当前位置: 仪器信息网 > 行业主题 > >

双回路温控仪工作原理

仪器信息网双回路温控仪工作原理专题为您提供2024年最新双回路温控仪工作原理价格报价、厂家品牌的相关信息, 包括双回路温控仪工作原理参数、型号等,不管是国产,还是进口品牌的双回路温控仪工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合双回路温控仪工作原理相关的耗材配件、试剂标物,还有双回路温控仪工作原理相关的最新资讯、资料,以及双回路温控仪工作原理相关的解决方案。

双回路温控仪工作原理相关的论坛

  • 超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代

    超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代

    [align=center][color=#990000][b]超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代[/b][/color][/align][align=center][color=#990000]Unwind Tension Controller for Dancer Input with Tension Indication—— Domestic Substitution of Montalvo Tension Controller[/color][/align][align=center][img=超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代,690,542]https://ng1.17img.cn/bbsfiles/images/2022/10/202210092010572560_1350_3221506_3.jpg!w690x542.jpg[/img][/align][color=#990000]摘要:针对目前市场上张力控制器普遍存在的测控精度较差、功能单一、适用传感器类型少和PID参数无法自整定等问题,本文分析了国外浮辊和张力双通道控制器的技术特点。对标国外高端张力控制器产品,本文重点介绍了国产替代产品的性能,国产张力控制器同样具有浮辊和张力双回路控制功能,但由于每个通道都采用了24位AD、16位DA和双精度浮点运算,可以实现超高精度的张力控制,而所具有的PID自整定功能则使得操作更为快捷方便。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000][b]一、问题的提出[/b][/color][/size]张力控制器主要应用于冶金,造纸,薄膜,染整,织布,塑胶,线材等设备上,是一种实现恒张力或者锥度张力控制的自动控制仪表,其作用主要是实现辊间的同步,收卷和放卷的均匀控制。一套典型的张力控制系统主要由张力控制器,张力读出器,张力检测器,制动器和离合器构成。根据环路可分为开环,闭环或自由环张力控制系统;根据对不同卷材的监测方式又可分为超声波式,浮辊式,跟踪臂式等。典型的张力控制器主要由AD,DA转换器和高性能微处理器等组成,张力控制器与张力传感器和电气比例阀组成典型的张力控制系统。在具体张力控制过程中,张力控制器是根据张力传感器和A/D模式转换器测量到的张力与设定的目标张力相比较后,经微处理器PID运算自动调整D/A输出从而改变电气比例阀的输出压力来实现卷料的张力调节,可广泛用于各种需对张力进行精密测控的场合,具有使用灵活和广泛的适用性。目前市场上有各种张力控制器,但在高精度张力控制过程中,普遍存在以下不足:(1)测量精度较低:普遍采用12位AD模数转换器,个别国外产品用了16位AD模数转换器,对于一些高精度的张力传感器输出显然无法准确测量,测量精度无法满足高精度控制要求。(2)输出精度较差:普遍采用12位DA数模转换器,个别国外产品用了14位DA数模转换器,对于一些高精度的张力控制显然无法实现。(3)浮点运算精度较差:目前市场上商品化张力控制器的PID运算基本都是采用单浮点方式进行,运算精度较差,从而使得输出百分比的最小调节量也只能为0.1%,根本无法进行电气比例阀输出压力的精细调节,进而无法实现超高精度的张力控制。(4)单通道控制:绝大多数张力控制器尽管可以实现如收放卷的扭矩控制,过程张力中的速度控制以及浮辊张力控制,但只能选择其中的一种控制模式。而个别国外的张力控制器产品,如Montalvo的Z4UI双回路控制器则能实现放卷扭矩和浮辊位置的同时控制。(5)传感器输入信号类型少:在各种张力控制中会采用到多种不同的传感器,如超声波探头,浮辊,电位器和激光等,这些不同传感器所输出的信号类型和量程有多种形式,但目前绝大多数张力控制器的输入型号类型非常有限。(6)PID参数无法自整定:在有些张力控制过程中,需要准确无超调的PID控制,快速且自动的选择合适PID则显着尤为重要,但目前很多张力控制器并没有这项PID参数自整定功能。针对上述目前张力控制器中普遍存在的问题,特别是为了实现超高精度张力控制以及相关控制器的国产替代,本文将对国外高端张力控制器技术特点进行分析,并对标国外产品介绍研发的新型浮辊和张力双回路超高精度控制器产品。[b][size=18px][color=#990000]二、Montalvo公司 Z4UI 双回路张力控制器技术特点分析[/color][/size][size=18px][color=#990000][/color][/size][/b]蒙特福Montalvo公司是国外著名的张力控制相关产品生产厂商,其最具特点的控制器产品是Z4UI浮辊和张力双回路控制器,我们将对标此张力控制器进行分析。蒙特福Z4UI浮辊和张力双回路控制系统结构如图1所示,控制器内置了张力指示器,能够同时检测浮辊电位计信号和张力检测器的张力信号,从而提供高精度的张力控制。它集合了浮辊吸收缓冲张力波动的功能和张力检测器精确、稳定的检测优势,通过渐进式“Progressive“ PID 控制电路调节放卷制动器的转矩输出,保持浮辊臂的位置不变来实现张力控制。模拟式张力表显示卷材的张力大小,操作员可直接监视张力稳定性,并根据张力表显示的实际卷材张力,来调节浮辊臂上的载荷从而保持理想张力。[align=center][color=#990000][img=01.Z4UI浮辊和张力双回路控制.jpg,690,275]https://ng1.17img.cn/bbsfiles/images/2022/10/202210092013010509_6406_3221506_3.jpg!w690x275.jpg[/img][/color][/align][align=center][color=#990000]图1 Z4UI双回路控制器在浮辊和张力控制系统中应用的结构示意图[/color][/align]由此可以看出,蒙特福Z4UI控制器是个典型的双回路闭环控制器。其中,一个回路是通过检测浮辊位置信号(DPS-1位置传感器或浮辊电位器)来控制第一个电气比例阀(I/P转换器)压力输出,由此来调整气缸位置将气压转换成扭矩输出达到张力调节。另一个回路通过检测卷径信号(接近开关或超声波探头)来控制第二个电气比例阀(I/P转换器)压力输出,由此来调整放卷位置达到张力调节。由此可见,蒙特福Z4UI双回路控制器是通过同时对两个变量的检测和控制来实现高精度的放卷调节。蒙特福Z4UI控制器的另外一个特点是采用RS-232与上位机(PLC或PC)进行通讯,采用控制软件进行所有操作,减少了人工界面操作的复杂程度。[b][size=18px][color=#990000]三、国产双回路超高精度张力控制器[/color][/size][/b]从上述蒙特福Z4UI双回路张力控制器技术特点可以看出,双回路张力控制器的核心技术内容就是一个非常典型的双通道PID控制器,张力的控制则是采用外置传感器实现电气比例阀的串级形式的PID控制,因此,双回路张力控制器的技术特征就是双通道的电气比例阀串级PID控制。基于此分析,结合我们在真空压力方面进行电气比例阀超高精度串级PID控制的成功经验,我们可以将通用型的VPC-2021系列PID调节器(单通道和双通道)应用于张力控制中,由此可完全实现蒙特福Z4UI双回路张力控制器的替代。VPC-2021-2系列双通道PID调节器是标准形式的工业用控制器,具有96×96mm、96×48mm和48×96mm三种规格,但其最大优点是具有超高精度检测和控制能力,其中具有24位AD模数转换、16位DA数模转换和双精度浮点运算能力,具备0.01%的最小输出百分比。用于张力控制的双通道超高精度PID控制器如图2所示,电气接线如图3所示,主要技术指标如下:[align=center][color=#990000][img=VPC 2021-2超高精度PID控制器,600,266]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101508335313_3719_3221506_3.jpg!w690x307.jpg[/img][/color][/align][align=center][color=#990000]图2 VPC 2021-2系列双通道张力控制器[/color][/align](1)真彩色IPS TFT长寿命LED背光、全视角液晶显示。(2)独立双回路控制,每路控制输出刷新率50ms,双通道独立的输入和输出,双回路报警功能可以多功能应用,每通道都具备独立的PID控制功能,每个通道都可进行独立的手动和自动控制切换。(3)万能型信号检测能力,即每通道都具备47种输入信号形式,仅需通过设置极可完成信号类型和量程选择,由此可满足各种规格和形式的张力探测器的引入。除了能测量各种张力传感器、位置传感器给出的模拟电压、电流和电阻信号之外,还可以测量各种温度传感器和压力传感器等各种信号,传感器输出端直接接入控制器并在控制器上进行选择即可使用。(4)双通道独立控制输出,输出信号有线性电流、线性电压、继电器输出、固态继电器输出和可控硅输出五种形式,可用于直接驱动电气比例阀(或电子压力转换器)进行张力控制,也可以驱动各种阀门和加热器等执行机构进行真空度、压力和温度等参数的控制。(5)支持数字和模拟远程操作功能,支持标准MODBUS RTU 通讯协议。(6)采用自主改进型PID算法,支持对PV微分和无超调控制算法。5组PID存储和调用,10组输出限幅等实用功能。每个通道采用独立的PID参数,且可独立的进行PID参数自整定。(7)带传感器馈电供电功能(24V,50mA)。(8)支持一路过程变量变送功能,变送的过程变量可选PV测量值、SV设定值、控制输出值和偏差值,变送输出类型有4-20mA, 0-10mA, 0-20mA, 0-10V, 2-10V, 0-5V, 1-5V七种。(9)两组开关量光隔输入端,可以实现各种应用功能的灵活应用切换。(10)随机配备强大的控制软件,可通过软件进行控制参数设置、运行控制、过程曲线显示和存储,非常便于过程控制的调试。[align=center][img=,690,276]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101726466183_8818_3221506_3.png!w690x276.jpg[/img][/align][align=center][color=#990000]图3 VPC 2021-2系列双通道控制器电气连接图[/color][/align]从上述国产控制器技术指标可以看出,国产VPC 2021-2系列双通道控制器的性能和功能要远优于蒙特福Z4UI控制器,并具有强大的拓展能力,完全可以实现对蒙特福Z4UI控制器的替代。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][/align][align=center][/align][align=center][/align]

  • 【求助】数显温控仪器

    各位大侠大家好,小弟在这里请教个关于数显温控仪的事情,我这边的要求是这样的,我有两路的温度输入,要求两路温度超过设定的温度(比如设定 5°C)可以报警,有这样的数显温控仪吗,有的话推荐一下那个厂家的,什么型号 !在线等,急用!

