情况:1. 对于物理效应(熔融、结晶、相变等)的测试或偏重于DSC的测试,通常选择加盖。2. 对于未知样品,出于安全性考虑,通常选择加盖。3. 对于气固反应(如氧化诱导期测试或吸附反应),使用敞口坩埚(不加盖)。4. 对于有气体产物生成的反应(包括多数分解反应 )或偏重于TG的测试,在不污染损害样品支架的前提下,根据反应情况与实际的反应器模拟,进行加盖与否的选择。5. 对于液相反应或在挥发性溶剂中进行的反应,若反应物或溶剂在反应温度下易于挥发,则应使用压制的Al坩埚(温度与压力较低)或中压、高压坩埚(温度与压力较高)。对于需要维持产物气体分压的封闭反应系统中的反应同样如此。5 、DSC 基线DSC基线漂移程度的主要影响因素是参比端与样品端的热容差异(坩埚质量差、样品量大小)、升温速率、样品颜色及热辐射因素(使用Al 2 O 3 坩埚时)等。在实验中,参比坩埚一般为空坩埚。若样品量较大,也可考虑在参比坩埚中加适量的惰性参比物质(如蓝宝石比热标样)以进行热容补偿。在比热测试时,对基线重复性的要求非常严格。一般使用Pt/Rh坩埚,参比坩埚与样品坩埚质量要求相近,基线测试、标样测试与样品测试尽量使用同一坩埚,坩埚的位置尽量保持前后一致。TG 热重法TG/FTIR热重法/傅立叶变换红外光谱法TG/GC热重法/气相色谱法TG/MS热重法/质谱分析TG-DSC热重法-差示扫描量热法TG-DTA热重法-差热分析参考文献[1] 刘振海,白山 立子,分析化学手册(第二版),第八分册,化学工业出版社,北京,2000.[2] 辛勤,固体催化剂研究方法,科学出版社,北京,2004.[3] 辛勤,罗孟飞,现代催化研究方法,科学出版社,北京,2009.
  • 高低温交变湿热试验箱:基本原理、特点和应用场景
    高低温交变湿热试验箱是一种用于模拟不同环境条件的试验设备,可以在短时间内模拟出极端温度和湿度的环境,以测试各种材料和产品的性能。本文将从基本原理、特点和应用场景等方面对高低温交变湿热试验箱进行介绍。上海和晟 HS-80A 高低温交变湿热试验箱高低温交变湿热试验箱主要由箱体、温度控制单元、湿度控制单元、空气循环系统等组成。其中,温度控制单元和湿度控制单元是试验箱的核心部件。温度控制单元通过制冷系统和加热系统来控制试验箱内的温度,湿度控制单元则通过加湿系统和除湿系统来控制试验箱内的湿度。空气循环系统则用于将试验箱内的空气循环,以保证试验箱内的环境均匀。高低温交变湿热试验箱的适用范围非常广泛,可以应用于航空航天、汽车、电子、化工、医疗等各个行业。通过模拟不同环境条件,可以测试各种材料和产品的性能,如耐高低温、耐腐蚀、抗老化等。同时,高低温交变湿热试验箱还可以用于产品的研发和改进,以提高产品的性能和质量。高低温交变湿热试验箱的技术特点主要包括高精度温度控制、高精度湿度控制、快速温度变化速率、可靠的安全保护等。其中,高精度温度控制和湿度控制可以保证试验箱内的环境稳定,快速温度变化速率可以模拟出更加极端的环境条件,安全保护措施则可以保证试验箱的安全运行。在使用高低温交变湿热试验箱时,需要注意以下几点:首先,要严格按照试验箱的操作规程进行操作,避免出现意外事故;其次,要定期对试验箱进行维护和保养,以保证其正常运行;最后,要对试验箱的运行数据进行记录和分析,以便对试验结果进行准确的评估。综上所述,高低温交变湿热试验箱是一种重要的试验设备,可以模拟不同环境条件下的各种材料和产品的性能。随着科技的不断进步和应用领域的不断拓展,高低温交变湿热试验箱将会发挥更加重要的作用。
  • 我公司再次中标南京工业大学的差热分析仪招标项目
    NJTECH2016—SBZB018”项目预成交公告南京工业大学招投标管理中心对“NJTECH2016—SBZB018”项目进行了招标采购,按拟定的程序进行了开标、评标、定标,现将本次招标的预成交结果公告如下:包一:差热分析仪2台预成交供应商:北京恒久实验设备有限公司预成交价(人民币):壹拾叁万陆仟元整(¥136000.00元)成交方式:单一来源各有关当事人对本次招标的预成交结果如有异议,请在3日内以书面形式将质疑函送达南京工业大学招投标管理中心,逾期将不再受理。预成交公示3日如无异议,即向预成交供应商发出中标通知书。中标供应商须在自预成交公示结束后的30日内按照招标约定的事项与招标方签订采购合同,无正当理由未在规定时间内与招标方签订采购合同的视为对本次招标项目中标结果的自动放弃。受理部门:南京工业大学招投标管理中心联系人:于老师 联系电话:025—58139235在此,谨对积极参与本项目报价的供应商表示衷心感谢!特此公告! 南京工业大学招投标管理中心2016 年 1 月 31日
  • 【精】“热分析老人”钱义祥汇总50年来热分析主要书籍著作
    p style=" text-align: center" img style=" width: 284px height: 400px " src=" http://img1.17img.cn/17img/images/201804/insimg/1381b543-5c59-4406-8bcd-a35cc15e379c.jpg" title=" 00.jpg" height=" 400" hspace=" 0" border=" 0" vspace=" 0" width=" 284" / /p p    strong 前言 /strong /p p   《热分析著作汇编》由热分析“老人”钱义祥钱老师罗列总结了从70年代开始至今,共计39本关于热分析行业的主要系列书籍,并对其进行了摘要与归纳,以供热分析同仁参考使用。尽管很多书籍已是年代久远,也或许和现在的发展形势已有脱离,但是作为热分析的历史、热分析的历程、热分析的基础,编者相信,这些书籍绝不会也不该被热分析同仁所遗忘,毕竟这为我们呈现的是一代代热分析人的心血与热情! /p p   热献网在此再次感谢钱老师为我们做的总结与归纳,也希望钱老师的热情能给到大家以帮助,从而引发一代代新热分析人的新热分析情怀。 /p p   热献网编 /p p   2018年4月 /p p style=" text-align: center "   span style=" color: rgb(255, 255, 255) background-color: rgb(112, 48, 160) "   strong “一、刘振海热分析书籍” /strong /span /p p style=" text-align: center " strong   书名:《聚合物量热测定》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/0ece1de4-a90b-41ce-b54f-2ccd158cc9ff.jpg" title=" 02.jpg" / /p p    strong 摘要: /strong /p p   本书系统地介绍了聚合物材料量热分析的基本原理和各类应用,着重介绍差示扫描量热法和近年出现的调制式差示扫描量热法,突出反映了该领域国内外最新成果与研究进展。全书分为两部分,共10章 第1-3章为基础部分,介绍热分析的热力学基础知识、差示扫描量法、调制式差示扫描量热法以及结晶聚合物的熔融与结晶过程 4-9章介绍DSC在聚合物分析方面的应用,包括在聚合物的玻璃化转变、热焓松弛、多相聚合物体系、液晶性质、水与高分子的作用、高分子合成、聚合物辐射效应等方面的研究与应用 第10章介绍热分析与其他分析方法的联用技术。本书料翔实,内容丰富,语言精炼,可供从事聚合物热分析、高分子材料研究及其相关专业技术人员学习参考。 /p p style=" text-align: center "    strong 书名:《热分析仪器》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/687a8166-2155-43d1-988b-9c0cda537704.jpg" title=" 03.jpg" / /p p    strong 摘要: /strong /p p   本书是《分析仪器使用与维护丛书》的一个分册。 /p p   书中系统介绍了各类热分析与量热仪的原理、基本结构、元件和单元 各类热分析与量热仪及标志仪器性能的各项指标,表征实验数据质量的各项参数 影响实验结果的各种因素和各项标准实验方法 并以药物、矿物和含能材料为例,列举了热分析的典型应用、量热技术在生物化学等方面的应用 仪器常见的故障处理等内容。 /p p   本书可供热分析与量热学科研与技术人员阅读,也可供大专院校、科研单位、工厂等有关人员参考。 /p p style=" text-align: center "    strong 书名:《分析化学手册第六分册-热分析 第一版》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/f8d528b4-0e13-4e14-85ce-1aa08b5a69da.jpg" title=" 04.jpg" / /p p   strong  摘要: /strong /p p   本书系《分析化学手册的第六分册》,是继“基础只是与安全知识”“化学分析”“光学分析与电化学分析”“色谱分析”“核磁共振波普分析”之后,为读者提供的热分析方法与数据集。本书由中日热分析专家合作编著而成,全书由3部分构成:热分析方法、热分析曲线及曲线及数据集。汇集了高分子材料,矿物、建材、药物、含能材料、催化剂、稀土配合物等方面的千余热分析曲线。在热分析常用数据表部分,列出了标定物质的比热容、熔点与融化热、基本物理常数、热分析术语对照等。 /p p   本手册可供各行业中从事热分析工作的技术人员和热分析为测试手段的广大科技人员,大专院校有关专业师生查阅与参考。 /p p style=" text-align: center "    strong 书名:《分析化学手册第八分册-热分析 第二版》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/e94953af-3bdd-4b9d-a516-b82f1612345f.jpg" title=" 05.jpg" / /p p strong   摘要: /strong /p p   第二版《分析化学手册》在第一版的基础上做了较大幅度的调整、增删和补充。全套书由10个分册构成:基础知识与安全知识、化学分析、光谱分析、电分析化学、气相色谱分析、液相色谱分析、核磁共振波谱分析、热分析、质谱分析和化学计量学。第二版《分析化学手册》中注意贯彻了国家标准GB《量和单位》的基本原则,注重所用单位与有关国标规定的一致性。在取材上突出实用性,注重基础知识、基础数据与分析技术的最新进展并容。在内容上注重科学性与准确性。在编排上强调系统性与查阅方便。本分册囊括了热分析的基本原理和各类应用,基本由三部分内容构成:第一部分包括热分析的基本定义、术语以及有关物质的转变、反应和特性参数等约100项应用的原理、实验及数据处理 第二部分是约1000条各类物质(如:聚合物、食品、药物、矿物、含能材料等)的有代表性的热分析曲线及其简明的解释 第三部分是热分析常用数据表。本次修订更加突出反映了中日科学工作者近年在该领域取得的成果。 /p p style=" text-align: center "    strong 书名:《分析化学手册 热分析与量热学 第三版》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/0fbad100-bb0f-4bb3-b19e-afa4b00485ee.jpg" title=" 06.jpg" / /p p strong   摘要 /strong : /p p   《分析化学手册》第三版在第二版的基础上作了较大幅度的增补和删减,保持原手册10个分册的基础上,将其中3个分册进行拆分,扩充为6册,最终形成13册。 /p p   本分册为《热分析与量热学》,在上一版《热分析》的基础上新增补了量热学的内容。全书由两篇组成,第一篇为热分析与量热分析基础,全面阐述了热分析和量热学方法,包括发展历史、基本定义、术语以及有关物质的转变、反应和特性参数,热分析仪器及方法应用的原理、实验与数据处理,量热分析仪器、测量方式、对各类物理化学性质及化学反应热的测定 第二篇为热分析、量热分析曲线与数据集,汇总了聚合物、食品、药物、矿物、含能材料等物质的具有代表性的热分析曲线和数据,以及量热分析在各种领域的应用实例。 /p p style=" text-align: center "    strong 书名:《热分析与量热仪及其应用》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/5424fd56-d61b-43d1-b799-01978b109741.jpg" title=" 07.jpg" / /p p strong   摘要: /strong /p p   本书系统地介绍了各类热分析与量热仪的原理、基本结构、元件和单元 各类热分析与量热仪及标志仪器性能的各项指标,表征实验数据质量的各项参数 影响实验结果的各种因素和各项标准实验方法 数据库的建立、维护与查询,以及计算机病毒的一般性常识 并以聚合物、药物和矿物为例,列举了典型应用,以及微量量热技术在诸多方面的应用 仪器的常见故障处理等。 /p p   本书可供热分析与量热学科研与技术人员阅读,也可供大专院校、科研单位、工厂等有关人员参考。 /p p style=" text-align: center "   strong  书名:《热分析简明教程》  /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/ca1b7245-d263-4519-994b-6e5f201077df.jpg" title=" 08.jpg" / /p p strong   摘要: /strong /p p   《中国科学院大学研究生教材系列:热分析简明教程》是中国科学院大学遴选的研究生教材。首先扼要介绍热分析的发展历程和热分析实施方案的制订。然后系统地介绍了热分析术语,并给出了新的理解和诠释 主要热分析仪器的原理与结构及其最新发展 影响热分析实验结果的各种因素和相关的标准与规范,这是从事热分析工作的基本依据。最后按观测物质的各种转变、反应和特性参数,介绍典型的应用实例。 /p p style=" text-align: center "    span style=" color: rgb(255, 255, 255) background-color: rgb(112, 48, 160) " strong “二、Mettler热分析系列书籍” /strong /span /p p style=" text-align: center "    strong 书名:《热分析应用基础》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/69102ee7-5467-4e2e-8e4e-0d2101e721b6.jpg" title=" 09.jpg" / /p p    strong 摘要: /strong /p p   《热分析应用基础》是为适应广大热分析工作者及相关专业的科技人员对热分析基础和应用方面知识的需求,由陆立明编著的图书,本书是《热分析应用手册系列丛书》的一个重要分册,系统全面介绍了各种热分析方法的基本原理和测量方法,诸如DSC、TGA、TMA、DMA、热光分析、TGA/MS和TGA/FTIR联用技术的定义、原理和应用,以及样品制备、数据处理与表达,并着重阐述了玻璃化、二元相图、纯度测定、多晶型、吸附分析 还从热分析实验方法、条件(参数)选择到评价体系、实施方案制订了若干步骤。最后附有ISO、ICTAC等国际组织制订的各项热分析标准。 /p p style=" text-align: center "    strong 书名:《热塑性聚合物》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/ee366efc-9a67-42e9-a353-a5a60a89db9a.jpg" title=" 010.jpg" / /p p strong   摘要: /strong /p p   热塑性聚合物在加热时熔融或流动,由无规缠结的(无定形热塑性塑料)或以微晶方式部分有序的(半结晶热塑性塑料)线性大分子组成。它们在农业、汽车工业、航空业、建筑工业、电气工业、纺织等行业广泛运用。本书不仅可作为应用手册查询,也可以作为实验指南,对热分析工作者及热分析学习者有帮助和裨益。 /p p style=" text-align: center "   strong  书名:《热固性树脂》  /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/ef3cc6bf-662d-4fec-afc9-fb94d3afb745.jpg" title=" 011.jpg" / /p p strong   摘要: /strong /p p   本书是《热分析应用手册系列丛书》之《热固性树脂》分册。全书共分四个部分:第一部分为全面的评述和对常用于热固性树脂表征的分析技术的扼要说明 第二部分论述各个热固性树脂的化学性能和讨论这些材料的用途。这部分是供热固性聚合物领域的新人和期望学习更多热固性树脂性能和应用的人们使用的 第三部分讨论可用不同热分析技术研究的性能和效应 第四至第九部分集中于实际例子。按照树脂体系类型被细分。应用实例描述了在热固性树脂的生命周期中可被研究、测试或只是检查的不同性能。与其他分册一样,本书以中英文对照方式出版,读者可以阅读中文,同时可对照原著。无论对热分析工作者,还是热分析学习者,应该都有帮助和裨益。 /p p style=" text-align: center "    strong 书名:《弹性体》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/b160e2aa-eedb-4b61-b684-ba68829c9be1.jpg" title=" 012.jpg" / /p p strong   摘要: /strong /p p   热分析应用手册系列丛书& #39 之& #39 弹性体& #39 分册通过大量实例全面深入地介绍和讨论了热分析在聚合物弹性体方面的应用 **至D13章热分析方法简介 弹性体的结构、性能和应用 弹性体的基本热效应 D14至D15章介绍了大量的应用实例 包括对结果的详细解释和导出的结论。 /p p style=" text-align: center "    strong 书名:《逸出气体分析》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/e275f200-1181-40fa-94c4-f65bbe90afe8.jpg" title=" 013.jpg" / /p p strong   摘要: /strong /p p   《热分析应用手册系列丛书》之《逸出气体分析(汉英对照)》分册着重阐述TGA-FTIR和TGA-MS两种联用技术。手册的**部分讲述这两种技术的基本原理,也包括一些实际内容和图谱解析的介绍。