当前位置: 仪器信息网 > 行业主题 > >

双向精密自准直仪原理

仪器信息网双向精密自准直仪原理专题为您提供2024年最新双向精密自准直仪原理价格报价、厂家品牌的相关信息, 包括双向精密自准直仪原理参数、型号等,不管是国产,还是进口品牌的双向精密自准直仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合双向精密自准直仪原理相关的耗材配件、试剂标物,还有双向精密自准直仪原理相关的最新资讯、资料,以及双向精密自准直仪原理相关的解决方案。

双向精密自准直仪原理相关的论坛

  • 循环肿瘤细胞(CTCs)检测分选进样系统微小正负压精密控制的解决方案

    循环肿瘤细胞(CTCs)检测分选进样系统微小正负压精密控制的解决方案

    [align=center][img=压力驱动分选进样系统,690,371]https://ng1.17img.cn/bbsfiles/images/2022/06/202206231002395286_2664_3384_3.png!w690x371.jpg[/img][/align][color=#000099]摘要:在循环肿瘤细胞等细胞分选进样系统中,需要在一个标准大气压附近很小的正负压范围对压力进行精密控制,这就对控制方法、气体流量调节阀、压力传感器和控制器提出了更高的要求。本文将针对这些技术问题,提出高精度正负压精密控制解决方案,并详细介绍控制方法和其中软硬件的功能和技术指标,由此可实现0.5%的控制精度。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#000099]一、问题的提出[/color][/size]循环肿瘤细胞(Circulating Tumor Cells,CTC)分选已被认为是癌症诊断和预后的有效工具,要求相应的检测装置能够执行所有实验过程而无需任何人工干预的自动、快速且灵敏。对于一些基于压力驱动液体流动原理的进样系统,要求通过精确控制气体的压力, 确保进样过程中流量稳定并实现自动反馈调节,并需要气压供应装置提供正压和负压以使检测装置中的泵及阀门动作。但在目前的CTC检测装置进样系统中,气压的精密控制还存在以下几方面的问题需要解决:(1)现有的气压供应装置无法提供微小的气压,常会导致泵的薄膜破损而无法使用,且现有的气压供应装置亦无法提供常压,使泵的薄膜在检测过程中无法回到平坦状态,造成细胞破损,故需要有可以提供微气压及常压至检测装置的气压供应装置。为了解决此问题,给微流道芯片提供正压、负压或常压,专利CN 216499436U“气压供应装置”中提出了一种非常复杂的概念性解决方案,标称正压气体的压力大小调节至 1~6psi,负压气体的压力大小调节至?1~6psi,正负压微调节阀可以精密至±0 .01psi。但这些指标恰恰是微压力调节阀的关键,如果没有能达到这种技术指标的调节阀,所述方案根本无法实现。(2)上海理工大学王固兵等人在2020年发表的“基于气压驱动的循环肿瘤细胞分选进样系统的设计与实现“一文中,提出了一种采用德国tecno PS120000 比例电磁阀的技术方案。但这种工业用比例阀主要是用于高压气体的压力控制,口径也较大,控制精度显然不能满足微小正负压的精密控制,而且无法外接高精度压力传感器来提升控制精度,根本无法实现文中提出的达到压力输出精度为1mbar(0.015psi)的指标,相对于1bar大气压这相当于达到0.1%的控制精度,这个指标显然不切合实际。从上述报道可以看出,细胞分选进样系统的压力控制需要在一个标准大气压附近很小的正负压范围对真空压力进行精密控制,这就对控制方法、气体流量调节阀、压力传感器和控制器提出了更高的要求。本文将针对这些技术问题,提出高精度正负压精密控制解决方案,并详细介绍控制方法和其中软硬件的功能和技术指标,由此可实现0.5%的控制精度。[size=18px][color=#000099]二、解决方案[/color][/size]本文所提出的解决方案是实现在一个标准大气压附近±10psi(或±700mbar)范围内的正负压精密控制,控制精度达到0.5%。即提供一个可控气压源解决方案,采用双向控制模式的动态平衡法,结合高精度步进电机和微小流量电动针阀、高精度压力传感器和双通道PID控制器,气压源可进行高精度的正压、负压和一个大气压的可编程输出。微小正负压精密控制的基本原理如图1所示,具体内容为:[align=center][img=气压驱动分选进样系统,690,377]https://ng1.17img.cn/bbsfiles/images/2022/06/202206231005336655_4666_3384_3.png!w690x377.jpg[/img][/align][align=center]图1 微小正负压精密控制原理框图[/align](1)控制原理基于密闭空腔进气和出气的动态平衡法。这是一个典型闭环控制回路,2通道PID控制器采集真空压力传感器信号并与设定值进行比较,然后调节进气和抽气调节阀的开度,最终使传感器测量值与设定值相等而实现真空压力的准确控制。(2)控制回路分别配备了抽气泵(负压源)和气源(正压源),以提供足够的负压和正压能力。(3)为了覆盖负压到正压的所要求的真空压力范围(如-10psi至+10psi),配置一个测试量程覆盖要求范围内的高精度绝对压力传感器,绝对压力传感器对应上述真空压力范围输出数值从小到大的直流模拟信号(如0~10VDC)。此模拟信号输入给PID控制器,由PID控制器调节进气阀和排气阀的开度而实现压力精确控制。采用绝对压力传感器的优势是不受当地大气气压变化的影响,无需采取气压修正,更能保证测试的准确性和重复性。(4)当控制是从负压到正压进行变化时,一开始的进气调节阀开度(进气流量)要远小于抽气调节阀开度(抽气流量),通过自动调节进出气流量达到不同的平衡状态来实现不同的负压控制,最终进气调节阀开度逐渐要远大于抽气调节阀开度,由此实现负压到正压范围内一系列设定点或斜线的连续精密控制。对于从正压到负压压的变化控制,上述过程正好相反。[size=18px][color=#000099]三、方案具体内容[/color][/size]解决方案中所涉及的微小正负压力发生器的具体结构如图2所示,主要包括高压气源、电动针阀、密闭空腔、压力传感器、高精度PID控制器和抽气泵。[align=center][img=气压驱动分选进样系统,690,465]https://ng1.17img.cn/bbsfiles/images/2022/06/202206231006045409_5247_3384_3.png!w690x465.jpg[/img][/align][align=center]图2 微小正负压精密控制的压力发生器结构示意图[/align]在图2所示的微小正负压控制系统中,密闭空腔上的工作压力出口连接检测仪器,密闭空腔左右安装两个NCNV系列的步进电机电动针阀,此电动针阀本身就是正负压两用调节阀,其绝对真空压力范围为0.0001mbar~7bar,最大流量为40mL/min,步进电机单步长为12.7微米,完全能满足小空腔的正负压精密控制。在图2所示的控制系统中使用了两个电动针阀来实现正负压任意设定点的精确控制,也可以从正压到负压的压力线性变化控制,也可以从负压到正压的压力线性变化控制。对于循环肿瘤细胞(CTCs)检测仪器进样系统中的微小正负压控制,要求是在标准大气压附近的真空压力精确控制,如控制精度为±0.5%甚至更小,一般都需要采用调节抽气阀的双向动态模式,即通过双通道PID控制器,一个通道用来恒定进气口处电动针阀的开度基本不变,另一个通道根据PID算法来调节排气口处的电动针阀开度。除了上述恒定进气流量调节抽气流量的控制方法之外,循环肿瘤细胞(CTCs)检测仪器进样系统中的微小正负压的控制精度,主要由压力传感器、PID控制器和电动针阀的精度决定。本方案中的PID控制器采用的是24位AD和16位的DA,电动针阀则是高精度步进电机,因此本解决方案的测试精度主要取决于压力传感器精度,一般至少要选择0.1%精度的压力传感器。对于进样系统中的微小压力控制,往往会要求密闭容器在正负压范围内进行多次往复变化,因此采用了可存储多个编辑程序的PID控制器,设定程度是一条多个折线段构成的曲线,由此可实现正负压往复变化的自动程序控制。在本文所述的解决方案中,为实现正负压的精密控制,如图2所示,针对负压的形成配置了抽气泵。抽气泵相当于一个负压源,但采用真空发生器同样可以达到负压源的效果,负压源采用真空发生器的优点是整个系统只需配备一个高压气源,减少了整个系统的造价、体积和重量,真空发生器连接高压气源即可达到相同的抽气效果。[size=18px][color=#000099]四、总结[/color][/size]本文所述解决方案,完全可以实现循环肿瘤细胞(CTCs)检测仪器进样系统中微小正负压的任意设定点和连续程序形式的精密控制,并且可以达到很高的控制精度和速度,全程自动化。本方案除了微小正负压的自动精密控制之外,另外一个特点是系统简单,正负压控制范围也可以比较宽泛,整个系统小巧和集成化,便于形成小型化的检测仪器。本文解决方案的技术成熟度很高,方案中所涉及的电动针阀和PID控制器,都是目前上海依阳实业有限公司特有的标准产品,其他的压力传感器、抽气泵、真空发生器和高压气源等也是目前市场上常见的标准产品。本文所述解决方案,同样可以适用于各种其他基于气压驱动的微流控进样系统。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 真空压力精密控制技术在阶梯光栅光谱仪中的应用

