当前位置: 仪器信息网 > 行业主题 > >

拉曼光谱分析仪的原理

仪器信息网拉曼光谱分析仪的原理专题为您提供2024年最新拉曼光谱分析仪的原理价格报价、厂家品牌的相关信息, 包括拉曼光谱分析仪的原理参数、型号等,不管是国产,还是进口品牌的拉曼光谱分析仪的原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合拉曼光谱分析仪的原理相关的耗材配件、试剂标物,还有拉曼光谱分析仪的原理相关的最新资讯、资料,以及拉曼光谱分析仪的原理相关的解决方案。

拉曼光谱分析仪的原理相关的论坛

  • 拉曼光谱分析仪是什么设备

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=16px]拉曼光谱分析仪是什么设备,拉曼光谱分析仪是一款专门针对现场快速检测的便携式设备。它基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析,以得到分子振动、转动方面的信息,并应用于分子结构研究的一种分析方法。拉曼光谱分析仪主要工作原理包括使用高强度、单色的激光作为光源,通过散射装置使激光束聚焦并由待测样品散射,然后通过光谱仪分离频率差的散射光并测量其强度,最后通过探测器测量散射光的强度,并经过数据分析确定样品的分子结构、化学成分和其他物理特性。拉曼光谱分析仪在多个领域都有应用,包括食品安全快速检测、科研院所和高等院校的物理和化学实验室、生物及医学领域等光学方面的物质成分判定与确认,以及刑侦及珠宝行业进行毒品的检测和宝石的鉴定等。此外,它也是一种用于能源科学技术领域的分析仪器。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405161012000198_1664_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 世界首款激光诱导击穿-拉曼一体化光谱分析仪,你了解吗?

    日前,由四川大学生命科学学院分析仪器研究中心段忆翔教授作为项目负责人,牵头承担的国家重大科学仪器设备开发专项又取得最新进展—“激光诱导击穿-拉曼光谱分析仪(LIBRAS)”首次亮相于2014年12月20日-21日的“激光光谱分析前沿技术国际研讨会”。  继2014年3月份在第九届中国西部国际科学仪器展览会成功展出作为国内自主研发的首例便携式激光诱导击穿光谱仪(LIBS)之后,该项目团队再接再厉,与各参研兄弟单位联合攻坚,将用于元素测量的LIBS技术与用于分子结构测量的拉曼(Raman)技术有机结合,成功研制出世界上首款风冷型高性能激光诱导击穿-拉曼一体化的光谱分析仪,并将其命名为LIBRAS(Laser Induced Breakdown Raman Spectroscopy)。该仪器可用于待分析样品的原子光谱与分子光谱的原位同时分析测量,在获得同一微区位置元素组成信息的同时可以得到分子结构的相关信息,为进一步了解物质结构的微观世界提供了强有力的工具。该仪器作为国家重大科学仪器设备开发专项的自主研发成果,不仅填补了国内技术和行业的两项空白,更一举填补了风冷型高能激光系统的世界空白。目前市场上能够同时获取原子和分子信息的测量仪器十分有限,LIBRAS仪器的成功研制将进一步引领科学仪器的发展方向。http://bimg.instrument.com.cn/show/NewsImags/images/20141224112321.jpghttp://bimg.instrument.com.cn/show/NewsImags/images/20141224112337.jpg  LIBRAS仪器实现了激光诱导击穿光谱与拉曼光谱联用技术从理论方法到产品实践的跨越,创造性地将常规联用技术中的激光单脉冲能量进行了数量级的提升。该仪器是世界首款整机系统高度集成且无需水冷装置的多功能联用仪器。而且,仪器的体积小,体重轻,结构紧凑,性能参数卓越。LIBRAS仪器能够更好地服务于地质、生物医学及环境污染监测等多个领域,为相关产业提供有效的原位快速分析新装备,降低分析成本,提高生产效率,彰显了该仪器广阔的市场前景及应用空间。这一成果也标志着我国激光光谱仪器自主研制能力的快速提升。

  • 纺织纤维拉曼光谱定性分析法

    摘要:针对当前纤维定性鉴别方法存在的不足,采用拉曼光谱分析法定性鉴别。通过对纺织纤维原始拉曼谱图的特性分析,经过光谱预处理得到信噪比更高的标准拉曼谱图,建立了拉曼谱图特征表数据库,实现了纺织纤维的定性鉴别。实验结果表明:拉曼光谱定性分析法可快速定性鉴别纺织纤维,尤其适合于合成纤维及其混纺织物,对环境温湿度无特殊要求,样品无需烘干处理及制样,具有简便、快速和环保的优点,含荧光的染料或部分黑色染料以及纤维熔点是影响拉曼光谱法定性分析的主要因素。 关键词:拉曼光谱;特征表;纺织纤维;合成纤维;定性分析 目前纺织纤维定性检测方法有显微镜观察法、燃烧法、化学溶解法、熔点试验法、红外光谱分析法等。这些方法都有一定的局限性和缺点。显微镜观察法和燃烧法对定性鉴别织物有一定的局限性,只能鉴别天然纤维或合成纤维大类。化学溶解法虽然能够鉴别合成纤维具体品种及与天然纤维的混纺产品,但使用的有机溶剂如苯酚、二甲基甲酰胺等,不仅对检测人员身体健康有影响,存在易燃易爆的危险,而且还严重污染环境。红外吸收光谱法虽然能较准确地定性鉴别纺织纤维,但是红外光谱分析仪对测试环境温湿度要求相当高,样品需进行干燥预处理,样品制作很麻烦,检测周期较长,不能满足快速检测的要求。 在拉曼光谱分析纺织纤维结构方面,近年的研究集中于以下几个方面:复合材料的界面和基体结构的测定;再生蚕丝制备过程中,分子链规整度和取向度变化的测定;丝素经酶处理后,高分子结构的变化研究以及羊绒和羊毛分子结构研究。而在纤维成分分析方面有如下研究:鉴别天然绿色棉和染色棉;研究聚丙烯、羊毛、聚酯和一些天然纤维的鉴别方法;对染色纤维中染料的分析以及比较红外光谱与拉曼光谱对染色纤维区分的效果。可见,国内外学者虽然对拉曼光谱应用于纤维分析作了大量研究,但是还没有学者提出拉曼光谱定性检测纺织纤维的系统方法。本文旨在通过分析纺织纤维拉曼光谱的特性及影响拉曼光谱分析纤维的因素,提出一套拉曼光谱定性分析纺织纤维的系统方法。

  • 谁有生产,开发拉曼分析仪的经验?

