当前位置: 仪器信息网 > 行业主题 > >

测定地下水铅用到的标准

仪器信息网测定地下水铅用到的标准专题为您提供2024年最新测定地下水铅用到的标准价格报价、厂家品牌的相关信息, 包括测定地下水铅用到的标准参数、型号等,不管是国产,还是进口品牌的测定地下水铅用到的标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合测定地下水铅用到的标准相关的耗材配件、试剂标物,还有测定地下水铅用到的标准相关的最新资讯、资料,以及测定地下水铅用到的标准相关的解决方案。

测定地下水铅用到的标准相关的资讯

  • 85项《地下水质分析方法》标准发布 7月1日起实施
    近日,《地下水质分析方法》等85项系列行业标准已通过全国自然资源与国土空间规划标准化技术委员会审查,现予批准、发布,自2021年7月1日起实施。编号及名称如下表所示。(文末附下载链接)据了解,本次发布的《地下水质分析方法》系列行业标准主要包括色度、pH值、电导率、砷、钙、镁、硬度、总铬、六价铬、铁等项目的测定,并涉及了比色法、电极法、原子吸收分光光度法、电感耦合等离子体发射光谱法、火焰发射光谱法、原子荧光光谱法、气相色谱法及气体同位素质谱计等多种水质分析方法。近些年,我国人口不断上升,经济发展迅速,社会对于地下水的需求量也日益增大,尤其是城市污水、工业废水的肆意排放,农药化肥的过量使用,使我国地下水位严重下降,污染程度逐步加深。相关部门对于地下水的监测力度也相应加大。相关数据表明,2019年,全国10168个国家级地下水水质监测点中,I~III类水质监测点占14.4%,IV类占66.9%,V类占18.8%。全国2830处浅层地下水水质监测井中,I~III类水质监测井占23.7%,IV类占30.0%,V类占46.2%。超标指标为锰、总硬度、碘化物、溶解性总固体、铁、氟化物、氨氮、钠、硫酸盐和氯化物。保护地下水环境的安全和稳定迫在眉睫,这要求不仅要建立健全的地下水环境监管体系,强化监督检查,还需要不断完善相应的法规标准、加强执法管理。与大气监测和地表水监测相比,地下水监测还有很多工作要做,对于地下水监测工作,国家已陆续投资几十亿元,未来两年全国地下水监测项目的市场比较可观。  85项系列行业标准编号及名称序号行业标准编号标准名称代替标准号1DZ/T 0064.1-2021地下水质分析方法 第1部分:一般要求DZ/T 0064.1-19932DZ/T 0064.2-2021地下水质分析方法 第2部分:水样的采集和保存DZ/T 0064.2-19933DZ/T 0064.3-2021地下水质分析方法 第3部分:温度的测定 温度计(测温仪)法DZ/T 0064.3-19934DZ/T 0064.4-2021地下水质分析方法 第4部分:色度的测定 铂-钴标准比色法DZ/T 0064.4-19935DZ/T 0064.5-2021地下水质分析方法 第5部分:pH值的测定 玻璃电极法DZ/T 0064.5-19936DZ/T 0064.6-2021地下水质分析方法 第6部分:电导率的测定 电极法DZ/T 0064.6-19937DZ/T 0064.7-2021地下水质分析方法 第7部分:Eh值的测定电位法DZ/T 0064.7-19938DZ/T 0064.8-2021地下水质分析方法 第8部分:悬浮物的测定 重量法DZ/T 0064.8-19939DZ/T 0064.9-2021地下水质分析方法 第9部分:溶解性固体总量的测定 重量法DZ/T 0064.9-199310DZ/T 0064.10-2021地下水质分析方法 第10部分:砷量的测定 二乙基二硫代氨基甲酸银分光光度法DZ/T 0064.10-199311DZ/T 0064.11-2021地下水质分析方法 第11部分:砷量的测定 氢化物发生—原子荧光光谱法DZ/T 0064.11-199312DZ/T 0064.12-2021地下水质分析方法 第12部分:钙和镁量的测定 火焰原子吸收分光光度法DZ/T 0064.12-199313DZ/T 0064.13-2021地下水质分析方法 第13部分:钙量的测定 乙二胺四乙酸二钠滴定法DZ/T 0064.13-199314DZ/T 0064.14-2021地下水质分析方法 第14部分:镁量的测定 乙二胺四乙酸二钠滴定法DZ/T 0064.14-199315DZ/T 0064.15-2021地下水质分析方法 第15部分:总硬度的测定 乙二胺四乙酸二钠滴定法DZ/T 0064.15-199316DZ/T 0064.17-2021地下水质分析方法 第17部分:总铬和六价铬量的测定 二苯碳酰二肼分光光度法DZ/T 0064.17-199317DZ/T 0064.18-2021地下水质分析方法 第18部分:总铬和六价铬量的测定 催化极谱法DZ/T 0064.18-199318DZ/T 0064.20-2021地下水质分析方法 第20部分:铜、铅、锌、镉、镍和钴量的测定 螯合树脂交换富集火焰原子吸收分光光度法DZ/T 0064.20-199319DZ/T 0064.21-2021地下水质分析方法 第21部分:铜、铅、锌、镉、镍、铬、钼和银量的测定 无火焰原子吸收分光光度法DZ/T 0064.21-199320DZ/T 0064.22-2021地下水质分析方法 第22部分:铜、铅、锌、镉、锰、铬、镍、钴、钒、锡、铍及钛量的测定 电感耦合等离子体发射光谱法DZ/T 0064.22-199321DZ/T 0064.23-2021地下水质分析方法 第23部分:铁量的测定二氮杂菲分光光度法DZ/T 0064.23-199322DZ/T 0064.24-2021地下水质分析方法 第24部分:铁量的测定硫氰酸盐分光光度法DZ/T 0064.24-199323DZ/T 0064.25-2021地下水质分析方法 第25部分:铁量的测定 火焰原子吸收分光光度法DZ/T 0064.25-199324DZ/T 0064.26-2021地下水质分析方法 第26部分:汞量的测定冷原子吸收分光光度法DZ/T 0064.26-199325DZ/T 0064.27-2021地下水质分析方法 第27部分:钾和钠量的测定火焰发射光谱法DZ/T 0064.27-199326DZ/T 0064.28-2021地下水质分析方法 第28部分:钾、钠、锂和铵量的测定 离子色谱法DZ/T 0064.28-199327DZ/T 0064.29-2021地下水质分析方法 第29部分:锂量的测定火焰发射光谱法DZ/T 0064.29-199328DZ/T 0064.30-2021地下水质分析方法 第30部分:锂量的测定火焰原子吸收分光光度法DZ/T 0064.30-199329DZ/T 0064.31-2021地下水质分析方法 第31部分:锰量的测定过硫酸铵分光光度法DZ/T 0064.31-199330DZ/T 0064.32-2021地下水质分析方法 第32部分:锰量的测定 火焰原子吸收分光光度法DZ/T 0064.32-199331DZ/T 0064.33-2021地下水质分析方法 第33部分:钼量的测定催化极谱法DZ/T 0064.33-199332DZ/T 0064.36-2021地下水质分析方法 第36部分:铷和铯量的测定火焰发射光谱法DZ/T 0064.36-199333DZ/T 0064.37-2021地下水质分析方法 第37部分:硒量的测定催化极谱法DZ/T 0064.37-199334DZ/T 0064.38-2021地下水质分析方法 第38部分:硒量的测定氢化物发生-原子荧光光谱法DZ/T 0064.38-199335DZ/T 0064.39-2021地下水质分析方法 第39部分:锶量的测定火焰发射光谱法DZ/T 0064.39-199336DZ/T 0064.42-2021地下水质分析方法 第42部分:钙、镁、钾、钠、 铝、铁、锶、钡和锰量的测定电感耦合等离子体发射光谱法DZ/T 0064.42-199337DZ/T 0064.43-2021地下水质分析方法 第43部分:酸度的测定滴定法DZ/T 0064.43-199338DZ/T 0064.44-2021地下水质分析方法 第44部分:硼量的测定H酸-甲亚胺分光光度法DZ/T 0064.44-199339DZ/T 0064.45-2021地下水质分析方法 第45部分:硼量的测定甘露醇碱滴定法DZ/T 0064.45-199340DZ/T 0064.46-2021地下水质分析方法 第46部分:溴化物的测定溴酚红分光光度法DZ/T 0064.46-199341DZ/T 0064.47-2021地下水质分析方法 第47部分:游离二氧化碳的测定滴定法DZ/T 0064.47-199342DZ/T 0064.48-2021地下水质分析方法 第48部分:侵蚀性二氧化碳的测定滴定法DZ/T 0064.48-199343DZ/T 0064.49-2021地下水质分析方法 第49部分:碳酸根、重碳酸根和氢氧根离子的测定 滴定法DZ/T 0064.49-199344DZ/T 0064.50-2021地下水质分析方法 第50部分:氯化物的测定 银量滴定法DZ/T 0064.50-199345DZ/T 0064.51-2021地下水质分析方法第51部分:氯化物、氟化物、溴化物、硝酸盐和硫酸盐的测定离子色谱法DZ/T 0064.51-199346DZ/T 0064.52-2021地下水质分析方法第52部分:氰化物的测定吡啶-吡唑啉酮分光光度法DZ/T 0064.52-199347DZ/T 0064.53-2021地下水质分析方法 第53部分:氟化物的测定茜素络合物分光光度法DZ/T 0064.53-199348DZ/T 0064.54-2021地下水质分析方法 第54部分:氟化物的测定离子选择电极法DZ/T 0064.54-199349DZ/T 0064.55-2021地下水质分析方法 第55部分:碘化物的测定催化还原分光光度法DZ/T 0064.55-199350DZ/T 0064.56-2021地下水质分析方法 第56部分:碘化物的测定淀粉分光光度法DZ/T 0064.56-199351DZ/T 0064.57-2021地下水质分析方法 第57部分:氨氮的测定纳氏试剂分光光度法DZ/T 0064.57-199352DZ/T 0064.58-2021地下水质分析方法 第58部分:硝酸盐的测定二磺酸酚分光光度法DZ/T 0064.58-199353DZ/T 0064.59-2021地下水质分析方法 第59部分:硝酸盐的测定紫外分光光度法DZ/T 0064.59-199354DZ/T 0064.60-2021地下水质分析方法 第60部分:亚硝酸盐的测定分光光度法DZ/T 0064.60-199355DZ/T 0064.61-2021地下水质分析方法 第61部分:磷酸盐的测定磷铋钼蓝分光光度法DZ/T 0064.61-199356DZ/T 0064.62-2021地下水质分析方法 第62部分:硅酸的测定硅钼黄分光光度法DZ/T 0064.62-199357DZ/T 0064.63-2021地下水质分析方法 第63部分:硅酸的测定硅钼蓝分光光度法DZ/T 0064.63-199358DZ/T 0064.64-2021地下水质分析方法 第64部分:硫酸盐的测定乙二胺四乙酸二钠—钡滴定法DZ/T 0064.64-199359DZ/T 0064.65-2021地下水质分析方法第65部分:硫酸盐的测定比浊法DZ/T 0064.65-199360DZ/T 0064.66-2021地下水质分析方法第66部分:硫化物的测定碘量法DZ/T 0064.66-199361DZ/T 0064.67-2021地下水质分析方法第67部分:硫化物的测定对氨基二甲基苯胺分光光度法DZ/T 0064.67-199362DZ/T 0064.68-2021地下水质分析方法第68部分:耗氧量的测定酸性高锰酸钾滴定法DZ/T 0064.68-199363DZ/T 0064.69-2021地下水质分析方法 69部分:耗氧量的测定碱性高锰酸钾滴定法DZ/T 0064.69-199364DZ/T 0064.70-2021地下水质分析方法 第70质谱法新制定标准下载链接:《地下水质分析方法》
  • 官方拟出地下水新标准 建国家级地下水监测网络
    中国地质环境监测院副院长张作辰29日在京透露,在现行地下水质量标准实施近20年之后,官方拟对其进行修订。目前新标准已完成初稿,待征求相关部门意见、报国家标准化管理委员会审查后出台。   目前中国施行的地下水标准制定于1993年。张作辰在当日国土资源部召开的新闻通气会上表示,随着中国经济社会发展和对地下水状况的认识不断深入,需要对该标准进行重新修订。   他表示,考虑到近20年间国家人类工程活动对地下水环境的影响,新标准将增加和修订一些具体的标准,将比现有标准更加完善。   对于目前中国地下水监测现状,张作辰透露,截至2013年底,中国共有各级各类的地下水监测点约1.6万个,监控面积约110万平方公里,其中包括水位流量监测点2000个,全国地下水监测网的建设初具规模。不过仍存在国家级地下水监测点比较少,自动化监测程度不高,监测能力比较低,不能满足经济社会发展要求等问题。   为此,国土资源部、水利部等相关部门已部署在未来三年建立国家地下水监测工程。其中,国土资源部将建立103个国家级地下水监测点。建成之后将会采集水量,并开展水体的检测,并实现水位、水温等数据的自动的采集和监测。   上述新建工程结合现有的地下水监测站网可以形成比较完整的国家级地下水监测站网,为社会提供及时准确、较为全面的地下水动态信息。   国土资源部今年颁布《地质环境监测管理办法》并且自7月1日起施行。其中就包含地下水、地质灾害、矿山等地质环境监测。   据介绍,这个政策在组织实施、网络建设和监测成果等方面都有相关的规定,同时还明确了各级国土资源主管部门的主要职责。
  • 地下水质分析方法系列标准更新,坛墨为您提供标准品解决方案!
