当前位置: 仪器信息网 > 行业主题 > >

频率特性分析仪使用规程

仪器信息网频率特性分析仪使用规程专题为您提供2024年最新频率特性分析仪使用规程价格报价、厂家品牌的相关信息, 包括频率特性分析仪使用规程参数、型号等,不管是国产,还是进口品牌的频率特性分析仪使用规程您都可以在这里找到。 除此之外,仪器信息网还免费为您整合频率特性分析仪使用规程相关的耗材配件、试剂标物,还有频率特性分析仪使用规程相关的最新资讯、资料,以及频率特性分析仪使用规程相关的解决方案。

频率特性分析仪使用规程相关的论坛

  • 频谱分析仪的使用方法与保养

    如图是一台RS的FSU26频谱分析仪 [img]https://ng1.17img.cn/bbsfiles/images/2024/09/202409181405253551_8584_6691099_3.jpeg[/img] 首先,打开仪器电源,让频谱分析仪预热一段时间(通常为30分钟),以稳定其内部电路,确保测量精度。 使用适当的连接器将待测信号接入频谱分析仪的输入端口。确保信号线与分析仪的输入阻抗匹配,避免信号反射和失真。 根据待测信号的特性,设置频谱分析仪的中心频率、频率跨度、分辨率带宽(RBW)、视频带宽(VBW)等参数。这些设置将直接影响频谱图的清晰度和测量精度。 启动测量程序,频谱分析仪将开始捕捉并分析信号。观察屏幕上的频谱图,根据需要调整测量参数以获取最佳测量结果。根据频谱图分析信号的频率成分、幅度等信息,为后续的测试或调试提供依据。 使用柔软的布或专用清洁剂定期清洁频谱分析仪的外壳和内部元件,避免灰尘和污垢的积累影响仪器的散热和性能。注意避免使用腐蚀性液体或水直接清洁仪器。 将频谱分析仪放置在干燥、通风良好的环境中,远离强电磁干扰源和强磁场。避免在温度变化剧烈的环境中使用仪器,以防内部电路受损。 确保使用稳定的交流电源或直流电源,并符合仪器要求的电压和电流范围。使用随附的电源线,并定期检查电源线和插座的连接情况,确保电源供应的稳定性和安全性。 根据使用手册的要求,定期对频谱分析仪进行校准,以确保测量结果的准确性和可靠性。校准包括频率校准、幅度校准等,可以通过参考信号源或专门的校准设备进行。 综上所述,正确的使用方法和细致的保养是确保频谱分析仪性能稳定、测量准确的关键。通过遵循上述方法和建议,可以最大限度地发挥频谱分析仪的作用,为电子测试工作提供有力支持。

  • 功率分析仪有效带宽小结

    一、什么是功率分析仪有效带宽?  功率分析仪有效带宽是指功率分析仪能够测量和分析的信号的最高频率。  周期信号的频谱由幅度谱和相位谱组成。频谱的包络线每隔一个角频率时,通过零点。在某一个零点之后,谐波的幅值将会逐渐减小。通常将包含主要谐波分量的这段频率范围称为被测信号的有效带宽。  被测信号的有效带宽必须小于功率分析仪的有效带宽,换言之,功率分析仪的有效带宽必须大于被测信号的有效带宽,才不会对被测信号造成明显的衰减或失真。  功率分析仪测量信号的有效带宽与阶跃响应的上升时间成反比。  功率分析仪有效带宽是仪器频率特性中的重要指标,具有实际应用意义。在功率分析仪有效带宽内,必须集中了所测信号的绝大部分谐波分量。换句话说,若信号丢失有效带宽以外的谐波成分,不会对信号产生明显影响,这样的测量才会有意义。同样,任何系统也有其有效带宽。当信号通过系统时,信号与系统的有效带宽必须“匹配”。若信号的有效带宽大于系统的有效带宽,则信号通过此系统时,就会损失许多重要成分而产生较大失真;若信号的有效带宽远小于系统的有效带宽,信号可以顺利通过,但对系统资源是巨大浪费。二、什么情况下功率分析仪有效带宽会出现混叠现象?  当功率分析仪对连续信号进行等间隔采样时,如果不能满足采样定理,即采样频率低于功率分析仪有效带宽的两倍,采样后信号的进行频谱分析时,会出现率就会重叠,即高于采样频率一半的频率成分将被重建成低于采样频率一半的信号。这种频谱的重叠导致的失真称为混叠。这种情况下是功率分析仪有效带宽过宽或采样频率过低导致。只有提高采样频率,使之达到最高信号频率的两倍以上,或降低功率分析仪有效带宽,使其低于采样频率的二分之一,才能用采样样本正确还原信号;  抗混叠滤波器:是一个低通滤波器,用以在输出电平中把混叠频率分量降低到微不足道的程度。这种滤波器是将信号的高频信号滤去,是对原始信号的一种预处理,使信号达到跟功率分析仪有效带宽“匹配”的要求。三、什么情况下功率分析仪有效带宽可以欠采样?  有些功率分析仪采用欠采样技术,欠采样是指采样频率低于两倍的功率分析仪有效带宽,违反采样定理。但是,当信号属于较严格周期信号时,对连续多个周期尽心欠采样,而每个周期的采样序列有一个固定的延时。比如说,采样频率为100kHz,采样周期为10nS,第一个周期从0时刻开始采样,而第二个周期5nS(从二分之一采样周期)处开始采样,然后,将两个周期的采样数据合并,就得到了一个周期的200kHz采样频率的采样样本序列。欠采样技术在信号并非严格周期信号时,会有较大的误差。 信号上升时间与宽带有什么关系呢?请看:http://www.vfe.cc/NewsDetail-1819.aspx

  • 【资料】频谱分析仪的使用

    频谱分析仪的使用一、 什么是频谱分析仪在频域内分析信号的图示测试仪。以图形方式显示信号幅度按频率的分布,即X轴表示频率,Y轴表示信号幅度。二、 原理:用窄带带通滤波器对信号进行选通。三、 主要功能:显示被测信号的频谱、幅度、频率。可以全景显示,也可以选定带宽测试。四、 测量机制:1、 把被测信号与仪器内的基准频率、基准电平进行对比。因为许多测量的本质都是电平测试,如载波电平、A/V、频响、C/N、CSO、CTB、HM、CM以及数字频道平均功率等。2、 波形分析:通过107选件和相应的分析软件,对电视的行波形进行分析,从而测试视频指标。如DG、DP、CLDI、调制深度、频偏等。五、 操作:(一) 硬键、软键和旋钮:这是仪器的基本操作手段。1、 三个大硬键和一个大旋钮:大旋钮的功能由三个大硬键设定。按一下频率硬键,则旋钮可以微调仪器显示的中心频率;按一下扫描宽度硬键,则旋钮可以调节仪器扫描的频率宽度;按一下幅度硬键,则旋钮可以调节信号幅度。旋动旋钮时,中心频率、扫描宽度(起始、终止频率)、和幅度的dB数同时显示在屏幕上。2、 软键:在屏幕右边,有一排纵向排列的没有标志的按键,它的功能随项目而变,在屏幕的右侧对应于按键处显示什么,它就是什么按键。3、 其它硬键:仪器状态(INSTRUMNT STATE)控制区有十个硬键:RESET清零、CANFIG配置、CAL校准、AUX CTRL辅助控制、COPY打印、MODE模式、SAVE存储、RECALL调用、MEAS/USER测量/用户自定义、SGL SWP信号扫描。光标(MARKER)区有四个硬键:MKR光标、MKR 光标移动、RKR FCTN光标功能、PEAK SEARCH峰值搜索。控制(CONTRL)区有六个硬键:SWEEP扫描、BW带宽、TRIG触发、AUTO COVPLE自动耦合、TRACE跟踪、DISPLAY显示。在数字键区有一个BKSP回退,数字键区的右边是一纵排四个ENTER确认键,同时也是单位键。大旋钮上面的三个硬键是窗口键:ON打开、NEXT下一屏、ZOOM缩放。大旋钮下面的两个带箭头的键STEP配合大旋钮使用作上调、下调。(二)输入和输出接口:位于一起面板下边一排。TV IN测视频指标的信号输入口;VOL INTEN是内外一套旋钮控制、调节内置喇叭的音量和屏幕亮度;CAL OUT仪器自检信号输出;300Mhz 29dBmv仪器标准信号输出口;PROBE PWR仪器探针电源;IN 75Ω1M—1.8G测试信号总输入口。(三) 测试准备:1、限制性保护:规定最高输入射频电平和造成永久性损坏的最高电压值:直流25V,交流峰峰值100V。2、 预热:测试须等到OVER COLD消失。3、 自校:使用三个月,或重要测量前,要进行自校。4、 系统测量配置:配置是测量之前把测量的一些参数输入进去,省去每次测量都进行一次参数输入。内容:测试项目、信号输入方式(频率还是频道)、显示单位、制式、噪声测量带宽和取样点、测CTB、CSO的频率点、测试行选通等。配置步骤:按MODE键——CABLE TV ANALYZER软键——Setup软键,进入设置状态。细节为tune config调谐配置:包括频率、频道、制式、电平单位。Analyzer input输入配置:是否加前置放大器。Beats setup拍频设置、测CTB、CSO的频点(频率偏移CTB FRQ offset、CSO FRQ offset)。GATING YES NO是否选通测试行。C/N setup载噪比设置:频点(频率偏移C/N FRQ offset)、带宽。(四) 读取结果的方法:1、 电平的读取:主要使用参考电平REF。仪器屏幕图形上最上边的一行水平线是参考电平线。该线表示的电平为参考电平,其数值和单位显示在屏幕左上角。参考电平的值可以改变:按AMPLITUDE硬键,旋转大旋钮就可以改变,数字随时显示出来。图形每格的分贝数dB/DIV显示在屏幕左上角。2、频率的读取:图形里的中心频率、起始频率、终止频率三条竖线,各自代表的频率数显示在屏幕的下方。中心频率由Frequency硬键旋大旋钮调整;起始和终止频率由Span硬键旋大旋钮调整(实际是改变扫描宽度)。3、光标的使用:按MKR键,屏幕曲线上将出现闪动的光标。光标所在位置的电平和频率显示在屏幕左上角。光标可任意移动,移动到什么位置,就显示什么地方的频率和电平。4、 打印、存储5、视频测试六、 常用测试——频谱测试和频道测试(Cable TV分析):按MODE硬键,屏幕上显示两个软键:频谱测试和Cable TV分析,按对应的软键就进入各自的测试项目。1、 频谱测试:用三大硬键加上大旋钮即可实现一般分析。2、 频道测试:按Cable TV ANALIZER盘软键、再按屏道测试软键,显示出测试菜单(共四页),按频道选择CHINAL SELECT软键,用数字键盘输入欲测频道的标识频率(模拟电视频道为图象载波频率,数字频道为频道中心频率)后,就可以对该频道进行测试了。菜单内容如下:LISTEN ON/OFF 声音开/关EM DEV 调频调制深度VIEW INGRESS 图象串扰CARRIER LVL & FRQ载波电平/频率CARRIER/NOISE 载噪比HUM 交流声调制CROSS MOD交扰调制CSO/CTBDEPTH MOD 调制深度SYSTEM FRQ RSP 系统频率响应IN CHNL FRQ RSP 频道内频率响应DIE GAIN DIF PHAZ 微分增益、微分相位CLDI 色亮延时差DIGITAL CH POEWER数字频道功率FM RADIO调频广播七、 几个问题:1、 测C/N、CSO:仪器提供两个方法:关断调制和不关断调制。不关断调制,要在被测频道的调制信号里插入静止测试行,启动仪器的选通功能,可以不中断正常播出。测CSO须预先在Setup中设置拍频位置。以便仪器在设置的频率上找拍频。2、 测HUM、CM必须关掉调制(不关载波)。3、 测CTB必须关掉载波。因为CTB产物集中分布在载频近旁。关断载频后,CTB、CSO产物都可以在屏幕上看到。区别哪个是CTB还是CSO,利用他们与输入电平的关系来判断。4、 下列测试项目需要在场逆程插入静止测试行:不关断调制测C/N、CSO;测CTB;