  • 【求助】显微镜温控仪

    想购买显微镜温控仪,现在国内做显微镜温控仪的,那些公司做的比较好一点!有谁了解[em09504]~!

  • 温控器如何工作

    温度控制器是对空调房间的温度进行控制的电开关设备。温度控制器所控制的空调房间内的温度范围一般在18℃--28℃。窗式空调常用的温度控制器是以压力作用原理来推动触点的通与断。其结构由波纹管、感温包(测试管)、偏心轮、微动开关等组成一个密封的感应系统和一个转送信号动力的系统。是新兴的一个仪器仪表大类,也是相关仪器仪表供应商较多的行业,其中深圳市华伦康盛科技有限公司是深圳地区代理温控器的厂商。这都得益于它的用途广泛。 没有PID控制温控器(英:Thermostat 日:サーモスタット)是集成编程器与软件并实现智能化控制温度的开关,可以自由调节室内温度,并能按用户要求设定各种时间段的开关和各种预设好的模式下自动运行调节室温;使之达到舒适的温度。真正达到方便、节能、舒适温暖的理想生活环境.适用于中央空调、单户取暖、地暖及各种燃油、燃气锅炉(壁挂炉)等设备的使用,是理想的温度控制产品及节能产品。  温度控制器有机械式的和电子式的, 机械式的采用两层热膨胀系数不同金属压在一起,温度改变时,他的弯曲度会发生改变,当弯曲到某个程度时,接通(或断开)回路,使得制冷(或加热)设备工作。 电子式的通过热电偶、铂电阻等温度传感装置,把温度信号变换成电信号,通过单片机、PLC等电路控制继电器使得加热(或制冷)设备工作(或停止)。 还有水银温度计型的,温度到就会有触点和水银接通。

  • AMC系列多回路监控单元在智能配电回路中的应用

    摘 要:介绍了AMC系列多回路智能监控单元在智能配电回路中的的应用,将众多配出回路的测量、计量、开关状态监测、控制和数字通讯等功能于一体,大大简化了系统的设计,降低了设备成本,简化了用户投资,方便了用户的使用和检修。具有功能强大、性价比高、方便用户使用、节约用户投资等优点关键字:AMC系列智能监控单元,简化系统,降低投资,性价比高0  引言  随着配电系统的发展,智能配电回路中各种仪表向集成化和网络化发展的方向是越来越清晰。目前单回路集成化的优势已经出现,但是对多个回路的集成还未产生。  本文将要介绍的是最新开发的AMC系列多回路智能监控单元在智能配电出线回路中的应用。该系列监控单元主要应用于多个配电出线回路的电参量的监测,它将回路中的母线电压、多个配出回路的电流、功率、电能和各个回路的开关状态集中测量、显示、并通讯输出,实现了对监控要求较简单的配电出线回路的集中测量和监视,一个AMC多回路监控单元就能实现上述多个回路的监测功能,大大方便了系统的接线、安装、调试;节约了用户的投资,降低了系统成本等优点,必将引领国内外智能配电领域的发展方向,成为智能配电中出线回路监控系统的发展主流。1  技术背景  在传统的智能配电出线回路中,要实现对回路中每个负载的各种电参量的全面监测,一般有以下2种组网方式(以三相为例):    该方案在三相智能配电出线回路中是比较常见的一种方案。在对配电出线回路负载的监控中,用户一般需要监控各路负载的各种电参量,包括每路负载的电流、电压、功率、电能、开关状态等。因此在设计方案时,针对每种电参量,用户需要单独配置可以测量各种电参量的仪表,由图1可以看到,为了监控每路负载,用户必须为每路负载配置1个电流表、1个电压表、1个功率表、1个电能表、1个I/O模块。而且为了实现网络化管理,每个仪表还必须是能够进行通讯的。由图1 可以看出,用于监测每路三相负载的电测仪表达到5个。采用该方案的缺点是需要多个仪表才能监控每路负载的各种电参量,监控路数越多,使用仪表越多,用户安装、维修、管理很不方便。且投资较大。优点是单个仪表出故障不影响对配电回路的其他电参量的监控,测量的精度较高,实时性较强。  方案2:(图2)  该方案在三相智能配电出线回路中也是比较常见的一个方案。该方案较上面方案的先进之处在于,用于监控每个回路电参量的仪表由1个多功能的智能仪表代替了多个仪表,1个多功能仪表集测量电流、电压、功率、电能和开关量输入输出于一体,并可进行组网通讯。该方案的优点是每路负载只需配置1个仪表即可实现对该路负载的所有电参量的测量和控制,组网方便,用户投资较方案1少,安装、维护、管理较为方便,测量的精度较高,实时性较强。缺点是一旦仪表出线故障则无法对该负载继续监控。  以上2中方案在智能配电出线回路中是常用的,但是,以上2中方案的缺点是显而易见的,投资成本太大是一个主要的缺点。且接线、安装、调试等都不方便。2  AMC系列智能监控单元技术指标  AMC系列智能监控单元是针对出线回路中一般回路的监控要求,经过充分调研并结合实际需求开发的多回路智能配电监控装置。该监控单元分为单相和三相2大系列,其型号分类见表1。其技术指标见表2。外型及安装尺寸见图3,一般安装在配电柜内。3  AMC系列智能监控单元的设计简介  AMC系列多回路智能监控单元的原理设计上,采用多个电子切换开关+1个电能计量芯片+1个CPU来实现对多个回路的监测。其原理框图见图4。  核心器件CPU选用飞思卡尔公司的MC9S08AW32型单片机,它是第一款基于高度节能型S08核的器件,片上资源丰富,抗干扰能力突出。内含32K字节用户程序空间,片上集成2048字节RAM,支持BDM片上调试功能,片内集成看门狗电路。  电能计量芯片采用ADI公司的高精度三相电能测量芯片ADE7758,适用于各种三相电路(不论三线制或者四线制)中测量有功功率、复功率、视在功率。该IC内嵌了高精度的模数转换器和固定模式的数字处理信号处理器(DSP),具有数字积分、数字滤波和具有众多实用电能监测、计量功能,是新一代高性能全数字电能表的理想芯片。  电子开关采用双四选一的CD4052高速电子开关。在单片机的控制下,实现在不同电流信号之间的高速切换。  多路电流信号经电子开关进入电能芯片,结合母线电压即可由电能芯片测得多个回路的各种电参量。4  AMC系列智能监控单元的应用4.1 典型应用  图5为AMC系列三相多回路智能监控单元的典型应用图。在应用中,出线回路中的3个三相负载的所有电参量测量都由1个AMC三相多回路监控单元来实现。并带有Modbus通讯输出,供用户远程监测和控制。  图6为AMC系列单相多回路智能监控单元的典型应用图。在应用中,出线回路中的9个单相负载的所有电参量测量都由1个AMC单相多回路监控单元来实现。并带有Modbus通讯输出,供用户远程监测和控制。4.2 应用案例  图7是江苏某广电大厦0.4kV低压配电出线图。在该设计图中,每个单相负载的电流测量采用CL72-AI(测量单相电流)表来实现,每个三相负载的电流测量由CL72-AI3来实现(测量三相电流)。由图可以看出,该出线回路总共要使用12个仪表。  图8是采用AMC多回路监控单元后,针对图7系统所做的修改。由图8可以看出,1个AMC16-1E9代替了9个CL72-AI,1个AMC16-3E3代替了3个CL72-AI3,大大简化了系统,并可同时检测母线电压、每个出线回路的电能,并可利用通讯接口,实现广电大厦的内部电能计量、考核、管理。5  结语  AMC系列产品的功能强大,单个仪表能够测量多个回路负载的多种电参量。对比图7和图8两种设计方案,采用AMC系列多回路智能监控单元,能够大大简化系统的设计方案,与传统方案相比,降低用户的投资成本,方便了系统的接线、安装、调试、维护等优点。

