当前位置: 仪器信息网 > 行业主题 > >

华因康测序仪基本原理

仪器信息网华因康测序仪基本原理专题为您提供2024年最新华因康测序仪基本原理价格报价、厂家品牌的相关信息, 包括华因康测序仪基本原理参数、型号等,不管是国产,还是进口品牌的华因康测序仪基本原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合华因康测序仪基本原理相关的耗材配件、试剂标物,还有华因康测序仪基本原理相关的最新资讯、资料,以及华因康测序仪基本原理相关的解决方案。

华因康测序仪基本原理相关的资讯

  • 质粒抽提的基本原理及操作流程
    质粒抽提的基本原理及操作流程⒈质粒抽提基本原理在其中采用几种水溶液及其硅酸化学纤维膜(超滤膜柱)。 水溶液Ⅰ:50 mM果糖 / 25 mMTris-HCl/ 10 mMEDTA,pH 8.0;水溶液Ⅱ:0.2 N NaOH / 1%SDS; 水溶液Ⅲ:3 M 醋酸钾/ 2 M 醋酸/75%乙醇。水溶液Ⅰ果糖是使飘浮后的大肠埃希菌不容易迅速堆积到水管的底端;EDTA是Ca2+和Mg2+等二价金属材料正离子的螯合剂,其关键目地是以便鳌合二价金属材料正离子进而达到抑制DNase的特异性;可加上RNase A消化吸收RNA。水溶液Ⅱ此步为碱解决。在其中NaOH关键是以便融解体细胞,释放出来DNA,由于在强偏碱的状况下,细胞质产生了从两层膜结构工程向微囊构造的转变。SDS与NaOH联用,其目地是以便提高NaOH的强偏碱,一起SDS做为阳离子表活剂毁坏脂两层膜。那步要记牢二点:首位,时间不可以太长,由于在那样的偏碱标准下基因组DNA-p段也会渐渐地破裂;其次,务必温柔混和,要不然基因组DNA会破裂。水溶液Ⅲ水溶液III的功效是沉定蛋白质和中和反应。在其中醋酸钾是以便使钾离子换置SDS中的钾离子而产生了PDS,由于十二烷基硫酸钠(sodium dodecylsulfate)碰到钾离子后变为了十二烷基硫酸钾 (potassium dodecylsulfate, PDS),而PDS不是溶水的,一起1个SDS分子结构均值融合2个碳水化合物,钾钠正离子换置所造成的很多沉定大自然就将绝大多数蛋白沉定了。2 M的醋酸是以便中合NaOH。基因组DNA如果产生破裂,要是是50-100 kb尺寸的片段,就没有方法再被 PDS共沉淀了,因此碱解决的时间要短,并且不可猛烈震荡,要不然蕞终获得的质粒上都会有很多的基因组DNA渗入,琼脂糖电泳能够 观查到这条浓浓总DNA条带。75%乙醇关键是以便清理盐分和抑止Dnase;一起水溶液III的强酸碱性都是以便使DNA尽快融合在硅酸化学纤维膜上⒉质粒抽提流程⑴应用质粒提取试剂盒获取质粒时请参照实际试剂盒的操作指南。如Omega企业的E.Z.N.A.? Plasmid Mini Kit I, Q(capless) Spin (质粒提取盒)。⑵碱裂解手提式法:此方式适用少量质粒DNA的获取,获取的质粒DNA可立即用以酶切、PCR测序、银染编码序列分析。方式给出:①接1%含质粒的大肠埃希菌体细胞于2mlLB培养液。②37℃震荡塑造留宿。③取1.5ml菌体于Ep管(离心管),以4000rpm抽滤3min,弃上清液。④加0.lml水溶液I(1%果糖,50mM/LEDTApH8.0,25mM/LTris-HClpH8.0)充足混和。⑤添加0.2ml水溶液II(0.2mM/LNaOH,1%SDS),轻轻地旋转搅拌,放置冰浴5min.⑥添加0.15m1预冷水溶液III(5mol/LKAc,pH4.8),轻轻地旋转搅拌,放置冰浴5min.⑦以10,000rpm抽滤20min,取上清液于另翻新Ep管。⑧添加等容积的异戊醇,搅拌后静放10min.⑨以10,000rpm抽滤20min,弃上清。⑩用70%酒精0.5ml清洗一回,吸干全部液体。待沉定干躁后,溶解50ulTE缓冲液中(或60℃温育双蒸水)。
  • 各种仪器分析的基本原理及谱图表示方法
    紫外吸收光谱UV   分析原理:吸收紫外光能量,引起分子中电子能级的跃迁   谱图的表示方法:相对吸收光能量随吸收光波长的变化   提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息   荧光光谱法FS   分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光   谱图的表示方法:发射的荧光能量随光波长的变化   提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息   红外吸收光谱法IR   分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁   谱图的表示方法:相对透射光能量随透射光频率变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   拉曼光谱法Ram   分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射   谱图的表示方法:散射光能量随拉曼位移的变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   核磁共振波谱法NMR   分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁   谱图的表示方法:吸收光能量随化学位移的变化   提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息   电子顺磁共振波谱法ESR   分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁   谱图的表示方法:吸收光能量或微分能量随磁场强度变化   提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息   质谱分析法MS   分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离   谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化   提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息   气相色谱法GC   分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:峰的保留值与组分热力学参数有关,是定性依据 峰面积与组分含量有关   反气相色谱法IGC   分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力   谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线   提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数   裂解气相色谱法PGC   分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型   凝胶色谱法GPC   分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:高聚物的平均分子量及其分布   热重法TG   分析原理:在控温环境中,样品重量随温度或时间变化   谱图的表示方法:样品的重量分数随温度或时间的变化曲线   提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区   热差分析DTA   分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化   谱图的表示方法:温差随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   TG-DTA图   示差扫描量热分析DSC   分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化   谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   静态热―力分析TMA   分析原理:样品在恒力作用下产生的形变随温度或时间变化   谱图的表示方法:样品形变值随温度或时间变化曲线   提供的信息:热转变温度和力学状态   动态热―力分析DMA   分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化   谱图的表示方法:模量或tg&delta 随温度变化曲线   提供的信息:热转变温度模量和tg&delta   透射电子显微术TEM   分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象   谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象   提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等   扫描电子显微术SEM   分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象   谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等   提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等   原子吸收AAS   原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。   (Inductivecouplinghighfrequencyplasma)电感耦合高频等离子体ICP   原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。   X-raydiffraction,x射线衍射即XRD   X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。   满足衍射条件,可应用布拉格公式:2dsin&theta =&lambda   应用已知波长的X射线来测量&theta 角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量&theta 角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。   高效毛细管电泳(highperformancecapillaryelectrophoresis,HPCE)   CZE的基本原理   HPLC选用的毛细管一般内径约为50&mu m(20~200&mu m),外径为375&mu m,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象 电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。   MECC的基本原理   MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。   扫描隧道显微镜(STM)   扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。   原子力显微镜(AtomicForceMicroscopy,简称AFM)   原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。   俄歇电子能谱学(Augerelectronspectroscopy),简称AES   俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。
  • 综合热分析仪:基本原理、应用场景
    综合热分析仪是一种广泛应用于材料科学、化学、物理等领域的仪器,能够同时测量物质的多种热学性质、设备综合热重分析仪TGA及差示扫描量热仪DSC等。本文将介绍综合热分析仪的基本原理、应用场景及其优劣比较。上海和晟 HS-STA-002 综合热分析仪综合热分析仪的基本原理是热平衡法,即通过加热和冷却待测物质,并记录物质在不同温度下的热学性质。在具体操作中,将待测物质放置在加热炉中,加热炉会按照设定的程序进行加热和冷却,并使用热电偶等传感器记录物质在不同温度下的热学性质。通过数据处理软件,可以将这些数据转化为物质的热容、热导率、热膨胀系数等参数。综合热分析仪在各个领域都有广泛的应用。在材料科学领域,可以利用综合热分析仪研究材料的热稳定性、相变行为等性质,以确定其加工和制备工艺;在化学领域,可以利用综合热分析仪研究化学反应的动力学过程和反应速率常数,为新材料的开发和优化提供依据;在物理领域,可以利用综合热分析仪研究物质的热学性质和物理性能,为新技术的开发和应用提供支持。综合热分析仪的优点在于其能够同时测量物质的多种热学性质,且测量精度高、重复性好。此外,综合热分析仪还具有操作简便、自动化程度高等特点,可以大大减少实验操作的时间和人力成本。然而,综合热分析仪也存在一些缺点,如价格昂贵、维护成本高、对实验条件要求严格等。总之,综合热分析仪是一种重要的仪器,具有广泛的应用场景和优劣比较。在实际使用中,应根据具体需求选择合适的综合热分析仪,以获得更准确的实验结果。随着科技的不断发展,相信未来综合热分析仪将会在更多领域得到应用,并推动材料研究和开发的进步。
  • 简介差热分析基本原理
    p style=" text-align: center " strong 原创: 王昉【南师大】 江苏热分析 /strong /p p style=" text-align: center " img title=" 简介差热分析基本原理.jpg" alt=" 简介差热分析基本原理.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/a583219e-fc52-4730-be7a-b8c049b9da17.jpg" / /p p style=" text-align: center " strong 简介差热分析基本原理 /strong /p p span style=" color: rgb(255, 0, 0) " strong · 热分析 /strong /span /p p   热分析是指在程序控制温度下,测量物质的物理性质随温度变化的一种技术。其中,它可以测定一个重要的热力学参数—热焓的变化。根据热力学的基本原理,物质的焓、熵和自由能都是物质的一种特性,可用Gibbs-Helmholts方程表达他们之间的关系: /p p style=" text-align: center " ΔG=ΔH-TΔS /p p   其中: T绝对温度 ΔG吉布斯能变 ΔH焓变 ΔS熵变 /p p   由于在给定温度下每个体系总是趋向于达到自由能最小状态,所以,当逐渐加热试样时,它可转变成更稳定的晶体结构,或具有更低自由能的另一个状态。伴随着这种转变,会有热焓的变化。这就是差热分析和差示扫描量热法的基础。 /p p   当然,热分析还可以给出有一定参考价值的动力学、质量、比热熔、纯度和模量变化等数据,所以它是分析和表征各类物质物理转变与化学反应基本特性的重要手段,在高分子材料、含能材料、药物、食品、矿物、金属/合金、陶瓷、考古以及资源利用等众多领域有着极其广泛的应用。 /p p span style=" color: rgb(255, 0, 0) " strong · 差热分析 /strong /span /p p   早在1887年法国的Le Chatelier首先利用热电偶经检流计记录了粘土类矿物在升温时的电动势变化。热电偶(thermocouple)是常用的测温传感器,它可以直接测量温度,并把温度信号转换成热电动势信号,进行记录。接着,1899年英国人Roberts-Austen利用参比热电偶制成了有实用价值的差热实验装置,最先以差示的形式成功地观测到试样与参比物之间的温差ΔT,这为DTA技术奠定了基础。以后的发展基本上都是在此基础上进行改进,例如:试样与参比物的配置、热电偶的形式、记录方法、控温方式和数据处理等方面,从而形成各种差示扫描量热仪。图1为差热分析示意图,图2为差热曲线。 /p p   实验过程中,处在加热炉内的试样和参比物在相同条件下,同时加热或冷却,炉温控制由控温热电偶监控。试样与参比物之间的温差用对接的两支热电偶进行测定,热电偶的两个接点分别与盛放试样和参比物的坩埚底部接触。参比物是一种热容与试样相接近而在研究的温度范围没有相变的物质,常用α –Al sub 2 /sub O sub 3 /sub ,或者空坩埚。 /p p style=" text-align: center " img title=" 图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶).jpg" alt=" 图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶).jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/17afd1c0-ca11-4433-ac7c-7404a8f9ea9b.jpg" / /p p style=" text-align: center " strong 图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶) /strong /p p style=" text-align: center " img title=" 图2: 差热曲线.jpg" alt=" 图2: 差热曲线.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/e2c5d8b8-1ed6-42f6-9f3b-2e15857bc77c.jpg" / /p p style=" text-align: center " strong 图2: 差热曲线 /strong /p p   在加热或冷却过程中,如果试样没有任何热效应产生,即试样与参比物无温差,ΔT=TS-TR=0 (TS为试样温度,TR为参比物温度 )。由于热电偶的热电势与试样和参比物之间的温差成正比,两对热电偶的电势大小相等,方向相反(由于是反相连接),热电偶无电势输出,所得到的差热曲线就是一条水平直线。称作基线。如果试样有某种变化,并伴有热效应的产生,则TS≠TR,差示热电偶就会有电势输出,差热曲线偏离基线,直至变化结束,差热曲线重新回到基线。这样,便可得到一条ΔT=f(T)的差热曲线。通常峰尖向上表示放热,向下表示吸热。 /p p & nbsp /p p a href=" https://www.instrument.com.cn/zt/TAT" target=" _blank" 更多热分析相关知识请见专题:《热分析方法与仪器原理剖析》 /a /p
  • 网络讲堂 | 热分析的基本原理及案例分析
    热分析是在程序控温下,测量物质的某种物理性质与温度或时间关系的一种技术。随着科技的发展,新领域的诞生,各行各业对于新材料的需求日益加剧。热分析作为研究材料性能的常见手段,也在飞速发展。热分析可用于分析各种材料,从航空航天材料到平时喝的矿泉水瓶,从研究领域到品质管理都可以用到热分析。 本讲座旨在梳理热分析的基本知识点,如果您刚接触热分析相关工作,欢迎参加我们在7月28日14:00-15:00举办的直播网络讲堂,您将了解到: 1. DSC的基本原理及案例分析 2. STA的基本原理及案例分析3. TMA的基本原理及案例分析4. DMA的基本原理及案例分析5. 问题和答疑 微信扫描下方二维码或点击链接,即可报名参加。日立高新技术公司是日立集团旗下的一家仪器设备子公司。全球雇员超过10,000人,在世界上26个国家及地区共有百余处经营网点。企业发展目标是"成为独步全球的高新技术和解决方案提供商",即兼有掌握先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料。其中,生命科学领域产品包括电子显微镜、原子力显微镜和分析仪器(色谱、光谱、热分析)等。咨询热线:400-630-5821。
  • 同步热分析仪:基本原理、工作流程及实际应用