  • 频谱分析仪常见六大问题答疑

    频谱分析仪是一种常用的[url=http://www.d117w.com]电子测试测量仪器[/url],主要用于射频和微波信号的检测,在许多领域有一定的应用。频谱分析仪的功能相对比较强大,初学者在使用光谱仪方面有一些常见的问题需要用户的注意,在使用频谱分析仪测试容易进入一些误区和疑惑。今天的小编向大家介绍[url=http://www.d117w.com/xwzx/cjwt/539.html][b]频谱分析仪使用的常见六大问题[/b][/url]。[align=center][img=频谱分析仪]http://www.d117w.com/uploads/171223/1-1G223145I3913.jpg[/img][/align][b] 频谱分析仪六大常见问题解答[/b]  Q1:如何设置频谱仪最佳的灵敏度观察微弱信号  A:首先根据被测小信号的大小设置相应的中心频率、扫宽(span)以及参考电平 然后在频谱分析仪没有出现过载提示的情况下逐步降低衰减值 如果此时被测小信号的信噪比小于15db,就逐步减小rbw,rbw越小,频谱分析仪的底噪越低,灵敏度就越高。  如果频谱分析仪有预放,打开预放。预放开,可以提高频谱分析仪的噪声系数,从而提高了灵敏度。对于信噪比不高的小信号,可以减少vbw或者采用轨迹平均,平滑噪声,减小波动。  需要注意的是,频谱仪测量结果是外部输入信号和频谱分析仪内部噪声之和,要使测量结果准确,通常要求信噪比大于20db。  Q2:分辨率带宽(rbw)是不是越小越好?  A:rbw越小,频谱分析仪灵敏度就越好,但是,扫描速度会变慢。最好根据实际测试需求设rbw,在灵敏度和速度之间找到平衡点-既保证准确测量信号又可以得到快速的测量速度。  Q3:平均检波方式(averagetype)如何选择:power?logpower?voltage?  logpower对数功率平均:又称videoaveraging,这种平均方式具有最低的底噪,适合于低电平连续波信号测试。但对”类噪声“信号会有一定的误差,比如宽带调制信号w-cdma等。  功率平均:又称rms平均,这种平均方式适合于“类噪声“信号(如:cdma)总功率测量。  电压平均:这种平均方式适合于观测调幅信号或者脉冲调制信号的上升和下降时间测量。  Q4:扫描模式的选择:sweep还是fft?  A:现代频谱仪的扫描模式通常都具有sweep模式和fft模式。通常在比较窄的rbw设置时,fft比sweep更具有速度优势,但在较宽rbw的条件下,sweep模式更快。  当扫宽小于fft的分析带宽时,fft模式可以测量瞬态信号 在扫宽超出频谱分析仪的fft分析带宽时,如果采用fft扫描模式,工作方式是对信号进行分段处理,段与段之间在时间上存在不连续性,则可能在信号采样间隙时,丢失有用信号,频谱分析就会存在失真。这种类型信号包括:脉冲信号,tdma信号,fsk调制信号等。  Q5:检波器的选择对测量结果的影响?  peak检波方式:选取每个bucket中的最大值作为测量值。这种检波方式适合连续波信号及信号搜索测试。  sample检波方式:这种检波方式通常适用于噪声和“类噪声”信号的测试。  negpeak检波方式:适合于小信号测试,例如,emc测试。  normal检波方式:适合于同时观察信号和噪声。  Q6:跟踪源(tg)的作用是什么?  A:跟踪源是频谱分析仪上的常见选件之一。当跟踪源输出经被测件的输入端口,而此器件的输出则接到频谱仪的输入端口时,频谱仪以及跟踪源形成了一个完整的自适应扫频测量系统。跟踪源输出的信号的频率能精确地跟踪频谱分析仪的调谐频率。频谱仪配搭跟踪源选件,可以用作简易的标量网络分析,观测被测件的激励响应特性曲线,例如:器件的频率响应、插入损耗等。  以上给大家解答了一些关于频谱分析仪在使用过程中经常遇到的一些问题,遇到这些问题可以根据频谱分析仪工作原理来分析。通过对于频谱分析仪的常见问题的了解,在对于频谱分析仪的使用可加深了解,能够更快的提高效率。

  • 出售安捷伦8753E HP8753E网络分析仪

    广东欧程电子仪器有限公司(东莞)联系人:肖菲 135-6081-3766公司地址:东莞市塘厦镇宏业北路148号升联创展大厦508公司网址: http://www.ony5117.com提示:如果您找不到联系方式,请在浏览器上搜索:产品名称 8753E 品 牌 HP 产品型号 8753E 产品指标 30kHz~3或6GHz 产品型号HP8753E射频网络分析仪 ★频率范围30kHz~3或6GHz ★带有固态转换的集成化S参数测试装置 ★达110dB的动态范围 ★快的测量速度和数据传递速率 ★大屏幕LCD显示器加上供外部监视器用的VGA输出 ★同时显示所有4个S参数 ★将仪器状态和数据存储/调用到内置软盘驱动器 ★可选用的时域测量和扫描谐波测量 HP 8753E射频网络分析仪为满足研制实验室或生产制造的测试需求在速度、性能和方便使用上提供了****的结合。8753E以其覆盖3或6GHz频率范围的集成化S参数测试装置、达110dB的动态范围以及频率扫描和功率扫描为表征有源或无源网络、元器件和子系统的线性和非线性特性提供了圆满的解决方案。所使用的新型微处理器使测量和数据传递速率比以往的型号快达7倍之多。 网络分析仪的特点是有2个独立的测量通道可同时测量和显示所有4个S参数。可以选择用幅度、相位、群延迟、史密斯圆图、极坐标、驻波比或时域格式来显示反射和传输参数的任意组合。便于使用的专用功能键能迅速访问各个测量功能。可以利用达4个刻度格子在高分辩率的LCD彩色显示器上以重叠或分离屏面的形式来观察测量结果。为了驱动更大的外部监视器以便于观察增加了与VGA兼容的输出。 技术指标摘要 测试装置 集成化的S参数测试装置以50Ω(标准)或75Ω(选件075)提供完满的正向和反向测量。外部测试装置由HP 8753E选件011提供。 测试端口输出 频率特性 范围 30kHz~3GHz(标准) 30kHz~6GHz(选件006) 300kHz~3GHz(选件011) 30kHz~6GHz(选件011、006) 分辩率1Hz 精度±10ppm(在25℃±5℃时) 输出特性 功率范围 85~+10dBm 85~+8dBm(选件075) 分辩率0.05dB 扫描范围25dB 电平精度±1.0dB(相对于0dBm输出电平) 电平线性(30kHz~300kHz典型值) (15~+5dBm)±0.2dB (+5~+10dBm)±0.5dB 阻抗50Ω(标准)75Ω(选件075) 二次谐波在+10dBm处25dBc(16MHz~3GHz) 三次谐波在+10dBm处25dBc(16MHz~2GHz)非谐波寄生信号(典型值) 与混频器有关的非谐波寄生信号在+10dBm处30dBc 测试端口输入特性 频率范围30kHz~3GHz(标准) 30kHz~6GHz(选件006) 平均噪声电平 3kHz BW: 82dBm(3GHz), 77dBm(3~6GHz) 10Hz BW: 102dBm(3GHz), 97dBm(3~6GHz) 最大输入电平+10dBm 损坏电平±26dBm或35Vdc 阻抗50Ω(用选件075时为75Ω) 谐波(选件002) 二次谐波在+8dBm处为15dBc 三次谐波在+8dBm处为30dBc 谐波测量精度在25℃±5℃时 16MHz~3GHz: ±1dB 3GHz~6GHz: ±3dB(带选件006) 谐波测量动态范围 40dBc(输出=10dBm输入15dBm) 群延迟特性 范围1/(2×zui小孔径) 孔径(可以选择的) zui大频率间隔的20% zui小(频率间隔)/(点数-1) 群延迟精度(单位为秒) ±(相位精度)(单位为度)/(360×孔径(Hz)) 结构特性 尺寸425(宽)mm×222(高)mm×457(长)mm 重量净重21公斤 备注:本公司专业经营各类二手进口仪器(销售、租赁业务),成色新,价格低,技术先进、质量可靠、性能稳定的优良产品。长期承接销售、租赁、维修、回收二手高档仪器, 包括Agilent、HP、Anritsu、Advantest、R/S、/MARCONI等世界知名品牌的具备丰富的经验和库存!