  • AMC系列多回路监控单元在智能配电回路中的应用

    AMC系列多回路监控单元在智能配电回路中的应用安科瑞 蔡昀羲摘 要:介绍了AMC系列多回路智能监控单元在智能配电回路中的的应用,将众多配出回路的测量、计量、开关状态监测、控制和数字通讯等功能于一体,大大简化了系统的设计,降低了设备成本,简化了用户投资,方便了用户的使用和检修。具有功能强大、性价比高、方便用户使用、节约用户投资等优点关键字:AMC系列智能监控单元,简化系统,降低投资,性价比高0  引言  随着配电系统的发展,智能配电回路中各种仪表向集成化和网络化发展的方向是越来越清晰。目前单回路集成化的优势已经出现,但是对多个回路的集成还未产生。  本文将要介绍的是最新开发的AMC系列多回路智能监控单元在智能配电出线回路中的应用。该系列监控单元主要应用于多个配电出线回路的电参量的监测,它将回路中的母线电压、多个配出回路的电流、功率、电能和各个回路的开关状态集中测量、显示、并通讯输出,实现了对监控要求较简单的配电出线回路的集中测量和监视,一个AMC多回路监控单元就能实现上述多个回路的监测功能,大大方便了系统的接线、安装、调试;节约了用户的投资,降低了系统成本等优点,必将引领国内外智能配电领域的发展方向,成为智能配电中出线回路监控系统的发展主流。1  技术背景  在传统的智能配电出线回路中,要实现对回路中每个负载的各种电参量的全面监测,一般有以下2种组网方式(以三相为例):  方案1:(图1)http://www.acrel.cn/cn/download/common/upload/2011/02/24/152038p9.jpg图 1    该方案在三相智能配电出线回路中是比较常见的一种方案。在对配电出线回路负载的监控中,用户一般需要监控各路负载的各种电参量,包括每路负载的电流、电压、功率、电能、开关状态等。因此在设计方案时,针对每种电参量,用户需要单独配置可以测量各种电参量的仪表,由图1可以看到,为了监控每路负载,用户必须为每路负载配置1个电流表、1个电压表、1个功率表、1个电能表、1个I/O模块。而且为了实现网络化管理,每个仪表还必须是能够进行通讯的。由图1 可以看出,用于监测每路三相负载的电测仪表达到5个。采用该方案的缺点是需要多个仪表才能监控每路负载的各种电参量,监控路数越多,使用仪表越多,用户安装、维修、管理很不方便。且投资较大。优点是单个仪表出故障不影响对配电回路的其他电参量的监控,测量的精度较高,实时性较强。  方案2:(图2)http://www.acrel.cn/cn/download/common/upload/2011/02/24/152058jp.jpg图 2  该方案在三相智能配电出线回路中也是比较常见的一个方案。该方案较上面方案的先进之处在于,用于监控每个回路电参量的仪表由1个多功能的智能仪表代替了多个仪表,1个多功能仪表集测量电流、电压、功率、电能和开关量输入输出于一体,并可进行组网通讯。该方案的优点是每路负载只需配置1个仪表即可实现对该路负载的所有电参量的测量和控制,组网方便,用户投资较方案1少,安装、维护、管理较为方便,测量的精度较高,实时性较强。缺点是一旦仪表出线故障则无法对该负载继续监控。  以上2中方案在智能配电出线回路中是常用的,但是,以上2中方案的缺点是显而易见的,投资成本太大是一个主要的缺点。且接线、安装、调试等都不方便。2  AMC系列智能监控单元技术指标  AMC系列智能监控单元是针对出线回路中一般回路的监控要求,经过充分调研并结合实际需求开发的多回路智能配电监控装置。该监控单元分为单相和三相2大系列,其型号分类见表1。其技术指标见表2。外型及安装尺寸见图3,一般安装在配电柜内。表 1  产品型号及功能http://www.acrel.cn/cn/download/common/upload/2011/02/25/161746lo.jpg表 2  技术指标http://www.acrel.cn/cn/download/common/upload/2011/02/25/161757ca.jpghttp://www.acrel.cn/cn/download/common/upload/2011/02/25/161813uv.jpg图 33  AMC系列智能监控单元的设计简介  AMC系列多回路智能监控单元的原理设计上,采用多个电子切换开关+1个电能计量芯片+1个CPU来实现对多个回路的监测。其原理框图见图4。http://www.acrel.cn/cn/download/common/upload/2011/02/21/104235r4.jpg图 4  核心器件CPU选用飞思卡尔公司的MC9S08AW32型单片机,它是第一款基于高度节能型S08核的器件,片上资源丰富,抗干扰能力突出。内含32K字节用户程序空间,片上集成2048字节RAM,支持BDM片上调试功能,片内集成看门狗电路。  电能计量芯片采用ADI公司的高精度三相电能测量芯片ADE7758,适用于各种三相电路(不论三线制或者四线制)中测量有功功率、复功率、视在功率。该IC内嵌了高精度的模数转换器和固定模式的数字处理信号处理器(DSP),具有数字积分、数字滤波和具有众多实用电能监测、计量功能,是新一代高性能全数字电能表的理想芯片。  电子开关采用双四选一的CD4052高速电子开关。在单片机的控制下,实现在不同电流信号之间的高速切换。  多路电流信号经电子开关进入电能芯片,结合母线电压即可由电能芯片测得多个回路的各种电参量。4  AMC系列智能监控单元的应用4.1 典型应用  图5为AMC系列三相多回路智能监控单元的典型应用图。在应用中,出线回路中的3个三相负载的所有电参量测量都由1个AMC三相多回路监控单元来实现。并带有Modbus通讯输出,供用户远程监测和控制。http://www.acrel.cn/cn/download/common/upload/2011/02/24/152457rk.jpg图 5  图6为AMC系列单相多回路智能监控单元的典型应用图。在应用中,出线回路中的9个单相负载的所有电参量测量都由1个AMC单相多回路监控单元来实现。并带有Modbus通讯输出,供用户远程监测和控制。http://www.acrel.cn/cn/download/common/upload/2011/02/24/1525120s.jpg图 64.2 应用案例  图7是江苏某广电大厦0.4kV低压配电出线图。在该设计图中,每个单相负载的电流测量采用CL72-AI(测量单相电流)表来实现,每个三相负载的电流测量由CL72-AI3来实现(测量三相电流)。由图可以看出,该出线回路总共要使用12个仪表。http://www.acrel.cn/cn/download/common/upload/2011/02/25/161826ga.jpg图 7    图8是采用AMC多回路监控单元后,针对图7系统所做的修改。由图8可以看出,1个AMC16-1E9代替了9个CL72-AI,1个AMC16-3E3代替了3个CL72-AI3,大大简化了系统,并可同时检测母线电压、每个出线回路的电能,并可利用通讯接口,实现广电大厦的内部电能计量、考核、管理。http://www.acrel.cn/cn/download/common/upload/2011/02/25/161834h1.jpg图 85  结语  AMC系列产品的功能强大,单个仪表能够测量多个回路负载的多种电参量。对比图7和图8两种设计方案,采用AMC系列多回路智能监控单元,能够大大简化系统的设计方案,与传统方案相比,降低用户的投资成本,方便了系统的接线、安装、调试、维护等优点。

  • 多回路监控单元在智能配电回路中的应用

    随着配电系统的发展,智能配电回路中各种仪表向集成化和网络化发展的方向是越来越清晰。目前单回路集成化的优势已经出现,但是对多个回路的集成还未产生。  本文将要介绍的是最新开发的AMC系列多回路智能监控单元在智能配电出线回路中的应用。该系列监控单元主要应用于多个配电出线回路的电参量的监测,它将回路中的母线电压、多个配出回路的电流、功率、电能和各个回路的开关状态集中测量、显示、并通讯输出,实现了对监控要求较简单的配电出线回路的集中测量和监视,一个AMC多回路监控单元就能实现上述多个回路的监测功能,大大方便了系统的接线、安装、调试;节约了用户的投资,降低了系统成本等优点,必将引领国内外智能配电领域的发展方向,成为智能配电中出线回路监控系统的发展主流。