    同步热分析仪是一种重要的材料科学研究工具,它可以同时提供热重(TG)和差热(DSC)信息,对于材料科学研究与开发具有重要意义。本文将介绍同步热分析仪的基本原理、工作流程及其在实际应用中的意义和作用。上海和晟 HS-STA-002 同步热分析仪同步热分析仪的基本原理是基于热重和差热分析技术的结合。热重分析是一种测量样品质量变化与温度关系的分析技术,可以研究样品的热稳定性、分解行为等。差热分析是一种测量样品与参比物之间的温度差与时间关系的分析技术,可以研究样品的相变、反应热等。同步热分析仪将这两种分析技术结合在一起,可以在同一次测量中获得样品的热重和差热信息,从而更全面地了解样品的热性质。同步热分析仪的工作流程包括实验前的准备、实验过程中的操作和数据处理等步骤。实验前需要选择合适的坩埚、样品和实验条件,将样品放入坩埚中,然后将坩埚放置在仪器中进行测量。在实验过程中,仪器会记录样品的重量变化和温度变化,并将这些数据传输到计算机中进行处理和分析。数据处理包括绘制热重曲线和差热曲线、计算样品的热性质等。同步热分析仪在实际应用中具有广泛的意义和作用。它可以帮助科学家们更好地了解材料的热性质和化学性质,从而为材料的开发和应用提供重要的参考。例如,在研究高分子材料的合成和加工过程中,同步热分析仪可以用来研究材料的熔融、结晶、氧化等行为,从而指导材料的制备和加工过程。此外,同步热分析仪还可以在药物研发、陶瓷材料等领域得到广泛应用。
  • 炭黑含量测试仪:基本原理、使用方法及应用场景
    炭黑含量测试仪是一种用于测量材料中炭黑含量的仪器。本文将介绍炭黑含量测试仪的基本原理、使用方法及其优缺点,并结合实际应用场景阐述其重要性和应用价值。上海和晟 HS-TH-3500 炭黑含量测试仪基本原理炭黑含量测试仪的基本原理是通过在氧气环境中燃烧样品中炭黑,对材料中的炭黑进行定量分析。使用方法使用炭黑含量测试仪需要按照以下步骤进行:准备样品:将待测1g样品,并按照测试并放入燃烧舟。开机预热:打开测试仪,通几分钟氮气,设置升温程序。放置样品:将准备好的样品放入石英管中。开始测试:按下测试按钮,试验结束后拿出样品。数据处理:根据公式计算出测试结果。炭黑含量测试仪的优点包括:精度高:可以精确测量材料中的炭黑含量。快速方便:测试速度快,操作简单方便。适用范围广:可以用于测量各种材料中的炭黑含量,如塑料、橡胶、涂料等。炭黑含量测试仪的缺点包括:价格较高:仪器价格相对较高,不是所有用户都能承担。需要专业操作:需要对操作人员进行专业培训,否则会影响测试结果的准确性和可靠性。实际应用炭黑含量测试仪在工业生产、科学研究、质量检测等领域有广泛的应用。在工业生产中,可以利用炭黑含量测试仪对原材料中的炭黑进行定量分析,从而控制生产过程中的原料配比和产品质量。在科学研究领域,可以利用炭黑含量测试仪对新型材料中的炭黑进行定量分析,从而了解材料的物理和化学性质。在质量检测中,可以利用炭黑含量测试仪对产品中的炭黑进行定量分析,从而保证产品的质量和安全性。结论未来,随着科学技术的不断发展和进步,炭黑含量测试仪将会更加完善和先进,为材料研究和生产提供更加准确和可靠的数据支持。同时,随着人们对材料性质和反应过程的理解不断深入,炭黑含量测试仪将会发挥更加重要的作用,为科学研究和社会发展做出更大的贡献。
  • 快速水份测定仪基础知识一:定义与基本原理
    快速水份测定仪基础知识一,定义与基本原理1. 什么是快速水份测定仪? 快速水份测定仪利用热失重法测定样品的水份含量,由称量与加热装置(红外)组成。 它通常亦称作水份天平或水份测定仪。 2. 快速水份测定仪的工作方式?卤素快速水份测定仪按照热重原理(通常亦称作“热失重”(LOD)原理)运行。 快速水份测定仪由两个组件构成,即:天平装置与加热装置。 为了测量水份含量,首先记录样品的初始重量,然后在内置天平持续记录样品重量的同时,卤素灯对样品进行加热和烘干。 当样品不再失重时,仪器关闭并且计算水份含量。 总失重量用于计算水份含量。 3. 什么是“热失重”(LOD)原理?LOD表示热失重。 大多数标准方法属于热失重法。 热失重法是一种通过分析加热时样品的失重测定样品水份含量的方法。 将失重解释为样品的水份损失。 当所有水份从样品中排出时,样品的重量不再发生变化。 然后,通过将样品的初始重量同干重或样品最终重量进行比较,计算出样品的水份含量。 4. 如何加热样品? 样品吸收卤素快速水份测定仪的红外辐射,因此可快速升温。 另外,样品的温度取决于其吸收特点,因此一定不是显示温度。 这与烘箱不同,烘箱是通过对流方式对样品加热,并且需要很长时间才能烘干。 5. 卤素技术与红外技术之间的区别是什么? 卤素加热也是红外技术。 采用卤素辐射体进行干燥是红外干燥法的进一步发展。 加热元件由充满卤素气体的玻璃灯管组成, 由于卤素辐射体远轻于传统红外辐射体,因此可以快速获得最大热量输出,并实现卓越的可控性甚至是热分布。 6. 快速水份测定仪的适合对象?烘箱是测定水份含量的正规方法。 如今,许多客户使用快速水份测定仪,因为他们希望使用更快速的方法分析水份含量。 快速水份测定仪在许多行业中使用,例如:食品、化学、制药与塑料制造行业。 由于水份含量会对产品的质量和保质期产生影响,因此测定食品中的水份含量尤为重要。 7. 什么是水份? 水份指加热时蒸发(“热失重”)的所有物质。 除了水之外,分析的水份含量还包括脂肪、酒精与溶剂。 8. 水份与水是否一样?不一样,这两种概念经常被混淆。 水份指加热时蒸发的所有物质。 水专门指水分子(H20)。 为了测定水份含量,最好使用卡尔费休滴定仪。
  • 高效液相色谱(HPLC)的基本原理和系统组成
    高效液相色谱(HPLC)是色谱法的一个重要分支,其应用范围广泛,对样品的适用性广,且不受分析对象的挥发性和热稳定性的限制。 几乎所有的化合物,包括高沸点、极性、离子化合物和大分子物质都可以用高效液相色谱法进行分析测定,从而弥补了气相色谱法的缺点。 目前已知的有机化合物中,约20%可以通过气相色谱法进行分析,而80%需要通过高效液相色谱法进行分析。 高效液相色谱法具有分离效率高、分析速度快、检测灵敏度好等特点,可以分析分离高沸点且不能汽化的热不稳定生理活性物质。 分离与分析技术在该领域的重要应用。基本原理色谱法的分离原理是:溶于流动相中的各组分经过固定相时,由于与固定相(stationphase)发生作用(吸附、分配、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。又称为色层法、层析法。高效液相色谱法以经典的液相色谱为基础,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有颗粒极细的高效固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。系统组成HPLC 系统一般由输液泵、进样器、色谱柱、检测器、数据记录及处理装置等组成。其中输液泵、色谱柱、检测器是关键部件。此外,还可根据需要配置梯度洗脱装置、在线脱气机、自动进样器、预柱或保护柱、柱温控制器等,现代HPLC 仪还有微机控制系统,进行自动化仪器控制和数据处理。制备型HPLC 仪还备有自动馏分收集装置。
  • 高低温交变湿热试验箱:基本原理、特点和应用场景
    高低温交变湿热试验箱是一种用于模拟不同环境条件的试验设备,可以在短时间内模拟出极端温度和湿度的环境,以测试各种材料和产品的性能。本文将从基本原理、特点和应用场景等方面对高低温交变湿热试验箱进行介绍。上海和晟 HS-80A 高低温交变湿热试验箱高低温交变湿热试验箱主要由箱体、温度控制单元、湿度控制单元、空气循环系统等组成。其中,温度控制单元和湿度控制单元是试验箱的核心部件。温度控制单元通过制冷系统和加热系统来控制试验箱内的温度,湿度控制单元则通过加湿系统和除湿系统来控制试验箱内的湿度。空气循环系统则用于将试验箱内的空气循环,以保证试验箱内的环境均匀。高低温交变湿热试验箱的适用范围非常广泛,可以应用于航空航天、汽车、电子、化工、医疗等各个行业。通过模拟不同环境条件,可以测试各种材料和产品的性能,如耐高低温、耐腐蚀、抗老化等。同时,高低温交变湿热试验箱还可以用于产品的研发和改进,以提高产品的性能和质量。高低温交变湿热试验箱的技术特点主要包括高精度温度控制、高精度湿度控制、快速温度变化速率、可靠的安全保护等。其中,高精度温度控制和湿度控制可以保证试验箱内的环境稳定,快速温度变化速率可以模拟出更加极端的环境条件,安全保护措施则可以保证试验箱的安全运行。在使用高低温交变湿热试验箱时,需要注意以下几点:首先,要严格按照试验箱的操作规程进行操作,避免出现意外事故;其次,要定期对试验箱进行维护和保养,以保证其正常运行;最后,要对试验箱的运行数据进行记录和分析,以便对试验结果进行准确的评估。综上所述,高低温交变湿热试验箱是一种重要的试验设备,可以模拟不同环境条件下的各种材料和产品的性能。随着科技的不断进步和应用领域的不断拓展,高低温交变湿热试验箱将会发挥更加重要的作用。
  • 电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应
    这里是TESCAN电镜学堂第三期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第四节 各种信号与衬度的总结前面两节详细的介绍了扫描电镜中涉及到的各种电子信号、电流信号、电磁波辐射信号和各种衬度的关系,下面对常见的电子信号和衬度做一个总结,如图2-36和表2-4。图2-36 SEM中常见的电子信号和衬度关系表2-4 SEM中常见的电子信号和衬度关系第五节 荷电效应扫描电镜中还有一种不希望发生的现象,如荷电效应,它也能形成某些特殊的衬度。不过在进行扫描电镜的观察过程中,我们需要尽可能的避免。§1. 荷电的形成根据前面介绍的扫描电镜原理,电子束源源不断的轰击到试样上,根据图2-6,只有原始电子束能量在v1和v2时,二次电子产额δ才为1,即入射电子和二次电子数量相等,试样没有增加也没减少电子,没有吸收电流的形成。而只要初始电子束不满足这个条件,都要形成吸收电流以满足电荷的平衡, i0= ib+is+ia。要实现电荷平衡,就需要试样具备良好的导电性。对于导体而言,观察没有什么问题。但是对于不导电或者导电不良、接地不佳的试样来说,多余的电荷不能导走,在试样表面会形成积累,产生一个静电场干扰入射电子束和二次电子的发射,这就是荷电效应。荷电效应会对图像产生一系列的影响,比如:① 异常反差:二次电子发射受到不规则影响,造成图像一部分异常亮,一部分变暗;② 图像畸变:由于荷电产生的静电场作用,使得入射电子束被不规则偏转,结果造成图像畸变或者出现阶段差;③ 图像漂移:由于静电场的作用使得入射电子束往某个方向偏转而形成图像漂移;④ 亮点与亮线:带点试样经常会发生不规则放电,结果图像中出现不规则的亮点与亮线;⑤ 图像“很平”没有立体感:通常是扫描速度较慢,每个像素点驻留时间较长,而引起电荷积累,图像看起来很平,完全丧失立体感。如图2-37都是典型的荷电效应。图2-37 典型的荷电效应§2. 荷电的消除荷电的产生对扫描电镜的观察有很大的影响,所以只有消除或降低荷电效应,才能进行正常的扫描电镜观察。消除和降低荷电的方法有很多种,这里介绍一下常用的方法。首先,在制样环节就要注意以便减小荷电:1) 缩小样品尺寸、以及尽可能减少接触电阻:这样可以增加试样的导电性。2)镀膜处理:给试样镀一层导电薄膜,以改善其导电性,这也是使用的最多的方法。常用的镀膜有蒸镀和离子溅射两种,常用的导电膜一般是金au和碳,如果追求更好的效果,还可使用铂pt、铬cr、铱ir等。镀导电膜不但可以有效的改善导电性,还能提高二次电子激发率,而且现在的膜厚比较容易控制,一定放大倍数内不会对试样形貌产生影响。不过镀膜也有其缺点,镀膜之后会有膜层覆盖,影响样品的真实形貌的,严重的话还会产生假象,对一些超高分辨的观察或者一些细节(如孔隙、纤维)的测量以及eds、ebsd分析产生较大影响。如图2-38,石墨在镀pt膜后,产生假象;如图2-39,纤维在镀金之后,导致显微变粗,孔隙变小。图2-38 石墨镀金膜之后的假象图2-39 纤维在镀金前(左)后(右)的图像除了制样外,还要尽可能寻找合适的电镜工作条件,以消除或减弱荷电的影响:3) 减小束流:降低入射电子束的强度,可以减小电荷的积累。4) 减小放大倍数:尽可能使用低倍观察,因为倍数越大,扫描范围越小,电荷积累越迅速。5) 加快扫描速度:电子束在同一区域停留时间较长,容易引起电荷积累;此时可以加快电子束的扫描速度,在不同区域停留的时间变短,以减少荷电。6) 改变图像采集策略:扫描速度变快后,图像信噪比会大幅度降低,此时利用线积累或者帧叠加平均可以减小荷电效应同时提升信噪比。线积累对轻微的荷电有较好的抑制效果;帧叠加对快速扫描产生的高噪点有很好的抑制作用,但是图像不能有漂移,否则会有重影引起图像模糊。如图2-40,样品为高分子球,在扫描速度较慢时,试样很容易损伤而变形,而快速扫描同时进行线积累的采集方式,试样完好且图像依然有很好的信噪比。图2-40 高分子球试样在不同扫描方式下的对比7)降低电压:减少入射电子束的能量(降至v2以内)也能有效的减少荷电效应。如图2-41,试样是聚苯乙烯球,加速电压在5kV下有明显的荷电现象,降到2kV下荷电基本消除。不过随着加速电压的降低,也会带来分辨率降低的副作用。图2-41 降低加速电压消除荷电影响8)用非镜筒内二次电子探测器或者背散射电子探测器观察:在有大量荷电产生的时候,会有大量的二次电子被推向上方,倒是镜筒内二次电子接收的电子信号量过多,产生荷电,尤其在浸没式下,此时使用极靴外的探测器,其接收的电子信号量相对较少,可以减弱荷电效应,如图2-42;另外,背散射电子能量高,其产额以及出射方向受荷电的影响相对二次电子要小很多,所以用bse像进行观察也可以有效的减弱荷电效应,如图2-43,氧化铝模板在二次电子和背散射图像下的对比。图2-42 镜筒内(左)和镜筒外(右)探测器对荷电的影响图2-43 SE(左)和BSE(右)图像对荷电的影响9) 倾转样品:将样品进行一定角度的倾转,这样可以增加试样二次电子的产额,从而减弱荷电效应。 除此之外,电镜厂商也在发展新的技术来降低或消除荷电,最常见的就是低真空技术。低真空技术是消除试样荷电的非常有效的手段,但是需要电镜自身配备这种技术。10)低真空模式:低真空模式下可以利用电离的离子或者气体分子中和产生的荷电,从而在不镀膜或者不用苛刻的电镜条件即可消除荷电效应。不过低真空条件下,原始电子束会被气体分子散射,所以分辨率、信噪比、衬度都会有一定的降低。如图2-44,生物样品在不镀导电膜的情况下即可实现二次电子和背散射电子的无荷电效应的观察。图2-44 低真空BSE(左)和SE(右)的效果对比福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。奖品公布上期获奖的这位童鞋,请您关注“TESCAN公司”微信公众号,后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。【本期问题】低真空模式下,空气浓度高低对消除荷电能力的强弱有什么影响?(快关注微信去留言区回答问题吧~)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。↓ 往期课程,请关注微信查阅以下文章:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理
  • 气质联用仪的基本原理
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 气质联用仪是指将气相色谱仪和质谱仪联合起来使用的仪器。质谱法可以进行有效的定性分析,但对复杂有机化合物的分析就显得无能为力 而色谱法对有机化合物是一种有效的分离分析方法,特别适合于进行有机化合物的定量分析,但定性分析则比较困难。因此,这两者的有效结合必将为化学家及生物化学家提供一个进行复杂有机化合物高效的定性、定量分析工具。像这种将两种或两种以上方法结合起来的技术称之为联用技术,将气相色谱仪和质谱仪联合起来使用的仪器叫做气质联用仪。 br/ /p p style=" line-height: 1.5em "    strong 基本应用 /strong /p p style=" line-height: 1.5em "   气质联用仪被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和质谱的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。质谱仪的基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内。接口:由GC出来的样品通过接口进入到质谱仪,接口是气质联用系统的关键。 /p p style=" line-height: 1.5em "   strong  GC-MS主要由以下部分组成:色谱部分、气质接口、质谱仪部分(离子源、质量分析器、检测器)和数据处理系统。 /strong /p p style=" line-height: 1.5em "    strong 一、色谱部分 /strong /p p style=" line-height: 1.5em "   色谱部分和一般的色谱仪基本相同,包括柱箱、气化室和载气系统。除特殊需要,多数不再装检测器,而是将MS作为检测器。此外,在色谱部分还带有分流/不分流进样系统,程序升温系统,压力、流量自动控制系统等。色谱部分的主要作用是分离,混合物样品在合适的色谱条件下被分离成单个组分,然后进入质谱仪进行鉴定。色谱仪是在常压下工作,而质谱仪需要高真空,因此,如果色谱仪使用填充柱,必须经过一种接口装置-分子分离器,将色谱载气去除,使样品气进入质谱仪。如果色谱仪使用毛细管柱,因为毛细管中载气流量比填充柱小得多,不会破坏质谱仪真空,可以将毛细管直接插入质谱仪离子源。 /p p style=" line-height: 1.5em "   strong  二、气质接口 /strong /p p style=" line-height: 1.5em "   气质接口是GC到MS的连接部件。最常见的连接方式是直接连接法,毛细管色谱柱直接导入质谱仪,使用石墨垫圈密封(85%Vespel+15%石墨),接口必须加热,防止分离的组分冷凝,接口温度设置一般为气相色谱程序升温最高值。 /p p style=" line-height: 1.5em "    strong 三、质谱仪部分 /strong /p p style=" line-height: 1.5em "   质谱仪既是一种通用型的检测器,又是有选择性的检测器。它是在离子源部分将样品分子电离,形成离子和碎片离子,再通过质量分析器按照质荷比的不同进行分离,最后在检测器部分产生信号,并放大、记录得到质谱图。 /p p style=" line-height: 1.5em "    strong 1.离子源 /strong /p p style=" line-height: 1.5em "   离子源的作用是接受样品产生离子,常用的离子化方式有: /p p style=" line-height: 1.5em "    strong 电子轰击离子化 /strong (electron impact ionization,EI)EI是最常用的一种离子源,有机分子被一束电子流(能量一般为70eV)轰击,失去一个外层电子,形成带正电荷的分子离子(M+),M+进一步碎裂成各种碎片离子、中性离子或游离基,在电场作用下,正离子被加速、聚焦、进入质量分析器分析。 /p p style=" line-height: 1.5em "    strong EI特点: /strong /p p style=" line-height: 1.5em "   ⑴结构简单,操作方便。 /p p style=" line-height: 1.5em "   ⑵图谱具有特征性,化合物分子碎裂大,能提供较多信息,对化合物的鉴别和结构解析十分有利。 /p p style=" line-height: 1.5em "   ⑶所得分子离子峰不强,有时不能识别。 /p p style=" line-height: 1.5em "   本法不适合于高分子量和热不稳定的化合物。 /p p style=" line-height: 1.5em "    strong 化学离子化 /strong (chemicalionization,CI)将反应气(甲烷、异丁烷、氨气等)与样品按一定比例混合,然后进行电子轰击,甲烷分子先被电离,形成一次、二次离子,这些离子再与样品分子发生反应,形成比样品分子大一个质量数的(M+1) 离子,或称为准分子离子。准分子离子也可能失去一个H2,形成(M-1)离子。 /p p style=" line-height: 1.5em "    strong CI特点 /strong /p p style=" line-height: 1.5em "   ⑴不会发生象EI中那么强的能量交换,较少发生化学键断裂,谱形简单。 /p p style=" line-height: 1.5em "   ⑵分子离子峰弱,但(M+1) 峰强,这提供了分子量信息。 /p p style=" line-height: 1.5em "    strong 场致离子化 /strong (fieldionization,FI) 适用于易变分子的离子化,如碳水化合物、氨基酸、多肽、抗生素、苯丙胺类等。能产生较强的分子离子峰和准分子离子峰。 /p p style=" line-height: 1.5em "    strong 场解吸离子化 /strong ( field desorption ionization,FD) 用于极性大、难气化、对热不稳定的化合物。 /p p style=" line-height: 1.5em "    strong 负离子化学离子化 /strong (negative ion chemical ionization,NICI)是在正离子MS的基础上发展起来的一种离子化方法,其给出特征的负离子峰,具有很高的灵敏度(10-15g)。 /p p style=" line-height: 1.5em "    strong 2.质量分析 /strong /p p style=" line-height: 1.5em "   其作用是将电离室中生成的离子按质荷比(m/z)大小分开,进行质谱检测。常见质量分析器有: /p p style=" line-height: 1.5em "    strong 四极杆质量分析器(quadrupoleanalyzer) /strong /p p style=" line-height: 1.5em "   原理:由四根平行圆柱形电极组成,电极分为两组,分别加上直流电压和一定频率的交流电压。样品离子沿电极间轴向进入电场后,在极性相反的电极间振荡,只有质荷比在某个范围的离子才能通过四极杆,到达检测器,其余离子因振幅过大与电极碰撞,放电中和后被抽走。因此,改变电压或频率,可使不同质荷比的离子依次到达检测器,被分离检测。 /p p style=" line-height: 1.5em "    strong 扇形质量分析器 /strong /p p style=" line-height: 1.5em "   磁式扇形质量分析器(magnetic-sector massanalyzer)被电场加速的离子进入磁场后,运动轨道弯曲了,离子轨道偏转可用公式表示:当H,V一定时,只有某一质荷比的离子能通过狭缝到达检测器。 /p p style=" line-height: 1.5em "   特点:分辨率低,对质量同、能量不同的离子分辨较困难。 /p p style=" line-height: 1.5em "    strong 双聚焦质量分析器 /strong (double-focusing massassay)由一个静电分析器和一个磁分析器组成,静电分析器允许有某个能量的离子通过,并按不同能量聚焦,先后进入磁分析器,经过两次聚焦,大大提高了分辨率。 /p p style=" line-height: 1.5em "    strong 离子阱检测器(iontrap detector) /strong /p p style=" line-height: 1.5em "   原理类似于四极分析器,但让离子贮存于井中,改变电极电压,使离子向上、下两端运动,通过底端小孔进入检测器。 /p p style=" line-height: 1.5em "   检测器的作用是将离子束转变成电信号,并将信号放大,常用检测器是电子倍增器。当离子撞击到检测器时引起倍增器电极表面喷射出一些电子,被喷射出的电子由于电位差被加速射向第二个倍增器电极,喷射出更多的电子,由此连续作用,每个电子碰撞下一个电极时能喷射出2~3个电子,通常电子倍增器有14级倍增器电极,可大大提高检测灵敏度。 /p p style=" line-height: 1.5em "    strong 真空系统 /strong /p p style=" line-height: 1.5em "   由于质谱仪必须在真空条件下才能工作,因此真空度的好坏直接影响了气质联用仪的性能。一般真空系统由两级真空组成,前级真空泵和高真空泵。前级真空泵的主要作用是给高真空泵提供一个运行的环境,一般为机械旋片泵。高真空泵主要有油扩散泵和涡轮分子泵,目前主要应用的是涡轮分子泵 /p p style=" line-height: 1.5em "   strong  主要性能指标 /strong /p p style=" line-height: 1.5em "   气质联用仪的整体性能指标主要有以下几个:质量范围、分辨率、灵敏度、质量准确度、扫描速度、质量轴稳定性、动态范围。 /p p style=" line-height: 1.5em "   质量范围指的是能检测的最低和最高质量,决定了仪器的应用范围,取决于质量分析器的类型。四极杆质量分析器的质量范围下限1~10,上限500~1200。 /p p style=" line-height: 1.5em "   分辨率是指质谱分辨相邻两个离子质量的能力,质量分析器的类型决定了质谱仪的分辨能力。四极杆质量分析器的分辨率一般为单位质量分辨力。 /p p style=" line-height: 1.5em "   灵敏度:气质联用仪一般采用八氟萘作为灵敏度测试的化合物,选择质量数272的离子,以1pg八氟萘的均方根(RMS)信噪比来表示。灵敏度的高低不仅与气质联用仪的性能有关,测试条件也会对结果产生一定影响。 /p p style=" line-height: 1.5em "   质量准确度为离子质量测定的准确性,与分辨率一样取决于质量分析器的类型。四极杆质量分析器属于低分辨质谱,质量准确度为0.1u。 /p p style=" line-height: 1.5em "   扫描速度定义为每秒钟扫描的最大质量数,是数据采集的一个基本参数,对于获得合理的谱图和好的峰形有显著的影响。 /p p style=" line-height: 1.5em "   质量轴稳定性是指在一定条件下,一定时间内质量标尺发生偏移的程度,一般多以24h内某一质量测定值的变化来表示。 /p p style=" line-height: 1.5em "   动态范围决定了气质联用仪的检测浓度范围。 /p p style=" line-height: 1.5em "    strong 测定方法 /strong /p p style=" line-height: 1.5em "    strong 总离子流色谱法(totalionization chromatography,TIC) /strong --类似于GC图谱,用于定量。l反复扫描法(repetitive scanningmethod,RSM)--按一定间隔时间反复扫描,自动测量、运算,制得各个组分的质谱图,可进行定性。l质量色谱法(masschromatography,MC)--记录具有某质荷比的离子强度随时间变化图谱。在选定的质量范围内,任何一个质量数都有与总离子流色谱图相似的质量色谱图。 /p p style=" line-height: 1.5em "    strong 选择性离子监测(selectedion monitoring,SIM) /strong --对选定的某个或数个特征质量峰进行单离子或多离子检测,获得这些离子流强度随时间的变化曲线。其检测灵敏度较总离子流检测高2~3个数量级。 /p p style=" line-height: 1.5em "    strong 质谱图 /strong --为带正电荷的离子碎片质荷比与其相对强度之间关系的棒图。质谱图中最强峰称为基峰,其强度规定为100%,其它峰以此峰为准,确定其相对强度。 /p p br/ /p
  • 单克隆抗体制备的基本原理与过程
    单克隆抗体制备的原理:B淋巴细胞在抗原的刺激下,能够分化、增殖形成具有针对这种抗原分泌特异性抗体的能力、B细胞的这种能力和量是有限的,不可能持续分化增殖下去,因此产生免疫球蛋白的能力也是极其微小的、将这种B细胞与非分泌型的骨髓瘤细胞融合形成杂交瘤细胞,再进一步克隆化,这种克隆化的杂交瘤细胞是既具有瘤的无限生长的能力,又具有产生特异性抗体的B淋巴细胞的能力,将这种克隆化的杂交瘤细胞进行培养或注入小鼠体内即可获得大量的高效价、单一的特异性抗体.这种技术即称为单克隆抗体技术。单克隆抗体制备的过程:免疫动物免疫动物是用目的抗原免疫小鼠,使小鼠产生致敏B淋巴细胞的 过程。 一般选用6-8周龄雌性BALB/c小鼠,按照预先制定的免疫方案进行免疫注射。 抗原通过血液循环或淋巴循环进入外周免疫器官,刺激相应B淋巴细胞克隆,使其活化、增殖,并分化成为致敏B淋巴细胞。细胞融合采用二氧化碳气体处死小鼠,无菌操作取出脾脏,在平皿内挤压研磨,制备脾细胞悬液。 将准备好的同系骨髓瘤细胞与小鼠脾细胞按一定比例混合,并加入促融合剂聚乙二醇。在聚乙二醇作用下,各种淋巴细胞可与骨髓瘤细胞发生融合,形成杂交瘤细胞。选择性培养选择性培养的目的是筛选融合的杂交瘤细胞,一般采用HAT选择性培养基。在HAT培养基中,未融合的骨髓瘤细胞因缺乏次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,不能利用补救途径合成DNA而死亡。 未融合的淋巴细胞虽具有次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,但其本身不能在体外长期存活也逐渐死亡。 只有融合的杂交瘤细胞由于从脾细胞获得了次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,并具有骨髓瘤细胞能无限增殖的特性,因此能在HAT培养基中存活和增殖。杂交瘤阳性克隆的筛选与克隆化在HAT培养基中生长的杂交瘤细胞,只有少数是分泌预定特异性单克隆抗体的细胞,因此,必须进行筛选和克隆化。通常采用有限稀释法进行杂交瘤细胞的克隆化培养。采用灵敏、快速、特异的免疫学方法,筛选出能产生所需单克隆抗体的阳性杂交瘤细胞,并进行克隆扩增。经过全面鉴定其所分泌单克隆抗体的免疫球蛋白类型、亚类、特异性、亲和力、识别抗原的表位及其分子量后,及时进行冻存。单克隆抗体的大量制备单克隆抗体的大量制备主要采用动物体内诱生法和体外培养法。(1)体内诱生法 取BALB/c小鼠,首先腹腔注射0.5ml液体石蜡或降植烷进行预处理。1-2周后,腹腔内接种杂交瘤细胞。杂交瘤细胞在小鼠腹腔内增殖,并产生和分泌单克隆抗体。约1-2周,可见小鼠腹部膨大。用注射器抽取腹水,即可获得大量单克隆抗体。(2)体外培养法 将杂交瘤细胞置于培养瓶中进行培养。在培养过程中,杂交瘤细胞产生并分泌单克隆抗体,收集培养上清液,离心去除细胞及其碎片,即可获得所需要的单克隆抗体。但这种方法产生的抗体量有限。各种新型培养技术和装置不断出现,大大提高了抗体的生产量。单克隆抗体制备的意义:用于以下各种生命科学实验并具有医用价值(1)沉淀反应:Precipitation reaction(2)凝集实验:haemaglutination(3)放射免疫学方法检测免疫复合物(4) 流式细胞仪:用于细胞的分型和细胞分离.(5)ELISA 等免疫学检测(6)BIAcore biosensor:检测Ab-Ag或与蛋白的亲和力 .(7)免疫印记(western blotting)(8) 免疫沉淀:(9) 亲和层析:分离蛋白质(10) 磁珠分离细胞(11)临床疾病的诊断和治疗;
  • 扫描电子显微镜的基本原理(一)
    自1965年第一台商品扫描电镜问世以来,经过50多年的不断改进,扫描电镜的分辨率已经大大提高,而且大多数扫描电镜都能与X射线能谱仪等附件或探测器组合,成为一种多功能的电子显微仪器。在材料领域中,扫描电镜发挥着极其重要的作用,可广泛应用于各种材料的形态结构、界面状况、损伤机制及材料性能预测等方面的研究,如图1所示的纳克微束FE-1050系列场发射扫描电镜。图1 纳克微束FE-1050系列场发射扫描电镜场发射扫描电镜组成结构可分为镜体和电源电路系统两部分,镜体部分由电子光学系统、信号收集和显示系统以及真空系统组成,电源电路系统为单一结构组成。1.1 电子光学系统由电子枪、电磁透镜、扫描线圈和样品室等部件组成。其作用是用来获得扫描电子束,作为信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。1.2 信号收集检测样品在入射电子作用下产生的物理信号,然后经视频放大作为显像系统的调制信号。1.3 真空系统真空系统的作用是为保证电子光学系统正常工作,防止样品污染,一般情况下要求保持10-4~10-5Torr的真空度。1.4 电源电路系统电源系统由稳压,稳流及相应的安全保护电路所组成,其作用是提供扫描电镜各部分所需的电源。图3为扫描电镜工作原理示意图,具体如下:由电子枪发出的电子束在加速电压(通常200V~30kV)的作用下,经过两三个电磁透镜组成的电子光学系统,电子束被聚成纳米尺度的束斑聚焦到试样表面。与显示器扫描同步的电子光学镜筒中的扫描线圈控制电子束,在试样表面的微小区域内进行逐点逐行扫描。由于高能电子束与试样相互作用,从试样中发射出各种信号(如二次电子、背散射电子、X射线、俄歇电子、阴极荧光、吸收电子等)。图3 扫描电镜的工作原理示意图这些信号被相应的探测器接收,经过放大器、调制解调器处理后,在显示器相应位置显示不同的亮度,形成符合人类观察习惯的二维形貌图像或者其他可以理解的反差机制图像。由于图像显示器的像素尺寸远大于电子束斑尺寸,且显示器的像素尺寸小于等于人类肉眼通常的分辨率,显示器上的图像相当于把试样上相应的微小区域进行了放大,而显示图像有效放大倍数的限度取决于扫描电镜分辨率的水平。早期输出模拟图像主要采用高分辨照相管,用单反相机直接逐点记录在胶片上,然后冲洗相片。随着电子技术和计算机技术的发展,如今扫描电镜的成像实现了数字化图像,模拟图像电镜已经被数字电镜取代。扫描电镜是科技领域应用最多的微观组织和表面形貌观察设备,了解扫描电镜的工作原理及其应用方法,有助于在科学研究中利用好扫描电镜这个工具,对样品进行全面细致的研究。转载文章均出于非盈利性的教育和科研目的,如稿件涉及版权等问题,请立即联系我们,我们会予以更改或删除相关文章,保证您的权益。
  • 测序黑马齐碳科技获4亿B轮融资 国产纳米孔测序仪产业化加速
    6月8日,齐碳科技正式对外宣布完成超4亿人民币B轮融资,由高瓴创投和鼎晖VGC(创新与成长基金)联合领投,博远资本、华盖资本及阳光融汇资本跟投,老股东高榕资本、中关村协同创新基金、银杏谷资本、雅惠投资及BV百度风投持续加码。齐碳科技专注于纳米孔单分子基因测序仪及配套试剂、芯片的自主研发、制造及应用开发。据了解,本轮融资完成后,齐碳将进一步加大科研投入,加速产业化进程,计划于今年内完成定型产品量产并推向市场。单分子纳米孔测序技术备受青睐纳米孔技术因其不需要复杂的酶扩增以及荧光标记,且其具有低成本高通量的特点而受到广大研究者们的青睐。纳米孔DNA测序的基本原理图与传统Sanger测序技术相比,纳米孔单分子测序技术的核心优势在于它的便携性、低成本和高通量。总体而言,相较于主流二代测序仪,纳米孔测序仪具有长读长、小巧便携、实时输出结果等优势,特别适合病原微生物快速检测、基因组结构变异以及重复序列变异检测。美国国家卫生研究院(NIH)提出了“1000美元测序”的概念,而基于纳米孔的DNA测序技术是最有潜力实现这一目标的方法之一,众多实验研究也进一步验证了纳米孔DNA测序技术的可行性。齐碳科技为国内唯一实现纳米孔测序仪产品化的企业齐碳科技创立于2016年,致力于纳米孔基因测序仪及配套试剂耗材的自主研发、制造与应用,是目前全球唯二、国内唯一通过自主研发实现纳米孔基因测序仪产品化的高科技企业。2020年9月,齐碳科技成功发布我国第一台纳米孔单分子基因测序仪QNome-9604,填补了国内新一代基因测序技术领域的空白。该款测序仪可直接检测过孔核酸,无需PCR扩增,读长可达150Kbp以上,8小时可稳定产出500Mbp数据,单次准确率达90%,设备小巧便携,可突破中心实验室使用限制,应用场景更为灵活。目前该产品已通过TÜV莱茵第三方检测,认定QNome-9604在基因测序通路数量、准确率、读长等方面的检测数据全部达标。投资人观点齐碳科技联合创始人&董事长胡庚博士表示,非常感谢齐碳科技的新老股东们对我们的长期关注与支持。齐碳科技成立至今不到五年,高效的完成了首款国产纳米孔基因测序仪的技术研发和产品定型,并将于今年实现产品量产,这一切都离不开团队的努力、股东的支持和市场的关注。本轮融资完成后,齐碳科技将投入更多的资源到团队扩充、产品升级、产能提升及商业拓展中,努力将更快更好的基因测序技术推广到更广阔的应用场景中。高瓴联席首席投资官、高瓴创投生物医药与医疗器械负责人易诺青表示:“齐碳科技研发了国内首台纳米孔基因测序仪,成功打破了基因测序设备、配套芯片及试剂研发领域的高壁垒和海外垄断,攻克了国内基因测序‘卡脖子’的技术难题。在市场应用空间中,微生物病原检测、癌症检测等细分领域适合成为纳米孔基因测序仪的首选应用方向。我们将长期支持国家重点领域科技研发,推动高水平科技自立自强。”鼎晖创始合伙人、鼎晖投资创始合伙人王霖表示:“基因测序行业增长迅速,传统二代测序技术在应用中存在一定的局限。作为下一代长读长测序技术中壁垒最高的产业链上游,齐碳科技具有强大的研发实力,产品迭代升级、性能提升速度快,公司目前在纳米孔基因测序仪方面的技术已达到全球领先水平。我们很高兴可以和齐碳科技这类硬科技公司携手同行,并期待公司产品早日实现在科研端和临床端的大规模应用。”博远资本创始合伙人陈鹏辉表示:纳米孔测序技术近年来快速发展,准确度、通量、成本等各方面都有了极大提升,科研和临床的应用场景持续拓宽,照亮了过去从未看到的基因组的黑暗角落。齐碳科技在具有强大战斗力的创始人团队带领下,成功突破纳米孔测序仪的超高技术门槛,产品顺利进入商业化阶段,公司也成为了国内该领域毫无疑问的龙头企业。博远资本非常高兴能够参与本轮融资,将持续赋能公司未来发展,在生命科学和精准医疗领域贡献更大价值。华盖资本医疗基金执行总经理孟楠认为,基因检测技术开发与应用在全球范围内已经进入高速发展期,齐碳科技创始团队具有全球视野及高效的研发能力,其拥有纳米孔基因测序方面的技术已达到全球领先水平。“我们高度认可齐碳科技团队的产品研发能力和开拓能力,相信在白净卫博士的带领下,公司将获得长足发展。华盖未来将助力公司成为测序领域的领导者,持续为社会创造价值。”阳光融汇资本合伙人石晟昊表示:第四代基因测序技术在读长,测序时间等方面有天然优势,齐碳科技团队的技术扎实、完整。作为这一技术路线国内产品化和商业化最快的公司,齐碳科技具有显著的投资价值。阳光融汇非常荣幸参与本轮融资,相信公司未来将在创始团队的带领下持续拓展第四代基因测序的技术和应用边界,成为基因测序行业龙头企业。
  • 俄歇第一课答疑:AES基本原理、主要功能和应用
    1.问:求问电镜分辨率1.6nm和0.8nm在实际效果差多少?主要观测半导体芯片,具体差别在哪里? 回复:当然总的来说空间分辨率越高,成像特征越清晰;但实际应用与样品基体效应、分析需求、电镜优势性能、操作条件比如加速电压、电流、工作距离,真空环境等都有关系,由具体情况决定。通常供应商提供分辨率指标都是在特定条件比如高加速电压下低电流由标准样品测试得到的。如果观测半导体芯片,如果看浅表形貌特征,需要低加速电压,这时候可能电镜分辨率1.6nm和0.8nm的实际差异不大,要看此电镜在低加速电压的分辨能力;当分析对象尺度接近电镜空间分辨能力的时候,比如几个纳米的形貌特征(小于10nm),可能分辨率1.6nm和0.8nm的不同电镜能体现出成像差异;但当分析特征的尺度远大于空间分辨率的时候,比如100nm,从成像上两者的差别不会很明显。以上是经验浅谈,毕竟PHI不是电镜供应商,仅供大家参考。 2.问:请问AES和SEM-EDS测试的元素分布的区别? 回复: AES 和 EDS成分分析的主要区别:3.问:这种AES化学态的分析和XPS有什么区别?回复: 总的来说化学态分析主要用XPS,而AES主要获得元素信息,也有一定的化学态信息: 1) 俄歇激发本身涉及不同轨道能级三个电子的行为,俄歇电子动能与三个电子对应的轨道的结合能相关,比较难预测动能变化与化学态的相关性,不像XPS是单电子激发,原子得电子和失电子带来的结合能位移有一定的原则,有助于判断化学态;2) 俄歇是电子源入射,电子源本身对化学态尤其是有机材料的化学键有一定的破坏作用;电子源激发出的图谱里有较大的背景(背散电子弹性散射和非弹性散射背底、二次电子背底等)影响谱峰判定,给化学态判断带来影响;3) AES能量分辨率没有XPS能量分辨高,AES谱峰宽、谱峰分裂多(多种终态),不对称性等都影响化学态判断。而XPS谱峰(能量分辨好、背底干扰小、对称性好、 特征峰比如轨道分裂峰、卫星峰等)有化学态特征性。 4.问:请问AES在钙钛矿太阳能电池上有何应用嘛? 回复:只要样品有一定导电性或通过样品制备改善荷电效应,都可以用AES进行分析,所以AES可以分析钙钛矿太阳能电池材料(采用导电铜胶固定样品),但因为钙钛矿材料主要是有机金属卤化物半导体材料,AES电子束对有机化学键有一定损伤,不能用于化学态判定,但可以用俄歇表征元素定性和半定量结果(里面有特征元素比如Pb/I(Br)等), 但也有谱峰重合问题(比如I和O谱峰);所以总体来说AES对钙钛矿材料成分表征有一定局限性。 5.问:请问不导电的样品可以测试AES吗? 回复 : 俄歇主要用于测导体,半导体,对于绝缘材料除非改善荷电效应可以用俄歇分析,但对于有机材料本身电子束对化学键损伤,即使测出有机材料的元素比如C/O/N/S对有机材料的成分分析来说信息非常有限,意义不大。 6.问:硅酸盐粘土矿物可以吗?也是绝缘性的?AES可以区分出来不同羟基吗? Si-OH Al-OH可以区分出来吗? 回复: 同上,除非能改善荷电效应才能分析绝缘材料,本来荷电效应大就会使谱峰信号差,谱峰变形严重(展宽、能量位移等),不能进行化学态判定,所以主要获得元素信息,不能识别化学态(比如羟基等)。对课程感兴趣的小伙伴请扫描下方二维码,PHI小助手将会拉您入微信群,快来一起玩耍吧~
  • 华因康重磅发布临床应用型测序仪 测序仅需10小时