第二部分讨论在我们实验室用TGA-FTIR和TGA-MS做的15项不同的应用,以及两个相对较少使用的TMA和MS联用技术的应用 /p p style=" text-align: center "    strong span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " “三、70年代至今热分析系列书籍” /span /strong /p p style=" text-align: center "   strong  书名:《热分析法与药物分析》 王玉 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/c2338f45-bda0-4c7e-b9d3-3afa8ebd1051.jpg" title=" 014.jpg" / /p p strong   摘要: /strong /p p   王玉主编的《热分析法与药物分析(精)/中国药 品检验系列丛书》主要内容涉及热分析基本概念和常 用术语,着重介绍在药物研究中应用很为广泛的三种 热分析技术:热重法、差热分析法、差示扫描量热法 及其基本原理、常用分析方法和常用仪器,讨论了热 分析曲线及反应终点的判断,以及热分析动力学及计 算,结合药物分析的特点,介绍了热分析在药物熔点 测定、鉴别、定性以及纯度测定、药物晶型研究等多 方面的应用实例,很后讨论了热分析技术的进展。 /p p   本书适合广大药学工作者,特别是药物分析、药 品检验人员使用。 /p p style=" text-align: center "    strong 书名《热分析及其应用》 陈镜泓 李传儒 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/d2932479-309a-40e5-a41f-db90faa8e6bc.jpg" title=" 015.jpg" / /p p   strong  摘要: /strong /p p   热分析是测量物质受热或冷却时物理性质与温度关系的一类技术。热分析仪器操作渐变,灵敏,速度快,所需试样量少(以毫克计),得到的科学信息广泛。 /p p   本书公分三篇十四章。在介绍热分析概念,历史,现状和发展趋势的基础上,系统的评述了热衷发(TG),微商热重法(DTG),差热分析发(DTA),差示扫描量热法(DSC),逸出气体和检测法(EGA和EGD)及热分析与其他分析技术的联用。除介绍仪器的原理,类型,构造,操作技术及特点外,还论及热谱图的解释和数据处理及影响实验结果的因素。尤其着力与理论和使用两方面阐述热分析技术在物理,化学,化工,石油,能源,地址,仿制,塑料,橡胶,纤维,医药,食品,生物,陶瓷,玻璃,火药,土壤,冶金,建筑,煤炭,电子及空间技术等领域中的应用。为方便读者,本书还在附录中收入了“国际热分析协会”对于热分析命名法和有关规定,以及各种商品热分析仪器的型号和性能。 /p p   本书可供可言,生产部门的科技人员,从事热分析的专业人员及大专院校有关师生参考。 /p p style=" text-align: center "   strong  书名:《热分析动力学》 胡荣祖 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/6f4f19e2-efcf-48dd-9198-9bc1e2ef5338.jpg" title=" 016.jpg" / /p p strong   摘要: /strong /p p   本书以热分析动力学方程为主线,汇集了近60年来国内外热分析动力学研究的学术成果。全书内容共13章。首先,回顾了热分析动力学理论、方法和技术 两类动力学方程和三类温度积分式的数学推导。其次,系统地总结了近60年发展起来的用微、积分法处理热分析曲线的成果。第三,涉及最概然机理函数的推断 动力学补偿效应 非线性等转化率的微、积分法。第四,阐述了一级及经验级数自催化分解反应动力学参数的数值模拟 诱导温度与诱导时间的关系 等温热分析曲线分析法 等温和非等温结晶过程DSC曲线分析法。第五,扼要地论述了非等温条件下热爆炸临界温度和临界温升速率的估算方法。书中还编入143道源自最新文献的习题,书末附有简明答案。 /p p   本书可作为高等学校物理化学、分析化学、物理无机化学、物理有机化学、高分子物理化学、材料学专业的硕士、博士研究生的教材,也可供科研院所、生产部门的科技工作者及热分析专业技术人员参考。 /p p style=" text-align: center "    strong 书名:《聚合物结构分析》 朱诚身 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/b1b56792-698c-4d7f-9927-d7f09e64d328.jpg" title=" 017.jpg" / /p p strong   摘要: /strong /p p   本书系统介绍了现代仪器分析技术在高聚物结构分析中的应用以及结构分析中所涉及的理论、思维方式、实验方法等。内容包括:振动光谱、电子光谱、核磁共振、顺磁共振、热分析、动态热机械分析、动态介电分析、气相色谱、凝胶色谱、裂解色谱、色质联用、显微分析、广角x射线衍射、小角激光散射、小角X射线散射等方法的基本原理、仪器结构、发展历史、发展趋势,在聚合物结构分析中的应用实例及解析方法等。 /p p   本书可供高分子科学与工程专业本科生、硕士生、博士生以及从事有关高分子物理、高分子化学、高分子材料合成与加工研究和生产方面的专家、学者和工程技术人员参考。 /p p style=" text-align: center "    strong 书名:《含能材料热分析》 刘子如 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/bb0198c6-da7a-495e-b271-e09436b856d0.jpg" title=" 018.jpg" / /p p    strong 摘要: /strong /p p   书比较全面地解读热分析曲线和特征量,并以此研究含能材料的热性能、热分解和相互作用。主要内容包括热安定性和相容性的评价 热物理常数测试方法的建立 热分解的动力学和机理 炸药结晶体的& quot 局部化学& quot 行为 液体发药的过冷性质 熔体的非等温动力学。具有创新性的内容,提出了由DSC获得的熔融熔(H)与组成(X)关系建立二元和三元相图的方法 高压DSC特征量与固体推进剂燃速的相关性 用动态力学性能预估复合或交联推进剂的物理老化寿命 极限力学性能与动态力学性能的相关性等。本书涉及的热分析仪器种类较多,有通用的差示扫描量热(DSC)、差热分析(DTA)和热重-微商热重(TG-DTG)技术,还有高压差示扫描量热(PDSC),动态热机械分析(DMA)以及热分析与其他方法如与红外和质谱联用技术:TG-DSC-FTIR、TG-DSC-MS和热裂解红外原位池等先进技术。 /p p style=" text-align: center "    strong 书名:《热分析实验》 徐 颖 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/214aa864-8ff1-445c-97bb-f759e955aa92.jpg" title=" 019.jpg" / /p p strong   摘要: /strong /p p   热分析是研究程序控制温度下物质性质与温度间关系的一个分析测试技术,它涉及的专业知识和所能应用的领域极广,包括无机、有机、高分子、冶金、陶瓷、玻璃、医药、食品、地质、电子、能源、建筑、生物等各个领域。 /p p   由于热分析仪器种类较多,并且在高校科研、教学中应用日益广泛,仪器开放共享已成为必然领域,因而对热分析仪器的实验教学提出新的要求。笔者在培训教学的过程中发现,虽然热分析专著繁多,但是适合实验教学的却很少,因此根据多位专家学者的经典著作,以及平时积累的零星资料,并结合实际工作中的经验摸索,编写了这本《热分析实验》,力图向初学者简明扼要地介绍热分析原理、种类、结构的基本知识,使其系统规范地掌握实验操作、数据处理,深刻理解图谱特征、含义,了解实验影响因素和技巧,进一步提高综合表征能力。 /p p   本书一共七章,第一章介绍了热分析基本的定义、术语、概念和标准,仪器分类、现状和发展,以及常用参考书 第二章介绍了热分析仪器的结构和组成、常用附件、检验和校正的方法 第三、四、五章分别介绍了常用热分析仪器的基本原理、影响因素、实验方法和图谱解读 第六章介绍了热分析仪器的综合表征和联用技术 第七章介绍了常见的热分析实验、仪器操作、注意事项。 /p p    strong 书名:《高聚物与复合材料动态力学的分析》 过梅丽 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/755b513b-9823-4c9c-86b1-a95e08fb0dd8.jpg" title=" 020.jpg" / /p p strong   摘要 /strong /p p   本书分三部分,介绍了动态力学热分析的基本原理,试验方法极其在高分子材料、工艺研究中的应用。在原理部分,介绍了高分子材料的粘弹性在动态力学行为上的反映、主要参数的物理意义及时-温叠加原理。在试验方法中结合ISO、ASTM和GB试验标准,全面介绍了自由衰减振动法、强迫共振法、强迫非共振法和超声传播法的仪器与计算分析,并以强迫非共振法为重点,详细讨论了形变模式与实验模式的选择原则、可能获得的信息及影响实验结果的因素。在应用部分,列举了打两个研究实例,说明动态力学热分析在塑料、橡胶、纤维、复合材料的评价、设计和工艺研究中的实用性,还给出了数十幅典型材料(包括部分金属材料在内)的典型动态力学性能温度谱,或频率谱,或时间谱。本书可供大专院校的学生和研究测试人员参考。 /p p style=" text-align: center "    strong 书名:《热分析质谱法》 陆昌伟 奚同庚 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/2d5d3df2-b019-49a7-be6e-3424373c2f31.jpg" title=" 021.jpg" / /p p strong   摘要: /strong /p p   本书系统地介绍热分析和质谱分析联用技术的原理、分析方法、仪器结构和参数选择,以及在材料科学、物理化学、热化学和热物理等领域中的应用。热分析质谱法是热分析和质谱分析两个分支学科交叉形成的一种新的分析方法,体现了热分析和质谱分析两种技术耦合或联用而形成的优势互补,是对传统热分析技术的突破,也是质谱分析的新发展,已成为研究材料热分解过程,反应动力学、热化学反应机制等问题的重要研究手段,发展前景良好。 /p p style=" text-align: center "    strong 书名:《药物分析图谱》 魏觉珍 陈国玺 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/a9fb3501-6817-47ab-8551-914e45c584f9.jpg" title=" 022.jpg" / /p p strong   摘要: /strong /p p   全书内容包括三部分:一是差热、热重分析的基本概念,影响差热、热重分析的因素,药物的差热分析表征及其解析 二是191种药物标准品(含对照品)的差热、热重分析图谱 三是药物的中文名称索引和英文名称索引。本书是药物热分析人员的一部工具书,对药物分析、药物检测和药物工业生产、开发有很大的实用价值。本书还可供医药科研、大专院校有关专业人员参考。 /p p style=" text-align: center "   strong  书名:《ANSYS热分析教程与实例解析》  /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/0a2a7790-6934-4bc3-965a-8f7e081e5d6a.jpg" title=" 023.jpg" / /p p strong   摘要: /strong /p p   《ANSYS热分析教程与实例解析》按照深入浅出的原则,通过图形用户界面和命令流方式对不同的工程应用问题进行了详细讲解,本书的主要特色是通过& quot 提示& quot 的形式为读者提供了大量的分析方法和技巧。 /p p   本书适合理工院校相关专业的硕士研究生、博士研究生及教师使用,可以作为ANSYS学习教材供高等院校学生及科研院所研究人员使用,也可以作为从事热分析领域科学技术研究的工程技术人员的参考用书。 /p p    strong 书名:《矿物热分析粉晶分析相变图谱手册》 陈国玺 张月明 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/310c475d-e01d-4951-bb99-b64c31594412.jpg" title=" 024.jpg" / /p p strong   摘要: /strong /p p   本书是矿物热分析,X光粉晶分析及岩矿鉴定人员的一部工具书,也是矿物,矿物物理,矿物材料,地球化学等有关方面工作者的基本研究资料和实用的参考书,亦可供高等院校有关专业的教学和研究工作参考。 /p p style=" text-align: center "   strong  书名:《热分析法及其在陶瓷领域中的应用》 陈建邦 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/6d8f0ba9-9a37-4108-9978-8084df62e683.jpg" title=" 025.jpg" / /p p strong   摘要: /strong /p p   本书介绍了热茶分析、失重分析和线收缩率测定等发方法的基础只是和作者在热谱曲线判读等方面所积累的经验,并着重介绍利用这些方法来掌握陶瓷原料的相组成和构造特点,以及估计坯料加工工艺的确定提供材料。同事对能使陶瓷制品导致废次的一些烧成缺陷,从坯料的热变化特性和制品装烧制度方面加以剖析,进而提出了解决的措施。书中手机了一些典型陶瓷矿物原料的差热曲线以及作者测绘的国产陶瓷原料、坯釉料200余宗的差热曲线,有助于生产部门参考。 /p p   本书可供从事陶瓷生产和科研的科研人员、大专院校陶瓷专业师生以及从事其他硅酸盐原材料研究的有关人员参考。 /p p style=" text-align: center "    strong 书名:《热分析技术及其应用基础》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/6f0872b1-5433-42cd-ba98-24cd677d02da.jpg" title=" 026.jpg" / /p p strong   摘要: /strong /p p   近一个实际来由于电子技术的迅速发展,热分析仪器日新月异的改变使热分析方法得到了进展,目前热分析技术是具有国际性的,我国的热分析工作者日益增多,并正在各个学科领域中趋向纵深。 /p p   根据广大分析工作者的要求,为更多地了解和推广热分析仪器和方法,本会首次尝试举办一次“热分析技术及其应用基础”的讲座,并撰写了本讲义,其中有国际热分析学者的重要研究,也有我国热分析工作者的本身工作,由于时间匆促,作者水平有限,缺点和错误一定不少,聆请各位专家、学者、热分析工作者以及读者们批评赐教! /p p style=" text-align: center "    strong 书名:《铀矿物和含铀矿物的热分析》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/8472b983-97ff-4cf7-a1cf-1e8d122184c9.jpg" title=" 027.jpg" / /p p style=" text-align: center "   出版社 中国工业出版社 /p p style=" text-align: center "   作 者 ц.л.安巴尔楚缅 /p p style=" text-align: center "   г.и.巴萨洛娃 C.A.戈尔热夫斯卡娅 /p p style=" text-align: center "   H.г.纳扎连科 P.п.霍扎耶 /p p style=" text-align: center "   strong  书名:《矿物差热分析》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/8b80b73a-e0d2-4d31-93c0-b70d4e76c047.jpg" title=" 028.jpg" / /p p style=" text-align: center "   出版社 中国工业出版社 /p p style=" text-align: center "   作 者 辽宁省地质局中心实验室年份 /p p style=" text-align: center "   年 份 1975年 /p p style=" text-align: center "    strong 书名:《实用热分析》 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/0093c268-61ac-4b99-ac18-3203f67475e1.jpg" title=" 029.jpg" /    br/ /p p style=" text-align: center "   出版社 纺织工业出版社 /p p style=" text-align: center "   作 者 于伯龄 姜胶东 /p p style=" text-align: center "   年 份 1990年 /p p style=" text-align: center "    strong 书名:《差热分析:DTA技术及其应用指导》 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/a9218225-119e-4d49-8cf4-5faa777a974f.jpg" title=" 030.jpg" /    br/ /p p style=" text-align: center "   出版社 北京师范大学出版社 /p p style=" text-align: center "   作 者 波普,尤德 著 杨红征 译 /p p style=" text-align: center "   年 份 2010年 /p p style=" text-align: center "   strong  书名:《常用热分析仪器》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/68845226-527f-40cb-8870-838efa78a969.jpg" title=" 031.jpg" / /p p style=" text-align: center "   出版社 上海科学技术出版社 /p p style=" text-align: center "   作 者 徐国华 袁靖 /p p style=" text-align: center "   年 份 1990年 /p p style=" text-align: center "    