  • 网络分析仪的实用技术指标

    网络分析仪是电子测量领域内的重要仪器,可以分析各种微波器件和组件。它具有频域和时域两类测试功能,可以很好地完成诸如滤波器、放大器、混频器以及系统中有源和无源微波组合等的各种参数的调试、测试。在网路分析仪研发过程中,检验是否合格,通常会以[url=http://www.d117w.com/xwzx/hyxw/53.html]网络分析仪技术指标[/url]作为基本的参考因素。[align=center][img=网络分析仪]http://www.d117w.com/uploads/171211/1-1G21112231I00.jpg[/img][/align]  1. 频率准确度:  顾名思义,准确度是判断一台仪器的质量好差问题的关键因素,这里所讲到的是指网络分析仪的源,通指输出的频率显示值与实际真实值的相差程度,也就是接近程度。  2. 功率准确度:  是指网分内的源,输出的功率显示值相对于真实值的接近程度。  3. 扫描速度  扫描速度与测量的效率是成正比的,网络分析仪的扫描速度自然是越快越好。  4.频率范围:  网络分析仪的频率范围是最基本的一个参数,通常的网络分析仪中配置高级的网分会到67G上下波动,极少会出现超过67G的现象,要是超过了怎么办?这会儿变频器就派上用场了。具体详情可以咨询德亿科技。  5. 频率分辨力:  这个不难理解,当做是网络分析仪查看频率的可见最小视力表,频率的最小值能够达到多少呢?这个指标常见1Hz或者0.1Hz。  6. 动态范围:  动态范围有两种定义方式:接收机动态范围和系统动态范围。  接收机动态范围:Pmax-Pmin。为了实现更大的接收机动态范围,可能需要使用放大器。  系统动态范围:Pref-Pmin。  大家从上面的公式可以看出:一般接收机的动态范围会大于系统动态范围。  7. 本底噪声  网络分析仪的本底噪声Pmin, 也就是系统的灵敏度。接收机的本底噪声DANL(英文全名 Display Average Noise Level)是网络分析仪的一个重要技术指标, 它有助于确定分析仪的动态范围。一般本底噪声都是归一化以后的噪声,也就是以dBm/Hz为基础单位。  网路分析仪技术指标不单单只有这一点,网络分析仪技术指标重要又容易理解的几点已经列出来了,在网络分析仪选型的角度上,就需要再考虑具体的应用环境。

  • 安捷伦8753ES 网络分析仪

    安捷伦8753ES 网络分析仪

    http://ng1.17img.cn/bbsfiles/images/2011/12/201112301356_342815_2390416_3.jpgAgilent 8753ES产品说明: 8753ET和8753ES射频网络分析仪为满足研制实验室或生产制造的测试需求,在速度、性能和方便使用上提供了无与伦比的结合。8753ET和8753ES以其覆盖3或6GHz频率范围的集成化S参数测试装置、达110dB的动态范围以及频率扫描和功率扫描,为表征有源或无源网络、元器件和子系统的线性和非线性特性提供了高效能的解决方案。30KHZ-3GHZ-6GHZ 产品系列的特点 选择传输/反射分析仪(ET型)或S参数分析仪(ES)允许您针对您的应用选择性能与价格之间的最佳关系。网络分析仪的特点是有2个独立的测量通道,可同时测量和显示所有4个S参数。可以选择用幅度、相位、群延迟、史密斯圆图、极坐标、驻波比或时域格式来显示反射和传输参数的任意组合。便于使用的专用功能键能迅速访问各个测量功能。可以利用达4个刻度格子在高分辨率的LCD彩色显示器上以重叠或分离屏面的形式来观察测量结果。为了驱动更大的外部监视器,以便于观察,增加了与VGA兼容的输出。 测试时序功能允许一次键入来迅速、反复执行复杂的任务。在时序工作方式下,只需从面板测量一次,分析仪便能储存键入,以致无需额外编程。还可以利用测试时序经并行或GPIB端口对外部装置进行控制。 8753ES网络分析仪,30KHz~3GHz 选件002 谐波测量功能 选件006 6GHz频率扩展 选件010 时域功能 选件011 除去内置测试装置 选件014 可配置的测试装置 选件075 75Ω阻抗 选件01D5 高稳定度频率基准 8753ES升级配件 选件002 谐波测量升级配件 选件006 标准件的6GHz升级配件 选件[font=Ca

  • 【分享】频谱分析仪-E4440A

    仪器名称: 频谱分析仪-E4440A 仪器型号: 频谱分析仪 仪器品牌: 安捷伦 仪器指标: 3 Hz - 26.5GHz具有宽广观察角的16.8cm高分辨率彩色显示器非常便于识别所关心的信号。 下一代用户接口改善了使用的方便性。内置帮助能提供立即协助而无需使用手册。需要使用手册时,它将将以打印形式或在CDRON和全球网上提供。 若干单按键测量,如邻近信道功率(ACP),占用带宽,发射带宽信道功率,10个峰值表格和谐波失真测量能更快地给出重复性更佳的测量结果。 带有容限和合格/不合格住处怕多条极限线简化了生产测试。具有1Hz分辨率的内置频率计数器能对各个单独信号进行精确测量. 在可扩展用户存储吕中可以贮存达200条迹线或200个状态或多个测量应用软件。能利用软盘驱动器来贮存测量结果,并将测量结果传送至PC机,或利用Agilent Benchlind经GPIB和RS-232接口进行传送,SCPI遥控语言和即插即用驱动器增强了远程控制程序的开发。 3年全球保用期可以降低物主费用。测量速度:28次更新/秒 ·测量精度:±1dB ·可选用的10Hz分辨事宽滤波器 ·机箱可容纳6插槽选件卡 ·97dB三阶动态范围 ·能在现场使用的坚固,便于携带的机箱 ·3年保用期。 Agilent ESA-E系列频谱分析仪 Agilent ESA-E系列通用,便携式频谱分析仪拥有在同等价位上以往无法提供的许多性能,特点和灵活性。5咱型号可以提供从9kHz到1.5GHz与26.5GHz之间的频率范围。 测量速度快 5ms的全程射频繁扫描时间和每秒达88次的测量速度可以为您提供实际上的实时测量响应,这意味着将花较少时间对电路进行测试和调整,高速远程测量和每秒达19次测量的数据传送速度在自动测试环境中能缩短关键的测试时间,可选用的20μs零频率间隔扫描时间展出时域中的快速变化信号。

  • 【转帖】电子测量仪的分类

    1.电子测量仪的分类 电子测量仪的分类方法按不同的要求,分类不同,如按其功能,可分为下列几类。 1.1用于电量测量的仪器: 测量电流(I)、电压(V)、电功率(P)、电能(W)、电荷强度(E)等。 如:电流表、电压表、毫伏表、功率表、电能表、电荷统计计、万用表等。 1.2用于元件参数测量的仪器: 测量电阻(R)、电感(L)、电容(C)、阻抗(Z)、品质因素(Q)、损耗角tg、电子器件参数等。 如:微欧表、阻抗表、电容表、LCR测试仪、Q表、晶体管式集成电路测试仪、图示仪等。 1.3用于仪表波形测量的仪器: 测量频率(f)、周期(T)、相位(∮)、失真仪(V)、调幅(AM)、调频(FM)、谐波等。 如:频率计、石英钟、相位计、波长计、各类示波器、失真分析仪、调制度分析仪、音频分析仪、谐波分析仪、频谱分析仪等。 1.4 用于电子产品,电子设备及模拟电路和数字电路性能测试的仪器。 测量产品或设备的漏电流特性,耐压特性,频率特性,增益(K)、增减量(A)、灵敏度(S)、噪声系数(Nf)、相位特性、电磁干扰特性等。 如:漏电流测试仪、耐压测试仪、扫频仪、噪声系数测试仪、网络分析仪、逻辑分析仪、相位特性测试仪、EMC测试仪等。