    导读:2015年10月18日,华因康基因重磅发布了一款自主研发、获CFDA医疗器械注册证的临床应用基因测序仪HYK-PSTAR-IIA。在基因测序技术受关注的今天,HYK-PSTAR-IIA基因测序仪的正式发布,对中国基因测序技术发展具有怎样的影响?会给NGS的临床应用市场带来怎样的冲击?又能为临床用户带来怎样的体验?华因康基因测序仪产品发布会,带您一同观看一场正在改变中国基因测序临床应用的发布会。  2015年10月18日,作为中国高通量基因测序仪首创企业,华因康携863项目重要成果--自主创新且获CFDA医疗器械注册证的临床应用基因测序仪HYK-PSTAR-IIA,亮相第74届中国国际医疗器械博览会,并举办了“863项目成果交流会暨华因康基因测序仪产品发布会”,与863项目相关领导和专家进行了深入交流,全面系统展示了该款产品的核心专利、技术优势及临床应用等方面,分享和探讨了临床及科研领域的应用经验。  国家产业支持,固筑中华健康梦想  完全依赖进口,将使我们无法即时得到最新、最先进的测序设备,而且设备、软件、试剂价格不菲,不利于临床应用的开展,中国需要自己的测序仪,需要这种核心平台技术。盛司潼博士指出,前沿生命科技要更好的造福人类,就要为大众的医疗健康带来新的价值。在国家科技部863重大课题的支持下,华因康实现了将最初的科研型测序仪升级成为临床型测序仪,并于2014年获得国家药监局医疗器械注册证。这将开启基因测序在临床应用的新时代,将为我们日益增长的精准医疗需求提供解决方案,同时也将极大的推动基因检测临床市场的迅速发展。  匠心设计,打造中华首创  任何一个自主品牌产品的诞生,都必然有一条曲折的道路,华因康HYK-PSTAR-IIA基因测序仪也不例外。华因康产品总监谭辉标指出,早在2011年之初,华因康就已经瞄准临床应用这个潜力巨大的市场,并开启了设备的精心设计。他还透露了一组关于该产品的重要数据:11项核心算法,16次重大技术攻关,274名技术人员,360种零部件,1007次测试,1095天,1200例临床试验 115件中国及国际PCT专利,10项全球领先的核心技术,8项国家标准,6篇SCI学术论文,2项创新医疗器械特别审批。其中,基于200多项涵盖试剂供给、测序反应、自动化控制、光学成像、数据处理等5大系统核心专利,HYK-PSTAR-IIA得以成为首个通过创新医疗器械特别审批程序的基因测序仪。  我国十分重视基因测序技术的发展与推进,作为863项目重要成果--获CFDA医疗器械注册证的基因测序仪HYK-PSTAR-IIA的正式发布,意味着我国真正拥有了首个临床诊疗领域独立自主的基因测序仪品牌。  核心专利技术,实现临床精准诊疗  会议期间,华因康医学总监李花特别针对临床医师广为关注的,应该如何选择测序仪进行了阐述。她指出,国外厂商的设备并不完全适合于临床应用,存在测序成本高、操作复杂、测序周期长等问题。而HYK-PSTAR-IIA是一款专为临床应用而设计的基因测序仪,具有灵活、快速、准确等特点,成为临床精准医疗的最佳选择。  HYK-PSTAR-IIA四大特点--灵活、快速、方便、准确  李花指出HYK-PSTAR-IIA除了配备4种规格反应体系模块,还可以根据用户需求定制反应模块,极大方便临床测序的应用,最低上机样本数低至4个,同时最大上机样本量达几百,尤其适用于临床样本不固定的医疗机构。HYK-PSTAR-IIA检测快速,单轮测序时间仅10小时,充分满足临床对检测周期短的要求。HYK-PSTAR-IIA配备了自动化的数据分析软件,使得数据分析更加简单易行,一键即可开启大规模数据分析,临床使用更简便。高灵敏度、大尺度、CCD成像系统联合DICT图像精准识别专利技术,实现精准对焦,自动化采图,经多个权威平台对比验证,准确性达99.9%以上。  以HYK-PSTAR-IIA基因测序仪为核心的PSTAR基因测序系统,已获得14个医疗器械注册证,包括测序配套、试剂及分析软件,其中试剂盒已获得8个,而且新试剂盒将不断上市,新应用将不断拓展,能为基因测序解析工作提供全套系统解决方案。  市场精心布局,临床应用展翅翱翔  会议期间,上海瑞金医院、浙江省肿瘤医院以及深圳市南山区慢性病防治院的测序仪用户,均对各自的应用案例进行了深入的剖析与分享,让广大与会人员看到中国自主创新品牌的测序仪在临床领域开展的众多应用。浙江省肿瘤研究所的凌志强教授更是坦言,基因测序最重要的是时机,如果测序报告不及时,一旦肿瘤发生转移,个性化用药或其它治疗的效果就会大打折扣。华因康的设备最大的优势就是灵活,快速,成本低,很适合在临床上使用,并且准确率与国外的设备不相上下。  HYK-PSTAR-IIA基因测序仪应用范围极为广泛,从基础研究到产品开发,从临床科研到健康产业,涵盖了疾病早期筛查、精准用药指导、疾病分子机制研究、药物开发、等众多领域,得到国内多家科研机构、医疗机构等的高度认可,并获得行业内的多项荣誉资质。  目前,华因康基因已与国内顶级医院及科研机构如上海瑞金医院、浙江省肿瘤医院等携手,进行了全方位合作,成立了合作应用示范点,形成了以点带面逐级扩展的辐射效应,这将极大拓宽在我国生命科学领域的应用空间,开拓了高通量基因测序技术在生命科学与健康医疗领域中的广阔应用。  总结与展望  华因康绕开了长期被Illumina、Life Technology等国外测序厂商垄断的科研测序仪市场,大举进军医用基因测序仪,因此HYK-PSTAR-IIA基因测序仪的正式发布将对中国基因测序产业带来产生深远的影响。当天上午,在武汉光谷领导们的大力支持下,华因康完成了试剂研发生产华中基地落户武汉光谷,由此华因康全国市场布局真正打开,华因康将以此为一个新的起点,再接再厉,谱写新的篇章。
  • 基因测序深入临床第一步!国家药监局公开征求测序仪临床评价注册意见
    国家药品监督管理局发布通知,公开征求基因测序仪临床评价注册审查指导原则。该指导原则为对基因测序仪的一般要求,意见稿规定临床申报产品需明确基本原理、产品类型、核心部件等结构组成、性能参数要求及软件核心功能算法、适用范围及预期用途、安全性评价等产品评价方面。以下是通知详情:各有关单位:  根据国家药品监督管理局2021年度医疗器械注册技术指导原则制修订计划的有关要求,我中心组织起草了《基因测序仪临床评价注册审查指导原则(征求意见稿)》。经文献汇集、企业调研、专题研讨和专家讨论,形成了征求意见稿。  为使该指导原则更具有科学合理性及实际可操作性,即日起在网上公开征求意见,衷心希望相关领域的专家、学者、管理者及从业人员提出意见或建议,推动指导原则的丰富和完善。  请将意见或建议以电子邮件的形式于2021年10月27日前反馈我中心。  联系人:郑生伟、方丽  电话: 010-86452541;010-86452538  电子邮箱:zhengsw@cmde.org.cn;       fangli@cmde.org.cn  附件:1.基因测序仪临床评价注册审查指导原则(征求意见稿)(下载)     2.《基因测序仪临床评价注册审查指导原则(征求意见稿)》意见反馈表(下载)国家药品监督管理局医疗器械技术审评中心2021年10月13日
  • 日立高新扫描电镜的基本原理和应用技巧--教你成为扫描电镜的应用高手
    近年来,电镜作为科学研究的一个重要手段,被越来越多的研究者接受。日立高新的电镜多年来本着用户第一的信念,获得了广大用户的好评。为了给广大用户提供更好的技术支持,让每一位用户都能用好电镜,日立高新决定利用网络,开展一系列电镜知识普及讲座。 第一次网络讲座将于5月8日下午14:30开讲。观察电镜的过程中,常会碰到这样那样的问题,在本次讲座中,您可以逐步学习到电镜基础知识、观察技巧、前处理方法等,由浅到深,为各种问题提供合适的解决方法。让您今后能更好地操作电镜,相信此次讲座一定可以为您的工作提供很有用的帮助。主讲人:罗琴(日立高新电子显微镜应用工程师)报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInfo.asp?infoID=374关于日立高新: 日立高新技术是一家全球雇员人数超过10,000人,百余处经营网点的跨国公司。 日立高新技术的企业发展目标是"成为独步全球的高新技术/解决方案提供商",即兼有掌握 最先进技术水准的开发、设计、制造能力和满足企业界不同需求的解决方案提供商身份的综合性高新技术公司。 日立高新技术在中国区域除了生产半导体制造设备、液晶制造设备、基板安装设备、 电子显微镜、医用仪器设备外,还从事高新技术工业仪器设备、电力设备、汽车零部件、 半导体设备电子元件、显示器相关产品、光学元件、金属&bull 合成树脂材料及其衍生产品等的销售业务。同时,还积极布局国外,并且提供能够综合、动态管控从国外采购到国外销售诸环节中的信息&bull 物流&bull 资金流程的供应链解决方案。 日立高新在华企业的发展目标涵盖四方面内容,即将"人与技术"作为经营资源的核心内容,推动中国高新产业的发展,维护中国人民的身体健康,满足合作伙伴的需求。我们真诚希望在今后的岁月里继续得到您的支持与厚爱。
  • 华因康即将推出第三代超高通量测序仪
    据悉,深圳华因康基因科技有限公司内的研发人员最近十分忙碌,华因康的超高通量基因测序仪第三代机型年底将推出,他们正忙着测序仪的组装和调试。作为曾填补国内基因测序设备制造空白的华因康基因测序仪,第三代仪器将让国产基因测序仪再上一个新台阶。国家&ldquo 千人计划&rdquo 创业人才、华因康技术总裁盛司潼正是这台超高通量基因测序仪的研发领头人。   填补国内基因测序设备空白   1973年出生的盛司潼可谓少年英才,14岁便进入清华大学学习物理。在美国弗吉尼亚大学、约翰霍普金斯大学先后攻读物理、分子生理与生物物理等学科十余年后,2008年,盛司潼入选国家&ldquo 千人计划&rdquo 创业人才并创办华因康。盛司潼说,&ldquo 之所以选择回到国内,除了深感国内生物基因产业发展逐步成熟的环境因素外,另一个重要原因是,我在国外始终忘不了要回国开创一番事业,尤其是生物基因产业,中国需要自己的企业。&rdquo   基因测序设备制造,在2008年前的国内尚属空白。早在2003年,盛司潼就投身到基因测序设备的研发中,在高强度技术积累的基础上,盛司潼在创办华因康的同一年推出了第一代高通量基因测序仪,并在国内引起轰动。这也打破了国内医疗机构、科研机构只有国外仪器可供购买的垄断。   据了解,人类的基因99%是相同的,个体差异由剩下的1%决定,也正是这1%的差异,就可能让有的人一辈子健健康康,有的人却莫名其妙患上重病。盛司潼说,有些长期抽烟的人没有肺癌,但有些人一辈子从未抽烟却得了肺癌,生来所携带的致病基因是非常重要的原因。基因测序仪的应用功能之一,便是读取人们的基因信息,通过筛查人们的特定基因,确定是否存在致病可能。&ldquo 很多肿瘤疾病并非不能治好,如果通过基因测序技术发现得早,及时调理、治疗,完全有可能挽救生命。&rdquo 他说,治疗同一种疾病的众多品类的药物,并不一定适用于每一个人,由于个体的耐受性不一样,基因测序技术可以为病人找到适合他们的药物。   在华因康的测序中心,记者看到了正在组装调试的第三代机型。据了解,第三代华因康超高通量基因测序仪不仅将测序通量提升十余倍,其测序精确性也大大提升,国产基因测序设备的品质可谓再上了一个新台阶。   向单分子测序技术推进   盛司潼说,华因康基因测序仪的硬件都是外包生产,组装由华因康自己完成,&ldquo 深圳拥有强大的硬件制造环境,高科技企业不要依靠生产线的规模,而要依靠自己的核心技术实力。&rdquo 目前,华因康正将基因测序技术向单分子测序阶段推进,这种技术将不再需要放大基因进行酶切,&ldquo 样品送过来,直接就可以测序。&rdquo 这将大大提高基因测序的效率。   据了解,专门生产基因测序设备和生化试剂的企业目前在中国仅有华因康一家。经过四年的摸索和发展,盛司潼组建了一支由海外教授、博士后、博士等组成100多人研究团队,成为首批广东省创新科研团队。在盛司潼的带领下,华因康已申请80多项专利,其中90%以上为发明和实用新型专利,开发出高通量基因测序仪、乳浊液制备仪等设备类产品,短标签建库试剂盒、单分子扩增试剂盒等试剂类产品共100多项。
  • 盘点全球各国政府主导的人类基因组测序计划
    美国科学家于1985年率先提出人类基因组计划,1990年正式启动,美国、英国、法国、德国、日本和中国科学家都参与了这一预算达30亿美元的人类基因组计划。之后,2000年6月26日,六国科学家共同宣布,人类基因组草图的绘制工作已经完成。在这场规模宏大、影响世界的基因测序项目落幕后,全球内陆续又有不同国家竞相开展各自的基因组测序计划,本文对有动作的国家作了大致梳理:  中国  近期国家卫计委发布消息,我国正在制定“精准医疗”战略规划,这一规划或将被纳入到十三五重大科技专项。另外,国家精准医疗战略专家组成员詹启敏院士认为精准医疗是应用现代遗传技术、分子影像技术、生物信息技术,结合患者生活环境和临床数据,实现精准的疾病分类和诊断,制定具有个性化的治疗方案发展精准医学对中国而言是值得把握的良机,主管部门已经考虑把精准医学纳入到十三五的一个工作重点来进行推动。在2030年前,中国精准医疗将投入600亿元,其中中央财政支付200亿元,企业和地方财政配套400亿元。  和精准医疗相关的是今年11月份,中国医科大学附属盛京医院联合中国遗传学会遗传咨询分会启动“中国双胎基因组计划”,逐步建立起双胎无创产前检测的标准规范,推动无创产前检测技术在双胎妊娠中的应用。  这与二胎政策放开,以及辅助生殖技术的发展,导致双胎妊娠越来越多的当下现实有关,而我国目前缺失针对双胎产前诊断的确切方法,所以需要有高准确度的无创产前筛查。该“中国双胎基因组计划”将在三年内完成1万例双胎样本的无创产前检测。  英国  2015年11月12日,英国政府全资控股的英格兰基因公司宣布和中国明码(上海)生物科技有限公司签署协议,由该中国公司参与英国的“10万基因组计划”,提供基因组数据解析工具,帮助研究人员提高数据分析质量。  英国的“10万基因组计划”由英国首相David Cameron于2012年12月提出,并由Genomics England负责实施,计划在2017年之外对英国国民健康服务中心(National Health Service)的10万名患者进行测序。政府发起于2012年,旨在对英国国民医疗保健制度(NHS)记录中的10万名病人的完整基因组进行测序。  项目目标是根据基因组学和临床数据制定个性化的癌症和罕见疾病疗法,并使NHS成为“世界上第一个将提供基因组医学作为日常护理一部分的主流健康服务体系”。此项目不仅让参试者受益于临床分析,而且他们的基因组数据还会对全社会的患者贡献价值。比如,医生通过把一名患者的前列腺癌症基因和英国基因数据库中的数据作对比,可能揭示出该病背后的具体基因模式。医生可能会找出具有同样基因模型的其他患者,然后了解哪些药物和程序对患者有益。  据悉,该项目将获得总值超过3亿英镑的组合投资,有望让英国成为癌症和罕见病遗传研究的全球领先者。  美国  其实医药研发与创新优势凸显的美国,在单国基因组测序计划方面并非领跑世界。今年1月下旬,美国总统奥巴马在2015年国情咨文演讲中深情地宣布“精准医疗计划”这一项目,并1.3亿美元用于百万基因组计划,占总计划(2.15亿美元)的60.5%。  由于“精准医学”项目的短期目标是为癌症找到更多更好的治疗手段,长期目标则是为实现多种疾病的个性化治疗提供有价值的信息,所以项目核心在于创建一个囊括各个年龄阶层、各种身体状况的男女志愿者库,研究遗传性变异对人体健康和疾病形成产生的影响。研究人员希望,在招募新志愿者的同时,“精准医学”能够有效整合现有研究项目旗下数以万计志愿者的基因数据,最终使参与人数达到100万。  据分析,美国之所以落后于欧洲(英国)开展“全基因组测序”,主要原因并不在于技术的落后,而是因为美国的基因测序公司及机构实在是太多了,一方面他们彼此之间的竞争太厉害不利于展开合作,另一方面是他们之间采用的标准并不统一、兼容程度不够高。  加拿大  在2001年人类基因组测序草图基本完成后,加拿大预测个体基因组测序将出现爆发趋势。个体基因组测序,每个个体的疾病档案、生理和生物特征及个人遗传学特质将成为医学精准治疗的高价值信息。因此加拿大政府于2005年发动了称为个体基因组项目(PGP-Canada)。  该项目将根据环境与遗传相互作用产生一系列生物学性状的基本原理,收集志愿者的基因组、环境和人类特质等数据信息,同时宣布研究结果将完全公开共享。  另外与此相关的最近消息称,加拿大科学家已经通过逐个关闭18000个基因(占人类基因组的90%)发现,超过1500个核心基因是人类必需的。这一发现为达成生物医学研究的长期目标——精确定位基因组中每一个基因的作用奠定了基础。  澳大利亚  澳大利亚计划花4年时间,学习英国打造本土十万基因组计划。通过测序罕见疾病和癌症患者的基因组,创建大规模澳大利亚国民基因数据库,推动相关药物的进一步研究和发展,构建一个基于基因组学的新医疗卫生服务系统。  该项目的参与方有Garvan医学研究所、联邦政府以及其他研究机构,如澳大利亚最大的电讯公司Telstra,其中Telstra公司已成立专门的健康部门。澳大利亚政府相信此次项目能给政府、机构以及个人创造许多可能,共同创造一个澳大利亚的基因组学经济。  韩国  2015年11月底,韩国蔚山国家科学技术研究所(UNIST)宣布推出韩国万人基因组计划。该计划将获得健康人群和免疫力低下人群的基因组测序数据 并用于研究韩国人群的遗传多样性 构建标准化的基因变异数据库,发现罕见基因突变 注释基因组数据 推动日益增长的基因组学市场。预计2016年,该项目将获得150万美元的启动资金,预计2019年完成。在未来几年时间里,计划获得2300万美元的资助。  其实在今年年底的万人基因组计划之前,2014年2月19日,韩国政府宣布正式启动一项耗资5.4亿美元的后基因组计划,以推动新型基因组技术的发展和商业化。该计划包括绘制标准人类基因组图谱、发展本国的人类基因组分析技术,以及依托基因组的疾病诊断和治疗技术等五大目标。  不到一年,从后基因组到正是推出万人基因组计划,正显示了韩国积极战略布局基因领域,追赶世界的强大决心。  冰岛  冰岛虽然一度陷入经济危机,濒临破产的生死边缘,但不可否认的是其生物制药业的飞速发展,这主要得益于冰岛生物医学和基因研究的先进和发达。  今年3月份,《自然遗传学》杂志发表了四份由冰岛研究员们撰写的研究报告,他们在研究过程中,将2636名冰岛人的完整基因组进行了有序排列。将那些挑选出的冰岛人的完整基因组进行有序排列之后,研究人员们参考另外10万人的基因组推测出了相应的研究结果,而那10万人的基因组,只有部分基因组是有序排列的,那些基因组与心脏病、肝病以及甲亢等疾病的产生有关。  1998年,生物技术公司deCode Genetics公司就开先河欲首先绘制冰岛人的基因组图谱。尽管当时备受争议,被质疑研究图谱的科学价值,但该公司抵住外界压力,依然大胆开始尝试。  其实冰岛拥有一系列鲜明特征有益于开展基因测序。它的人口相对较少,而且处于隔离的地理环境,对研究基因遗传变异提供天然的研究基础。另外80%的冰岛家庭都存储有家族遗传谱系数据。且冰岛的公共卫生服务记录可最早追溯到1915年。  新加坡  2000年6月,新加坡展开”新加坡基因组计划”,将致力研究疾病对白种人和亚洲人有何不同影响,以及选择最佳治疗方式。”新加坡基因组计划”的第一个5年研究已获得6000万新币(3500万美元)的经费。  新加坡的基因组研究计划准备聘请本国和国际人类基因科研人才,研究一些困扰着亚洲人的疾病导因,包括乳癌、肝癌、结肠癌、鼻咽癌等,以找出适合亚洲人的疗法和药物。  以色列  2015年5月,以色列计划建立一个由政府授权的基因数据库。该计划细节尚未敲定,也未正式展开,但许多智库已经举行了会议研究建立数据库的潜在障碍以及应对办法。在以色列,每个人都有一个与其ID号相关的、从出生到死亡的所有医疗记录,因此在开发临床数据库方面以色列拥有独特的优势。  目前,主要的任务是收集市民的DNA样本,并将其与临床数据进行匹配。这是项巨大的挑战,因为一方面涉及公民的隐私保护和伦理问题,另一方面是收集样本并进行化学测试以确定基因序列的预算问题(目前费用大约每个样本1000美元)。  沙特阿拉伯  沙特基因组计划于2013年底推出,旨在绘制沙特几千万人的遗传密码图谱,以确定导致不同的疾病基因突变,并研发新的方法进行治疗。通过这项计划,研究人员将能够确定正常基因突变和致病基因突变,并试着研发预防和治疗疾病的方法。  沙特是世界上遗传病最严重的国家之一,其原因是近亲结婚。沙特近亲结婚率为63%,这意味着大量的近亲结合加剧了遗传病在沙特阿拉伯的流行。未来基因工程的成果将投入包括婚前体检等应用。  爱沙尼亚  2015年11月,爱沙尼亚宣布将上线一套遗传信息查询系统,想要收集所有公民的DNA。这些数据或用于临床研究,以制定个性化的医疗计划。  自2000年开始,爱沙尼亚政府便着手搭建基因数据库。目前已收集的超过52000个基因样本,被保存在爱沙尼亚国立生物数据银行。当地政府还根据这些数据,开发出一套医疗信息查询系统,免费提供给公民以及他们的医生,预计今年底推出。  爱沙尼亚政府相信,有朝一日,当自愿捐献基因数据的人达到足够之多,便能为现有的医疗体系带来彻底变革。  将上述信息汇集成如下表格:
  • 基因测序“摩尔定律”初现,“三代测序”要革“二代”的命?
