当前位置: 仪器信息网 > 行业主题 > >

中红外汽油分析仪原理

仪器信息网中红外汽油分析仪原理专题为您提供2024年最新中红外汽油分析仪原理价格报价、厂家品牌的相关信息, 包括中红外汽油分析仪原理参数、型号等,不管是国产,还是进口品牌的中红外汽油分析仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合中红外汽油分析仪原理相关的耗材配件、试剂标物,还有中红外汽油分析仪原理相关的最新资讯、资料,以及中红外汽油分析仪原理相关的解决方案。

中红外汽油分析仪原理相关的论坛

  • 3.15晚会准确检测出甲缩醛——培安中红外汽油分析仪介绍

    在山东省东营市、滨州市遍布着许多生产汽油的炼油厂...... 记者采访了其中一家厂商介绍,他的厂一个月销量甚至可以达到1000来吨。这里生产出来的93号汽油清澈透明,看上去和正常的汽油没什么两样。这种汽油的每吨售价在4500元左右,比相同标号的汽油售价便宜了近2000元,据称这种汽油在行业内俗称“调合油”。被采访的调合油厂王经理介绍,这里生产的93号汽油是把一部分90号汽油配上大量的石脑油、芳烃等各种化工原料简单混合而成。关键是,这样生产出来的93号汽油不仅价格便宜,而且完全符合国家检测标准。 石脑油又称粗汽油,是汽油生产的初级产品,由于辛烷值低,燃烧性不好、污染环境等问题,早就不能直接当做车用汽油使用。  全国石油产品及润滑剂标准化技术委员会秘书长张建荣:从技术层面上讲,用石脑油、mtbe(抗爆剂)是不可能生产出合符排号的汽油的,他很可能添加了一些未经验证的添加物或者添加剂,这些非常规的添加剂对汽车的正常使用甚至安全,对空气的排放都有严重的隐患。  央视财经记者调查发现在东营市用石脑油和抗爆剂等原料调和汽油非常普遍,山东鲁深发化工有限公司也在偷偷的用石脑油等生产调和汽油。据工厂的陶经理介绍,他们是用廉价的石脑油和一些化工原料简单混合后,每月调和的汽油产量可以达三万吨...... 央视财经记者连续走访了东营、滨州等地的多家生产调和汽油的工厂后发现,这些企业大部分都用石脑油、抗爆剂以及其他一些化工原料做简单混合后生产调和汽油,价格比正规汽油便宜很多,销量可观,并且这些企业负责人都信誓旦旦的声称他们生产的调和汽油都能符合汽油国家标准。因为现行的汽油国家标准中规定,只要通过辛烷值、硫含量、苯含量等十几项检测标准就判定为合格的汽油,至于汽油里具体含有什么样的成分,并不在标准的检测范围之内,这就为调和汽油生产厂家带来了可乘之机。 在高额利润诱惑下,越来越多的化工企业加入到了调和大军中,越来越多的化工原料也被偷偷的添加到汽油中。山东垦利丰源化工有限公司是当地一家大型化工企业,这位工作人员直言不讳,他们年生产调和汽油达五六十万吨。丰源化工这位工作人员也强调他们采用了新的调和原料,生产的汽油同样符合国家检测标准。 这些调和汽油中到底使用了什么样的特殊原料呢?记者带着拿着丰源化工生产的国四和国五的汽油样品到一家工厂检测出了7.85%的甲缩醛。 http://www.pynnco.com/im/201503/201531613131614835.jpg图为技术人员使用培安中红外汽油分析仪进行测试http://www.pynnco.com/im/201503/201531613132985000.jpg测试结果:甲缩醛含量占7.85% 随后记者委托中国科学院大学化工学院对样品进行了汽油成分分析,再次证实含有甲缩醛。  原来丰源化工使用的特殊成分竟然是甲缩醛,甲缩醛是一种无色易挥发可燃液体,主要用于生产杀虫剂、皮革和汽车上光剂等,是现行的车用汽油国家标准中不得添加的有害物质。据山东某化工公司孙经理介绍,甲缩醛现在才两千二三(一吨),国家标准就不测这个。正像这位业内人士所说,虽然在汽油国家标准中要求不得添加甲缩醛,但是甲缩醛的却不在检测范围之内。 记者还采访了山东甲缩醛生产公司,企业的销售人员告诉记者,各种调合油厂成为了他们的主要客户。据该公司经理介绍汽油和甲缩醛每吨售价分别为六千五六和两千八九,二者利润相差一半,做汽油想赚钱就需要加入甲缩醛。现在的季节,8%-12%的掺加比例是没问题的。  全国石油产品及润滑剂标准化技术委员会秘书长张建荣说之所以汽油国家标准中不得添加甲缩醛,是因为它会对车辆造成严重损害。甲缩醛对橡胶有溶胀作用就会使线路漏油,这会带来一些安全隐患。  不仅如此,中国科学院大学化学与化工学院何裕建教授担忧这种调和汽油的泛滥会对环境造成不良影响。 中国科学院大学化学与化工学院何裕建教授:“毫无疑问被我们分散在空气中的话,对我们人类的大气质量对我们的身体健康毫无疑问,当然是负面作用。”

  • 请教了:分析汽油中红外光谱仪

    培安公司这样介绍他们的产品,IROX 2000世界最小的付里叶红外光谱仪,全自动分析汽油中的9种含氧化合物、苯、13种芳烃、烯烃、二烯烃和锰含量等30多种组份及各种不明物质,还可预测汽油的辛烷值、蒸馏特性和饱和蒸汽压,获取汽油化学组份测量和物理特性分析的全谱信息。 很有诱惑力,省时、省力。 但不知道可靠性如何,与利用国标测定的结果有何中出入,是否有人做过比较试验。 有谁用过付里叶红外光谱仪测汽油的各项指标,有何感想,我们可以借鉴一下,向公司推荐购买。 谢谢!

  • 汽油分析仪如何选择,这几点至关重要

    油品质量直接影响着大[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量,汽油中的一些成分多少直接影响着排放的尾气,比如芳烃是汽车尾气中PM2.5的来源,烯烃是光化学烟雾的来源,按照标准,汽油中的芳烃、烯烃的体积要分别控制在35%及18%以内。通过这种快速检测法,劣质油品现场就能现形。这时汽油分析仪就显得非常重要了!  但在如何选择合适的汽油分析仪上,很多人还不是很了解,一般来说用户在选择汽油分析仪时需要考虑以下几个方面,包括安全性,完整性以及合适的分析方法等等:  1.分析仪的安全性  由于石油其他产品的加工装置区均被划分为危险区,所选择的在线油品分析仪必须满足现场防爆区域的安全要求。另外由于一些在线油品分析仪需要进行诸如加热、制冷、样品输送的操作,这时分析系统会配备功率较大的电气设备,对辅助设备的防爆要求也必须考虑到。石油产品的精制过程中,加氢是一个非常普遍的手段,这也为油品分析仪应用于有氢气存在的环境,提出了很高的要求。使用能够达到IIC防爆级别的在线油品分析仪,是较好的选择,当选择不能完全满足防爆要求的分析仪时,则考虑将分析仪安置在能够达到IIC级要求的正压通风的分析小屋里,以保证安全运行。  2.分析方法  由于许多石油产品分析方法,是由国家、行业或机构制订的标准试验方法或分析方法,油品分析仪也会按照这些标准方法进行仪器的设计与制造,对于不易实现在分析的操作或检测方式,则进行一些适当的更改,并经过严格的测试后达到符合标准方法的测量精度。有时一个分析指标可能会有两个或两个以上的不同的标准方法,这时就需要根据实际的应用情况,选择一款合适的油品分析仪。  3.系统的完整性  中红外汽油分析仪实际上是一个分析系统,由于石油产品的可燃烧性,分析仪安装的现场是不允许将分析后的样品向系统处排放的,这就要求油品分析系统必须有样品回收或回送装置。对于一些油品低温特性分析仪器,有时是需要配置一套提供低温介质的循环系统,这就要求使用能够达到现场防爆要求的致冷机械和循环泵等。为考虑分析仪的校验操作,分析系统还可能配备标准样品加入装置,以方便在现场进行分析系统的校正和样品验证操作。