    真空压力精密控制技术在阶梯光栅光谱仪中的应用

    [color=#990000]摘要:为了实现阶梯光栅光谱仪的高精度测量,要在全过程中对温度和压力进行长时间的精密恒定控制。本文将针对阶梯光栅光谱仪中压力的精密控制,介绍压力的自动化控制技术,并详细介绍了具体实施方案,其中特别介绍了控制效果更好的双向控制模式。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]一、问题提示[/color][/size] 阶梯光栅光谱仪作为一种全谱直读的光谱仪器广泛应用于天文、地矿、化工、冶金、医药、环保、农业、食品卫生、生化、商检和国防等诸多领域,但阶梯光谱仪的灵敏度会受到环境温度和压力的严重影响,因此阶梯光谱仪普遍要求对工作温度和压力进行精密控制,特别是压力控制要求达到很高精度,如果控制精度不够,则会带来以下几方面的影响: (1)压力波动会使得阶梯光谱仪内的气体折射率发生改变。 (2)压力波动也会造成光谱仪内外压差不同而造成光谱仪光路(特别是光学窗口处)的微小变形。同时,温度变化也会直接造成气压随之改变。 总之,为了实现阶梯光栅光谱仪的高精度测量,要在全过程中对温度和压力进行长时间的精密恒定控制。本文将针对阶梯光栅光谱仪中压力的精密控制,介绍压力的自动化控制技术,并详细介绍了具体实施方案。[size=18px][color=#990000]二、实施方案[/color][/size] 阶梯光栅光谱仪的压力控制系统结构如图所示。在具体实施过程中,需要根据具体情况需要注意以下几方面的内容:[align=center][color=#990000][img=阶梯光谱仪压力控制,550,355]https://ng1.17img.cn/bbsfiles/images/2022/01/202201211541151559_1872_3384_3.png!w690x446.jpg[/img][/color][/align][align=center][color=#990000]阶梯光栅光谱仪压力控制系统示意图[/color][/align] (1)阶梯光谱仪的工作压力一般在一个大气压760torr附近,因此要选择在此压力下测量精度能满足设计要求的压力传感器。 (2)压力自动控制采用24位高精度PID控制器,如果24位测量精度还是无法匹配压力传感器精度,则需要更高精度控制器。 (3)压力控制采用双向模式,即同时调节进气和出气流量,但对于一个大气压附近的压力控制,一般是固定进气流量后自动调节排气流量实现压力恒定控制。 (4)针对不同尺寸的阶梯光谱仪工作腔室大小,需选择不同的出气流量控制阀。对于大尺寸空间工作室,出气流量控制可选用出气口径较大的电动球阀;而对于小尺寸空间工作室,出气流量控制则需要选择出气口径较小和更精密的电动针阀。抽气用的真空泵也是如此。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 气密真空冷热台的真空度精密控制

    气密真空冷热台的真空度精密控制

    [align=center][img=冷热台真空度控制,690,451]https://ng1.17img.cn/bbsfiles/images/2022/03/202203071147131858_3924_3384_3.png!w690x451.jpg[/img][/align][color=#990000]摘要:针对气密真空冷热台目前存在的真空度控制精度差和配套控制系统价格昂贵的问题,本文介绍采用国产产品的解决方案,介绍了采用数控针阀进行上游和下游双向控制模式的详细实施过程。此方案已经得到了应用和验证,可实现宽范围内的真空度精密控制,真空度波动可控制在±1%以内,整个控制系统具有很高的性价比。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]一、问题的提出[/color][/size]气密真空冷热台是同时可用于真空和气密环境的精密温控冷热平台,具有加热和制冷功能,适合显微镜和光谱仪等应用对样品在可控的真空度环境下进行精确加热或制冷。根据用户要求,针对目前的各种气密真空冷热台,在真空度控制方面,还需要解决以下几方面的问题:(1)无论是进口还是国产真空冷热台,真空度测量和控制还采用皮拉尼真空计,使得配套的控制系统无法实现真空度的精密控制,如无法满足研究和模拟冷冻干燥过程的精度要求。(2)气密真空冷热台普遍体积较小,在宽泛的真空度范围内,实现精确控制一直存在较大难度,真空度的波动性较大,而真空度的波动性又反过来影响温度的稳定性。(3)进口配套的真空度控制系统,不仅控制精度达不到要求,而且价格昂贵。针对气密真空冷热台存在的上述问题,本文将介绍采用国产产品并具有高性价比的解决方案,并介绍了详细的实施过程。[size=18px][color=#990000]二、解决方案[/color][/size]气密真空冷热台真空度精密控制系统的整体结构如图1所示,整个系统主要包括真空计、数控针阀、PID控制器和真空泵。[align=center][color=#990000][img=冷热台真空度控制,690,396]https://ng1.17img.cn/bbsfiles/images/2022/03/202203071148328248_6901_3384_3.png!w690x396.jpg[/img][/color][/align][align=center][color=#990000]图1 冷热台真空度精密控制系统结构示意图[/color][/align]为提高真空度测控精度,采用了测量精度更高(可达满量程0.2%)的电容式真空计,可覆盖0.01~760Torr的真空度区间。如果需要更高真空度环境,也可以同时采用皮拉尼真空计进行测控。为实现全宽量的真空度控制,将两只数控针阀分别安装在冷热台的进气口和排气口。通过分别采用上游和下游控制模式,可实现全量程波动率小于±1%的精密控制。控制器是精密控制的关键,方案中采用了24位A/D和16位D/A的高精度PID控制器,独立的双通道便于进行上游和下游气体流量调节和控制。总之,通过此经过验证的真空度控制方案,可实现高性价比的精密控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 显微镜冷热台真空度的精密控制

    显微镜冷热台真空度的精密控制

    [align=center][img=真空冷热台,500,326]https://ng1.17img.cn/bbsfiles/images/2022/03/202203060829340674_8408_3384_3.png!w690x451.jpg[/img][/align]摘要:针对气密真空冷热台目前存在的真空度控制精度差和配套控制系统价格昂贵的问题,本文介绍采用国产产品的解决方案,介绍了采用数控针阀进行上游和下游双向控制模式的详细实施过程。此方案已经得到了应用和验证,可实现宽范围内的真空度精密控制,真空度波动可控制在±1%以内,整个控制系统具有很高的性价比。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px]一、问题的提出[/size]气密真空冷热台是同时可用于真空和气密环境的精密温控冷热平台,具有加热和制冷功能,适合显微镜和光谱仪等应用对样品在可控的真空度环境下进行精确加热或制冷。根据用户要求,针对目前的各种气密真空冷热台,在真空度控制方面,还需要解决以下几方面的问题:(1)无论是进口还是国产真空冷热台,真空度测量和控制还采用皮拉尼真空计,使得配套的控制系统无法实现真空度的精密控制,如无法满足研究和模拟冷冻干燥过程的精度要求。(2)气密真空冷热台普遍体积较小,在宽泛的真空度范围内,实现精确控制一直存在较大难度,真空度的波动性较大,而真空度的波动性又反过来影响温度的稳定性。(3)进口配套的真空度控制系统,不仅控制精度达不到要求,而且价格昂贵。针对气密真空冷热台存在的上述问题,本文将介绍采用国产产品并具有高性价比的解决方案,并介绍了详细的实施过程。[size=18px]二、解决方案[/size]气密真空冷热台真空度精密控制系统的整体结构如图1所示,整个系统主要包括真空计、数控针阀、PID控制器和真空泵。[align=center][img=真空冷热台,690,396]https://ng1.17img.cn/bbsfiles/images/2022/03/202203060828037872_2582_3384_3.png!w690x396.jpg[/img][/align][align=center]图1 冷热台真空度精密控制系统结构示意图[/align]为提高真空度测控精度,采用了测量精度更高(可达满量程0.2%)的电容式真空计,可覆盖0.01~760Torr的真空度区间。如果需要更高真空度环境,也可以同时采用皮拉尼真空计进行测控。为实现全宽量的真空度控制,将两只数控针阀分别安装在冷热台的进气口和排气口。通过分别采用上游和下游控制模式,可实现全量程波动率小于±1%的精密控制。控制器是精密控制的关键,方案中采用了24位A/D和16位D/A的高精度PID控制器,独立的双通道便于进行上游和下游气体流量调节和控制。总之,通过此经过验证的真空度控制方案,可实现高性价比的精密控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【分享】一级精密露点仪标准装置的测量不确定度的评定

    一级精密露点仪标准装置主要用于检定二级标准和工作用露点仪、工作用湿度仪表等。下面就以一级标准精密露点仪检定二级标准精密露点仪为例进行不确定度的评定。 一级精密露点仪标准湿度装置由一级标准精密露点仪及二级分流法动态湿度发生器构成。一级标准精密露点仪作为标准器与被检露点仪一起并联在动态湿度发生器的提供的恒湿气路中,用比较法对被检露点仪进行检定。1.建立数学模型用一级标准精密露点仪检定二级标准精密露点仪,给出二级标准精密露点仪修正值的计算公式为:http://www.chinashidu.com.cn/pic/gif/1157380172.gif式中: d——被检露点仪的修正值; Ts——标准器的露点显示值; ds——标准器在该露点温度上的分度修正值(由标准器的检定证书给出); Tb——被检露点仪的显示值; △d1——由于检定湿度点不可能完全控制在标准露点仪证书给出的露点上,在使用标准露点仪的分度修正值时有一定偏差,对修正值测量造成的影响;△T1——由于从湿度发生器到标准露点仪和被检露点仪气路不同,气密性和管子的渗透作用不同使两者气流湿度产生差异,对修正值测量造成的影响;△T2——动态湿度发生器产生的恒湿气流有一定的波动度,而湿度标准器及被检露点仪不能在同一瞬间读数,同时由于它们的湿度响应特性也不同,对测量造成的影响。