    在“二代测序”(NGS)尚未迎来投资热潮的情况下,技术突破捷报连连的“三代测序”(3GS)又进入到了投资人的视野中。1986年,第一台商用基因测序设备正式出现,到第二代测序设备出现,期间间隔了19年时间。而第二代设备问世,到第三代设备的诞生,仅仅用了5年,基因测序设备的更新换代速度正在不断加快。这就好比“2G”手机跳过“3G”,直接跨越到了“4G”时代。  报告通过四个方面对第三代基因测试技术进行分析:  1、第三代基因测试技术的发展现状   2、第三代基因测试方法原理   3、第三代极影测试技术优势和劣势   4、国内外布局第三代基因测试技术的公司情况。  1、第三代基因测试技术的发展现状  以Helicos公司的Heliscope单分子测序仪、Pacific Biosciences公司的SMRT技术和Oxford Nanopore Technologies公司的纳米孔单分子技术为代表的三代测序技术在经过了多年发展后,已经逐步趋于成熟。  尽管当下该技术还有成本偏高、错误率较高、生物信息学分析软件不够丰富的问题,但其在读长、测序速度等方面都具有明显优势。  三代测序设备已实现稳定性、小型化,未来随着准确度提升、平行测序能力和酶活性等问题的解决,第三代测序技术将成为未来发展的重要技术趋势,实现大规模商业化将是大势所趋。  2、第三代基因测序方法原理  Helicos公司的Heliscope单分子测序仪、Pacific Biosciences公司的SMRT技术和Oxford Nanopore Technologies公司的纳米孔单分子技术,被认为是第三代测序技术。  与前两代技术相比,他们最大的特点是单分子测序,其中,Heliscope技术和SMRT技术利用荧光信号进行测序,而纳米孔单分子测序技术利用不同碱基产生的电信号进行测序。  PacBio SMRT技术应用了边合成边测序的思想,并以SMRT芯片为测序载体,芯片上有很多小孔,每个孔中均有DNA聚合酶。  测序基本原理是:DNA聚合酶和模板结合,4色荧光标记4种碱基(即是dNTP),在碱基配对阶段,不同碱基的加入,会发出不同光,根据光的波长与峰值可判断进入的碱基类型。DNA聚合酶是实现超长读长的关键之一,读长主要跟酶的活性保持有关,它主要受激光对其造成的损伤所影响。  另外,可以通过检测相邻两个碱基之间的测序时间,来检测一些碱基修饰情况,既如果碱基存在修饰,则通过聚合酶时的速度会减慢,相邻两峰之间的距离增大,可以通过这个来之间检测甲基化等信息。SMRT技术的测序速度很快,每秒约数个dNTP。  但是,同时其测序错误率比较高(这几乎是目前单分子测序技术的通病),达到15%。但好在它的出错是随机的,并不会像第二代测序技术那样存在测序错误的偏向,因而可以通过多次测序来进行有效的纠错(代价是重复测序,也就是成本会增加)。SMRT技术原理图  Oxford Nanopore Technologies公司所开发的纳米单分子测序技术与以往的测序技术皆不同,它是基于电信号而不是光信号的测序技术。  该技术的关键之一是,设计了一种特殊的纳米孔(只能容纳单分子通过),孔内共价结合有分子接头。当DNA碱基通过纳米孔时,它们使电荷发生变化,从而短暂地影响流过纳米孔的电流强度(每种碱基所影响的电流变化幅度是不同的),灵敏的电子设备检测到这些变化从而鉴定所通过的碱基。Nanopore技术原理图  3、第三代基因测序技术的优势和劣势  相比于二代测序,三代测序具有如下优势:  1、第三代基因测序读长较长。如Pacific Biosciences公司的PACBIO RS II 的平均读长达到10kb,可以减少生物信息学中的拼接成本,也节省了内存和计算时间。  2、直接对原始DNA样本进行测序,从作用原理上避免了PCR扩增带来的出错。  3、拓展了测序技术的应用领域。二代测序技术大部分应用基于DNA,三代测序还有两个应用是二代测序所不具备的:第一个是直接测RNA的序列,RNA的直接测序,将大大降低体外逆转录产生的系统误差。第二个是直接测甲基化的DNA序列。实际上DNA聚合酶复制A、T、C、G的速度是不一样的。正常的C或者甲基化的C为模板,DNA聚合酶停顿的时间不同,根据这个不同的时间,可以判断模板的C是否甲基化。  4、三代测序在ctDNA,单细胞测序中具有很大的优势:ctDNA含量非常低,三代测序技术灵敏度高,能够对于1ng以下做到监测 在单细胞级别:二代测序要把DNA提取出来打碎测序,三代测序直接对原始DNA测序,细胞裂解原位测序,是三代测序的杀手应用。  同时,第三代基因测序也存在一定的缺陷:  1、总体上单读长的错误率依然偏高,成为限制其商业应用开展的重要原因 第三代基因测序技术目前的错误率在15%-40%,极大地高于二代测序技术NGS的错误率(低于1%)。不过好在三代的错误是完全随机发生的,可以靠覆盖度来纠错(但这要增加测序成本)。  2、三代测序技术依赖DNA聚合酶的活性。  3、成本较高,二代Illumina的测序成本是每100万个碱基0.05-0.15美元,三代测序成本是每100万个碱基0.33-1.00美元。  4、生信分析软件也不够丰富(如图所示):一、二、三代基因测序技术对比图  4、国内外布局三代测序的公司情况  国外布局三代测序的主要有Pacific Biosciences、Oxford Nanopore Technologies等公司,2015年10月27日,国内公司瀚海基因(Direct Genomics)公布了基于Helicos技术研发的专门用于临床的第三代单分子测序仪GenoCare 原理样机。  中科院北京基因组研究所与浪潮基因组科学也在共同研制国产第三代基因测序仪。在测序仪价格方面,PACBIO 2011年的第一台三代测序仪PacBioRS在美国价格80万美金,2015年生产的sequel测序仪价格35万美金,大幅下降。在测序成本方面,预计未来5年内三代测序能达到100美元全基因组测序的价格。国内外布局三代测序的公司  第三代测序技术是大势所趋  从兴证医药健康这份报告中可以看到:目前,第三代测序在技术上相对于二代在读长和测序速度等方面有明显优势,但在成本和准确率等方面还有待提升。目前国内只有瀚海基因在三代测序上有临床成果,而国外已经初步实现技术商业化。总体而言,第三代测序技术是未来发展趋势,实现大规模商业化将是大势所趋。  本篇报告内容由动脉网整理自兴证医药健康投资报告
  • Nature重磅!科学家开发出活细胞转录组测序技术
    一个受精卵发育为一个复杂个体,正常体细胞变成肿瘤细胞,细胞作为生命的基本单位,其状态的动态变化既是健康发育的基础也是疾病产生的原因。从光学显微镜对细胞形态变化的观察,到绿色荧光蛋白对细胞基因、表达定位等变化的追踪,再到分子记录器在基因组中稳定写入曾经发生的分子事件,以及单细胞转录组测序的发展,允许细胞全转录组的变化拟时序推测,每一次细胞动态变化记录的技术变革均推动了细胞生物学的发展。既有方法或受限于对细胞形态或少数基因的动态表征,或依赖于拟时序分析中多种在实际细胞体系中可能无法满足的假设,目前尚不能直接测量细胞全转录组状态变化。 8月17日,中国科学院深圳先进技术研究院、瑞士洛桑联邦理工学院Bart Deplancke课题组、苏黎世联邦理工学院Julia Vorholt课题组合作,在《自然》(Nature)上以article长文形式,发表了题为Live-seq enables temporal transcriptomic recording of single cells的研究论文。 该研究开发了活细胞转录组测序技术(Live-seq),首次实现了单细胞进行转录组测序后依然能够保持细胞存活。该技术兼具全基因表达分辨率和动态解析能力,是当前对单细胞转录组直接动态测量、偶联细胞现有状态及其后续表型的唯一解决方案。 基因表达程序的变化是细胞对外源和内源刺激反应的重要表现。对单个细胞的连续观测是细胞对刺激反应、变化的重要研究手段,活细胞成像是最早的方法之一。随着显微成像技术和荧光标记手段的发展,显微成像可实现从体外细胞培养到体内环境下对基因表达的动态观测。基因编辑技术的发展促进分子记录器的出现。该技术通过细胞原生的或人工合成的基因线路,对刺激的感应并将信息写入基因组,记录历史分子事件。技术的发展和应用促进细胞生物学的发展,例如活细胞成像已成为现代细胞生物学实验室的常用手段;分子记录器虽出现不久,但在体内多场景的适用性和稳定性上颇具潜力。而它们在记录基因表达上存在共同的限制——在一个细胞中只能同时记录一个或几个基因的表达。 2009年汤富酬首创单细胞mRNA测序以来,不再只依靠少数几个基因的表达来分析细胞类型,而可用整个转录组的状态来更系统全面的定义细胞类型和状态。单细胞转录组变革了对细胞状态异质性的解析能力,推动了发育生物学、肿瘤细胞学、免疫学和干细胞生物学等的发展。然而,研究只可测量细胞的静态状态,无法像前述的活细胞成像那样连续观测细胞的动态或检查细胞后续的表型。为了克服这一限制,多种基于计算或标记的方法被开发出来。这些方法基于共同的假设,即群体的静态分布可以模拟个体的动态运动。运用不同的数学模型和/或新旧RNA的标记等手段,研究将转录组相似的细胞连接,产生一条轨迹来代表一个细胞的变化路径。这些方法提供了有意义的生物学认知,但由于这些前提假设在复杂细胞系统不一定能被满足,其提供的变化路径应被解读为一种统计学上的预期,而非细胞真正变化的轨迹。而这些限制的根本原因在于单细胞测序时裂解杀死了细胞,因而无法连续测量。 本研究中,科研人员开发出活细胞转录组测序技术(Live-seq),在进行单细胞转录组测序后,依旧保持细胞的存活和功能。该技术的核心是对部分细胞质进行微创地提取,并对微量的细胞质RNA进行扩增。具体地,该技术整合改造了多种跨学科技术(图1):具备纳米级移动分辨率和皮牛顿力学灵敏度的原子力显微镜,实现超精密显微操作;亚皮升级别的微/纳流控通道和液压调节系统,实现微量(约1皮升)样品提取和转移;纳米级的、中空可定量的、可和细胞膜无缝密封的特殊探针,可实现微创的细胞质提取;相偶联的实时跟踪成像和细胞培养系统,可以长时间锁定同一个细胞;高灵敏度的RNA扩增测序;对前述步骤的无缝整合。 Live-seq只对少量的细胞质进行测序,其结果能否代表细胞的状态?研究对多种类型和状态的细胞进行活细胞测序,并平行地和单细胞测序结果进行比较。结果显示活细胞测序结果和单细胞测序结果高度吻合,证明了Live-seq能够较好的体现细胞的全转录组状态。这一过程是否改变细胞状态甚至杀死细胞?研究对包括干细胞在内的多种细胞类型进行评估,发现大部分细胞在Live-seq后仍然存活。同时,细胞分裂依然能够正常进行(图2)。研究通过对巨噬细胞对细菌脂多糖LPS刺激的反应和脂肪干细胞分化过程的观测发现,细胞的反应未因Live-seq而有明显变化。研究对接受和未接受细胞质提取的细胞全转录组进行比较,也未发现大量的基因表达变化。结果显示,Live-seq未对细胞的活性和功能产生较大影响。 由于细胞测试后仍旧存活,Live-seq首次实现对同一个细胞全基因表达的连续测量。作为概念验证,Live-seq直接测定了同一个巨噬细胞和脂肪干细胞在刺激前后的变化路径(图3)。Live-seq可以回答细胞怎样的过去决定它的现在。即使是单克隆来源的巨噬细胞对细菌脂多糖的反应依旧有很大的异质性。利用这一模型,研究表明起始状态的少数基因的表达差异和噪音(如Nfkbia、Gsn等)是决定细胞后续反应差异的重要原因,处于细S期的细胞对刺激反应也更弱。对应地,普通的单细胞转录组无法找到这些规律。 Live-seq仍有不足:与高通量的单细胞转录组相比,Live-seq是低通量的手段;Live-seq尚不能在体内应用;在高度极化而mRNA分布不均的细胞(如神经细胞)中,Live-seq或无法体现全细胞转录组;多次采样对细胞的干扰需要更多研究。未来持续的发展如自动化提高通量、通过和双光子显微镜联用运用于体内样品等,有望使上述不足得到改善。Live-seq第一次使得对活细胞的连续观测成为可能,希望可以催生更多新可能。 研究工作得到国家重点研发计划、深圳合成生物创新研究院的支持。   论文链接 图1.Live-seq基本原理 图2.Live-seq对细胞的影响,黄色的细胞被提取出细胞质,蓝色和紫色的细胞未被处理 图3.活细胞测序新可能:(左图)对同一个细胞转录组的连续分析;(右图)偶联细胞起始的转录组状态(因)和后续细胞对刺激的反应(果)
  • 涡动相关观测与数据处理基础知识系列之一:通量塔的选址与建塔的基本原则
    近年来,采用涡动相关(eddy-covariance,EC)方法测量温室气体通量的站点数量在迅速增加,但是要在科学目的、工程标准、安装运行成本和实用性之间做出平衡,寻找到最佳的解决方法,仍是一个具有挑战的工作。从观测结果准确性和精确度来说,选址、建塔等站点设计的环节是重中之重。1、位置选择站点选址的基本原则是,该站点能够尽量观测到全部的研究对象,这涉及到两个问题,一个是方向,一个是架设高度。首先是确定观测区域近几年的主风向,可以参考近几年的气象数据。由于中国大部分地区是季风气候,一般在春夏和秋冬会有两个主风向,这时候要考虑通量仪器的架设方向,实验观测的主要周期等。如果仪器架设方向可以随主风向的改变方便调整,或者实验周期是明确区分了春夏或者秋冬,那么在选址时可以选在观测对象的下风向,这样可以尽可能多的观测到目标对象;如果不能改变通量仪器的架设方向,且是长期定位观测,那尽量将观测地点选址在观测对象的中央位置,或者沿主风向的中点位置,这样可以尽可能的在不改变仪器方向和位置的前提下,观测到尽可能多的研究对象。确定架设高度要满足通量仪器的基本观测条件, 即满足湍流运动的充分交换。一般的架设高度是下垫面冠层高度的1.5到2倍(具体确定观测高度的经验法则见图 1);在相对平坦和均匀的下垫面条件下,观测距离大约是观测有效高度的100倍(风浪区原理),具体范围需要根据footprint源区计算,随着湍流运动强度和下垫面情况会有所改变。图 1 确定观测高度的经验法则通量源区代表性分析(Footprint分析)是检验一个通量站质量的重要手段,可以用来进行实验方案的设计指导,观测数据的质量控制,以及通过特定传感器的源区分布和来自感兴趣下垫面(植被)的通量贡献,从而对观测结果进行分析解释。图 2 Footprint分析2、下垫面的影响2.1植被类型涡动相关法测量温室气体通量要求仪器安装在常通量层内,而常通量层假设要求稳态大气、下垫面与仪器之间没有任何源或者汇、足够长的风浪区和水平均匀的下垫面等基本条件。在涡动相关传感器能监测到的“源区域”内植被类型均匀一致的情况下,其观测到的通量结果是比较有意义的,可以用来解释生态系统的温室气体收支情况。但当涡动相关传感器的“源区域”覆盖到不同植被类型时,情况就会变得复杂起来。一个极端的例子是:某站点周围具有两种不同的森林植被类型,每天周期性地,白天,风从一种植被类型吹向另一种;夜间,则正好相反。那么,该站点观测得到的通量资料的日平均值将毫无意义。这种极端的情况虽然极少出现,但许多站点都会有微妙的风向变化,在数据分析时需要做仔细考虑。此外,光、土壤湿度、土壤结构、叶面积以及物种种类组成的空间异质性会导致温室气体源/汇强度的水平梯度。而其植被类型的变化也会造成表面粗糙度的变化,当风通过不同粗糙度或者不同源/汇强度表面的区域时,就会产生非常明显的平流效应(Raupach & Finnigan, 1997 Baldocchi et al., 2000)。图 3 不同下垫面的地表粗糙度(参考 于贵瑞&孙晓敏,2006)地表植被类型的突然变化会导致气流的变化,如气流在从高大森林向低矮草地移动时,会在森林边缘形成回流区(如图 4所示),导致近地面和上方气流方向不一致,其水平长度尺度(距离)等于冠层高度的2-5倍(Detto et al., 2008)。图 4森林边缘附近湍流结构的概念模型(参考Detto et al., 2008)2.2冠层高度通量足迹Footprint描述了EC系统能够观测到的“源区域”,提供了每个表面元素对测量的垂直通量的相对贡献。Footprint取决于观测高度、表面粗糙度和大气稳定度等。如图 5所示,通常来说,传感器的观测高度越高,就越能观测到更远、更广的区域(Horst & Weil, 1994),也便于捕捉植物冠层上方混合良好的边界层中的通量交换。但是观测高度也不是越高越好,在大气层结稳定的条件下(如夜间),过高的观测高度可能会使观测到的“源区域”超出感兴趣的研究区域。因此应该预先计算并确保来自感兴趣区域的通量贡献至少为90%(Gö ckede et al., 2004),在稳定条件下至少50%的时间以确保适当的数据覆盖不同的风向和不同的天气条件。图 5观测高度与通量足迹基于Munger(2012)等确定塔/测量高度(hm)的原则(如图 1),可能存在准确测量实际观测高度和冠层高度的困难,需要考虑后期调整高度的可能性。观测高度必须用三维超声风速计测量路径的中心来确定,其值取决于感兴趣的生态系统的冠层高度(hc),冠层高度值不需要特别准确:采用主要冠层的平均预期高度是合理的。对于冠层高度在生长季节中快速变化的农田、草地和种植园以及同样具有快速变化特性的冰雪下垫面,塔架设计必须考虑允许通过改变塔架高度(例如伸缩式塔架设计)或通过移动传感器来改变测量高度。随着时间的推移为了确保相同的通量观测源区,可以考虑改变测量高度,遵循的原则是测量高度与冠层高度的0.76倍之间的差值保持在一个确定数值的±10%左右。但这种调整的频率不用特别频繁,最多在植被生长期或在积雪季节每隔一周进行。假设在植被生长期开始时的裸土,其测量高度为2 m,在冠层高度达到1.2 米前,不需要改变测量高度;在植被达到1.2米后(例如增加约0.5-0.8米)开始提高测量高度,然后保持测量高度与冠层高度的0.76倍之间的差值保持在一个确定数值。改变表面高度(由于生长和积雪)以及改变测量高度必须准确记录,因为这必须在后期数据处理中考虑。2.3地形影响EC法测量通量假设了地形水平,这样可以保证地形的坐标系和传感器坐标系方向一致,避免平流、泄流效应的影响。图 6复杂地形对EC观测的影响在复杂的地形条件下,风吹过小山时会引起气流的辐合或辐散运动,产生平流效应(Kaimail & Finnigan, 1994)。存在有局地风场影响的站点,在夜间大气稳定,垂直湍流输送和大气混合作用较弱,CO2的水平和垂直平流效应的影响是很重要的(于贵瑞&孙晓敏,2006)。Mordukhovish & Tsvang(1966)的研究表明,斜坡地形能导致水平异质和通量的辐散。对于设在地势较高的观测塔,在夜间对流比较弱时,通常会因CO2沿斜坡泄流而造成大气传输的通量低估,最后导致生态系统净生产力的估算偏高;对于在地势较低沟谷中的观测塔,其问题更加复杂,如果外部的大气平流/泄流通过观测界面进入生态系统,会高估光合作用吸收CO2的能力;如果外部的大气平流/泄流不能通过观测界面,而是从观测界面下部直接进入生态系统,则会在生态系统中暂时储存,最终输出生态系统,造成对呼吸作用的高估。在大多数情况下,实际地形难以满足地形水平的假设,这就需要进行坐标旋转,以消除平流项的影响。当安装铁塔的斜坡坡度特别大时,可以考虑将原本应水平安装的超声风速计调整为与地面平行。