  • 频谱分析仪测量电磁干扰

    电磁干扰是电子产品设计中不可忽略的一个重要影响因素,要解决电磁干扰问题,就必须知道干扰源和发生的干扰幅度。测量电磁干扰源,有些工程师可能首先会想到使用数字示波器,但是示波器其实不是最好的测量电磁干扰的仪器,主要是因为:1、示波器测量取得的数据没办法和现有的标准进行比较,还需要将其波形转换成频域频谱才能进行比较;2、使用数字示波器没办法对叠加在一起的高频/低频信号进行测量;3、示波器的灵敏度达不到测量电磁干扰的层级。所以,除了示波器,还有一个更好的测量电磁干扰的仪器,那就是频谱分析仪。 频谱分析仪的工作原理如下图所示,由天线接收到信号,然后经过混频后,使信号频率达到中频,再经过中频放大器进入检波阶段,经过检波后再通过视频放大器将信号进行放大然后显示出来,就能测量出电磁干扰信号的数据。http://www.xmhaotian.com/upload/fck/14262318571452287212.jpg 频谱分析仪使用操作参数 1、扫描时间。扫描时间指的是从频谱仪从信号的频率最低端扫描到最高端所使用的时间,如果扫描时间偏短的话,则测量的信号幅度会比实际中信号幅度小。 2、频率扫描范围。如果扫描的频率范围越宽的话,那么测量的时间就会加长,测量精度就会降低,所以应尽量使用较小的频率范围来进行测量。 3、中频分辨宽带。通过对宽带的调整,可以提高频谱仪的选择性(选择性越高,可以对距离很近的两个信号进行测量)和频谱仪的灵敏度。

  • 【转帖】智能工业电导仪误差来源及分析:电源频率引起的误差

    【转帖】智能工业电导仪误差来源及分析:电源频率引起的误差

    工业电导仪一般采用分压法测量溶液的电导,假如用直流电源作为外加电压,就会产生极化现象,使溶液的等效电阻发生变化 智能工业电导仪采用交流电源作为外加电压以消除极化造成的影响,但由此产生的后果是电导池系统便不再是纯电阻,而是包括容抗的阻抗,其分布情况见图1。但在考虑溶液浓度与电导的关系时,只能把电导池看作纯电阻元件,且在仪表定标时也以电阻箱代替它进行刻度,所以在测量溶液的电导时会产生误差。其大小与电源频率的关系如下。[img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912302155_193108_1615922_3.jpg[/img]图中Rl , 为电极电阻 为极化电阻 R3为电解液电阻 C1为电极表面双电层电容 C2为电解液电容。由图1知,与待测成分有关的部分是Rs,为了提高测量灵敏度,应使R3占总阻抗的比例越大越好,所以测量低浓度范围内的溶液,R3占的比例就大,仪表有较高的灵敏度。容抗Ze=1/2πfC。由此知,为降低与R3串联的C1, 的容抗,电源的频率取高些更为有利 同时提高电源频率也有助于减小极化电阻,但频率过高,会降低C2的容抗,这对精确测量R3是不利的。基于上述分析,智能工业电导仪采用了1 kHz方波电压,增强了驱动电压的负载能力,以保证电压的稳定性,使得仪表的测量误差小于1%,较模拟工业电导仪精度提高1%~20%。

  • 美国安捷伦手持式射频分析仪N9912A(图放的是N9923A)

    东莞市欧诺谊电子仪器有限公司联系人:肖经理 13560813766地址:东莞市塘厦镇宏业北路148号升联大厦508室产品简介美国安捷伦手持式射频分析仪N9912AN9912A美国安捷伦(Agilent)手持式射频分析仪是功能Z完整的手持式仪器,可在更短时间内处理复杂的网络测试问题;它综合了电缆/天线分析、矢量网络分析、频谱分析、功率计测量、矢量电压表等功能;其坚固、紧凑、轻便而且防风雨,可电池供电,非常适用于无线网络的安装和维护。详情介绍美国安捷伦手持式射频分析仪N9912AN9912A美国安捷伦(Agilent) FieldFox手持式射频分析仪主要技术指标:电缆和天线分析● 频率范围:2 MHz至4或6 GHz可选● 对回波损耗、电压驻波比(VSWR)、插入损耗/传输损耗、单端口电缆损耗和故障定位进行测量矢量网络分析● 2 MHz至4或6 GHz可选● S11幅度和相位,S21幅度● 史密斯圆图显示电缆和天线系统中的阻抗匹配特性频谱分析● 频率范围:100 kHz至4或6 GHz可选● 显示平均噪声电平:-130 dBm(前放关), -148 dBm(前放开)● 分辨率带宽:10Hz - 2MHz● 幅度精度:±1.5 dB,±0.6 dB(典型值)● 三阶失真(TOI):+18 dBm● 可测量信道功率、相邻信道功率ACP和占用带宽OBW功率计● 频率范围:9 kHz至 24 GHz● 使用U2000系列 USB功率传感器进行功率测试,无需外部校准● 可在-60dBm至+44dBm的高功率内进行平均功率测量矢量电压表● 利用“归零”功能可测量一个器件相对于“标准器件”的电长度和相移,无需再校准● 轻松匹配两个或多个器件的电长度、确保在不同器件上传输的信号具有相同的延迟主要突出特点● 集成的 QuickCal快速校准功能,内置校准件的电缆/天线测试仪,具有可靠的精度和出色的可重复性● CalReady功能保证开机后即可在射频端口处得到了校准,做好了精确测量的准备比传统手持测试仪表测试速度快50%● 在频谱分析仪模式下动态范围大(96dB)、灵敏度高(-148dBm)● 任务驱动式用户界面,易于使用本公司专业经营各类二手进口仪器(销售.租赁业务),二手仪器货源广阔,绝大部分将继续直接从国外引进,成色新,价格低,性价比极高。承接HP .爱德万等各种高档仪器维修,长期销售、收购频谱分析仪,音频分析仪,网络分析仪,信号源,GPIB卡等等二手高档仪器,如有兴趣,请和我们联系! 包括Agilent、HP、Anritsu、Advantest、R/S、/MARCONI、阳光等世界知名品牌的网络分析仪、频谱分析仪、综合测试仪、数字通讯测试仪、高频信号源、高频示波器、调制度仪、电声测试仪,音频分析仪、等二手高频通讯测试仪器仪表的销售及租赁业务。 本公司长期维修,租赁,销售和收购:频谱分析仪,示波器,网络分析仪,音频分析仪,万用表,电子负载,信号源等各类进口二手仪器。欢迎来电咨询或亲临选购!![img=,690,517]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181044425800_7929_6412468_3.jpg!w690x517.jpg[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181044426339_3802_6412468_3.jpg!w690x517.jpg[/img][img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181044428229_7640_6412468_3.jpg!w690x690.jpg[/img][img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181044432287_5128_6412468_3.jpg!w690x690.jpg[/img]

  • 拉曼光谱分析仪是什么设备

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=16px]拉曼光谱分析仪是什么设备,拉曼光谱分析仪是一款专门针对现场快速检测的便携式设备。它基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析,以得到分子振动、转动方面的信息,并应用于分子结构研究的一种分析方法。拉曼光谱分析仪主要工作原理包括使用高强度、单色的激光作为光源,通过散射装置使激光束聚焦并由待测样品散射,然后通过光谱仪分离频率差的散射光并测量其强度,最后通过探测器测量散射光的强度,并经过数据分析确定样品的分子结构、化学成分和其他物理特性。拉曼光谱分析仪在多个领域都有应用,包括食品安全快速检测、科研院所和高等院校的物理和化学实验室、生物及医学领域等光学方面的物质成分判定与确认,以及刑侦及珠宝行业进行毒品的检测和宝石的鉴定等。此外,它也是一种用于能源科学技术领域的分析仪器。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405161012000198_1664_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 【分享】频谱分析仪实用5点技巧

    1) 频谱分析仪的校准:频谱分析仪一般都有固定幅度和频率的校准器,使用频谱分析仪测量信号特别绝对信号电平测量时,需要对频谱分析仪进行校准,以保证信号测量精度;另外,通过校准信号的测量,可以检查频谱分析仪是否有问题。2) 射频输入信号电平小于频谱分析仪允许的安全电平:在频谱分析仪输入端接入射频信号之间,一定要对输入信号电平进行正确估算,避免频谱分析仪射频输入大于频谱分析仪允许的安全电平,否则将会烧毁频谱分析仪输入衰减器和混频器。特别是在高功率信号测量中,要格外小心谨慎。例如用频谱分析仪测量1W以上高功率放大器时,注意在频谱分析仪输入端接衰减器,以使频谱分析仪的射频输入信号小于频谱分析仪允许的安全电平。3) 确定频谱分析仪是否允许直流信号输入:某些频谱分析仪不允许直流信号输入,因此注意测量信号是否包含直接成分。特别是在某些系统中,射频信号和直流信号用同一根电缆传输,此时要特别小心,信号接入频谱分析仪射频输入端口之前,一定在频谱分析仪输入端接隔直流器,以免损坏仪器。例如在很多卫星通信系统,低噪声放大器的直流加电线和射频信号传输采用同一根电缆,测量这样射频信号时,特别注意在频谱分析仪射频输入接隔直流器,保护频谱分析仪的射频输入电路。4) 低电平信号测量:频谱分析仪的灵敏度是指在特定带宽下,频谱分析仪测量小信号的能力。因此,在测量低电平信号时,特别是测量信号接近频谱分析仪本底噪声时,应减小频谱分析仪的射频衰减和分辨带宽,提高频谱分析仪的灵敏度,提高低电平信号的测量精度。另外减少视频带宽和采用视频平均技术,虽然不影响频谱分析仪的灵敏度,但可以改善小信号测量精度。5) 合理设置频谱分析仪参数:在测试射频信号时,合理设置频谱分析仪的分辨带宽、扫频带宽、视频带宽和扫描时间等,确保频谱分析仪CRT不出现测量不准的信号提示。当频谱分析仪CRT出现测量不准信息,此时测量无法保证测量精度。