  • 【原创大赛】SH/T0693 汽油中芳烃分析系统的原理图解

    【原创大赛】SH/T0693 汽油中芳烃分析系统的原理图解

    [color=black]SH/T0693 汽油中芳烃分析系统的原理[/color][align=center][color=black]概述[/color][/align][color=black]《SH/T -0693 汽油中醇类和醚类的含量测定 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法》分析原理图解。[/color][align=center][color=black]一 背景介绍[/color][/align][color=black]无铅汽油中添加一定量的烯烃和芳烃可以显著提高汽油的辛烷值,芳烃的存在会增加发动机进气系统和燃烧室沉积物的形成,并增加尾气中芳烃、氮氧化物、其他烃类的排放,尤其是增加苯的排放,苯含量的增加危害公众健康。因此,在所有清洁汽油标注方法中都对芳烃进行了严格限制应用。[/color][align=center][color=black]二 结构原理[/color][/align][color=black]SH/T 0693[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析系统结构如图1所示,系统由预切色谱柱(Column-1,可以采用TCEP填充柱也可以使用TCEP的毛细管柱)、自动十通阀、主分析柱(Column-2,标准要求为弱极性毛细管柱)和阻尼柱(R)组成。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]系统分析程序对十通阀进行精确、定时的切换,改变两根色谱柱的反吹和连接状态,将汽油中的烃类物质与其他烃类组分分离,从而实现汽油样品中苯、甲苯和重芳烃类的定量分析。[/color][color=black]实际色谱分析过程中汽油样品需要进样测定两次,用以提高分析效率——第一次进样测定汽油中的苯和甲苯;第二次进样测定汽油样品中的C8以及C8以上的芳烃类物质。该色谱分析系统采用内标法定量,内标物为2-己酮。[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109242303055847_3470_1604036_3.jpg[/img][/align][align=center]图1 SH/T 0693 硬件结构(系统待机状态)[/align][align=center][color=black]三 工作流程[/color][/align][color=black]该系统的工作流程如下:[/color][color=black]第一次进样:[/color][color=black]汽油样品直接进样至[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的进样口(Injector)中,样品气化并进入预切色谱柱(Column-1),系统的简化结构如图2所示:[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109242303056641_1527_1604036_3.jpg[/img][/align][align=center]图2 进样状态下系统结构简化示意图[/align][color=black]汽油样品在预切色谱柱(Column-1)内各个组分的分布状态,如图3所示:[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109242303058643_482_1604036_3.jpg[/img][/align][align=center]图3 第一次进样预切柱流出组分色谱图[/align][color=black]在强极性预切色谱柱(TCEP柱)中汽油中各组分被分离成为大致两组:轻烃类组分(C9以下的烷烃和烯烃类物质)——保留较弱;重芳烃类组分(包括苯、甲苯以及C8以上的芳烃类并包含内标物质)——保留较强。[/color][color=black]切换反吹:[/color][color=black]预切色谱柱首先流出的轻烃类物质经由Vent端口放空,当分析时间到达图3中所示的切换点时(即轻烃类出峰之后、苯出峰之前),色谱系统控制十通阀旋转,系统状态发生变化,如图4所示:[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109242303059717_1330_1604036_3.jpg[/img][/align][align=center][color=black]图4 系统切换状态[/color][/align]此时,系统的简化结构如图5所示:[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109242303063845_4515_1604036_3.jpg[/img][/align][align=center]图5 反吹状态下系统的简化结构[/align][color=black]预切色谱柱(Column-1)中尚未流出的芳烃类物质(包括内标物)被反吹(注意此状态下预切色谱柱和主分析柱的载气流动方向发生变化)进入到主分析柱(Column-2)中,各组分依次流出至FID检测器出峰,系统获得的谱图如图6所示:[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109242303062549_3883_1604036_3.jpg[/img][/align][align=center]图6 第一次进样系统谱图[/align]系统复位当苯、甲苯和内标组分流出色谱柱后,十通阀再次旋转恢复至原始位置,如图1所示。此时柱箱程序升温至较高温度,将主色谱柱内残留的较重组分反吹入FID检测器,谱图中表现为复杂的色谱峰群。当所有重组分出峰完毕,系统降温恢复初始状态,完成第一次分析。第二次进样第二次进样时,一般需要提高柱温和流速,尽量缩短分析时间,预分离色谱柱中的谱图与图3相似,但是切换点发生变化,切换点选择到甲苯之后,重芳烃之前,如图7所示:[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109242303067800_6436_1604036_3.jpg[/img][/align][align=center]图7 第二次进样预切柱流出组分色谱图[/align]第二次进样分析获得的色谱谱图,如图8所示:[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109242303066543_9549_1604036_3.jpg[/img][/align][align=center]图6 第二次进样系统谱图[/align][align=center]四 常见故障[/align]载气要求载气要求彻底脱氧,以避免长期运行造成对预分离色谱柱的损坏。切换时间第一次进样测定时,如果切换时间选择较短,谱图中会存在较多烃类物质干扰;如果切换时间过长,那么苯色谱峰强度会受损失。切换时间随着系统工作时间的延长,杂质的积累和预分离色谱柱性能的变化,需要对切换时间进行调节。定量方法本系统采用内标法定量,计算时内标量与样品量的确定比较重要。需要定期对标准曲线进行校准。[align=center]小结[/align]本系统采用单十通阀的方案,两次进样完成汽油中苯、甲苯以及C8以上重芳烃的测定。

  • 汽油油品分析仪有什么作用?

    汽油油品分析仪是专门针对国内车用的合成高清洁环保汽油市场开发的汽油油品快速分析仪器。可准确测定出各种车用汽油成品油和基础油的辛烷值、抗爆指数、苯、芳烃、烯烃、氧含量等指标。可完全取代传统标准发动机法 ,气相色谱法等多种汽油分析仪器。具有精度高、重复性好、操作简便、日常维护量少、无运行费用等特点。是理想的化验室和现场快速分析仪器量筒。适合原料基础油 、合成汽油的检测。

  • 【原创大赛】SH/T0713 汽油中苯和甲苯分析系统的原理图解

    【原创大赛】SH/T0713 汽油中苯和甲苯分析系统的原理图解

    [color=black]SH/T0713 汽油中苯和甲苯分析系统的原理图解[/color][align=center][color=black]概述[/color][/align][color=black]《SH/T -0713-2002 车用汽油和航空汽油中苯和甲苯的含量测定法》基本原理解析。[/color][align=center][color=black]一 背景介绍[/color][/align][color=black]普通汽油中含有大量的(体积比30%-50%左右)的芳烃可提高汽油辛烷值,但其存在会增加汽车尾气中氮氧化物、一氧化碳、芳烃类等物质的排放量,其中苯和甲苯是有毒、有害物质,人体吸入后会使血液中白血球减少,免疫机能下降;亦是致癌物质,世界卫生组织和美国EPA认为人在接触1ug/m3的苯情况下,可使每百万人有4~8人患白血病的危险。[/color][color=black]随着环保意识的增强和汽油质量要求的升级,世界各国对汽油中苯含量 的要求均较严格,主要是因为苯为致癌物质,如果燃烧不完全会残存在汽车 尾气中,将会危害公众健康。[/color][color=black]石化行业标准《SH/T -0713-2002 车用汽油和航空汽油中苯和甲苯的含量测定法》目前为测定汽油中苯和甲苯含量的仲裁方法,在石油化工生产和检测行业中广泛应用。[/color][align=center][color=black]二 结构原理[/color][/align][color=black]SH/T 0713[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析系统结构如图1所示,系统由预切色谱柱(Column-1,标准方法要求使用非极性固定相的色谱柱)、自动六通阀、主分析柱(Column-2,标准方法要求使用强极性固定相的色谱柱)组成。通过[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]系统分析程序对六通阀的精确定时切换,改变两根色谱柱的反吹和连接状态,实现汽油样品中苯和甲苯的分析。[/color][color=black]系统采用内标法定量,丁酮作为内标物准确添加于所有的内标标准品和所有待测样品中。[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191858144515_4764_1604036_3.jpg[/img][/align][align=center][color=black]图1 SH/T 0713 硬件结构(系统待机状态)[/color][/align][color=black]系统的工作过程如下:[/color][color=black]待机和进样状态:[/color][color=black]汽油样品直接进样至[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的进样口(Injector)中,样品气化并进入预切色谱柱(Column-1),系统的简化结构如图2所示:[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191858147953_5747_1604036_3.jpg[/img][/align][align=center][color=black]图2 进样状态下系统结构简化示意图[/color][/align][color=black]预切色谱柱(Column-1)流出组分可能的谱图如图3所示:[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191858148734_5888_1604036_3.jpg[/img][/align][align=center][color=black]图3 预切柱流出组分色谱图[/color][/align][color=black]在预切色谱柱内,汽油中各组分大致按照分子量和沸点由小到大的顺序依次流出,苯、甲苯以及内标物(丁酮)保留较弱,与C6-C8多种烃类混合物一同出峰。三种物质流出顺序为丁酮、苯、甲苯。其中甲苯的保留时间最长,与C7-C8烃类混合物保留较为接近。[/color][color=black]切换反吹状态:[/color][color=black]当C8烃类物质流出预切色谱柱,C9烃类物质尚未流出时,自动六通阀转子旋转60度,系统状态变化为图4所示:[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191858149067_5565_1604036_3.jpg[/img][/align][align=center][color=black]图4 系统切换反吹状态[/color][/align][color=black]此时,本系统的简化结构如图5所示:[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191858151391_4198_1604036_3.jpg[/img][/align][align=center][color=black]图5 反吹状态下系统的简化结构示意图[/color][/align][color=black]预切色谱柱(Column-1)此时流量方向发生反向,色谱柱内的C9以上的重烃类物质被反吹流出色谱柱,经由Vent端口放空;C8以及C8以下的轻烃类物质(其中包含苯、甲苯、内标物——丁酮)进入主分析柱。在主分析柱的强极性固定相作用下,苯、甲苯和丁酮和轻烃类物质被分离开,系统谱图如图6所示:[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191858152172_4339_1604036_3.jpg[/img][/align][align=center][color=black]图6 系统谱图[/color][/align][color=black]系统复位[/color][color=black]当所有苯、甲苯和丁酮所有组分流出色谱柱后,六通阀再次旋转恢复至原始位置,如图1所示,本次分析完成。[/color][align=center][color=black]三 常见故障[/color][/align][color=black]切换点问题[/color][color=black]样品在预切柱中基本按照沸点排序,切换的时间需要选择在C8-C9烃类之间。切换点时间选择过短,会造成甲苯或者苯色谱峰面积的损失,切换点时间选择过长,会造成色谱图中干扰峰较多,对苯和甲苯的积分带来干扰。[/color][color=black]甲醇和乙醇的干扰[/color][color=black]《SH/T -0713-2002 车用汽油和航空汽油中苯和甲苯的含量测定法》分析标准中给出了三种配置色谱柱的方案,其中采用FFAP毛细管柱的方案,更加适合含甲醇或乙醇的车用汽油——甲醇或乙醇对分析结果干扰较小。[/color][color=black]定量[/color][color=black]本系统采用内标法定量,计算时内标量与样品量的确定比较重要。需要定期对标准曲线进行校准。[/color][align=center][color=black]小结[/color][/align][color=black]该分析系统长期运行后,需要对阀程序和定量操作进行定期校准。[/color]