    现在我们有一个小团队(有源光学1人,无源光学1人,计算机硬件1人,软件1人),现在我们想开发出一款拉曼光谱分析仪器,希望找一个有实际开发和生产的经验的人提供技术指导,报酬好说,兼职,不会耽误你太多时间。

  • 激光拉曼光谱原理简单介绍

    激光拉曼光谱,化学通用分析仪器,由激光光源、样品室、单色仪和光电检测器四部分组成,在地学领域主要用于鉴定矿物和测定流体包裹体的化学成分。其空间分辨率达1微米,并可作原位测定。学科:岩矿分析与鉴定  词目:激光拉曼光谱  英文:laserRamanspectroscopy  介绍:拉曼光谱是激发光子与物质分子发生非弹性碰撞后,频率发生改变的散射光谱,光子频率的改变称为拉曼位移,它是对物质进行定性分析的依据。拉曼光谱是拉曼(C.V.Raman)于1928年发现的。早期的拉曼光谱采用汞弧灯作光源激发样品分子,自20世纪60年代起,采用亮度高、单色性好、定向性高的激光作激发光源,称为激光拉曼光谱。拉曼光谱仪由激光光源、样品室、单色仪和光电检测器四部分组成,在地学领域主要用于鉴定矿物和测定流体包裹体的化学成分,如H2、O2、N2、CO2、CO、H2S、SO2、CH4、C2H6等,其空间分辨率达1微米,并可作原位测定。雷尼绍公司在1992年推出的RM系列激光拉曼光谱仪,在拉曼光谱领域开拓了一个新纪元。因此,于1993年获得查尔斯王子科学发明奖,1995年获得英国女皇技术奖和最佳科学仪器制造商奖。雷尼绍公司是通过了ISO9001质量认证的单位。雷尼绍激光拉曼光谱仪以其配置灵活性,高灵敏度及可靠性,成为用户的首选设备。  2003年,雷尼绍公司推出了配置更加灵活,使用更加简单,自动化程度更高的InVia系列拉曼光谱仪。用户可根据自己的需求选择不同的功能模块,及相应的自动化程度。inVia系列显微激光拉曼光谱仪的最高配置-inViaReflex提供上述包括全自动化的所有功能;其它的inVia系统随时可以逐步升级至inViaReflex。所有的inVia拉曼系统把具有极高的灵敏度作为标准,将配置灵活和高灵敏度集中于同一套拉曼谱仪上。  有多种附件:高精度三维自动平台,逐点扫描成像。大样品附件、高灵敏度光纤探头、变温及高压等附件。  有多种探测器:可选紫外或红外增强CCD,电子冷却,具有最佳分辨本领和最佳图像质量。可选第二探测器,PL测量扩展到1.7微米。  与其它仪器连用:可扩展为最新的拉曼和红外一体化的原位检测Raman/IR系统,与扫描电镜连用的SEM/Raman,与原子力/近场连用的AFM/NSOM/Raman。

  • 小身材, 大智慧 赛默飞拉曼、红外“二合一”Gemin手持分析仪问世

    小身材, 大智慧 赛默飞拉曼、红外“二合一”Gemin手持分析仪问世

    现场应急人员在面对未知化学物质时,会面临一些要立即解决的挑战,其中就包括选择最适合的技术来评估当前事态。目前,用于未知固体和液体识别的两种应用最广泛的技术分别是拉曼和红外光谱法。  物质对各项技术的反应程度随其独特的分子结构而定。某些物质对红外光谱分析反应明显,而另一些则可能更适合采用拉曼光谱法。所以,红外光谱和拉曼光谱一起使用时,可提供更广泛的未知物质识别范围。然而,也造成了广大用户经常要花费精力去选择是红外、还是拉曼,或者必须购买、携带两台仪器。如今,这种情况可以得到解决了:在2015年3月初的Pittcon上,赛默飞推出了将红外光谱和拉曼光谱“合二为一”的分析仪——Gemini,Gemini分析仪是世界上第一台将拉曼光谱和红外光谱技术结合到一起的手持式分析仪。http://img1.17img.cn/17img/old/newsimags/images/201542915248.jpg  据悉,这款红外光谱和拉曼光谱“合二为一”的Gemini分析仪即将在中国推出,您对这款产品有什么样的期待?

  • 拉曼光谱的分析方向及优点

    拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源与分子的振动和转动。拉曼光谱的分析方向有:定性分析:不同的物质具有不同的特征光谱,因此可以通过光谱进行定性分析。结构分析:对光谱谱带的分析,又是进行物质结构分析的基础。定量分析:根据物质对光谱的吸光度的特点,可以对物质的量有很好的分析能力。拉曼光谱用于分析的优点拉曼光谱的分析方法不需要对样品进行前处理,也没有样品的制备过程,避免了一些误差的产生,并且在分析过程中操作简便,测定时间短,灵敏度高等优点。