  • 增加电工仪器版面----电子测量仪的分类

    ”电工仪器“小版面的增加是为了更好地充实仪器信息全面性,争取能有个积极的、发展的作用。1.电子测量仪的分类 电子测量仪的分类方法按不同的要求,分类不同,如按其功能,可分为下列几类。 1.1用于电量测量的仪器: 测量电流(I)、电压(V)、电功率(P)、电能(W)、电荷强度(E)等。 如:电流表、电压表、毫伏表、功率表、电能表、电荷统计计、万用表等。 1.2用于元件参数测量的仪器: 测量电阻(R)、电感(L)、电容(C)、阻抗(Z)、品质因素(Q)、损耗角tg、电子器件参数等。 如:微欧表、阻抗表、电容表、LCR测试仪、Q表、晶体管式集成电路测试仪、图示仪等。 1.3用于仪表波形测量的仪器: 测量频率(f)、周期(T)、相位(∮)、失真仪(V)、调幅(AM)、调频(FM)、谐波等。 如:频率计、石英钟、相位计、波长计、各类示波器、失真分析仪、调制度分析仪、音频分析仪、谐波分析仪、频谱分析仪等。 1.4 用于电子产品,电子设备及模拟电路和数字电路性能测试的仪器。 测量产品或设备的漏电流特性,耐压特性,频率特性,增益(K)、增减量(A)、灵敏度(S)、噪声系数(Nf)、相位特性、电磁干扰特性等。 如:漏电流测试仪、耐压测试仪、扫频仪、噪声系数测试仪、网络分析仪、逻辑分析仪、相位特性测试仪、EMC测试仪等

  • TEC半导体制冷加热式微型高精度温度环境试验箱在压电传感器频率温度特性测试中的应用

    TEC半导体制冷加热式微型高精度温度环境试验箱在压电传感器频率温度特性测试中的应用

    [size=16px][color=#339999]摘要:为解决石英晶体微量天平这类压电传感器频率温度特性全自动测量中存在的温度控制精度差和测试效率低的问题,本文在TEC半导体制冷技术基础上,提出了小尺寸、高精度和全自动程序温控的解决方案,给出了温控装置的详细结构和实现高精度温度程序控制的具体手段。解决方案在为压电传感器频率温度特性测量提供精密温控能力的同时,关键是可快速进行全过程的自动温度程序运行,由此既保证精度又提高效率。[/color][/size][size=16px][color=#339999][/color][/size][align=center][size=16px][img=TEC半导体制冷加热式微型高精度温度环境试验箱在压电传感器频率温度特性测试中的应用,550,309]https://ng1.17img.cn/bbsfiles/images/2023/02/202302141513442750_3958_3221506_3.jpg!w690x388.jpg[/img][/size][/align][b][size=18px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 石英晶体微天平(Quartz Crystal Microbalance,QCM)作为一种超高灵敏的质量检测装置,其测量精度可达纳克级,并广泛应用于化学、物理、生物、医学和表面科学等领域中,用以进行气体、液体的成分分析以及微质量的测量、薄膜厚度及粘弹性结构检测等。石英晶体微天平实际上是一种压电传感器,它利用了石英晶体的压电效应,将石英晶体电极表面质量变化转化为石英晶体振荡电路输出电信号的频率变化,进而通过计算机等其他辅助设备获得高精度的测量结果。石英晶体微天平除了具有高灵敏度高和高精度之外,最大特点是结构简单和成本低,它由一薄的石英片组成,两侧金属化,提供电接触。QCM的工作原理类似于用于时间和频率控制的晶体振荡器,但QCM表面常暴露在周围环境中,且对环境温度变化非常敏感,QCM的一个重要技术指标就是频率温度特性。在QCM的具体应用中,温度变化会严重影响QCM测量结果,因此准确测量频率温度特性是表征评价QCM的一项重要内容。但在目前的各种频率温度特性测试装置中,特别是高精度温度控制装置,还存在以下问题:[/size][size=16px] (1)在常用的-10~+70℃的温度范围内需要对QCM进行多个设定点的高精度温度控制和频率测量,而目前常用温控技术往往控制精度偏低,若提高控制精度又带来测试时间过长的问题。[/size][size=16px] (2)专门用于压电晶体频率温度特性测试的恒温装置往往体积普遍偏大,内部温度均匀性较差,同样会带来温控精度差的问题,仅能用于批量压电晶体较低精度的频率温度特性测试。[/size][size=16px] (3)尽管采用了TEC半导体制冷技术可实现QCM的高精度温度控制,实现了小型化和快速温控和频率测量,但存在的问题是多个温度点的自动化程序控制能力差,无法实现全温度区间内多个温度点的自动控制和频率测量。[/size][size=16px] 为了解决QCM这类压电传感器频率温度特性全自动测量中存在的上述问题,本文在TEC半导体制冷技术基础上,提出了高精度和全自动程序温控的解决方案,给出了温控装置的详细结构和实现高精度温度程序控制的具体手段。解决方案在为压电传感器频率温度特性测量提供精密温控能力的同时,关键是可快速进行全过程的自动温度程序运行,由此既保证精度又提高效率。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 为了进行石英精度微天平(QCM)的频率温度特性测量,需要将QCM放置在一个受控的热环境中。为了提高热环境的温度控制精度,热环境的尺寸空间较小,并采用TEC模组进行加热和制冷,整个热控装置的结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=压电传感器频率温度测量温控系统示意图,690,209]https://ng1.17img.cn/bbsfiles/images/2023/02/202302141516237559_7391_3221506_3.jpg!w690x209.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 石英精度微天平频率温度特性温控装置结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,TEC被放置在铝制均热套和散热器之间,铝制均热套作为热稳定工作的密闭腔体,为整个腔体提供均匀的温度环境。散热器直接浸泡在水浴中使得TEC的工作表面达到较低的负温度,散热器也可以直接采用水冷板,水冷板内通循环冷却水。[/size][size=16px] 另外,在频率温度特性测试过程中,TEC要提供高低温范围内温度控制,那么在高低温运行时,TEC工作表面和散热器之间存在较大差异,因此,在TEC周围布置隔热材料以减少其两侧之间的热流,从而增加TEC工作面的温度均匀性。[/size][size=16px] 铝制均热套放置在TEC工作表面的顶部,在均热套与TEC之间采用银胶以减小均热套与TEC工作表面之间的接触热阻,铝制均热套被隔热材料包裹以减少与环境的热交换。[/size][size=16px] 在铝制均热套内布置了两只电阻型温度传感器,其中一只安装在铝制均热套的侧壁上作为控温传感器,此温度信号提供给超高精度的PID控制器进行温度自动控制。另一只用来测量固定在铝制支架上的QCM组件温度。[/size][size=16px] 在图1所示的温控装置中,为满足不同尺寸和结构的TEC温控装置,采用了独立的TEC换向电源以满足不同加热功率的需要。在温控器方面,则采用了超高精度的PID控制器,可直接对TEC进行加热制冷双向控制,其中AD为24位,DA为16位,最小输出百分比为0.01%,PID参数自整定,可编程程序控制,由此可实现高精度的温度控制。[/size][size=16px] 对于图1所示结构的温控装置,在全温区范围内设定点从-10变化到+70℃,步进5℃,其温度控制可实现±12mK的温度稳定性和±15mK的设定值精度。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 上述压电传感器频率温度特性测试的温控解决方案,主要具备以下几个特点:[/size][size=16px] (1)采用了TEC半导体制冷组件,可低成本的实现压电传感器频率温度特性测试过程中的精密温度控制,并使得整个频率温度特性测试装置的体积非常小巧。[/size][size=16px] (2)整个温控结构的设计简便,但可以实现0.02℃以内的控制精度和重复性,完全能满足各种压电传感器的频率温度特性测试需要。[/size][size=16px] (3)由于采用了目前最高精度的工业级可编程PID控制器,具有24位AD、16位DA和0.01%的最小输出百分比,这是实现高精度TEC温度控制的必要条件。[/size][size=16px] (4)高精度的可编程PID控制器可按照设定程序进行全测试过程的温度自动控制,设定程序可通过随机的计算机软件进行编辑和修改,控制过程参数可自动进行显示和存储。[/size][size=16px] 总之,本文为实现高精度、简便小巧和低价格的压电传感器频率温度特性测试中的温度控制提供了切实可行的解决方案,为单个或少量压电传感器稳频特性评价提供了有效的技术途径。[/size][size=16px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【转帖】频谱分析仪和噪声系数测量