strong 书名:《高分子材料热分析曲线集》 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/038d8cb4-cf34-4336-9300-71d178ad1c99.jpg" title=" 032.jpg" /    br/ /p p style=" text-align: center "   出版社 科学出版社 /p p style=" text-align: center "   作 者 高家武等 /p p style=" text-align: center "   年 份 1990年 /p p style=" text-align: center "    strong 书名:《矿物差热分析鉴定手册》 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/a00f845f-91a6-4225-bcd3-dd36a6e06fb6.jpg" title=" 033.jpg" /    br/ /p p style=" text-align: center "   出版社 科学出版社 /p p style=" text-align: center "   作 者 黄伯龄 /p p style=" text-align: center "   年 份 1987年 /p p style=" text-align: center "   strong  书名:《热分析》 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/fd904fc6-dc60-4e36-afdf-3a2d69ba39db.jpg" title=" 034.jpg" /    br/ /p p style=" text-align: center "   出版社 清华大学出版社 /p p style=" text-align: center "   作 者 李余增 /p p style=" text-align: center "   年 份 1987年 /p p style=" text-align: center "    strong 书名:《热分析》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/5a8f613e-a7b0-4209-8b89-366754c3a610.jpg" title=" 035.jpg" / /p p style=" text-align: center "   出版社 科学出版社 /p p style=" text-align: center "   作 者 神户博太郎 著 刘振海等 译 /p p style=" text-align: center "   年 份 1982年 /p p style=" text-align: center "   strong  书名:《热分析》 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/c9e456a6-5472-4bbe-ad10-d10455cbe7dd.jpg" title=" 036.jpg" /   br/ /p p style=" text-align: center "   出版社 高等教育出版社 /p p style=" text-align: center "   作 者 蔡正千 /p p style=" text-align: center "   年 份 1993年 /p p style=" text-align: center "    strong 书名:《热学式分析仪器》 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/63ebca67-6713-4ba8-bc51-b9c0fe545b6c.jpg" title=" 037.jpg" /    br/ /p p style=" text-align: center "   出版社 中国建筑工业出版社 /p p style=" text-align: center "   作 者 张仲礼 黄兆铭 李选培 /p p style=" text-align: center "   年 份 1984年 /p p style=" text-align: center "    strong 书名:《差热、热重分析与非等温固相反应动力学》 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/26c65bfa-3529-4cd5-856d-ab77d6db7369.jpg" title=" 038.jpg" /    br/ /p p style=" text-align: center "   出版社 冶金工业出版社 /p p style=" text-align: center "   作 者 沈兴 /p p style=" text-align: center "   年 份 1995年 /p p style=" text-align: center "    strong 书名:《炸药热分析》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/5d6906b9-347c-4d79-b94c-049762e7df57.jpg" title=" 039.jpg" / /p p style=" text-align: center "   出版社 科学出版社 /p p style=" text-align: center "   作 者 楚士晋 /p p style=" text-align: center "   年 份 1994年 /p p style=" text-align: center "    strong 书名:《热天平》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/d469a613-c4e8-4db8-9939-a47efe9ebc40.jpg" title=" 040.jpg" / /p p style=" text-align: center "   出版社 北京中国计量出版社 /p p style=" text-align: center "   作 者 宋鸿恩 /p p style=" text-align: center "   年 份 1985年 /p
  • 311万!河海大学采购固相反应实验仪、差热分析仪等仪器设备
    一、项目基本情况项目编号:JSHC-2022121151A1(AH20220189)项目名称:河海大学常州新校区力材院实验室教学仪器采购预算金额:311.9500000 万元(人民币)采购需求:分包一预算:60.6万元人民币;分包一:材料专业实验室无机非金属材料方向教学仪器;分包一产品清单:序号产品名称数量1固相反应实验仪5台2差热分析仪4台3分析天平2台4影像式烧结点试验仪4台5 试验台18张6展示台(简易书桌)16张合同履行期限:合同生效后90天内设备安装调试合格本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无(本项目不属于专门面向中小企业采购的项目)3.本项目的特定资格要求:3.1满足《中华人民共和国政府采购法》第二十二条规定,具体为:(1)具有独立承担民事责任的能力,提供法人或其他组织的营业执照等证明文件,复印件加盖公章;(2)具有良好的商业信誉和健全的财务会计制度,提供开标时间前的财务报表复印件加盖公章(法人或者其他组织成立未满六个月的可以不提供);(3)具有履行合同所必需的设备和专业技术能力,提供证明材料或承诺函(自行编写);(4)有依法缴纳税收和社会保障资金的良好记录,提供纳税凭据复印件加盖公章(依法免税的应提供相应文件说明)、依法缴纳社会保障资金的凭据复印件(凭据可以是缴费的银行单据、专用收据、社会保险缴纳清单或者所在社保机构开具的证明等,依法不需要缴纳社会保障资金的应提供相应文件说明);(5)参加政府采购活动前三年内(成立时间不足三年的、自成立时间起),在经营活动中没有重大违法记录,提供声明函原件(自行编写,重大违法记录是指供应商因违法经营受到刑事处罚或责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚)。3.2落实政府采购政策需满足的资格要求:无(本项目不属于专门面向中小企业采购的项目)3.3本项目的特定资格要求:(1)本项目不接受进口产品投标(注:指产品而非构成产品的零部件或者原材料,本文件所称进口产品是指通过中国海关报关验放进入中国境内且产自关境外的产品);(2)采购代理机构将通过“信用中国”网站(http://www.creditchina.gov.cn)中国政府采购网(www.ccgp.gov.cn )查询供应商在采购公告发布之日前的信用记录并保存,通过以上查询渠道,供应商不得有被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录;(3)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;(4)为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加该采购项目的其他采购活动;三、获取招标文件时间:2023年01月16日 至 2023年01月31日,每天上午8:30至11:30,下午14:00至17:00。(北京时间,法定节假日除外)地点:线上方式:本项目通过邮箱获取采购文件。 采购文件售价:500.00元人民币,售后不退。 获取采购文件须提供的资料:加盖公章的授权委托书原件或扫描件、加盖公章的被委托人身份证复印件或扫描件,及汇款凭据的截图(付款码见附件)(转账时请务必备注公司名称+1151A1+分包号)。 获取采购文件电话:025-83609953 邮箱:jshc3333@163.com售价:¥500.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2023年02月06日 14点30分(北京时间)开标时间:2023年02月06日 14点30分(北京时间)地点:南京市建邺区嘉陵江东街8号综合体B3栋一单元16层五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜供应商必须在递交投标文件截止时间前,将投标文件密封好邮寄或送至江苏省南京市建邺区嘉陵江东街8号综合体B3栋一单元16层,李娆 联系方式:025-83603378/83609953。逾期送达或未密封的投标文件将被拒收(建议通过顺丰或EMS方式邮寄)。供应商应充分考虑投标文件邮寄在途时长,以及注重文件包装的严密性、防水性。供应商承诺:自行承担邮寄标书丢失、破损等风险以及由此导致的流标、投标被否决的后果。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:河海大学、江苏长荡湖旅游控股有限公司、江苏省金坛长荡湖旅游度假区管理办公室地址:南京市西康路1号联系方式:杨老师 025-837864502.采购代理机构信息名称:江苏省华采招标有限公司地址:025-83603378联系方式:李工/张工3.项目联系方式项目联系人:李工电话:025-83603378
  • 岛津|高温热流差热分析仪DTA-50性能规格介绍
    p style=" text-align: center " strong 高温(环境温度到1500℃)热流差热分析仪 span style=" color: rgb(255, 0, 0) " DTA-50 /span /strong /p p style=" text-indent: 2em " 该款DTA采用了哑铃型探测器。温度控制器、气体流量调节器和传输接口均已合并在一个细长的、173毫米宽的机身中。同时包括了 span style=" color: rgb(255, 0, 0) " 高温DSC功能 /span 。 /p p style=" text-align: center text-indent: 0em " img title=" 1-1.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/1823f87c-0693-4cf8-b9fb-3f6f2131c95d.jpg" / /p p span style=" color: rgb(31, 73, 125) " · 温度范围:室温至1500℃ /span /p p span style=" color: rgb(31, 73, 125) " · 测量范围:± 0.2至± 1000μV(± 0.2mW) /span /p p span style=" color: rgb(31, 73, 125) " · 加热速率:0至+50℃/min /span /p p style=" text-indent: 2em " span style=" color: rgb(32, 88, 103) " 高温热流DTA,具备定量量热测试快速响应和高灵敏精度控温高温DSC快速氛围净化的典型功能。 /span /p
  • 气质联用仪的基本原理
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 气质联用仪是指将气相色谱仪和质谱仪联合起来使用的仪器。质谱法可以进行有效的定性分析,但对复杂有机化合物的分析就显得无能为力 而色谱法对有机化合物是一种有效的分离分析方法,特别适合于进行有机化合物的定量分析,但定性分析则比较困难。因此,这两者的有效结合必将为化学家及生物化学家提供一个进行复杂有机化合物高效的定性、定量分析工具。像这种将两种或两种以上方法结合起来的技术称之为联用技术,将气相色谱仪和质谱仪联合起来使用的仪器叫做气质联用仪。 br/ /p p style=" line-height: 1.5em "    strong 基本应用 /strong /p p style=" line-height: 1.5em "   气质联用仪被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和质谱的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。质谱仪的基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内。接口:由GC出来的样品通过接口进入到质谱仪,接口是气质联用系统的关键。 /p p style=" line-height: 1.5em "   strong  GC-MS主要由以下部分组成:色谱部分、气质接口、质谱仪部分(离子源、质量分析器、检测器)和数据处理系统。 /strong /p p style=" line-height: 1.5em "    strong 一、色谱部分 /strong /p p style=" line-height: 1.5em "   色谱部分和一般的色谱仪基本相同,包括柱箱、气化室和载气系统。除特殊需要,多数不再装检测器,而是将MS作为检测器。此外,在色谱部分还带有分流/不分流进样系统,程序升温系统,压力、流量自动控制系统等。色谱部分的主要作用是分离,混合物样品在合适的色谱条件下被分离成单个组分,然后进入质谱仪进行鉴定。色谱仪是在常压下工作,而质谱仪需要高真空,因此,如果色谱仪使用填充柱,必须经过一种接口装置-分子分离器,将色谱载气去除,使样品气进入质谱仪。如果色谱仪使用毛细管柱,因为毛细管中载气流量比填充柱小得多,不会破坏质谱仪真空,可以将毛细管直接插入质谱仪离子源。 /p p style=" line-height: 1.5em "   strong  二、气质接口 /strong /p p style=" line-height: 1.5em "   气质接口是GC到MS的连接部件。最常见的连接方式是直接连接法,毛细管色谱柱直接导入质谱仪,使用石墨垫圈密封(85%Vespel+15%石墨),接口必须加热,防止分离的组分冷凝,接口温度设置一般为气相色谱程序升温最高值。 /p p style=" line-height: 1.5em "    strong 三、质谱仪部分 /strong /p p style=" line-height: 1.5em "   质谱仪既是一种通用型的检测器,又是有选择性的检测器。它是在离子源部分将样品分子电离,形成离子和碎片离子,再通过质量分析器按照质荷比的不同进行分离,最后在检测器部分产生信号,并放大、记录得到质谱图。 /p p style=" line-height: 1.5em "    strong 1.离子源 /strong /p p style=" line-height: 1.5em "   离子源的作用是接受样品产生离子,常用的离子化方式有: /p p style=" line-height: 1.5em "    strong 电子轰击离子化 /strong (electron impact ionization,EI)EI是最常用的一种离子源,有机分子被一束电子流(能量一般为70eV)轰击,失去一个外层电子,形成带正电荷的分子离子(M+),M+进一步碎裂成各种碎片离子、中性离子或游离基,在电场作用下,正离子被加速、聚焦、进入质量分析器分析。 /p p style=" line-height: 1.5em "    strong EI特点: /strong /p p style=" line-height: 1.5em "   ⑴结构简单,操作方便。 /p p style=" line-height: 1.5em "   ⑵图谱具有特征性,化合物分子碎裂大,能提供较多信息,对化合物的鉴别和结构解析十分有利。 /p p style=" line-height: 1.5em "   ⑶所得分子离子峰不强,有时不能识别。 /p p style=" line-height: 1.5em "   本法不适合于高分子量和热不稳定的化合物。 /p p style=" line-height: 1.5em "    strong 化学离子化 /strong (chemicalionization,CI)将反应气(甲烷、异丁烷、氨气等)与样品按一定比例混合,然后进行电子轰击,甲烷分子先被电离,形成一次、二次离子,这些离子再与样品分子发生反应,形成比样品分子大一个质量数的(M+1) 离子,或称为准分子离子。准分子离子也可能失去一个H2,形成(M-1)离子。 /p p style=" line-height: 1.5em "    strong CI特点 /strong /p p style=" line-height: 1.5em "   ⑴不会发生象EI中那么强的能量交换,较少发生化学键断裂,谱形简单。 /p p style=" line-height: 1.5em "   ⑵分子离子峰弱,但(M+1) 峰强,这提供了分子量信息。 /p p style=" line-height: 1.5em "    strong 场致离子化 /strong (fieldionization,FI) 适用于易变分子的离子化,如碳水化合物、氨基酸、多肽、抗生素、苯丙胺类等。