  • 压力回路式顶空进样器原理简介

    压力回路式顶空进样器原理简介

    [font='宋体'][size=16px]声明[/size][/font][font='宋体'][size=16px]:[/size][/font][font='宋体'][size=16px]本文首发于[/size][/font][font='宋体'][size=16px]微信[/size][/font][font='宋体'][size=16px]公众号[/size][/font][font='宋体'][size=16px]“[/size][/font][font='宋体'][size=16px][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析[/size][/font][font='宋体'][size=16px]”[/size][/font][font='宋体'][size=16px],经[/size][/font][font='宋体'][size=16px]部分[/size][/font][font='宋体'][size=16px]修改后参加第16届科学仪器网络原创作品大赛。[/size][/font][font='宋体'][size=16px]在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析中,常见的样品形态为液体或者气体。实际样品(如蔬菜)经过溶剂提取、过滤、萃取、浓缩和定容等前处理步骤之后变为溶液中的组份成为[/size][/font][font='宋体'][size=16px]液体样品[/size][/font][font='宋体'][size=16px];水质、土壤和固体废弃物等中的易挥发组份[/size][/font][font='宋体'][sub][size=16px](经处理后)[/size][/sub][/font][font='宋体'][size=16px]、大气和工厂废气、天然气等化工气体等则作为[/size][/font][font='宋体'][size=16px]气体样品[/size][/font][font='宋体'][size=16px]。[/size][/font][font='宋体'][size=16px]样品形态和性质的不同[/size][/font][font='宋体'][size=16px]会使得其引入进样口的方式不同,[/size][/font][font='宋体'][size=16px]催生出多种多样的样品引入装置[/size][/font][font='宋体'][size=16px]。常见的样品引入装置包括微量进样器和气密型进样针、多通阀、热解吸装置、吹扫[/size][/font][font='宋体'][size=16px]捕集装置、顶空进样器和固相微萃取等。[/size][/font][font='宋体'][size=16px]本文[/size][/font][font='宋体'][size=16px]主要介绍压力回路式顶空进样器的原理和使用等内容。[/size][/font][font='宋体'][size=16px]1 顶空进样器原理概述[/size][/font][font='宋体'][size=16px]顶空分析([/size][/font][font='宋体'][size=16px]Static HeadSpace Analysis[/size][/font][font='宋体'][size=16px] ,[/size][/font][font='宋体'][size=16px]HS/静态顶空[/size][/font][font='宋体'][size=16px])的原理是[/size][/font][font='宋体'][size=16px]将待测样品[/size][/font][font='宋体'][sub][size=16px](液体或固体)[/size][/sub][/font][font='宋体'][size=16px]置入一可密闭的容器(样品瓶)中;一定温度条件下,待测样品中的挥发性组分进入到样品瓶内的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]空间中,同时,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]空间中的部分挥发性组分又重新回到待测样品中;一定时间后,系统达到动态平衡,样品瓶内[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]空间中的挥发性组分浓度保持固定不变,且与待测样品中的挥发性组分原始浓度成一定比例;此时,抽取样品瓶内[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]空间中的部分气体进行色谱分析,可以测定样品中挥发性组分的组成和含量。由于待测样品[/size][/font][font='宋体'][sub][size=16px](液体或固体)[/size][/sub][/font][font='宋体'][size=16px]一般位于样品瓶底部,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]空间位于样品瓶顶部,因此,该种分析模式称之为顶空分析。[/size][/font][font='宋体'][size=16px]顶空进样器[/size][/font][font='宋体'][size=16px]是依据顶空分析原理,用以完成样品平衡、取样和与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]联用进样的装置。[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2023/07/202307011511428450_2201_1856270_3.png[/img][font='宋体'][size=16px]在实际的仪器实践过程中[/size][/font][font='宋体'][size=16px],不同厂家顶空进样器“[/size][/font][font='宋体'][size=16px]抽取样品瓶内[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]空间中的部分气体进行色谱分析[/size][/font][font='宋体'][size=16px]”的方法不同,大致可以分为气密针筒式、压力回路式和平衡压力式三种。另外,采用固相微萃取技术的顶空萃取,也认为是一种特殊的方法,本[/size][/font][font='宋体'][size=16px]文[/size][/font][font='宋体'][size=16px]不再涉及[/size][/font][font='宋体'][size=16px]。[/size][/font][font='宋体'][size=16px]本文主要介绍使用[/size][/font][font='宋体'][size=16px]压力回路[/size][/font][font='宋体'][size=16px]进行顶空分析的原理和使用等内容[/size][/font][font='宋体'][size=16px]。[/size][/font][font='宋体'][size=16px]2[/size][/font][font='宋体'][size=16px] [/size][/font][font='宋体'][size=16px]压力回路[/size][/font][font='宋体'][size=16px]式顶空进样器[/size][/font][font='宋体'][size=16px]2[/size][/font][font='宋体'][size=16px].1[/size][/font][font='宋体'][size=16px] 一般过程[/size][/font][font='宋体'][size=16px]压力回路式顶空进样器[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]指的是[/size][/font][font='宋体'][size=16px]顶空瓶内气液两相在一定的温度和时间达到平衡后,[/size][/font][font='宋体'][size=16px]使用惰性气[/size][/font][font='宋体'][sub][size=16px](如氮气、氦气等)[/size][/sub][/font][font='宋体'][size=16px]对顶空瓶进行加压至设定值[/size][/font][font='宋体'][sub][size=16px](并保持一段时间)[/size][/sub][/font][font='宋体'][size=16px];[/size][/font][font='宋体'][size=16px]加压结束后,[/size][/font][font='宋体'][size=16px]关闭加压气体并[/size][/font][font='宋体'][size=16px]切换流路,[/size][/font][font='宋体'][size=16px]顶空瓶内气体[/size][/font][font='宋体'][size=16px]样品[/size][/font][font='宋体'][size=16px]从顶空瓶流出并通过[/size][/font][font='宋体'][size=16px]和填充[/size][/font][font='宋体'][size=16px]用以取样的定量环;最后,将定量环中的气体[/size][/font][font='宋体'][size=16px]样品[/size][/font][font='宋体'][size=16px]引入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]进行分析。[/size][/font][font='宋体'][size=16px]压力回路式顶空进样器的特点[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]对顶空瓶先加压再泄压取样[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]一进一出[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]所以称之为[/size][/font][font='宋体'][size=16px]压力[/size][/font][font='宋体'][size=16px]回路[/size][/font][font='宋体'][size=16px];[/size][/font][font='宋体'][size=16px]又由于使用六通阀+定量环进行取样,也称为(六通阀+定量环)式。[/size][/font][font='宋体'][size=16px]下图为压力回路式顶空进样器的原理示意:[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2023/07/202307011511431218_402_1856270_3.png[/img][font='宋体'][size=16px]另外[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]上述压力回路式也称之为正压[/size][/font][font='宋体'][size=16px]型[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]即向顶空瓶内加压[/size][/font][font='宋体'][size=16px];[/size][/font][font='宋体'][size=16px]如果不向顶空瓶内加压[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]而在取样时[/size][/font][font='宋体'][size=16px]通过针筒或者泵将顶空瓶内样品抽出[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]则称之为负压[/size][/font][font='宋体'][size=16px]型[/size][/font][font='宋体'][size=16px]的压力回路式顶空进样器[/size][/font][font='宋体'][size=16px]。[/size][/font][font='宋体'][size=16px]下图[/size][/font][font='宋体'][size=16px]:[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2023/07/202307011511433946_2165_1856270_3.png[/img][font='宋体'][size=16px]实际的仪器实现上[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]常使用泵替代针筒[/size][/font][font='宋体'][size=16px]。[/size][/font][font='宋体'][size=16px]2[/size][/font][font='宋体'][size=16px].2 压力回路式顶空进样器[/size][/font][font='宋体'][size=16px]的[/size][/font][font='宋体'][size=16px]典型仪器流路[/size][/font][font='宋体'][size=16px]压力回路式的顶空进样器[/size][/font][font='宋体'][size=16px](即使用六通阀+定量环)[/size][/font][font='宋体'][size=16px]常见流路图如下[/size][/font][font='宋体'][size=16px](本流路图仅供参考,不同厂家之间略有不同):[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2023/07/202307011511435188_687_1856270_3.png[/img][font='宋体'][size=16px]仪器装置主要包括[/size][/font][font='宋体'][size=16px]:[/size][/font][font='宋体'][size=16px]①[/size][/font][font='宋体'][size=16px]气源及流量控制阀[/size][/font][font='宋体'][sub][size=16px](一般称之为吹扫气)[/size][/sub][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]用以向顶空瓶加压和吹扫流路等[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]②[/size][/font][font='宋体'][size=16px]顶空瓶及其加热装置[/size][/font][font='宋体'][size=16px],③[/size][/font][font='宋体'][size=16px]作为流路切换的六通阀和开关电磁阀[/size][/font][font='宋体'][size=16px],④可加热的样品传输管线和普通(或者惰性化)的管线等。[/size][/font][font='宋体'][size=16px]2[/size][/font][font='宋体'][size=16px].3 压力回路式顶空进样器的[/size][/font][font='宋体'][size=16px]工作流程[/size][/font][font='宋体'][size=16px]顶空进样器在进行样品分析检测时[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]其[/size][/font][font='宋体'][size=16px]主要工作[/size][/font][font='宋体'][size=16px]流程包括:[/size][/font][font='宋体'][size=16px]待机、样品加压、取样、定量环平衡、进样和[/size][/font][font='宋体'][size=16px]管路[/size][/font][font='宋体'][size=16px]吹扫等。[/size][/font][font='宋体'][size=16px]本文以[/size][/font][font='宋体'][size=16px]市面常见的某厂家[/size][/font][font='宋体'][size=16px]顶空进样器为例,介绍仪器工作流程。[/size][/font][font='宋体'][size=16px]该仪器自动化程度较低,样品加热平衡[/size][/font][font='宋体'][size=16px]时间[/size][/font][font='宋体'][size=16px]需要手动计时,进样时需要手动将取样针扎入样品瓶[/size][/font][font='宋体'][size=16px],其他均为自动化[/size][/font][font='宋体'][size=16px]流程。[/size][/font][font='宋体'][size=16px]2[/size][/font][font='宋体'][size=16px].3.[/size][/font][font='宋体'][size=16px]1[/size][/font][font='宋体'][size=16px] 待机状态[/size][/font][font='宋体'][size=16px]仪器待机状态[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]主要是开启[/size][/font][font='宋体'][size=16px]顶空进样器后等待温度条件就绪,以及在待机状态对装有样品的顶空瓶进行加热平衡。[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2023/07/202307011511436636_5405_1856270_3.png[/img][font='宋体'][size=16px]2[/size][/font][font='宋体'][size=16px].3.2 样品加压[/size][/font][font='宋体'][size=16px]样品加压时[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]将取样针扎入在一定温度下平衡好的顶空瓶中[/size][/font][font='宋体'][size=16px];[/size][/font][font='宋体'][size=16px]此时[/size][/font][font='宋体'][size=16px],三通电磁阀①②位连通,[/size][/font][font='宋体'][size=16px]开关电磁阀①打开[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]开关电磁阀②关闭;[/size][/font][font='宋体'][size=16px]气源将通过稳压阀[/size][/font][font='宋体'][size=16px]→开关电磁阀①→三通电磁阀[/size][/font][font='宋体'][size=16px]②[/size][/font][font='宋体'][size=16px]①→样品传输管路→顶空瓶,[/size][/font][font='宋体'][size=16px]向顶空瓶内[/size][/font][font='宋体'][size=16px]输入惰性气[/size][/font][font='宋体'][sub][size=16px](一般为氮气)[/size][/sub][/font][font='宋体'][size=16px]加压至设定值[/size][/font][font='宋体'][sub][size=16px](1[/size][/sub][/font][font='宋体'][sub][size=16px]00KPa左右[/size][/sub][/font][font='宋体'][sub][size=16px])[/size][/sub][/font][font='宋体'][size=16px],并保持一定时间[/size][/font][font='宋体'][sub][size=16px](2[/size][/sub][/font][font='宋体'][sub][size=16px]0s[/size][/sub][/font][font='宋体'][sub][size=16px]-[/size][/sub][/font][font='宋体'][sub][size=16px]60s左右[/size][/sub][/font][font='宋体'][sub][size=16px])[/size][/sub][/font][font='宋体'][size=16px];加压完毕后,[/size][/font][font='宋体'][size=16px]开关电磁阀①关闭。[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2023/07/202307011511437916_2450_1856270_3.png[/img][font='宋体'][size=16px]一般而言[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]上图中气源-即顶空压力/加压气/吹扫气的压力一般设置为1[/size][/font][font='宋体'][size=16px]00KPa左右[/size][/font][font='宋体'][size=16px],加压的时间一般设置为(2[/size][/font][font='宋体'][size=16px]0[/size][/font][font='宋体'][size=16px]-[/size][/font][font='宋体'][size=16px]60[/size][/font][font='宋体'][size=16px])s左右。[/size][/font][font='宋体'][size=16px]2[/size][/font][font='宋体'][size=16px].3.3 [/size][/font][font='宋体'][size=16px]取样[/size][/font][font='宋体'][size=16px]状态[/size][/font][font='宋体'][size=16px]顶空[/size][/font][font='宋体'][size=16px]进样器取样[/size][/font][font='宋体'][size=16px]时[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]取样针处于顶空瓶中;此时,三通电磁阀①③位连通,开关电磁阀①关闭,开关电磁阀②打开;[/size][/font][font='宋体'][size=16px]顶空瓶内的具有一定压力[/size][/font][font='宋体'][size=16px]的[/size][/font][font='宋体'][size=16px]气体样品将通过样品传输管路→三通电磁阀①③→六通阀和定量环→开关电磁阀②→排空[/size][/font][font='宋体'][size=16px],经过一定时间之后[/size][/font][font='宋体'][sub][size=16px](即取样时间,一般1[/size][/sub][/font][font='宋体'][sub][size=16px]0s[/size][/sub][/font][font='宋体'][sub][size=16px]-[/size][/sub][/font][font='宋体'][sub][size=16px]60s左右[/size][/sub][/font][font='宋体'][sub][size=16px])[/size][/sub][/font][font='宋体'][size=16px],定量环内充满样品[/size][/font][font='宋体'][size=16px]。[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2023/07/202307011511439594_8746_1856270_3.png[/img][font='宋体'][size=16px]2[/size][/font][font='宋体'][size=16px].3.[/size][/font][font='宋体'][size=16px]4[/size][/font][font='宋体'][size=16px] [/size][/font][font='宋体'][size=16px]定量环平衡[/size][/font][font='宋体'][size=16px]在取样过程持续一定时间之后[/size][/font][font='宋体'][sub][size=16px](即取样时间,一般1[/size][/sub][/font][font='宋体'][sub][size=16px]0s[/size][/sub][/font][font='宋体'][sub][size=16px]-[/size][/sub][/font][font='宋体'][sub][size=16px]60s左右[/size][/sub][/font][font='宋体'][sub][size=16px])[/size][/sub][/font][font='宋体'][size=16px],顶空进样器的开关电磁阀②会关闭,用以平衡定量环内的气体样品压力,此时从顶空瓶→样品传输管路→三通电磁阀①③→六通阀和定量环→开关电磁阀②形成一密闭流路。仪器的流路和其他阀的状态,与取样状态无区别。[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2023/07/202307011511440593_5244_1856270_3.png[/img][font='宋体'][size=16px]定量环平衡时间一般设置为[/size][/font][font='宋体'][size=16px](3-[/size][/font][font='宋体'][size=16px]5[/size][/font][font='宋体'][size=16px])s即可。[/size][/font][font='宋体'][size=16px]2[/size][/font][font='宋体'][size=16px].3.5 [/size][/font][font='宋体'][size=16px]进样状态[/size][/font][font='宋体'][size=16px]定量环平衡过程结束后,六通阀切换[/size][/font][font='宋体'][size=16px]状态[/size][/font][font='宋体'][size=16px],定量环被串入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]载气流路,[/size][/font][font='宋体'][size=16px]定量环内的气体样品[/size][/font][font='宋体'][size=16px]被带入进样口,从而引入色谱柱进行分离;此时,三通电磁阀①③位连通,开关电磁阀①关闭,开关电磁阀②关闭[/size][/font][font='宋体'][size=16px]。[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2023/07/202307011511442165_7769_1856270_3.png[/img][font='宋体'][size=16px]进样过程持续一定时间之后[/size][/font][font='宋体'][sub][size=16px](即进样时间,一般[/size][/sub][/font][font='宋体'][sub][size=16px]5s[/size][/sub][/font][font='宋体'][sub][size=16px]-[/size][/sub][/font][font='宋体'][sub][size=16px]60s左右[/size][/sub][/font][font='宋体'][sub][size=16px])[/size][/sub][/font][font='宋体'][size=16px],六通阀恢复原始状态,定量环不再串入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]载气流路。[/size][/font][font='宋体'][size=16px]另外,如果此时打开开关电磁阀②对顶空瓶内持续泄压,则可以进入到多次顶空萃取(MHE)模式中。[/size][/font][font='宋体'][size=16px]2[/size][/font][font='宋体'][size=16px].3.6 吹扫状态[/size][/font][font='宋体'][size=16px]进样过程结束后[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]可以将取样针从顶空瓶中取下[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]手动进入吹扫管路状态[/size][/font][font='宋体'][size=16px];此时,三通电磁阀①②位连通,开关电磁阀①开启,开关电磁阀②关闭;气源将通过稳压阀→开关电磁阀①→三通电磁阀②①→样品传输管路→排空,将取样管路中的样品残留通过惰性气[/size][/font][font='宋体'][sub][size=16px](一般为氮气)[/size][/sub][/font][font='宋体'][size=16px]吹出,避免影响下一次分析。[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2023/07/202307011511443278_2363_1856270_3.png[/img][font='宋体'][size=16px]需要说明的是[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]定量环流路在进样过程中已经被载气清洗[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]因此在此清洗的必要性不大[/size][/font][font='宋体'][size=16px]。[/size][/font][font='宋体'][size=16px]管路的吹扫过程一般持续[/size][/font][font='宋体'][size=16px](1-[/size][/font][font='宋体'][size=16px]3[/size][/font][font='宋体'][size=16px])分钟,建议在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析结束后进行,避免大流量对空吹扫管路引起顶空-[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]联用系统压力不稳。[/size][/font][font='宋体'][size=16px]4 小结[/size][/font][font='宋体'][size=16px]顶空进样器的主要工作流程包括[/size][/font][font='宋体'][size=16px]待机、样品加压、取样、定量环平衡、进样和管路吹扫等[/size][/font][font='宋体'][size=16px],另外还有其他一些流程包含在以上[/size][/font][font='宋体'][size=16px]几[/size][/font][font='宋体'][size=16px]个流程之中或者之间,整体是为[/size][/font][font='宋体'][size=16px]了更好的服务于样品的[/size][/font][font='宋体'][size=16px]分析,如压力测试检漏、定量环压力控制等。[/size][/font][font='宋体'][size=16px]目前使用压力回路式顶空进样器的厂家和仪器非常多,应用极为广泛。[/size][/font]