  • 呼吸阀在线检验装置中的正负压连续精密控制解决方案

    呼吸阀在线检验装置中的正负压连续精密控制解决方案

    [size=14px][color=#ff0000]摘要:本文针对目前国内呼吸阀在线检验装置中存在的正负压连续校准自动化能力差等问题,详细介绍呼吸阀检验过程中正负压连续精密控制的解决方案,并详细介绍其中的各种调节阀和控制器配置,由此可实现各种规格尺寸呼吸阀在连续正负压条件下的全自动化检验。[/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]一、问题的提出[/color][/size][size=14px]呼吸阀是指既保证密闭容器和贮罐空间在一定压力范围内与大气隔绝、又能在超过或低于此压力范围时与大[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]通(呼吸)的一种阀门。其作用是防止容器和贮罐因超压或真空导致破坏,同时可减少贮液的蒸发损失。[/size][size=14px]呼吸阀作为石油、化工、燃气行业常压储罐的重要附件,对安全生产及环保等都起着至关重要的作用,对运输危险物品罐式车辆的年检中对呼吸阀的检验也是其中重要一环,对于保有量大的呼吸阀在线检测装置及方法提出了越来越高的要求,需要免拆装、方便、快捷、高效的呼吸阀在线检测装置及方法。目前在用的各种呼吸阀检验装置还存在以下问题:[/size][size=14px](1)现有方法中,一般都是现场安装一块压力表,仅能在正压条件下测量阀门的密封性能和正压开启值,无法确定阀门负压开启功能是否完好,这对于埋地油罐运行存在安全风险。[/size][size=14px](2)为安全起见,呼吸阀的呼吸与泄放压力范围较小,如-30.0Kpa至+50Kpa,常规检测装置难以在高精度条件下完成检验和校准。[/size][size=14px](3)呼吸阀的规格种类很多,口径不一,通经范围一般为DN20~DN300mm,现有的呼吸阀检测校准装置很难覆盖如此宽泛的呼吸阀。[/size][size=14px](4)目前已有的呼吸阀校验装置自动化水平较低,正负压不能连续自动精密控制,很多装置现场调压依靠人的经验,容易发生超压,损坏设备,严重时对油罐的运行安全造成影响;此外,很多测试记录依靠人工填写,容易出错,不利于归档保存。[/size][size=14px]本文将针对上述国内目前呼吸阀在线检验装置中存在的问题,详细介绍呼吸阀检验过程中正负压连续精密控制的解决方案,并详细介绍其中的各种调节阀和控制器配置,由此可实现各种规格尺寸呼吸阀在连续正负压条件下的全自动化检验。[/size][size=18px][color=#ff0000]二、解决方案[/color][/size][size=14px]呼吸阀的检验校准原理是完全模拟呼吸阀的真空压力使用工况,在呼吸阀的测量端口处准确模拟出相应的正压和负压,同时监测呼吸阀动作时所处的真空压力值。多次重复此测试过程,由此来检验和校准呼吸阀。[/size][size=14px]为实现呼吸阀的全自动化检验,最好使正负压的模拟变化是一连续精密可控的往返过程,如在-30.0Kpa至+50Kpa真空压力范围内,从负压至正压,再从正压至负压,如此自动循环往复,由此可得到呼吸阀重复性检验结果。另外,呼吸阀的检验装置能满足各种规格尺寸呼吸阀的检验需要和精度要求。根据此设计要求,本文提出的解决方案基本原理如图1所示。[/size][align=center][size=14px][img=呼吸阀正负压控制,550,344]https://ng1.17img.cn/bbsfiles/images/2022/06/202206201647139497_1994_3384_3.png!w690x432.jpg[/img][/size][/align][size=14px][/size][align=center]图1 呼吸阀检验装置正负压控制系统原理示意图[/align][size=14px]呼吸阀正负压精密连续控制的基本原理具体内容为:[/size][size=14px](1)控制原理基于密闭容器进气和出去的动态平衡法,这是一个典型的闭环控制回路。 PID控制器采集真空压力传感器信号并与设定值进行比较并调节进气和抽气调节阀的开度,最终使传感器测量值与设定值相等而实现真空压力的准确控制。[/size][size=14px](2)控制回路分别配备了真空泵(负压源)和气源(正压源),以提供足够的低压和高压能力。[/size][size=14px](3)为了覆盖负压到正压的整个真空压力范围(如-30.0Kpa至+50Kpa),可以配置一个测试量程在要求范围内的高精度绝对压力传感器,绝对压力传感器对应上述真空压力范围输出数值从小到大的直流模拟信号(如0~10VDC)。此模拟信号输入给PID控制器,由PID控制器调节进气阀和排气阀的开度而实现压力精确控制。采用绝对压力传感器的优势是不受当地大气气压变化的影响,也不用采取气压修正,更能保证检验的准确性。[/size][size=14px](4)当控制是从负压到正压进行变化时,一开始的进气调节阀开度(进气流量)要远小于抽气调节阀开度(抽气流量),通过自动调节进出气流量达到不同的平衡状态来实现不同的负压控制,最终进气调节阀开度逐渐要远大于抽气调节阀开度,由此实现负压到正压范围内一系列设定点或斜线的连续精密控制。对于从正压到负压压的变化控制,上述过程正好相反。[/size][size=18px][color=#ff0000]三、方案具体内容[/color][/size][size=14px]本文方案的具体实施内容如图2所示,主要包括高压气源、电动针阀、密闭容器或管路、压力传感器、高精度PID控制器和真空泵或真空发生器几个部分。[/size][align=center][size=14px][img=呼吸阀正负压控制,550,392]https://ng1.17img.cn/bbsfiles/images/2022/06/202206201647374707_7821_3384_3.png!w690x492.jpg[/img][/size][/align][size=14px][/size][align=center]图2 呼吸阀在线检验校准装置正负压控制系统结构示意图[/align][size=14px]在图2所示的控制系统中,密闭容器或管路可以直接采用现场容器和管理,也可以采用独立的密闭容器或管路并安装上被检呼吸阀。独立的密闭容器尺寸以满足最大口径呼吸阀为准,由此同时可用来进行其他小口径呼吸阀的检验校准。[/size][size=14px]正负压精密控制采用了两个NCNV系列的电动针阀,此电动针阀本身就是正负压两用调节阀,其绝对真空压力范围为0.01Pa~0.7MPa,完全能满足绝大多数呼吸阀的正负压检验要求。[/size][size=14px]在图2所示的控制系统中使用了两个电动针阀来实现正负压的连续调节和控制,如可以从正压到负压的压力线性变化控制,也可以从负压到正压的压力线性变化控制。如果在真空压力线性变化过程中,呼吸阀的反应动作都会在压力控制曲线上产生突变而得到体现,由此可根据突变点位置自动判断出呼吸阀是否满足使用要求。[/size][size=14px]对于很多在用的呼吸阀,其工作压力基本都在一个标准大气压附近。对于标准大气压附近的真空压力精确控制,如控制精度为±1%甚至更小,一般都需要采用调节抽气阀的双向动态模式,即通过双通道PID控制器,一个通道用来恒定进气口处电动针阀的开度基本不变,另一个通道根据PID算法来调节排气口处的电动针阀开度。[/size][size=14px]呼吸阀检验校准过程中的正负压控制精度,主要由压力传感器、PID控制器和电动针阀的精度决定。其中的PID控制器采用的是24位AD和16位的DA,电动针阀则是高精度步进电机,因此此解决方案的测试精度主要取决于压力传感器精度。压力传感器可根据呼吸阀检验校准要求进行选择。[/size][size=14px]对于呼吸阀的检验校准,要实现密闭容器内正负压范围内的多次往复变化,可以在PID控制器中进行程序设定,设定程度是一条从正压到负压(或负压到正压)的斜线以及重复次数,由此可实现正负压往复变化的自动控制。[/size][size=14px]在本文所述的解决方案中,为实现正负压的精密控制,如图2所示,针对负压的形成配置了真空泵。真空泵相当于一个负压源,但采用真空发生器同样可以达到负压源的效果,因此图2中也给出了真空发射器的具体配置。负压源采用真空发生器的优点是整个系统只需配备一个高压气源,减少了整个系统的造价、体积和重量,真空发生器连接高压气源即可达到相同的抽气效果。[/size][size=18px][color=#ff0000]四、总结[/color][/size][size=14px]本文所述解决方案,完全可以实现呼吸阀检验校准过程中正负压范围内真空压力的连续控制和往复交变控制,并且可以达到很高的控制精度和速度,全程完全自动化。[/size][size=14px]本方案除了正负压的自动精密控制之外,另外一个特点是可以满足多种规格尺寸呼吸阀的检验校准,真空压力范围也比较宽泛,整个系统小巧和集成化,便于形成便携式在线检验装置。[/size][size=14px]本文解决方案的技术成熟度很高,方案中所涉及的电动针阀和PID控制器,都是目前上海依阳实业有限公司特有的标准产品,其他的压力传感器、真空泵、真空发生器和高压气源等也是目前市场上常见的标准产品。[/size][size=14px]本文所述解决方案,同样可以适用于各种管端式呼吸阀、管道式呼吸阀、单呼阀和单吸阀等多种形式呼吸阀和安全阀。[/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size]