能产生较强的分子离子峰和准分子离子峰。 /p p style=" line-height: 1.5em "    strong 场解吸离子化 /strong ( field desorption ionization,FD) 用于极性大、难气化、对热不稳定的化合物。 /p p style=" line-height: 1.5em "    strong 负离子化学离子化 /strong (negative ion chemical ionization,NICI)是在正离子MS的基础上发展起来的一种离子化方法,其给出特征的负离子峰,具有很高的灵敏度(10-15g)。 /p p style=" line-height: 1.5em "    strong 2.质量分析 /strong /p p style=" line-height: 1.5em "   其作用是将电离室中生成的离子按质荷比(m/z)大小分开,进行质谱检测。常见质量分析器有: /p p style=" line-height: 1.5em "    strong 四极杆质量分析器(quadrupoleanalyzer) /strong /p p style=" line-height: 1.5em "   原理:由四根平行圆柱形电极组成,电极分为两组,分别加上直流电压和一定频率的交流电压。样品离子沿电极间轴向进入电场后,在极性相反的电极间振荡,只有质荷比在某个范围的离子才能通过四极杆,到达检测器,其余离子因振幅过大与电极碰撞,放电中和后被抽走。因此,改变电压或频率,可使不同质荷比的离子依次到达检测器,被分离检测。 /p p style=" line-height: 1.5em "    strong 扇形质量分析器 /strong /p p style=" line-height: 1.5em "   磁式扇形质量分析器(magnetic-sector massanalyzer)被电场加速的离子进入磁场后,运动轨道弯曲了,离子轨道偏转可用公式表示:当H,V一定时,只有某一质荷比的离子能通过狭缝到达检测器。 /p p style=" line-height: 1.5em "   特点:分辨率低,对质量同、能量不同的离子分辨较困难。 /p p style=" line-height: 1.5em "    strong 双聚焦质量分析器 /strong (double-focusing massassay)由一个静电分析器和一个磁分析器组成,静电分析器允许有某个能量的离子通过,并按不同能量聚焦,先后进入磁分析器,经过两次聚焦,大大提高了分辨率。 /p p style=" line-height: 1.5em "    strong 离子阱检测器(iontrap detector) /strong /p p style=" line-height: 1.5em "   原理类似于四极分析器,但让离子贮存于井中,改变电极电压,使离子向上、下两端运动,通过底端小孔进入检测器。 /p p style=" line-height: 1.5em "   检测器的作用是将离子束转变成电信号,并将信号放大,常用检测器是电子倍增器。当离子撞击到检测器时引起倍增器电极表面喷射出一些电子,被喷射出的电子由于电位差被加速射向第二个倍增器电极,喷射出更多的电子,由此连续作用,每个电子碰撞下一个电极时能喷射出2~3个电子,通常电子倍增器有14级倍增器电极,可大大提高检测灵敏度。 /p p style=" line-height: 1.5em "    strong 真空系统 /strong /p p style=" line-height: 1.5em "   由于质谱仪必须在真空条件下才能工作,因此真空度的好坏直接影响了气质联用仪的性能。一般真空系统由两级真空组成,前级真空泵和高真空泵。前级真空泵的主要作用是给高真空泵提供一个运行的环境,一般为机械旋片泵。高真空泵主要有油扩散泵和涡轮分子泵,目前主要应用的是涡轮分子泵 /p p style=" line-height: 1.5em "   strong  主要性能指标 /strong /p p style=" line-height: 1.5em "   气质联用仪的整体性能指标主要有以下几个:质量范围、分辨率、灵敏度、质量准确度、扫描速度、质量轴稳定性、动态范围。 /p p style=" line-height: 1.5em "   质量范围指的是能检测的最低和最高质量,决定了仪器的应用范围,取决于质量分析器的类型。四极杆质量分析器的质量范围下限1~10,上限500~1200。 /p p style=" line-height: 1.5em "   分辨率是指质谱分辨相邻两个离子质量的能力,质量分析器的类型决定了质谱仪的分辨能力。四极杆质量分析器的分辨率一般为单位质量分辨力。 /p p style=" line-height: 1.5em "   灵敏度:气质联用仪一般采用八氟萘作为灵敏度测试的化合物,选择质量数272的离子,以1pg八氟萘的均方根(RMS)信噪比来表示。灵敏度的高低不仅与气质联用仪的性能有关,测试条件也会对结果产生一定影响。 /p p style=" line-height: 1.5em "   质量准确度为离子质量测定的准确性,与分辨率一样取决于质量分析器的类型。四极杆质量分析器属于低分辨质谱,质量准确度为0.1u。 /p p style=" line-height: 1.5em "   扫描速度定义为每秒钟扫描的最大质量数,是数据采集的一个基本参数,对于获得合理的谱图和好的峰形有显著的影响。 /p p style=" line-height: 1.5em "   质量轴稳定性是指在一定条件下,一定时间内质量标尺发生偏移的程度,一般多以24h内某一质量测定值的变化来表示。 /p p style=" line-height: 1.5em "   动态范围决定了气质联用仪的检测浓度范围。 /p p style=" line-height: 1.5em "    strong 测定方法 /strong /p p style=" line-height: 1.5em "    strong 总离子流色谱法(totalionization chromatography,TIC) /strong --类似于GC图谱,用于定量。l反复扫描法(repetitive scanningmethod,RSM)--按一定间隔时间反复扫描,自动测量、运算,制得各个组分的质谱图,可进行定性。l质量色谱法(masschromatography,MC)--记录具有某质荷比的离子强度随时间变化图谱。在选定的质量范围内,任何一个质量数都有与总离子流色谱图相似的质量色谱图。 /p p style=" line-height: 1.5em "    strong 选择性离子监测(selectedion monitoring,SIM) /strong --对选定的某个或数个特征质量峰进行单离子或多离子检测,获得这些离子流强度随时间的变化曲线。其检测灵敏度较总离子流检测高2~3个数量级。 /p p style=" line-height: 1.5em "    strong 质谱图 /strong --为带正电荷的离子碎片质荷比与其相对强度之间关系的棒图。质谱图中最强峰称为基峰,其强度规定为100%,其它峰以此峰为准,确定其相对强度。 /p p br/ /p
  • 差热分析(DTA)技术在材料研究中的应用
    差热分析(DTA)已成为一种流行的热分析技术,通常用于测量材料的温度,进而用于测量材料的吸热相变和放热相变。这项技术已在制药、有机化工、无机材料、食品、水泥、矿物学和考古学领域得到广泛应用。差热分析(DTA)过程原则上,差热分析是一种类似于差示扫描量热(DSC)的技术,在差热分析中作为研究对象的材料经历了各种热循环(加热和冷却循环),并使用惰性参考材料确定研究材料和参考材料之间的温差。在整个加热循环中,研究材料和参考材料都保持在相同的温度,以确保测试环境一致。差热分析(DTA)中的元件差热分析通常在熔炉中进行,尤其是在现代熔炉中,因为这是在周围环境中获得均匀温度的最有效方法。温度本身是用两个热电偶记录的,这两个热电偶是专门(和通用)类型的温度传感器,传感器使用金属线形成热接点和冷接点。热接点测量材料的温度,而冷接点提供了将分析温度与之比较的参考。这是每个热电偶内部用来确定材料温度的过程。在这种情况下,参考温度不是DTA分析的参考温度,而是每个热电偶装置内的参考温度。因此,需要有两个热电偶,一个热电偶测量样品的温度,另一个测量参考温度。除了热电偶和熔炉外,还使用电压表测量热电偶之间的电压(这是它们确定温度的方式),以及通常用作材料支撑的坩埚(尤其是在分析小的样品时)。在熔炉内部,也使用氩气或氦气等惰性气体,因为它们不会与样品或参考材料发生反应,这确保了测量过程中没有干扰。在大多数情况下,防止污染物影响分析结果是非常重要的。现代DTA方法中使用的大多数熔炉也可以提供-150°C至2400°C的温度环境。此外,可以使用许多不同的坩埚,这两个因素的组合可以对各种材料进行分析,这就是为什么差热分析能够跨越很多不同的工业部门的原因。分析是将样品和参考材料对称放置在熔炉中进行。然后,这两种材料在程序控温下经过加热和冷却的过程,在每个循环中,这两种温度尽可能保持恒定(在合理误差范围内)。由于熔炉加热,数据记录通常会有轻微延迟(延迟的长度通常取决于材料的热容)。差热分析(DTA)图谱在分析过程中,将温差相对时间的曲线绘制在图表上。在某些情况下,也可以绘制温差相对于温度的曲线。从这(以及曲线如何显示)可以确定材料的吸热和放热转变温度,更多的信息还包括材料的玻璃化转变温度、材料的结晶温度、材料的熔化温度和材料的升华温度。这些通常都能推断出来,因为相对于参考材料的温度变化可以确定材料是吸收热量(吸热)还是释放热量(放热)。热电偶的存在也有助于轻松识别是否发生了相变,因为当发生相变时,连接到参考热电偶上的电压表将轻微跳变。这是由于材料相变产生的潜热导致惰性气体温度略微升高(进而影响参考热电偶的电压)。除了传统的温度相变外,当两个惰性样品对热循环的响应不同时,还可以使用差热分析来测量它们。在这些特定情况下,DTA还可用于识别任何不基于焓变的相变。这些通常通过DTA图上曲线的间断来识别。结论虽然差热分析被正式定义为一种确定样品和参考材料之间温差的方法,但在实践中,它可以告诉用户材料在很多不同温度下的相特性。差热分析获得的信息量对很多行业都有很大的好处,因此被广泛使用。本文作者:Liam Critchley,Liam Critchley是一名作家和记者,专攻化学和纳米技术,拥有化学和纳米技术硕士学位和化学工程硕士学位。
  • 梅特勒托利多:《热分析应用基础》即将出版
    由梅特勒托利多公司瑞士总部热分析专家著作、由梅特勒托利多中国热分析专家翻译的《热分析应用手册系列丛书》之《热分析应用基础》(中文版)即将于2011年1月由东华大学出版社出版。 《热分析应用基础》是该系列丛书的一个重要分册,系统全面介绍了各种热分析方法的基本原理和测量方法,诸如DSC、TGA、TMA、DMA、热光分析、TGA/MS和TGA/FTIR联用技术的定义、原理和应用,以及样品制备、数据处理与表达,并着重阐述了玻璃化、二元相图、纯度测定、多晶型、吸附分析;还从热分析实验方法、条件(参数)选择到评价体系、实施方案制订了若干步骤。最后附有ISO、ICTAC等国际组织制订的各项热分析标准。 截止到目前,《热分析应用手册系列丛书》中文版已有《热塑性聚合物》、《热固性树脂》、《弹性体》、《逸出气体分析》及本书在内的5本分册。 《热塑性聚合物》介绍了热塑性聚合物在加热时熔融或流动,由无规缠结的(无定形热塑性塑料)或以微晶方式部分有序的(半结晶热塑性塑料)线性大分子组成。它们在农业、汽车工业、航空业、建筑工业、电气工业、纺织等行业广泛运用。本书不仅可作为应用手册查询,也可以作为实验指南,对热分析工作者及热分析学习者有帮助和裨益。 《弹性体》分册通过大量实例全面深入地介绍和讨论了热分析在聚合物弹性体方面的应用,第1至第3章热分析方法简介,弹性体的结构、性能和应用;弹性体的基本热效应,第4至第5章介绍了大量的应用实例,包括对结果的详细解释和导出的结论。 《热固性树脂》分册通过大量实例全面深入地介绍和讨论了热分析在热固性树脂方面的应用。主要内容:热分析技术DSC、TMDSC、TGA、TMA和DMA等简介;热固性树脂的结构、性能和应用;热固性树脂的基本热效应;环氧树脂、不饱和聚酯树脂、酚醛树脂、丙烯酸类树脂、聚氨酯树脂等的热分析一固化反应(等温固化、光固化、后固化、反应动力学等)、玻璃化转变(Tg与固化度、Tg的各种测试法、固化反应中的玻璃化、凝胶化、时间一温度转换图等)、填料和增强纤维等的影响、印制线路板分析(Tg、分层、老化)、缩聚、加聚、层压板、黏合剂等。 《逸出气体分析》分册着重阐述TGA-FTIR和TGA-MS两种联用技术。第一部分讲述这两种技术的基本原理,也包括一些实际内容和介绍图谱的解析。第二部分讨论用TGA-FTIR和TGA-MS做的15项不同的应用,以及两个相对较少使用的TMA和MS联用技术的应用。 相信这套丛书的出版,会对我国热分析技术的普及与提高起到重要的推动作用,特别对热分析仪器的直接操作者和应用者具有实际的指导意义。 若有需要,可通过全国新华书店、各网站及东华大学出版社购买。
  • 热分析钱义祥老先生:热分析仪器(方法)选择的哲理
    p & nbsp & nbsp & nbsp span style=" color: rgb(112, 48, 160) " (本文系仪器信息网独家约稿,未经许可,其它媒体不得转载)   /span /p p & nbsp & nbsp & nbsp 应用先进仪器和方法进行科学与技术的基础研究和应用开发。如何选用近代先进仪器和科学方法呢?钱义祥老先生的这篇“热分析仪器(方法)选择的哲理”将有助你选择先进仪器和科学方法。帮助你从多种备选对象中进行挑选与确定,使你学会择优选择。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/25eddf60-8d71-4ed7-b6ac-1205345e0568.jpg" title=" " style=" width: 450px height: 503px " height=" 503" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " strong 钱义祥老先生某次出差夜晚其学生拍摄 /strong /p p    strong 1.1 & quot 选择& quot 的哲理 /strong /p p   人,不由自己的选择而出生,朦胧地踏上漫长的选择之路。选择伴随科学人的一生,渐进渐行,格物致理(探究事物的原理法则,而总结为理性知识并加以运用)。人是选择的主体,“选择”是一个最易产生共鸣的话题。 /p p   从哲学的角度看,选择是反映主体与客体关系的一个范畴,主体与客体在相互作用过程中,主体根据其自身的存在现状、目的需要、价值尺度,对依赖主体活动而存在的事物的多种可能性关系进行分析、比较,抉择。它是主体积极能动、自觉自由的本质力量的一种表现。这种力量存在于人的一切活动过程中,既存在于人的思维过程中,也存在于人的实践行为中。 /p p   1.1.1研究方法是一个不断发展的动态过程。 /p p   科学研究是一个动态的永无止境的探索过程。研究方法总是以符合研究需要为前提,与科学研究相适应,因此研究方法也是一个不断发展的更新过程。 /p p   前人的研究成果,概括地说,无非是资料、研究方法和结论三个方面。我们研究前人的研究成果,主要目的是了解他获得的结论及获得这个结论的方法。科学史的书籍记录了科学家的发现和科学家获得发现的方法。可见研究方法及其选择在科学研究中的重要性。方法的选择要具有合理性、新颖性、独创性、可实现性。为避免选择性偏差,对研究课题和热分析方法了解得越深越多,选择热分析方法就越有依据,就越合理和适用,越能满足科学研究的需要。 /p p   1.1.2热分析方法选择的主体是人 /p p   选择是一个词语,这个词语主要是指一个人要挑选什么,要做出什么决定,选取什么.这是一个很重要的字眼。“选择”是存在于人的思维和实践行为方式中的积极能动的能力。 /p p   热分析方法选择的主体是人,是人的实践行为。人的具体行为方式是由人的选择来确定的。选择决定于主体,并不是说主体可以随意选择。主体的选择不仅受到客观外部条件的制约,也受到主体自身存在状况的限制。 /p p   在一定的外部条件下,人的能力是选择的关键。应该培养,发展、完善主体, 提高主体的选择能力。成功的选择,能最大限度地实现目的,满足主体的需要。 /p p   热分析方法的选择不仅受到主体自身存在状况的限制,也受到客观外部条件的制约。受仪器的制约和限定的典型事例是微重力下的热分析研究。微重力科学作为一门近代科学,是随着载人航天活动的发展而迅速发展的。微重力的热分析研究有望应用于空间材料科学,其研究障碍乃在于缺乏研究仪器和研究方法。目前商品化的热分析仪器仅适用于在万有引力条件下进行热分析实验,微重力条件下的热分析仪器尚待开发。微重力的热分析研究必定伴生新的研究方法的创立。方法的创立反过来又指导微重力的热分析研究。 /p p   选择意味着在多种事物中挑选一种事物或多种事物。热分析方法选择过程中,选择本身也是一种探索,乃是对人的选择能力的一种检验。 /p p   选择是一个过程,有可能在弹指一瞬间完成;有时通过“试错”来选择热分析方法和实验方法 某些特例,也有可能永远选择不到一个好的方法来研究你的问题。如热分析动力学研究,要从诸多的热分析动力学方法中选择、修改或建立新的动力学方程并非是件容易的事。实验、选择和修改动力学方程常常耗费几个月或更长的时间。 /p p   1.1.3高分子物理近代研究方法 /p p   选择正如人要走路,面对多条路,走哪条路?如何走这条路?便是你的选择了。科学研究亦如此。“高分子物理近代研究方法”是一本如何选择科学研究方法进行高分子物理研究的参考资料。 /p p   “高分子物理近代研究方法”由高分子物理和近代研究方法二个词复合组成。“高分子物理”的研究内容是高分子的结构、高分子材料的性能和分子运动的统计学 近代研究方法有高分子光谱及波谱分析、X射线分析、高聚物热分析、高聚物显微分析。人们选择近代研究方法研究高分子物理中的诸多问题。选择过程是属于人的行为活动,需要宽厚、交叉的基础知识和精深的专业知识,而且要有丰富的实践活动。由具有高分子物理背景和科学分析仪器背景的复合型人才担当高聚物结构(性能)的表征和研究是最佳的选择。因为他们具有“多种学科在他头脑里汇合”的优势。 /p p    strong 1.2热分析方法选择 /strong /p p   “热分析方法选择”是在第二届江苏省热分析技术应用与进展学术研讨会(2008年—扬州)上提出来的。是几十年的热分析实践中悟出的一个概念,是关于“热分析方法选择”问题的哲学思考。 /p p   “热分析方法选择”有二层意思: /p p   第一层意思是:“选择”是一个哲学问题(概念),是一种思维方式。“热分析方法选择”是“选择”的哲学思想在科学研究中的应用实例。 /p p   第二层意思是:“选择”是一种行为活动,贯穿于热分析方法选择和实验条件选择的全过程。 /p p   1.2.1科学研究与方法的关系: /p p   每一项科学技术研究成果的取得,都是运用一定的研究方法的结果。