  • 【原创大赛】马弗炉(箱式炉)旧式指针式温控器改造为数显温控器(九月)

    【原创大赛】马弗炉(箱式炉)旧式指针式温控器改造为数显温控器(九月)

    马弗炉(箱式炉)旧式指针式温控器改造为数显温控器 单位有许多使用多年的旧马弗炉,按常规应该进行更新换代了,可是由于数量较大,领导不愿意多花银子购买新的,所以一般都凑合着使用。其中有些马弗炉的炉体和炉膛都能正常使用,就是温控器(柜)太老了,绝大部分都是80年代的指针式温控仪表加接触器的控制系统,炉子控温精度和显示精度远不能满足实验室试验和生产工艺的要求。 为此本人对本单位大部分马弗炉进行了有效的技术改造,为了不增加过多的经济成本,针对不同级别的马弗炉进行了不同要求的技术改造。 本例介绍其中一种不太复杂,又经济实惠的技术改造实例,针对某马弗炉的具体情况,根据技术要求所进行的技术改造,一、马弗炉情况及相关技术参数1,马弗炉(箱式炉)外观图http://ng1.17img.cn/bbsfiles/images/2011/09/201109302129_320493_1841897_3.jpg正面图,可以看出箱体维护不错,整体看上去还不算太陈旧。http://ng1.17img.cn/bbsfiles/images/2011/09/201109302130_320494_1841897_3.jpg侧面图(炉门打开状态),炉门活动自如,炉膛耐火砖也良好,无明显裂纹和破损。

  • 【分享】回路电阻测试仪定义种类与用途

    下面介绍几种回路电阻测试仪的用途   1、回路电阻测试仪:接地电阻表  用途及适用范围:接地电阻适用直接测量各种接地装置的接地电阻值,亦可供一般低电阻的测量,四端钮(0~1~10~100Ω规格)还可以测量土壤电阻率.。  2、回路电阻测试仪:单钳回路电阻测试仪  单钳回路接地电阻测试仪性能及特点:独特单钳设计,可避免双钳式两探头之间相互干扰的误差不必打辅助地桩,直接钳住即可测量。   3、回路电阻测试仪:接地阻抗测试仪  钳式接地电阻计系列量测时,不必使用辅助接地棒,也不须中断待测设备之接地,只要钳夹住接地线或棒,就能量测出对地电阻达0.1Ω。也能作电流量测。  4、回路电阻测试仪:环路电阻测试仪  采用微处理器控制,具有高精度和高可靠性。测试时检查三个指示灯检查接线状态是否正确。直读短路保护电流和接地故障电流。测试电阻过热时会自动锁定。法兰球阀  5、回路电阻测试仪:型数字式接地电阻测试仪  该测试仪专门用来测量各类电器设备、避雷针等接地装置的接地电阻值。测试原理先进。  6、回路电阻测试仪:双钳口接地电阻测试仪   具有多种接地电阻测量方法:无辅助极/三极/四极/而极法-----适合多种测量环境;其测量范围为0.002Ω—300KΩ,可以满足多种要求。