  • 红外线气休分析仪的基本原理

    红外线气休分析仪的基本原理是基于某些气体对红外线的选择性吸收。红外线分析仪常用的红外线波长为2^12Hm。简单说就是将待测气体连续不断的通过-定长度和容积的容器,从容器可以透光的两个端面的中的一一个端面一侧入射一束红外光,然后在另-个端面测定红外线的辐射强度,然后依据红外线的吸收与吸光物质的浓度成正比就可知道被测气体的浓度。本项目中采用的是ABBA02000系列仪表,配以URAR26红外模块。朗伯一比尔定律一其物理意义是当一束平行单色光垂直通过某一均匀非散射的吸光物质时其吸光度与吸光物质的浓度及吸收层厚度成正比。这就是红外线气体分析仪的测量依据。红外线气体分析仪的特点1、能测量多种气体:除了单原子的惰性气体和具有对称结构无极性的双原子分子气体外,CO、C02、NO、N02、NH3等无机物、CH4、C2H4等烷烃、烯烃和其他烃类及有机物都可用红外分析仪器进行测量 2、测量范围宽:可分析气体的。上限达100%,下限达几个ppm的浓度。进行精细化处理后,还可以进行痕量分析 3、灵敏度高:具有很高的监测灵敏度,气体浓度有微小变化都能分辨出来 4、测量精度高:一般都在+/-2%FS,不少产品达到+/-1%FS。与其他分析手段相比,它的精度较高且稳定性好 5、反应快:响应时间一般在10S以内6、有良好的选择性:红外分析仪器有很高的选择性系數,因此它特别适合于对多组分混合气体中某--待分析组分的测量,而且当混合气体中-种或几种组分的浓度发生变化时,并不影响对待分析组分的测量。[b][color=#ffffff]更多参考:分析仪http://www.china-endress.com[/color][/b]

  • 【原创大赛】汽油中甲缩醛红外检测方法

    【原创大赛】汽油中甲缩醛红外检测方法

    [align=center] 汽油中甲缩醛红外检测方法[/align][align=center]西安国联质量检测技术股份有限公司[/align][align=center]品控部:杨阿娟[/align] 甲缩醛是一种无色澄清易挥发可燃液体,主要用于杀虫剂配方、皮革和汽车上光剂、空气清新剂等;甲缩醛做为汽油中的非法添加物,目前尚无国家标准对其进行检测[color=#333333]。[/color][color=#333333]本方法[/color][color=#333333]是[/color][color=#333333]用红外光谱法对汽油中的甲缩醛进行检测,汽油是由C4~C12的烷烃、烯烃和芳烃等多种碳氢化合物组成的混合物,成品汽油本身还含有多种功能添加剂,采用传统的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]和液相色谱等分析[/color][color=#333333]方法,[/color][color=#333333]定量分析汽油组分的难度大大增加[/color][color=#333333]。[/color][color=#333333]汽油中的主要成分为碳氢化合物,化学键的红外振动吸收[/color][color=#333333]比[/color][color=#333333]较单一,主要为C-H键、C-C键的各类振动吸收峰,而汽油添加剂大部分为含有O、N等元素的化合物,可产生独特的红外振动吸收峰,所以利用红外光谱就很容易识别这类化合物,并可依据吸光度进行定量;[/color][color=#333333]主要仪器:傅立叶变换中红外光谱仪[/color][color=#333333]正庚烷:分析纯[/color][color=#333333]甲缩醛:纯度大于99.8%[/color][color=#333333]精致无添加剂汽油[/color][color=#333333]检测器:DTGS KBr检测器(分辨率为4cm[/color][sup][color=#333333]-1[/color][/sup][color=#333333]);扫描波数:4000~500cm[/color][sup][color=#333333]-1[/color][/sup][color=#333333];扫描次数:32次。[/color][color=#333333]方法:[/color][color=#333333] 在吸收池中注入正庚烷分析纯不得有气泡,进行背景扫描,配置五个递增的0.0、0.5、1.0、1.5、2.0不同浓度的甲缩醛标品进行标准曲线的绘制,要求线性r[/color][sup][color=#333333]2[/color][/sup][color=#333333]大于0.99,满足光谱定量的线性要求,波数在1140[/color][color=#333333]cm[/color][sup][color=#333333]-1[/color][/sup][color=#333333]±5[/color][color=#333333]cm[/color][sup][color=#333333]-1[/color][/sup][color=#333333]处吸收峰为甲缩醛的定量谱带,对样品进行检测,用标定好的线性关系进行计算,最终求得样品中的甲缩醛含量,该方法检出限为0.05%[/color][color=#333333]。[/color]下面是标准谱图和曲线:[align=center][img=,481,301]http://ng1.17img.cn/bbsfiles/images/2017/09/201709091541_01_2904018_3.png[/img][/align][align=center]标准曲线1,浓度0.73%[/align][align=center][img=,481,301]http://ng1.17img.cn/bbsfiles/images/2017/09/201709091541_02_2904018_3.png[/img][/align][align=center]标准曲线2,浓度1.00%[/align][align=center][img=,481,301]http://ng1.17img.cn/bbsfiles/images/2017/09/201709091542_01_2904018_3.png[/img][/align][align=center]标准曲线3,浓度1.16%[/align][align=center][img=,481,301]http://ng1.17img.cn/bbsfiles/images/2017/09/201709091543_01_2904018_3.png[/img][/align][align=center]标准曲线4,浓度1.39%[/align][align=center][img=,481,301]http://ng1.17img.cn/bbsfiles/images/2017/09/201709091544_01_2904018_3.png[/img][/align][align=center]标准曲线5,浓度1.73%[/align][align=center][img=,651,364]http://ng1.17img.cn/bbsfiles/images/2017/09/201709091544_02_2904018_3.png[/img][/align]根据标准曲线的浓度和吸光度,绘制标准曲线,根据线性方程对未知检测样品进行定性定量分析,结果准确,操作简单方便!