3、塔及塔附属设施的影响3.1塔体本身塔本身对观测的影响可分为塔本身对风场的影响,以及塔的偏转、震荡对测量过程的影响两种。3.1.1 对风场的影响自然气流无论是经过几十米的观测塔,还是遇到几毫米的仪器翼梁或电缆,各种尺度的障碍物都会使流线发散,从而导致用于计算通量的流线分离,称为流体失真,流动失真以难以看见的方式影响测量,其影响只能在塔的设计建造阶段进行最小化。在塔的迎风侧(上游),风速受到影响会有所降低。受流动失真影响的逆风距离与障碍物大小的立方成比例,并随着距离的立方体而减小(Wyngaard, 1981, 1988)。在塔的背风侧(下游),风速也减弱,这种效果随着风速的增加而减小(湍流的更快速重构)并且受到障碍物的长度和宽度的影响。图 7 展示了在高塔的迎风侧观察到的风向上的偏转与加速, 图 8则展示了高塔顶部和底部方向迥异的风向。这是由于在背风侧下方产生的回流区造成的,障碍物(塔)尺寸越大,回流区就越容易发展得更大。在塔基通量观测中,森林生态系统的观测常需要10m以上的高塔作为基础,容易导致回流区的产生,回流也增加了向上流动的倾向,并加强了烟囱效应,这可能会显著影响风的测量和干扰混合比梯度。图 7 在塔的迎风侧观察到风向上偏转和加速(引自Sanuki and Tsuda, 1957)图 8 塔顶部的西风流(离地面10米)和离地面2米处的东风回流(引自Vaucher et al., 2004)在建造塔时,尽量选择塔身纤细、结构较少的铁塔,避免对风场的影响,也要注意控制林窗的大小,避免人为形成回流区域。此外,应该尽量减少树木和树枝的移除,因为它们对风的阻力作用可以减少这些回流区域的形成。选择纤细塔体的同时也要保证塔体足够坚固,以确保安全的维护通道和应对整个观测周期中的极端环境。当塔架底座和结构由于受到外界辐射而加热引起对流循环时,可以观察到烟囱效应。这增强了气流的垂直偏转,从而使更多的空气向上移动。烟囱效应取决于基础和塔的质量和热容量、塔的形状、对树冠的干扰程度(清理/切割塔构造的树木)和站点的净辐射量等。烟囱效应是不可避免的,应尽量减少混凝土基础和塔架结构,塔的的横截面也尽量不超过2 x 3 m (Munger et al., 2012)。塔体结构对经过气流的扭曲变形和烟囱效应应该通过专业的方式或通过建模方法(Griessbaum & Schmidt,2009)进行调查(Serafimovich et al., 2011)。3.1.2 对测量过程的影响塔体本身随风速的运动会导致测量中的系统不确定性;塔的移动应限制在0.02 m s-1(即测量风速的精度),并且不应具有在1到20 Hz之间与风向共同变化的力矩(谐波效应);快速响应加速度设备可用于量化塔运动,逐点校正还需要快速响应测斜仪测量以确定旋转速率以及加速度;由于在塔上工作的人员而导致的塔架运动不会随着风或标量交换而变化,但可能会扰乱风场。3.2塔上横臂在1976年的国际湍流对比实验中,一些报告显示直径0.05 m的水平支撑结构造成的平均上升风速为0.1 m/s (Dyer, 1981),它大到足以使涡动相关测量无效。因此,风速计安装臂的尺寸也要尽量小,只需要提供一个安全稳定的测量平台就可以了。王国华等利用成熟的计算流体软件,对布置多个支撑观测仪器的支架所导致的大气边界层风场失真进行定量仿真。他们发现,当支架间距小于6倍的支架直径D或来流风向角小于30°时支架附近流场受到明显的相互干扰。通过对不同来流风向及支架间距离模拟结果的对比分析,认为使用多支架进行多点联合观测时,支架应沿垂直于观测地点常年来流主风向的展向布置。为避免不同支架相互干扰,支架间的最小距离L应大于9倍的支架截面直径。此外,横臂本身需要足够稳定以支撑仪表,可以通过增加侧臂和拉索的方式,以避免横臂的扭矩和振荡。3.3塔下建筑物3.1.1一节讨论了塔体本身对风速和风向造成扭曲从而影响风场的作用,塔下其他障碍物(如设备房间、供电小屋等)也存在这种作用,如图 9 所示。图 9 从障碍物侧面看的迎风流畸变和背风侧流畸变的概念图(引自Davies and Miller, 1982)回流效应在高大的森林冠层中最为明显,但较矮的草地和作物冠层也必须考虑,特别是在附近存放其他设备的房屋的情况下。因此,应尽可能地减少这种流动变形源,在不可减少的情况下,障碍物应远离观测塔,避免对风场的影响。参考文献1. Raupach M R , Finnigan J J . The influence of topography on meteorological variables and surface-atmosphere interactions[J]. Journal of Hydrology, 1997, 190(3-4):182-213.2. Baldocchi D , Falge E , Wilson K . A spectral analysis of biosphere-atmosphere trace gas flux densities and meteorological variables across hour to multi-year time scales. 2000.3. 于贵瑞, 孙晓敏. 陆地生态系统通量观测的原理与方法[M]. 高等教育出版社, 2006.4. Detto M, Katul G G, Siqueira M, et al. The structure of turbulence near a tall forest edge: The backward‐facing step flow analogy revisited[J]. Ecological Applications, 2008, 18(6): 1420-1435.5. Horst T W, Weil J C. How far is far enough?: The fetch requirements for micrometeorological measurement of surface fluxes[J]. Journal of Atmospheric and Oceanic Technology, 1994, 11(4): 1018-1025.6. Gö ckede M, Rebmann C, Foken T. A combination of quality assessment tools for eddy covariance measurements with footprint modelling for the characterisation of complex sites[J]. Agricultural and Forest Meteorology, 2004, 127(3-4): 175-188.7. Munger J W, Loescher H W, Luo H. Measurement, tower, and site design considerations[M]//Eddy Covariance. Springer, Dordrecht, 2012: 21-58.8. Kaimal J C, Finnigan J J. Atmospheric boundary layer flows: their structure and measurement[M]. Oxford university press, 1994.9. Mordukhovich M I, Tsvang L R. Direct measurement of turbulent flows at two heights in the atmospheric ground layer(Atmospheric turbulence statistical characteristics dependence on stratification and elevation from heat flux and wind friction stress characteristics)[J]. ACADEMY OF SCIENCES, USSR, IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS, 1966, 2: 477-486.10. Wyngaard J C. The effects of probe-induced flow distortion on atmospheric turbulence measurements[J]. Journal of Applied Meteorology and Climatology, 1981, 20(7): 784-794.11. Wyngaard J C. The effects of probe-induced flow distortion on atmospheric turbulence measurements: Extension to scalars[J]. Journal of Atmospheric Sciences, 1988, 45(22): 3400-3412.12. Sanukii M, Tsuda N. What are we measuring on the top of a tower?[J]. Papers in Meteorology and Geophysics, 1957, 8(1): 98-101.13. Vaucher G T, Cionco R, Bustillos M, et al. 7.3 FORECASTING STABILITY TRANSITIONS AND AIR FLOW AROUND AN URBAN BUILDING–PHASE I[J]. 2004.14. Griessbaum F, Schmidt A. Advanced tilt correction from flow distortion effects on turbulent CO2 fluxes in complex environments using large eddy simulation[J]. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 2009, 135(643): 1603-1613.15. Serafimovich A, Thomas C, Foken T. Vertical and horizontal transport of energy and matter by coherent motions in a tall spruce canopy[J]. Boundary-Layer Meteorology, 2011, 140(3): 429-451.16. Dyer A J . Flow distortion by supporting structures[J]. 1981, 20(2):243-251.17. 王国华, 贾淑明, 郑晓静. 观测支架引起的大气边界层风场的失真规律[J]. 兰州大学学报: 自然科学版, 2012, 48(5):71-78.Davies M E, Miller B L. Wind effects on offshore platforms-a summary of wind tunnel studies[R]. National Maritime Inst., Feltham (UK), 1982.为了保障各位老师同学从仪器维护的工作中解放出来,做数据的使用者,把更多的时间和精力用在数据深度分析和科学价值发掘方面,我们特提供以下技术服务:站点长期正式运维基于站点管理、工作流程/规范、设备安全、系统优化、设备/数据预警、站点/设备监控、数据分析、科研成果凝练和挖掘等多方面综合执行。站点短期巡检发现目前设备安装、使用、维护、运行状态等影响数据质量的问题。数据远程综汇系统升级建立系统平台,对站点运行状态和数据质量进行预警、监控等。数据整理分析和深度挖掘通过数据整理、插补和分析,形成数据质量分析报告;同时深入挖掘数据背后的科学信息,可以多方面地支撑文章写作、项目申请、专利以及软件著作权申请等工作。通量观测技术培训(涡动相关系统、闪烁仪系统等)根据用户的实际需求,可以有针对性地培训涡动通量观测和设备运行的基本原理,数据处理的基本流程,通量数据处理软件介绍及实际操作演示,通量、气象设备日常维护以及仪器标定,站点选址等相关内容。提供远程视频和上门现场培训等多种方案。
  • 纳米孔测序再一突破!首个人造纳米孔传感器可用用于DNA/多肽测序
    前不久,纳米孔技术的一项重要突破在《科学》期刊发表,引起业内关注。在这项研究中,科学家们首次展示了,使用纳米孔技术不仅可以测出DNA分子的碱基序列,还可以直接读出蛋白质分子的氨基酸序列。短短一个月不到,纳米孔技术领域的科学家又带来一项突破性的进展。研究人员以“从头设计”(de-novo)的方式,也就是通过人为设计氨基酸排列,合成出一种人造纳米孔。这种人造纳米孔可以稳定组装在双层脂质膜中,根据应用目的调整孔径的大小,服务于检测DNA和蛋白质分子的需求。研究成果日前发表在《自然-纳米技术》(Nature Nanotechnology)期刊上。“纳米孔传感技术是一种强大的工具,无需标记就可进行单分子检测。”该研究通讯作者、东京农业技术大学(Tokyo University of Agriculture and Technology)的Ryuji Kawano教授指出,“这是首次用从头设计的纳米孔检测DNA和多肽分子。”生物纳米孔技术通常以天然成孔蛋白为基础,成孔蛋白形成的通道可供DNA长链或多肽链分子穿过,由于碱基或氨基酸的不同,会产生相应的电流变化,仪器通过识别电信号的变化,就可以推断出通过纳米孔的碱基或氨基酸顺序。根据纳米孔测序的这个基本原理,不难看出通道的孔径大小和化学性质,对适用于检测什么分子是重要的限制。相比有限的天然成孔蛋白,研究人员决定“无中生有”地设计人工蛋白纳米孔,既能模拟天然蛋白的性质,又能更好地满足检测蛋白质分子的需求。▲SV28的氨基酸序列和它形成的发卡结构(图片来源:参考资料[1])为此,这支研究团队设计并合成了一种自然界原本不存在的肽,由28个氨基酸组成,命名为SV28。这种肽经过弯折,形成一个发卡结构,插入脂质膜。用SV28组装成的纳米孔结构,可以形成几种不同的孔径,从1.7纳米到6.3纳米,适用于检测DNA分子。研究人员介绍,对SV28的氨基酸进行微调,还可以改变它的弯折方式,由此组装形成均匀分散的孔道,每个孔径1.7纳米,适用于检测单根多肽链。接下来,研究团队还计划设计和构建更多类型的纳米孔,助力蛋白质测序、制造分子机器人等。▲“从头设计”的人工纳米孔效果图(图片来源:参考资料[2];Credit: Ryuji Kawano/Tokyo University of Agriculture and Technology)研究人员指出,之所以他们要以“从头设计”方式构建的人工纳米孔,一个重要目标就是希望制造出分子机器,用于更广泛地检测不同类型的分子,尤其是用于阐明蛋白质结构和功能的关系。“蛋白质的折叠结构取决于多肽的线性序列,并产生了蛋白质的特定功能。”Kawano教授说道,“独特的氨基酸序列,来自结构的演变,包括氨基酸残基随时间产生的突变和选择。揭示出序列信息与蛋白质结构之间的关系是科学的最终目标之一。”参考资料:[1] Shimizu, K. et al., (2021) De novo design of a nanopore for single-molecule detection that incorporates a β-hairpin peptide. Nature Nanotechnology. Doi: https://doi.org/10.1038/s41565-021-01008-w[2] For the first time, DNA and proteins sensed by de novo-designed nanopore. Retrieved Nov. 25, 2021 from https://www.eurekalert.org/news-releases/935907
  • 吴瑞先生:DNA测序之父
    第一次知道吴瑞先生 (图一) 的名字,是看了饶毅老师写的博文《君子爱&ldquo 生&rdquo 得之有道》,这篇博文后来收录在《饶议科学I》里,过年期间又读过一遍。其中有一句写的很有意思:&ldquo 1971年吴瑞的引物延伸,是测序的一个关键步骤,给奖是可以的&rdquo 。看到这儿我笑晕了:这都哪儿跟哪儿啊?所有课本上讲的都是Sanger测序法,所以显然是Sanger的贡献最大,况且诺奖都发了,还争这个有意思吗?另外,中国的语言历来有内涵,一般来说,&ldquo 可以资助&rdquo 的意思就是&ldquo 不可以资助&rdquo ,所以饶老师写博客为华人挣功劳的心意是挺好的,但显然不符合事实,对吧?咱读这篇文章的时候就是这么想的。   一般来说,大家认为吴先生的贡献主要有三个:第一,搞CUSBEA,这样当年很多中国杰出的学生有机会去国外读研究生,获得成功并成为当代的学术精英 第二,是所谓的&ldquo 植物遗传工程之父&rdquo ,看起来很炫的一个研究方向 第三,培养了个很牛的学生,Jack Szostak,2009年因为端粒方面的研究拿了诺奖。我没讲错?那问题在于,这些评价合适吗?首先咱说搞CUSBEA这事儿,反正我没经历过CUSBEA,并且我大学毕业那会儿,大家一般都是自费申请出国留学,当然现在国内和国外交流的多,公派和自费都有,所以CUSBEA既然是个特殊历史时期的特殊历史事件,这事儿当代年轻人也基本都没有经历过,至于一帮功成名就的大牌们在玩儿中年情怀,挥斥一下方遒,咱有空那就看看景儿得了,反正过去就过去了也没人再关心这事儿。所以,很抱歉,玩儿情怀这事儿除了暂时性的鼓励一下CUSBEA同学们的忆苦思甜之外,基本上是不可能获得年轻人的共鸣。再者来说,吴先生搞CUSBEA,那也与他的学术无关,属于科研和社会服务方面的贡献。其次,吴先生培养了个拿诺奖的学生,最多也只能说明吴先生教学搞的不错,但没准儿人家小伙儿本来就是个聪明人儿,不在吴先生实验室没准儿也照样拿奖,所以学生拿诺奖这事儿不错,但也不能算啥。最后,吴先生一般被称为&ldquo 遗传工程之父之一&rdquo ,或者&ldquo 植物遗传工程之父&rdquo 。抱歉哦,咱基本不做植物,所以毫无任何感觉,而且遗传工程显然是先在动物里做做,吴先生不过是搬到植物学研究里,也没啥贡献是吧?并且,吴先生也没有什么不得了的荣誉,也不是美国科学院院士,所以是不是据此可以判断吴先生在科研方面的没有突出的贡献?   当然你要真这么想,那你就错了,并且本篇也没得写了。之所以写本篇的原因,是因为本学期我要给本科生上《生物信息学》这门课,之前的内容有点儿老了,所以想讲讲第二代测序方面的数据分析。网上查了之后发现基因组所的于军老师等人翻译了一本《第二代测序信息处理》,应该是这方面第一本也是目前唯一一本教科书,于是买了回来看。第一段话我才读一半,就已经暴跳如雷了:翻的啥啊?上来就说1971年吴瑞先生发表过类似Sanger法的测序方法。