    2021年2月22日,国家自然资源部发布了DZ/T 0064《地下水质分析方法》的系列标准,该标准替换了93年的老标准,对85个子标准全部进行了更新。该系列标准的适用领域是地下水的测定,在经过方法验证后也可适用于地表水和饮用水的测定。新标准已于2021年7月1日实施。坛墨质检一直以来紧跟检验检测行业标准规定,在环境、食品、职业卫生、化妆品、药品、地质等各个检测领域都提供产品方案,且提供定制服务。根据这次地下水质系列标准的要求,坛墨质检已准备好配套的产品方案,欢迎咨询!在系列标准中有机物检测标准主要有三个:DZ/T 0064.71-2021,DZ/T 0064.72-2021和DZ/T 0064.91-2021。①DZ/T 0064.71-2021《地下水质分析方法 第71部分:α-六六六、β-六六六、 γ-六六六、δ-六六六、六氯苯、p, p′-滴滴伊、p, p′-滴滴滴、o,p′-滴滴涕和p,p′-滴滴涕的测定 气相色谱法》有机氯农药是水体中的常见污染物,对人体健康和生态环境有着巨大的危害,该方法以正己烷为萃取溶剂,采用液-液萃取方式提取地下水样品中有机氯农药,提取的有机相经脱水、净化、浓缩后气相色谱毛细管柱分离,电子捕获检测器检测。新标准调整了检测范围,增加了精密度和准确度数据并且增加了质量保证和质量控制的要求,为方法的实施提供了大量实验数据的支撑。坛墨质检DZ/T 0064.71-2021标准物质解决方案:官网产品链接:https://www.gbw-china.com/info/170005095.html正己烷中9种有机氯农药混标/DZ/T 0064.71-2021产品编码CAS号名称标准值单位81693b319-84-6α-六六六1000μg/mL319-85-7β-六六六1000μg/mL58-89-9γ-六六六1000μg/mL319-86-8δ-六六六1000μg/mL72-55-94,4’-滴滴伊1000μg/mL789-02-62,4' -滴滴涕1000μg/mL72-54-84,4’-滴滴滴1000μg/mL50-29-34,4' -滴滴涕1000μg/mL118-74-1六氯苯1000μg/mL(点击产品编码即可查询产品)②DZ/T 0064.72-2021《地下水质分析方法 第72部分:敌敌畏、甲拌磷、乐果、甲基对硫磷、马拉硫磷、毒死蜱和对硫磷的测定 气相色谱法》敌敌畏、甲拌磷、乐果、甲基对硫磷、马拉硫磷、毒死蜱和对硫磷均为水体中毒性较强的有机磷污染物,方法以丙酮、二氯甲烷为萃取溶剂,采用液-液萃取方式提取地下水样品中有机磷农药,提取有机相液经脱水、净化、浓缩后毛细管气相色谱柱分离,火焰光度检测器检测,其他类似的有机磷农药通过验证后也可适用于该方法。该方法操作简单,灵敏度高,检出限达到ng/L。坛墨质检DZ/T 0064.72-2021标准物质解决方案:官网产品链接:https://www.gbw-china.com/info/170001628.html丙酮中7种有机磷农药混标/DZ/T 0064.72-2021产品编码CAS号名称标准值单位溶剂81601a62-73-7敌敌畏100μg/mL丙酮298-02-2甲拌磷100μg/mL丙酮60-51-5乐果100μg/mL丙酮298-00-0甲基对硫磷100μg/mL丙酮121-75-5马拉硫磷100溶剂81457b75-01-467-66-3三氯甲烷1000μg/mL甲醇71-55-6甲醇79-01-6三氯乙烯1000μg/mL甲醇
  • 【行业动态】GB/T 14848-2017 地下水质量标准
    水是万物之源,人们的日常饮食起居都离不开水。随着我国工业化进程加快,人工合成的各种化合物投入施用,地下水中各种化学组分正在发生变化;为保护和合理开发地下水资源,防止和控制地下水污染,保障人民身体健康,促进经济建设,国土资源部特制定《地下水质量标准》(GB/T 14848-2017),于2018年5月1日实施;该标准代替《地下水质量标准》(GB/T 14848-1993)。与《地下水质量标准》(GB/T 14848-1993)相比,该标准的变化是水质指标明显增加,由原来的39项增加至93项,增加了54项。调整了20项指标分类限值,直接采用了19项分类限值;减少了综合评价规定,使标准具有更广泛的应用性。 该标准规定了地下水质量分布、指标及限值,地下水质量调查与监测,地下水质量评价等内容地下水质量是指地下水的物理、化学和生物性质的总称。 它包括常规指标和非常规指标的检测。Ø 常规指标:反映地下水质量基本状况的指标,包括感官性状及一般化学指标、微生物指标、常见毒理学指标和 放射性指标。Ø 非常规指标:在常规指标上的拓展,根据地区和时间差异或特殊情况确定的地下水质量指标,反映地下水中所产生的主要质量问题,包括比较少见的无机和有机毒理学指标。 针对该标准中毒理学指标,坛墨质检提供五款混标和一款单标方案,涵盖有机检测项目指标,欢迎大家到坛墨质检商城选购。详细阅读:GB/T 14848-2017标准文件产品名称商城编号溶剂浓度μg/mL规格27种VOC混标GB/T 14848-201781723a甲醇1001mL11种SVOC混标GB/T 14848-201780238GM二氯甲烷1001mL9种PCB混标GB/T 14848-201780247GB正己烷1001mL8种有机氯农药混标GB/T 14848-201780087GA甲醇1001mL11种农药类混标GB/T 14848-201781471a甲苯1001mL 有机物定制混标组分 有机物单标中文名称CAS号商城编号溶剂浓度 μg/mL规格草甘膦1071-83-671257//250 mg71257-100mg100 mg71257-10mg10 mg水中草甘膦BW900145-1000-L水10001.2 mL水中草甘膦BW900145-100-L水1001.2 mL
  • 行业标准《地下水质分析方法 第98部分: 锑和铊含量的测定 电感耦合等离子体质谱法》等6项标准公开征求意见
    各有关单位:行业标准《地下水质分析方法 第99部分: 锑含量的测定 氢化物发生-原子荧光光谱法》、《地下水质分析方法 第99部分: 锑含量的测定 氢化物发生-原子荧光光谱法》、《地下水质分析方法 第100部分: 阴离子表面活性剂的测定 二氮杂菲萃取分光光度法》、《地下水质分析方法 第101部分: 阴离子表面活性剂的测定 流动注射在线萃取法》、《地下水质分析方法 第102部分: 多氯联苯的测定 气相色谱-质谱法》、《地下水质分析方法 第103部分: 多环芳烃的测定 气相色谱-质谱法》公开征求意见。序号国/行计划号项目编号标准名称征求意见稿及编制说明1行业标准202213010DZ20226210地下水质分析方法 第100部分: 阴离子表面活性剂的测定 二氮杂菲萃取分光光度法编制说明_地下水质分析方法+第100部分.pdf征求意见稿_地下水质分析方法+第100部分.pdf2行业标准202213008DZ20226211地下水质分析方法 第98部分: 锑和铊含量的测定 电感耦合等离子体质谱法征求意见稿_地下水质分析方法+第98部分.pdf编制说明_地下水质分析方法+第98部分.pdf3行业标准202213009DZ20226213地下水质分析方法 第99部分: 锑含量的测定 氢化物发生-原子荧光光谱法编制说明_地下水质分析方法+第99部分.pdf征求意见稿_地下水质分析方法+第99部分.pdf4行业标准202213011DZ20226225地下水质分析方法 第101部分: 阴离子表面活性剂的测定 流动注射在线萃取法征求意见稿_地下水质分析方法+第101部分.pdf编制说明_地下水质分析方法+第101部分.pdf5行业标准202213012DZ20226217地下水质分析方法 第102部分: 多氯联苯的测定 气相色谱-质谱法征求意见稿_地下水质分析方法+第102部分.pdf编制说明_地下水质分析方法+第102部分.pdf6行业标准202213013DZ20226221地下水质分析方法 第103部分:多环芳烃的测定 气相色谱-质谱法征求意见稿_地下水质分析方法+第103部分.pdf编制说明_地下水质分析方法+第103部分.pdf联 系 人:韩梅联系电话:15930153255电子邮箱:hanmei0209@163.com下载意见反馈表.docx全国自然资源与国土空间规划标准化技术委员会2023年10月27日
  • 《地下水质量标准》发布新版 指标增加54项(附全文)
    p   我国目前现行的《地下水质量标准》是1993年发布的,14年来,我国地下水污染状况有了新的变化,水质监测的技术也有了长足的进步。近日,由国土资源部和水利部共同提出的新版《地下水质量标准》正式发布,此次标准对原有内容进行了很多修改,主要技术变化如下: /p p   水质指标由GB/T14848-1993的39项增加至93项,增加了54项 /p p   将地下水质量指标划分为常规指标和非常规指标 /p p   感官性状及一般化学指标由17项增至20项,增加了铝、硫化物和钠3项指标 用耗氧量替换了高锰酸盐指数,修订了总硬度、铁、锰、氨氮4项指标 /p p   毒理学指标中无机化合物指标由16项增加至20项,增加了硼、锑、银和铊4项指标,修订了亚硝酸盐、碘化物、汞、砷、镉、铅、铍、钡、镍、钴和钼11项指标 /p p   毒理学指标中有机化合物指标由2项增至49项,增加了三氯甲烷、四氯化碳、1,1,1-三氯乙烷、三氯乙烯、四氯乙烯、二氯甲烷、1,2-二氯乙烷、1,1,2-三氯乙烷、1,2-二氯丙烷、三溴甲烷、氯乙烯、1,1-二氯乙烷、1,2-二氯乙烯、氯苯、邻二氯苯、对二氯苯、三氯苯(总量)、苯、甲苯、乙苯、二甲苯、苯乙烯、2,4-二硝基甲苯、2,6-二硝基甲苯、萘、蒽、荧蒽、苯并(b)荧蒽、苯并(a)芘、多氯联苯(总量)、六六六(林丹)、六氯苯、七氯、莠去津、五氯酚、2,4,6-三氯酚、邻苯二甲酸二(2-乙基已基)酯、克百威、涕灭威、敌敌畏、甲基对硫磷、马拉硫磷、乐果、百菌清、2,4涕、毒死蜱和草甘膦 滴滴滴和六六六分别用滴滴涕(总量)和六六六(总量)代替,并进行了修订 /p p   放射性指标中修订了总阿尔法放射性 /p p   修订了地下水质量综合评价的有关规定。 /p p style=" line-height: 16px "   附件: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201711/ueattachment/69ac7083-d005-492b-8dec-180dbffa0efe.docx" GBT14848-2017 地下水质量标准.docx /a /p p br/ /p