  • 拉曼光谱技术的原理及应用研究

    拉曼光谱技术的原理及应用研究

    [b][font=宋体]第1章 [/font][b][font=宋体]拉曼光谱发展历史[/font][/b][/b][font='Times New Roman']1928[font=宋体]年印度科学家拉曼实验发现[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]单色入射光透射到物质中的散射光包含与入射光频率不同的光,即拉曼散射。[/font][/font][font=宋体]他也[/font][font='Times New Roman'][font=宋体]因此获得诺贝尔奖。[/font][/font][font=宋体]但拉曼效应很弱,且当时[/font][font='Times New Roman'][font=宋体]散射光强度低[/font][/font][font=宋体],使得以拉曼效应为基础的拉曼光谱法[/font][font='Times New Roman'][font=宋体]经历[/font][/font][font=宋体]了[/font][font='Times New Roman']30[font=宋体]年的应用发展[/font][/font][font=宋体]严重[/font][font='Times New Roman'][font=宋体]限制期。直到[/font]1960[font=宋体]年后,激光技术的[/font][/font][font=宋体]引入[/font][font='Times New Roman'][font=宋体],拉曼光谱仪以激光作为光源,光的单色性和强度大大提高,[/font][/font][font=宋体]拉[/font][font='Times New Roman'][font=宋体]曼光谱技术才得以迅速发展。[/font][/font][font=宋体] [/font][b][font=宋体]第2章 [/font][b][font=宋体]拉曼光谱原理[/font][/b][/b][font='Times New Roman'][font=宋体]用波长比试样粒径小得多的单色光照射试样[/font][/font][font=宋体]时,大部分光会透过该样品,而小部分光被样品分子发生各个方向上散射。通过散射光的不同,这些散射过程又被分为瑞利散射和拉曼散射。[/font][font=宋体] [/font][b][font=宋体]第2.1节 [/font][b][font='Times New Roman'][font=宋体]瑞利散射[/font][/font][font=宋体]及[/font][font='Times New Roman'][font=宋体]拉曼散射[/font][/font][/b][/b][font=宋体]入射光的光子与物质分子的碰撞,既有弹性碰撞,又有非弹性碰撞,二者对于光子能量(频率)的影响是不同的。[/font][font=宋体]在光子和样品分子发生弹性碰撞的过程中,光子和分子之间没有能量交换,即光子只改变运动方向,而频率保持不变,因此散射光能量和入射光能量相同。这种弹性散射被称为瑞利散射。[/font][font=宋体]当光子和样品分子发生非弹性碰撞时,光子与分子之间发生能量交换,使得散射光能量和入射光能量大小不同,光的频率和方向都有所改变。这种由于非弹性散射导致出现其他频率的散射光的现象被称为拉曼效应,该过程被称为拉曼散射。[/font][font=宋体]拉曼散射的散射光强度约占总散射光强度的[/font][font='Times New Roman']10[/font][sup][font='Times New Roman']-6[/font][/sup][font=宋体][font=Times New Roman]~[/font][/font][font='Times New Roman']10[/font][sup][font='Times New Roman']-10[/font][/sup][font='Times New Roman'][font=宋体]。[/font][/font][font=宋体] [/font][b][font=宋体]第2.2节 [/font][b][font='Times New Roman'][font=宋体]拉曼[/font][/font][font=宋体]光谱理论[/font][/b][/b][table][tr][td][img=,272,167]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021447256018_6817_3237657_3.jpg!w341x209.jpg[/img][/td][/tr][/table][table][tr][td][img=,272,29]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021447351945_8433_3237657_3.png!w341x37.jpg[/img][/td][/tr][/table][font=宋体]样品分子处于电子能级和振动能级的基态,入射光子的能量远大于振动能级跃迁所需要的能量,但又不足以将分子激发到电子能级激发态。样品分子在吸收了光子后,被激发到较高的不稳定的能态(虚态)。总的来说,就是散射物质光子吸收部分能量,或把自身的部分能量加到光子身上去,再发射出的光子就和原光子不相干,形成新的谱结构。[/font][font=宋体] [/font][font=宋体]我们将[/font][font='Times New Roman'][font=宋体]频率未变的[/font][/font][font=宋体][font=宋体]散射线(即[/font][font=宋体]ν[/font][/font][font='Times New Roman']=[/font][font=宋体]ν[/font][sub][font='Times New Roman']0[/font][/sub][font=宋体])称为[/font][font='Times New Roman'][font=宋体]瑞利线,[/font][/font][font=宋体][font=宋体]频率变低的散射线([/font][font=宋体]ν[/font][font=Times New Roman][/font][font=宋体]ν[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font='Times New Roman'][font=宋体])[/font][/font][font=宋体]称为反斯托克斯线。[/font][font=宋体]由上图可知,[/font][font=宋体][font=宋体]瑞利线(黑[/font][font=Times New Roman]-[/font][font=宋体]蓝线):处于基态[/font][font=Times New Roman]E[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font=宋体][font=宋体]的分子受入射光[/font][font=Times New Roman]h[/font][font=宋体]ν[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font=宋体][font=宋体]的激发而跃迁到受激虚态后很快地跃迁回基态,将吸收的能量[/font][font=Times New Roman]h[/font][font=宋体]ν[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font=宋体][font=宋体]以光子形式释放;处于激发态[/font][font=Times New Roman]E[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体][font=宋体]的分子受入射光[/font][font=Times New Roman]h[/font][font=宋体]ν[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font=宋体][font=宋体]的激发而跃迁到受激虚态,然后跃迁回激发态,释放能量为[/font][font=Times New Roman]h[/font][font=宋体]ν[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font=宋体]的光子。[/font][font='Times New Roman']stokes[font=宋体]线[/font][/font][font=宋体][font=宋体](左边红[/font][font=Times New Roman]-[/font][font=宋体]黑线):从基态跃迁至受激虚态的分子,跃迁回[/font][font=Times New Roman]E[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体][font=宋体]激发态,释放能量为[/font][font=Times New Roman]h[/font][font=宋体](ν[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font=宋体][font=Times New Roman]-[/font][font=宋体]ν[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体])的光子。[/font][font='Times New Roman']anti-stokes[font=宋体]线[/font][/font][font=宋体][font=宋体]:从[/font][font=Times New Roman]E[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体][font=宋体]激发态跃迁至受激虚态的分子,跃迁回基态,释放能量为[/font][font=Times New Roman]h[/font][font=宋体](ν[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font=宋体][font=Times New Roman]+[/font][font=宋体]ν[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体])的光子。[/font][font=宋体]拉曼位移:即[/font][font='Times New Roman']Stokes[font=宋体]与[/font][font=Times New Roman]Anti-stokes[/font][font=宋体]散射光的频率与激发光之间频率的差值[/font][font=Times New Roman]Δ[/font][/font][font=宋体]ν。[/font][img=,426,39]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021447471220_851_3237657_3.jpg!w533x49.jpg[/img][font='Times New Roman'] [/font][font=宋体] [/font][font=宋体]对于同一物质,[/font][font='Times New Roman'][font=宋体]拉曼位移与入射光频率无关,取决于分子振动能级的变化[/font][/font][font=宋体],其数值决定于振动的第一激发态与振动基态的能级差。因而,同一振动方式产生的拉曼位移频率与红外吸收的频率吧范围是相同的。[/font][font='Times New Roman'][font=宋体]不同的化学键或基态有不同的振动方式,决定了其能级间的能量变化,与之对应的拉曼位移是[/font][/font][font=宋体]具有[/font][font='Times New Roman'][font=宋体]特征[/font][/font][font=宋体]性[/font][font='Times New Roman'][font=宋体]的。[/font][/font][font=宋体]散射线强度:[/font][font='Times New Roman'][font=宋体]瑞利线的强度约为入射光的[/font]10[/font][sup][font='Times New Roman']-3[/font][/sup][font='Times New Roman'][font=宋体]量级[/font][/font][sup][font=宋体][font=Times New Roman][[/font][/font][/sup][sup][font='Times New Roman']1][/font][/sup][font='Times New Roman'][font=宋体];较强的斯托克斯线则不到[/font]10[/font][sup][font='Times New Roman']-6[/font][/sup][font=宋体],[/font][font='Times New Roman'][font=宋体]反斯托克斯线起因于样品中较高能态的作用,[/font][/font][font=宋体]由[/font][font='Times New Roman'][font=宋体]玻尔兹曼分布[/font][/font][font=宋体]定[/font][font='Times New Roman'][font=宋体]律[/font][/font][font=宋体]可知[/font][font='Times New Roman'][font=宋体],[/font][/font][font=宋体]通常情况下,分子绝大多数处于振动能级基态,因而反斯托克斯线强度[/font][font='Times New Roman'][font=宋体]不到斯托克斯线的[/font]1%[/font][sup][font=宋体][font=Times New Roman][[/font][/font][/sup][sup][font='Times New Roman']1][/font][/sup][font=宋体]。