    无处不在的噪声是射频和微波设计师的敌人,对此不应感到惊奇。噪声限制了通信接收器检测弱信号的能力,从而妨碍设计师实现最佳的接收器性能。传输信号中的噪声恶化了性能,不仅是对传输信号,而且同样是对周围的频谱。由于噪声是普遍存在的,多年以前,射频和微波行业就建立了一个称为噪声系数的测量参数,以定量元件或系统给通过它的信号增加了多少噪声。 虽然噪声系数是一种用于描述射频和微波系统噪声和接收器灵敏度的参数,但它也是最重要和广泛使用的参数。对于各次测量和使用不同仪器的测量,噪声系数测量总是要求高精度和重复性。精度和重复性保证了元件和子系统制造商和他们的客户所进行规定性能测量的一致性。 噪声系数基础作为测量参数的噪声系数早在二十世纪四时年代就开始使用,工程师Harold Friis把它定义为用分贝(dB)表示的射频或微波器件输入处的信噪比(SNR)除以输出处的SNR。从它的名称可知,SNR是在给定传输环境中的信号电平与噪声电平之比。SNR越高,就有越多的信号超过噪声,使信号更容易检测。因此噪声系数是越低越好,因为在理想情况下,微波元件、子系统或系统应没有噪声施加到通过的信号上。但实际上所有电子器件都会增加一些噪声,叠加最低噪声的是最好的器件,这些器件有最低的噪声系数。 噪声系数的重要性有多高?不管如何估计噪声系数对系统整体性能和成本的重要性都不会过高。例如,把直播卫星的噪声系数降一半,即从2dB降到1dB,与把卫星转发器的功率增加25%在性能上有相同的效果。显然,制造商会发现增加空间发射机功率的成本要远远高于改进地面站接收器低噪声放大器(LNA)性能。 在卫星接收器生产线中,只需调整阻抗电平或选择适合的晶体管,就能把噪声系数降低1dB。1dB噪声系数的降低与增加天线25%的面积有同样效果。增加天线尺寸也增加了成本,加大了操纵和支持机构的体积和重量,对于有美学考虑的DBS这类应用,这样的天线是太大了。 在无线通信系统中,具有低噪声系数的基站可减小与之通信的移动台发射功率,这对于电池寿命,大小和重量都有积极的影响。 在发射机设计中噪声也极为重要。例如,无线基站线性功率放大器中过高的噪声会降低邻道接收质量,也就是达不到规章对干扰的要求。 进行噪声系数测量有几种技术和仪器可用于噪声系数的测量,从专用噪声系数分析仪到频谱分析仪,网络分析仪和真有效值功率计。如所预期的,专用的噪声系数分析仪提供最低的测量不确定度,其次是频谱分析仪(如果配备前置放大器)。Agilent ESA-E系列经济型频谱分析仪带有可选的集成前置放大器(选件1DS),可根据分析仪的频率范围提供10MHz至1.5GHz或3GHz的噪声系数测量。Agilent ESA-E系列频谱分析仪是PSA系列高性能频谱分析仪和 Agilent NFA系列噪声系数分析仪的补充。如果您的应用只需要中等性能的频谱分析工具,它就是最物美价廉的解决方案。过去使用频谱分析仪测量噪声系数需要许多步骤和若干数学计算,这是繁杂和容易出错的过程。现在,ESA-E系列新的噪声系数测量专用件实现了包括计算在内的整个过程自动化。这是非常精确和易于使用的解决方案。新的测量专用件是频谱分析仪丰富通用能力环境的集成部分,包括单键功率测量,以及与8?601A VSA软件链接的相位和调制分析。若要求更高的频谱分析能力和优异的仪器不确定度,用户可选择PSA系列频谱分析仪。PSA有您期望于高性能频谱分析仪的所有功能,以及与ESA-E系列同一用户界面的噪声系数测量专用件。因此,客户能无缝地从一种仪器转到下一种仪器,而不必担心还要去熟悉仪器间的细微差别。ESA- E系列和PSA系列频谱分析仪的用户可能会认为不再需要专用的噪声系数分析仪。但所有这三种仪器都有各自适应的环境。频谱分析仪是设计师手中最常用和功能最全的测量工具,几乎在每一张测试台上都能找到它。例如可首先定位寄生信号,然后测量器件在无干扰噪声测量频率处的噪声系数。这样,带噪声系数测量专用件的ESA-E系列就成为要以经济价格得到众多测量能力设计师的理想解决方案。这是业内最灵活的频谱分析仪,它带有插卡箱结构,完全适应对定制能力的要求。PSA系列是灵活性、速度、精度和动态范围的优异组合,可提供最先进的频谱分析功能。而噪声系数分析仪是完全针对应用的仪器,仅用于测量噪声系数、增益和相关量。与频谱分析仪及其它仪器相比,噪声系数分析仪更快,更易用、精度更高、频率范围更宽。因此是得到所可能最好不确定度的最高端的选择,特别是对于3GHz以上频率。在给出达26.5GHz全部性能指标的仪器中,最快和最精确的仪器是Agilent NFA系列噪声系数分析仪。

  • 在线油品分析仪从对油品特性指标的检测方便分几类

    在线油品分析仪类型很多,从对油品特性指标的检测上分,基本可以分为以下几类:1)油品的热挥发性分析仪:这类分析仪包括馏程、初馏点、干点、饱和蒸气压等。这种分析仪常用在蒸馏塔的馏出口,或应用于轻质油品调合过程中,用于监测油品的轻重组分的分布情况。2)油品的燃烧性能分析仪:如汽油的辛烷值分析仪、柴油的十六烷值分析仪等。这类分析仪一般是应用于油品调合过程,也可以应用于特定的油品加工过程,如催化重整装置的重整生成油的辛烷值监测。3)油品低温流动性分析仪:这类分析仪是用来评价油品在低温下的流动性能,主要应用于比汽油重的油品,如航空燃料油、柴油及润滑油。这些低温性能指标包括倾点、浊点、凝固点、冷滤堵塞点等。4)油品安全性能分析仪:这是对油品的输送和储存的安全性进行测试的试验,能够实现在线分析的这类指标主要是闭口闪点分析仪。5)油品中杂质组分分析仪:油品中的一些杂质会对油品的使用、输送、储存带来一些不利影响,这些杂质组分zui重要的就是原油及石油产品中的硫含量,硫不仅影响石油产品的品质,也会对石油加工过程产生多种影响。另外石油中的盐含量、酸值、氮含量、金属含量也是影响石油产品品质和加工过程的主要杂质检测指标。6)油品的其他物理性质分析仪:一些石油产品的固有物理特性,也都有相应的在线分析仪器,如密度、粘度、色度等,这些指标可以通过一些通用的在线分析仪进行检测

  • 【分享】Agilent(安捷伦)E4402B频谱分析仪3GHz

    产品名称: ESA-E 系列频谱分析仪仪器品牌: Agilent(安捷伦) 仪器型号: E4402B仪器产地: 美国技术指标: 100 Hz 至 3.0 GHz E4402B ESA-E 系列频谱分析仪 频率范围:100 Hz 至 3.0 GHz 主要特性与技术指标 性能0.4 dB的总体幅度精度+16 dBm TOI-166 dBm DANL,带有内置前置放大器1 Hz窄分辨率带宽(可选)www.shenmeilan.com 13640970743 1299231719

  • 握在手里的USB微型频谱分析仪信号源

    握在手里的[url=https://www.bjutc.com/]USB微型频谱分析仪[/url],重量只有95克体积小,功能强大的USB频谱分析仪,可以应对频谱分析仪各种挑战,频谱监测,微波测量,EMC测试,WIFI和无线网络测试。其价格只有普通频谱分析仪的十分之一不到,既减少桌面使用空间,又方便携带。配备PC端配套软件(可免费下载)。最高频率6.2GHz,频率范围从100Hz到6.2GHz;最小频率步进1Hz,频率稳定度是±0.28ppm.参考电平范围:高频段 -70dBm至+30dBm ;低频段 -50dBm至+30dBm 。调解功能:AM、FM、PM、ASK、FSK、PSK、MSK、GMSK、BPSK、8PSK、I&Q data、EVM、Eye diagram、Constellation 。外形尺寸:100mm(长)×25mm(宽)×25mm(高)。外接IQ输出: 工作温度:-10°C至+50°C存放温度:-50°C至+70°C 幅度测量范围:低频段:平均噪声电平至+10dBm 高频段:平均噪声电平至+24dBm(连续波)高频段:平均噪声电平至+28dBm(脉冲波)[url=https://www.bjutc.com/]USB微型频谱分析仪[/url]设计体积小巧易携带,USB直接供电设计配合PC端的软件可以出色完成传统台式频谱仪的基本项目测试,工作方式与传统频谱仪基本相同,非常适合户外现场测试测量,室内测量又可以缩小作台空间。该硬件通过USB接口与PC电脑互连,再结合高效灵活的软件,在电脑里完成对硬件的控制、分析和显示等测试测量工作。[url=https://www.bjutc.com/about.html]北京普信创业科技有限公司[/url]