而每一项重大的科学理论或技术突破,往往伴生新的研究方法的创立。方法的创立来源于实践,反过来又指导科学技术研究实践活动。 /p p   科学研究是一个艰苦的探索过程,没有行之有效的方法,就无法达到研究的目的。方法的选择和应用是否适当是决定研究工作是否有成效的一项关键性因素。 /p p   方法是指用于完成一个既定目标的具体技术和工具。要方法行之有效,就必须对方法进行有选择的、合理的运用。 /p p   方法问题是解决实际问题不可逾越的现实问题,方法的选择很大程度上决定着研究的进展和效果。要针对具体问题,有目的地选择适用的方法。对于方法选择的准则依次是适用,高效简单、完美。在科学研究中选择热分析方法时可参考这个标准。 /p p   1.2.2热分析仪器(方法)选择 /p p   热分析方法是近代研究方法之一,它在科学研究中有极为广泛的应用。在对热分析方法已基本掌握的基础上,讨论这些方法的优缺点和适用范围, 择优选择。 /p p   在科学研究中,“热分析方法选择”突出体现了“选择”的哲学思想的普适性。它包括二个内容:热分析方法(仪器)选择和实验方法(条件)建立。 /p p   热分析方法包括 DSC、TG/DTA、TMA、DMA 和热分析+。各种方法有各自的特点和适用范围,同时它们之间又存在密切的联系。不同的热分析仪器(方法)应用在不同的研究领域。科研人员根据研究内容,选择合适的热分析方法,如下图。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/30e9b3e7-7048-4006-ae95-bae75680a739.jpg" title=" 1.png" / /p p   上图表明:热分析应用是按转变、反应与热物性参数进行分类。这种分类 /p p   方法具有很强的概括性。可以囊括各个学科领域的所有应用。热分析应用进一 /p p   步细分,并选择相应的热分析方法。 /p p   物理转变: /p p   涵盖结晶、晶型转变、汽化、升华、吸附、解吸附、吸水、居里点转变、玻璃化、液晶转变、热容转变等。 /p p   化学反应: /p p   涵盖分解、氧化、还原、固态反应、燃烧、聚合、树脂固化、橡胶硫化、催化反应等。 /p p   物质特性参数: /p p   比定压热容、纯度、膨胀系数、热导率等。 /p p   热分析是一种解决问题的实用技术。“热分析怎样来解决你的问题?你的问题怎样用热分析来解决?”,你面临的就是选择热分析仪器(方法)来解决你的问题。选择先于实验,贯穿于科学研究的整个过程。根据研究内容,选择热分析仪器(方法)。选择活动的主体是科研人员,要体现主体的能动性,即体现科研人员的能力和特有的积极能动的自由本质力量。在选择过程中,科研人员对研究内容和热分析仪器(方法)进行分析、比较,然后做出合理有效的选择。针对具体问题,有目的地选择合适的热分析方法。 /p p   列举几个实例: /p p   1. 玻璃化转变测量方法的选择 /p p   高分子物理中有一个重要的转变—玻璃化转变。研究玻璃化转变有三种热分方法:DSC、TMA、DMA。哪种方法好呢?根据样品的特性,你要做出合理的选择。一般情况下,粉末样品通常选用DSC方法; 树脂固化样品通常选用TMA方法 成型制品通常选用DMA方法。 /p p   DSC、TMA、DMA测量玻璃化转变的方法原理及灵敏度不同,如下表: /p p   DSC:检测的物理量是比热容 Cp 比热容变化约30% /p p   TMA:检测的物理量是膨胀系数 α 膨胀系数增加多至300% /p p   DMA:检测的物理量是模量 E 模量变化高达3个数量级 /p p   由上表可知:仪器灵敏度DSC & lt TMA & lt DMA。 测量高聚物的玻璃化转变,DSC方法制样方便。但玻璃化转变的信号很微弱时,那么就要改为选用TMA、DMA方法。封装材料使用的环氧树脂,通常选用TMA测定固化产物的玻璃化转变温度Tg和△Tg。 /p p   2. 高聚物次级转变的热分析方法选择 /p p   为什么要选择DMA方法来研究次级转变呢? /p p   从被选择的客体及其特性说起。被选择的客体是DMA方法和次级转变。 /p p   用DSC方法测量高聚物的热性能,能够检测到高聚物的Tg,但检测不到高聚物的次级转变Tβ。因而研究工作就在玻璃化转变层面戛然而止。仅仅测量玻璃化转变满足不了材料力学性能研究的需要。 /p p   DMA方法研究高聚物在交变应力作用下的力学状态和热转变。非晶高聚物力学性质随温度变化,它的力学状态是玻璃态、玻璃化转变区、高弹态及黏流态;发生的转变有次级转变、玻璃化转变、流动转变。DMA方法方便地测试到高聚物的次级转变、玻璃化转变、流动转变,因此用DMA方法研究次级转变打破了高聚物研究止步于玻璃化转变的现状。 /p p   高聚物发生的次级转变和玻璃化转变都是松弛过程。玻璃化转变是高聚物中链段由冻结到自由运动的可逆转变。次级转变是高聚物中小尺寸运动单元由冻结到自由运动的可逆转变。从材料结构、分子运动角度进行逻辑推理,潜意识感到次级转变和玻璃转变存在一定的关联性。但高分子物理和研究报告中,很少有人提及次级转变和玻璃转变的关联性,故只能淡墨轻描。选择DMA方法测试次级转变、玻璃化转变及其关联性就有它的现实价值。DMA方法测量高分子材料的玻璃化转变和次级转变,获得与材料的结构、分子运动、加工与应用有关的特征参数。因而在评价材料的耐热性与耐寒性、共混高聚物的相容性、树脂-化剂体系的固化过程、复合材料中的界面特性和高分子的运动机理等方面具有非常重要的实用与理论意义。研究高聚物次级转变和玻璃化转变都很重要,都是不容忽视的。选择DMA方法研究高聚物的玻璃化转变、次级转变和Tβ-Tg是一个富有创造性的想象力。 /p p   高聚物在玻璃化温度以下,链段运动是冻结的,但更小的运动单元仍然可以发生运动,出现多个次级转变。高聚物次级转变之一是Tβ,它是一个非常有用的参数:它表征材料韧-脆转变,是材料的脆化温度和低温使用的极限温度;Tβ-Tg是高聚物发生物理老化的温度区间;β转变时力学内耗峰tanδ值与材料的冲击强度有对应关系;Tβ-Tg是屈服冷拉的温度区间,是加工工艺的必须控制的参数之一。 /p p   DMA是利用分子运动由局部原子振动变为区域的链段运动及更小的运动单元的运动引起高聚物的黏弹性大幅变化的原理测量高聚物的热转变。DMA方法的灵敏度高,它不仅可测定玻璃化转变温度Tg,还可测定次级转变温度Tβ。图中蓝颜色框中的tanδ即为高聚物的次级转变温度Tβ。均相非晶态高聚物的 /p p   DMA曲线如图所示。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/fe1a822b-e30b-4dce-a087-c79623b71406.jpg" title=" 2.jpg" / /p p style=" text-align: center " strong 均相非晶态高聚物的DMA曲线 /strong /p p   3. 物理老化和化学老化研究的热分析方法选择 /p p   高聚物在使用过程中,会发生化学老化、物理老化和光老化。它们发生在不同的温度区间,测定这些特征温度是必须的。 /p p   化学老化通常发生在Tg以上,采用DSC、TMA、DMA方法测定得到玻璃化转变温度Tg。 /p p   物理老化通常发生在Tβ-Tg之间,采用DSC、TMA、DMA方法测定得到玻璃化转变温度Tg。选择DMA方法测量得到次级转变温度Tβ。 /p p   膜的物理老化研究选择调制DSC和TMA、DMA方法。膜的调制DSC曲线和应力-温度曲线如图所示: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/1209b375-4e9a-4bcc-b5db-4ec484081cc2.jpg" title=" 3.jpg" / /p p style=" text-align: center " strong 分子链残留内应力和热焓松弛的MDSC曲线 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/bc98072a-f72a-4853-a5b2-1e02ad87eb7d.jpg" title=" 4.jpg" / /p p style=" text-align: center " strong   膜的物理老化涂层的应力-温度曲线 /strong /p p style=" text-align: center " strong   未物理老化涂层A /strong /p p style=" text-align: center " strong   物理老化涂层B /strong /p p   涂层温度低于Tg时,发生物理老化。由于物理老化涂层的应力对温度的依赖性,用Tg曲线区域内的极小值表征(图中B线2点处),其幅度的大小与物理老化程度有关。物理老化影响材料的机械、热和电性能。一般来说,弹性模量和硬度随着物理老化而增大,而应力松弛速率变化使玻璃态的膨胀性降低。 /p p   光老化选择光化学反应量热仪PDC方法。PDC的结构示意图如下: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/d33624e5-302b-4758-a971-9a1d491bff47.jpg" title=" 5 (2).jpg" / /p p style=" text-align: center "    strong PDC的结构示意图 光化学反应量热仪PDC /strong /p p   光化学反应量热仪PDC的原理:是将不同波长、不同照射强度下的紫外光照射在试样上,测量热效应。它既可进行光固化实验,也可以进行高聚物的光老化研究。 /p p   4. 选用多种热分析方法,全面表征高聚物的热性能。 /p p   为了全面表征高聚物的热性能,“全选”不失为一种很好的选择。就是选择DSC、TG、TMA、DMA方法,全面表征高聚物的热性能。 /p p   成功的科学家往往把所需要的各种方法巧妙地结合起来综合运用。这也是常见的方法选择。如热分析与FTIR、GC/MS、MS联用。 /p p   5. 绝热材料的热分析方法选择 /p p   温石棉是导热性极差的绝热材料。 /p p   温石棉中含有Mg(OH)2。Mg (OH)2脱水方程式如下: /p p style=" text-align: center "   Mg(OH)2 → MgO + H2O↑-△H /p p   由方程式可知:Mg (OH)2脱水时,它既有重量损失,而且伴有能量吸收。因此Mg(OH)2含量可用TGA方法定量,也可以用DSC方法测定。 /p p   由于温石棉导热性差,选用DSC方法,依吸热峰面积定量Mg(OH)2含量,误差较大。而选用TGA方法,TG曲线上显现的失重台阶就是氢氧化镁的脱水量。根据失重台阶计算Mg(OH) sub 2 /sub 的含量,数据准确,重复性好。 /p p   6. 标准试验方法 /p p   鉴于热分析方法的结果受诸多实验因素的影响,为利于热分析的学术交流 /p p   和相互间的数据比较,国际标准化组织就几种主要热分析方法及应用制定了一系列标准和规范。如差示扫描量热法(仪)的标准和规范、热重法的标准、热机械分析的标准、动态力学性能的标准。实验都要按标准和规范执行。如玻璃化温度测定、熔融-结晶过程测量、比热容测定、氧化诱导期测定、结晶动力学测定、分解温度和分解速率测定、分解动力学测定、线性膨胀系数测定、针入度测定、模量、损耗因子、应力-应变曲线等。 /p p   研究材料和制造产品时,有相应的国际标准、国家标准、行业标准,产品标准。按标准试验方法进行实验是一种强制性的选择。如封装材料T260/T288/T3O0(Time to Delaminate)热分层时间或称“爆板时间”测定必须按规定的标准方法进行。 /p p   借鉴热分析文献综述中提及的热分析方法和实验方法也是一种选择。 /p p   开发新的热分析方法和实验方法,适应研究的需要。 /p p   7. 改造已有的方法以适应解决实际问题的需要 /p p   外加电场、拱形铜片、夹具组合等DMA实验是夹具适应性改造的实例。 /p p   外加电场的DMA实验 /p p   外加电场:将外加电场加在样品两端,测定试样在外加电场的条件下,实时原位研究纳米复合材料的电刺激--形状记忆效应。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/a874a62b-fbcd-4369-826c-51f93a236e14.jpg" title=" 6.jpg" / /p p style=" text-align: center " strong 拱形铜片的应变—应力曲线测试 /strong /p p   选用压缩夹具。样品嵌在自制的限止长度变化的试样固定器上,整体置放在下探头。上探头临界接触试样的弧形部位,如图所示。 /p p   采用应力控制模式,测定应力 —应变曲线。就得到了客户要求的规定形变量下的应力值。它是挠度测定的反过程。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/6567bd82-1dbb-4380-9fdf-8ae80e26e752.jpg" title=" 7.jpg" / /p p style=" text-align: center " strong 夹具组合 —“蹦床夹具”实验 /strong /p p   标准夹具组合使用:上夹具用压缩夹具,下夹具用双悬臂夹具。 /p p   用下夹具夹持薄膜试样。薄膜试样上固定放置一个直径6mm的氧化锆圆柱体。然后将上夹具(压缩夹具)压在氧化锆圆柱体上。 /p p   循环加载/下载应力,进行应力—应变循环实验。 /p p   测定试样蹦床落点的力学性能。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/96453279-d8d2-424c-b8af-b3ea6b5d214e.jpg" title=" 8.jpg" / /p p style=" text-align: center " strong DMA模拟蹦床实验示图 /strong /p p   8. 移植方法 /p p   移植方法是当前科学方法发展的重要方面。移植包括科学概念、原理、方 /p p   法以及技术手段等,从一个领域移植到另一个领域,或科学方法相互渗透和转移,多种方法形成一个新的方法。移植方法是科学整体化趋势的表现之一。热重/差热分析-固相微萃取-气相色谱-质谱联用系统是移植方法的实例。 /p p   固相微萃取(SPME)是一种广泛使用的集萃取、浓缩、解吸、进样于一体的样品前处理新技术。将其移植到“热重/差热分析--气相色谱-质谱联用系统”中,即将固相微萃取(SPME)接入到“热重/差热分析--气相色谱-质谱联用系统”中去,改造成“热重/差热分析-固相微萃取-气相色谱-质谱联用系统。” 实验时划分温度段取样,解决逸出气取样问题,该系统已应用于原儿茶醛热解行为的研究。 /p p   1.2.3选择实验条件,建立实验方法 /p p   热分析实验结果常常依赖于实验条件,因此根据样品的特点选择实验条件,建立试验方法。 strong 见下图。 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/55058ec9-039f-4514-a5b4-52594968ae1a.jpg" title=" 9.jpg" / /p p   列举几个实例: /p p   1. 含能材料的热分析方法和试验方法的选择 /p p   热性能是含能材料的非常重要的性能之一,热分析能全面地表征含能材料的热性能,它在含能材料研究中得到了广泛的应用。由于含能材料分解过程的复杂性,要遵循“选择先于实验”的原则,切忌拿到一个含能材料的样品,随手称取10mg样品,冒失地进行TG实验或DSC实验。这将可能发生爆炸,损坏仪器和造成人员伤害。 /p p   含能材料的热分析实验前,你必须先了解含能材料的分解特性和爆炸特性,谨慎地选择实验条件。试样量是致关重要的,因含能材料分解时放热量大,特别是有强烈自加热的分解过程。为防止峰的扭曲,试样量应尽量少,如0.05-0.3mg。然后谨慎地进行TG实验。如选择DSC方法,实验时要防止试样溢出,污染传感器。含能材料的TG/DTA曲线和DSC曲线如图所示: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/6ea118da-ce02-4330-ae46-1e021cd8c1c1.jpg" title=" 10.jpg" / /p p style=" text-align: center "    strong 含能材料的TG/DTA曲线 含能材料的DSC曲线 /strong /p p   含能材料的TG/DTA曲线上的失重和放热峰呈歪斜型,是强放热造成的扭曲。样品量减少到0.3mg以下,峰型趋于正常。 /p p   2. 聚丙烯玻璃化温度测定 /p p   选择是目的性很强的实践行为。按选定的热分析方法和实验条件进行热分析实验,常常是一次或多次“试错”的选择过程。当实验结果达不到主体的要求时,可选择另一种热分析方法或更改实验条件,再次进行实验。多次试错,直至你得到了满足需要的结果。例如选择DSC方法测定聚丙烯玻璃化温度。升温速率选用10℃/min时,弱小的热效应难以被发现,DSC曲线上未见玻璃化转变峰。随着升温速率的提高,仪器灵敏度大大提高, 当升温速率达到150℃/min时,其玻璃化转变过程中的台阶状变化变得明显 strong , /strong 如图所示。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/17f85e3d-9bde-4dce-ba00-bdb474182035.jpg" title=" 11.png" / /p p   3. 选择真空或加压条件解决热分析峰的分离问题 /p p   热分析峰的分离问题常常是通过改变实验条件来解决的。例如塑料中增塑剂的挥发和塑料分解,在常压条件下,两种效应可能在相同的温度区间发生。而减压条件下,塑料中添加的增塑剂在塑料分解之前挥发,那么实验就可选择在真空条件下进行。多种热分析仪器可在真空条件下进行实验。 /p p   如果在常压下发生两个重叠的化学反应,其中一个反应可能受压力升高的影响比另一个反应大。在这种情况下,可以选择压力DSC将两个反应进行分离。例如有机物的分解温度随惰性气体压力的增大而提高。 /p p   4. 选择“强化影响因素”的实验条件 /p p   有多种因素影响热分析的测量结果。可以使用简化、纯化、强化实验影响因素的方法,加速现象的进程。当然它与在自然条件下获得的结果是有差别的。可进行科学、合理的补偿和修改。在纯氧条件下进行氧化诱导期测定,是强化实验影响因素的实例之一。 /p p   1.2.4热分析方法的取代和重新选择 /p p   热分析方法随研究“需要”而“变”。物质热性能研究的深入,促进热分析方法的发展。热分析方法的发展,又促使研究工作顺利进行。 /p p   批判性思维是以逻辑思维为基础。以一种批判、分析和评价的方式思考热分析方法的选择。被选择的热分析方法不是凝固不变的,而是随着研究实践出相应的改变或重新选择。 /p p   “问题-方法-标准”的思维模式具有普适性。