  • 准确度?正确度?精密度?还在为此凌乱吗。。。。。。

    准确度?正确度?精密度?还在为此凌乱吗。。。。。。

    实验室的化验人员经常需要进行准确度试验,如检验设备(包括采样设备、制样设备、化验设备以及新研制的设备)的投入使用,新检验方法(包括标准方法、非标准方法以及新研制的方法)的验证等都需要进行准确度试验,准确度试验包括正确度试验和精密度试验。任何一个设备或测量方法都应验证其正确度和精密度是否符合预期用途的要求。但很多化验人员对三者之间的区别和关系还存在一些模糊的认识,经常把正确度当做准确度来使用,今天小编抽空整理了一些资料,关于准确度、正确度、精密度到底有哪些区别和联系呢?http://ng1.17img.cn/bbsfiles/images/2015/12/201512091921_577114_2961690_3.jpg综上所述,准确度包括了正确度和精密度。而正确度是准确度的各重要的组成部分。为评价(度量)准确度而进行的试验称为准确度试验,准确度试验同样也包括了正确度试验和精密度试验这两部分。在日常实验室工作中,我们会遇到这样的情况:比如用ICP 测同一元素含量,实验室内同一实验员不同重复间的误差、不同实验员间的误差、不同实验室间误差应控制在什么范围?其实,这就涉及到了中间精密度验证的问题了。在一组测量条件下的测量精密度,包括相同测量程序、相同操作者、相同测量系统、相同操作条件和相同地点,并且在短时间段内对同一或相似被测对象重复测量。简单地说中间精密度是处于重复性条件与再现性条件之间的条件下得到的精密度。精密度可以从三个层次来考察:重复性、中间精密度、重现性重现性:指不同实验室之间不同分析人员测定结果的精密度。当分析方法将被法定标准采用时,应进行重现性试验。重复性:配制6份供试品溶液(不添加杂质对照品溶液,为准确度提供依据),由1个分析人员在尽可能相同的条件下进行测试,所得6份供试品溶液中的杂质含量,其相对标准差应不大于15%。重复性测定可在规定范围内,至少用9次测定结果进行评价,如制备3个不同浓度的试样,各测定3次,或100%的浓度水平,用至少测定6次的结果进行评价。中间精密度:是指在同一试验室,由于实验室内部条件改变,如时间、分析员、仪器设备、测定结果的精密度。验证设计方案中 变动因素一般为日期、分析人员、设备。配置6份供试品溶液(一般为0.1%),分别由不同分析人员、不同日期、不同仪器进行测试,所得12个杂质含量数据的相对标准差应不大于20%。简言之。。。。见下图http://ng1.17img.cn/bbsfiles/images/2015/12/201512091921_577115_2961690_3.jpg精密度计算http://ng1.17img.cn/bbsfiles/images/2015/12/201512091922_577116_2961690_3.jpg中间精密度试验时应考察不同日期、不同分析人员、不同仪器下对精密度的影响,有关物质中间精密度的结果评价及可接受标准可以看一下2010版中国药典附录V D高效液相色谱法,附录第30页!有详细的描述!1)含量低于0.5%,RSD%应小于10%。2)含量在0.5%-2%,RSD%应小于5%。3)含量大于2%,RSD%应小于2%。中间精密度的验证:分别考察同一实验室不同人员、不同时间、不同仪器设备测定结果之间的精密度。具体操作:①、对照品溶液的配制:同⑵。②、供试品溶液的配制:同⑵。分别精密量取相同体积的上述各溶液进液相,按外标法以峰面积计算不同的分析人员在不同的时间、不同的仪器设备上测得的供试品溶液中被测成分的含量(可算其相对于制剂标示量的百分含量),计算组内的平均含量及含量的RSD,并与另一组(不同的分析人员、不同时间、不同仪器设备)测得的结果比较,计算组间的RSD,应小于2%。这时候,仿佛应该插个题外话,那就是检测限和定量限的问题了(其实这个话题咱们说过很多了),今天呢, 不废话,直接说精华。1.检测限系指试样中的被分析物能够被检测到的最低量,但不一定要准确定量。该验证指标的意义在于考察方法是否具备灵敏的检测能力。因此对杂志限度试验,需证明方法具有足够低的检测限,以保证检出需控制的杂质。直观法直观评价可以用于非仪器分析法,也可用于仪器分析方法。检测限的测定是通过对一系列已知浓度被测物的试样进行分析,并以能准确、可靠检测被测物的最小量或最低浓度来建立。信噪比法用于能显示基线噪音的分析方法,即把已知低浓度试样测出的信号与噪声信号进行比较,计算可检出的最低浓度或量。一般以信噪比为3:1时相应的浓度或注入仪器的量确定检测限,其他方法有基于工作曲线的斜率和响应的标准偏差进行计算的方法等。无论用何种方法,均应用一定数量的试样,其浓度为近于或等于检测限,进行分析,以可靠地测定检测限。2.定量限http://ng1.17img.cn/bbsfiles/images/2015/12/201512091922_577117_2961690_3.jpg我们来举个例子说吧!以GC为例,分析方法中间精密度验证中,要求不同的分析人员采用相同的分析方法、在不同的时间、使用不同的仪器进行测试,以确认方法的适用性。问题是,不同的仪器参数设置一般是不同的,除了检测器温度、进样器温度、柱温能保持不变外,其它如分流比(有的仪器有,有的没有),载气流速等似乎不能保证完全一样,这种情况下做出来的中间精密度数据有效吗?我觉得中间精密度验证不一定要求仪器参数完全一样,甚至平时操作的时候可能用到跨品牌的仪器,只要方法一致就有可比性,用分流的就都用分流的,用不分流就都用不分流,用恒流模式就都设定为恒流模式的,不要求使用完全一模一样的仪器。为什么要做精密度和回收率试验? 测量方法确认技术分成以下几类。 (1)正确度试验(标准物质分析试验、回收率试验、不同方法的比对试验。 (2)精密度试验(室内重复性、中间精密度、协同试验、极差试验。 (3)检出限的确定。 (4)测量范围试验。 (5)影响结果因素的系统评价。 (6)结果不确定度的评价。根据测量方法预期用途的特定要求,选用以上至少两项确认试验或评价技术,以便得到与特定要求相关的技术指标。在没有系统偏差或系统偏差不显著时,精密度好,则正确度高。否则精密度好,正确度不一定高。方法精密度好,才可能采用最少的重复测定次数得到准确的结果。从这个意义上说,方法的精密度对正确度有很大影响。因此,测量方法的精密度要优于正确度的限量,才能满足测量方法正确度的要求。实践中通常把残留分析检测方法的精密度试验简化为高(略低于检测方法的最高限量)、中(检出限的两倍)、低(略高于检出限)3个浓度各进行不少于10次的测试。应用线性回归原理进行测量的方法一般在线性范围内选择包括检测低限、检测高限在内的6个质量水平样品分别进行不少于3次的测试。检测结果经统计应满足拟确认测量方法精密度的要求。化学分析方法一般采用Horwite方程:cM=2(1-0.5lgc)(%)(c为浓度水平,1,10,100,1000,,)评价方法的精密度。 对于组成不十分清楚的试样, 常采用加入回收法。在试样中加入已知量的被测组分与等量的另一份相同的试样平行进行分析, 求得加入的被测组分的回收率, 由回收率检查系统误差的大小。提高试验精密度和采用回收试验,都是为了尽可能减少实验误差,使得试验更准确。简单而言:就是准确度用回收率试验,精密度用测定6次结果进行rsd评价。

  • 【原创】仪器仪表准确度和精密度有什么不同?

    准确度是指仪器多次测量的平均值与真值相符合的程度;精密度是指仪器多次测量时各次测定值之间彼此相符合的程度。好的精密度是获得良好准确度的先决条件。精密度不好,不可能有良好的准确度;精密度好,却不一定能保证准确度也好。精确度取决于随机误差,准确度主要取决于系统误差,同时也受到随机误差的影响。系统误差的影响可以用修正值来修正,随机误差的影响无法加以修正,只能用标准偏差来评估。