  • 【原创大赛】SH/T0663 汽油中氧化物分析系统的原理

    【原创大赛】SH/T0663 汽油中氧化物分析系统的原理

    [align=center][font=宋体][font=Calibri]SH/T0663 [/font][font=宋体]汽油中氧化物分析系统的原理[/font][/font][/align][align=center][font=宋体] [/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体][font=宋体]《[/font][font=Calibri]SH/T -0663 [/font][font=宋体]汽油中醇类和醚类的含量测定 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法》分析原理图解。[/font][/font][font=宋体] [/font][align=center][font=宋体][font=宋体]一[/font] [font=宋体]背景介绍[/font][/font][/align][font=宋体][font=宋体]汽油中[/font][/font][font=宋体][font=宋体]添加适量(一般氧质量含量不大于[/font][font=宋体]2%)[/font][/font][font=宋体][font=宋体]含氧化合物,[/font][/font][font=宋体][font=宋体]例如[/font][/font][font=宋体][font=宋体]甲基叔丁基醚([/font][font=宋体]MTBE)、乙基叔丁基醚(ETBE)、叔戊基甲基醚(TAME)、乙醇、异丙醇等,[/font][/font][font=宋体][font=宋体]可以[/font][/font][font=宋体][font=宋体]有效提高汽油的辛烷值,使[/font][/font][font=宋体][font=宋体]其[/font][/font][font=宋体][font=宋体]燃烧[/font][/font][font=宋体][font=宋体]更加[/font][/font][font=宋体][font=宋体]完全,[/font][/font][font=宋体][font=宋体]并且能够[/font][/font][font=宋体][font=宋体]降低一氧化碳及碳氢化合物的排放,[/font][/font][font=宋体][font=宋体]亦可以减少燃烧过程中臭氧的产生,以利于降低[/font][/font][font=宋体][font=宋体]空气污染。[/font][/font][font=宋体][font=宋体]石化行业标准《[/font][font=Calibri]SH/T -0663 [/font][font=宋体]汽油中醇类和醚类的含量测定 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法》目前为测定汽油中氧质量含量的仲裁方法,在石油化工生产和石油产品检测行业中广泛应用。[/font][/font][align=center][font=宋体][font=宋体]二[/font] [font=宋体]结构原理[/font][/font][/align][font=宋体][font=Calibri]SH/T 0663[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析系统结构如图[/font][font=Calibri]1[/font][font=宋体]所示,系统由预切色谱柱([/font][font=Calibri]Column-1[/font][font=宋体],标准要求为[/font][font=Calibri]TCEP[/font][font=宋体]微填充柱)、自动十通阀、主分析柱([/font][font=Calibri]Column-2[/font][font=宋体],标准要求为弱极性毛细管柱)和阻尼柱([/font][font=Calibri]R[/font][font=宋体])组成。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]系统分析程序对十通阀进行精确、定时的切换,改变两根色谱柱的反吹和连接状态,将汽油中的醇类和醚类物质与其他烃类组分分离,从而实现汽油样品中氧化物的定量分析。[/font][/font][align=center][font=Calibri][img=,690,466]https://ng1.17img.cn/bbsfiles/images/2021/07/202107312340525514_3793_1604036_3.png!w690x466.jpg[/img] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]1 SH/T 0663 [/font][font=宋体]硬件结构(系统待机状态)[/font][/font][/align][align=center][font=宋体] [/font][/align][align=center][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]三[/font] [font=宋体]工作流程[/font][/font][/align][font=宋体]该系统的工作流程如下:[/font][font=宋体]1. [/font][font=宋体]进样:[/font][font=宋体][font=宋体]汽油样品直接进样至[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的进样口([/font][font=Calibri]Injector[/font][font=宋体])中,样品气化并进入预切色谱柱([/font][font=Calibri]Column-1[/font][font=宋体]),系统的简化结构如图[/font][font=Calibri]2[/font][font=宋体]所示:[/font][/font][align=center][font=Calibri][img=,690,265]https://ng1.17img.cn/bbsfiles/images/2021/07/202107312341127043_1677_1604036_3.png!w690x265.jpg[/img] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]2 [/font][font=宋体]进样状态下系统结构简化示意图[/font][/font][/align][font=宋体][font=宋体]汽油样品在预切色谱柱([/font][font=Calibri]Column-1[/font][font=宋体])内各个组分的分布状态,如图[/font][font=Calibri]3[/font][font=宋体]所示:[/font][/font][align=center][font=Calibri] [/font][/align][align=center][font=Calibri] [img=,690,774]https://ng1.17img.cn/bbsfiles/images/2021/07/202107312341248420_5473_1604036_3.png!w690x774.jpg[/img][/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]3 [/font][font=宋体]预切柱流出组分色谱图[/font][/font][/align][font=宋体][font=宋体]在强极性预切色谱柱(一般为高含量的[/font][font=Calibri]TCEP[/font][font=宋体]固定相的微填充柱)中汽油中各组分被分离成为大致两组:轻烃类组分——保留较弱;醇醚类组分(包括其他较重组分,例如芳烃类重烃类等物质)——保留较强。[/font][/font][font=宋体][font=宋体]需要注意的是保留时间较弱的组分是极性较弱的[/font][font=Calibri]MTBE[/font][font=宋体]和[/font][font=Calibri]DIPE[/font][font=宋体]等组分,与系统最终获得的谱图出峰顺序不同。[/font][/font][font=宋体]2. [/font][font=宋体]切换反吹:[/font][font=宋体][font=宋体]预切色谱柱首先流出的轻烃类物质经由[/font][font=Calibri]Vent[/font][font=宋体]端口放空,当分析时间到达图[/font][font=Calibri]2[/font][font=宋体]中所示的切换点时,色谱系统控制十通阀旋转,系统状态发生变化,如图[/font][font=Calibri]4[/font][font=宋体]所示:[/font][/font][align=center][font=Calibri] [img=,690,483]https://ng1.17img.cn/bbsfiles/images/2021/07/202107312341371469_1690_1604036_3.png!w690x483.jpg[/img][/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]4 [/font][font=宋体]系统切换状态[/font][/font][/align][font=Calibri] [/font][font=宋体][font=宋体]此时,系统的简化结构如图[/font][font=Calibri]5[/font][font=宋体]所示:[/font][/font][font=Calibri] [/font][align=center][font=Calibri][img=,690,192]https://ng1.17img.cn/bbsfiles/images/2021/07/202107312341495183_4566_1604036_3.png!w690x192.jpg[/img] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]5 [/font][font=宋体]反吹状态下系统的简化结构[/font][/font][/align][font=宋体][font=宋体]预切色谱柱([/font][font=Calibri]Column-1[/font][font=宋体])中尚未流出的醇醚类物质(包括其他较重组分)被反吹(注意此状态下预切色谱柱和主分析柱的载气流动方向发生变化)进入到主分析柱([/font][font=Calibri]Column-2[/font][font=宋体])中,各组分依次流出至[/font][font=Calibri]FID[/font][font=宋体]检测器出峰,系统获得的谱图如图[/font][font=Calibri]6[/font][font=宋体]所示:[/font][/font][font=Calibri] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][align=center][font=Calibri] [img=,690,349]https://ng1.17img.cn/bbsfiles/images/2021/07/202107312342044131_8651_1604036_3.png!w690x349.jpg[/img][/font][/align][align=center][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]6 [/font][font=宋体]系统谱图[/font][/font][/align][align=center][font=宋体] [/font][/align][font=宋体]3. [/font][font=宋体]系统复位[/font][font=宋体][font=宋体]当所有氧化物组分流出色谱柱后,十通阀再次旋转恢复至原始位置,如图[/font][font=Calibri]1[/font][font=宋体]所示。[/font][/font][font=宋体][font=宋体]此时柱箱程序升温至较高温度,将主色谱柱内残留的较重组分反吹入[/font][font=Calibri]FID[/font][font=宋体]检测器,谱图中表现为复杂的色谱峰群。当所有重组分出峰完毕,系统降温恢复初始状态,完成本次分析。[/font][/font][font=宋体] [/font][align=center][font=宋体][font=宋体]四[/font] [font=宋体]常见故障[/font][/font][/align][font=宋体]1. [/font][font=宋体]载气要求[/font][font=宋体]2. [/font][font=宋体]切换时间[/font][font=宋体][font=Calibri]SH/T 0663 [/font][font=宋体]分析系统使用长度较短的微填充柱实现样品的预分离,各组分出峰时间较快,最优的切换点时间允许调整的范围较小,即“切换窗口”较窄。[/font][/font][font=宋体]系统长期运行后,由于载气、色谱柱或者样品中杂质积累等问题,造成预切柱性能发生变化,烃类和氧化物各组分保留时间发生变化。分析系统的切换点需要进行一定程度的调整,否则会造成分析结果不良。[/font][font=宋体][font=宋体]如果系统性能变化使得切换点的时间偏长,那么会造成系统最终谱图中的[/font][font=Calibri]MTBE[/font][font=宋体]和[/font][font=Calibri]DIPE[/font][font=宋体]色谱峰面积显著减小;如果切换点时间偏短,会产生较多轻烃类组分被切割进入主分析色谱柱,谱图中会出现较多的“杂峰”,干扰目标组分定量。[/font][/font][font=宋体]3. [/font][font=宋体]干扰组分的识别[/font][font=宋体][font=Calibri]SH-0663[/font][font=宋体]标准编制时间较长,强极性预柱对汽油组分的切割并非完全彻底,此外实际工作中样品的复杂程度差异较大,系统色谱图中存在较多干扰色谱峰,需要根据情况,进行辅助判定。[/font][/font][font=宋体]比较常见的是甲醇色谱峰附近经常会有水和烃类杂质的干扰,可以根据色谱峰的对称情况,予以判定。样品中的其他醇类物质,色谱峰形一般都具有一定程度的拖尾,醚类物质和未切割完全的烃类物质,色谱峰形状相对比较对称,可以根据谱图形状进行目标色谱峰定量的辅助判定。[/font][font=Calibri] [/font][font=宋体]4. [/font][font=宋体]系统惰性[/font][font=宋体]分析系统中样品流经的十通阀和所有管路均经过惰性化处理,系统长期运行后,由于载气或者样品杂质等原因,会造成管路惰性变差而吸附某些醇醚类组分,造成某些醇醚类组分定量发生偏差。[/font][font=宋体]如果出现这种情况,一般需要联系系统厂家进行维修或更换惰性管路。[/font][font=宋体]5. [/font][font=宋体]定量方法[/font][font=宋体]本系统采用内标法定量,计算时内标量与样品量的确定比较重要。需要定期对标准曲线进行校准。[/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]该分析系统长期运行后,需要对阀程序和定量操作进行定期校准。[/font][font=Calibri] [/font][font=Calibri] [/font][font=Calibri] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=Calibri] [/font]

  • 【求助】汽油中苯和甲苯分析的分离问题

    请教各位大侠,俺现在分析汽油中的苯、甲苯(sh/t 0713-2002),因汽油中含有甲醇(约1%),采用标准所述填充柱系统,甲醇干扰苯的出峰;改用毛细柱系统不干扰。这是在做标样时的情况。 但是分析汽油样品时实际样品中的低沸点组分还是干扰苯的岀峰,分离效果不好。请教请教![em09508]

  • 选择红外气体分析仪或红外烟气分析仪的几点理由

    选择红外气体分析仪或红外烟气分析仪的几点理由

    在选择气体分析仪或烟气分析仪,要选择红外原理的仪器,理由如下:http://ng1.17img.cn/bbsfiles/images/2012/12/201212061335_409951_1668260_3.jpg****全红外气体分析仪 ,型号***,其所有的参数测量如一氧化氮,二氧化氮,二氧化硫等都是采用目前最先进的非分散红外法,也是目前**品牌中少见的便携式的红外气体分析仪