  • 【资料】正确选择和使用逻辑分析仪

    正确选择和使用逻辑分析仪一、逻辑分析仪的发展  自20世纪70 年代初研制成微处理器,出现4位和8位总线,传统示波器的双通道输入无法满足8位字节的观察。微处理器和存储器的测试需要不同于时域和频域仪器。数域测试仪器应运而生。HP公司推出状态分析仪和Biomation公司推出定时分析仪(两者最初很不相同)之后不久,用户开始接受这种数域测试仪器作为最终解决数字电路测试的手段,不久状态分析仪与定时分析仪合并成逻辑分析仪。  20世纪80 年代后期,逻辑分析仪变得更加复杂,当然使用起来也就更加困难。例如,引入多电平树形触发,以应付条件语句如IF、THEN、ELSE等复杂事件。这类组合触发必然更加灵活,同时对大多数用户来说就不是那样容易掌握了。  逻辑分析仪的探头日益显得重要。需用夹子夹住穿孔式元件上的16根引脚和双列直插式元件上的只有0.1″间隙的引脚时,就出现探头问题。今天的逻辑分析仪提供几百个工作在200MHz频率上的通道信号连接就是个现实问题。适配器、夹子和辅助爪钩等多种多样,但是最好的办法的是设计一种廉价的测试夹具,逻辑分析仪直接连接到夹具上,形成可靠和紧凑的接触。  今天的发展趋势  逻辑分析仪的基本取向近年来在计算机与仪器的不断融合中找到了解决的办法。Tektronix公司TLA600系列逻辑分析仪着重解决导向和发展能力,亦即仪器如何动作和如何构建有特色的结构。导向采用微软的Windows接口,它非常容易驱动。改进信号发现能力必然涉及到仪器结构的变动。在所有要处理的数据中着重处理与时间有关联的数据,不同类型的信息采用多窗口显示。例如,对于微处理器来说,最好能同时观察定时和状态以及反汇编源码,而且各窗口上的光标彼此跟踪相连。  关于触发,总是传统逻辑分析仪中的难题。TLA600系列逻辑分析仪为用户提供触发库,使复杂触发事件的设置简单化,保证你精力集中解决测试问题上,而不必花时间去调整逻辑分析仪的触发设置。该库中包含有许多易于掌握的触发设置,可以作为通常需要修改的触发起始点。需要特殊的触发能力只是问题的一部分。除了由错误事件直接触发外,用户还希望从过去的时段去观察信号,找出造成错误的根源和它前后的关系。精细的触发和深存储器可提高超前触发能力。  在PC机平台上使用Windows,除了为广大用户提供了许多熟知的好处之外,只要给定正确的软件和相关工具,即可通过互联网进行远程控制,从目标文件格式中提取源码和符号,支持微软公司的CMO/DCOM标准,而且处理器可运行各种控制操作。  二、逻辑分析仪的选择  如果数字电路出现故障,我们一般优先就考虑使用逻辑分析仪来检查数字电路的完整性,不难发现存在的故障;但是在其他情况下你是否考虑到使用逻辑分析仪呢?譬如说:第一点如何观察测试系统在执行我们事先编制好的程序时,是不是真正地在按照我们设计好的程序来执行呢?如果我们向系统写入的是(MOV A,B)而系统则是执行的(ADD A,B),那会造成什么样的后果?第二点:怎么样真正地监测软件系统的实际工作状态,而不是用DEBUG等方式进行设置断点后,查看预先设定的某些变量或内存中的数据是我们预先想得到的值。在这里我们有第三、第四等等很多问题有待解决。  通常我们将数字系统分成硬件部分和软件部分,在研发设计这些系统时,我们有很多事情要做,譬如硬件电路的初步设计、软件的方案制定和初步编制、硬件电路的调试、 软件的调试、以及最终的系统的定型等等工作,在这些工作中几乎每一步工作都要逻辑分析仪的帮助,但是鉴于每个单位的经济实力和人员状况不同,并且在很多系统的使用中都不是要把以上的每个部分都进行一 遍,这样我们就把逻辑分析仪的使用分成以下几个层次:  第一个层次:只要查看硬件系统的一些常见的故障,例如时钟信号和其他信号的波形、信号中是否存在严重影响系统的毛刺信号等故障;  第二个层次:要对硬件系统的各个信号的时序进行很好的分析,以便最好地利用系统资源,消除由定时分析能够分析出的一些故障;  第三个层次:要对硬件对软件的执行情况的分析,以确保写入的程序被硬件系统完整地执行;  第四个层次:需要实时地监测软件的执行情况,对软件进行实时地调试。  第五个层次:需要进行现有客户系统的软件和硬件系统性的解剖分析,达到我们对现有客户系统的软件和硬件系统全面透彻地了解和掌握的功能。  对以上的几个层次的要求,我们可以看出,他们并不都需要很高档的逻辑分析仪,对于第一层次的使用者,他们甚至用一台功能比较好的示波器就可以解决问题,针对以上的几个使用层次,在选择仪器时可以选用相应的仪器。实际上逻辑分析仪也有几个层次,他们有:  1、 普通2~4通道的数字存储器,例如TDS3000系列(加上TDS3TRG高级触发模块),利用它的一些高级触发功能(例如脉冲宽度触发、欠幅脉冲触发、各个通道之间的一定的与、或、与或、异或关系的触发)就可以找到我们希望看到的信号,发现并排除一些故障,况且示波器的功能还可以作为其他使用,在这里我们只不过用了一台示波器的附加功能,可以说这种方式是最节省的方式。  2、当示波器的通道数不够时,也可以选用一些带有简单的定时分析功能的多通道定时分析仪器,如早期的逻辑分析仪和现在市面上还有的混合信号示波器,如Agilent的546××D示波器。  3、一些功能比较简单,速度不是特别快的的计算机插卡 式,基于Windows、绝大部分功能都由软件来完成的虚拟仪器,这类产品在国内的很多厂家都有生产。  4、采样速率、触发功能、分析功能都很强大的不可扩展的固定式整机。例TLA600系列。  5、功能更强扩展性更好的模块化插卡式整机;对不同的用户,可以针对需要,选择不同档次的仪器。  逻辑分析仪的一些技术指标:  1、逻辑分析仪的通道数 :在需要逻辑分析仪的地方,要对一个系统进行全面地分析,就应当把所有应当观测的信号全部引入逻辑分析仪当中,这样逻辑分析仪的通道数至少应当是:被测系统的字长(数字总线数)+被测系统的控制总线数+时钟线数。这样对于一个16位机系统,就至少需要68个通道。现在几个厂家的主流产品的通道数多达340通道以上。例Tektronix等。  2、定时采样速率 :在定时采样分析时,要有足够的 定时分辨率,就应当足够高的定时分析采样速率,我们应当知道,并不是只有高速系统才需要高的采样速率(见下表)现在的主流产品的采样速率高达2Gs/S,在这个速率下,我们可以看到0.5ps时间上的细节。  以下是一些很常见的芯片的工作频率和建立/保持时间的列表,我们可以看出,即使它们的工作频率很低,但在时间分析(Timing)中要求的分辨率也很高。表一:典型的数字设备  3、状态分析速率:在状态分析时,逻辑分析仪采样基准时钟就用被测试对象的工作时钟(逻辑分析仪的外部时钟)这个时钟的最高速率就是逻辑分析仪的高状态分析速率。也就是说,该逻辑分析仪可以分析的系统最快的工作频率。现在的主流产品的定时分析速率在100MHz,最高可高达300MHz甚至更高。  4、逻辑分析仪的每通道的内存长度:逻辑分析仪的内存是用于存储它所采样的数据,以用于对比、分析、转换(譬如将其所捕捉到的信号转换成非二进制信号【汇编语言、C语言 、C++ 等】,等在选择内存长度时的基准是“大于我们即将观测的系统可以进行最大分割后的最大块的长度。  5、逻辑分析仪的探头:逻辑分析仪通过探头与被测器件连接,探头起着信号接口的作用,在保持信号完整性中占有重要位置。逻辑分析仪与数字示波器不同,虽然相对上下限值的幅度变化并不重要,但幅度失真一定会转换成定时误差。逻辑分析仪具有几十至几百通道的 探头其频率响应从几十至几百MHz,保证各路探头的相对延时最小和保持幅度的失真较低。这是表征逻辑分析仪探头性能的关键参数。Agilent公司的无源探头和Tektronix公司的有源探头最具代表性,属于逻辑分析仪的高档探头。  逻辑分析仪的强项在于能洞察许多信道中信号的定时关系。可惜的是,如果各个通道之间略有差别便会产生通道的定时偏差,在某些型号的 逻辑分析仪里,这种偏差能减小到最小,但是仍有残留值存在。通用逻辑分析仪,如Tektronix公司的TLA600型或Agilent公司的HP16600型,在所有通道中的时间偏差约为1ns。因而探头非常重要,详见本站“测试附件及连接探头”。  a)探头的阻性负载,也就是探头的接入系统中以后对系统电流的分流作用的大小,在数字系统中,系统的电流负载能力一般在几个KΩ以上,分流效应对系统的影响一般可以忽略,现在流行的几种长逻辑分析仪探头的阻抗一般在20~200KΩ之间。  b)探头的容性负载:容性负载就是探头接入系统时,探头的等效电容,这个值一般在1~30PF之间,在现在的高速系统中,容性负载对电路的影响远远大于阻性负载,如果这个值太大,将会直接影响整个系统中的信号“沿”的形状改变整个电路的性质,改变逻辑分析仪对系统观测的实时性,导致我们看到的并不是系统原有的特性。 c)探头的易用性:是指探头接入系统时的难易程度,随着芯片封装的密度越来越高,出现了BGA、QFP、TQFP、PLCC、SOP等各种各样的封装形式,IC的脚间距最小的已达到0.3mm以下,要很好的将信号引

  • 哪位大侠能够提供HV-4B碳硫分析仪的使用规程呀?

    各位大侠,我们的实验室经过历次搬迁与换人,现在仪器的使用说明书已不见了,现在领导要求我写一份HV-4B碳硫分析仪的使用规程,还要针对每种实验的,那位大侠能给提供一份呀,只要这台机子的操作规程即可,不胜感激了!

  • 氨基酸分析仪检定规程

    本规程规定了氨基酸分析仪(以下称仪器)的检定方法。规程中所列检定方法适用于利用柱前衍生C18柱分离氨基酸,带自动恒温水解装置的高效仪器。仪器适合于分析含氨基酸的样品,可对水解氨基酸及游离氨基酸进行定性、定量分析。广泛用于生化、医药、食品、化工 及农业等领域。资料中心下载:http://www.instrument.com.cn/download/shtml/012547.shtml

  • 关于频谱分析仪的问题!