  • 精密陶瓷密度计详细规格参数说明

    [url=http://www.f-lab.cn/solid-densimeters/ttdm-300iii.html][b]精密陶瓷密度计[/b][/url]是专业为精细陶瓷工业和材料学研究而设计的[b]材料密度计,陶瓷比重计。[b]精密陶瓷密度计[/b]适用于:[/b]精细陶瓷工业和材料科学实验室。[img=精密陶瓷密度计]http://www.f-lab.cn/Upload/solid-densimeters-ttdm-300iii.jpg[/img][b][b]精密陶瓷密度计[/b]原理:[/b]按照ASTM C20 / C134 / C437,GB 2413 采用阿基米德原理的浮力法,可以准确测量密度。[b][b]精密陶瓷密度计[/b]技术参数:[/b]陶瓷材料是一种具有孔内的多相系统,其密度可分为体积密度和表观密度。陶瓷吸水率和孔隙度是根据密度的确定得出的,而密度测量则基于阿基米德原理。 [b][b]精密陶瓷密度计[/b]特点和功能[/b]工艺1:TTDM 300 III / 600 III可渗透陶瓷制品。A.密封蜡密封方法B.堆密度,表观密度,相互孔隙度和吸水率的中等方法都可以直接显示。工艺2:TTDM 300 III / 600 III不透水产品,是指可以直接显示密度的阿基米德工艺。轻松连接PC与标准接口。 [b][url=http://www.f-lab.cn/solid-densimeters/ttdm-300iii.html]精密陶瓷密度计[/url]规格参数[/b][table][tr][td=2,1]型号[/td][td]TTDM 300 III[/td][td]TTDM 600 III[/td][/tr][tr][td=2,1]可测范围[/td][td]0.005g〜 300g[/td][td]0.01 g〜 600 g[/td][/tr][tr][td=2,1]净重[/td][td=2,1]1.36公斤[/td][/tr][tr][td=2,1]平均重量[/td][td=2,1]0.001克[/td][/tr][tr][td=2,1]解析度[/td][td=2,1]0.001g / cm [sup]3[/sup][/td][/tr][tr][td=2,1]测试时间[/td][td=2,1]约10秒[/td][/tr][tr][td=2,1]设置[/td][td=2,1]可以设定水温和蜡密度的补偿[/td][/tr][tr][td=1,2]金[/td][td]透气产品[/td][td=2,1]直接显示堆积密度和表观密度以及相互连接的孔隙度和吸水率[/td][/tr][tr][td]Karat的范围比例[/td][td=2,1]直接显示密度[/td][/tr][tr][td=2,1]标准接口[/td][td=2,1]RS-232[/td][/tr][/table]

  • ICP光谱仪之双向观测

    在光谱仪炬管组件中产生的ICP光源,其观察方式有3种,分别是:垂直观察(Radial)、水平观察(Axial)和双向观察(DUO)。  双向观测:双向观测是在水平观测ICP光源的基础,增加一套侧向采光光路,实现垂直/水平双向观测,即在炬管垂直观测的方向依次放置3块反射镜,当要使用垂直观测的时候,就通过3块反射镜把炬管垂直方向上的光反射到原光路中,并通过旋转原光路的第一块反射镜,使垂直方向来的光与原水平方向来的光在整个光路中重合。该观测方式的切换反射镜由计算机控制,该方式融合了轴向、径向的特点,具有一定的灵活性,增强了测定复杂样品的能力。改观测方式可实现以下3中方式的测量:  ①全部元素谱线水平测量。  ②全部元素谱线垂直测量。  ③部分元素谱线水平测量,部分元素谱线垂直测量。  双向观测能有效解决水平观测中存在的电子干扰,进一步扩宽线性范围。但是该观测方式需要不断地切换反射镜,可 能导致仪器的稳定性变差。由于径向观测的需要,炬管侧面必须开口,导致炬管的寿命大大降低,同时也改变了炬焰的形状。炬管开口处必须严格与光路对准,要不然炬管壁容易积累盐,会使检测结果严重错误 同时如果在开口出现积盐同样也会导致仪器检测结构存在严重的错误,必须注意清洗。而且增加了曝光次数,降低了分析速度,增加了分析消耗。

  • 杂质测定用标准溶液的使用,在配置标准曲线时应使用精密移液管还是分度吸量管?

    请教大家,有没有使用杂质测定用标准溶液的?GB 602的3.2.1条款写明:杂质测定用标准溶液, 应使用分度吸管量取。如果某方法标准中的标准溶液制备是采用GB 602,那么是否意味着,在配置标准曲线的过程中,可以使用分度吸量管来代替精密移液管?比如方法要求移取0.00mL,1.00mL,2.00mL,3.00mL...的杂志用标准溶液配置曲线。这里的0.00, 1.00, 2.00难道不是使用精密移液管吗?

  • 关于准确度、精密度和正确度知识科普

    很多人在面对准确度、精密度和正确度时,往往不清楚他们的区别联系和作用。 首先我们必须明白准确度是由精密度和正确度来进行表征的,它的概念和正确度很像。准确度是测量结果与真值的一致程度,而正确度则是测量结果的期望与真值的一致程度。那什么是测量结果的期望了?它是由许多个独立测试的均值来表示的,无数次的独立测定结果的均值,就是我们对于测量结果的期望值。正确度一般是使用偏倚来表示,即期望值与真值的差值。偏倚代表了该实验室的系统误差,有人会说为什么不算随机误差?因为随机误差具有补偿性,意思就是测量的次数越多,正向随机和负向随机值之和结果越趋近于0,因正确度的测试时许多次独立测试结果的均值,故可以看做正负随机相抵消,只剩余系统误差作用于测定结果,就形成了与真值在一定程度的偏离。而精密度则刚好是由于随机误差产生的,精密度是多次测定结果的一致程度,更多的反映是随机误差的作用,当计算结果的标准差越小时,说明随机误差作用越小,精密度越高,精密度越大,随机误差作用越强,越不精密,这会严重影响正确度的。所以精密度是准确度的前提,当精密度不够时,再谈正确度就没有意义。 我们一般在什么时候说准确度,在平常出报告时,对于数据结果是需要准确度进行支撑的,而你测定支撑数据结果准确度的是在实验开始前的方法验证,这就是为什么方法验证需要做正确度和精密度的原因。

  • 精密度的标准如何制定

    精密度可用偏差、相对平均偏差、标准偏差和相对标准偏差表示,实际工作中多用相对平均偏差与相对标准偏差表示;那么我们制定相对平均偏差或相对标准偏差时,通常以什么为依据去制定呢。各位大侠,有没有相关的经验或资料。补充:意思是比较制定相对平均偏差,是制定小于0.5%好呢,还是制定小于0.2%好,当然是越小越好,不过当然也要考虑到方法等因素。我的意思是,这些都要综合考虑哪些因素,有没有相关的资料。

  • 双向磁力加热搅拌器的6点使用维护

    双向磁力加热搅拌器适合于医药卫生、环保、生化实验室、分析室、教育科研等单位,不仅操作简单、运转平稳而且能在较广的速度范围内对液体进行精密稳定的搅拌。    双向磁力加热搅拌器的使用维护,如下:    1、接通外电源,合上电源开关,指示灯亮。    2、将装有溶液和搅拌子的试瓶(或其它器皿)放在工作面顶板上。    3、双向磁力加热搅拌器选择加热,合上加热开关,,指示灯亮,即为加热状态。    4、调节调速旋钮,升至所需转速。如果需要双向搅拌,将方向选择开关拨向“双向“即可。顺时针搅拌时,指示灯具绿色。逆时针搅拌时,指示灯为红色。    5、将双向磁力加热搅拌器的工作面顶板擦拭干净,其上不允许有水滴、污物残留。特殊规格要求需签订合同,价格另定。    6、使用双向磁力加热搅拌器工作完毕后,将调速旋钮置于zui小位置,加热开关处于非工作状态,关电源开关,切断电源。分享:

  • 精密度与准确度

    请教各位专家在化验原始记录上,如何填写精密度控制和准确度控制那一栏,是写小于或等于多少还是写确切的值,确切的值如何计算呢?