研究不同的问题选择不同的热分析方法,探索问题的本质和规律。对方法规范化的表述可制订为标准。制订的标准也是不断修订。 /p p   实例1:选择热分析方法测定药物熔点 /p p   热分析方法介入药物熔点测定。选择热分析方法测定药物熔点,取代毛细管法,已成趋势。 /p p   在药品检验中,药物的熔点是鉴别药物真伪和衡量质量优劣的重要指标。药物熔点通常是用经典的毛细管法测定,人为视觉误差大,初熔点难以判别。2015中国药典推荐热分析方法取代毛细管法。 /p p   选择DSC或DTA方法测量药品熔融的全过程,可提供准确的熔化温度,熔程、熔融焓及多晶型、纯度等信息。对那些熔融伴随分解、熔距较长,用毛细管法测定较困难的样品,选择热分析方法则能取得较理想的结果。选择几种热分析方法如DSC与TGA相结合的方法可给出更准确地判断。 /p p   实例2:热分析方法自身在发展,方法选择也在演变。 /p p   热重法是热分析技术中发明最早的。常常选择TG研究高聚物的热分解。随着TG技术的发展,新的功能不断出现,研究内容也不断深化。选择的TG方法也随科学研究的深化而演变。 /p p   TG方法的演变,促使高聚物热分解的研究不断深化,如下表: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/f1f85a2e-ad5d-413f-abfe-9890dfc34bff.jpg" title=" 12.jpg" / /p p   表中提及了观察系统。观察系统是热分析的新功能,引入图形思维概念。热分 /p p   析实验同时得到热分析曲线和形貌图像。对热分析曲线和观察到的形貌图像同 /p p   步进行解析,追溯热变化的物理-化学过程。 /p p   1.2.5方法选择中的创造性思维和批判性思维 /p p   创造性思维是能引发新的和改进解决问题方法的思维方式。创造性思维引发新观念的产生,批判性思维是对所提供的解决问题的方式进行检验,以保证其有效性的思维方式。批判性思维包含了几个核心要素:解读、分析、评价、推理等。在方法选择中,要批判性地思考热分析方法问题。 /p p   热分析方法选择过程中,要求创造性思维和批判性思维平衡发展。创造性思 /p p   维和批判性思维将推动热分析方法和仪器的发展。 /p p   实例1:骤冷PET初始结晶度测定 /p p   选择传统DSC测定骤冷PET的初始结晶度。DSC曲线表明:通过熔融焓与结晶焓的焓值之差计算得到初始结晶度,热焓值之差为50.77-36.59=14.18J/g,表明它是部分结晶高聚物。而广角X射线衍射测定的结论:骤冷PET是无定形,与DSC结果相矛盾。这个矛盾逼迫科研人员以一种批判、分析和评价的方式去思考。科研人员凭借辨析和判断能力,判明数据真伪。 /p p   温度调制DSC方法的创新思维是对传统DSC方法局限性的批判。温度调制DSC选择了一种特殊的升温方式:在一般线性加热或冷却的基础上,叠加了一个正弦的加热速率,这是创新;以基础升温的慢的升温速率来改善分辨率,并以瞬时快速升温速率提高灵敏度,这是对升温速率影响分辨率与灵敏度规则的遵循。从而使调制DSC将高分辨率与高灵敏度巧妙地结合在一起,实现了在同一个实验中既有高的灵敏度,又有高的分辨率。温度调制DSC既有创造性,创造性中又包括对规则遵循。温度调制DSC是对规则遵循中孕育创造性的范例 /p p   创新,就是选择方法,创造新的可能性。温度调制DSC使可逆峰与不可逆峰的分离成为可能。温度调制DSC利用傅里叶变换的叠加法,得到可逆热流和不可逆热流,可逆峰与和不可逆峰被区分开来,从而显著提高微弱转变、多相转变和定量测定结晶度的可信度。选择温度调制DSC ( MTDSC )方法测定骤冷PET的初始结晶度。如图所示: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/bd043b05-4380-4e3a-8a5a-c8de6e507766.jpg" title=" 13.jpg" / /p p   温度调制DSC曲线显示:骤冷PET初始结晶焓值由冷结晶焓与熔融焓之差得到,其值为134.3-134.6=-0.3 J/g,表明骤冷PET初始结晶度极低,基本上为无定形形态。温度调制DSC的实验结果和广角X射线衍射测定的结果相符合。 /p p   实例2:油品氧化诱导期测定 /p p   常压下测定油品的氧化诱导期,由于油品蒸(挥)发,导致数据波动。基于高压能延迟挥发。创造性思维引发新观念的产生,高压DSC仪器出现了。人们放弃常压下测定油品的氧化诱导期的方法,而选择高压DSC测定油品的氧化诱导期,并编制了油品的氧化诱导期测定的相关标准。 /p p    strong 1.3“热分析方法选择”的编辑 /strong /p p   全球无数台的热分析仪器每天都在运行,专业人员实时解析由实验得到的热分析曲线,并撰写成成千上万篇的研究报告发表在科学杂志上。这是科学研究中运用热分析方法的成果积累和沉淀。整理、编辑这些对科学有价值的资料,进而建立“热分析方法选择”的数据库和检索系统是人们的期盼。编写“热分析方法选用实例”是一项聚沙成塔的工作,编辑工作只有起点没有终点。 /p p   “热分析方法选择”表格可以由实验室(个人)编辑。“热分析方法选择”的数据库和检索系统,必须由图书馆、出版社和专业技术学会编辑。 /p p   1.3.1实验室编辑“热分析方法选用” /p p   热分析的专业工作者和科研人员,每天都在选择热分析方法,设计试验方法,进行大量的热分析实验。积累的资料如淙淙的小溪,常流不断,常流常新。经常翻一翻、查一查积攒下的实验资料,从自己的实验实践中,寻找研究内容和热分析方法的对应性,有助于今后热分析方法选择。将你的热分析实践活动用表格记录下来,成为自己编写的“热分析方法选用”的实例,供自己查用。 /p p   “热分析方法选用实例”示意如表1: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/8f3c3f0a-65cc-4c71-8dd5-e22d63225641.jpg" title=" 14.jpg" / /p p   每个实验室都可以绘制一张“热分析方法选择”实例的表格。天天填写新的实例,就像每天记日记一样,持之以恒。当表格内储存量足够丰富时,就成了个人的数据库,可把它当作个人的手册查询。当你拿到一个样品或欲进行一项科学研究时,你可以从“热分析方法选择”实例的表格中检索到你所需要的热分析方法和实验条件。 /p p   某实验室绘制的“热分析方法选用”实例的表格,如表2示例。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/b92eb8d6-f844-424f-b9cd-fe4b33fa3934.jpg" title=" 15.jpg" / /p p   “热分析方法选择”和“热分析应用”是孪生的文本。“热分析方法选用”和“热分析应用”的内容是互通的。编辑“热分析应用”的表格或文本,与“热分析方法选择”相对应。 /p p style=" text-align: center "    strong 表三 热分析应用的文本格式 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/0c1dab46-ea77-47b9-8e36-0e674fbdabb1.jpg" title=" 16.jpg" / /p p   每个实验室编辑、制作“热分析方法选择”表格,各具特色,绽放选择之美。 /p p   1.3.2“热分析方法选择”的检索系统建立 /p p   热分析主要学术刊物与著作有热分析杂志、热化学学报、热分析文摘、热分析文献综述及刘振海等人的学术著作和热分析国际会议和国内的热分析专业会议的论文集。在网上和文库可搜索到更多的选择热分析方法进行科学研究的科学论文。按美国科学信息研究所的科学网站统计,每年仅就报道DSC一种技术用于结晶过程的论文就超过1100篇。 /p p   以“热分析文献综述”为例。“热分析文献综述”是从二年间发表的几千篇热分析文献中,收录其中的200篇。“热分析综述”涵盖包括热分析方法和校准、热力学、动力学、以及热分析在无机物、聚合物、含能材料药物、生物化学和生物学方面的应用。“热分析文献综述”既阐述了科学研究的内容,也涉及热分析方法的选择。 /p p   文献综述和科技论文的基本内容是:谁,研究了什么问题、选择了什么方法、得到了什么结论。将热分析文献综述和科技论文的文体转换为以“研究内容”和“热分析方法选择”为关键词的文本形式,就成为“热分析方法选用”的文本系统,如表四示例。 /p p style=" text-align: center "    strong 表四 研究报告的文本转换 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/e806a669-89d1-4099-9c64-5cb3e577b9c1.jpg" title=" 17.jpg" / /p p   “热分析方法选用”索引分类,可以按材料分类;也可以按物理转变、化学反应、热物性参数测定分类;或者按时间顺序排列。编辑数据库和检索系统的意义是能够满足研究方法选择的需要,根据研究内容,快速地选择到相应的热分析方法。 /p p   “热分析方法选择”数据库和检索系统的编辑非个人能力所能担当。应由自然科学资金资助,委托图书馆、档案馆、出版社和热分析专业学会进行。 /p p   1.3.3选择云端中“热分析”那朵云 /p p   在当今大数据时代里,云端飘浮朵朵云彩,我选择“热分析”那朵。利用云端的热分析资料,对热分析数据进行计算、解析,实现它的科学价值。 /p p   耄耋之年仰望科学的天空,浏览“云数据”,好似天真的玩童仰望令人神往的宇宙星空一样,托腮观测无边无界的边际,享受浩瀚之美! /p
  • 参加仪器信息网“热分析技术在多领域中应用进展”网络主题研讨会
    如今,热分析技术已应用于药品、食品、化妆品、纺织、航天等众多研究领域中用领域,随着该技术应用领域的日益广泛和技术不断发展创新,实际应用中,也出现了各种各样的问题。2016年8月31日,仪器信息网将举办“热分析技术在多领域应用及进展”网络主题研讨会,并邀请到中国科技大学丁延伟老师分享“常用热分析方法在实际应用中的常见问题解析”。我司应用技术高级工程师盛沈俊也将参加此次研讨会,就各机型的不同情况,举例对比,分别通过对热分析的概要、热分析技术的基本原理、热分析的应用、拓展功能----Real View这四点全方面展示日立品牌热分析仪器的魅力。 研讨会概要:名称:“热分析技术在多领域应用及进展”网络主题研讨会日期:2016年8月31日时间:14:00-17:00报名链接:http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2094 日立仪器(上海)有限公司主题概要:主题:日立热分析仪助你追踪热转变轨迹时间:15:30-16:10简介:世界万物的变化均与热息息相关,针对热分析研究,日立仪器拥有丰富的产品线,“TA7000系列”更是具有先进的基本性能及多种扩充功能,为热性能的评价提供了完美的解决方案。主讲人:盛沈俊,女,硕士,毕业于南京师范大学分析化学专业,主要研究方向:热分析。先后参与“2013年江苏省仪器平台分析测试新技术方法”“南京市开放实验室开放基金项目”等多个课题研究。为材料的热分析测试提供方法和依据并先后发表论文数篇。现任日立仪器(上海)有限公司热分析应用高级工程师,负责热分析方面应用技术研究工作。
  • 干货分享 | 热分析原理及介绍(DTA,DSC,TGA,TMA,DMA)
    药物冻干,电池爆炸;耐低温橡胶是如何在高寒环境下使用,哪种巧克力甜甜味美还不会在夏天熔化?纵观我们身边的任何物质都会经历温度变化的过程,材料随着温度变化其性质也会发生变化,影响制备工艺和使用性能,生产生活中无时无刻不都在上演着材料的“冰与火之歌”。为了对材料进行表征分析,热分析技术已经成为一种强有力不可或缺的分析手段。梅特勒托利多作为主要的热分析仪器制造商之一,将为大家详细介绍热分析技术及其应用。1 热分析技术概述物质在温度变化过程中可能发生一些物理变化(如玻璃化转变、固相转变)和化学变化(如熔融、分解、氧化、还原、交联、脱水等反应),这些物质结构方面的变化必定导致其物理性质相应的变化。因此,通过测定这些物理性质及其与温度的关系,就有可能对物质结构方面的变化作出定性和定量的分析,还可以被用来确定物质的组分及种类,测定比热容、热膨胀系数等热物性参数。图1-1 材料随温度变化发生的反应国际热分析和量热协会(ICTAC, International confederation for thermal analysis and calorimetry)于2004年对热分析提出新的定义:热分析是研究样品性质与温度间关系的一类技术。我国于2008年实施的国家标准《热分析术语》(GB/T6425-2008)中对热分析技术定义为:热分析是在程序控制温度下(和一定气氛中),测量物质的物理性质与温度或时间关系的一类技术。经过一百多年的发展,热分析技术凭借其快速、高效、低成本的优异特点,应用领域不断扩展,已逐渐成为新材料研究、产品设计和质量控制的必备的常规分析测试手段。根据测定的物理性质不同,国际热分析与量热协会ICTAC将热分析技术分为9类17种,如表1所示:表1-1 热分析技术分类在实际应用中,热分析技术还和其他分析仪器进行联用,例如红外光谱、拉曼光谱、气相色谱、质谱等分析方法,通过多种方式对物质在一定温度或时间变化过程内对材料进行结构和成分进行分析判断。2 重点热分析技术介绍2.1 差热分析(DTA, Differential thermal analysis)差热分析(DTA)是一种利用试样和参比物之间的温差与温度或时间的关系来评价试样的热效应。DTA曲线的纵坐标为试样和参比样的温度差(∆T),理论上单位应该为℃或者K。但因为记录的测量值通常为输出的电势差E,根据温度差与E的关系(公式(1)),转换因子b不是常数,而是温度T的函数,且其他传感器系统也存在类似的情况。公式(1)中,测量的温度差与热电偶输出的电势差E成正比,一些分析软件中DTA采集的信号经常为电势差的单位(μV)表示。现在DTA主要用于热重分析仪(TGA)等的同步测量,市场上已经难觅单独的DTA仪器。2.2 差示扫描量热法(DSC, Differential Scanning Calorimetry)2.2.1 DSC原理及规定差示扫描量热法(DSC)是在程序控制温度下和一定气氛中,测量输送给试样和参比物的热流速率或加热功率(差)与温度或时间关系的一类热分析技术。测量信号是被样品吸收或者放出的热流量,单位为毫瓦(mW),热流指的是单位时间内传递的热量,也就是热量交换的速率,热流越大热量交换的越快,热流越小热量交换的越慢,热流可由式(2)得到公式(2)中,∆T为试样与参比物的温度差,R_th为系统热阻,系统的热阻对于特定的坩埚、方法等是确定的。通过该公式就可以测得热流曲线,也就是DSC曲线。对DSC曲线上的峰进行积分就能够得到某个转变过程中样品吸收或者放出的热量。DSC信号的方向根据ICTA规则(∆T=Ts-Tr),规定为吸热朝下放热朝上,一般图片上标有^exo。反-ICTA(∆T=Tr-Ts)规则为吸热朝上,放热朝下,一般图片上标有^endo,不同规则的DSC曲线如图2-1所示。当样品吸收能量,这个过程被称作是吸热的,例如熔融和挥发过程。当样品放出能量,这个过程被称作是放热的,例如结晶和氧化分解过程。图2-1 DSC曲线:(a) ICTA规则,吸热向下; (b) 反-ICTA规则,吸热向上相比之下,DTA仅可以测试相变温度等温度特征点,DSC不仅可以测相变温度点,而且可以测得热量变化。DTA曲线上的放热峰和吸热峰无确定物理含义,而DSC曲线上的放热峰和吸热峰分别代表放出热量和吸收热量。通过DSC可以检测吸热或放热效应、测得峰面积(转变或反应焓值∆H)、确认所表征的峰或其他热效应所对应的温度(如玻璃化温度Tg、结晶点Tc、熔点Tm)以及测试比热容Cp,也可利用调制DSC测得潜热、显热以及可逆热流和不可逆热流,通过动力学可以计算得到活化能Ea。公式(3)中,DSC测得的总热流是由两部分组成的,一部分是由于温度升高引起的显热流,样品没有发生结构的变化;热流的第二部分是由于样品内部结构变化引起的潜热流,ΔHp表示这个反应完全发生所吸收或放出的热量。其中,C_p为样品的比热容,β为升温速率,ΔH_p为反应过程的焓变, dα/dt表示这个反应进行的程度。通常我们把没有发生反应时的热流曲线叫做DSC的基线,其实就是显热流曲线。由于物质的比热容都会随着温度的升高而增大,因此随着温度的升高DSC曲线应该向吸热方向倾斜,这个斜率就取决于样品的比热容随温度的变化率。图2-2 DSC热流曲线示意图2.2.2 DSC分类DSC分为热流式和功率补偿式,当前热流式DSC较为普遍,梅特勒托利多DSC均为热流式。热流式差示扫描量热法(Heat-flux type Differential Scanning Calorimetry, 简称热流式DSC),又称为热通量式DSC,是在按程序控制温度和一定气氛下,给样品和参比品输送相同的功率,测定样品和参比品两端的温差∆T,然后根据热流方程,将温差换算成热流差作为信号进行输出。功率补偿式DSC是在程序控温和一定气氛下,使样品与参比物的温差不变,测量输给样品和参比物功率(热流)与温度或时间的关系。热流式DSC采用单炉体,而功率补偿式DSC采用两个独立的炉体,分别对试样和参比物进行加热,并有独立的传感装置。图2-3 (a)热流式DSC和(b)功率补偿式DSC测量单元示意图2.2.3 DSC典型曲线图2-4为典型的DSC测试曲线示意图。在测试开始曲线出现了“1 启动偏移”。在该区域温度状态发生瞬时改变,有恒温变为升温,启动偏移的大小与样品热容及升温速率有关。在“3 玻璃化转变”区,试样热容增大,出现了吸热台阶。“4 冷结晶”区产生放热峰,“5 熔融”产生吸热峰,通过对峰面积的积分可以得到结晶焓和熔融焓。随着温度升高后为“6 分解”。图2-4 典型的DSC测试曲线示意图:1 初始基线漂移与样品热容成正比;2 无热效应时的DSC曲线(基线);3 无定形部分的玻璃化转变; 4 冷结晶; 5 结晶部分的熔融; 6 在空气气氛中氧化降解了解更多,请点击链接差示扫描量热仪(DSC)www.mt.com/cn/zh/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/DSC.html2.3 热重分析(TGA, Thermogravimetric Analysis)热重分析(TGA)是在一定控温程序和气氛下,测量试样质量与温度和时间之间的关系,可以获得样品质量随温度的函数。在此之前,人们使用TG作为这项技术的缩写。通过TGA可以检测样品质量的变化(增重或失重),分析质量变化台阶,以及在失重或增重曲线中确认某一台阶所对应的温度。TGA信号对温度和时间的一阶微变,表示为质量变化的速率为DTG曲线,是对热重信号的重要补充,当DTG曲线峰向上时试样质量增加,曲线峰向下试样质量会减小。热天平是热重分析仪中的重要部件,热天平具有三种不同的设计:上置式设计:天平位于炉体下方,试样支架垂直托起试样坩埚;悬挂式设计:天平位于测试炉体上方,测试坩埚放在下垂的支架上;水平式设计:天平与炉体处于同一水平位置,坩埚支架水平插入炉体。