  • 《地下水质分析方法 第107部分:59种挥发性有机物的 测定吹扫捕集/气相色谱-质谱法》行业标准公开征求意见
    2023年11月23日,全国自然资源与国土空间规划标准化技术委员会发布《地下水质分析方法 第107部分:59种挥发性有机物的 测定吹扫捕集/气相色谱-质谱法》行业标准征求意见稿。本项目由国家地质实验测试中心牵头,山西省岩矿测试中心、国土资源部南京矿产资源监督检测中心等单位协作完成。本次标准是对DZ/T 0064-1993《地下水质检验方法》的修订。修订后的DZ/T 0064更名为《地下水质分析方法》,由108个部分构成。此次发布的征求意见稿为《地下水质分析方法》第107部分。与其他挥发性有机物测试标准的区别目前已颁布的水质挥发性有机物检测标准主要有:(1)GB/T5750.8-2006 水和废水挥发性有机物的测定 吹扫捕集气相色谱-质谱法(2)HJ620-2011 水质挥发性卤代烃的测定顶空气相色谱法(3)HJ639-2012 水质挥发性有机物的测定吹扫捕集/气相色谱⁃质谱法(4)HJ686-2014 水质挥发性有机物的测定吹扫捕集/气相色谱法(5)HJ810-2016 水质挥发性有机物的测定顶空/气相色谱-质谱法上述标准主要用于挥发性有机物种类较少时的分析;本次颁布的标准参考美国环保署USEPA8260D等标准分析方法并结合我国实际,同时检测地下水59种挥发性有机物,包括卤代烃、苯系物、卤代苯等,此标准拓展了同时测定地下水多组分挥发性有机物的方法。附件:征求意见稿_地下水质分析方法+第107部分:59种挥发性有机物的测定++吹扫捕集_气相色谱-质谱法.pdf编制说明_地下水质分析方法+第107部分:59种挥发性有机物的测定++吹扫捕集_气相色谱-质谱法.pdf意见反馈表.docx
  • 行业标准:地下水采样技术规程和汞蒸气测量规程
    近日,自然资源部组织有关单位制定并公示了《地下水采样技术规程》和《汞蒸气测量规程》报批稿。《地下水采样技术规程》(点击下载)本文件规定了地下水采样器具、样品容器、采样方法、样品的保存运输与送检、质量控制等方面的 技术要求和操作规定。本文件适用于水文地质、工程地质、环境地质等工作中地下水采样,其他类似工作可参照执行。地下水样品检测种类及常见检测项目见表1。 《汞蒸气测量规程》(点击下载)本文件规定了汞蒸气测量工作的设计书编审、仪器设备、野外测量、室内分析、资料整理与成果图件、异常评价、成果报告编制与资料提交等方面的技术要求。本文件适用于地质调查、矿产资源勘查、环境与灾害调查监测和考古中的汞蒸气测量工作。其它领域进行的类似工作亦可参照执行。汞蒸气测量的目的是通过壤中气汞、大气汞、水中汞、土壤、水系沉积物、底积物和岩石等固体样品中汞量测定,为地质调查、矿产资源勘查、环境与地震等灾害调查监测、古墓和古文化遗址等考古工作提供依据。汞蒸气测量仪器:冷原子吸收式测汞仪和金膜测汞仪。仪器附件:热解炉、饱和汞蒸气瓶、石英舟、微量注射器。
  • 岛津推出GB/T 14848-2017《地下水质量标准解决方案》
    2017年10月由国土资源部组织修订的《地下水质量标准》(GB/T14848-2017),经国家质检总局、国家标准化管理委员会批准发布,该标准将于2018年5月1日实施。新的标准即将实施,您准备好了吗?地下水污染的原因主要有工业废水向地下直接排放,受污染的地表水侵入到地下含水层中,人畜粪便或过量使用农药而受污染的水渗入地下等。地下水污染隐蔽性强,水质一旦受到污染很难恢复且难监测。中国水资源总量的1/3是地下水,相关报道指出我国90%的地下水遭受了不同程度的污染,约60%污染严重。其中,地下水氮污染和重金属污染较为严重,有机物污染开始凸显,地下水污染呈现由浅入深,由点到面的发展趋势。新的环保工作要求树立绿水青山就是金山银山的理念,以前所未有的决心和力度加强生态环境保护,深入推进水污染防治,实施重点流域和海域综合治理,全面整治黑臭水体。在我国实施最严格的水资源保护制度背景下,《地下水质量标准》(GB/T14848-2017)将于2018年5月1日实施,新版的《地下水质量标准》有哪些变化呢?Q:新版《地下水质量标准》主要内容包括哪些?A:《地下水质量标准》(GB/T14848-2017)规定了地下水质量分类、指标及限值,地下水质量调查与监测,地下水质量评价等内容。适用于地下水质量调查、监测、评价与管理。与修订前相比,新版标准将地下水质量指标划分为常规指标和非常规指标,并根据物理化学性质做了进一步细分。Q:新旧《地下水质量标准》有什么重要变化?A:新标准增加了指标数量,水质指标由39项增加至93项,共增加了54项,其中有机污染指标增加了47项。调整了20项指标分类限值,直接采用了19项指标分类限值;减少了综合评价规定,使新标准有了更广泛的适应性。Q:新版《地下水质量标准》检测应对需要哪些分析仪器?A:新版《地下水质量标准》明确要求使用的分析仪器有原子吸收光谱仪(AAS),电感耦合等离子体发射光谱仪(ICP-OES)电感耦合等离子体质谱仪(ICP-MS)、紫外分光光度计(UV)、气相色谱仪(GC)、液相色谱仪(LC),气相色谱质谱仪(GC-MS)和液相色谱质谱仪(LC-MS)等。 针对《地下水质量标准》(GB/T14848-2017)的标准的检测指标和检测要求,岛津公司充分发挥光谱、色谱和质谱仪器产品线齐全的优势,多种产品组合可以满足不同地下水检测的差异化需求。结合水质相关标准我们开展了一系列的应用研究,并按照有机污染物、农药残留和无机污染物进行分类,汇编了GB/T 14848-2017《地下水质量标准解决方案》。希望我们的努力能够为地下水勘查评价监测,开发利用和监督管理等提供科学的依据和有益的帮助。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 污染场地系列环保标准发布 为土壤和地下水污染防治提供基础支撑
    环境保护部近日批准发布了《场地环境调查技术导则》(HJ 25.1-2014)、《场地环境监测技术导则》(HJ 25.2-2014)、《污染场地风险评估技术导则》(HJ 25.3-2014)、《污染场地土壤修复技术导则》(HJ 25.4-2014)和《污染场地术语》(HJ 682-2014)等5项污染场地系列环保标准(以下简称五项标准),旨在为各地开展场地环境状况调查、风险评估、修复治理提供技术指导和支持,为推进土壤和地下水污染防治法律法规体系建设提供基础支撑。   环境保护部有关负责人介绍说,污染场地又称污染地块,指因从事生产、经营、处理、贮存有毒有害物质、堆放或处理处置潜在危险废物、从事矿山开采等活动造成污染,经调查和风险评估可以确认其危害超过人体健康或生态环境可接受风险水平的场地(地块)。长期以来,我国工业化快速发展,各地化工、农药、冶炼、电镀等工业企业和加油站、化学品储罐、固体废物处理等设施数量大、分布广,不少企业设施生产时间长、产品种类多、生产工艺复杂、环境管理措施不到位,所在场地积累了多种污染物,包括各类重金属、持久性有机污染物(POPs)、挥发性有机污染物(VOCs)等毒性强、危害重的污染物。随着城市化进程的加快和&ldquo 退二进三&rdquo 、土地整理等政策的逐步实施,大批工业企业新建、停产、关闭或搬迁。在农业、工业、居住等用地类型变更过程中,要有效预防新污染、整治老污染、控制环境风险,就必须科学、严谨地开展场地环境状况调查、监测、评价工作。鉴于现行的《土壤环境质量标准》(GB 15618-1995)和《地下水质量标准》(GB/T 14848-93)适用范围小、项目指标少,而《工业企业土壤环境质量风险评价基准》(HJ/T 25-1999)的适用范围窄、暴露途径少、技术路线旧,对具体场地土壤和地下水环境管理支撑作用不足,环境保护部于2006年启动了场地环境管理配套标准制定工作。   这位负责人介绍说,由于土壤和地下水环境管理具有上位法不健全、地域差异大、环境影响因素多、作用机理复杂等特点,其环保标准的作用定位、制定原理与大气、地表水环保标准有重大区别,是环保标准制修订工作的重点、难点领域。经过多年探索、反复研究、广泛征求意见,五项标准充分借鉴国外相关法规标准,结合近年来我国污染场地环境调查、评估、修复工作实践,提出了适合我国国情的场地环境管理技术原则、模型和路线图,规定了开展场地土壤和地下水环境调查、场地环境监测、健康风险评估、污染场地土壤修复技术方案编制工作应遵循的基本原则、程序、工作内容、技术要求,规范了相关术语定义,初步形成涵盖污染场地环境管理主要环节的国家环保标准体系。自五项标准实施之日起,《工业企业土壤环境质量风险评价基准》废止。   这位负责人同时告诉记者,土壤和地下水环境质量保护或污染防治目标的确定,首先应执行其环境质量标准。对于环境质量标准未规定的项目指标,可以根据五项标准确定土壤和地下水环境风险控制值,作为具体场地受污染土壤和地下水环境管理的目标参考值。鉴于相关法律尚不健全,五项标准以技术性规定为主,未规定相关管理要求 其监督、实施应依据《环境保护法》确立的相关原则和《近期土壤环境保护和综合治理工作安排》(国办发〔2013〕7号)、《关于保障工业企业场地再开发利用环境安全的通知》(环发〔2012〕140号)等规范性文件进行,待相关法律、法规、规章进一步明确后依法进行。   这位负责人强调,除法律保障外,当前实施五项标准还面临3方面制约:一是专业人才缺乏,拥有场地环境调查、风险评估和修复治理知识以及经验的从业人员少 二是基础资料缺乏,污染场地风险评估关键参数的取值本土化还不够充分,场地环境档案和历史资料少,已有的档案资料往往也不规范 三是我国自主研发的污染场地监测、评价、治理、修复技术装备缺乏,相关专业设备受国外制约。   针对上述问题,环境保护部将积极联合有关部门研究制定土壤、水环保行动计划,完善政策、建立激励机制,同时加大环保科研项目支持力度,并鼓励各地积极探索相关管理措施、制度,为有序推进土壤、地下水环保法规标准体系建设、提高实施效果夯实基础。