这有问题啊,地球人都知道Sanger于1975年在Journal of Molecular Biology上发表&ldquo A rapid methodfor determining sequences in DNA by primed synthesis with DNA polymerase.&rdquo ,1977年Gilbert等人在PNAS上发表&ldquo A new method for sequencing DNA&rdquo 建立化学裂解法,同年Sanger在PNAS上发表&ldquo DNA sequencing with chain-terminating inhibitors&rdquo ,改进了之前的方法,从而确立了DNA测序的主流方法Sanger法。所以在DNA测序方面,吴先生有啥贡献?怀疑是不是中文版翻译错了,因此咱专门买了本英文原版(图二)。   看上去老外没有开玩笑,因此咱专门查了一下文献,可以肯定的是:第一,吴先生提出了第一个DNA测序方法 第二,从1968年至1972年这几年的时间里,吴先生在DNA测序方面至少有9篇,花了这么长的时间,发了这么多文章,你不会真的认为吴先生就是做着玩儿的吧?此外,1973年吴先生继续发了3篇,1974年发了7篇,所以在Sanger1975年开始做测序的时候,吴先生已经发表了至少19篇论文!第四,吴先生1968年的第一篇论文只测定了DNA的碱基组成,没有测定顺序,但1970年这篇文章已经是正儿八经测定了DNA的序列。所以老外这本书写的也是有问题,第一个既测定DNA碱基组成又测定出顺序的,是吴先生1970年的论文。   吴瑞先生1968~1972年关于DNA测序的论文列表:   1. Wu R,Kaiser AD. Structure andbase sequence in the cohesive ends of bacteriophage lambda DNA. J Mol Biol.1968 Aug 14 35(3):523-37. (仅测定组成而没有顺序)   2. Wu R. Nucleotide sequence analysisof DNA. I. Partial sequence of the cohesive ends of bacteriophage lambda and186 DNA. J Mol Biol. 1970 Aug 51(3):501-21. (测定DNA序列的第一个方法)   3. Wu R,Taylor E. Nucleotidesequence analysis of DNA. II. Complete nucleotide sequence of the cohesive endsof bacteriophage lambda DNA. J Mol Biol. 1971 May 14 57(3):491-511.   4. PadmanabhanR, Wu R. Nucleotidesequence analysis of DNA. IV. Complete nucleotide sequence of the left-hand cohesiveend of coliphage 186 DNA. J Mol Biol. 1972 Apr 14 65(3):447-67.   5. Wu R.Nucleotide sequenceanalysis of DNA. Nat New Biol. 1972 Apr 19 236(68):198-200.   6. DonelsonJE, Wu R. Nucleotidesequence analysis of deoxyribonucleic acid. VI. Determination of 3' -terminaldnucleotide sequences of several species of duplex deoxyribonucleic acid usingEscherichia coli deoxyribonucleic acid polymerase I. J Biol Chem. 1972 Jul25 247(14):4654-60.   7. DonelsonJE, Wu R. Nucleotidesequence analysis of deoxyribonucleic acid. VII. Characterization ofEscherichia coli exonuclease 3 activity for possible use in terminal nucleotidesequence analysis of duplex deoxyribonucleic acid. J Biol Chem. 1972 Jul25 247(14):4661-8.   8. PadmanabhanR, Wu R, Bode VC. Arrangementof DNA in lambda bacteriophage heads. 3. Location and number of nucleotidescleaved from lambda-DNA by micrococcal nuclease attack on heads. J MolBiol. 1972 Aug 21 69(2):201-7.   9. PadmanabhanR, Wu R. Nucleotidesequence analysis of DNA. IX. Use of oligonucleotides of defined sequence asprimers in DNA sequence analysis. Biochem Biophys Res Commun. 1972 Sep5 48(5):1295-302.   另外,吴瑞先生2008年2月10日去世后,2009年《中国科学》上发表了一篇悼念,节自康奈尔大学的官方讣告,上来就说&ldquo In 1970, Wu developed the first method for sequencing DNA&hellip &rdquo ,肯定了吴先生在DNA测序方面的贡献,因此称吴先生为&ldquo DNA测序之父&rdquo ,并不过分。   这样的话,你肯定有疑问:吴先生在DNA测序方面可能是最先做的,但并不是做的最好的,对吧?所以不肯定吴先生是有道理的?没有道理,这是因为,Sanger测序法,最核心的是测序思想,而不是具体的技术。因为对技术革新有最突出贡献的是Leroy Hood,第一代测序仪也是根据他的方法发明的。并且现在第二代、第三代测序技术也陆续都发展起来或正在发展,要是比谁做的最好,那诺奖发给谁也不可能发给Sanger。况且诺奖一般不关心改进,而是关心原创。讲科学贡献,不讲原创者而是讲改进者,这么胡扯好意思吗?   你肯定要继续问:那吴先生就没意识到自己的贡献?答:他老人家意识到的。2014年新加坡有位搞科学史研究的学者Lisa A. Onaga,写了篇论文&ldquo Ray Wu as Fifth Business: Deconstructing collective memory in the history of DNA sequencing&rdquo ,将吴先生描绘成&ldquo 第五先生&rdquo (Fifth Business),即很重要但是莫名其妙就被忽略掉的关键人物。洋洋洒洒写了十多页,对吴先生的生平和学术讲的非常详尽,并且讲到了吴先生的抗议。   吴先生怎么抗议的呢?事情这样的:2007年5月11日,《科学》杂志出刊的时候有个附带的夹页,描绘了从1865年孟德尔开始一直到2007年DNA测序技术的发展史。吴先生看到了之后很不爽,写信给Science去抗议。文章中写道,虽然吴先生认为Sanger法是DNA测序中的重大突破,&ldquo 然而,这个方法仍然是基于我的在序列分析之前标记DNA的位置特异性引物延伸原理&rdquo ( &lsquo However, the method was still based on my location specific-primer-extension principle in labeling the DNA before sequence analysis&rsquo )。吴先生继续抗议,如果你同意加上我的贡献,你可以写:吴发明了第一个DNA序列分析方法,即引物延伸策略( &lsquo &lsquo Wu introduced the first method for DNA sequence analysisby introducing the primer-extension approach.&rdquo )。   注意哦,作者据称是引用吴先生的原话,如果作者引用有误还请给他发信批评。所以,吴先生很清楚自己的贡献,也非常清楚自己应该有的科学和科学史地位,并且也努力去争取获得认可,虽然没有成功。   基因组测序计划,与原子弹计划和登月计划并称为人类有史以来规模最大、最宏伟、最壮观的三大科研项目。基因组测序对生命科学和医学研究有直接的促进作用,影响深远,并直接促成了基因组、蛋白质组、生物信息学、系统生物学等多个领域的产生和发展,无论怎么突出其重要性都不为过,并且美国于2011年提出的、2015年通过的&ldquo 精准医学计划&rdquo ,其研究基础正是1988年提出的&ldquo 人类基因组计划&rdquo 。吴瑞先生作为第一个提出DNA测序方法,确定了&ldquo 引物延伸&rdquo 的基本原理,理所当然是&ldquo DNA测序之父&rdquo ,也理所当然应该成为大家尊敬并崇拜的顶级学者。吴先生的科学史地位,至少应当与Sanger大致相当,后者因为蛋白质测序和DNA测序两次获颁诺奖,可称为&ldquo 测序之王&rdquo 。因此,未来我们介绍Sanger在DNA测序方面的贡献时,应当加上:基于吴瑞先生提出的&ldquo 引物延伸&rdquo 原理,Sanger做了重要改进。仅此而已。原创的贡献,既然是吴先生做出的,就不应该抹杀。   当然我知道你还要问:吴先生这么大贡献,咋诺奖也没发给他?这个问题其实,你懂的,对吧?Shirley的信是这么写的:   Being a Chinese immigrant in the US in the 50&rsquo s, the social and racial challenges Ray Wu faced at that time must be tremendous. Without social backing and connections, he got where he did purely by his scientific geniusand good heart. If he was a Caucasian scientist from UK or US, or even if he was in the current era, his scientific contributions would have been better recognized. Sometimes we don&rsquo t have to pay too much attention to awards (Ray was never elected to the National Academy of Science!) or H-index (my colleague Donna Neuberg just had her H-index cross 3 digits), but objectively evaluate someone by their overall impact to the scientific community.   吴瑞先生,1928年8月14日出生于北京,后来在美国读书的时候,由于语言问题听不懂报告,所以付出了比&ldquo 一般人&rdquo 更多的努力。后来1964年,受到RobertHolley的RNA测序、Sanger的蛋白质测序,噬菌体三主教Max Delbrü ck, AlfredHershey和ArthurKornberg等影响,决心攻克DNA测序的难关,6年后取得成功,并直接的开创了一个波澜壮阔的新时代:基因组时代。   DNA测序之父,实至名归。   作者:薛宇
  • 别只知道PCR、基因测序 这28种常用分子生物实验室仪器你造吗?
    生命科学仪器是指为生命科学研究和生物技术领域使用的仪器。而在所有生命科学仪器分类中,分子生物学仪器设备应用最为广泛。在了解分子生物学仪器之前,我们先要了解什么分子生物学的定义:研究生物大分子之间相互关系和作用的一门学科,而生物大分子主要是指基因和蛋白质两大类。因此分子生物学仪器包含了基因组学和蛋白组学两大分类仪器。小编今天为业内专家同行献上一篇分子生物学类仪器归纳与梳理,以供同行学习交流及采购需要。按照仪器具体功能再进行划分,基因组学仪器包括分子克隆仪器和核酸分子杂交仪器。蛋白组学仪器包括蛋白质表达仪器,目的蛋白的分离与纯化仪器和功能蛋白质组学仪器。分子生物学仪器分类NO1. 分子克隆仪器分子克隆仪器是分子生物学仪器门类的核心仪器,这项仪器的主要是为获得某一基因或DNA片段的大量拷贝,帮助科研人员深入分析基因结构与功能,并可达到人为改造细胞及物种个体的遗传性状的目的。核心分子克隆仪器品类如下:仪器名称功能核酸提取纯化仪用于从生物中提取纯化DNA或RNA基因扩增仪(PCR仪)目的基因的放大、扩增电泳仪目的基因的分离及检测凝胶成像分析系统DNA片段的观察及影像紫外投射仪从凝胶中切割目的基因基因导入仪(电穿孔仪)外源DNA片段向大肠杆菌及哺乳动物细胞的转化或转染NO2. 核酸分子杂交仪器核酸分子杂交技术是分子生物学领域中最常用的技术之一。其基本原理是具有一定同源性的两条核酸单链在一定的条件下可按碱基互补原则形成双链。由于核酸分子杂交的高度特异性及检测方法的高度灵敏性,使其在分子生物学领域中被广泛应用于分子克隆的筛选,基因组中特定基因序列的定量定性检测,基因表达和基因突变分析及疾病的基因诊断等。根据核酸种类分为 Southern 印迹法和 Northern 印迹法。核酸分子杂交仪器品类如下:仪器名称功能分子杂交仪核酸等样品的杂交干胶仪将凝胶干燥处理便于长期保存紫外交联仪核酸固定转膜仪将核酸转移至膜上测序仪DNA,RNA测序DNA合成仪引物的合成生物芯片(微阵列芯片)DNA杂交读取分子数量序列信息NO3. 蛋白质表达相关仪器目的基因能否发挥其效应,只能通过其表达有功能的蛋白质来实现。蛋白质表达相关仪器是研究蛋白组学的基础。仪器名称功能蛋白印迹仪目的蛋白的检测液体闪烁计数仪(同位素探测器)样品放射性的检测发酵罐宿主细胞的高密度培养超声波破碎仪宿主细胞破壁NO4. 目的蛋白分离与纯化仪器由于遗传工程中,下游的处理和分析鉴定,基因工程产品的制备都需要纯度较高的蛋白质。因此,蛋白质的分离纯化相关仪器是研究蛋白质化学组成,结构及生物学功能等的基础。仪器名称功能多肽合成仪用于多肽和蛋白质的合成蛋白层析纯化系统蛋白质的分离纯化蛋白质测序仪蛋白质测序核磁共振仪蛋白质三级结构的测定高效液相色谱仪蛋白质的分离纯化离子交换色谱仪蛋白质的分离纯化凝胶过滤层析柱蛋白质的分离纯化亲和色谱仪蛋白质的分离纯化NO5. 功能蛋白质组学仪器蛋白质组为基因组所表达的全部蛋白质。功能蛋白质组学是目前的研究热点,它以某种特定细胞、组织或生物体为研究对象,研究蛋白质的翻译后修饰、蛋白质结构、蛋白质的定位及表达水平差异与功能之间的关系,研究蛋白质之间的相互作用及其意义,构建蛋白质功能网络。这一类仪器主要为研究蛋白质功能服务,是分子生物学仪器的发展方向。仪器名称功能化学发光系统蛋白质的光化学反应,用于临床检验分析及医药、病毒、免疫等科学试验。生物大分子相互作用仪蛋白质互作的研究。质谱仪测定蛋白质分子结构由于起步较晚,国内生命科学仪器行业不如国外成熟度高。造成国产生命科学仪器给人的直观感受是参差不齐、价格混乱。在国内生命科学科研市场,进口仪器仍然是主流。
  • 东南大学司伟博士: 纳米孔单分子测序为最具潜力DNA测序技术
    1996年,Kasianowicz等人首次发现单链DNA和RNA电泳穿过α溶血素(α-HL)纳米孔的时候会产生对应的阻塞电流信号。此后,众多科研学者在这一研究基础上开始了更为广泛的研究。经过二十余年发展,生物纳米孔技术现已开始商业化,且市面已有成型的基于生物纳米孔单分子测序技术的基因测序仪产品。纳米孔最具前景的应用之一是其可以用于第三代DNA测序技术,因其不需要复杂的酶扩增以及荧光标记,且其具有低成本高通量的特点而受到广大研究者们的青睐。纳米孔是单分子测序仪最核心部件图1 纳米孔DNA测序的基本原理图。(a)基于纳米孔的DNA测序传感器搭建示意图,图中显示一条单链DNA正在电泳穿过石墨烯纳米孔。(b)单链DNA过孔时产生的阻塞离子电流信号细节示意图,每个碱基的体积及其与纳米孔之间的相互作用强度不同导致对应的阻塞电流幅值存在差异,从而可以用来区分不同的DNA碱基。【Si Wei, et al. Chin. Sci. Bull., 2014, 59(35): 4929-4941.】纳米孔单分子DNA测序传感器基于库特计数器原理,如图1所示在固态薄膜的顺式端(cis)和反式端(trans)都注满了离子溶液,两端的溶液仅通过纳米孔进行连接,当带电的DNA分子被置入到液池的顺式端后,在纳米孔的两侧施加电压,DNA分子会在电场力的作用下电泳穿过纳米孔,由于DNA碱基自身在孔内的物理占位以及其与纳米孔间较强的相互作用使得通过纳米孔的电流会被阻塞。一条单链DNA(ssDNA)由腺嘌呤(A),鸟嘌呤(G),胸腺嘧啶(T)和胞嘧啶(C)组成。因为四种碱基的尺寸及特征各异,当单链DNA穿过跟自身尺寸相当的纳米孔时,不同的碱基会产生对应幅值的阻塞电流,通过研究这些电流之间的差异就可以实现对DNA四种碱基的辨识,如图1所示。通过分析这些阻塞电流信号(如阻塞电流幅值和过孔时间等),DNA链上所含的碱基很有可能被检测和区分开来。纳米孔作为单分子测序仪器设计与制造的核心检测部件,因此如何保证纳米孔单分子传感器的检测灵敏度、时间空间分辨率、稳定性和寿命等是影响纳米孔单分子测序仪器工作效率和稳定性的关键技术问题。三大技术突破成就了如今的纳米孔单分子测序仪自1996年纳米孔被Kasianowicz等人发现以来,众多科学家投入大量精力深入研究,在研究过程中也遇到很多难题。例如,尽管研究者们都相继报道了纳米孔离子电流可以用于四种碱基的区分,然而他们得到的结论却大相径庭,使得阻塞电流的幅值和相应碱基之间的对应关系至今仍然含糊不清。研究者们对单链DNA均聚物在过孔时产生的阻塞电流幅值跟碱基体积大小的相关性进行了研究,组成DNA四种碱基的体积大小顺序为GATC,理论上DNA碱基的尺寸对离子电流信号的影响较大,然而其与纳米孔的强相互作用在阻塞电流幅值检测方面也会起到主导作用,且在不同的纳米孔材料或者实验条件下获得的实验结果差异较大,这也制约了基于纳米孔DNA测序的发展。经历了20余年的发展,三大技术突破与革新也成就了现今的纳米孔单分子测序仪的研制。首先是纳米孔检测DNA或RNA全新技术方案的提出,其次是采用酶对DNA分子的剪切或复制用于纳米单分子测序技术中,最后是单碱基信号的测序精度精准调控。