因此,在一般的拉曼光谱图中只有斯托克斯线。[/font][font=宋体]拉曼谱线强度与入射光强度和样品浓度成正比,若入射光强度一定,则可从谱线强度定量测得样品浓度。[/font][font=宋体] [/font][b][font=宋体]第2.3节 [/font][b][font='Times New Roman'][font=宋体]拉曼[/font][/font][font=宋体]活性判断[/font][sup][font=宋体][font=Times New Roman][[/font][/font][/sup][sup][font='Times New Roman']2][/font][/sup][/b][/b][font=宋体]由拉曼光谱的原理可知,拉曼光谱与红外光谱有许多相似之处,因而两者的活性判断也具有相应的规律性。[/font][font=宋体]1. [/font][font=宋体]凡具有对称中心的分子,如[/font][font='Times New Roman']CS[/font][sub][font='Times New Roman']2[/font][/sub][font='Times New Roman'][font=宋体]、[/font]CO[/font][sub][font='Times New Roman']2[/font][/sub][font='Times New Roman'][font=宋体]和[/font]XeF[/font][sub][font='Times New Roman']4[/font][/sub][font='Times New Roman'][font=宋体]等,其对称振动是拉曼活性、红外非活性的,而非对称振动是红外活性、拉曼非活性的,两者具有互斥性。[/font][/font][font=宋体]2. [/font][font='Times New Roman'][font=宋体]不具有对称中心的分子,如[/font]H[/font][sub][font=宋体][font=Times New Roman]2[/font][/font][/sub][font='Times New Roman']O[font=宋体]、氯仿([/font][font=Times New Roman]CHCl[/font][/font][sub][font='Times New Roman']3[/font][/sub][font='Times New Roman'])[/font][font=宋体]其红外和拉曼活性是并存。[/font][font=宋体]3. [/font][font=宋体]有少数分子的振动,例如平面对称分子乙烯的卷曲振动,既没有偶极矩变化,也没有极化度的改变,所以其红外和拉曼都是非活性的。[/font][font=宋体] [/font][b][font=宋体]第3章 [/font][b][font=宋体]拉曼光谱谱图及仪器简介[/font][/b][/b][font=宋体] [/font][b][font=宋体]第3.1节 [/font][b][font=宋体]拉曼光谱特征[/font][/b][/b][font=宋体]拉曼光谱图横坐标是拉曼位移(波数),纵坐标是谱带的强度。[/font][font='Times New Roman'] [/font][table][tr][td][img=,388,29]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021447591624_1449_3237657_3.png!w486x37.jpg[/img][/td][/tr][/table][table][tr][td][img=,388,164]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021448085839_1676_3237657_3.png!w486x205.jpg[/img][/td][/tr][/table][font='Times New Roman'] [/font][font=宋体]上图是已略去反斯托克斯谱带得到的类似于红外光谱的拉曼光谱图。拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关。[/font][font=宋体]对于未略去反斯托克斯谱带的拉曼光谱而言,[/font][font=宋体]1. [/font][font=宋体]在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧,这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。[/font][font=宋体]2. [/font][font=宋体]一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于[/font][font='Times New Roman']Boltzmann[font=宋体]分布,处于振动基态上的粒子数远大于处于振动[/font][/font][font=宋体]激发态上的粒子数。[/font][font=宋体] [/font][b][font=宋体]第3.2节 [/font][b][font=宋体]拉曼光谱仪器[/font][/b][/b][table][tr][td][img=,312,29]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021448181549_9629_3237657_3.png!w391x37.jpg[/img][/td][/tr][/table][table][tr][td][img=,248,29]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021448274177_8966_3237657_3.png!w311x37.jpg[/img][/td][/tr][/table][table][tr][td][img=,248,189]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021448413123_2604_3237657_3.png!w311x237.jpg[/img][/td][/tr][/table][table][tr][td][img=,312,117]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021448518460_4443_3237657_3.jpg!w391x147.jpg[/img][/td][/tr][/table][font='Times New Roman'][font=宋体]拉曼光谱仪一般由光源、外光路、色散系统、及信息处理与显示系统五部分组成。[/font][/font][font='Times New Roman'] [/font][b][font=宋体]第4章 [/font][b][font=宋体]拉曼光谱应用[/font][/b][/b][font=宋体]拉曼光谱既可进行定性分析,又可以进行定量分析。它可以提供聚合物材料结构方面的许多重要信息,如分子结构与组成、立体规整性、结晶与去向、分子相互作用,以及表面和界面的结构等。从拉曼峰的宽度可以表征高分子材料的立体化学纯度。[/font][font=宋体]1. [/font][font='Times New Roman'][font=宋体]拉曼光谱与红外光谱互补,目前被广泛用于有机化合物的结构分析。利用拉曼光谱法可以鉴定某些红外光谱法无法鉴别的窗能团[/font][/font][font=宋体]。[/font][font='Times New Roman'][font=宋体]例如,非极性[/font][/font][font=宋体]碳碳双[/font][font='Times New Roman'][font=宋体]键可产生强的拉曼谱带[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]且其强度随分子结构而[/font][/font][font=宋体]异[/font][font='Times New Roman'][font=宋体],利用这一特性,可用拉曼光谱法测定顺反异构体和双键上[/font][/font][font=宋体]取代基的位置。[/font][font=宋体]2. [/font][font='Times New Roman'][font=宋体]拉曼光谱特别适合高聚物碳链骨架或环的测定,并能很好地区分各种异构体,如单体异构、位置异构、儿何异构和顺反异构等,还可用于聚合物的立体规整性研究,以及结晶度和取向度的研究。[/font][/font][font=宋体]3. [/font][font='Times New Roman'][font=宋体]水的拉曼散射很弱,因此很多水溶性物质,包括一些生物大分予及生物体内的其他组分都可以用拉曼光谱来研究。拉曼光谐已用于测定氨基酸、[/font][/font][font=宋体]糖[/font][font='Times New Roman'][font=宋体]、[/font][/font][font=宋体]胰岛[/font][font='Times New Roman'][font=宋体]素、激素、核[/font][/font][font=宋体]酸[/font][font='Times New Roman'][font=宋体]、[/font]DNA[font=宋体]等生化物质。[/font][/font][font=宋体]4. [/font][font='Times New Roman'][font=宋体]当实验条件一定时,拉曼光谱的强度与样品的浓度成级性关系,拉曼光谱常用的定[/font][/font][font=宋体][font=宋体]量方法为内标法,检出限在[/font] [font=宋体]μ[/font][/font][font='Times New Roman']g[/font][font=宋体][/font][font='Times New Roman']cm[/font][sup][font=宋体][font=Times New Roman]-3[/font][/font][/sup][font=宋体] [font=宋体]数[/font][/font][font='Times New Roman'][font=宋体]量级,可用于有机物和无机例离子的定量分析。[/font][/font][font='Times New Roman'] [/font][b][font=宋体]第4.1节 [/font][b][font=宋体]拉曼光谱仪具体应用举例[/font][/b][font=宋体]4.1.1[/font][font=宋体]化工领域[/font][/b][font=宋体]孔安栋[/font][sup][font=宋体][font=Times New Roman][[/font][/font][/sup][sup][font='Times New Roman']3][/font][/sup][font=宋体]等人利用改良过的拉曼光谱气体技术[/font][font=宋体](近共心腔设计),可实时测定钻井液中溶解气体的成分和含量,即利用气测录井的手段,来判断油气层储量、位置等信息。而[/font][font='Times New Roman']Bauer[font=宋体]等人[/font][/font][font=宋体]则同样[/font][font='Times New Roman'][font=宋体]利用拉曼光谱[/font][/font][font=宋体]的手段,成功分析出[/font][font='Times New Roman'][font=宋体]了苯乙烯单体在乳液聚合反应中浓度变化[/font][/font][font=宋体]的[/font][font='Times New Roman'][font=宋体]情况[/font][/font][font=宋体]。拉曼光谱在化工生产领域可以实时的监测分析混合物成分,在与其他计算技术手段联用,可获得生产所需要的更多信息。[/font][b][font=宋体]4.1.2[/font][font=宋体]生物领域[/font][/b][font=宋体]马建锋[/font][sup][font=宋体][font=Times New Roman][[/font][/font][/sup][sup][font='Times New Roman']5][/font][/sup][font=宋体]等人通过纤维素拉曼光谱,成功分析出植物细胞壁内天然纤维素拉伸状态和微区分布等生物学信息,对纤维素酶水解过程中产物的浓度进行了有效的实时监测,同时成功利用拉曼光谱技术说明了了丝光化过程中纤维素内化学键的改变及分子间相互作用。韩晓霞等人将蛋白质印迹技术和和表面增强拉曼光谱技术结合起来,设计出一种基于表面增强拉曼光谱法的蛋白质组鉴定方法[/font][sup][font=宋体][font=Times New Roman][[/font][/font][/sup][sup][font='Times New Roman']6][/font][/sup][font=宋体]。