  • 基于ADE7758+MC9S08AW32方案的多回路监控单元的设计

    摘 要:介绍一个基于ADE7758和MC9S08AW32方案的智能监控单元的设计方法,详细说明了设计原理、硬件构成以及软件设计的方法,该装置能够实现最多3个三相回路(或9个单相回路)、18路开关量信号的监控;结合RS485总线技术及上位机软件,可实现数据及状态信息远传,满足低压配电智能化、网络化及集成化发展的需求。关键字:多回路,智能监控单元,RS485Abstract: A design of hardware and software platform for multiloop monitoring device based on ADE7758+MC9S08AW32, the design principle , hardware configuration and flow of softwave were described in detail . This device can implement monitor at most 3 loop of 3-phase 4-wire (or 9 single loop) , 18 on-off signal ; with RS485 and PC ,can achieve data and status messages send , meet the evolutive requirment of intelligentize , network and integration in low voltage power distribution.Key words: multiloop , aptitude monitoring device ,RS4850  引言  在配电系统领域,智能化和网络化是一个主流的发展方向,但是在实际使用中,若每一个配电回路都安装智能化的网络监测仪表,用户的硬件投资成本是非常大的,鉴于此,集成化又将是一个发展的方向,即将多个配电回路的电参量测量由一个智能仪表来实现。因此,一种设计先进、可靠性高、测量精度高的多回路智能监控单元的出现,能够在保证实现用户测量要求的同时,大大降低用户的硬件投资成本和使用成本。  本文介绍一种AMC系列多回路智能监控单元(见图1)的设计方法,最多实现3个三相回路(或9个单相回路)的电参量测量;结合RS485总线技术及上位机软件,可实现数据及状态信息远传,满足低压配电智能化、网络化及集成化的发展需求。1  AMC多回路监控单元技术特点  AMC多回路监控单元主要应用于多个配出回路的电参数的监测,它将回路中的母线电压、多个配出回路的电流、功率、电能和各个回路的开关状态集中测量、显示、并具有通讯输出,实现了对监控要求较简单的配电出线回路的集中测量和监视。一个AMC多回路监控单元就能完成实现上述多个回路的监测功能,大大方便了系统的接线、安装、调试;节约了用户的投资,降低了系统成本。具体型号及产品功能见表1。 表1 产品型号及功能    型号功能应用单相AMC16-1I99路单相I、ULN、RS485/Modbus9个单相回路的电参数监测、开关监测、并可实现通讯AMC16-1E99路单相I、ULN、kW、kWh 、RS485/ModbusAMC16-1E9/K9路单相I、ULN、kW、kWh、RS485/Modbus、18路DI、1路DO三相AMC16-3I33路三相I、U、RS485/Modbus3个三相回路的电参数监测、开关监测、并可实现通讯AMC16-3E33路三相I、U、kW、kWh、RS485/ModbusAMC16-3E3/K3路三相I、U、kW、kWh、RS485/Modbus、18路DI、1路DO2  系统结构  整体系统由中央处理单元、电源、交流采样运算、人机界面、开关量控制、通讯接口模块等构成,装置硬件结构如图2所示。2.1 中央处理单元专用电能芯片  中央处理器采用Freescale公司的高性能处理器MC9S08AW32。MC9S08AW32是Freescale公司一款基于S08内核的高度节能性处理器。是第一款认可用于汽车市场的微控制器。可应用在家电、汽车、工业控制等高度集成的高性能器件。具有业内最佳的EMC性能。  CPU总线频率最高可达20MHz,最高运行速率可达40MHz。丰富的片内资源: 32K Flash存储器,内部时钟发生器,带有8个可编程通道的定时器,10位、16通道ADC,双SCI口、丰富的I/O口、SPI、I2C等接口,极大地方便了硬件的扩展。并且支持BDM片上调试方式。2.2 电源  采用的电源模块为通用+5V开关电源模块。电路原理见图3。该电源模块输入电压为AC85V~265V或DC100V~350V,输入频率45Hz~60Hz,输出电压稳定、故障率小,输出纹波 1%,转换效率≥75%。具有过压、过流保护。该模块经实际现场使用,具有很高的稳定性、可靠性和抗干扰能力。2.3 交流采样及运算  交流采样运算单元包括交流采样和专用电能芯片。  系统的母线电压经电压互感器、采样电路、滤波电路后,电压信号进入专用电能芯片的电压通道。  多路负载的各路电流经电流互感器、采样电路、滤波电路后,电流信号进入高速信号切换开关的输入通道。由高速信号切换开关的通断来控制各路负载的电流信号进入电能芯片的电流通道。  专用电能芯片采用美国ADI公司的高精确度三相电能测量芯片ADE7758。该芯片的测量精度高,功能强大。带有一个串行口,两路脉冲输出,集成了数字积分、参考基准电压源、温度敏感元件等,有可用于有功功率、复功率、视在功率、有效值的测量以及以数字方式校正系统误差(增益、相位和失调等)所必须的信号处理电路。该芯片适用于各种三相电路(不论三线制或者四线制)中测量有功功率、复功率、视在功率。2.4 人机界面  人机界面采用LED数码显示。系统采用2排四位LED数码管加1排6位数码管显示各个回路的电参量,其显示的数据含义由红色LED发光二极管指示。其默认显示方式为循环显示各个回路的电参量,用户也可根据实际需要进行设置。电参量的显示范围0~9999,并在编程状态下显示菜单及参数,见图4仪表界面。数码管显示采用动态扫描方式,其驱动电路使用一片74HC595加三极管构成。2.5 开关量控制模块  开关量控制模块由开关量输入和告警输出组成,电路原理见图5。开关量输入经光电耦合器连接到CPU。告警输出由GPIO口经光电耦合器连接到输出继电器。开关量输入共设有18路,分别监测3个三相回路的分闸、合闸状态。设有1路告警输出,其告警条件可任意设置,只要满足一个设定的条件就会输出告警信号。2.6 通讯接口模块 3  实现功能及原理  本设计的主要目的就是采用单个电能芯片来实现对多个回路负载的电流、电压、功率、电能等参数的测量。考虑到成本和性能的要求,本设计采用的方案是1个电能芯片加多个电子开关,来实现对3个三相回路的各种电参量的测量和监测。  该方案的实现方式为,将回路的母线电压接入电能芯片ADE7758的电压通道,多路负载的电流通过由电子开关在CPU的控制下进行顺序分时切换,使ADE7758能够分时按顺序对各路负载进行电参量的测量及运算,并将所测得的数据由CPU进行各种处理。  监控单元主机结构分为电源、主板和显示板3大板块。其中电源板主要是开关电源、通讯和开关量的元器件布置,主板主要是采样运算电路、CPU及

  • 温控设备

    单位有个加热设备,CAL3200温控仪,设置温控950,加热到610就开始降温,降到460又开始升温,600度左右又开始降,反反复复,请问有大侠遇到过吗?

  • 超高精度PID串级控制器和电气比例阀在轮胎硫化饱和蒸汽外温变温控制中的应用

    超高精度PID串级控制器和电气比例阀在轮胎硫化饱和蒸汽外温变温控制中的应用

    [align=center][img=饱和蒸汽温度精密控制,690,315]https://ng1.17img.cn/bbsfiles/images/2022/11/202211160915568591_8820_3221506_3.jpg!w690x315.jpg[/img][/align][size=14px][color=#000099]摘要:在目前的饱和蒸汽轮胎硫化工艺中,普遍还在采用电动定位器和电动执行器形式的减压阀进行温度控制。这种控温方式存在响应时间长、控温波动大和磨损引起寿命短等问题。本文介绍了采用电气比例阀和气动减压阀组合的替代方案,其中还采用了超高精度的串级PID控制器,此串级控制法替代方案可大幅提高蒸汽温度的控制精度和速度,并延长阀门的使用寿命和可在线维护。作为一种新技术,此解决方案还可推广应用到其它蒸汽加热领域。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~[/align][b][size=18px][color=#000099]一、问题的提出[/color][/size][/b][size=14px][/size][size=14px] 硫化是目前轮胎生产过程中的最后一道工序,一般通过热硫化将成型的胎胚变成了轮胎成品。目前的硫化方式基本都是根据硫化内温的介质不同来区分,而外温实现方式(或称热板温度、模温)一般都是注入一定压力的蒸汽进行温度控制。[/size][size=14px][/size][size=14px] 本文将主要讨论轮胎硫化过程中的外温变温控制技术,有关内温调控技术则将在后续报告中再进行详细阐述。[/size][size=14px][/size][size=14px] 外温和外压是轮胎硫化的主要工艺参数,其控制的好坏直接影响硫化轮胎的质量。外温的实现通常使用蒸汽作为加热介质,而蒸汽一般都是饱和蒸汽。饱和蒸汽的一个重要特性是其温度与压力之间一一对应,即饱和蒸汽的温度始终由其压力决定,而轮胎硫化外温蒸汽加热工艺就是利用此特征来调整蒸汽压力以实现对蒸汽温度的精密控制。[/size][size=14px][/size][size=14px] 在目前的大多数蒸汽温度控制过程中,如图1所示,基本都采用的是典型的单闭环PID控制方法,使用了复杂笨重的电动减压阀来控制饱和蒸汽温度,即采用一个温度传感器将信号发送给PID控制器,控制器向电动阀门定位器发送命令信号,阀门定位器控制阀门所需开度以使得温度接近设定温度。这种控制的结果是阀门必须一直工作以保持温度,循环打开和关闭等同于磨损阀门部件,最大的问题是这种带有阀门定位器形式的电动减压阀的运行速度很慢,对PID控制器的控制信号有很大的响应滞后,如果观察热电偶的信号输出,则会在目标温度周围出现正弦波形,而不会出现平滑、平坦的温度信号,因此这种控制方式往往呈现出蒸汽温度波动较大的现场。[/size][size=14px][/size][align=center][size=14px][color=#000099][img=传统单回路蒸汽温度控制结构示意图,690,170]https://ng1.17img.cn/bbsfiles/images/2022/11/202211160917432405_1591_3221506_3.jpg!w690x170.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#000099]图1 采用阀门定位器形式的电动减压阀蒸汽温度控制结构及其温度波动[/color][/align][size=14px][/size][size=14px] 针对上述目前电动定位器和电动执行器结构形式的减压阀在轮胎硫化蒸汽温度控制中存在响应时间长、控温波动大和磨损引起寿命短等问题,本文将介绍采用电气比例阀和气动减压阀组合的替代方案,通过超高精度的串级控制PID控制器,此替代方案可大幅度提高蒸汽温度的控制速度和精度,并延长减压阀的使用寿命。此解决方案还可以推广应用到其它蒸汽加热设备。[/size][size=14px][/size][b][size=18px][color=#000099]二、解决方案[/color][/size][/b][size=14px][/size][size=14px] 在上述传统的饱和蒸汽温度控制过程中,采用的是一个典型的闭环控制回路,即作为执行机构的带阀门定位器的电动减压阀与PID控制器和温度传感器构成一个闭环控制。[/size][size=14px][/size][size=14px] 新的解决方案则是采用了双闭环PID控制回路组成的串级控制法,其结构如图2所示。[/size][size=14px][/size][align=center][size=14px][color=#000099][img=新型双回路串行控制法蒸汽温度控制结构示意图,690,223]https://ng1.17img.cn/bbsfiles/images/2022/11/202211160918269307_9385_3221506_3.jpg!w690x223.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#000099]图2 采用超高精度PID控制器、电气比例阀和气动减压阀的串行控制结构及其温度波动[/color][/align][size=14px][/size][size=14px] 在图2所示解决方案中,采用了经典的串级控制结构,即温度传感器、气动减压阀、电气比例阀和串级PID调节器组成一个双回路闭环控制系统。其中自带压力传感器和PID控制板的电气比例阀与气动减压阀构成次回路,用于调节气动减压阀的开度;温度传感器、串级PID控制器和次级回路再构成主回路,主回路采集硫化箱温度,经PID计算后输出控制信号给次回路中的电气比例阀,这里的次回路此时相当于主回路的执行器。[/size][size=14px][/size][size=14px] 与传统单回路控制相比,这种结合了电气比例阀和高精度PID调节器,并采用了串级控制法的蒸汽温度控制系统,充分发挥了串级控制的特点,有以下几方面的优势:[/size][size=14px][/size][size=14px] (1)可明显改善蒸汽温度控制精度和速度,控制温度的变化曲线平摊且与设定曲线非常接近,蒸汽温度达到稳定可节省几十分钟。[/size][size=14px][/size][size=14px] (2)对于高压饱和蒸汽的压力扰动具有较迅速和较强的克服能力。[/size][size=14px][/size][size=14px] (3)可消除次回路(气动减压阀和电气比例阀)的非线性特性的影响。[/size][size=14px][/size][size=14px] (4)气动减压阀可采用不同规格的气动圆顶加载压力调节器,可与各种精度和流量的电气比例阀组合实现不同规格轮胎硫化中任意设定温度的自动控制。[/size][size=14px][/size][size=14px] (5)先进的电气比例阀替代了传统的电气转换器(I/P和E/P),不再需要定期重新校准的繁复操作,不再需要仪表空气而只需加装气体过滤器即可,也不会不断排放空气减少压缩控制的浪费,重要的是控制精度可以达到任何设定点的±0.1%。[/size][size=14px][/size][size=14px] 总之,上述解决方案是目前大多数蒸汽温度控制技术的升级换代,可大幅提高轮胎硫化过程中蒸汽温度的控制精度和速度,此解决方案完全可以推广应用到其它蒸汽加热领域。[/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=14px][/size]