  • 《化工园区地下水环境监管体系建设技术指南》等三项团体标准发布
    根据国家《团体标准管理规定》和《中关村众信土壤修复产业技术创新联盟团体标准管理办法》,《化工园区地下水环境监管体系建设技术指南》、《地下水污染可渗透性反应墙风险管控效果评估技术指南》、《在产园区地下水污染风险监管及预警技术指南》三项团体标准按照立项、起草、征求意见、技术审查、修改完善、送审等标准编制流程,经审查后,批准发布,2023年7月19日起实施。一、T/CSER-004- 2023《化工园区地下水环境监管体系建设技术指南》本指南规定了化工园区地下水环境监管体系建设的指导原则、工作内容和流程、工作要求等。 本指南适用于化工园区和园区内在产企业的地下水环境监管。本文件由中关村众信土壤修复产业技术创新联盟提出并归口管理。本文件起草单位:生态环境部环境规划院、南方科技大学、浙江省生态环境科学设计研究院、深圳市南科环保科技有限公司、生态环境部对外合作与交流中心、浙江久核地质生态环境规划设计有限公司、广州沃索环境科技有限公司、江苏光质检测科技有限公司、北京昊能环保科技有限公司 、中晋(内蒙古)资源环境科技有限公司、爱默里(河北)科技有限公司、上海宝发环科技术有限公司。 本文件主要起草人:殷乐宜、赵航、易树平、陈坚、刘志杰、张弛、钟重、李奕杰、罗文婷、刘君全、周兰兰、楼激扬、舒金骏、潘易、费伟良、杨天森、陈杰、樊小军、郑广强 、周永坚、李继军、吴卫勇、张志新、李淑彦、胡建新、胡云鹏、宋庆国、李静、邢绍文、高梦雯、李云。二、T/CSER-005- 2023《地下水污染可渗透性反应墙风险管控效果评估技术指南》本文件规定了可渗透性反应墙地下水污染风险管控效果评估的原则、内容、程序和技术要求。本文件适用于采用可渗透性反应墙技术实施地下水污染风险管控工程的效果评估。本文件不适用于放射性污染、致病性生物污染地下水治理的效果评估。本文件由中关村众信土壤修复产业技术创新联盟提出并归口管理。 本文件起草单位:浙江省生态环境科学设计研究院、南方科技大学、生态环境部环境规划院、深圳市南科环保科技有限公司、成都理工大学、北京化工大学、中国水电基础局有限公司、浙江久核地质生态环境规划设计有限公司、江苏光质检测科技有限公司。 本文件主要起草人:钟重、张弛、易树平、陈坚、罗文婷、冯一舰、李斐、刘志杰、刘玉梅、黄犇、殷乐宜、赵航、楼激扬、舒金骏、刘国、姜海宁、江浩、王何灵、宋宇飞、陈伟、徐方才、孙亮、贾飞、姚合伟、李智亮、孙强、张小燕。三、T/CSER-006- 2023《在产园区地下水污染风险监管及预警技术指南》本指南规定了在产园区/工业园区地下水污染风险监管与预警工作的目的、工作流程、工作方法和技术要求等。 本指南适用于在产园区/工业园区的地下水污染风险监测监管预警工作本文件由中关村众信土壤修复产业技术创新联盟提出并归口管理。本文件起草单位:南方科技大学、深圳市南科环保科技有限公司、生态环境部环境规划院、浙江省生态环境科学设计研究院、成都理工大学、深圳市赛盈地脉技术有限公司、浙江久核地质生态环境规划设计有限公司、广州沃索环境科技有限公司、浙江华东岩土勘查设计研究院有限公司、爱默里(河北)科技有限公司、广州一城建筑工程有限公司、上海宝发环科技术有限公司。 本文件主要起草人:易树平、刘君全、陈坚、钟重、楼激扬、刘志杰、殷乐宜、赵航、张弛、潘建飞、黄犇、罗文婷、舒金骏、刘国、黄鹤飞、姜海宁、袁泉、王何灵、潘易、江浩、李佳、沈星、时舟扬、李家健、刘健、吕一彦、高品红、宋庆国、杨韶山、黄杨、刘贻安、邢绍文、高梦雯、李云。附:1.关于批准发布《化工园区地下水环境监管体系建设技术指南》等三项团体标准的公告.pdf2.【发布稿】化工园区地下水环境监管体系建设技术指南.pdf3.【发布稿】地下水污染可渗透性反应墙风险管控效果评估技术指南.pdf4.【发布稿】在产园区地下水污染风险监管及预警技术指南.pdf
  • 坛墨质检|肺炎疫情医疗污水和城镇污水、地表水、地下水等环境应急标准品目录
    坛墨质检|肺炎疫情医疗污水和城镇污水、地表水、地下水等环境应急标准品目录 日前,生态环境部在《关于做好应对新型冠状病毒感染肺炎疫情生态环境应急监测工作的通知》和《应对新型冠状病毒感染肺炎疫情应急监测方案》中要求生态环境监测相关部门积极应对,认真履职,主动作为,全力做好空气、地表水等相关环境应急监测工作。地方生态环境部门应充分利用现有环境空气质量自动监测网络、地表水环境质量自动监测网络、饮用水水源地水质自动监测网络等系统,全天候密切关注空气、水环境质量变化状况和趋势。为保障民生,确保饮用水安全,进一步加强饮用水水源地保护,做好饮用水水源水质预警监测,确保饮用水水源不受污染。 其中,重点开展饮用水水源地监测,地表水参照《地表水环境质量标准》(GB 3838-2002)要求开展监测与评价,地下水参照《地下水质量标准》(GBT 14848-2017)要求开展监测和评价,在61项常规指标的基础上,增加余氯和生物毒性2项疫情防控特征指标的监测。 涉及相关国家标准GB 50014-2006《室外排水设计规范》GB 19193-2015《疫源地消毒总则》GB 3838-2002 《地表水环境质量标准》GB 3095-2012 《环境空气质量标准》GBT 5750.11-2006 《生活饮用水标准检验方法 消毒剂指标》GBT 15441-1995 《水质 急性毒性的测定 发光细菌法》GBT 14848-2017 《地下水质量标准》 坛墨质检为各地方生态环境相关部门迅速有效开展空气、水环境质量监测工作,针对以上7个环境监测国家标准,提供一套完整的肺炎疫情医疗污水和城镇污水、地表水、地下水等环境应急标准品方案。坛墨质检环境应急标准品目录咨询北方地区王宏姝:13671388957南方地区汪丽红:13501101929众志成城 抗击肺炎温馨提示多通风 勤洗手 戴口罩 坛墨质检-标准物质中心(www.gbw-china.com),是一家专业致力于研发和生产标准物质标准样品、集敏捷制造、现代营销和现代物流的高科技企业,是标准物质标准样品研发、生产、销售、服务四位一体的综合服务平台。是中国CNAS标准物质标准样品生产者认可实验室(注册号:CNAS RM0024),并通过ISO90012015质量管理体系认证。
  • 水位|高海拔地区的地下水监测
    如果问你监测水质意味着什么时,您会想到哪些参数?温度、电导率、pH值、溶解氧和浊度这“五大”参数吗?追踪有害藻华的叶绿素和藻蓝蛋白?以我作为水质仪器经理的经验来看,每当我问这个问题时,“水位”很少是我得到的第一个答案。实际上,在一些圈子中,水位根本不被认为是水质的衡量,而是水量的衡量,被当作一个完全独立的话题来对待。无论你是否相信水位是一个水质参数,水位可能是最重要的,当然也是最广泛的。今天测量的参数,准确的水位测量对于地下水监测、河流和河流测量、湖泊/池塘水位分析、洪水水位记录、灌溉渠道、波浪和潮汐分析都非常重要...不胜枚举。我最近写了气候变化教育的重要性,而水位也与之息息相关。伴随气候变化引发极端天气事件,各地区应对暴雨和洪水、干旱和缺水、海平面上升以及其他与气候相关的问题。此系列文章将重点介绍凭借 Xylem的水位测量实现重要应用的以下三个项目: 地下水监测暴雨监测洪水监测01地下水监测第一个例子来自于我的同事James Chen。James作为YSI的资深水质监测专家,提供从现场应用到销售和业务开发的全方位服务,并曾在世界上最迷人的地方开展工作。例如,James在西藏的拉萨开展过一个项目,监测地下水。出于多种原因,监测地下水水位非常重要,其中包括了解在静态条件和抽水条件下的蓄水层水位、确定水位与当地地表水源的相互作用以及了解地表开发对蓄水层的影响。拉萨被称为“亚洲水塔”,在这样的情况下,James将协助客户监测拉萨的自然资源- 尤其是水质。James用一台EXO1透气式水位主机来完成这项任务。这种仪器的选择至少说明了关于地下水监测的两个非常重要的原则。在传统意义上,水质监测也是一个优先事项。为什么客户要求测量诸如比电导、温度、pH/ ORP和浊度等水质参数,而不仅仅是测量地下水水位?主要原因就是,水量丰富并不代表水源适合饮用。雨水或地表水在渗入地下时会接触受污染的土壤,从那一刻起,雨水或地表水就可能会被污染,并将污染从土壤带到地下水蓄水层。而当液态有害物质通过土壤或岩石渗入地下水时,地下水也可能受到污染。还存在许多其他类型的地下水点源和非点源污染,而在这个项目中,客户需要监测这些威胁。连续监测标准水质参数的变化是一种很好的方法,同时也证明了相比于水位记录仪,使用窄小直径 EXO1进行地下水监测的关键优势。第二个原则,该项目揭示了在某些情况下使用透气式水位深度传感器的重要性。拉萨是世界上海拔最高的城市之一。海拔超过3650米,拉萨的气压比海平面的气压低约35%。正如以下James提供的数据所示,这对水位的测量产生了巨大影响,尤其是在不使用透气式水位传感器的情况下。所以...什么是透气式水位测量,它和深度传感器有哪些区别?02深度vs.