    在推销频谱分析仪时,因为实时频谱分析仪能显示周期性杂散波的瞬时反应,所以比别的仪器贵。除此之外它还有哪些优点呢?另外,我想知道根据它的频率怎么得出一个声压级的值?因为不知道这个在哪里问,只好发到这里。。。新手等各位解答[em45]

  • 【求助】阻抗频谱分析仪相关资料

    有关阻抗频谱分析仪4294A以及微波网络分析仪PNA8263B测介电常数相关的资料视频等。 分别列出他们的测量频率范围,样品要求及各自优缺点(包括同种仪器各种不同测量方式的优缺点)万分感谢!!

  • 【分享】-----红外光谱基团频率分析及应用

    红外光谱基团频率分析及应用 基团频率和特征吸收峰物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到。这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律。 实验表明,组成分子的各种基团,如O-H、N-H、C-H、C=C、C=OH和C C等,都有自己的特定的红外吸收区域,分子的其它部分对其吸收位置影响较小。通常把这种能代表及存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。一、基团频率区和指纹区(一)基团频率区 中红外光谱区可分成4000 cm-1 ~1300 cm-1和1800cm-1 (1300 cm-1 )~ 600 cm-1两个区域。最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。 在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。这种振动与整个分子的结构有关。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。基团频率区可分为三个区域:LT7U 键或芳香核共轭时,该峰位移到2220~2230 cm-1附近。若分子中含有C、H、N原子, -C  N基吸收比较强而尖锐。若分子中含有O原子,且O原子离-C  N基越近, -C  N基的吸收越弱,甚至观察不到。1900~1200 cm-1为双键伸缩振动区 该区域重要包括三种伸缩振动: ① C=O伸缩振动出现在1900~1650 cm-1 ,是红外光谱中很特征的且往往是最强的吸收,以此很容易判断酮类、 醛类、酸类、酯类以及酸酐等有机化合物。酸酐的羰基吸收带由于振动耦合而呈现双峰。② C=C伸缩振动。烯烃 的C=C伸缩振动出现在1680~1620 cm-1 ,一般很弱。单核芳烃的C=C伸缩振动出现在1600 cm-1和1500 cm-1附近,有两个峰,这是芳环的骨架结构,用于确认有无芳核的存在。③ 苯的衍生物的泛频谱带,出现在2000~1650 cm-1范围, 是C-H面外和C=C面内变形振动的泛频吸收,虽然强 度很弱,但它们的吸收面貌在表征芳核取代类型上是有用的。(二)指纹区d 1. 1800(1300)~900 cm-1区域是C-O、C-N、C-F、C-P、C-S、 P-O、Si-O等单键的伸缩振动和C=S、S=O、P=O等双键的伸缩振动吸收。 其中 1375 cm-1的谱带为甲基的 C-H对称弯曲振动,对识别甲基十分有用,C-O的伸缩振动在1300~1000 cm-1 ,是该区域最强的峰,也较易识别。 900~650 cm-1区域的某些吸收峰可用来确认化合物的顺反构型。 例如,烯烃的=C-H面外变形振动出现的位置,很大程度上决定于双键的取代情况。对于RCH=CH2结构,在990 cm-1和910 cm-1出现两个强峰;为RC=CRH结构是,其顺、反构型分别在690 cm-1和970 cm-1出现吸收峰,可以共同配合确定苯环的取代类型。二、常见官能团的特征吸收频率三、影响基团频率的因素 基团频率主要是由基团中原子的质量和原子间的化学键力常数决定。然而,分子内部结构和外部环境的改变对它都有影响,因而同样的基团在不同的分子和不同的外界环境中,基团频率可能会有一个较大的范围。因此了解影响基团频率的因素,对解析红外光谱和推断分子%( 结构都十分有用。 影响基团频率位移的因素大致可分为内部因素和外部因素。 内部因素:1. 电子效应 包括诱导效应、共轭效应和中介效应,它们都是由于化学键的电子分布不均匀引起的。(1)诱导效应(I 效应) 由于取代基具有不同的电负性,通过静电诱导作用,引起分子中电子分布的变化。从而改变了键力常数,使基团的特征频率发生了位移。 例如,一般电负性大的基团或原子吸电子能力强,与烷基酮羰基上的碳原子数相连时,由于诱导效应就会发生电子云由氧原子转向双键的中间,增加了C=O键的力常数,使C=O的振动频率升高,吸收峰向高波数移动。随着取代原子电负性的增大或取代数目的增加,诱导效应越强,吸收峰向高波数移动的程度越显著。(2)中介效应(M效应)当含有孤对电子的原子(O、S、N等)与具有多重键的原子相连时,也可起类似的共轭作用,称为中介效应。由于含有孤对电子的原子的共轭作用,使C=O上的电子云更移向氧原子,C=O双键的电子云密度平均化,造成C=O键的力常数下降,使吸收频率向低波数位移。 对同一基团,若诱导效应和中介效应同时存在,则振动频率最后位移的方向和程度,取决于这两种效应的结果。当诱导效应大于中介效应时,振动频率向高波数移动,反之,振动频率向低波数移动。 2 . 氢键的影响氢键的形成使电子云密度平均化,从而使伸缩振动频率降低。游离羧酸的C=O键频率出现在1760 cm-1 左右,在固体或液体中,由于羧酸形成二聚体, C=O键频率出现在1700 cm-1 。 分子内氢键不受浓度影响,分子间氢键受浓度影响较大。 3. 振动耦合 当两个振动频率相同或相近的基团相邻具有一公共原子时,由于一个键的振动通过公共原子使另一个键的长度发生改变,产生一个“微扰”,从而形成了强烈的振动! 相互作用。其结果是使振动频率发生感变化,一个向高频移动,另一个向低频移动,谱带分裂。振动耦合常出现在一些二羰基化合物中,如,羧酸酐。4.Fermi共振 当一振动的倍频与另一振动的基频接近时,由于发生相互作用而产生很强的吸收峰或发生裂分,这种现象称为Fermi共振。外部因素 外部因素主要指测定时物质的状态以及溶剂效应等因素。 同一物质的不同状态,由于分子间相互作用力不同,所得到光谱往往不同。 分子在气态时,其相互作用力很弱,此时可以观察到伴随振动光谱的转动精细结构。 液态和固态分子间作用力较强,在有极性基团存在时,可能发生分子间的缔合或形成氢键,导致特征吸收带频率、强度和形状有较大的改变。例如,丙酮在气态时的 C-H为1742 cm-1 ,而在液态时为1718 cm-1 。 在溶液中测定光谱时,由于溶剂的种类、溶剂的浓度和测定时的温度不同,同一种物质所测得的光谱也不同。通常在极性溶剂中,溶质分子的极性基团的伸缩振动频率随溶剂极性的增加而向低波数方向移动,并且强度增大。因此,在红外光谱测定中,应尽量采用非极性的溶剂。

  • 【求助】阻抗频谱分析仪相关资料

    有关阻抗频谱分析仪4294A以及微波网络分析仪PNA8263B测介电常数相关的资料视频等。 分别列出他们的测量频率范围,样品要求及各自优缺点(包括同种仪器各种不同测量方式的优缺点)万分感谢!!

  • 指针万用表与数字万用表优缺点分析

    指针万用表与数字万用表各有优缺点,下面就此做比较分析。 指针万用表与数字万用表的比较指针式与数字式万用表各有优缺点。 指针万用表是一种平均值式仪表,它具有直观、形象的读数指示。(一般读数值与指针摆动角度密切相关,所以很直观)。 数字万用表是瞬时取样式仪表。它采用0.3秒取一次样来显示测量结果,有时每次取样结果只是十分相近,并不完全相同,这对于读取结果就不如指针式方便。 指针式万用表一般内部没有放大器,所以内阻较小,比如MF-10型,直流电压灵敏度为100千欧/伏。MF-500型的直流电压灵敏度为20千欧/伏。 数字式万用表由于内部采用了运放电路,内阻可以做得很大,往往在1M欧或更大。(即可以得到更高的灵敏度)。这使得对被测电路的影响可以更小,测量精度较高。 指针式万用表由于内阻较小,且多采用分立元件构成分流分压电路。所以频率特性是不均匀的(相对数字式来说),而指针式万用表的频率特性相对好一点。 指针式万用表内部结构简单,所以成本较低,功能较少,维护简单,过流过压能力较强。数字式万用表内部采用了多种振荡,放大、分频保护等电路,所以功能较多。比如可以测量温度、频率(在一个较低的范围)、电容、电感,做信号发生器等等。 数字式万用表由于内部结构多用集成电路所以过载能力较差,(不过现在有些已能自动换档,自动保护等,但使用较复杂),损坏后一般也不易修复。数字式万用表输出电压较低(通常不超过1伏)。对于一些电压特性特殊的元件的测试不便(如可控硅、发光二极管等)。 指针式万用表输出电压较高,(有10.5伏、12伏等)。电流也大(如MF-500*1欧档最大有100毫安左右)可以方便的测试可控硅、发光二极管等。

  • 【新闻】安捷伦公司推出新款频谱分析仪

    安捷伦公司推出新款N9320A频谱分析仪,并授权世强电讯为此新产品的分销平台。这样,世强电讯在原有N9310A射频信号源的基础上,又增加了一款N9320A频谱分析仪产品。世强电讯将充分发挥自己的平台优势,为客户提供良好的售前售后服务,快捷的现货供应,及灵活的结算方式。   安捷伦新款N9320A频谱分析仪,频率为9K--3GHz,可以选配预放和跟踪源,是一款性能与价格绝佳组合的基础工具,主要面向基础研发、生产测试、安装维护和教育等领域。具有扫描速度快、操作方便、多语言菜单选择的特点,及低价格的优势。  为了让客户能够及时体验到N9320A频谱分析仪和N9310A信号源的特点和高性能,世强电讯提供样机用于产品演示和试用。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制