  • 【原创大赛】近红外分析仪在粮油企业应用的效益分析

    近红外光谱技术应用在粮油行业已有多年的时间,自2010年以来,粮油行业包括小麦或小麦粉、稻谷、玉米、大豆等在内的相关的国家标准已有十余项,检测指标包括水分、蛋白、脂肪、淀粉等含量的测定。近红外光谱技术以其特有的快速、无损、准确的特点,成功应用于粮油行业。 作为国内唯一拥有全线近红外分析产品的龙头企业,聚光科技(杭州)股份有限公司在国内粮油行业占据近三分之一的市场份额,积累了大量模型的同时,对国内粮油行业的现状和粮油企业的需求也有了充分的了解和认识。聚光科技致力于为粮油企业提供高性价比的好产品,让产品满足用户使用需求的同时,还能为用户带来额外的效益,助力用户开源节流,降本增效。聚光科技Sup-NIR系列近红外分析仪到底能给粮油企业带来什么,让粮油企业它如此青睐?且听笔者慢慢分析。没有近红外的日子,粮油企业是怎么进行常规检测的? 目前粮油行业常规检测还是多用传统检测手段,传统的分析方法需要大量消耗水、电、及化学试剂。 粮油行业常见指标的传统检测方法与近红外检测方法时间对比如下: http://img1.17img.cn/17img/images/201408/uepic/cfb5a857-20ee-4890-bea3-84ad30eec378.jpg 时间就是金钱!这是生产企业生存的第一法则! 试想一下,一个粮油生产企业每天投入近10个小时的时间,至少3人次的人力去做大量的实验来检测上述5个指标,费时费力不说,前处理、人为分析等多个环节都会给检测的结果带来不可避免的误差,导致结果不准确。检测结果不准确,直接影响粮油生产企业原料采购和生产产品的品质检测。相同的样品,相同的条件,只要3分钟,近红外分析仪就能给出全部5个指标的检测结果!近红外是如何减少企业化验成本的?以国内一家年产量10万吨的油脂企业为例:传统的分析方法需要大量消耗水、电、及化学试剂,而近红外分析只需耗用极少量的电力,无需其它任何试剂。化验室测试粗蛋白、水分、灰分,原料平均每月需分析450个样品(分析粗蛋白、水分、灰分、粗脂肪),采用近红外检测后,这些样品所耗的试剂、水、电等费用可全部节约。具体数字见下表。表1 采用近红外分析方法节约水电试剂费用明细 http://img1.17img.cn/17img/images/201408/uepic/5abbdb35-9743-4e05-bf7d-ff40d5f0fefe.jpg说明:采用近红外分析,每月累计节约费用近3387元,以上样品分析是以每批为计算,若不足满批,则成本会更高。故合计每年节约费用在:37257元。对于该企业来说,每年仅是水费、电费和试剂费就可节省最少37257元,还不包括因此节省下来的人力成本。因为常规理化检测需要接触有毒试剂,对身体健康不利,因此造成化验人员不固定,每次新化验人员上岗,均需进行培训,并且管理难度增大。采用近红外设备分析后,化学试剂使用量减少,对环境污染减少,可节约减排费用。同时人员流动相对减少,因此可节省员工培训时间,降低管理难度,从而间接创造收益。近红外是如何帮助企业降低原料采购成本的? 油脂行业的生产成本中,原料成本大约占用了85%的比例,其它如工人工资、能源等只占到15%左右。因此,控制原料成本是提高效益、创造利润的重要环节。销售价格由原料成本+固定成本+人工/费用+毛利组成,由下表可计算出:当原料成本节约了1%时,毛利由5%增长为6%,实际增长率=20%。以大豆油生产企业为例进行效益分析:http://img1.17img.cn/17img/images/201408/uepic/948405fa-4a86-422b-8394-5dfd370a7614.jpg(1)豆粕中水分控制效益分析: 检测水分含量,调整干燥(蒸汽)工序中物流速度与蒸汽量,调节水分含量: 水分含量偏高,采取降低物流速度或提高烘蒸温度; 水分含量偏低,采取加大蒸汽流量; 水分效益分析 : 水分每增加0.1%,带来3元/吨的利润; 水分控制由原来的平均12.5%提升到12.8%,则增加了0.3%的水分,即可带来9元/吨的利润;(2)豆粕中蛋白控制效益分析: 检测蛋白含量,调整豆皮或高蛋白豆粕加入量,调节蛋白含量: 蛋白含量偏高,采取加入豆皮; 蛋白含量偏低,采取加入高蛋白豆粕; 蛋白效益分析: 蛋白每降低0.1%,带来15元/吨的利润; 蛋白控制由原来的平均43.5%降低到43.3%,则降低了0.2%的蛋白,即可带来30元/吨的利润;(3)豆粕中残油控制效益分析: 检测残油的目的主要为控制加工工艺,平衡效率和效益: 一般残油小于0.5%,则豆子浸泡时间过长,影响生产效率,即产量变低; 一般残油大于0.7%,则豆子浸泡时间不足或轧胚、浸出工序异常,出油率偏低,影响效益; 近红外是如何帮助企业控制原料和粕类品质的? 在油脂品质控制中,控制原料和粕类品质,可带来巨大收益。 假设大豆粗脂肪为18%,价格约3500元/吨。大豆粗脂肪每增加一个百分点,每吨的价格就要高60元左右。如能严格控制检测含油量,按质定价可以节约不少成本。 假设豆粕粗蛋白含量43%左右,价格约3100元/吨;豆粕粗蛋白含量每高一个百分点,每吨价格就要高50-100元。利用近红外技术快速检测豆粕粗蛋白,可以通过添加低价的豆皮,对豆粕的粗蛋白含量进行精确调控。再以年产量10万吨豆粕的油脂厂为例,以粗蛋白检测为例:表2 采用近红外方法后仅节约蛋白一项可增加的效益 http://img1.17img.cn/17img/images/201408/uepic/7c75e131-0646-4209-8531-33ff52782e0e.jpg 根据以上两个表,可估算出:在采用近红外分析技术后,对于示例中的油脂厂,每年可节约的水电试剂费为37257元;严格质量控制,仅节约蛋白可增加41万元收益。同样如果能严格控制水分含量和收购原料时含油量和水分含量,可带来非常可观的收益。除了有形的开源节流,对于生产企业的无形的品牌和知名度也有正面的影响。近红外分析仪可在2~3分钟内快速反映成品质量是否合格,加快了成品出厂周期,减轻了成品库负荷。成品抽检频率可提高上百倍,减少了不合格品的流出,从而保证产品质量的稳定性,提高了客户满意度。另外近红外快速分析仪还可以通过快速检测减少堆装时间、节省部分装运费用;通过快速分析原料适当降低原料库存,节省资金利息;降低质量事故,减少差错成本;使采购部门快速判断原料质量和价格,增加采购机会。综上所述,采用近红外带来的收益主要有如下部分: 直接节约实验室化验成本 按质论价,降低原料成本 快速控制原料和粕类品质 降低人员管理难度,节约管理费用 降低环境污染,节约减排费用 稳定产品质量,提高企业信誉,带来无形收益。 注重的效益粮油企业在寻求着各种能够节能降耗的方法,提高效益的同时降低成本,还要保证产品的质量和用户的满意度。用户的需求就是仪器生产企业的动力,聚光科技开发出的SupNIR系列近红外分析,不仅能够快速无损地检测多种指标,还能够替用户精打细算,降本增效,因此受到广大粮油企业的欢迎。目前国内包括山东三维油脂、嘉里粮油(青岛)有限公司、鲁花集团等大中型粮油企业都已采购聚光科技的近红外分析仪,相信有了用户的大力支持,聚光科技会推出更多更好的服务!ps:更多近红外在细分领域的应用请点击专题查看http://www.fpi-inc.com/jgzt/welcome.php?7