  • 精密热成型工艺中的正负压力控制解决方案

    精密热成型工艺中的正负压力控制解决方案

    [size=16px][color=#339999][b]摘要:真空压力热成型技术作为一种精密成型工艺在诸如隐形牙套等制作领域得到越来越多的重视,其主要特点是要求采用高精度的正负压力控制手段来抵消重力对软化膜变形的影响以及精密控制成型膜厚度。本文提出了相应的改进解决方案,通过可编程的纯正压控制技术实现软化膜上下压差以及热成型压力的精密调节,在保证产品质量的同时可简化控制系统。[/b][/color][/size][align=center][size=16px] [img=精密热成型工艺中的正负压力控制解决方案,550,292]https://ng1.17img.cn/bbsfiles/images/2023/05/202305190914248981_6279_3221506_3.jpg!w690x367.jpg[/img][/size][/align][b][size=18px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 热成型是一种将热塑性片材加工成各种制品的较特殊的加工方法。在具体成型过程中,片材夹在框架上加热到软化状态,在外力作用下,使其紧贴模具的型面,以取得与型面相仿的形状。冷却定型后,经修整即成制品。热成型方法有多种,但基本都是以真空和压力这两种方法为基础加以组合或改进而成。典型的真空和压力热成型原理如图1所示。[/size][align=center][size=16px][color=#339999][b][img=01.真空和压力热成型示意图,550,275]https://ng1.17img.cn/bbsfiles/images/2023/05/202305190917007981_2026_3221506_3.jpg!w690x345.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 真空和压力热成型原理示意图[/b][/color][/size][/align][size=16px] 如图1所示,真空成型最大的成型压力为一个大气压,这造成真空成型压力较低,这往往使得受热软化后的热塑材料很难在模具的拐角或坑洼处形成紧密贴合,如图2所示,这会造成整体的成型精度较差。因此,真空成型工艺一般用于对成型精度要求较低的通用性塑料件的生产。[/size][align=center][size=16px][color=#339999][b][img=02.真空热成型过程中的非紧密贴合现象示意图,550,198]https://ng1.17img.cn/bbsfiles/images/2023/05/202305190917280643_6456_3221506_3.jpg!w690x249.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 真空热成型过程中的非紧密贴合现象示意图[/b][/color][/size][/align][size=16px] 正压热成型在真空(负压)基础上的发展演变而来,正压成型的压力往往可以达到4~5个大气压甚至更高,在压缩空气的正压作用下,贴合度大幅提高,产品外观质量和生产效率有了明显的提高,所以正压形式正逐步在高精度热成型工艺中得到广泛应用,特别是对于成型精密度有很高要求的隐形牙齿矫治器(隐形牙套、透明牙套),正压热成型已经成为一种标准工艺。采用正压热成型机器在3D打印模型上制造隐形牙齿矫正器,可以获得更均匀的塑料层,但产生均匀塑料层的理想正压水平需要根据以下几方面的影响因素进行确定和精密控制:[/size][size=16px] (1)牙模的结构比较复杂,表面沟壑较多,采用正压吸塑热成型工艺很难很好的控制牙套的厚度,要求正压压力控制精度极高。[/size][size=16px] (2)受热的热塑性材料呈软化状态,很容易受到重力影响而造成额外的形变,因此在正压热成型中受热软化片材的变形程度相差极大,必须消除重力带来的变形。[/size][size=16px] 为了解决上述问题,西安博恩生物科技有限公司在其发明专利CN112823761B中提出了正负压热成型工艺,首先控制平衡软化片材上下两侧的压强差,抵消重力带来的变形,然后在热成型时再通过压力变化来精确控制膜片的厚度。此发明专利仅提出了一种真空压力热成型工艺的新概念,并未给出压差和压力精密控制的具体实施方法描述,而具体真空压力控制的具体方式则是实现隐形牙套高精度热成型的关键技术之一。为此,本文针对诸如隐形牙齿矫正器正负压热成型工艺中的真空压力精密控制,提出相应的解决方案,以保证新型正负压热成型工艺的顺利实施。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 在专利CN112823761B中提出的正负压热成型过程如图3所示,固定有膜片的可上下移动的夹持器热成型设备分为上下两个独立的密闭腔室,每个独立腔室的真空和压力需要精密控制,只是真空压力的控制范围不同。[/size][align=center][size=16px][color=#339999][b][img=03.正负压加热成型过程示意图,385,113]https://ng1.17img.cn/bbsfiles/images/2023/05/202305190917482920_2081_3221506_3.jpg!w385x113.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 正负压加热成型过程示意图[/b][/color][/size][/align][size=16px] 在膜片被加热软化和随夹持器向下移动时,底部腔室相对于顶部腔室为正压,即顶部腔室内的压力要大于顶部腔室压力,底部腔室正压托起软化过程中的膜片以抵消重力的影响。[/size][size=16px] 当膜片贴附在牙模上后,撤掉底部腔室压力,并逐渐增大顶部腔室压力,使顶部腔室压力相对于底部腔室压力为正压,由此通过较大的正压压力使膜片与牙模紧密贴合。[/size][size=16px] 通过上述过程可以看出,正负压热成型中的压力控制具有以下两个重要特征:[/size][size=16px] (1)在压差控制阶段,底部腔室压力要始终大于顶部腔室,以托起软化中的膜片减少重力对膜片变形的影响。这种情况下,两个腔室压力都可以是正压,顶部腔室压力不一定非要是真空负压,顶部腔室也可以是正压,但只要底部腔室压力足够大并能形成相应的压差托起膜片极可。[/size][size=16px] (2)在加压贴附阶段,使顶部腔室的压力足够大就可实现软化膜片的紧密贴合,这也意味着底部腔室的压力也不一定非要是真空负压,只要是顶部腔室的压力足够大,底部腔室为常压时也完全能够实现高压贴合。[/size][size=16px] 由此两个特征可以得出结论:所谓的正负压热成型,完全可以只采用正压控制予以实现,但前提是能够精密和可程序控制上下两个腔室的正压压力。[/size][size=16px] 通过上述分析可知,对上下两个腔室进行正压精密控制,通过压差和高压可很好的实现膜片紧密贴合和保证厚度的均匀性,这样可以减少真空控制的环节和相应装置,简化了控制系统。[/size][size=16px] 依此,本文提出的解决方案就是两个腔室的精密正压压力控制解决方案,通过两套压力控制装置分别实现上下两个腔室的压力可编程控制,具体结构如图4所示。[/size][align=center][b][size=16px][color=#339999][img=04.隐形牙齿矫治器热成型精密压力程序控制系统结构示意图,690,321]https://ng1.17img.cn/bbsfiles/images/2023/05/202305190918023454_1832_3221506_3.jpg!w690x321.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图4 隐形牙齿矫治器热成型精密压力程序控制系统结构示意图[/color][/size][/b][/align][size=16px] 在膜片被加热软化和随夹持器向下移动时,底部腔室相对于顶部腔室为正压,即顶部腔室内的压力要大于顶部腔室压力,底部腔室正压托起软化过程中的膜片以抵消重力的影响。[/size][size=16px] 当膜片贴附在牙模上后,撤掉底部腔室压力,并逐渐增大顶部腔室压力,使顶部腔室压力相对于底部腔室压力为正压,由此通过较大的正压压力使膜片与牙模紧密贴合。[/size][size=16px] 通过上述过程可以看出,正负压热成型中的压力控制具有以下两个重要特征:[/size][size=16px] (1)在压差控制阶段,底部腔室压力要始终大于顶部腔室,以托起软化中的膜片减少重力对膜片变形的影响。这种情况下,两个腔室压力都可以是正压,顶部腔室压力不一定非要是真空负压,顶部腔室也可以是正压,但只要底部腔室压力足够大并能形成相应的压差托起膜片极可。[/size][size=16px] (2)在加压贴附阶段,使顶部腔室的压力足够大就可实现软化膜片的紧密贴合,这也意味着底部腔室的压力也不一定非要是真空负压,只要是顶部腔室的压力足够大,底部腔室为常压时也完全能够实现高压贴合。[/size][size=16px] 由此两个特征可以得出结论:所谓的正负压热成型,完全可以只采用正压控制予以实现,但前提是能够精密和可程序控制上下两个腔室的正压压力。[/size][size=16px] 通过上述分析可知,对上下两个腔室进行正压精密控制,通过压差和高压可很好的实现膜片紧密贴合和保证厚度的均匀性,这样可以减少真空控制的环节和相应装置,简化了控制系统。[/size][size=16px] 依此,本文提出的解决方案就是两个腔室的精密正压压力控制解决方案,通过两套压力控制装置分别实现上下两个腔室的压力可编程控制,具体结构如图4所示。[/size][size=16px] 如图4所示,两套压力控制装置配置完全相同,都是由压力传感器、压力调节阀和真空压力控制器构成,两套装置公用一套高压气源。为了保证高精度压力的程序控制,具体配置如下:[/size][size=16px] (1)压力传感器采用超高精度压力计,压力测量范围为0~0.8MPa(表压),精度为满量程的0.05%。压力调节阀采用数控电子减压阀,外部模拟控制信号0~10V对应的压力调节范围为表压0~0.8MPa,综合精度为满量程的0.2%。[/size][size=16px] (2)压力控制器采用超高精度可编程PID调节器,具有24位AD、16位DA和0.01最小输出百分比,具有PID参数自整定功能,并可设计20条程序曲线进行调用和控制,具有标准MODBUS协议的RS485通讯接口。压力控制器自带计算机软件,通过软件可在计算机上直接对控制器进行设置、运行、过程参数显示和存储。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本文对相关的正负压热成型工艺进行了分析,特别是针对隐形牙齿矫正器这类高精度热成型制作工艺,本文提出了改进的解决方案,即不采用正负压控制方式,而是采用纯正压控制方式。在具体热成型过程中,通过对上下腔室的压力进行不同的程序控制形成可控压差来抵消重力对受热膜片变形的影响,然后再对上腔室进行高压控制,由此可实现高精度的热成型厚度控制,可大幅提高热成型产品的质量和一致性。[/size][size=16px] 新的解决方案可通过两路压力的精确控制,同样可实现正负压热成型过程中的压力成型功能和精密制作能力,但避开了正压和负压同时控制所造成的装置的复杂性和较高成本,这使得新的解决方案更具有实用性。[/size][align=center][b][color=#339999][/color][/b][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 如何提高电子精密天平准确度?

    我们都知道精密天平是一种精密电子仪器,多用于实验室和医药等领域。这种电子天平采用了更高精度的传感器和更高端的控制芯片,因此相比普通电子天平具有更高的精度和灵敏度。尽管精密天平具有诸多优点,但是易受外界因素、电磁等因素干扰,会产生一定的误差,那么我们该如何提高精密天平的准确度呢?

  • 【分享】光学计的特征及应用

    光学计属于精密光学机械长度计量仪器。光学计是应用光学自准直原理测量微差尺寸的长度计量仪器,是一种用标准器以比较法测量工件的尺寸。光学计结构设计紧凑、外型尺寸小巧、便于运输,可对五等量块、量棒、钢球、线形及平行平面状精密量具和零件的外型尺寸作精密测量。 光学计是一种采用量块或标准零件与试件相比较的方式测量物体外形尺寸的仪器。光学计采用腊屏新技术,附加读数放大镜、视场亮度匀称、像质清晰;光学计具有测量精度高、数据稳定可靠,对于小尺寸精密零件的检测方便快捷;光学计能够一机两用,将投影光学计镜管取下装在机床上,可直接控制加工尺寸。 光学计主要用于五等精度量块,一级精度柱型规及各种圆柱形、球形、线形等物体的直径或板形物体的厚度的精密测量,对被测件作微小位移测量。光学计对工件的直径或样板工件的厚度以及外螺纹的中径均能作比较。光学计广泛应用于工厂计量室、车间检定站或制造量具、工具与精密零件车间。

  • 【讨论】精密电子天平的校准很重要吗?