根据天平可达到的分辨率,可将天平分为半微量天平(10 μg)、微量天平(1 μg)、超微量天平(0.1 μg)。当样品以不同方式失去物质或与环境气氛发生反应时,质量发生变化,在TGA曲线上产生台阶或在DTG曲线上产生峰。典型的热重曲线如图2-5所示。在“1 挥发”区可为部分组分(水、溶剂、单体)的挥发;“2 分解”具有明显的失重台阶为聚合物的分解;“3 切换气氛”后,在“4 炭燃烧”表现为炭黑或碳纤维的燃烧台阶;“5 残留物”区质量变化微弱,主要为灰分、填料、玻璃纤维等残留。图2-5 典型的TGA测试曲线示意图:1 挥发;2 聚合物分解;3 气氛切换; 4 炭燃烧台阶; 5 残留物了解详情,请点击链接热重分析仪(TGA)www.mt.com/cn/zh/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/TGA.html2.4 热机械分析(TMA, Thermomechanical Analysis)热机械分析TMA测量样品在设定应力/负载条件,样品尺寸变化与温度变化的关系。在TMA测试中,样品受恒定的力、增加的力或调制的力;而膨胀法测量尺寸变化则是使用能实现的小载荷来测量的。TMA具有不同的形变模式如图2-6所示,依据试样尺寸和特性进行选择:膨胀模式(A):是TMA常用的测量模式。测试基于温度的膨胀系数。通常测试时探头施加一个非常小的力于样品上。压缩模式(A):这种模式下,样品受力更大。穿透模式(B):其目的在于测试样品的软化点。拉伸模式(C):薄膜和纤维套件用于进行拉伸模式测试。可以测试由于收缩或者膨胀产生的较长形变。三点弯曲模式(D):用来研究刚性样品弹性行为的理想模式溶胀模式(E):许多样品在接触液体时会产生溶胀。通过溶胀套件可以测定样品在溶胀时发生的体积或长度变化。体积膨胀(F):液体同固体一样也会发生膨胀。图2-6 TMA不同形变模式根据不同的测试模式,我们可以使用TMA检测热效应(溶胀、收缩、软化、膨胀系数的变化),确定某表征的热效应的温度、测量形变台阶高度以及测定膨胀系数。TMA的典型测试曲线示意图如图2-7所示。图2-7 典型的TGA测试曲线示意图:1 玻璃化转变温度以下的热膨胀;2 玻璃化转变温度(斜率改变);3 玻璃化转变温度以上的热膨胀;4 塑性变形了解更多信息,请点击链接热机械分析仪(TMA)www.mt.com/cn/zh/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/TMA_SDTA_1.html2.5 动态机械分析(DMA, Dynamic Mechanical Analysis)动态热机械分析(DMA)是一种测试材料机械性能和粘弹性能的重要技术,可用于热塑性树脂、热固性树脂、弹性体、陶瓷和金属等材料的研究。DMA测试在程序控温和周期性变化的应力下,测试动态模量和力学损耗与时间温度的关系。在DMA测试中,试样受到周期变化的振动应力,随之发生相应的振动相变。除了完全弹性的试样外,测得的应变都表现为滞后与施加应力的变化。这种滞后成为相位差即相角δ差。DMA仪器测量试样应力的振幅、应变的振幅以及相位差这三个物理量。图2-8 周期性的力作用下应力与应变的关系应力与应变之比称为模量,DMA分析得到的结果为复合模量M^*,复合模量由储能模量和损耗模量组成:储能模量(M^' ):试样弹性特性的反应,是试样能否完全恢复形变的尺度损耗模量(M^”):试样粘性特性的反应,是试样在形变过程中热量的消耗(损失);损耗模量大表明粘性大,阻尼强。损耗因子(tanδ):损耗模量和储能模量之比,反映的是振动吸收性,也称振动吸收因数。梅特勒托利多的DMA 1提供了六种不同的形变模式。对于特定的应用,适合的模式取决于测试需求、样品的性质和几何因子。包括以下六种测试模式:3-点弯曲模式(A):这种模式用于准确测试非常刚硬的样品,例如复合材料或热固性树脂,尤其适合于玻璃化转变温度以下的测试。单悬臂(B):这种模式非常适合于条形高刚度材料(金属或聚合物)。单悬臂模式是玻璃化转变温度以下的理想测试方法,而且是测试粉末材料损耗因子的推荐模式。双悬臂模式(C):这种模式适合于低刚度的软材料,特别是比较薄的样品,例如膜材料。拉伸(D):它是薄膜或纤维的常规形变模式。压缩(E):压缩模式用于测试泡沫、凝胶、食品以及静态(TMA)测试。剪切(F):剪切模式适合于测试软样品,例如弹性体,压敏胶,以及研究固化反应。2.6 热分析技术应用总结针对不同的材料以及想要测试的属性或热效应,所采用的热分析方法也存在差异,未得到理想的结果需要根据实际样品情况和测试需求来选择不同的热分析方法。表2-1合适的热分析技术选择作者:热分析技术应用顾问 邵艳茹参考文献J.O. Hill. For Better Thermal Analysis and Calorimetry III [M]. ICTA, 1991.热分析术语[S]. GB/T 6425-2008.陆立明. 热分析应用基础[M]. 东华大学版社.E. Ezm, M.B. Zakaria. State of the art and definitions of various thermal analysis techniques. [in] Thermal Analysis, 2021, 1-39.刘振海, 陆立明, 唐远旺. 热分析简明教程[M]. 科学出版社.UserCom, Mettler Toledo International Inc.
  • 梅特勒托利多邀您免费参加热分析网络研讨会
    会议名称:纯度的热分析测定法 会议时间:2014年03月06日14:30开始,持续约2小时 会议主讲人:李焱 现任梅特勒托利多热分析仪器部技术应用顾问,长期从事热分析仪器的应用研究工作,有丰富的实践经验,熟悉DMA、DSC、TGA、TMA等热分析仪器在各行业的应用。 会议内容简介: 差式扫描量热法(DSC)是一种应用最广泛的热分析技术,其中有机物质的纯度测定是一种被大家所熟知的方法。该方法是基于范特霍夫方程的低共熔体系熔点降低的原理。可以非常准确的测定出90~100 mol%范围内的纯度。纯度测定经常被用于化学品和制药行业,以及食品和塑料行业的添加剂检测中。 本次研讨会中,我们将会讨论有关DSC纯度测定的基本原理,并向大家介绍一些感兴趣的应用。 环境配置:只要您有电脑、外加一个耳麦就能参加。(需要进行音频交流的用户需准备麦克) 报名地址:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/936
  • 热重分析仪原理简介
    p   热重分析是在程序控温和一定气氛下,测量试样的质量与温度或时间关系的技术。使用这种技术测量的仪器就是热重分析仪(Thermogravimetric analyzer-TGA),热重分析仪也被称为热天平。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 热重分析仪基本结构 /strong /span /p p   热重分析仪的主要部件有热天平、加热炉、程序控温系统、气氛控制系统。 /p p strong 热天平 /strong /p p   热天平的主要工作原理是把电路和天平结合起来。通过程序控温仪使加热电炉按一定的升温速率升温(或恒温),当被测试样发生质量变化,光电传感器能将质量变化转化为直流电信号。此信号经测重电子放大器放大并反馈至天平动圈,产生反向电磁力矩,驱使天平梁复位。反馈形成的电位差与质量变化成正比(即可转变为样品的质量变化)。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/d515a402-1f0a-4ba4-a12b-725e7f252d60.jpg" title=" 电压式微量热天平.png" / /p p style=" text-align: center " strong 电压式微量热天平 /strong /p p   热天平结构图如图所示。电压式微量热天平采用的是差动变压器法,即零位法。用光学方法测定天平梁的倾斜度,以此信号调整安装在天平系统和磁场中线圈的电流,线圈转动恢复天平梁的倾斜。另一解释为:当被测物发生质量变化时,光传感器能将质量变化转化为直流电信号,此信号经测重放大器放大后反馈至天平动圈,产生反向电磁力矩,驱使天平复位。反馈形成的电位差与质量变化成正比,即样品的质量变化可转变电压信号。 /p p   TGA有三种热天平结构设计:上置式(上皿式)设计—天平置于测试炉体下方,试样支架垂直托起试样坩埚 悬挂式(下皿式)设计—天平位于测试炉体上方,坩埚置于下垂支架上 水平式设计—天平与测试炉体处于同一水平面,坩埚支架水平插入炉体。 /p p   天平与炉体间须采取结构性措施防止天平受到来自炉体热辐射和腐蚀性物质的影响。 /p p   天平的主要性能指标有分辨率和量程。根据分辨率不同可分为半微量天平(10μg)、微量天平(1μg)和超微量天平(0.1μg)。 /p p   物体的质量是物体中物质量的量度,而物体的重量是质量乘以重力加速度所得的力,TGA测量的是转换成质量的力。由于气体的密度会随炉体温度的变化而变化,需要对测试过程中试样、坩埚及支架受到的浮力进行修正。可采用相同的测试程序进行空白样测试以得到空白曲线,再由试样测试曲线减去空白曲线即可进行浮力修正。 /p p strong 加热炉 /strong /p p   炉体包括炉管、炉盖、炉体加热器和隔离护套。炉体加热器位于炉管表面的凹槽中。炉管的内径根据炉子的类型而有所不同。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/08fe3180-30d2-44d5-9bb8-da75c8e8d5a6.jpg" title=" 炉体结构图.png" / /p p style=" text-align: center " strong 炉体结构图 /strong /p p   1-气体出口活塞,石英玻璃 2-前部护套,氧化铝 3-压缩弹簧,不锈钢 4-后部护套,氧化铝 5-炉盖,氧化铝 6-样品盘,铂/铑 7-炉温传感器,R型热电偶 8-样品温度传感器,R型热电偶 9-冷却循环连接夹套,镀镍黄铜 10-炉体法兰冷却连接,镀镍黄铜 11-炉休法兰,加工过的铝 12-转向齿条,不锈钢 13-收集盘,加工过的铝 14-开启样品室的炉子马达 15-真空和吹扫气体入口,不锈钢 16.保护性气体入口,不锈钢 17-用螺丝调节的夹子,铝 18-冷却夹套,加工过的铝 19-反射管,镍 20-隔离护套,氧化铝 21-炉子加热器,坎萨尔斯铬铝电热丝Al通路 22-炉管,氧化铝 23-反应性气体导管,氧化铝 24-样品支架,氧化铝 25-炉体天平室垫圈,氟橡胶 26-隔板、挡板,不锈钢 27-炉子与天平室间的垫圈,硅橡胶 28-反应性气体入口,不锈钢 29-天平室,加工过的铝 /p p strong 程序控温系统 /strong /p p   加热炉温度增加的速率受温度程序的控制,其程序控制器能够在不同的温度范围内进行线性温度控制,如果升温速率是非线性的将会影响到TGA曲线。程序控制器的另一特点是,对于线性输送电压和周围温度变化必须是稳定的,并能够与不同类型的热电偶相匹配。 /p p   当输入测试条件之后(温度起止范围和升温速率),温度控制系统会按照所设置的条件程序升温,准确执行发出的指令。所有这些控温程序均由热电偶传感器(简称热电偶)执行,热电偶分为样品温度热电偶和加热炉温度热电偶。样品温度热电偶位于样品盘下方,保证样品离样品温度测量点较近,温度误差小 加热炉温度热电偶测量炉温并控制加热炉电源,其位于炉管的表面。 /p p strong 气氛控制系统 /strong /p p   气氛控制系统分为两路,一路是反应气体,经由反应性气体毛细管导入到样品池附近,并随样品一起进入炉腔,使样品的整个测试过程一直处于某种气氛的保护中。通入的气体由样品而定,有的样品需要通入参与反应的气体,而有的则需要不参加反应的惰性气体 另一路是对天平的保护气体,通入并对天平室内进行吹扫,防止样品加热时发生化学反应而放出的腐蚀性气体进入天平室,这样既可以使天平得到很高的精度,也可以延长热天平的使用寿命。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 热重分析仪测量曲线 /strong /span /p p   热重分析仪测量得到的曲线有TGA曲线与DTG曲线。TGA曲线是质量对温度或时间绘制的曲线,DTG曲线是TGA曲线对温度或时间的一阶微商曲线,体现了质量随温度或时间的变化速率。 /p p   当试样随温度变化失去所含物质或与一定气氛中气体进行反应时,质量发生变化,反应在TGA曲线上可观察到台阶,在DTG曲线上可观察到峰。 /p p   引起试样质量变化的效应有:挥发性组分的蒸发,干燥,气体、水分和其他挥发性物质的吸附与解吸,结晶水的失去 在空气或氧气中的氧化反应 在惰性气氛中发生热分解,并伴随有气体产生 试样与气氛的非均相反应。 /p p   同步热分析仪STA将热重分析仪TGA与差示扫描量热仪DSC或差热分析仪DTA整合在一起。可在热重分析的同时进行DSC或DTA信号的测量,但灵敏度往往不及单独的DSC,限制了其应用。 /p
  • 扫描电子显微镜的基本原理(一)
    自1965年第一台商品扫描电镜问世以来,经过50多年的不断改进,扫描电镜的分辨率已经大大提高,而且大多数扫描电镜都能与X射线能谱仪等附件或探测器组合,成为一种多功能的电子显微仪器。在材料领域中,扫描电镜发挥着极其重要的作用,可广泛应用于各种材料的形态结构、界面状况、损伤机制及材料性能预测等方面的研究,如图1所示的纳克微束FE-1050系列场发射扫描电镜。图1 纳克微束FE-1050系列场发射扫描电镜场发射扫描电镜组成结构可分为镜体和电源电路系统两部分,镜体部分由电子光学系统、信号收集和显示系统以及真空系统组成,电源电路系统为单一结构组成。1.1 电子光学系统由电子枪、电磁透镜、扫描线圈和样品室等部件组成。其作用是用来获得扫描电子束,作为信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。1.2 信号收集检测样品在入射电子作用下产生的物理信号,然后经视频放大作为显像系统的调制信号。1.3 真空系统真空系统的作用是为保证电子光学系统正常工作,防止样品污染,一般情况下要求保持10-4~10-5Torr的真空度。1.4 电源电路系统电源系统由稳压,稳流及相应的安全保护电路所组成,其作用是提供扫描电镜各部分所需的电源。图3为扫描电镜工作原理示意图,具体如下:由电子枪发出的电子束在加速电压(通常200V~30kV)的作用下,经过两三个电磁透镜组成的电子光学系统,电子束被聚成纳米尺度的束斑聚焦到试样表面。与显示器扫描同步的电子光学镜筒中的扫描线圈控制电子束,在试样表面的微小区域内进行逐点逐行扫描。由于高能电子束与试样相互作用,从试样中发射出各种信号(如二次电子、背散射电子、X射线、俄歇电子、阴极荧光、吸收电子等)。图3 扫描电镜的工作原理示意图这些信号被相应的探测器接收,经过放大器、调制解调器处理后,在显示器相应位置显示不同的亮度,形成符合人类观察习惯的二维形貌图像或者其他可以理解的反差机制图像。由于图像显示器的像素尺寸远大于电子束斑尺寸,且显示器的像素尺寸小于等于人类肉眼通常的分辨率,显示器上的图像相当于把试样上相应的微小区域进行了放大,而显示图像有效放大倍数的限度取决于扫描电镜分辨率的水平。早期输出模拟图像主要采用高分辨照相管,用单反相机直接逐点记录在胶片上,然后冲洗相片。随着电子技术和计算机技术的发展,如今扫描电镜的成像实现了数字化图像,模拟图像电镜已经被数字电镜取代。扫描电镜是科技领域应用最多的微观组织和表面形貌观察设备,了解扫描电镜的工作原理及其应用方法,有助于在科学研究中利用好扫描电镜这个工具,对样品进行全面细致的研究。转载文章均出于非盈利性的教育和科研目的,如稿件涉及版权等问题,请立即联系我们,我们会予以更改或删除相关文章,保证您的权益。
  • 2009年耐驰热分析高级培训会——苏州站
    尊敬的客户,您好! 随着耐驰热分析仪器在各高校、科研院所和企业的普及率不断提高,帮助用户更合理﹑更充分地利用手里的仪器成为耐驰应用技术支持人员义不容辞的责任。为了更好的服务于我们的用户,2009年度耐驰采取一系列形式多样且行之有效的培训方式,其中在三十多个城市和地区举行的小型高级培训会就是其中一大亮点,我们来到用户身边,提供一对一的服务,为用户解决实际问题。您也可以通过耐驰公司网站www.netzsch.cn或联系耐驰相关人员了解更多培训信息。 耐驰公司将于2009年6月15日(星期一)于苏州举办DSC培训会,提供一个技术交流与合作的平台。我们诚挚邀请您能够参加本次培训会! 会议具体内容如下: 一﹑时间:2009年6月15日(星期一) 二﹑地点:苏州PPG 苏州新区向阳路66号 三﹑日程安排: 上午 9:00~12:00 相关仪器基本原理与热分析方法的应用 下午 13:00~16:00 相关仪器的操作﹑维护与相关方法的数据分析 16:00~17:00 讨论 如果您希望来参加本次培训,请填写下列表格,以传真或E-mail的形式回复,以便我们进行工作安排。 电话: 021-58663128-636 13795259077 传 真:021-58663120 E-mail:minghua.zhang@nsi.netzsch.cn 联系人:张明华 …………………………………………………………………………………………………………………………………………… 耐驰科学仪器商贸(上海)有限公司 客户培训申请表 客户单位:_____________________________________________________________________ 地 址:_____________________________________ 邮 编:_________________ 联系电话:_____________________________________ 传 真:_________________ 电子邮件:_____________________________________ 参加培训人员:___________________________________________ 培训仪器:□ STA449F1 □ STA409F3 □ DSC204F1 □ DSC200PC □ DSC200F3 □ TG209F1 □ DIL402PC □ LFA447 □ HFM436 □ DMA242C □ MS联用 □ 动力学软件 □ 其他高级软件:_______________ 应用方向:_____________________________________________________________________
  • 2009年耐驰热分析高级培训会---宁波站