之后数年的时间,Oxford Nanopore 公司于2013年11月启动了MinION测序仪的早期试用计划,这时首款纳米孔单分子测序仪也正式开始步入人类的视野。便携、低成本和高通量 纳米孔单分子测序成为最具潜力的DNA测序技术人类基因组计划人类基因组计划在2003 年完成人体全序列的基因测定,历时12 年,耗资数十亿美元,人类基因序列图已成为全人类共同的财富。但是,第一代的 Sanger测序方法也给基因组测序贴上了数亿美元的价格标签,让人望而生畏。近两年发展迅猛的第二代测序仪让人类基因组重测序的费用降低到10 万美元以下,测序时间也缩短到6 个月。但是,这样的价格和时间,相对于个人用户仍然太高,极大地限制了其临床应用和基础理论研究。与传统Sanger测序技术相比,纳米孔单分子测序技术的核心优势在于它的便携性、低成本和高通量。强大的市场需求和探索生命科学未知领域的渴望,有力地推动着DNA 检测水平的提高。2004 年,美国国家人类基因组研究所(NHGRI)启动了“千元基因组测序研究项目”, 目的是让人类基因组的测序费用降至1000 美元以下。基于纳米孔的单分子DNA 测序方法是第三代测序技术中成本最低,最具有竞争力的技术。同年,美国国家卫生研究院(NIH)提出了“1000美元测序”的概念,而基于纳米孔的DNA测序技术是最有潜力实现这一目标的方法之一,众多实验研究也进一步验证了纳米孔DNA测序技术的可行性。该方法的优势在于它简化了对DNA 的化学修饰、扩增和表面吸附等工艺,具有结构简洁、速度快、操作简便等特点,同时省去了昂贵的荧光试剂和CCD照相机的费用。最为重要的是它的效率高,单个核苷酸分子通过纳米孔的时间仅在微秒级,如果考虑单个芯片上集成成百上千个纳米孔阵列,有望在24 小时内完成对个体的基因测序,而目前的二代基因测序仪则需要6 个月时间。 商业化进展慢 提高纳米孔稳定性迫在眉睫纳米孔单分子测序技术现有市场的典型产品是Oxford Nanopore Technologies(ONT)公司的MinION纳米孔测序仪,它具有低成本、高通量、读速快、读长长(约150kb)和高便携等特点,因此纳米孔单分子传感器目前已被广泛应用于物理学、生物学和化学等学科涉及单分子应用的科学研究,助力人类科技的发展,造福人类。基于上述纳米孔单分子测序技术的特点,相比传统测序仪器而言,它的典型应用场景之一是极端环境中病毒或细菌的高精度检测。例如,在偏远贫困地区,在疫情爆发或在没有足够的设备资源的情况下,便携的纳米孔单分子测序仪可以快速的协助病毒检测和疾病诊断。数年前西非爆发埃博拉病毒时,单分子测序仪便在病毒检测过程中起到的重要作用。再例如,存放在外太空空间站的土壤和水等是否已经出现微生物依然成谜,要将样品带至地球进行采样分析方能揭晓,而轻便的纳米孔单分子测序仪仅有u盘大小,可以方便的携带至外太空,在其他辅助条件下协助检测。虽然基于纳米孔的单分子测序仪具备很多优势,而且已经进入商业化进程,但是它的市场占有率相比传统测序技术而言依然偏低。其原因主要是目前市场已有的纳米孔测序仪采用的仍然是生物纳米孔和磷脂膜,这样的生物体系不可避免的面临着寿命短和稳定性不持久的缺陷。因此要推进纳米孔单分子测序技术的发展,这些问题必须得到解决。而固体纳米孔(例如氮化硅,二硫化钼)目前的报道也可以辨识单碱基,因此固体纳米孔有望在未来代替生物纳米孔实现稳定、可重复利用的高精度DNA测序。然而固体纳米孔在信噪比方面不如生物纳米孔,而且DNA在相同条件下通过固体纳米孔的速度偏快,因此如何提高固体纳米孔的信噪比和实现有效的DNA控速也是亟需解决的关键科学问题。作者简介:司伟,博士,东南大学硕导/讲师,2020年度东南大学“至善青年学者”,江苏省2019年度优秀博士学位论文和东南大学2019年度优秀博士学位论文获得者,入选2019年、2020年东南大学机械工程学院“优才培育计划”,担任《MaterialsInternational》(ISSN: 2668-5728)期刊助理编辑和《Bioengineering International》(ISSN 2668-7119)期刊编委,获得2019年Nanotechnology期刊杰出审稿人奖。主要研究方向:(1)机械操控及机器人技术、(2)工程流体动力学及传感器、(3)结构工艺设计及加工制造、(4)程序语言算法和三维建模与仿真。
  • 实验室设计基本原则:人流、物流、气流
    实验室设计的目的是要建立有高效率、功能完善和考虑周全的实验室。在实验室设计时,应充分考虑影响实验室效率和安全的因素,如空间、工作台、储藏柜、通风设施、照明等。特殊实验室应按国家标准有关要求设计。实验室设计要有合理化的空间实验室设计时应根据实验功能模块及放置设备的需要。而考虑空间的合理化分配来决定布局。同时应从发展眼光确定实验室空间大小。有很多因素影响到实验室空间的设计,如工作人员的数量、分析方法和仪器的大小。实验室应是灵活的,让工作人员感到舒适,又不产生浪费。工作空间的大小应保证zui大数量的工作人员在同一时间工作。应将有效的空间划分为清洁区(办公室、休息室、学习室),缓冲区(储存区、供给区、过道),污染区(工作区、洗涤区、标本储存区)。实验室设计基本原则:人流、物流、气流要畅通;清洁区、缓冲区、污染区要分离。在指-定的实验区域,应控制工作人员数量和运输人员数量。在控制实验室通路的同时,还应设置一些预备区,如接受样品或标本,准许进入实验室人员和参观者的通道。通过工作人员、自动传输、风力系统或其他自动化系统运输样品或标本。还应充分考虑内部通信联络系统和警报器以便通知或报警(如灾害、火警、样本到达、或实验室其部分寻求帮助等)。还应考虑实验室空间的扩展需要,将实验室设计为可向外扩展或者可以移动性,以满足实验室未来发展的空间有拓展的需要。运输和电脑网络系统分别用于实验室内和实验室与单位各科之间样品或标本运输和信息交流。国家的法律法规(有国家标准和行业标准等)在很大程度上影响到实验室设计,在整个实验室设计中应由建筑师提出有关法规的要求。在制定空间分配计划前,应对仪器设备、工作人员数量、工作量、实验方法等因素作全面分析和对空间标准的要求进行评估,并计算区域的净面积和毛面积。特殊功能的区域根据其功能和活动情况不同决定其分配空间的不同。实验室的布局设计实验室的布局情况应考虑以下几点:由于每个实验室的工作性质不同,无法建立一个统一的实验室通用的设计方案。但应考虑原则性和灵活性。1、样品的转运和人员流动:分配实验室区域,首先应考虑工作流程、样品的转运和流转、生物安全因素等。2、灵活性:实验室设计能否适应未来发展变化的需要是极其重要的。3、安全性:实验室的设计和大小应考虑安全性,满足紧急清除和疏散出口的建筑规则,针对各实验室情况配备安全设备。距危险化学试剂30米内,应设有紧急洗眼处和淋浴室。所有的实验室和与污染物直接接触的地方均应安装洗手池,将洗手池设在出口处。洗手池应是独-立专用的,不能与污染物处理及实验混用。4、设立烟雾罩和安全设施:任何安全罩的放置均应尽量远离出口处,以符合有害实验远离主通道的原则。5、特殊实验室设计与布局:特殊实验室在这里主要指微生物和分子生物学实验室,其设计总体上应按《微生物和生物医学实验室生物安全通用准则》的要求。基因扩增实验室应有充分的空间和按标准要求进行设计与布局,以避免实验室的污染。微生物学实验室所接触的有害微生物,通常将微生物实验室划分成清洁区、半污染区、污染区。在污染区应使用生物安全柜,以保护工作人员的健康。现代微生物学实验室还必须具备有空气调节和过滤的设备。实验室通风设计为了实验室的安全,有条件的或具备条件的必须装备中央空气处理系统。避免因电扇鼓风导致微生物实验室传染性疾病的传播。特别是微生物和生物医学实验室应严禁使用电扇。适当通风不仅去除实验室有害气味和毒气,而且也保证设备正常运行。空气交换数量目前倡导在一般实验室,在使用蒸气和生化危险剂的区域,空气交换每小时12次。在从事微生物检验区域空气交换达16次每小时。电源和通讯设计电源布局应对实验室所需电源,做充分的考虑和分析,注意以下:1、实验室所有仪器所需电量和所需电插座数量,布局合理,使用安全和方便。2、电插座是三孔或是二孔。3、电插座分布各地方,保证使用安全和方便。4、仪器所需电压(220V或380V)、电量。5、应充分考虑计算机所需插座。6、实验室所需照明设备的数量由工作的类型、工作台面的颜色、工作室天花板和墙壁的颜色、固定照明与工作台面之间的距离、需要照明空间的大小而决定。7、照明设备安装的位置:照明设备应安装成与工作台面呈垂直或对角线,可消除物体遮挡产生的阴影。8、特殊照明设备:如果实验室用于分离微生物和分子生物学实验区域,应能有效地保护工作人员和标本免污染。紫外灯是zui-常用的消毒设备。固定紫外灯距地面的距离不要超过2.1米,紫外灯的数量应根据实验室空间决定。使用紫外照明设备时,必须确信物体表面(例如,墙体表机的涂料、工作台面等)能经受紫外光的漂白作用。9、在设计电源时除考虑已满足现在使用需要外,要有足够多的扩展量满足实验室的需要。10、通讯在实验室实现信息化、网络化,将很大程度上提高实验室的管理质量和工作效率,在实验室设计时应周密设计通讯线路,除充分满足目前的需求外,还应有额外的容量适应仪器的增加和移动。
  • 药典委公示微生物全基因组测序技术指导原则标准草案
    11月29日,国家药典委员会官方网站公示了关于微生物全基因组测序技术指导原则标准草案,公示时间为3个月。详情如下:编号:Fg2022-0216号我委拟制定微生物全基因组测序技术指导原则,为确保标准的科学性、合理性和适用性,现将拟制定标准公示征求社会各界意见(详见附件)。公示期自发布之日起3个月。请认真研核,若有异议,请及时来函提交反馈意见,并附相关说明、实验数据和联系方式。相关单位来函需加盖公章,个人来函需本人签名,同时将电子版发送至指定邮箱。联系人:朱冉、陈蕾电话:010-67079581 010-67079566电子邮箱:zhuran@chp.org.cn通信地址:北京市东城区法华南里11号楼 国家药典委员会办公室邮编:100061国家药典委员会2022年11月29日附件:微生物全基因组测序技术指导原则公示稿.pdf微生物全基因组测序技术指导原则起草说明.pdf微生物全基因组测序技术指导原则 本指导原则对全基因组测序技术用于药品微生物控制给予通用性技术规定,为药用原料、辅料、制药用水、中间产品、终产品、包装材料、环境、设备和人员等药品全生命周期质量控制中微生物精准鉴定、溯源分析和风险识别等提供指导。微生物全基因组测序(Microbial whole-genome sequencing)是指利用高通量测序技术对微生物个体的整个基因组序列进行测定,获取遗传信息的过程。高通量测序技术主要包括:边合成边测序、半导体测序、DNA (Deoxyribonucleic acid, DNA)纳米球测序、连接酶测序等第二代测序技术(又称下一代测序,Next Generation Sequencing)和基于单分子测序(Single Molecule Sequencing)的第三代测序技术。第二代测序技术的基本原理主要是利用物理或酶切的方法将待测样本的基因组打断到1kb以内的DNA片段,在其两端连接特定接头序列后,固定于测序介质中,通过核酸扩增技术,如聚合酶链式反应、等温扩增技术等将待测样本放大收集成库,然后进行平行循环测序。当需要获得微生物样本基因组精细图、完成图时,可采用能够实现大片段测序读长的第三代测序技术。第三代测序技术的基本原理主要有:采用荧光标记脱氧核糖核苷酸,用光学镜头实时记录DNA合成过程中新引入脱氧核糖核苷酸的荧光变化,通过不断地重复合成、成像、淬灭等过程进行单分子荧光测序;或采用电泳技术驱动单个分子逐一通过纳米孔,通过检测不同碱基的电信号,进行单分子纳米孔测序。本指导原则以目前发展成熟、应用较为广泛的第二代测序技术为主要技术手段,对实验室的一般要求、全基因组测序的主要技术指标、技术流程、影响测序结果的主要因素、方法学考察和应用指导等方面进行通用性技术规定。一、实验室的一般要求1.实验场地及人员 开展微生物全基因组测序的实验环境应具备分子生物学实验室的基本条件,并符合相应级别的生物安全等级要求。实验区域一般应设置:试剂储存和准备区、样本制备区、扩增区、核酸测序及分析区,各个区域在物理空间上相互独立,并标识明确;另外,根据使用仪器的功能,相关区域可适当合并。应单向流进入各工作区域,按照试剂储存和准备区、样本制备区、扩增区、核酸测序及分析区的先后顺序进行实验操作。实验区域应定期进行清洁消毒。实验人员应具备分子生物学和微生物学专业背景,或经专业培训。2. 实验仪器实验室一般应具备高通量核酸测序仪、核酸扩增仪、片段分析仪、核酸定量仪、生物安全柜、混匀器、高速离心机、水浴或加热模块、冰箱、微量加样器等分子生物学检验常用仪器设备。影响测序质量的仪器设备应定期进行性能确认和维护,以保证仪器处于良好的运行状态。3. 实验试剂除另有规定外,所有实验使用的试剂均应不含DNA和DNA降解酶,宜大体积配制、小体积分装,并保证试剂的无菌性,必要时可采用高压灭菌或0.22 μm孔径滤膜过滤除菌。用于核酸扩增的相关试剂应避免反复冻融。关键试剂应制定质量控制程序,以确保试剂质量。采用适宜的商品化试剂或试剂盒进行核酸提取、文库构建和核酸测序时,应按照说明书操作,并符合说明书中的质量控制要求。二、全基因组测序的主要技术指标1. 测序通量测序通量是指单次测序可获得序列信息的基因片段数量或可测定的DNA (以碱基表示)数量。核酸测序仪器的测序通量直接关系到测序输出的数据量。微生物的基因组DNA较小,但不同种属之间变化幅度较大,如:葡萄球菌属、埃希菌属、假单胞菌属、沙门菌属等常见细菌的基因组DNA大小约3~6 Mbp;酵母菌的基因组DNA大小约12~16 Mbp;典型致病霉菌的基因组DNA通常大于30 Mbp。在进行微生物全基因组测序时,应根据待测样本基因组大小、样本数量等实际需求,选择适宜测序通量的测序仪器和配套试剂,保证测序结果的准确性。2. 碱基识别质量碱基识别质量是衡量碱基正确识别的概率(通常以数字值直接表示)。碱基识别质量与碱基识别错误率之间的关系为:Q=-10lg P(Q为碱基识别质量,P为碱基识别错误率)。Q=20代表碱基识别正确率≥99%;Q=30代表碱基识别正确率≥99.9%。高通量测序仪器应能自动判读碱基识别质量。三、 技术流程 全基因组测序的一般流程包括:测序样本的获得、测序文库的构建、全基因组测序和数据分析等。1. 测序样本的获得 全基因组测序主要用于待测微生物的核酸序列测定。待测微生物应进行分离纯化,以获得生长状态稳定的纯培养物,可参考“微生物鉴定指导原则”(通则9204)。分离纯化后的纯培养物应采用适宜的方法,可参考“细菌DNA 特征序列鉴定法”(通则1021),获得浓度、纯度和完整性良好的基因组测序样本。2. 测序文库的构建 测序文库是指将基因组样本随机打断后,在其两端加入特定接头序列(adapters),并经过大规模平行扩增,形成的DNA片段集合。测序文库中样本的核酸浓度、纯度、片段的大小分布等因素,都会影响测序输出的数据量和碱基识别质量。应对构建的测序文库进行纯化、定量、均一化处理,使文库中各待测样本的浓度保持均等;必要时,采用凝胶电泳或毛细管电泳等方法检测文库的质量。3. 全基因组测序 将测序文库中的待测样本固定在测序介质中,通过特定接头序列,将测序引物与待测核酸序列进行结合。加入底物脱氧核糖核苷酸,在DNA聚合酶作用下,使结合在待测核酸序列上的测序引物进行延伸,并利用信号收集器采集信号,包括但不限于光信号、电信号或离子信号等,通过信号分析软件对采集到的信号进行分析,获得待测样本的碱基序列信息,以及物理通量、有效通量、测序读长、测序深度、碱基识别质量等参数。4. 数据分析 采用适宜的序列分析方法和软件,对得到的核酸测序下机数据进行序列拼接,最终获得待测微生物样本的全基因组序列信息。四、 影响测序结果的主要因素 1. 待测样本核酸质量 应采用适宜的方法提取待测样本的基因组DNA,并保证提取的基因组DNA 在适宜的浓度和纯度范围内,无蛋白、多糖等污染。一般情况下,核酸浓度宜不低于10 ng/μl,A260/A280比值宜在1.8~2.0之间。核酸浓度较低,或发生降解等导致质量不佳的情况,可导致基因组DNA片段化不完全,影响文库质量,进而影响测序深度和测序结果。2. 测序文库质量 应对测序文库进行质量控制。当测序文库中包含多个待测样本时,不同样本的核酸浓度应基本一致,保证测序后的输出数据量均匀稳定。推荐采用荧光分析法定量检测不同样本的基因组DNA浓度,测序文库制备完成后,采用适宜的稀释倍数,确定上机测序文库的浓度。3. 测序深度 测序深度是指待测样本中某个指定核苷酸被检测的次数。一般高通量测序仪器输出的测序深度指待测样本基因组序列中核苷酸被检测次数的平均值。测序深度与基因组覆盖率之间是正相关,测序深度越大,重复测序次数越多,待测样本基因组覆盖率越大,测序带来的错误率也会随着测序深度的提高而降低。一般而言,基因组测序深度应不少于50倍;建立全基因组序列参考数据库时,测序深度应不少于100倍。4. 碱基识别质量 碱基识别质量是评价测序结果准确率的重要因素。根据核酸测序仪器的正常运行参数,单个样本的核酸测序的结果应保证Q20≥80%或Q30≥70%;也即测序数据中80%及以上的碱基正确率大于99%,或者70%及以上的碱基正确率大于99.9%。五、 方法学考察 除考察影响测序结果的主要因素,包括:待测样本核酸质量、测序文库质量、测序深度、碱基识别质量等,还应进行相应的分析方法学考察;可在测序过程中增加已知序列的参考品,评估测序仪器性能,以保证全基因组测序结果的准确性和重现性。六、 应用指导 微生物全基因组序列能够提供全面丰富的遗传信息,通过全基因组序列的比对分析,可以实现待测微生物,包括:标准菌株、模式菌株、质控菌株、生产检定用菌(毒)种、益生菌等,以及从药用原料、辅料、制药用水、中间产品、终产品、包装材料和环境等中检出污染微生物等的精准鉴定、溯源分析以及风险评估等。精准鉴定当基于常规生化筛选、表型和基因型鉴定方法无法获得待测微生物样本准确的鉴定信息时,可利用全基因组测序技术获得更加精准的鉴定结果或遗传变异信息等。全基因组序列分析还对研究微生物的系统进化具有重要价值,有助于新种或亚种的发现和遗传分类单元的系统发育解析,提高对新种或亚种的生物学认识。溯源分析当出现无菌试验结果阳性、培养基灌装等模拟工艺失败、生产过程严重异常事件时,如常规基因型鉴定方法无法提供足够的分辨力,可在获得菌种鉴定信息的基础上,采用全基因组测序技术对目标微生物以及相关环节中分离的同种微生物进行全基因组序列的同源性分析,结合污染调查信息,实现目标微生物的溯源分析风险评估全基因组序列包含了微生物菌株全部的遗传信息,基于全基因组数据分析还能够用于毒力、耐药以及其他基因的功能分析与表型预测,为开展微生物的风险评估分析提供参考依据。起草单位:上海市食品药品检验研究院联系电话:1800677839复核单位:中国食品药品检定研究院、天津市药品检定研究院、辽宁省药品检验检测院参与单位:浙江现代生物技术发展中心、中国工业微生物菌种保藏中心
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制