    使用电子天平,称量结果是我们最终的目的,那么,使用天平前不校准天平,结果往往是不准确的,当然,对于使用精度更高的精密电子天平来说,校准是获得正确结果的必然需求。随着天平的使用,时间越久,机械振动或者外部的不好的环境对天平的磨损就越多,这可能导致在较长时间内降级或退化,天平的测量结果就会变得不那么准确了,所以,想要延长精密电子天平的使用寿命并提高其称量准确性就离不开定期的天平校准和日常的测试。校准就是定量比较,观察读数与参考砝码之间的差值。由于客户对精密电子天平的使用要求比较高,经常校准则可以有效地节约成本,减少返工或者召回原厂家的情况。天平的挪动可能会导致天平测量出现差值,校准可以使在一地方测量结果与另一地方结果保持一致,从而,更确保了精密电子天平的称量结果的准确性。测量的不确定性是无法避免的,可能是来自天平本身,也可能是来自外来环境影响的因素,或者测量人员的操作等等。测量的不确定性是任何校准的不可分割的一部分。天平是合法贸易的,仍旧需要校准,当在交易或者受法律约束的应用中使用天平的时候,就要对天平进行设置验证,密封。评估测量结果,将引用许多法律规范,这些法律规范的允差非常大,则会造成材料的浪费,经常校准可以减少浪费获得更高的利润。 文章来源:http://tjdat.com/cn/NewsInfo.aspx?Id=12360

  • 低压缓冲罐的真空度精密控制解决方案

    低压缓冲罐的真空度精密控制解决方案

    [align=center][color=#ff0000][img=,690,368]https://ng1.17img.cn/bbsfiles/images/2022/06/202206130915093546_2463_3384_3.png!w690x368.jpg[/img][/color][/align][color=#ff0000]摘要:低压缓冲罐广泛应用于各种真空工艺和设备中,本文主要针对缓冲罐在全量程内的真空度精密控制,并根据不同真空度范围和缓冲罐体积大小,提出了相应的解决方案,以满足不同低压过程对缓冲罐真空压力精密控制的不同要求。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]一、背景介绍[/color][/size]低压缓冲罐是真空系统中常用的一种真空容器,主要通过提供真空“储存”来防止真空泵的过度循环,其基本原理是利用滞留量(体积)来提供更平稳的真空度操作。在真空工艺过程中,低压缓冲罐主要有以下两种结构形式:(1)真空度波动衰减:缓冲罐安装在真空单元之间,避免连续过程中真空度的波动传播。(2)独立操作:缓冲罐安装在单元之间以允许独立操作,例如在临时关闭期间以及连续和批处理单元之间。低压缓冲罐在独立操作形式中,一般需要具备以下功能:(1)对于小尺寸空间的工艺容器,很难实现真空度的高精度恒定或程序控制,真空度的波动和不准确很难达到工艺要求。为此在工艺容器上串接一个容积较大的低压缓冲罐,通过对缓冲罐真空度的精密控制,则可以完美解决此问题。(2)提供气液分离功能,防止工作液体直接倒灌入真空泵。(3)提供冷凝功能,避免反应容器内的部分溶剂转化为气态直接进入真空泵,由此降低真空泵的故障率和提高真空泵的使用寿命。本文主要针对缓冲罐在全量程内的真空度精密控制,提出相应的解决方案,以满足不同低压过程对缓冲罐真空压力精密控制的不同要求。[size=18px][color=#ff0000]二、解决方案[/color][/size]在低压缓冲罐真空度精密控制过程中,基本控制方法是调节缓冲罐的进气和出气流量,并通过进出气流量的动态平衡来实现缓冲罐内部气压的准确控制,即所谓的动态平衡法。但在不同真空工艺和设备中,对低压缓冲罐的真空度范围会有不同的要求,相应的动态控制模式也不尽相同。而且,不同体积大小的低压缓冲罐,为实现缓冲罐内真空度的快速准确控制,则需要不同的调节装置。以下将针对这些不同要求,提出相应的具体解决方案和相关装置细节。[color=#ff0000]2.1 低真空(高压)和高真空(低压)控制方式[/color]一般我们将低于一个大气压下(760Torr)的绝对压力称之为真空(或低压),而整个真空范围又分为低真空(10-760Torr)、高真空(0.01~10Torr)和超高真空(0.01Torr)三部分。本文将只涉及低真空和高真空这两个范围内的真空度精密控制,对于超高真空,目前还没有很好的技术手段进行精密控制,基本还都是仅靠真空泵的抽气能力来实现数量级级别的控制。低真空和高真空缓冲罐真空度的动态平衡法控制中,为达到快速和准确的控制效果,必须分别采用上游和下游两种控制模式,通过上下游这两种模式及其两种模式之间的切换,可以实现真空度全量程内的精确控制。低压缓冲罐动态平衡法真空度控制系统的整体结构如图1所示。整个缓冲罐真空度控制系统主要由进气阀、抽气阀、真空泵、真空传感器和PID控制器组成,它们各自的功能如下:[align=center][color=#ff0000][img=低压缓冲罐真空度控制,500,400]https://ng1.17img.cn/bbsfiles/images/2022/06/202206130911289636_8164_3384_3.png!w690x553.jpg[/img][/color][/align][align=center][color=#ff0000]图1 低压缓冲罐真空度控制系统结构示意图[/color][/align](1)进气阀的作用是调节进气流量。在缓冲罐真空度控制过程中,进气流量一般在较小的范围内进行调节,因此进气阀一般为电动针阀。(2)抽气阀的作用是调节出气流量。在缓冲罐真空度控制过程中,进气流量一般在较大的范围内进行调节,因此进气阀的口径大小一般需根据需要进行配置,后面还会进行详细介绍。(3)真空泵的作用是提供真空源。在缓冲罐真空度控制过程中,真空泵要根据真空度要求和缓冲罐体积大小来进行选配。(4)真空传感器的作用是实时测量缓冲罐的真空度并将测量信号反馈给PID控制。在缓冲罐真空度控制过程中,要根据缓冲罐真空度量程和精度要求选配传感器,一般是低真空和高真空范围内各配一个真空计。为保证测量精度,一般会选择电容式真空计。也可以根据需要只选择一个精度较差的皮拉尼计来实现整个高低真空范围内的测量。(5)PID控制器的作用是通过接受到的真空度信号来分别调节进气阀和出气阀,使得缓冲罐内的真空度达到设定值或按照设定程序进行变化。在全量程范围内的真空度控制时,如果需要采用两只不同量程真空计进行全量程覆盖,就需要具有传感器自动切换功能的双通道PID控制器,以便在不同量程范围内的控制过程中进行自动切换。如果采用电容式真空计来实现高精度的真空度控制,相应的PID控制器则需要具有24位A/D和16位D/A的高精度。在缓冲罐的不同真空度范围内,需要采用以下不同的控制模式才能达到满意的控制精度。(1)上游控制模式:上游控制模式也叫进气调节模式,主要适用于高真空范围内的精密控制。在上游控制模式中,抽气阀门基本是全开方式全速抽气,通过调节进气流量来实现缓冲罐内高真空的精密控制。(2)下游控制模式:下游控制模式也叫出气调节模式,主要适用于低真空范围内的精密控制。在下游控制模式中,进气阀门基本是某一固定开度,即固定进气流量,通过调节抽气流量来实现缓冲罐内低真空的精密控制。另外需要特别注意的是,不论采取上述哪一种控制模式,控制精度还受到真空度传感器和PID控制精度的限制。因此,除了选择合理的上下游控制模式之外,还需要根据不同精度要求选择合理的传感器和控制器。[color=#ff0000]2.2 不同缓冲罐体积的真空度控制[/color]缓冲罐真空度精密控制中,除了涉及上述的控制模式选择之外,还涉及控制速度问题,即根据缓冲罐的容积大小和真空度控制范围来确定合理的真空度准确控制速度。这方面主要涉及以下两方面的内容和基本原则:(1)对于小容积的缓冲罐,可以选择具有小流量调节能力的进气阀、排气阀和真空泵。(2)对于较大容积的缓冲罐,可能就需要配备较大流量调节能力的进气阀、排气阀和真空泵。其中进气阀和排气阀需要配备电动球阀等大口径阀门,具体情况还需根据所控真空度范围来进行进一步的合理选择。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【讨论】关于大型精密测试仪器的校准问题~~

    记得在17025里边好像有过这样的规定,凡是对测量结果有影响的量具和设备,都必须经过校准。。对于小型的仪器设备还好办,直接送外检就OK了 可是对于像ICP或是GC-MS这类大型精密测试仪器,大家一般都采取什么样的工作进行校准呢~~~各位有什么经验都分享一下呢~[em09511][em09511]

  • 日内,日间精密度代替相对标准偏差

    三年前,毕业论文曾经用液相质谱做了一些列实验,最近,老师给我发邮件,让我重新处理数据,但是多种原因,目前发现,,我居然漏掉了相对标准偏差,只做了回收率,检测线,日内精密度,日间精密度,那这两个,是不是可以代日内,日间精密度代替相对标准偏差,也是用来衡量精密度的指标呀。 谢谢各位,

  • 【原创大赛】【仪器故事】纺织品恒温室高精密空调检查,查什么?