事实上,由于水具有拉曼光谱弱、谱图简单的特点,因此拉曼光谱技术就可以在接近自然活性状态的情况下研究生物大分子的结构及其变化,因而拉曼光谱在生物领域具有广阔的前景。[/font][b][font=宋体]4.1.3[/font][font=宋体]材料领域[/font][/b][font=宋体]吕刚[/font][sup][font=宋体][font=Times New Roman][[/font][/font][/sup][sup][font='Times New Roman']7][/font][/sup][font=宋体][font=宋体]等人通过拉曼光谱与电化学工作站测试手段联用的方法,成功分析出所制备的电致变色材料[/font][font=宋体]——氧化钨复合共生薄膜的结构和它的电致变色性能。王昕[/font][/font][sup][font=宋体][font=Times New Roman][[/font][/font][/sup][sup][font='Times New Roman']8][/font][/sup][font=宋体][font=宋体]等人通过拉曼光谱分析手段证明[/font][font=Times New Roman]p-[/font][font=宋体]型多孔硅是更类似于纳米晶结构特征的材料。除此之外,拉曼光谱在其他薄膜材料、金刚石材料的结构和定性分析中都发挥着巨大作用。[/font][/font][b][font=宋体]4.1.4[/font][font=宋体]环境领域[/font][/b][font=宋体]在环境领域,已经有很多利用拉曼光谱技术分析水环境污染信息的文献报道。如徐阳[/font][sup][font=宋体][font=Times New Roman][[/font][/font][/sup][sup][font='Times New Roman']8][/font][/sup][font=宋体][font=宋体]通过基于[/font][font=Times New Roman]Au@[/font][/font][font='Times New Roman']MIL-101(Cr[/font][font=宋体][font=Times New Roman])[/font][/font][font='Times New Roman']/PATP[/font][font=宋体][font=宋体]金属有机框架复合材料基底的表面增强拉曼光谱来测定水中的戊二醛;通过基于[/font][font=Times New Roman]M[/font][/font][font='Times New Roman']IL-101-MA@A[/font][font=宋体][font=Times New Roman]g[/font][font=宋体]的表面增强拉曼光谱测定鱼肉中的违禁鱼药。宋洪艳[/font][/font][sup][font=宋体][font=Times New Roman][[/font][/font][/sup][sup][font='Times New Roman']9][/font][/sup][font=宋体][font=宋体]等人通过表面增强拉曼光谱和密度泛函理论[/font][font=Times New Roman](DFT)[/font][font=宋体]联用的方法,研究了海洋中的污染物多氯联苯的吸附特性和定性定量分析方法。除此之外,拉曼光谱还可用于污染物氰化物、硝酸盐、亚硝酸盐及其他一些有机污染物的鉴定和分析。[/font][/font][font='Times New Roman'] [/font][b][font=宋体]第5章 [/font][b][font=宋体]总结[/font][/b][/b][font=宋体]从拉曼光谱产生到现在,已经衍生出了许多不同特点不同应用领域的拉曼光谱技术,如共焦显微拉曼光谱技术、傅里叶变换拉曼光谱技术、表面增强拉曼光谱技术、激光共振拉曼光谱技术、光声拉曼技术、高温高压原位拉曼技术等等,与此同时,越来越多文献报道的对物质的定性定量分析的技术是利用拉曼光谱和其他分析技术联用来实现的。拉曼光谱快速和无损伤分析在对微量成分或珍贵物质的定性定量分析中有着非常重要的作用。可以想象,随着技术的进一步发展,拉曼光谱的应用领域将会越来越多,改良手段会越来越丰富,科研前景也会越来越广阔。[/font][font='Times New Roman'][/font][b][font=黑体]参考文献[/font][/b][font=宋体][1][/font][font=宋体][font=宋体]赵鹏[/font][font=Times New Roman].[/font][/font][font='Times New Roman'] [/font][font=宋体][font=宋体]拉曼光谱的原理[/font][font=Times New Roman][[/font][/font][font='Times New Roman']J]. [/font][font=宋体][font=宋体]时代教育,[/font][font=Times New Roman]2011[/font][font=宋体],[/font][font=Times New Roman]9[/font][font=宋体]:[/font][font=Times New Roman]198.[/font][/font][font=宋体][2][/font][font=宋体][font=宋体]董慧茹[/font][font=Times New Roman].[/font][/font][font='Times New Roman'] [/font][font=宋体][font=宋体]仪器分析[/font][font=Times New Roman][[/font][/font][font='Times New Roman']M]. [/font][font=宋体][font=宋体]北京:北京工业出版社,[/font][font=Times New Roman]2016[/font][font=宋体]:[/font][font=Times New Roman]233-238.[/font][/font][font=宋体][3][/font][font=宋体][font=宋体]孔安栋[/font][font=Times New Roman], [/font][font=宋体]杨德旺[/font][font=Times New Roman], [/font][font=宋体]郭金家等[/font][font=Times New Roman]. [/font][font=宋体]腔增强气体拉曼光谱仪在气测录井中的应用[/font][font=Times New Roman][J]. [/font][font=宋体]光学精密工程[/font][font=Times New Roman], 2022, [/font][font=宋体]第[/font][font=Times New Roman]30[/font][font=宋体]卷[/font][font=Times New Roman](10):1151-1159.[/font][/font][font=宋体][4][/font][font='Times New Roman']Bauer C, Amram B, Agnely M. On-line monitoring of a latex emulsion polymerization by fiber-optic FT-raman spectroscopy[J]. Applied pectroscopy, 2000, 54(4): 528-535. [/font][font=宋体][5][/font][font=宋体][font=宋体]马建锋[/font][font=Times New Roman], [/font][font=宋体]杨淑敏[/font][font=Times New Roman], [/font][font=宋体]田根林等[/font][font=Times New Roman]. [/font][font=宋体]拉曼光谱在天然纤维素结构研究中的应用进展[/font][font=Times New Roman][J]. [/font][font=宋体]光谱学与光谱分析[/font][font=Times New Roman], 2016, [/font][font=宋体]第[/font][font=Times New Roman]36[/font][font=宋体]卷[/font][font=Times New Roman](6):1734-1739.[/font][/font][font=宋体][6][/font][font=宋体][font=宋体]韩晓霞[/font][font=Times New Roman],[/font][/font][font='Times New Roman'] [/font][font=宋体][font=宋体]阮伟东[/font][font=Times New Roman],[/font][/font][font='Times New Roman'] [/font][font=宋体][font=宋体]王延飞[/font][font=Times New Roman],[/font][/font][font='Times New Roman'] [/font][font=宋体][font=宋体]吕志成[/font][font=Times New Roman],[/font][/font][font='Times New Roman'] [/font][font=宋体][font=宋体]王春旭[/font][font=Times New Roman],[/font][/font][font='Times New Roman'] [/font][font=宋体][font=宋体]王旭[/font][font=Times New Roman],[/font][/font][font='Times New Roman'] [/font][font=宋体][font=宋体]赵冰[/font][font=Times New Roman]. [/font][font=宋体]基于表面增强拉曼光谱的蛋白质组分析方法[/font][font=Times New Roman][C]//.[/font][/font][font='Times New Roman'] [/font][font=宋体][font=宋体]第十四届全国光散射学术会议论文摘要集[/font][font=Times New Roman].[/font][/font][font='Times New Roman'] [/font][font=宋体][font=Times New Roman][[/font][font=宋体]出版者不详[/font][font=Times New Roman]],[/font][/font][font='Times New Roman'] [/font][font=宋体][font=Times New Roman]2007:[/font][/font][font='Times New Roman'] [/font][font=宋体][font=Times New Roman]93.[/font][/font][font=宋体][7][/font][font=宋体][font=宋体]王昕[/font][font=Times New Roman],[/font][font=宋体]何国山[/font][font=Times New Roman],[/font][font=宋体]张树霖[/font][font=Times New Roman],[/font][font=宋体]刁鹏[/font][font=Times New Roman],[/font][font=宋体]李经建[/font][font=Times New Roman],[/font][font=宋体]蔡生民[/font][font=Times New Roman].p~[/font][font=宋体]-型多孔硅的拉曼光谱与结构特征[/font][font=Times New Roman][J].[/font][font=宋体]半导体学报[/font][font=Times New Roman],1994(04):248-254.[/font][/font][font=宋体][8][/font][font=宋体][font=宋体]徐阳[/font][font=Times New Roman]. [/font][font=宋体]金属有机框架材料复合基底在表面增强拉曼光谱方法中的研究与应用[/font][font=Times New Roman][D].[/font][font=宋体]广西民族大学[/font][font=Times New Roman],2021.DOI:10.27035/d.cnki.ggxmc.2021.000190.[/font][/font][font=宋体][9][/font][font=宋体][font=宋体]宋洪艳[/font][font=Times New Roman], [/font][font=宋体]赵航[/font][font=Times New Roman], [/font][font=宋体]严霞等[/font][font=Times New Roman]. [/font][font=宋体]基于表面增强拉曼光谱技术的海洋污染物多氯联苯吸附特性分析[/font][font=Times New Roman][J]. [/font][font=宋体]光谱学与光谱分析[/font][font=Times New Roman], 2022, [/font][font=宋体]第[/font][font=Times New Roman]42[/font][font=宋体]卷[/font][font=Times New Roman](3):704-712.[/font][/font]