透气式水位YSI EXO配备的传感器分为深度和透气式水位两种。深度由一个非透气式的应变传感器进行测量的,这里我们将其称为压力传感器(也称之为“深度传感器”)。压力传感器与电阻相连接,当传感器隔膜片上的压力变化时就会发出电信号。隔膜的一侧暴露在水中,另一侧暴露于真空中。在真空侧,压力恒定不变。在水侧,压力随水压(Pw)的变化而变化,水压与水深成正比。因此,水量越多意味着压力越大,信号被转换成工程单位(磅/平方英寸-PSI 或深度,单位为m、ft或bar)。据此,您就可以知道压力传感器上方的水深。有时,这些测量值被称为绝对深度。我不是特别喜欢“绝对”这个词。因为我始终认为有可能存在极低的测量误差。我认为“绝对”代表的含义是:所有对传感器隔膜施加的压力都会被转换成电信号,然后这些信号由仪器的固件转换成深度,但如果是这样,情况就变得复杂了...如您所见,Pw则不再仅代表水施加的压力。它也代表大气施加在水面的压力,甚至水的密度,受诸如盐等溶质以及诸如温等环境条件的影响。对于许多应用,这些其他因素可以忽略不计。但是在浅水应用中,有两个因素可能会产生严重影响:盐度(也可解释为水的比重ρ)和大气压。在室温1个大气压(即海平面)下,纯水的比重为1。海水的比重则要高 50%,甚至还取决于温度。因此,考虑温度的盐度测量可用于补偿水位测量。其中一个重要的例子是与海平面上升相关的气候变化研究,如在佛罗里达州Clam Bayou案例的经典文章关于海平面上升的YSI应用指南所描述的。Clam Bayou案例研究也描述了第二个关键变量–大气压。特别是在水深较浅的应用中(YSI认为透气式水位主机中的压力传感器通过透气管与大气联通。当使用压差传感器时,这确保了整个测量中自动补偿了大气压力(Pair) 。有时气压会发生剧烈波动,例如在暴风雨期间。在生活中,您甚至可能认识一些可以感知这些变化的人,——也许他们会患上气压性头痛。海拔变化也会影响气压,这也是拉萨气压如此低的一个重要原因。因此,让我们从Clam Bayou向上爬升3,650米,看看大气压补偿有多重要。03高海拔水位的气压补偿 我的同事James在西藏拉萨的客户现场安装了一台 EXO1透气式水位主机。之后他的一位合作伙伴也访问了该地点,并在同一口井中安装了一台配有非透气式压力传感器的EXO2主机,他们也想在那里观察水质。这台非透气式主机的深度传感器只是在出厂前进行了校准。工厂校准可能仍然非常好(深度传感器相当稳定)。但是,俄亥俄州的金泉市海拔为260米,实际的传感器本身是在压力控制室中校准的。这也就是在部署之前深度传感器通常应该在室外现场进行校准的原因。在深水应用中,Pw远大于Pair,这可能无关紧要。但如果是在地表水应用,且使用我们的垂直剖面仪进行深度测量的情况下,则一定要进行现场校准。然而,James的合作伙伴起初并不想测量深度,因此他没有校准深度传感器。尽管如此,深度传感器仍在部署过程中进行了记录。10周后,James查看和分析数据时他注意到了一些显著的差异,如下图所示。James比较了他的EXO1主机和合作伙伴的EXO2主机的测量值。在下图中,左侧Y轴表示EXO1水位值,右侧Y轴表示EXO2深度值,两者均以米为单位:从另一个角度来看数据,James绘制了两条线之间的差值,且还是使用米作为Y轴上的度量单位。该图显示了两台主机所测得的水位值之间相差约6.5-6.85米,此外更重要的是它还显示了值在6.67至6.84 米之间的波动。这一点很有趣引起我们的注意,并还会在我们的最终分析中再次出现。我们已经暗示过,拉萨的低气压可能是引起两个探头测得的数据之间的波动和差值的一个原因,但是这一假设是否得到有力证据的支持?James在右侧Y轴上绘制了以百帕斯卡 (hPa) 为单位的气压测量值,并在左侧Y轴上绘制了两个探头所测的深度差 (m)。作为参考,海平面上的1个标准气压为1013.25hPa。除了这两条线看起来相互跟踪程度外,该图的右轴数据还显示出了气压非常之低,与拉萨的高海拔相对应。James继续评估了两个主机所测的深度差值(X轴、ΔDepth,以m为单位)与Y轴的气压之间的相关性。通过线性回归分析,大多数环境科学家认定它们之间存在非常强的相关性:这为在高海拔地区使用透气式水位测量进行地下水监测这一假设提供了有力的依据。04准确度规格当我看到这些数据时,我想到,如果想知道水是什么时候抽出或流入的,主要的深度测量可能不是最重要的,而是检测变化的能力。换句话说,假设EXO2主机测得的起点为9m实际上是错误的,但我仍然能够检测到几厘米的变化,就像我使用透气式水位主机一样。那么如果我有一台EXO2,又不想再买另一台主机,这样够用了吗?以下为来自EXO用户手册的规格信息:这项研究中使用的EXO2是中等深度 (100m) 主机,其准确度规格约为满量程的±0.04% ,即±4cm。相比之下,EXO1浅水透气式主机 (10m) 的准确度规格为满量程的±0.03% ,即±0.3cm。准确度足足提高了10倍以上!然而... 如果James的同事部署的并不是100m量程的主机,而是浅水不透气的EXO2主机,由于浅水非透气式主机(EXO1或EXO2)在10m量程范围内的准确度为±0.4cm,所以所得测量结果可能会与EXO1透气式水位主机的测量值更接近。当然,前提是已经在现场正确校准了EXO2。假设您打算进行校准,您可能会想,为什么还要这么费心使用透气呢?0.4cm我听着挺好的!请记住这些准确度规格是在受控的海平面条件下测得的。气压仍然是必须考虑的干扰因素。使用透气式水位主机,气压补偿将自动完成。但对于非透气式标准主机,必须从外部完成气压补偿,现在有另一个测量误差被引入总误差预估。这就意味着,在这个高度偏远的地区,气压的一些单独测量必须与探测器的水位测量同时进行,气压测量是可靠的,以最终进行大气压补偿,从而完成最终的水位测量。如果这听起来有点混乱,那是因为确实如此。当在拉萨James现场的百帕的变化相差2-4% (16hPa) 时,要做到这一点颇为困难:最后,相对于含水层的总体积,水位变化所代表的估计体积对于选择仪器时的理解也很要,这将提高应用所需的整体准确度。最终分析:这些有关系吗?所以在这个故事中,我们遇到了不同的状况。有两种不同类型的测量值:深度和透气水位。另一个现实是,EXO2主机没有进行现场校准,这进一步增加了深度测量的误差。但是,总体来说,如果James的客户选择信任这台EXO2主机的深度测量结果,而不是EXO1的透气水位测量结果,会发生什么?再看上图,气压变化在 648-632hPa之间波动,EXO1报告的水位变化约为6cm(3.045-2.985m)。但是EXO2报告的水“位”变化为20cm (9.98-9.68)。我们可以估计出,EXO2报告的约17cm的差异是由缺乏气压补偿导致(6.84-6.670m,来自上面的差异图)。如果未进行此补偿,操作人员怎么知道地表水流入、流出或其他因素正在发生呢?如需更多讨论和信息,请联系James.Chen@xylem.com 。05 Case Study此案例研究说明了为什么YSI建议您使用经过适当校准的透气式水位主机进行地下水水位测量。针对地下水监测的YSI标准建议如下:大多数地下水应用,需要使用高准确度的透气式水位传感器。无论是自动(通过透气)还是手动补偿,都建议在高海拔或气压易于出现明显波动的地方实施大气补偿。如果优先考虑其他水质参数,尤其是在可能需要盐度或比重补偿也是必要的,那么透气式水位的主机(而不是压力传感器)是最正确的解决方案。
  • 地下水现场必检项目如何选仪器?——《地下水环境监测技术规范》(HJ 164-2020)解读
    一、背景介绍地下水的利用与开采是工业用水的重要来源,为了保护地下水水质和防治地下水污染,做好地下水环境的监测工作是重中之重。《地下水环境监测技术规范》(HJ 164-2020)为首次修订,将于于2021-03-01 实施。在《地下水环境监测技术规范》(HJ/T 164-2004)的基础上,结合十余年地下水污染物监测方法的更新情况和全国实际应用经验进行修订完善,增加了监测井布设、建设和管理等适应当前地下水环境监测需求的内容。该标准的发布实施,将进一步规范地下水环境监测工作,为水污染防治提供有力的技术支撑。 二、标准介绍1. 《地下水环境监测技术规范》(HJ 164-2020)地下水环境监测时的气温、地下水水位、水温、pH、溶解氧、电导率、氧化还原电位、嗅和味、浑浊度、肉眼可见物等监测项目为每次监测的现场必测项目。2. 《地下水质量标准》(GB/T 14848-2017)地下水质量检测指标推荐分析方法(部分)序号检测指标推荐分析方法1浑浊度散射法2pH玻璃电极法3. 《地下水质检验方法》(DZ/T 0064系列)序号检测指标分析方法标准名称1电导率电极法DZ/T 0064.7-19932氧化还原电位电极法DZ/T 0064.7-1993 三、仪器配置方案●《地下水环境监测技术规范》(HJ 164-2020)要求的必检项目:气温、地下水水位、水温、pH、溶解氧、电导率、氧化还原电位、嗅和味、浑浊度、肉眼可见物等。●“雷磁”提供2种现场检测方案:方案1:配置便携式检测箱,现场取样检测。检测箱配置满足水温、pH、溶解氧、电导率、氧化还原电位、浑浊度的测量,可以选配嗅和味、肉眼可见物的检测配置。方案2:配置便携式检测箱,现场原位检测。检测箱内置DZB-715便携式原位水质检测仪和配套试剂,可以直接投入监测点进行原位测定,满足水位、水温、pH、溶解氧、电导率、氧化还原电位和浑浊度的原位检测。现场必检项目雷磁仪器配置方案测试项目检测方法现场监测仪器型号及名称(方案1)现场监测仪器型号及名称(方案2)水位//DZB-715型原位水质监测仪水温电极法DZB-718L型便携式多参数分析仪(选配ORP电极)pH玻璃电极法氧化还原电位电极法溶解氧电极法电导率电极法浑浊度散射法WZB-175型便携式浊度计注:其他监测项目,请联系销售获取具体方案