    【原创大赛】【仪器故事】纺织品恒温室高精密空调检查,查什么?

    纺织品恒温室高精密空调检查,查什么? 纺织品检测实验室,有一个标准环境是必须配备的,就是恒温恒湿环境,一般的要求是达到三级大气压的标准要求,需要的温度20±2℃,相对湿度65%±3%;一般需要专业恒温恒湿设施才能达到这个标准要求,这样的恒温恒湿室从装修到设备都是很专业级的。 恒温恒湿室,其主要控制系统就是高精密恒湿恒湿机系统,它的运作是通过三个相互联系的系统:制冷剂循环系统、空气循环系统、电器自控系统。其中电器自控系统是对压缩机、风扇、电加热器,加湿器等供应电源自动控制部分,自动运行压缩机(降温、除湿),加湿器,电加热(升温)等元件,实现恒温恒湿的自动控制。高精密恒湿恒湿机制冷原理为蒸发器中的液态制冷剂吸收空气的热量并开始蒸发,最终制冷剂与空气之间形成一定的温度差,液态制冷剂亦完全蒸发变为气态,后被压缩机吸入并压缩,气态制冷剂通过冷凝器吸收热量,凝结成液体。通过膨胀阀节流后变成低温低压制冷剂进入蒸发器,完成制冷剂循环过程。 高精密恒湿恒湿机和简单空调机原理差不多,但又不一样,是更精密的控制室内的温度和湿度,内部构造比一般空调复杂,又因一般恒温恒湿室都是24小时不间断的作业,那么其内部零件的损耗和磨损也是比较严重的,特别是每年的七八月份是一年气温最高的时候,因为室内外温度的温差大,湿度相差也大,所以这两个月是高精密空调故障频发期,一般这两个月我们都会出钱要求仪器供应商每个月来巡检一次,以防止仪器故障,出现不必要的麻烦。纺织品恒温室高精密空调巡检,要查什么呢,现在厂家工程师来了,但我们却不知道要检查什么项目,为了搞清楚决定跟着看看,大家也一起来看看,看看恒温恒湿高精密空调‘体检’要查什么?[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2018/09/201809130921542347_8583_2154459_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2018/09/201809130922129361_1495_2154459_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2018/09/201809130921407887_946_2154459_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2018/09/201809130922037357_2092_2154459_3.jpg!w690x920.jpg[/img][img=,690,1226]https://ng1.17img.cn/bbsfiles/images/2018/09/201809130921326497_9234_2154459_3.jpg!w690x1226.jpg[/img] 厂家工程师一般首先看温湿度历史记录,曲线图,没有异常就开始检查主机过滤网,这个是每次巡查都要清洗的,然后再看风机的皮带磨损情况,接着就是风机电压电流;制冷系统主要就是高压低压,膨胀阀,冷凝器和过滤器,最后就是外机,外机是每次都会清洗,一般巡查没有提示故障的话,清洗一下外机就算差不多结束工作了。加湿系统主要就是看漏不漏水,加湿灌脏不脏等,整个过程一般2-3个小时就可以完成一台高精密空调的全部巡检。 其实仪器的没有故障之前的检查是很有必要的;不仅仅是为了各种规定要求,主要目的就是做一个维护和保养,仪器故障前的检查,成本低,这个是隐形成本控制;并且可以避免突然地仪器故障造成工作的耽误和业务的损失,仪器的状态也会更好,比如清洗过滤网,检查电压,电容等,能初步判定精密空调配件磨损程度,预计故障的可能,更重要一点是安全检查,仪器24小时运转,晚上没有人值班,如果因为仪器故障,短路出现事故就得不偿失了,虽然不一定能完全杜绝这样的现象,但排查还是可以发现一些隐患的,一些建议性的意见还是要引起注意的。

  • 精密仪器溯源方法的研究

    这是我在做的毕业设计:请问大家怎么做呢?谢谢内容要求:(包括规定阅读的文献、应完成的程序、图纸、实验、说明书等)1、查阅量值溯源体系系统与精密仪器溯源方法等相关的期刊文献资料。2、论述精密仪器的各种常用溯源方法。3、针对存在国家基准的某种精密仪器加以论述。4、针对不存在国家基准的某种精密仪器加以论述。5、试进行溯源方法的不确定度评定。6、按要求写出毕业论文。

  • 【光学仪器组件】精密技术的结晶与科学探索的窗口

    【光学仪器组件】精密技术的结晶与科学探索的窗口 在探索自然奥秘、推动科技进步的征途中,光学仪器作为连接微观世界与宏观宇宙的重要桥梁,扮演着不可或缺的角色。从显微镜下的细胞结构解析,到望远镜中的星辰大海观测,再到激光技术引领的工业革命,光学仪器的每一次进步都离不开其内部精密组件的协同工作。本文将深入探讨光学仪器中几个关键组件的工作原理、技术特点及其在科学研究和工业应用中的重要意义。 https://ng1.17img.cn/bbsfiles/images/2024/09/202409182258389282_8779_5405157_3.jpeg 一、镜头系统:光线的捕捉与聚焦 镜头系统是光学仪器的核心,它负责捕捉光线并将其准确聚焦到特定的平面上,形成清晰的图像或光斑。根据应用需求的不同,镜头系统可设计为凸透镜、凹透镜、反射镜等多种形式,通过组合使用以实现不同的成像效果。例如,在显微镜中,通过多组精密的透镜组合,能够将微小的物体放大数千倍,让科学家得以窥探微观世界的奥秘。 镜头系统的制造需要极高的精度和工艺水平。现代光学加工技术如超精密抛光、离子束刻蚀等,使得镜头表面的平整度、曲率半径等关键参数达到纳米级别,从而确保了成像质量的极致提升。此外,随着计算机辅助设计和仿真技术的发展,镜头系统的设计也变得更加科学、高效,能够根据不同应用场景的需求进行定制化设计。 https://ng1.17img.cn/bbsfiles/images/2024/09/202409182258391042_934_5405157_3.jpeg 二、分光系统:光谱的解析与分离 分光系统是另一类重要的光学仪器组件,它能够将混合的光波按照波长或频率的不同进行分离,形成光谱图。这一过程不仅有助于科学家研究物质的组成、结构和性质,还为光谱分析、环境监测等领域提供了有力的技术支持。 分光系统的核心部件是色散元件,如棱镜、光栅等。这些元件利用光的色散原理,将不同波长的光波以不同的角度折射或反射出来,从而实现光谱的分离。随着技术的发展,现代分光系统已经能够实现连续光谱的高分辨率测量,为科学研究提供了更为精确的数据支持。 三、探测器与成像系统:光信号的转换与记录 探测器与成像系统是光学仪器中负责将光信号转换为电信号并记录下来的关键组件。它们通常包括光电传感器、电荷耦合器件(CCD)、互补金属氧化物半导体(CMOS)等元件。当光线照射到探测器上时,光子会激发探测器内部的电子产生电流或电荷变化,从而实现对光信号的检测。 成像系统则进一步将探测器输出的电信号转换为可视化的图像或数据。通过图像处理技术,可以对图像进行增强、滤波、分析等处理,提取出有用的信息。在现代科学研究和工业应用中,高灵敏度、高分辨率的探测器与成像系统已经成为不可或缺的工具,为科研人员提供了强大的数据支持。 https://ng1.17img.cn/bbsfiles/images/2024/09/202409182258392273_1989_5405157_3.jpeg 四、光学调整与稳定系统:确保成像质量的稳定 光学调整与稳定系统是保障光学仪器成像质量稳定的重要一环。由于外界环境如温度、湿度、振动等因素的变化都会对光学系统的成像质量产生影响,因此需要通过精密的调整与稳定机制来消除这些干扰。 光学调整系统通常包括调焦机构、准直机构等部件,用于调整镜头系统的焦距、光轴等参数,确保成像的清晰度和准确性。而稳定系统则采用主动或被动的方式,通过减震、隔振等技术手段来减少外界振动对光学系统的影响,保障成像的稳定性和可靠性。 五、结语 综上所述,光学仪器组件作为精密技术的结晶,不仅为科学探索提供了强大的技术支持,还推动了工业生产的智能化和自动化进程。随着科技的不断发展,光学仪器组件的性能将不断提升,应用领域也将更加广泛。未来,我们有理由相信,在光学仪器组件的助力下,人类将能够揭开更多自然界的秘密,创造更加美好的明天。

  • XRF测试标准比精密测试标准要宽?

    XRF测试标准比精密测试标准要宽?

    http://ng1.17img.cn/bbsfiles/images/2017/03/201703271544_01_1607184_3.jpg发现很多客户都是如此,那XRF测试结果怎么保证能满足精密测试要求呢?有客户说XRF归XRF,精密测试只对一年提交一次的检测报告逻辑上对不上啊,如果平时来料符合XRF标准,但有可能不符合精密测定标准,那精密测定标准定那么严格的意义在哪里呢

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制