  • 电化学测量中的两回路

    1.极化回路:由辅助电极、研究电极和极化电源构成,它的作用是保证研究电极上发生我们所希望的极化,因此,此回路中有极化电流通过,其极化电流大小的控制和测量在此回路中进行。2.测量回路,由参比电极、研究电极和电位测量仪器构成,它的作用是测量或控制研究电极相对参比电极的电位。为了使电位测量与控制的精度高,下述几方面的问题是必须考虑的。首先:参比电极的电位必须稳定,而参比电极电位的稳定性除了它本身的性能外,严格地说不允许有电流通过参比电极,也就是说测量回路几乎没有电流通过(电流10-7A),其目的是使参比电极不致因电流过大而被极化,从而影响参比电极电位的稳定性。

  • 【原创】原子吸收石墨炉分析中光温控制技术原理介绍

    【原创】原子吸收石墨炉分析中光温控制技术原理介绍

    [color=#DC143C]近期、版面有版友问及关于石墨炉使用光温控制器的问题,故此写下小记,以满足有兴趣的版友需求。[/color]一、概 述:众所周之,[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计在分析某些高温元素或低含量元素时,使用石墨炉原子化器比火焰原子化器的灵敏度要高的多,故应用较为普遍。 目前仍有一部分商品仪器对于石墨炉升温还是采用单纯电流控制方式。即通过专用的石墨炉电源按照不同的升温阶段提供相应的恒定电流并流经石墨管后产生焦耳热,从而使石墨管中的样品里的待测元素被原子化后进行吸收测定。 但是上述的供电方式给石墨炉原子化器带来一些不可避免的问题。其中最主要的是:在原子化阶段,石墨管从灰化阶段的低温状态突然上升到原子化的高温状态需要一个平衡的时间过程,这是由石墨管的物理特性所决定的,由此便产生出一个“升温速率”的概念。 当石墨管温度很低时,升温速率V与电流强度I的平方成正比(V/I² )。升温速率的快慢不仅影响测试的灵敏度而且还影响石墨管的热性能。升温速率越快,石墨管到达热平衡状态就越早,则可保障待测元素绝大部分均被原子化,故灵敏度可得以提高。当升温速率减缓后,石墨管到达原子化的温度时间就被延长,从而致使一部分待测元素在还未被充分原子化之前就损失掉了(一般是被载气吹跑了,所以有的仪器在原子化阶段停止载气供给就是出于此原因),造成了测试灵敏度的下降。图-1就是石墨炉在采用恒流供电及光温控制技术的两种方式下,用同一浓度的铅样品各重复三次的测试结果比较;由此不难看出,使用光温控制技术的结果优于恒流控制。[img]http://ng1.17img.cn/bbsfiles/images/2008/09/200809181542_109307_1602290_3.jpg[/img] [B] [size=4] 图-1[/size][/B]由于一般石墨管采用的是恒电流供电方式,所以升温速率势必受到限制。如果采用光温控制技术则可以使升温速率得到很大的提高。[color=#DC143C]结 论:光温控制技术的实质就是提高升温速率的手段。[/color]二、光温控制技术的简单原理:(1)石墨管随着温度的改变其发出的光辐射的强度也随着改变;(2)让石墨管在仪器允许的范围从最低温度开始做连续加热升温直至最高允许温度,其发出的光辐射强度势必是连续递增的,即加热电流与光辐射强度(或温度)形成了一定的逻辑关系曲线。(3)用光导器件(一般是光导纤维和光敏二极管组成)将上述石墨管连续递增变化的光辐射信号实施连续跟踪采集并转化为电信号后传送到电脑中存储,也就是使电脑产生了一个加热电流与温度的比例关系的连续控制信号,并加以记忆,以实施对石墨炉的升温控制;这就组成了:石墨炉电源——石墨炉——光温控制器——石墨炉电源 这样一个闭环控制系统;如图-2所示:[img]http://ng1.17img.cn/bbsfiles/images/2008/09/200809181542_109308_1602290_3.jpg[/img] [B] [size=4][size=3]图-2[/size][/size][/B](4)在原子化阶段升温的开始瞬间,石墨炉电源不是按照常规的参数设定的恒流电流供电(如果是那样石墨管的升温速率仍是缓慢,即温度曲线上升沿仍然不陡直),而是提供了一个大大超越了预设的升温电流(基本处于饱和状态,参阅图-3右图); 根据前面所介绍的, “升温速率V与电流强度I的平方成正比 (V/I² )”这样一个理论为依据,石墨管的升温速率很快就提高了;当石墨管到达了预设的温度后,此时的光辐射被光温控制器立即检测到,并迅速反馈给电脑以达到控制石墨炉电源恢复到预先设计的恒流电流来维持升温的目的;这样一举两得、即提高了升温速率又保障了石墨炉的设置温度。图-3是石墨炉原子化升温时恒流控制与光温控制的比较示意图:[img]http://ng1.17img.cn/bbsfiles/images/2008/09/200809181543_109309_1602290_3.jpg[/img] [size=4][B] 图-3[/B][/size]三、使用光温控制技术的优点:(1)提高了检测的灵敏度(前面已经谈到);(2)提高了测试的重现性(因为原子化较为彻底);(3)减少了背景和基体的干扰(背景物质同样被彻底烧出);(4)延长了石墨管寿命(从图-3可以看出,由于使用了光温控制技术,使石墨炉升温速率得以提高,这样石墨炉有效原子化的时间比电流控制的有效时间要长;于是可以适当地减少原子化的时间,从而到达延长石墨管的寿命效果);四、使用光温控制技术的注意事项:(1)每次更换新石墨管后均要重新做光温曲线的校正,即第二段中的第(3)项。(2)更换不同类型的石墨管后,尤其要重新做光温校正。(3)平时注意光导器件的清洁,尤其是接收光束的传导窗口免于遭到污染,否则会影响到升温的误差,甚至不能执行光温控制之功能。(4)光温控制器调整分为手动和自动两种。旧式[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]一般是手动设置,其供电电流的翻转点的调整就很重要了,这个翻转点称为“阈值”,它的位置准确以否直接影响光控的效果;例如日立的老式[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url] 180-80、Z-8000等型号,均属于此类。目前市面上出售的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]仪器基本已经趋于自动化了。五、后 记:此文是参照日立[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]来写的,故只是侧重了光控原理,而没有过多涉及电路原理,其原因是可能与其他厂家的光路、电路设计方面有出入;但目前上市的商品[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url](进口仪器居多)基本都设计了光温控制系统,其原理大同小异。值得一提的是:目前许多[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]操作者对其原理不甚清楚,甚至舍弃此项功能而不用,甚为憾事。故、今做小记,以飨网友。