  • 拉曼光谱图分析图书推荐?

    刚刚接触拉曼光谱这块儿,目前了解到的也就是通过波数对比来分析是否有想要的物质。其他的像张力/应力、晶体对称性和取向还有晶体质量、物质总量都是具体如何分析的?求推荐相关书籍,想要系统的学习一下拉曼光谱分析。感谢大家了!

  • 对薄膜的拉曼光谱分析

    [color=#444444]小弟刚接触拉曼光谱,要求对dlc涂层做拉曼光谱分析,看了一些论文,不知道做拉曼光谱的意义是什么,怎么分析,而且很多文献中标准的dlc膜的特征峰可拟合成两个高斯峰,怎么拟合的?而且很多就是两个峰的强度对比,我要怎么通过这个区分不同的膜好坏呢?有哪些资料或者书籍对于一个小白来说有帮助?谢谢大家了[/color]

  • lab直读光谱分析仪

    各位老师帮忙分析下,我家的光谱分析仪软件操作界面呈灰白状态不能操作,是机器哪部分出问题啦?

  • 在线研讨会:1月13日 拉曼光谱在油品分析方面的应用(Instrument.com.cn)

    拉曼光谱技术在汽油品质分析中的应用 主讲人:戴连奎教授 http://bimg.instrument.com.cn/meeting/2011/321.jpg浙江大学教授,博士生导师。自2002年以来一直在从事光谱分析方法及其在线分析系统的研究开发。作为项目负责人,已完成国家“863”课题3项、省级课题2项,正在承担的国家科研项目2项,涉及近红外光谱、激光拉曼光谱等分子光谱分析方法与应用技术。已授权国家发明专利3项,并在国内外核心期刊上发表论文40余篇。现任《化工自动化及仪表》和《自动化仪表》期刊编委,近红外光谱专业委员会委员。 主题讲座为推进低碳环保,我国开始实施严格的机动车排放法规,对汽油品质和汽油组分含量的要求逐年提高;与此同时,成品汽油价格的不断上涨,推动各种醇醚混合汽油逐渐走向市场,各地也相继出台了相应的地方标准,对醇醚含量的添加进行限制。对汽油品质的标准检测方法,尽管分析结果准确,但普遍存在样品需要预处理、分析速度慢、分析成本高等局限。 本报告将首先介绍拉曼光谱的工作原理与分析方法;然后针对汽油品质的快速分析问题,详细分析比较近红外光谱与拉曼光谱的异同;最后简单介绍一下已研制的汽油拉曼分析仪的构成与实际使用情况。参会报名 开课时间:2012-1-13 10:00 (教室于2012-1-13 9:30:00开放)会议时长:2小时报名条件:只要您是仪器信息网注册用户均可参加!环境配置:只要您有电脑、外加一个耳麦就能参加。(需要进行音频交流的用户需准备麦克)人数限制:100 提问时间:您可在论坛的宣传贴中先行提问,截至时间为2012-1-12 http://simg.instrument.com.cn/webinar/20110226/images/apply.gif

  • 【求助】求组分析拉曼光谱

    各位好!我刚刚接触拉曼光谱分析,前不久做了个单晶硅拉曼光谱实验,也不知道怎么去分析,也不知道用什么软件去分析它,我就是用origin画了图,我附上图,请各位拉曼高手们给我指点指点,并帮我解解谱,谢谢![~118727~]

  • 【资料】拉曼光谱用于分析的优点和缺点

    [size=4][b](七)拉曼光谱用于分析的优点和缺点[/b] [/size][size=4]  1、拉曼光谱用于分析的优点 [/size][size=4]  拉曼光谱的分析方法不需要对样品进行前处理,也没有样品的制备过程,避免了一些误差的产生,并且在分析过程中操作简便,测定时间短,灵敏度高等优点 [/size][size=4]  2、拉曼光谱用于分析的不足 [/size][size=4]  (1)拉曼散射面积 [/size][size=4]  (2)不同振动峰重叠和拉曼散射强度容易受光学系统参数等因素的影响 [/size][size=4]  (3)荧光现象对傅立叶变换拉曼光谱分析的干扰 [/size][size=4]  (4)在进行傅立叶变换光谱分析时,常出现曲线的非线性的问题 [/size][size=4]  (5)任何一物质的引入都会对被测体体系带来某种程度的污染,这等于引入了一些误差的可能性,会对分析的结果产生一定的影响 [/size]

  • 拉曼光谱 分析

    拉曼光谱 分析

    [color=#444444]我做的拉曼光谱做出来的图是这样的,蓝色是A物质,黑色是A+B,想判断A是否反应了,第一次接触拉曼不是道从何分析,看文献中别人拉曼不像我这样有很多小刺峰,看书上有荧光背景扣除。有没有懂的人给点指导,十分感谢[/color][color=#444444][img=,690,464]https://ng1.17img.cn/bbsfiles/images/2019/06/201906241154503876_6466_1827556_3.jpg!w690x464.jpg[/img][/color]