  • 汽油分析基础知识

    [align=center]汽油分析基础知识[/align]第一部分概述1.石油及其组成原油:一种黑褐色的流动或半流动粘稠液体,略轻于水,密度0.85—0.95,不同地方原油凝点(凝点 solidifying point :在规定的条件下,油品试样冷却至停止流动时的最高温度。)差异很大。原油是一个十分复杂的混合物质。就其化学元素而言,碳83—87%,氢11—14% ,S 5%以下,N0.4%以下,氧和金属均在0.5%以下,原油中烃类96%—99%。原油按烃的类型划分,石蜡基原油(即链烷烃含量占50%以上),环烷基原油(环烷烃和芳烃较多)和中间基原油。石蜡基原油特点是密度较小,蜡含量高,凝点高,硫和胶质含量较少,属于地质年代古老的原油。环烷基原油特点是密度较大,蜡含量高,凝点低,硫和胶质含量较多,属于地质年代年轻的原油。大庆原油属于低硫石蜡基原油,胜利油田孤岛原油属于含硫环烷—中间基原油,中东原油大部分是含硫和高硫中间基原油。2油品及油品生产原油经过石油炼制(一系列的加工过程)而得到的各种商品统称石油产品,有车用汽油,车用柴油,喷气燃料或煤油,润滑油,石蜡,沥青,石油焦及炼厂气(液化石油气)等。成品油:汽油、柴油和燃料油等石油制品及以上石油制品为主要成分,经调合、混配而形成的其它燃料。半成品油:也叫自用油,主要指用自用燃料油和一些深加工装置的原料油,如丙烯做聚丙烯装置的原料,石脑油做催化重整装置或制氢装置的原料以及残渣燃料油做加热炉的燃料等。石油炼制分为一次加工和二次加工。炼油厂将原油炼制成汽油煤油柴油等燃料油品,普遍的工艺流程是:常减压蒸馏—FCC—焦化。一次加工是用蒸馏方法将原油分离成不同馏分的过程。包括原油预处理(脱盐脱水),常压蒸馏和减压蒸馏。其目的是将原油按沸点不同分离成直馏汽油、喷气燃料、煤油、轻柴油等轻质馏分油(沸点低于370℃的馏分油),重柴油、润滑油馏分等重质馏分油(沸点370―540℃的馏分油)和常压重油、减压渣油等;也可以按不同的生产方案分割出重整原料、催化裂化原料、加氢裂化原料等。二次加工是将一次加工产品进行再加工的过程。主要目的是重质油轻质化、改善油品质量和生产化工原料。包括催化裂化(将重质馏分油转化为裂化气、汽油、柴油)、加氢裂化(渣油或重质馏分油在高氢气压力下,通过加热和催化剂使其转化为高质量汽油、柴油、喷气燃料)、减黏裂化(将减压渣油浅度裂化为较低黏度的燃料油)、焦化(将渣油深度裂化为气体、汽油、柴油、蜡油和焦炭)、催化重整(改变直馏汽油分子结构以提高辛烷值或者制取苯、甲苯、二甲苯等有机化工原料)和油品精制(将油品中某些杂质或者不理想组分除去,改善油品质量)等,它们都是以化学反应为主的加工过程。二次加工采用的裂化工艺是将高分子烃化物(分子量300—500以上)在一定温度压力和有催化剂或氢气存在的环境下进行裂解,分解成分子量低的烃化物(汽油80—150℃,煤油150—250℃,轻柴油200—300℃)。同时,为了提高汽油辛烷值,将直馏汽油进行催化重整,获得高辛烷值汽油组分和苯类产品。采用热裂化、FCC和加氢裂化等工艺将沸点高于400℃的减压重馏分油和渣油转化成汽油,煤油和柴油。在此转化过程中,大分子烃经过加氢和脱碳(H/C变大),转化为适宜的小分子烃并伴有脱杂质功能。为了生产更多高品质的汽油,还要对石脑油馏分进行催化重整,C5 C6 异构化,正丁烷和C4 C5单烯烃的烷基化以及烯烃的叠合。几个概念:裂化是大分子变小分子,沸点降低;叠合是小分子变大分子,沸点升高,但都是在汽油沸程范围内。加氢是H/C变大,脱氢是H/C变小。异构化是相对分子质量不变,但分子结构方发生了人们所希望的变化,最明显的就是辛烷值大幅度升高。热裂化和FCC的主要区别在于:热裂解用高温使大分子裂解成小分子。FCC使用催化剂,大分子的裂解异构化芳构化反应 汽油辛烷值高,安定性也更好。延迟焦化 delayed coking 是重质渣油加热后深度裂解和缩合反应转化为气体汽油柴油蜡油和焦炭的加工过程。重质油FCCFCC是炼油厂进行深加工的主要装置。Fluid calalytic cracking,FCC是在有催化剂存在的500度高温条件下,使重质油进行裂化反应,转化成气体、汽油、柴油等轻质油品;同时由催化剂将积炭带出反应器,再生后循环使用。它的原料主要是减压馏分油、焦化馏分油等重质馏分油以及掺入少量减压渣油。FCC装置产品以汽油柴油为主,轻质油收率可达70%以上。所产汽油辛烷值高。3 高质量汽油组分的生产技术:3.1 催化重整简称重整,是指对烃类分子结构进行重新排列,使之变为另外一类更有使用价值的分子结构烃类的加工过程。催化重整工艺就是在催化剂存在条件下,将正构烷基和环烷烃进行芳构化、异构化和脱氢反应,转化为芳香烃和异构烷烃,得到高辛烷值汽油和苯类产品。催化重整工艺主要是用来生产高辛烷值汽油或苯、甲苯、二甲苯等苯类产品;同时副产物氢气作为加氢精制和加氢裂化装置的原料。早期是热重整,产品质量差效率低,因此很快被催化重整取代。催化剂使用铼、锡、铱、铂。铂铼重整和多金属重整。直馏汽油(石脑油)主要是正构烷烃和环烷烃,所以辛烷值低,需要采用催化重整工艺进行加工。催化重整生产装置大体上由原料油预处理、重整反应、芳烃抽提等三个部分组成。3.2异构化C5和C6低碳正构烷烃的辛烷值相当低, 转化成相应的异构烷烃,则其辛烷值大幅度提高,成为重要的汽油高辛烷值调和组分。(RON:正戊烷62异戊烷93,正己烷30 2,2二甲基丁烷93 、2,3-二甲基丁烷104)C5正构烷烃异构化提高辛烷值约30个单位,C6正构烷烃异构化提高辛烷值60个单位以上。C5/C6异构化汽油还有如下的优点:1 异构化油的产率高,体积收率可达100%;2 依靠异构烷烃而非芳烃提高汽油辛烷值,有利于环境保护;3 催化重整汽油主要改善80-180重馏分汽油的辛烷值,而异构化油则能调节汽油的前端辛烷值,两者合用有互补作用,能使汽油的馏程和辛烷值有合理的分布,从而改善汽油发动机的燃烧性能。3.3 由炼厂气生产高质量汽油组分的烷基化和催化叠合工艺炼厂气分两种:1、C1 甲烷和 C2 乙烷、乙烯,数量较少,一般作为燃料气烧掉;2 C3 丙烷、丙烯等和 C4 丁烷、丁烯等烃类,也就是石油液化气,它是炼厂气加工的主体。烷基化反应是一个不饱和烃(烯烃、芳烃)分子与一个饱和烃(烷烃)分子在某种反应条件下结合成一个较大分子的烷烃。烷基化油是高辛烷值汽油的组分,烷基化汽油的组成主要是异辛烷,辛烷值高,有良好的挥发性和燃烧性,是航空汽油和车用汽油的理想调和组分。原料异丁烷和各种丁烯组分(异丁烯、1-丁烯、2-丁烯等)以及丙烯、丁烯,在酸性催化剂作用下,进行加成反应。硫酸法烷基化和氢氟酸法烷基化烷基化油的性质:辛烷值高,敏感度小,蒸气压低,饱和烃(不含芳烃、硫和烯烃),是理想的高辛烷值清洁汽油组分。烷基化油辛烷值和原料中的烯烃碳原子数有关,其中以丁烯为原料时辛烷值相对高些,RON 可以到97,MON94。催化叠合是将丙烯、丁烯馏分叠合成高辛烷值汽油组分。在一定温度和压力下,磷酸做催化剂,反应如下:丙烯C3H6+C3H6 C6H12 己烯 丁烯C4H8+ C4H8 C8H16 辛烯3.4 醚化以甲基叔丁基醚MTBE 为代表的醚类,是无硫无芳烃低烯烃的优质高辛烷值汽油组分。MTBE 可以以任何比例与汽油混溶而不发生相分离。醚化主要指异丁烯与甲醇反应生成甲基叔丁基醚。反应如下:生产MTBE 的原料是炼厂气中的异丁烯和外购的甲醇,催化剂为强酸性阳离子交换树脂。装置所得到的纯度在98%以上。叔戊基甲醚 Tertiaryamyl methyl teher,TAME FCC汽油C5馏分中含量为20-25%的叔戊烯。4 主要燃料油品种类 (石油产品按GB/T 498—1987分6大类:Fuels solvents lubricants waxes bitumen coke)4.1 汽油(gasoline) 由石油装置所得到的沸点30—205℃的石油馏分。汽油按来源分,有直馏汽油、热裂化汽油、焦化汽油、FCC汽油、加氢裂化汽油、催化重整汽油、烷基化汽油等。按用途分,车用汽油、航空汽油、工业汽油或溶剂汽油等。其中车用汽油占汽油总消费量的90%以上。(1) 车用汽油(motor gasoline)主要用于汽车摩托车和拖拉机的点燃式发动机。车用汽油的牌号用其研究法辛烷值(research octane number,RON)表示,RON90、 93、 95 、97 。(2) 航空汽油(aviation gasoline )主要用于活塞式航空发动机,通常由基础油、高辛烷值组分、异戊烷和添加剂调和而成。基础油一般是经过精制的直溜汽油、FCC汽油或重整汽油,是航空汽油的基本组分,要求有较高的抗爆性和安定性。高辛烷值组分是用来提高抗爆性,异戊烷则用来调整汽油的蒸汽压和汽化性能。(3) 工业汽油( industrial gasoline )也叫溶剂汽油。是馏程45—190℃的直馏馏分精制而成,作为工农业生产中的溶剂使用。组成不含裂化馏分,其沸程因用途而不同。溶剂油其性质因用途而异。洗衣挥发油、油漆溶剂油、油脂抽提溶剂油、橡胶溶剂油等。4.2 煤油 kerosene 相对密度20℃ 0.790~0.850,馏程为150~310℃的石油馏分,主要由C12 ~C16的烃类组成。通常分为喷气燃料和普通煤油,喷气燃料的用量远大于普通煤油。(1) 航空煤油aviatiion krosine 也叫喷气燃料 jet fuel ,主要用于航空燃气涡轮发动机,馏程为60~280℃,要求烯烃和芳烃含量少,稳定性好,结晶点和冰点低,高空飞行时,在-40~-60℃低温下不得析出冰和蜡。(2) 普通煤油包括 灯用煤油,馏程为170~280℃;溶剂用煤油,印刷油墨、油漆,与工业溶剂油相比,主要是馏程范围窄。用于医药工业和油漆工业,不允许含有过多的胶质、烯烃和芳烃,一般由馏程180~310℃的直溜馏分精制而成。4.3 柴油diesel fuel 相对密度20℃ 0.830~0.880,馏程为200~400℃的石油馏分,主要由C16 ~C20的烃类组成,颜色为淡黄色或者淡褐色。根据十六烷值的要求,烷烃含量越多,柴油的质量越好,但是往往在达到倾点之前,柴油就析出烷烃组分—蜡,使燃料过滤发生堵塞。(1) 车用柴油主要用于装有压燃式发动机(简称柴油机)的汽车、拖拉机、铁路机车、船舶舰艇和矿山机械等。车用柴油分为轻柴油和重柴油。轻柴油主要用作1000r/min以上的高速柴油机,轻柴油的牌号是按凝点来划分,如0号柴油的凝点不高于0℃。重柴油主要用作中速或低速柴油机(1000r/min)的燃料。 柴油最重要的特性是其燃烧性能(用十六烷值表示)及低温流动性。(2) 特种柴油,也叫海军柴油,主要由精制的直馏轻柴油馏分组成,是海军快艇特种柴油机的燃料。按凝点分为-10号,-35号,-50号三个牌号。4.4 燃料油 fuel oil 燃料油是用于炉内燃烧以产生热量或者用于发动机以产生动力的液体石油产品的统称。它包括了汽油、煤油、柴油和重质燃料油等。但在我国,通常泛指重质燃料油,一般指重柴油以后的油料(不包括重柴油)。燃料油又称重油。直馏重油是原油蒸馏时,馏出汽油、煤油和柴油等轻质油后剩余的残油;裂化重油是裂化(如FCC、热裂化等)后的分馏过程所生成的重油。重油的颜色为褐色或者深褐色。相对密度为0.90~1.00,热值为41800~46000KJ/Kg.一般黏度高的主要用于锅炉或炼油厂加热炉燃料;黏度低的主要用于大型低速柴油机,多在远洋轮船和建筑工地上使用。4.5 气体燃料(1) 液化天然气 liquefied natural gas, LNG 被液化的天然气,一般含甲烷80—100%。[align=left](2) 液化石油气 liquefied petroleumgas,LPG 液化石油气是从湿天然气、油田井口气、稳定塔气体及FCC、催化重整、加氢裂化等炼制过程产生的气体中分离制的,是常温下加压即很容易液化的低沸点烃。 液液化石油气是以分子中含3—4个碳原子的烃类混合物,包括丙烷、丙烯、丁烷和丁烯等。主要两种:一种以丙烷为主要组分,另一种以丁烷为主要组分。[/align]********************************************************************************************第二部分汽油分析一、蒸发性二、抗爆性三、安定性四、腐蚀性五、其它指标一、蒸发性汽油的蒸发性(汽化性):一定温度压力下,汽油由液态转化为气态的能力。1 质量要求:保证能够充分燃烧,并使点燃式发动机在冬季易于启动,输油管在夏季不形成气阻。2 评定指标的分析检验:馏程和饱和蒸气压馏程:在规定条件下蒸馏,从初馏点到终馏点的温度范围。初馏点:蒸馏时,冷凝管较低的一端滴下第一滴冷凝液时的温度计读数。当溜出物体积分数为装入式样的10%、50%、90%时,蒸馏瓶内温度计的对应读数分别叫10%、50%、90% 馏出温度。蒸馏过程中,温度计最高读数叫终馏点。蒸馏瓶最后一滴液体汽化瞬间所观察到的温度计读数称为[color=blue]干点[/color]。GB/T 6536—1997 《石油产品蒸馏测定法》等效于 ASTM D86-1995.[color=blue]汽油的馏程用[/color][color=blue]10%[/color][color=blue]蒸发温度,[/color][color=blue]50%[/color][color=blue]蒸发温度,[/color][color=blue]90%[/color][color=blue]蒸发温度,终馏点和残留量等表示。[/color]石油产品是由多种烃类和烃类衍生物组成的复杂混合物。没有沸点,或者说沸点是由低到高的温度范围。10%蒸发温度:回收量+损失量=10%时,蒸馏温度计的读数。10%馏出温度:回收(馏出)量10%时,蒸馏温度计的读数。馏出温度大于蒸发温度10%蒸发温度:表示汽油中含低组分(轻组分)的多少,它决定汽油低温启动性和形成气阻的倾向。10%蒸发温度过高,表明缺乏足够的轻组分,其蒸发性差,则冬季或冷车不易启动。因此规定10%蒸发温度,不高于70℃。10%蒸发温度越低,发动机低温启动性越好。但不能过低,否则轻组分过多,在炎热的夏天或低大气压下工作时,容易在输油管内汽化形成气阻,中断燃料供应,影响发动机正常工作。上限70度,下限实际上有蒸气压控制。一般认为10%蒸发温度不宜低于60度。50%蒸发温度,不高于120℃。50%蒸发温度:表示汽油的平均蒸发性,它直接影响发动机的加速性和工作平稳性。若50%蒸发温度低,汽油在正常温度下能迅速蒸发,可燃气体混合均匀,发动机加速灵敏,运转平稳;反之,50%蒸发温度过高,当发动机加大油门提速时,随供油量的急剧增加,部分汽油将来不及充分汽化,引起燃烧不完全,致使发动机功率降低,甚至突然熄火。为此严格规定50%蒸发温度,不高于120℃90%蒸发温度,不高于190℃。90%蒸发温度和终馏点,表示汽油中高沸点(重组分)的多少,决定其在汽油缸中的蒸发完全程度。这两个温度过高,表明重组分过多,不易保证汽油在使用条件下完全蒸发及燃烧,导致气缸内积碳增多,排气冒黑烟。不仅增大油耗,降低发动机功率,使其工作不稳定,而且没有完全汽化的重组分还会冲掉汽缸壁的润滑油,进而流进曲轴箱,稀释润滑油,降低其黏度,使其润滑性能变差,加剧机械磨损。因此规定:90%蒸发温度,不高于190℃。终馏点,不高于205℃。残留量:反映车用汽油贮存过程中,氧化生成胶质物质的含量。随着残留量的增大,气门、化油器喷管及电喷喷嘴被堵塞的机会增多,汽缸内结焦量增多。因此限制车用汽油残留量不大于2%。[color=blue]技术要求,馏程:[/color][color=blue]10%[/color][color=blue]蒸发温度,不高于[/color][color=blue]70[/color][color=blue]℃[/color][color=blue] [/color][color=blue]50%[/color][color=blue]蒸发温度,不高于[/color][color=blue]120[/color][color=blue]℃[/color][color=blue]90%[/color][color=blue]蒸发温度,不高[/color]