  • 电力监控系统在上海浦江双辉大厦的应用

    摘 要:介绍上海浦江双辉大厦配电系统及电能管理系统,采用智能电力仪表和微机保护采集配电现场的各种电参量和开关信号。系统组网的方式,组网后通过现场总线通讯并远传至后台,通过Acrel-3000型电力监控与电能管理系统实现建筑电力监控的能耗管理及Acrel-3000型系统所实现的功能,为楼宇电力监控与电能统计数据,为节能提供决策依据。关键词:浦江双辉;智能电力仪表 Acrel-3000型 电力监控系统0  概述  上海安科瑞电气股份有限公司于2009年8月承接了上海浦江双辉大厦的电力监控与电能管理系统,上海浦江双辉大厦位于浦东南路东侧,银城中路北侧,工程占地面积约24140 m2由两幢高度为208米塔楼组成,建成后将成为陆家嘴地区首座“双子楼”。  浦江双辉大厦监控部分有1个35kv配电室, 1#、2#、3#、4#、5#5个配电室分10kv高压和0.4kv低压。35kv配电室有高压电力仪表、综保和2台变压器温控仪,另外5个配电室有10kv高压电力仪表和综保,0.4kv低压部分有电力仪表和22台变压器温控仪。35kv和1#配电室分布在A栋的B2层,2#配电室分布在B栋的B2层,3#配电室分布在A栋的33楼,4#配电室分布在B栋的33楼,5#配电室分布在A栋的B4层。针对浦江双辉大厦的实际情况,通过计算机和通讯网络,将分散的配电所的现场设备连接为一个有机的整体,实现电网设备运行的远程监控和集中管理。  设计的电力监控与电能管理系统具备全电参量测量、开关量状态监测以及电能计量与电能质量管理等功能。设计中充分体现系统的可用性、先进性、方便性、安全性、可靠性、可扩展性及系统性价比的合理性。1  项目立项的意义  浦江双辉大厦对高压部分电力参数的监控和变压器三相温度的监测的要求比较高,值班室人员一天要6次巡查变压器温控仪的温度和一些电力参数且变压器分布于6个不同的变电所里。这样费时费力又不能实时的反应一些紧急状况。低压部分由600左右的回路组成,如果要抄电能那是一个不小的任务。使用该系统能够带来如下优点:  1)像浦江双辉这样的仪表分布的比较散,没有电力监控和电能管理系统之前只能通过人力去跑上跑下的去抄表,查看电力参量,这样对于抄表人员来说是个费时费力,而且也不能及时的掌握第一手信息。使用系统后后台值班监控人员只需在值班室就能实时准确的监控到每个表的运行情况,和表所测量的各个电参量,实时的进行抄表,省时省力,快速及时的掌握用电情况。  2) 对于浦江双辉在一些主要回路上的电力仪表根据监控系统,可以实时的监控它们的运行情况,如电压、电流、有功,无功,功率因数等,系统可以对它们进行设置一个预警值,只要回路上的电参量达到或接近时系统就会对值班人员进行报警,比如发现一些短路问题,电流过大等,就使得值班人员可以及时的去解决问题如关闭或安排专业人员去修。  3)系统有对历史数据的对比分析,这样方便管理人员发现其中的问题实施一些有针对性的方案,如一些电参量突然变化的表,就要去看它是否正常工作或实际是否是这样,这样可以及时发现潜在故障,减少设备维护费用,延长设备使用寿命;提高运行管理效率,减少运行维护人员工作量。  4)通过数据分析,使管理者合理有效地利用设备,减少不必要设备添置,避免了资源浪费,精简值班人员数,及时发现电能消耗异常现象,采取有效措施进行设备改造或补偿,以避免电能损耗,这样下来节约大量资金。通过对资源的充分利用,强调高效率、低能耗、低污染,达到节约能源、保护环境的可持续发展的目标。  5)系统可以直观而形象的反映出在哪个位置的哪个表的电力参数,方便技术人员分辨出来,简洁明了的操作界面让操作人员方便操作。  6)通过实时监控可以使值班人员及时发现问题及时处理问题,如在不需要用电的时间地点时可以不用电,智能电力仪表的电力参数不稳定时可以不用等情况,这样一来可以减少用电量,节约成本。  7)系统具有曲线、报表分析,曲线、报表打印功能,这样管理者在进行分析决策时就有了依据。  8)该系统具有良好的开放性,可以方便的与大厦中中其他相关系统和智能装置进行通信,如:楼宇自控系统(BAS)和火灾自动报警系统等,实现自动化系统间相互通讯和信息共享。2  项目的设计方案  上海安科瑞电气股份有限公司为浦江双辉项目设计的电力监控及电能管理系统采用分层分布式结构,由站控管理层、网络通讯层和现场设备层组成。  现场设备层主要的设备为:多功能电力仪表、微机保护装置、变压器温控仪。这些装置分别对应相应的一次设备安装在电气柜内,这些装置均采用RS485通讯接口,通过现场屏蔽双绞线进行组网通讯,实现数据现场采集。  网络通讯层主要为:通讯服务器,其主要功能为采集现场设备层中的仪表数据,同时远传至站控层,完成现场层和站控层之间的数据交互。  站控管理层:设有高性能工业计算机、显示器、UPS电源、打印机等设备。监控系统安装在计算机上,集中采集显示现场设备运行状况,以人机交互的形式显示给用户。  各智能电力仪表通过屏蔽双绞线RS485接口,采用MODBUS通讯协议总线型连接接入通讯服务器。然后35kv配电室、1#配电室高低压部分和5#配电室高低压部分通过网线直接与值班室的工业交换机相连, 3#高低压部分通过光缆直接与值班室的工业交换机相连,4#高低压部分通过光缆先连到2#配电室,再和2#高低压部分一起通过光缆一起连到值班室的工业交换机。最后工业交换机通过网3  系统实现的的过程  实现系统的过程:首先通过数据量的采集把我们需要的数据量保存到我们的历史和实时数据库,在我们系统上把需要实时显示的数据量在界面上实时刷新的显示出来;需要查询和分析过去的历史记录的数据,通过我的各种查询报表和分析曲线等一些形象的界面反应给值班人员;系统中设置报警,把一些重要的操作量动作时和一些重要数据量异常时进行报警;系统中设置针对值班室内不同级别的用户,设置不同的权限来进行操作管理,防止因人为误操作或人为破坏给生产带来的损失,实现配电系统的安全,可靠运行。  这样下来我们的系统就完成了,下图为1#配电室变压器温度信息及状态表。4  项目实施后的综合分析  浦江双辉项目在施工调试中,发现了一些问题,如:在调试综保过程中发现几只综保的一些开关量和实际情况不符,反应了安装过程中接线有问题;在低压部分,后台监控时一部分仪表合闸了且有电流,但这些表是分闸的,去现场查看时在仪表上的显示灯也是分闸的,反应了安装过程中的问题;在低压部分有些仪表的有功功率等一些电参量为负,反应了接线问题。故通过我们在系统调试这个项目600多个智能仪表通讯时,我们可以帮助电力值班人员快速及时准确的发现这些仪表是否安装正确 ,显示的值是否准确。在调试过程中帮助用户检验了他们所采购的设备的完好和安装正确性。  系统的完成,让电力值班人员的抄表任务轻松了,节约了抄表时间,提高了抄表积极性。5  结束语  Acrel-3000电力监控系统及电能管理系统具有实用性、安全性、系统的实时性、稳定性、可扩展性、易维护性。随着计算机信息技术的普及,低压配电智能化的要求也越来越高,变配电监控及低压配电管理使得实现配电室的无人职守真正成为现实。该系统在浦江双辉大厦的应用,实现了在值班室远程监控了6个配电室的各种通讯仪表,对采集的数据进行显示,处理,并生成报表、图形、曲线等,便于值班人员的分析与定时查询所需要的数据。参考文献: 任致程 周中.电力电测数字仪表原理与应用指南. 北京. 中国电力出版社. 2007. 4

  • 【分享】回路校验仪的特征及功能简介

    回路校验仪是专门为毫安回路提供校准、检验、故障诊断等完整便捷的解决方案的手持便携式仪器。回路校验仪具有小巧、坚固、可靠,便于携带和手持的特征,具有“三高”即高精度、高分辨率、高可靠性的特征。回路校验仪是对电流回路进行校准、维修和维护的,高性能解决方案,新型的快速感应旋钮使其非常快速、易用、长寿命。 回路校验仪输出采用全数字输入方式,操作简单,并有中文提示,测量时可选择最小、最大、平均、保持和相对测量模式。回路校验仪可以输出电流给变送器及其他设备,也可以仿真一个变送器输出电流独有功能,测量电压,通过已设定的负载电阻,自动算出回路电流。回路校验仪方便了测量,不必断开线路,保证了回路的安全,对整个测量过程对负载电流几乎没有影响,能够自动量程转换、量程宽,可有效提高精度。 回路校验仪可模拟变送器的输出、可进行开关的通和断测量、可测量交直流电压、电阻、频率、毫伏、交直流电流、二极管,特别适合现场过程回路的校验、维修和故障诊断。回路校验仪可它广泛应用于石油化工、冶金、电厂、轻工、建材、环保等领域。

  • 跪求石墨炉消解最佳温控程序

    我是做玩具测试的,主要是做无机,重金属的前处理工作。最近我们实验室刚刚新进了一台国产的石墨炉回来。但是却没有任何作业指导书之类的文件。所以为了避免打广告,就不鄙视那台仪器的生产商了。有哪位高人可以指点迷津,告诉下关于玩具测试的温控程序、、、拜谢~~~~~~

  • 【求助】纯化水循环回路电导率变大的原因?

    我单位纯化水循环回路,有时用户不用水,回路循环中发现电导率为:[color=black][font=新宋体]控制值[/font][/color][font=新宋体]≤[/font][font=新宋体]3 µ S/cm,实际会升高到[color=black][font=新宋体]控制值 [/font][/color][font=新宋体]6[/font][font=新宋体] µ S/cm,不知道何原因? [/font][/font]

  • 美国NIH披露脑计划细节:绘制人脑复杂神经回路

    来源:中国科学报作者:段 歆涔字体大小: http://img.dxycdn.com/cms/upload/userfiles/image/2014/01/02/263371581_small.jpg针对BRAIN项目的NIH拨款申请将于2014年3月到期。图片来源:Wikimedia Commons在近一年的会议商讨和公开辩论后,美国国立卫生研究院(NIH)日前宣布了分配《使用先进革新型神经技术的人脑研究(BRAIN)倡议》资金的方案,这笔1.1亿美元的拨款旨在启动新技术的研发,绘制出人脑庞大而复杂的神经回路。简而言之,BRAIN计划着眼于一些宏观的理念,诸如研究大脑的所有 细胞,尽管目前可供完成该目标的数据少之又少。根据9月科学顾问委员会的报告,NIH呼吁六个“高优先级”研究领域提出拨款申请。美国国家神经疾病和中风研究所主任Story Landis说,NIH承诺在未来三年里每年向这些领域投入4000万美元。“我们希望这项额外的资金能成为现实。但很显然,这取决于我们的预算有多 少。”资金汇聚的六大领域主要包括,对理解神经元如何共同产生大脑行为有基本作用的新技术和方法的测试与发展。例如,将不同类型的脑细胞进行分类,并弄清它们如何在特定的神经回路中发挥作用。NIH将焦点放在创新上,这意味着大多数资金申请人不需要为自己的建议书提供初始数据,这和以往的常规方法有很大不同。Landis说,以往的方式吓跑了很多科学家和评审员,新方式为真正有创新性的想法提供了更大的空间和希望。NIH还公布了所有针对BRAIN计划申请资金的要求,它们包括:针对大脑不同类型的细胞开创性的分类方法,目标是在大脑中创造一个囊括所有细胞的 “汇总”;发展遗传性和非遗传性工具分析更敏感、精确、细致的大脑回路;发展能记录和控制大脑中大量神经元的新技术;将现有记录和控制神经元的技术应用到 更大规模的层面;成立跨学科团队研究神经回路活动如何在特定的行为或神经系统中发挥作用;成立包括成像科学家、工程师、材料科学家、纳米技术专家和计算机 科学家在内的团队以研发针对人脑的新一代非侵入性成像技术。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制