  • 《化工园区地下水环境监管体系建设技术指南》等三项团体标准立项评审会顺利召开
    2023年3月24日(周五)上午,中关村众信土壤修复产业技术创新联盟(土盟)在线上组织召开了《化工园区地下水环境监管体系建设技术指南》、《在产园区地下水污染风险监管及预警技术指南》、《地下水污染可渗透性反应墙风险管控效果评估技术指南》等团体标准的立项评审会,三项标准均顺利过会、正式立项。会上,《化工园区地下水环境监管体系建设技术指南》牵头起草单位生态环境部环境规划院的代表,对技术指南立项背景、工作依据、主要内容、应用范围、技术要素及参数等进行了汇报。据介绍,目前,我国化工园区发展水平参差不齐,部分园区还存在配套设施不健全、专业监管能力不足等问题,环境风险较高。2011~2020年,全国地下水环境状况调查对四百余个地下水污染源的调查结果显示,工业污染源周边地下水污染比例达70.2%,因此标准立项工作意义重大。指南将规定化工园区地下水环境监管体系建设的指导原则、工作内容及流程、工作要求等要点内容。《在产园区地下水污染风险监管及预警技术指南》牵头单位南方科技大学、深圳市南科环保科技有限公司的代表,对技术指南立项背景、目的、意义、研究内容、技术参数等进行了汇报。据介绍,工业园区在地下水环境监测、管理、污染防治和应急处理等方面缺乏可靠与科学的技术手段,地下水潜在环境风险较高。技术指南的编制工作,对于规范和指导工业园区开展地下水污染风险监管及预警,实现工业园区地下水环境的在线监测、污染预测、风险预警,有效提升在产园区地下水污染风险监管与预防水平,意义重大。技术指南重点在于根据地下水污染风险监管和预警的相关要求,采用信息化、标准化、系统化方式规范地下水污染风险监控与预警平台构建,合理设置数据库和功能模块,为地下水污染风险监管和预警提供决策支持。《地下水污染可渗透性反应墙风险管控效果评估技术指南》牵头单位浙江省生态环境科学设计研究院的代表,围绕标准立项背景和必要性、国内外工作开展情况、主要编制内容、标准的协调性和可行性等进行了汇报。据介绍,国内虽然出台了一些地下水风险管控与修复的相关技术导则规范,但现有PRB风险管控效果评估相关规范缺少针对性的效果评估规定、缺少对水力和填料性能的评估、需要细化具体操作性的规定。因而,标准立项很有必要。此外,技术指南将与现行的污染地块地下水修复和风险管控技术导则(HJ 25.6—2019)、地下水污染可渗透反应格栅技术指南(环办土壤〔2022〕16号)国家标准指南之间衔接,既满足国家技术要求,也体现指南特点,具有精准性和实用性。本次立项评审会汇集了行业内专业力量,来自生态环境部土壤与农业农村生态环境监管技术中心、成都理工大学、暨南大学、航天凯天环保科技股份有限公司、南京清湛环保工程有限公司等单位的五位专家代表组成标准立项评审小组,专家们认为上述三项标准编制工作对于我国地下水污染预警、防控与修复有着深远的指导意义,是推动地下水生态环境治理改善、保障公众健康和环境安全的重要举措。标准立项申报材料齐全、符合评审要求,五位专家一致通过了该项团体标准的立项申请表决。土盟全称“中关村众信土壤修复产业技术创新联盟”,于2018年7月9日获得民政部门正式批复成立,作为土壤和地下水修复领域具有影响力和权威性的业务全国性的社会组织,自2020年7月取得团体标准立项和发布资质(团标代号为 T/CSER-XXX-年代号)以来,先后在农田土壤改良与修复、场地及地下水调查修复、矿区污染与生态修复等领域开展标准化工作,近期承担了《油田区高浓度石油污染土壤热脱附处理技术规范》、《场地环境信息地球物理探测技术指南》、《基于保护水稻安全的土壤镉环境基准制定技术指南》、《改性风化煤负载微生物制备重金属钝化材料及应用技术规程》、《涉铬地块土壤污染状况调查技术导则》、《含水层水质综合调查技术指南》、《矿山回填物质量评价技术指南》等多项团标立项工作。土盟定位是土壤修复产业技术集群和专家智库平台,未来,土盟将继续致力于以标准化为引领、以产业技术成果转化为抓手,助推土壤与地下水修复行业规范、有序、协同发展,为助力净土中国贡献力量。
  • 广西环境科学学会发布《地下水监测点布设评估规范》等3项团体标准征求意见稿
    各有关单位:根据广西环境科学学会下达的《广西环境科学学会关于下达2024年第一批团体标准项目计划的通知》文件精神,由广西环境科学学会提出的《地下水监测点布设评估规范》(征求意见稿)、《土壤污染重点监管单位周边土壤和地下水监测质量控制技术规范》(征求意见稿)、《地下水型集中式饮用水水源地下水环境监测现状调查技术规范》(征求意见稿)标准编写工作已完成。按照《广西环境科学学会团体标准管理办法(2023年版)》有关规定,现向社会公众公开征求意见,请将意见于2024年2月11日前,以E-mail形式反馈至广西环境科学学会。 联系人:谢佳凝电话:18978888192E-mail:gxhjkxxh@163.com广西环境科学学会2024年1月11日附件(点击下载): 1.广西环境科学学会关于征求《地下水监测点布设评估规范》等团体标准意见的通知).pdf2.《地下水监测点布设规范》(征求意见稿).pdf3.《地下水监测点布设评估规范》(征求意见稿)编制说明.pdf4.《地下水监测点布设评估规范》征求意见表.doc5.《土壤污染重点监管单位周边土壤和地下水监测质量控制技术规范》征求意见稿.pdf6.《土壤污染重点监管单位周边土壤和地下水监测质量控制技术规范》(征求意见稿)-编制说明.pdf7.《土壤污染重点监管单位周边土壤和地下水监测质量控制技术规范》 征求意见表.doc8.《地下水型集中式饮用水水源地下水环境监测现状调查技术规范》(征求意见稿).pdf9.《地下水型集中式饮用水水源地下水环境监测现状调查技术规范》(征求意见稿)编制说明.pdf10.《地下水型集中式饮用水水源地下水环境监测现状调查技术规范》 征求意见表.doc
  • 17省(区、市)国家地下水监测工程地下水水质监测项目开启招标
    日前,水利部信息中心2022年山西等17省(区、市)国家地下水监测工程(水利部分)地下水水质监测项目公开招标公告发布(项目编号:OITC-G220320263-8)。信息显示:根据《水利部办公厅关于做好2022年国家地下水监测工程运行维护和地下水水质监测工作的通知》(办水文函[2022]79号)任务安排,严格执行水利部《水环境监测规范》(SL 219-2013)、《地下水水质样品采集技术指南》(地下水[2018]91号)以及《地下水监测工程技术规范》(GB/T 51040-2014)等有关规定,2022年山西等17省(区、市)国家地下水监测工程(水利部分)地下水水质监测项目共有1112个地下水水质监测站,111个同步监测站,涉及山西省、内蒙古自治区、辽宁省、安徽省、河南省、贵州省、云南省、广西壮族自治区、广东省、海南省、重庆市、福建省、西藏自治区、陕西省、青海省、新疆维吾尔自治区、新疆生产建设兵团等17省(区、市)。具体工作任务和简要技术要求如下:1、1112个监测站采样前抽水等准备工作,准备全部水样容器。2、1112个监测站20项、111个同步监测站93项水质采样。样品的保存及送检要求应满足《地下水质量标准》(GB/T 14848-2017)附录A的相关要求。3、1112个监测站、111个同步监测站水样运输(运送、寄送)。4、1112个监测站水质样品进行1次20项水质检测,检测方法应满足《地下水质量标准》(GB/T 14848-2017)要求,质量控制措施按照《水环境监测规范》(SL 219-2013)中相关要求开展。出具水质评价报告、质控报告、检测报告,提供水质监测数据成果汇总表、采样记录表、采样人员现场采样照片及样品照片等。根据中国政府采购网信息显示,目前天津、江苏、山东、黑龙江、河北、甘肃北京等省市相关的招标信息也已经发布。项目名称:2022年天津市国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-7)2022年天津市国家地下水监测工程(水利部分)地下水水质监测项目共有151个地下水水质监测站,15个同步监测站。项目名称:2022年江苏省国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-5)2022年江苏省国家地下水监测工程(水利部分)地下水水质监测项目共有125个地下水水质监测站,13个同步监测站。项目名称:2022年山东省国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-6)2022年山东省国家地下水监测工程(水利部分)地下水水质监测项目共有219个地下水水质监测站,22个同步监测站。项目名称:2022年黑龙江省国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-4)2022年黑龙江省国家地下水监测工程(水利部分)地下水水质监测项目共有222个地下水水质监测站,22个同步监测站。项目名称:2022年河北省国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-3)2022年河北省国家地下水监测工程(水利部分)地下水水质监测项目共有265个地下水水质监测站,27个同步监测站。项目名称:2022年甘肃省国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-2)2022年甘肃省国家地下水监测工程(水利部分)地下水水质监测项目共有93个地下水水质监测站,9个同步监测站。项目名称:2022年北京市国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-1)2022年北京市国家地下水监测工程(水利部分)地下水水质监测项目共有172个地下水水质监测站,17个同步监测站。
  • 过度开采且污染严重 地下水水质如何监测?