  • PONA汽油分析软件

    PONA汽油分析软件

    汽油 PONA 分析方法是分析汽油组分族组成(P-烷烃;O-烯烃;N-环烷烃;A芳烃)及各单体烃化合物的一种方法。这种方法是基于色谱柱的高分离能力。一般典型直馏汽油有 200 个组分以上;典型催化汽油有 300 个组分以上;分析这样复杂的混合物样品,高分辨色谱柱是首要的。其次从定性定量的角度考虑仪器重复性与稳定性也是必要的;[color=#ff0000][b]仪器配置:重复性与稳定性高的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url];PONA分析高性能色谱柱。[/b][/color]定性:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]定性是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析的软肋,色谱的长处是定量而不是定性!汽油各组分定性一般采用相对保留指数法。保留指数概念不再介绍。相同色谱条件下,不同仪器配置或者相同的仪器配置不同实验室分析样品,组分色谱峰保留时间都会有不同程度差别!而保留指数与保留时间比较有相对稳定性。但是仅仅是相对稳定,而不是绝对的、不变的![color=#ff0000][b]因此,在一台仪器上计算保留指数做的标准库,想适合所有仪器得出准确的定性结果比较难!要得到比较准确的结果:必须针对自己仪器建立自己的个性标准库。有了自己的标准库可以最大程度的提高定性的准确性。[/b][/color]接下来,再准确的数据库定性也不可避免的会有差错,那么要避免差错,人工参入就是最后的屏障!汽油中几百个组分一一校对一遍对专业人员也不会是一件轻松的事情。作为一款 PONA 分析软件,方便人工参入校对,是一项重要的功能。很难想象没有标准图与样品图对照的软件如何保证结果准确!石油大学 PONA3000 汽油分析软件,标准图与样品图在同一坐标下,上下色谱峰一一对应,定性错误一目了然,用鼠标便可修改错误。校对一遍结果 2 分钟便可完成!普通非专业人员可以轻松完成!PONA 分析软件主要的不是识别率,而是准确率。识别率 100%而准确率 50%有用吗?[img=,690,414]http://ng1.17img.cn/bbsfiles/images/2017/09/201709071036_01_3302785_3.png[/img][img=,690,483]http://ng1.17img.cn/bbsfiles/images/2017/09/201709071036_02_3302785_3.png[/img][img=,690,526]http://ng1.17img.cn/bbsfiles/images/2017/09/201709071037_01_3302785_3.png[/img][img=,690,474]http://ng1.17img.cn/bbsfiles/images/2017/09/201709071037_02_3302785_3.png[/img][img=,690,530]http://ng1.17img.cn/bbsfiles/images/2017/09/201709071037_03_3302785_3.png[/img][img=,690,551]http://ng1.17img.cn/bbsfiles/images/2017/09/201709071037_04_3302785_3.png[/img][img=,690,449]http://ng1.17img.cn/bbsfiles/images/2017/09/201709071037_05_3302785_3.png[/img][img=,690,469]http://ng1.17img.cn/bbsfiles/images/2017/09/201709071037_06_3302785_3.png[/img]欢迎大家评论交流~

  • 【原创】红外气体分析仪工作原理

    红外气体分析仪是基于不同气体对红外线有选择性吸收这一原理进行设计的。采用国外先进的相关滤波技术(GFC)。仪器内置两路红外线吸收的信号光谱气路,一路作为参比信号,一路为需要测量气体的信号,通过数字逻辑电路使其相减,得到测量气体的光谱信号,此时信号浓度的大小变化就是气体浓度的变化,将信号转换为电压信号,加以增益放大后,并通过8段线性化电路,最终通过显示屏显示气体准确浓度。 仪器光学部件采用特殊光学器材制造,微量级量程时还增加了一套多次反射装置的光学气室,它通过多次反射光学镜片使得光路信号加长,便可精确检测出最小气体的变化量。

  • 【讨论】气相色谱分析汽油中的氧含量遇到的问题?

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析汽油中的氧含量,第一次结果甲醇0.26%,MTBE 11.8% 后对汽油重新调和,为什么会出现甲醇0.22% ,MTBE12.5% 呢?因为应该只有醚里面含甲醇,甲醇和MTBE含量应该同时变大或变小?对于分析出这种结果很迷茫??请高手赐教??

  • 【转】常用气体分析仪的各种分析原理介绍

    测量气体分析仪的流程分析仪表。在很多生产过程中,特别是在存在化学反应的生产过程中,仅仅根据温度、压力、流量等物理参数进行自动控制常常是不够的。例如,在合成氨生产中,仅控制合成塔的温度、压力、流量并不能保证最高的合成率,必须同时分析进气的化学成分,控制氢气和氮气的最佳比例,才能获得较高的生产率。又如在锅炉的燃烧控制中除需控制燃料与助燃空气的比例外,还必须在线分析烟道的化学成分,据此改变助燃空气的供给量,使炉子获得最高的热效率。此外,在排出有害气体的工厂中,也必须采用气体分析仪对有害气体进行连续监视,以防止危害工人健康或污染环境或引起爆炸等恶性事故。由于被分析气体的千差万别和分析原理的多种多样,气体分析仪的种类繁多。常用的有热导式气体分析仪、电化学式气体分析仪和红外线吸收式分析仪等。   1、热导式气体分析仪   一种物理类的气体分析仪表。它根据不同气体具有不同热传导能力的原理,通过测定混合气体导热系数来推算其中某些组分的含量。这种分析仪表简单可靠,适用的气体种类较多,是一种基本的分析仪表。但直接测量气体的导热系数比较困难,所以实际上常把气体导热系数的变化转换为电阻的变化,再用电桥来测定。热导式气体分析仪的热敏元件主要有半导体敏感元件和金属电阻丝两类。半导体敏感元件体积小、热惯性小,电阻温度系数大,所以灵敏度高,时间滞后小。在铂线圈上烧结珠形金属氧化物作为敏感元件,再在内电阻、发热量均相等的同样铂线圈上绕结对气体无反应的材料作为补偿用元件(图1)。这两种元件作为两臂构成电桥电路,即是测量回路。半导体金属氧化物敏感元件吸附被测气体时,电导率和热导率即发生变化,元件的散热状态也随之变化。元件温度变化使铂线圈的电阻变化,电桥遂有一不平衡电压输出,据此可检测气体的浓度。热导式气体分析仪的应用范围很广,除通常用来分析氢气、氨气、二氧化碳、二氧化硫和低浓度可燃性气体含量外,还可作为色谱分析仪中的检测器用以分析其他成分。   2、电化学式气体分析仪   一种化学类的气体分析仪表。它根据化学反应所引起的离子量的变化或电流变化来测量气体成分。为了提高选择性,防止测量电极表面沾污和保持电解液性能,一般采用隔膜结构。常用的电化学式分析仪有定电位电解式和伽伐尼电池式两种。定电位电解式分析仪(图2)的工作原理是在电极上施加特定电位,被测气体在电极表面就产生电解作用,只要测量加在电极上的电位,即可确定被测气体特有的电解电位,从而使仪表具有选择识别被测气体的能力。伽伐尼电池式分析仪(图3)是将透过隔膜而扩散到电解液中的被测气体电解,测量所形成的电解电流,就能确定被测气体的浓度。通过选择不同的电极材料和电解液来改变电极表面的内部电压从而实现对具有不同电解电位的气体的选择性。   3、红外线吸收式分析仪   根据不同组分气体对不同波长的红外线具有选择性吸收的特性而工作的分析仪表。测量这种吸收光谱可判别出气体的种类;测量吸收强度可确定被测气体的浓度。红外线分析仪的使用范围宽,不仅可分析气体成分,也可分析溶液成分,且灵敏度较高,反应迅速,能在线连续指示,也可组成调节系统。工业上常用的红外线气体分析仪的检测部分由两个并列的结构相同的光学系统组成。   一个是测量室,一个是参比室。两室通过切光板以一定周期同时或交替开闭光路。在测量室中导入被测气体后,具有被测气体特有波长的光被吸收,从而使透过测量室这一光路而进入红外线接收气室的光通量减少。气体浓度越高,进入到红外线接收气室的光通量就越少;而透过参比室的光通量是一定的,进入到红外线接收气室的光通量也一定。因此,被测气体浓度越高,透过测量室和参比室的光通量差值就越大。这个光通量差值是以一定周期振动的振幅投射到红外线接收气室的。接收气室用几微米厚的金属薄膜分隔为两半部,室内封有浓度较大的被测组分气体,在吸收波长范围内能将射入的红外线全部吸收,从而使脉动的光通量变为温度的周期变化,再可根据气态方程使温度的变化转换为压力的变化,然后用电容式传感器来检测,经过放大处理后指示出被测气体浓度。除用电容式传感器外,也可用直接检测红外线的量子式红外线传感器,并采用红外干涉滤光片进行波长选择和配以可调激光器作光源,形成一种崭新的全固体式红外气体分析仪。这种分析仪只用一个光源、一个测量室、一个红外线传感器就能完成气体浓度的测量。此外,若采用装有多个不同波长的滤光盘,则能同时分别测定多组分气体中的各种气体的浓度。   与红外线分析仪原理相似的还有紫外线分析仪、光电比色分析仪等,在工业上也用得较多。