  • 【资料】几种重要的拉曼光谱分析技术

    [size=5][b] [/b][/size] [size=5] [b](四)几种重要的拉曼光谱分析技术[/b] [/size][size=5]  1、单道检测的拉曼光谱分析技术 [/size][size=5]  2、以CCD为代表的多通道探测器用于拉曼光谱的检测仪的分析技术 [/size][size=5]  3、采用傅立叶变换技术的FT-Raman光谱分析技术 [/size][size=5]  4、共振拉曼光谱分析技术 [/size][size=5]  5、表面增强拉曼效应分析技术 [/size]

  • 骨的拉曼光谱分析

    骨组织的拉曼光谱在的主要峰的形状据文献查并无特别变化,即并没有成分种类的增加或减少,仅有相对比例的变化,但本实验结果在1200 -1400 范围为多个峰叠加的形态,而不同于在1250附近的Amide III 唯一主峰,请分析除了该峰外还有哪些峰?

  • 拉曼光谱分析求助

    拉曼光谱分析求助

    [color=#444444]做拉曼光谱实验,不会分析出来的谱图。测的是PLLA,请问如何分析这些峰?[/color][color=#444444][img=,690,451]https://ng1.17img.cn/bbsfiles/images/2019/09/201909031030541607_2636_1843534_3.jpg!w690x451.jpg[/img][/color]

  • 【讨论】拉曼光谱分析药品

    http://simg.instrument.com.cn/bbs/images/brow/em09511.gif各位大侠,小女子这厢有礼了! 关于拉曼光谱,大家研究的可多?对于药品分析时,请问辅料干扰高手们都是如何处理的呢? 我从前总觉得这个拉曼光谱中辅料是不影响的,直接谱图对比就好了! 请大家一起讨论下!共同学习哦!今天冬至节,祝大家节日快乐哦!

  • 拉曼光谱技术应用进展

    介绍了拉曼光谱的原理,拉曼光谱仪的结构组成以及近年来拉曼光谱分析技术在医学、文物、宝石鉴定和法庭科学等领域的最新进展。并对其未来的应用前景进行了展望。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=29071]拉曼光谱技术应用进展[/url]

  • CZTS 薄膜的拉曼光谱分析

    CZTS 薄膜的拉曼光谱分析,紫外拉曼找到新的用途,普通拉曼一般无法鉴别CZTS 薄膜中的ZnS,而紫外拉曼可以。

  • 拉曼光谱分析--求解

    我的毕业课题需要用到拉曼光谱,但是我之前都没有接触过拉曼光谱相关的知识,所以希望大家给推荐一些入门的书籍,我下周就去图书馆借。我测得主要是纤维,最好书籍内容能涉及到纤维的图谱。我之前已经送了几个样进行了测试,测试老师发给我的并不是图谱,而是一堆数据,我发一个样品的数据上来,大家看下,这个应该怎么分析,用什么软件。下面是测试的老师给邮件里的话,请大家看一下这个是什么意思,谢谢。"我挑了几个比较好的做了基线校正(-off BL),由于300波数之前荧光很强,所以信号误差比较大,尽量不要参考300波数之前的数据。"100.289 16756.5101.416 16623.5102.544 16744.2103.671 16807.3104.798 16675.2105.925 16725107.051 16422108.177 16442.9109.304 16286.2110.429 16153.9111.555 16119.2112.681 16011.2113.806 16365.3114.931 15948.5116.056 16171.6117.18 16019.1118.305 15982.1119.429 15796.2120.553 15641.3121.676 15715.5122.8 15843.1123.923 15623.6125.046 15533.1126.169 15386.9127.292 15441128.414 15546.5129.537 15460.3130.659 15322.9131.78 15381.6132.902 15357.8134.023 15298.3135.145 15256.6136.265 15527.2137.386 15599.3138.507 15403.7139.627 15301.8140.747 15237.8141.867 15347.8142.987 15250.3144.106 15349.2145.225 15191.4146.344 15256.8147.463 15239.6148.582 15180149.7 15135.9150.818 15257.3151.936 14962.8153.054 15077.5154.171 14968.5155.289 15029.6156.406 15057.1157.523 15131.6158.639 15069.6159.756 14924.6160.872 14967.8161.988 15013.2163.104 15271.5164.219 15014.5165.335 15116166.45 15222167.565 15207168.679 15230.1169.794 15163.4170.908 15280.8172.022 15066173.136 15046.5174.25 14993.2175.363 14953.4176.477 15037.1177.59 14995.1178.703 14780179.815 15041.2180.928 14853.1182.04 14705.3183.152 14703.6184.263 14524.3185.375 14686.7186.486 14577.1187.597 14667.6188.708 14713.2189.819 14499.9190.93 14534.2192.04 14446.9193.15 14539.7194.26 14621.3195.369 14565.5196.479 14480.4197.588 14264.6198.697 14499.5199.806 14520.3200.914 14638.1202.023 14361.2203.131 14465.4204.239 14517.8205.347 14382.9206.454 14494207.561 14433.6208.669 14370.8209.775 14312.6210.882 14374.1211.989 14381.3213.095 14228.1214.201 14409.4215.307 14480216.412 14240.8217.518 14327.2218.623 14257.5219.728 14350.7220.833 14262.9221.937 14333.6223.042 14107.7224.146 14157.9225.25 14124.3226.354 14199.5227.457 14286228.56 14125.6229.663 14021.8230.766 14180.9231.869 14344.5232.972 14079.7234.074 14497.4235.176 14225.7236.278 14475.7237.379 14190.2238.481 14188.4239.582 14057.2240.683 14243.8241.784 14407.7242.884 14376.4243.985 14379.1245.085 14166246.185 14141.4247.285 14205.5248.384 14190249.484 14331.4250.583 14309.1251.682 14252.7252.78 14275.8253.879 13991.8254.977 14226.6256.075 14220.2257.173 14234.3258.271 14300.8259.368 14144260.465 14105.7261.562 14192.7262.659 14106.5263.756 14122.9264.852 14148.4265.949 14030.2267.045 13941.6268.14 14012.7269.236 13969.7270.331 13876.5271.426 13799.2272.521 13610.1273.616 13930.1274.711 13850.5275.805 13766.3276.899 13714.1277.993 13929.2279.087 13952.4280.18 13929.9281.274 13738.2282.367 14029283.46 13821.2284.552 13835.2285.645 13739.5286.737 13826.8287.829 13953288.921 13706.1290.013 13756.8291.104 13777.7292.195 13943293.286 13867.7294.377 14001295.468 13854.6296.558 13965297.648 13777.3298.738 13860.2299.828 13881.2300.918 13835.6302.007 14053.9303.096 13923.5304.185 14141.9305.274 14268.6306.363 14308307.451 14202.8308.539 14194309.627 14157.6310.715 14167.2311.802 13986312.889 14108.2313.977 14136.1315.063 14074.4316.15 14102.4317.237 14240.8318.323 14328.6319.409 14464.8320.495 14214.3321.581 14422322.666 14394.7323.751 14660.1324.836 14427.8325.921 14432.9327.006 14696.1328.09 14590.5329.175 15056.7330.259 14789.7331.342 14990.9332.426 14908.3333.509 14583.5334.593 14514.7335.676 14607.5336.758 14501.7337.841 14649.9338.923 14442.5340.006 14530.7341.088 14794.6342.169 14723.4343.251 14740344.332 14712.8345.414 14884.4346.494 149383