    3月22日是刚刚过去的“世界水日”,今年世界气象日的主题又是“气候与水”,水环境的污染和治理似乎已经受到越来越多人的重视。日常生活中,当我们提起水质安全时,脑海中浮现出来的总是饮用水、河流、湖泊甚至是海洋等地表水,而作为全球水系统中极其重要的地下水,往往很容易被忽略。狭义上的地下水是指地面以下各种岩石空隙中的水,包括地下水面以下饱和含水层中的水。在《水文地质术语》中,地下水是指埋藏在地表以下各种形式的重力水。虽然埋藏于地表之下,难以用肉眼观察到。但实际上地下水是一个很庞大的系统,据了解,全球地下水的总量多达1.5亿立方公里,几乎占地球总水量的十分之一,井水和泉水就是我们常见的地下水。作为地球上的重要水体之一,地下水与人类社会有着密切的关系。由于其水量稳定、水质好,因此地下水是农业灌溉、工矿和城市的重要水源之一。尤其是在地表缺水的干旱和半干旱地区,地下水常常成为当地的主要用水来源。而一些含有特殊化学成分或水温较高的地下水,还可用作医疗、热源、饮料和提取有用元素的原料。然而,在我国大气“阴霾”尚未全然散退之时,地下水也同样面临着严重的开采和污染危机。近10年来我国地下水供水量每年约1000亿—1100亿立方米,约占全国供水总量的18%,全国年均超采近170亿立方米。与此同时,工业废水与生活污水的大量入渗,也严重威胁着地下水的水质安全。根据有关部门的相关监测,我国约有64%的城市地下水遭受着严重污染。因此,加强地下水系统的保护、科学治理以及有效监管,对于确保我国城乡居民用水安全,有效改善地下水的可持续发展策略具有重要的意义。但由于我国地下水开采时间长且程度深,再加上地下水的流动性及其系统的复杂性,导致地下水的检测要比地表水及其它水体的检测更加困难,对技术的要求也更高。所以地下水的检测,离不开现代科学仪器和分析技术的支撑。在地下水检测之前,需要对地下水先进行采样。伴随着监测技术的不断发展,更多不同类型的地下水采样设备已经被研制出来,有包括自动水质采样器、全自动多功能地下水采样器、智能地下水采样器等采样设备和系统。根据结构不同,还可以分为取样筒式采样器、惯性式采样器、气体驱动式采样器、潜水电泵式采样器。采样的目的是为了进行更加准确的分析。事实上,现在的水质分析是相当完备的,而且水质分析的方法也正在逐步向连续化、自动化方向发展。重金属分析仪、多参数水质分析仪、水质毒性分析仪、余氯分析仪、水中VOC检测仪、氨氮测定仪以及污染指数测定仪等仪器仪表共同组成了地下水的监测网络。作为人类宝贵的自然资源,那些埋于地底、不为人知的地下水和地表水一样弥足珍贵。从长远利益出发,我们有必要了解地下水的污染状况、途径和原因,制定科学的防治对策,保护地下水的安全。24小时客服如果您对以上色谱分析仪器感兴趣或有疑问,请点击联系我们网页右侧的在线客服,瑞利祥合——您全程贴心的分析仪器采购顾问.------责任编辑:瑞利祥合--分析仪器采购顾问版权所有(瑞利祥合)转载请注明出处
  • 生态环境部2021年将启动1912个地下水考核点监测
    2021年1月15日,生态环境部环境监测司组织召开了2021年国家地下水环境质量考核网监测工作启动会议(视频),按照要求,2021年将启动1912个“十四五”国家地下水环境质量考核点位开展监测和评价工作。在生态环境监测司统一领导下,中国环境监测总站会同中国地质环境监测院,牵头组织开展考核点位监测工作,制定工作方案和技术方案,各流域局(中心)按照分工组织完成监测任务,国家外部质控由中国环境监测总站、国家环境分析测试中心和生态环境部华南环境科学研究所承担。  我国水利、国土(现归自然资源部)和环保三个部门均在开展地下水监测,基本情况如下:  现行的《地下水质量标准 GB/T14848-2017》就是由国土资源部和水利部共同提出。  2018年国务院机构改革之后,将原国土资源部的地下水污染防治相关职责划分到生态环境部,生态环境部开始对地下水监测相关法规进行梳理。  2020年12月,生态环境部发布了《地下水环境监测技术规范(HJ 164-2020代替 HJ/T 164-2004)》,规定了地下水环境监测点布设、环境监测井建设与管理、样品采集与保存、监测项目和分析方法、监测数据处理、质量保证和质量控制以及资料整编等方面的要求。  《规范》指出,地下水监测项目主要选择 GB/T 14848 的常规项目和非常规项目。监测项目以常规项目为主,不同地区可在此基础上,根据当地的实际情况选择非常规项目。同时为便于水化学分析审核,还应补充钾、钙、镁、重碳酸根、碳酸根、游离二氧化碳等项目。地下水环境监测时的气温、地下水水位、水温、pH、溶解氧、电导率、氧化还原电位、嗅和味、浑浊度、肉眼可见物等监测项目为每次监测的现场必测项目。  监测项目分析方法应优先选用国家或行业标准方法。尚无国家或行业标准分析方法时,可选用行业统一分析方法或等效分析方法,但须按照 HJ 168 的要求进行方法确认和验证,方法检出限、测定下限、准确度和精密度应满足地下水环境监测要求。所选用分析方法的测定下限应低于规定的地下水标准限值。  此次会议的召开,表明“十四五”我国地下水环境质量监测工作将由生态环境部牵头,生态环境部和水利部共同承担,我国地下水水质质量将会出现统一出口,不会再出现不同部门给出不同统计结果的情况。
  • 李克强签署国务院令 公布《地下水管理条例》
    中华人民共和国国务院令 第748号《地下水管理条例》已经2021年9月15日国务院第149次常务会议通过,现予公布,自2021年12月1日起施行。总理 李克强2021年10月21日地下水管理条例 第一章 总则第一条 为了加强地下水管理,防治地下水超采和污染,保障地下水质量和可持续利用,推进生态文明建设,根据《中华人民共和国水法》和《中华人民共和国水污染防治法》等法律,制定本条例。第二条 地下水调查与规划、节约与保护、超采治理、污染防治、监督管理等活动,适用本条例。本条例所称地下水,是指赋存于地表以下的水。第三条 地下水管理坚持统筹规划、节水优先、高效利用、系统治理的原则。第四条 国务院水行政主管部门负责全国地下水统一监督管理工作。国务院生态环境主管部门负责全国地下水污染防治监督管理工作。国务院自然资源等主管部门按照职责分工做好地下水调查、监测等相关工作。第五条 县级以上地方人民政府对本行政区域内的地下水管理负责,应当将地下水管理纳入本级国民经济和社会发展规划,并采取控制开采量、防治污染等措施,维持地下水合理水位,保护地下水水质。县级以上地方人民政府水行政主管部门按照管理权限,负责本行政区域内地下水统一监督管理工作。地方人民政府生态环境主管部门负责本行政区域内地下水污染防治监督管理工作。县级以上地方人民政府自然资源等主管部门按照职责分工做好本行政区域内地下水调查、监测等相关工作。第六条 利用地下水的单位和个人应当加强地下水取水工程管理,节约、保护地下水,防止地下水污染。第七条 国务院对省、自治区、直辖市地下水管理和保护情况实行目标责任制和考核评价制度。国务院有关部门按照职责分工负责考核评价工作的具体组织实施。第八条 任何单位和个人都有权对损害地下水的行为进行监督、检举。对在节约、保护和管理地下水工作中作出突出贡献的单位和个人,按照国家有关规定给予表彰和奖励。第九条 国家加强对地下水节约和保护的宣传教育,鼓励、支持地下水先进科学技术的研究、推广和应用。第二章 调查与规划第十条 国家定期组织开展地下水状况调查评价工作。地下水状况调查评价包括地下水资源调查评价、地下水污染调查评价和水文地质勘查评价等内容。第十一条 县级以上人民政府应当组织水行政、自然资源、生态环境等主管部门开展地下水状况调查评价工作。调查评价成果是编制地下水保护利用和污染防治等规划以及管理地下水的重要依据。调查评价成果应当依法向社会公布。第十二条 县级以上人民政府水行政、自然资源、生态环境等主管部门根据地下水状况调查评价成果,统筹考虑经济社会发展需要、地下水资源状况、污染防治等因素,编制本级地下水保护利用和污染防治等规划,依法履行征求意见、论证评估等程序后向社会公布。地下水保护利用和污染防治等规划是节约、保护、利用、修复治理地下水的基本依据。地下水保护利用和污染防治等规划应当服从水资源综合规划和环境保护规划。第十三条 国民经济和社会发展规划以及国土空间规划等相关规划的编制、重大建设项目的布局,应当与地下水资源条件和地下水保护要求相适应,并进行科学论证。第十四条 编制工业、农业、市政、能源、矿产资源开发等专项规划,涉及地下水的内容,应当与地下水保护利用和污染防治等规划相衔接。第十五条 国家建立地下水储备制度。国务院水行政主管部门应当会同国务院自然资源、发展改革等主管部门,对地下水储备工作进行指导、协调和监督检查。县级以上地方人民政府水行政主管部门应当会同本级人民政府自然资源、发展改革等主管部门,根据本行政区域内地下水条件、气候状况和水资源储备需要,制定动用地下水储备预案并报本级人民政府批准。除特殊干旱年份以及发生重大突发事件外,不得动用地下水储备。第三章 节约与保护第十六条 国家实行地下水取水总量控制制度。国务院水行政主管部门会同国务院自然资源主管部门,根据各省、自治区、直辖市地下水可开采量和地表水水资源状况,制定并下达各省、自治区、直辖市地下水取水总量控制指标。第十七条 省、自治区、直辖市人民政府水行政主管部门应当会同本级人民政府有关部门,根据国家下达的地下水取水总量控制指标,制定本行政区域内县级以上行政区域的地下水取水总量控制指标和地下水水位控制指标,经省、自治区、直辖市人民政府批准后下达实施,并报国务院水行政主管部门或者其授权的流域管理机构备案。第十八条 省、自治区、直辖市人民政府水行政主管部门制定本行政区域内地下水取水总量控制指标和地下水水位控制指标时,涉及省际边界区域且属于同一水文地质单元的,应当与相邻省、自治区、直辖市人民政府水行政主管部门协商确定。协商不成的,由国务院水行政主管部门会同国务院有关部门确定。第十九条 县级以上地方人民政府应当根据地下水取水总量控制指标、地下水水位控制指标和国家相关技术标准,合理确定本行政区域内地下水取水工程布局。