  • 多维色谱在汽油组分检测中的应用

    1、检测方法重叠峰的含烯烃汽油样品会影响精度测定,因此,通过建立特定的定性数据库,根据样品性质在实际应用中减小实验误差,避免重叠峰带来的影响。汽油样品含烯烃,具备开发高效、长寿命、定量准确的特点,分析应用MGC汽油组成的关键是烯烃吸附阱。国内外都已推出不同的分析方法,由于国内汽油组成特点与国外汽油产品有明显差别,催化裂化在国内汽油占据80%以上,组分、馏分中含有大量C4、C5以及大于C10烃,所以,烯烃吸附阱分析方法和效率的适用性要求较高。在实验设备方面,要求在石油样品中测定含烯汽油的组成。根据油气类型和碳数对,运用多维色谱法(MGC),采用不同性质的色谱柱与阀切换技术,进行汽油组分的分离。各个色谱柱中多维色谱法,对各种组分有很好的选择性,降低不同类型组分之间的干扰。2、检测过程实验证明,二段分析模式测定烯烃组成的测定结果与荧光色层法比较一致。C5及C6烯烃含量在国内催化裂化中,全馏分汽油样品含量较高,多维色谱法测定汽油馏分,根据吸附温度的烯烃组成,确定影响精度的主要因素,同时终馏点高于200℃。烯烃的穿透性与烯烃阱温度增高呈反比趋势。在实验中,C8、C9烯烃在温度为160℃时,并未降低吸附效率,恰恰相反,温度高于130℃吸附阱C5烯烃出现明显穿透现象。但是温度低于130℃时,十一烷烃吸附明显,影响测定结果。因此,在120℃的较低温度下,烯烃吸附阱小于等于重饱和烃和吸附轻烯烃等通过轻饱和烃后,升高烯烃阱温度,随后轻烯烃及碳九以上饱和烃可释放出去,最后将烯烃吸附阱温度升至更高,可将重烯烃再释放分离。但是,C5、C6轻组分在国内汽油含量较多,甚至有过半的组分来源于催化裂化,为了保证吸附轻烯烃的同一时间减少吸附重饱和烃,大于正癸烷的重组分含较多的沸点,较为适宜的吸附温度分析模式是二段,实验证明二段吸附温度的分析模式应用于轻烯烃含量较高时,一段升温的方式适用烯烃含量较低的样品,采用烯烃阱进行测定,可降低分析时间,同时提高检测精度。分析仪器的调试要考虑实验样品本身的性质以及分析方法和工艺的流程,多维中色谱柱分离切割技术至关重要,一定要确定好切割时间,否则不仅会失去多维的优势,还可能造成错误的数据

  • 使用拉曼光谱仪检测甲醇汽油

    甲醇汽油是在普通汽油基础上添加一定比例的甲醇和其它添加剂构成的“调和油”。甲醇汽油分类方法有多种,其中一种是按照甲醇的含量,将其分为三类:低醇汽油(M3-M5)、中醇汽油(M15-M30)和高醇汽油(M85-M100),M后的数字表示甲醇汽油中甲醇的体积百分比。添加甲醇的优点在于能改良普通汽油的品质,能提高汽油的辛烷值。同普通汽油、柴油相比,甲醇汽油在相同条件下燃烧更充分,尾气中常规CO等污染物与PM2.5微粒排放明显降低。甲醇添加比例不同,其燃烧性能和对发动机的要求也不同。低比例的汽油无须对发动机和装置进行改造,可直接使用。中等比例的甲醇汽油对发动机有一定要求,且往往需要添加对应的助溶剂,高比例的甲醇汽油则不能与普通汽油通用,且需要改造发动机结构。在普通发动机里使用错误比例的甲醇汽油会导致汽油热值下降,且容易产生气阻影响供油,对发动机密封系统容易产生腐蚀和磨损等不良影响。所以世界很多地方都将甲醇含量作为甲醇汽油的一个核心指标,对其含量都有严格规定。准确、高效的检测甲醇含量对于甲醇汽油生产质量控制与市场产品性能评价都有重要帮助。甲醇汽油的经典检测方法是[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法,但该方法因为前处理繁琐,标定复杂,测试周期长等原因,测试效率低下,难以实现快速检测。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法可以实现甲醇含量的快速测定,但因为汽油中其他醇类与甲醇的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]差异不大,测试结果很容易受其他醇类含量波动的干扰。浙江大学的戴连奎教授发现,基于海洋光学的便携式拉曼光谱仪,可以快速、无损和高校的检测甲醇汽油含量[sup][1][2][/sup]。[b]测量过程与方法[/b]戴连奎教授使用海洋光学QE65000光谱仪测量了一系列甲醇汽油样品的拉曼光谱数据。QE65000光谱仪采用高灵敏度的制冷CCD探测器,体积小巧,性能卓越。有关该光谱仪的详细参数请登录海洋光学官方网站上查询。实验中光谱测量范围是0-2100cm[sup]-1[/sup],积分时间为25s,激光器中心波长是785nm,采样池尾10mm石英比色皿。样品放入比色皿后,激光通过激发光纤到达光纤探头,照射样品后产生拉曼信号,再经过光纤探头收集,经过收集光纤进入光谱仪,信号扣除暗背景后得到样本原始拉曼信号。汽油样本使用炼油厂提供的多份90#和93#汽油作为基础油样,然后加入分析纯度大于99.5%的无水甲醇,配置成体积分数从10%到90%一系列不同甲醇含量的甲醇汽油样品。由于含水量极少,在室温下待测甲醇汽油样品未发生明显分层,所以实验中无需再添加额外的助溶剂。为准确提取光谱有效信息,原始拉曼光谱需要进行预处理,主要步骤包括谱段选择、平滑除噪、荧光背景消除和标准归一化等,标准归一化选择了饱和烃特征峰(1460cm[sup]-1[/sup])强度作为基准光强。下图展示了经过预处理前后的样品拉曼图谱对比。[align=center][img=预处理前的样品拉曼谱图]https://i4.antpedia.com/attachments/att/image/20180705/1530776361251273.png[/img][/align][align=center]图1 预处理前的样品拉曼谱图[/align][align=center][img=预处理后的样品拉曼谱图]https://i4.antpedia.com/attachments/att/image/20180705/1530776361415899.png[/img][/align][align=center]图2 预处理后的样品拉曼谱图[/align][align=center] [/align]甲醇的特征峰谱段分布在1021-1091cm[sup]-1[/sup]。该科研团队发现,样品中的甲醇特征峰强度与甲醇浓度相关性很高,其中在1050cm[sup]-1[/sup]处强度值与甲醇浓度存在显著的线性相关关系,适合作为甲醇浓度特征观察峰。[b]结果与讨论[/b] 海洋光学QE系列光谱仪易于携带、性能强大、操作简便和便于集成,为该团队的研究提供了有力的支持。除了应用于实验室环境,该光谱仪也适合于甲醇汽油生产质量控制、性能评价和现场测试等各个需要便携式检测设备的领域。参考文献:[table][tr][td][1]姚捷,戴连奎",林艺玲. 基于拉曼特征峰的甲醇汽油甲醇含量测定[J]. 光散射学报,2013,25(01):59-65. [2017-10-03]. DOI:10.13883/j.issn1004-5929.2013.01.009[/td][/tr][tr][td][2]董学锋,戴连奎. 甲醇汽油在线拉曼分析仪的开发及其应用[J]. 自动化仪表,2013,34(08):81-83. [2017-10-03]. DOI:10.16086/j.cnki.issn1000-0380.2013.08.006[/td][/tr][/table]

  • 【分享】高频红外碳硫分析仪原理

    高频红外碳硫仪的分析原理是经过高频感应燃烧使碳、硫元素转化为CO2和SO2气体,再根据CO2和SO2气体对红外光线的特定吸收波长来探测其浓度的。 红外碳硫分析仪与高频感应燃烧炉配套使用,能快速、准确地测定钢、铁、合金、有色金属、水泥、矿石、玻璃及其它材料中碳、硫两元素的质量分数。是集光、机、电、计算机、分析技术等于一体的高新技术产品,具有测量范围宽、分析结果准确可靠等特点。由于采用了计算机技术,仪器的智能化、屏幕显示的图、文及数据的采集、处理等都达到了目前国内先进水平,是诸多行业测定碳、硫两元素理想的分析设备。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制