    尊敬的客户,您好! 随着耐驰热分析仪器在各高校、科研院所和企业的普及率不断提高,帮助用户更合理﹑更充分地利用手里的仪器成为耐驰应用技术支持人员义不容辞的责任。为了更好的服务于我们的用户,2009年度耐驰采取一系列形式多样且行之有效的培训方式,其中在三十多个城市和地区举行的小型高级培训会就是其中一大亮点,我们来到用户身边,提供一对一的服务,为用户解决实际问题。您也可以通过耐驰公司网站www.netzsch.cn或联系耐驰相关人员了解更多培训信息。 耐驰公司将于2009年3月18日(星期三)~3月19日(星期四)于宁波举办DSC-TG培训会,提供一个技术交流与合作的平台。我们诚挚邀请您能够参加本次培训会! 会议具体内容如下: 一﹑时间:2009年3月18日(星期三)~3月19日(星期四) 二﹑地点:宁波大学曹光彪大楼217房间 三﹑日程安排: 第一天:下午 13:00~17:00 相关仪器基本原理与热分析方法的应用 第二天:上午 9:00~11:30 相关仪器的操作﹑维护与相关方法的数据分析 下午 12:30~15:00 讨论 如果您希望来参加本次培训,请填写下列表格,以传真或E-mail的形式回复,以便我们进行工作安排。 电话: 021-58663128-637 传 真:021-58663120 E-mail:hong.zhang@nsi.netzsch.cn 联系人:张红 …………………………………………………………………………………………………………………………………………… 耐驰科学仪器商贸(上海)有限公司 应用实验室 客户培训申请表 客户单位:_____________________________________________________________________ 地 址:_____________________________________ 邮 编:_________________ 联系电话:_____________________________________ 传 真:_________________ 电子邮件:_____________________________________ 参加培训人员:___________________________________________ 培训仪器:□ STA449F1 □ STA409F3 □ DSC204F1 □ DSC200PC □ DSC200F3 □ TG209F1 □ DIL402PC □ LFA447 □ HFM436 □ DMA242C □ MS联用 □ 动力学软件 □ 其他高级软件:_______________ 应用方向:_____________________________________________________________________
  • 浅谈热分析技术与同步热分析仪的应用
    p span style=" color: rgb(0, 176, 240) font-size: 20px " strong 浅谈热分析技术 /strong /span /p p   热分析(Thermal Analysis),顾名思义,可以解释为以热进行分析的一种方法。 /p p   在目前热分析可以达到的温度范围内,从-150℃至1500℃(或2400℃),任何两种物质的所有物理、化学性质是不会完全相同的。因此,热分析的各种曲线具有物质“指纹图”的性质。 /p p   通俗来说,热分析是通过测定物质加热或冷却过程中物理性质(目前主要是重量和能量)的变化来研究物质性质及其变化,或者对物质进行分析鉴别的一种技术。 /p p   1977年在日本京都召开的国际热分析协会(ICTA)第七次会议上,给热分析下了如下定义:即热分析是在程序控制温度下,测量物质的物理性质与温度的关系的技术。 /p p style=" text-align: center " 数学表达式为:P=f(T) /p p   其中:P代表物质的一种物理量 T为物质温度。 /p p   所谓程序控制温度一般是指线性升温或线性降温,当然也包括恒温、循环或非线性升温、降温。也就是把温度看作是时间的函数:T=Φ(t),其中t是时间,则P=f(T或t)。 /p p span style=" color: rgb(0, 176, 240) font-size: 20px " strong 热分析的起源和发展 /strong /span /p p   1899年英国罗伯特-奥斯汀(Roberts-Austen)第一次使用了差示热电偶和参比物,大大提高了测定的灵敏度。正式发明了差热分析(DTA)技术。1915年日本东北大学本多光太郎,在分析天平的基础上研发了“热天平”即热重法(TG),后来法国人也研发了热天平技术。 /p p   1964年美国瓦特逊(Watson)和奥尼尔(O’Neill)在DTA技术的基础上发明了差示扫描量热法(DSC),美国PE公司最先生产了差示扫描量热仪,为热分析热量的定量作出了贡献。 /p p   1965年英国麦肯才(Mackinzie)和瑞德弗(Redfern)等人发起,在苏格兰亚伯丁召开了第一次国际热分析大会,并成立了国际热分析协会。 /p p span style=" font-size: 20px " strong span style=" color: rgb(0, 176, 240) " 热分析研究内容、方法及应用 /span /strong /span /p p strong 热分析方法 /strong /p p style=" text-align: left "   通过对物质加热、冷却等反应实验,热分析可得到如下研究内容: br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/90b4db0f-6c3a-4927-94b6-92d8ef1f996e.jpg" title=" 热分析研究内容.png" alt=" 热分析研究内容.png" / /p p   应用最广泛的方法是 span style=" color: rgb(255, 0, 0) " 热重法(TGA) /span 和 span style=" color: rgb(255, 0, 0) " 差热分析法(DTA) /span ,其次是 span style=" color: rgb(255, 0, 0) " 差示扫描量热法(DSC) /span ,这三者构成了热分析的三大支柱,占到热分析总应用的 span style=" color: rgb(255, 0, 0) " 75% /span 以上。 /p p   热分析只能给出试样的重量变化及吸热或放热情况,解释曲线常常是困难的,特别是对多组分试样作的热分析曲线尤其困难。目前,解释曲线最现实的办法就是把热分析与其它仪器串联或间歇联用,常用气相色谱仪、质谱仪、红外光谱仪、X射线衍射仪等对逸出气体和固体残留物进行连续的或间断的,在线的或离线的分析,从而推断出反应机理。 /p p strong 热分析仪的应用 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 568" tbody tr class=" firstRow" td width=" 568" colspan=" 5" valign=" top" style=" border-width: 1px border-style: solid border-color: windowtext padding: 0px 7px " p style=" line-height: 125% text-indent: 0em " span style=" font-family:宋体" TGA /span span style=" font-family:宋体" (热重分析仪) span & nbsp & nbsp & nbsp & nbsp DTA /span (差热分析仪) span & nbsp & nbsp & nbsp & nbsp DSC /span (示差扫描量热仪) /span /p p style=" line-height: 125% text-indent: 0em " span style=" font-family:宋体" & nbsp & nbsp & nbsp & nbsp TMA/DMA /span span style=" font-family:宋体" (热机械分析仪) span & nbsp & nbsp & nbsp & nbsp & nbsp EGA /span (复合分析联用) /span /p /td /tr tr td width=" 114" valign=" top" style=" border-right: 1px solid windowtext border-bottom: 1px solid windowtext border-left: 1px solid windowtext border-top: none padding: 0px 7px " p style=" line-height:125%" span style=" font-family:宋体" 橡胶、高分子 /span /p p style=" line-height:125%" span style=" font-family:宋体" 塑料、油墨 /span /p p style=" line-height:125%" span style=" font-family:宋体" 纤维、涂料 /span /p p style=" line-height:125%" span style=" font-family:宋体" 染料、粘着剂 /span /p /td td width=" 114" valign=" top" style=" border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px " p style=" line-height:125%" span style=" font-family:宋体" 食品 /span /p p style=" line-height:125%" span style=" font-family:宋体" 生物体、液晶 /span /p p style=" line-height:125%" span style=" font-family:宋体" 油脂、肥皂 /span /p p style=" line-height:125%" span style=" font-family:宋体" 洗涤剂 /span /p /td td width=" 119" valign=" top" style=" border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px " p style=" line-height:125%" span style=" font-family:宋体" 医药、香料 /span /p p style=" line-height:125%" span style=" font-family:宋体" 化妆品 /span /p p style=" line-height:125%" span style=" font-family:宋体" 有机 span / /span 无机药品 /span /p p style=" line-height:125%" span style=" font-family:宋体" 病理检测 /span /p /td td width=" 108" valign=" top" style=" border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px " p style=" line-height:125%" span style=" font-family:宋体" 电子材料 /span /p p style=" line-height:125%" span style=" font-family:宋体" 木材、造纸 /span /p p style=" line-height:125%" span style=" font-family:宋体" 建筑材料 /span /p p style=" line-height:125%" span style=" font-family:宋体" 工业废弃物 /span /p /td td width=" 114" valign=" top" style=" border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px " p style=" line-height:125%" span style=" font-family:宋体" 冶金、矿物 /span /p p style=" line-height:125%" span style=" font-family:宋体" 玻璃、电池 /span /p p style=" line-height:125%" span style=" font-family:宋体" 陶瓷、黏土 /span /p p style=" line-height:125%" span style=" font-family:宋体" 纺织、石油 /span /p /td /tr /tbody /table p   热分析具有试样需求量少、方法灵敏、快速,在较短的时间内可获得需要复杂技术或长期研究才能得到的各种信息。 /p p   热分析仪已成为我国现阶段部分行业重要的质控分析方法: /p p   ①金行业里铁合金、保护渣检验等生产前期原料控制过程中,热分析已列为控制最终产品质量的重要分析方法之一 /p p   ②在我国申报新药中,热分析已列为控制药品质量的重要分析方法之一 /p p   ③在煤炭/焦碳行业,热分析已成为测定产品品级的重要分析手段 /p p   ④陶瓷行业的主要原料检测仪器。 /p p span style=" color: rgb(0, 176, 240) font-size: 20px " strong 恒久高温综合热分析仪器简介 /strong /span /p p   HCT-4综合热分析仪是北京恒久实验设备有限公司根据国际热分析协会制定的热重分析法与差热分析法为理论标准,结合国际技术发展情况实现全部自主研发、生产,拥有自主知识产权的国内先进的热重法与差热法综合热分析仪器。该仪器具有温度高,恒温时间长,重复性高等特点。 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201809/uepic/8fb6f84f-33a3-4142-8486-70c3f1e68ab6.jpg" title=" HCT-4综合热分析仪.jpg" alt=" HCT-4综合热分析仪.jpg" width=" 400" height=" 316" border=" 0" vspace=" 0" style=" width: 400px height: 316px " / br/ strong span 恒久HCT-4综合热分析仪 /span /strong /p p    strong 差热测量系统: /strong 采用哑铃型平板式差热电偶,它检测到的微伏级差热信号送入差热放大器进行放大。差热放大器为直流放大器,它将微伏级的差热信号放大到0-5伏,送入计算机进行测量采样。 /p p    strong 热重测量系统:采 /strong 用上皿、不等臂、吊带式天平、光电传感器,带有微分、积分校正的测量放大器,电磁式平衡线圈以及电调零线圈等。当天平因试样质量变化而出现微小倾斜时,光电传感器就产生一个相应极性的信号,送到测重放大器,测重放大器输出0-5伏信号,经过A/D转换,送入计算机进行绘图处理。 /p p    strong 温度测量系统: /strong 测温热电偶输出的热电势,先经过热电偶冷端补偿器,补偿器的热敏电阻装在天平主机内。经过冷端补偿的测温电偶热电势由温度放大器进行放大,送入计算机,计算机将自动计算出此热电势的毫伏值。 /p p   HJ热分析工具软件使用微量样品一次采集即可同步得到温度、热重和差热分析曲线,使采集曲线对应性更好,有助于分析辨别物质热效应机理。对TG曲线进行一次微分计算可得到热重微分曲线(DTG曲线),能更清楚地区分相继发生的热重变化反应,精确提供起始反应温度、最大反应速率温度和反应终止温度,方便地为反应动力学计算提供反应速率数据,精确地进行定量分析。 /p p   HCT系列热分析仪器应用范围涉及无机物、有机物、高分子化合物、冶金、地质、电器及电子用品、陶瓷、生物及医学、石油化工、轻工、纺织、农林等领域应用于物质的鉴定、热力学研究、动力学研究,结构理化性能关系的研究。广泛应用于科研所、设计院、高等院校等专业实验室、及应用在化工/安全/矿业等生产检测部门。 /p p style=" text-align: right " strong (供稿:北京恒久) /strong /p
  • 2009年耐驰热分析高级培训会——昆明站
    尊敬的客户,您好!   随着耐驰热分析仪器在各高校、科研院所和企业的普及率不断提高,帮助用户更合理﹑更充分地利用手里的仪器成为耐驰应用技术支持人员义不容辞的责任。为了更好的服务于我们的用户,2009年度耐驰采取一系列形式多样且行之有效的培训方式,其中在三十多个城市和地区举行的小型高级培训会就是其中一大亮点,我们来到用户身边,提供一对一的服务,为用户解决实际问题。您也可以通过耐驰公司网站www.netzsch.cn或联系耐驰相关人员了解更多培训信息。   耐驰公司将于2009年5月26日(星期二)于昆明举办STA、DSC培训会,提供一个技术交流与合作的平台。我们诚挚邀请您能够参加本次培训会!   会议具体内容如下:   一﹑时间:2009年5月26日(星期二)   二﹑地点:昆明理工大学材料与冶金工程学院材冶楼二楼会议室   三﹑日程安排:   上午 9:00~12:00 相关仪器基本原理与热分析方法的应用   下午 13:00~16:00 相关仪器的操作﹑维护与相关方法的数据分析   16:00~17:00 讨论   如果您希望来参加本次培训,请填写下列表格,以传真或E-mail的形式回复,以便我们进行工作安排。   电话: 021-58663128-637 传 真:021-58663120   E-mail:hong.zhang@nsi.netzsch.cn 联系人:张红 ………………………………………………………………………………………………………………………耐驰科学仪器商贸(上海)有限公司 应用实验室 客户培训申请表 客户单位:________________________________________________________________地 址:_____________________________________ 邮 编:_________________ 联系电话:_____________________________________ 传 真:_________________ 电子邮件:_____________________________________ 参加培训人员:___________________________________________ 培训仪器:□ STA449F1 □ STA409F3 □ DSC204F1 □ DSC200PC □ DSC200F3 □ TG209F1 □ DIL402PC □ LFA447 □ HFM436 □ DMA242C □ MS联用 □ 动力学软件 □ 其他高级软件:_______________ 应用方向:_________________________________________________________________
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制