  • 【分享】红外、拉曼光谱

    【分享】红外、拉曼光谱

    [center]红外、拉曼光谱[/center][B]摘要:[/B] 红外及拉曼光谱都是分子振动光谱。通过谱图解析可以获取分子结构的信息。任何气态、液态、固态样品均可进行红外光谱测定。拉曼光谱能提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。红外、拉曼光谱都是有机化合物结构解析的重要手段。[B]关键词:[/B]红外光谱,拉曼光谱 波谱分析是现代仪器分析的主要组成部分,它作为确定有机化合物结构的重要手段,与常规的化学分析相比具有微量、快速、准确等特点。随着科学技术的发展,波谱分析成为化学工作者必须掌握的重要工具和现代分析技术。 光的本质是电磁辐射,光的基本特性是波粒二象性。物质具有能量,是诱电体。物质与光的作用可看成是光子对能量的授受,即 h =E1-E0,该原理广泛应用于光谱解析。电磁辐射与物质的作用本质是物质吸收光能后发生跃迁。跃迁是指物质吸收光能后自身能量的改变。因这种改变是量子化的,故称为跃迁。不同波长的光,能量不同,跃迁形式也不同,因此有不同的光谱分析法。应用于有机化合物结构测定的主要有紫外光谱(UV)和红外光谱(IR)以及拉曼光谱。[B]1. 红外光谱1.1 发展简史[/B]1800年英国科学家赫谢尔发现红外线,二十世纪初人们进一步系统地了解了不同官能团具有不同红外吸收频率这一事实。1950年以后出现了自动记录式红外分光光度计。随着计算机科学的进步,1970年以后出现了傅立叶变换型红外光谱仪。红外测定技术如全反射红外、显微红外、光声光谱以及色谱-红外联用等也不断发展和完善,使红外光谱法得到广泛应用。[B]1.2 基本原理[/B]能量在4000 ~ 400 cm-1的红外光不足以使样品产生分子电子能级的跃迁,而只是振动能级与转动能级的跃迁。由于每个振动能级的变化都伴随许多转动能级的变化,因此红外光谱也是带状光谱。分子在振动和转动过程中只有伴随净的偶极矩变化的键才有红外活性。由此可见产生红外吸收光谱应具备:(1)辐射光子具有的能量与发生振动跃迁能量匹配,(2)辐射与物质分子之间有偶合作用,即分子振动必须伴随偶极矩的变化。[B]1.2.1双原子分子的振动[/B] 分子振动可以近似地看成是分子中的原子以平衡点为中心,以非常小的振幅做周期性的简谐振动。 [img]http://ng1.17img.cn/bbsfiles/images/2009/08/200908181728_166569_1622715_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/08/200908181728_166570_1622715_3.jpg[/img]化学键的力常数 越大,折合相对原子质量 越小,则化学键的振动频率 或波数值越高,吸收峰将出现在高波数区。但值得指出的是,由于振动中随着原子间距离的变化,化学键的力常数也会改变,分子振动并不是严格的简谐振动,由此引起的偏差称为分子振动的非谐性。所以用上述公式计算出的值与实际测量的值只是近似相等。

  • 心脏粘液瘤拉曼光谱分析研究

    近日,西安交通大学第一附属医院心血管外科研究人员发表论文,旨在通过测试心脏粘液瘤不同部位的拉曼光谱,寻找新的诊断方法,并探讨其病因学。研究指出,粘液瘤与正常心肌可能具有同源性,拉曼光谱技术对心脏粘液瘤具有诊断价值,对其起源研究具有一定指导意义。该文发表在2014年第11期《陕西医学杂志》上。  运用拉曼光谱原位探测技术分别对6例心脏粘液瘤的不同部位进行测试,得到并分析特征谱峰,辅以病理学光镜及电镜超微观察。  首次测得心脏粘液瘤的拉曼光谱,归属于蛋白质的1370cm-1为特征峰,归属蛋白质、核酸和脂类的1657cm-1、1699cm-1、1754cm-1峰,瘤蒂均强于瘤体,并与正常心肌位置相同。

  • 【线上讲座214期】拉曼光谱仪原理及应用 (时间:9月5日-14日)

    欢迎大家前来与jdong老师一起就拉曼光谱仪原理及应用的相关问题进行探讨~!活动时间:2012年9月05日——2012年9月14日 【线上讲座214期】拉曼光谱仪原理及应用 主讲人:jdong1 拉曼版面专家 活动时间:2012年9月5日——2012年9月14日 我们热烈欢迎jdong老师光临拉曼光谱版面进行讲座!http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647661_1766615_3.gif引言:1928年印度科学家Raman发现了Raman散射效应,在随后的几十年内,由于Raman散射光的强度很弱、激光光源能量低等因素,使得Raman光谱在自发现后的相当长的一段时间内没有得到广泛而实际的应用,直到激光作为激发光源以及傅立叶变换技术的出现,Raman光谱的灵敏度有了本质提高后,其实际应用的范围才逐渐扩大。目前Raman光谱已经逐渐应用了国家安全,材料,化工,石油,生物,环保,医疗,地址等众多领域。我们有请拉曼光谱版面专家jdong老师,对拉曼光谱仪原理及应用做一个详细的讲座。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647661_1766615_3.gif提要一、拉曼光谱发展简史二、拉曼效应产生原理三、拉曼光谱的特点四、拉曼光谱与红外光谱的联系与不同五、拉曼光谱与红外光谱分析方法比较六、拉曼光谱的应用领域http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647661_1766615_3.gif欢迎大家前来与jdong老师一起就拉曼光谱仪原理及应用知识探讨进行交流~!以上为jdong老师所著,未经jdong老师和仪器信息网同意任何个人和单位禁止转载!!! 提问时间:2012年9月05日--9月14日答疑时间: 2012年9月05日--9月14日特邀佳宾:拉曼光谱版面的版主、专家以及从事此行业的同行们参与人员:仪器论坛全体注册用户活动细则:1、请大家就拉曼光谱仪原理及应用的相关问题进行提问,直接回复本帖子即可,自即日起提问截至日期2012年9月14日2、凡积极参与且有自己的观点或言论的都有积分奖励(1-50分不等),提问的也有奖励3、提问格式:为了规范大家的提问格式,请按下面的规则来提问 :jdong老师您好!我有以下问题想请教,请问:……http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647661_1766615_3.gif说明:本讲座内容仅用于个人学习,请勿用于商业用途,由此引发的法律纠纷本人概不负责。虽然讲座的内容主要是对知识与经验的讲解、整理和总结,但是也凝聚着笔者大量心血,版权归jdong老师和仪器信息网所有。本讲座是根据笔者对资料的理解写的,理解片面、错误之处肯定是有,欢迎大家指正。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647661_1766615_3.gif

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制