第二十条 县级以上地方人民政府水行政主管部门应当根据本行政区域内地下水取水总量控制指标、地下水水位控制指标以及科学分析测算的地下水需求量和用水结构,制定地下水年度取水计划,对本行政区域内的年度取用地下水实行总量控制,并报上一级人民政府水行政主管部门备案。第二十一条 取用地下水的单位和个人应当遵守取水总量控制和定额管理要求,使用先进节约用水技术、工艺和设备,采取循环用水、综合利用及废水处理回用等措施,实施技术改造,降低用水消耗。对下列工艺、设备和产品,应当在规定的期限内停止生产、销售、进口或者使用:(一)列入淘汰落后的、耗水量高的工艺、设备和产品名录的;(二)列入限期禁止采用的严重污染水环境的工艺名录和限期禁止生产、销售、进口、使用的严重污染水环境的设备名录的。第二十二条 新建、改建、扩建地下水取水工程,应当同时安装计量设施。已有地下水取水工程未安装计量设施的,应当按照县级以上地方人民政府水行政主管部门规定的期限安装。单位和个人取用地下水量达到取水规模以上的,应当安装地下水取水在线计量设施,并将计量数据实时传输到有管理权限的水行政主管部门。取水规模由省、自治区、直辖市人民政府水行政主管部门制定、公布,并报国务院水行政主管部门备案。第二十三条 以地下水为灌溉水源的地区,县级以上地方人民政府应当采取保障建设投入、加大对企业信贷支持力度、建立健全基层水利服务体系等措施,鼓励发展节水农业,推广应用喷灌、微灌、管道输水灌溉、渠道防渗输水灌溉等节水灌溉技术,以及先进的农机、农艺和生物技术等,提高农业用水效率,节约农业用水。第二十四条 国务院根据国民经济和社会发展需要,对取用地下水的单位和个人试点征收水资源税。地下水水资源税根据当地地下水资源状况、取用水类型和经济发展等情况实行差别税率,合理提高征收标准。征收水资源税的,停止征收水资源费。尚未试点征收水资源税的省、自治区、直辖市,对同一类型取用水,地下水的水资源费征收标准应当高于地表水的标准,地下水超采区的水资源费征收标准应当高于非超采区的标准,地下水严重超采区的水资源费征收标准应当大幅高于非超采区的标准。第二十五条 有下列情形之一的,对取用地下水的取水许可申请不予批准:(一)不符合地下水取水总量控制、地下水水位控制要求;(二)不符合限制开采区取用水规定;(三)不符合行业用水定额和节水规定;(四)不符合强制性国家标准;(五)水资源紧缺或者生态脆弱地区新建、改建、扩建高耗水项目;(六)违反法律、法规的规定开垦种植而取用地下水。第二十六条 建设单位和个人应当采取措施防止地下工程建设对地下水补给、径流、排泄等造成重大不利影响。对开挖达到一定深度或者达到一定排水规模的地下工程,建设单位和个人应当于工程开工前,将工程建设方案和防止对地下水产生不利影响的措施方案报有管理权限的水行政主管部门备案。开挖深度和排水规模由省、自治区、直辖市人民政府制定、公布。第二十七条 除下列情形外,禁止开采难以更新的地下水:(一)应急供水取水;(二)无替代水源地区的居民生活用水;(三)为开展地下水监测、勘探、试验少量取水。已经开采的,除前款规定的情形外,有关县级以上地方人民政府应当采取禁止开采、限制开采措施,逐步实现全面禁止开采;前款规定的情形消除后,应当立即停止取用地下水。第二十八条 县级以上地方人民政府应当加强地下水水源补给保护,充分利用自然条件补充地下水,有效涵养地下水水源。城乡建设应当统筹地下水水源涵养和回补需要,按照海绵城市建设的要求,推广海绵型建筑、道路、广场、公园、绿地等,逐步完善滞渗蓄排等相结合的雨洪水收集利用系统。河流、湖泊整治应当兼顾地下水水源涵养,加强水体自然形态保护和修复。城市人民政府应当因地制宜采取有效措施,推广节水型生活用水器具,鼓励使用再生水,提高用水效率。第二十九条 县级以上地方人民政府应当根据地下水水源条件和需要,建设应急备用饮用水水源,制定应急预案,确保需要时正常使用。应急备用地下水水源结束应急使用后,应当立即停止取水。第三十条 有关县级以上地方人民政府水行政主管部门会同本级人民政府有关部门编制重要泉域保护方案,明确保护范围、保护措施,报本级人民政府批准后实施。对已经干涸但具有重要历史文化和生态价值的泉域,具备条件的,应当采取措施予以恢复。第四章 超采治理第三十一条 国务院水行政主管部门应当会同国务院自然资源主管部门根据地下水状况调查评价成果,组织划定全国地下水超采区,并依法向社会公布。第三十二条 省、自治区、直辖市人民政府水行政主管部门应当会同本级人民政府自然资源等主管部门,统筹考虑地下水超采区划定、地下水利用情况以及地质环境条件等因素,组织划定本行政区域内地下水禁止开采区、限制开采区,经省、自治区、直辖市人民政府批准后公布,并报国务院水行政主管部门备案。地下水禁止开采区、限制开采区划定后,确需调整的,应当按照原划定程序进行调整。第三十三条 有下列情形之一的,应当划为地下水禁止开采区:(一)已发生严重的地面沉降、地裂缝、海(咸)水入侵、植被退化等地质灾害或者生态损害的区域;(二)地下水超采区内公共供水管网覆盖或者通过替代水源已经解决供水需求的区域;(三)法律、法规规定禁止开采地下水的其他区域。第三十四条 有下列情形之一的,应当划为地下水限制开采区:(一)地下水开采量接近可开采量的区域;(二)开采地下水可能引发地质灾害或者生态损害的区域;(三)法律、法规规定限制开采地下水的其他区域。第三十五条 除下列情形外,在地下水禁止开采区内禁止取用地下水:(一)为保障地下工程施工安全和生产安全必须进行临时应急取(排)水;(二)为消除对公共安全或者公共利益的危害临时应急取水;国家在替代水源供给、公共供水管网建设、产业结构调整等方面,加大对地下水超采区地方人民政府的支持力度。第三十八条 有关县级以上地方人民政府水行政主管部门应当会同本级人民政府自然资源主管部门加强对海(咸)水入侵的监测和预防。已经出现海(咸)水入侵的地区,应当采取综合治理措施。
  • 构建全国地下水环境监测网 《地下水污染防治实施方案》发布
    p   生态环境部、自然资源部、住房和城乡建设部、水利部和农业农村部近日发布了《关于印发地下水污染防治实施方案的通知》。方案对我国地下水的污染监测进行了详细规定,要求2025 年年底前,构建全国地下水环境监测网,按照国家和行业相关监测、评价技术规范,开展地下水环境监测。 /p p   到2020年,初步建立地下水污染防治法规标准体系、全国地下水环境监测体系 到2025年,建立地下水污染防治法规标准体系、全国地下水环境监测体系。 /p p    strong 我国现行的《地下水质量标准》是2017年发布的,包括常规指标和非常规指标共93项。但地下水环境监测的相关技术指南还缺失中。 /strong /p p   地下水的监测主要设备为监测井,目前我国境内有基于各种用途的监测井,如国家地下水监测工程中监测井,建设项目环评要求设置的地下水污染跟踪监测井、地下水型饮用水源开采井、土壤污染状况详查监测井、地下水基础环境状况调查评估监测井、《中华人民共和国水污染防治法》要求的污染源地下水水质监测井等。其中 strong 国家地下水监测工程是我国投资22亿建设的,其中包括20401个监测站点 /strong ,但是这些站点配备的仪器设备仅为水位仪和采样器 根据监测井位置不同,每年会对水质进行35项常规监测或者96项全项监测。 /p p   此次方案要求,2020年底前,加强现有地下水环境监测井的运行维护和管理,完成地下水监测数据报送制度。2025 年年底前,构建全国地下水环境监测网,按照国家和行业相关监测、评价技术规范,开展地下水环境监测。京津冀、长江经济带等重点区域提前一年完成。 /p p   按照“大网络、大系统、大数据”的建设思路,积极推进数据共享共用,2020 年年底前,构建全国地下水环境监测信息平台框架。2025 年年底前,完成地下水环境监测信息平台建设。 /p p    span style=" color: rgb(255, 0, 0) " 以现有地表水监测系统为参考,我国地下水环境监测网很可能采取短期内以手工监测为主,逐步建立自动监测体系的布局。 /span /p p   全文如下: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201904/attachment/6863833b-dbba-4413-94e9-f0d66b76db35.pdf" title=" 地下水污染防治实施方案.pdf" style=" color: rgb(0, 102, 204) font-size: 18px text-decoration: underline " span style=" font-size: 18px " 地下水污染防治实施方案.pdf /span /a /p p br/ /p
  • 《地块土壤和地下水中挥发性有机物采样技术导则》等六项标准正式发布 涉及GC、HPLC等仪器
    p   近日,生态环境部批准《地块土壤和地下水中挥发性有机物采样技术导则》、《土壤和沉积物 石油烃(C6-C9)的测定 吹扫捕集/气相色谱法》、《土壤和沉积物 石油烃(C10-C40)的测定 气相色谱法》(HJ 1021-2019)、《土壤和沉积物 苯氧羧酸类农药的测定 高效液相色谱法》(HJ 1022-2019)、《土壤和沉积物 有机磷类和拟除虫菊酯类等47种农药的测定 气相色谱-质谱法》(HJ 1023-2019)、《土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法》(HJ 491-2019)六项标准为国家环境保护标准,并予发布。 /p p   标准名称、编号如下。 /p p    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201905/attachment/fd7dd83d-2093-4fb2-a431-90d72351fa61.pdf" target=" _self" title=" 一、.pdf" textvalue=" 一、《地块土壤和地下水中挥发性有机物采样技术导则》(HJ 1019-2019).pdf;" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 一、《地块土壤和地下水中挥发性有机物采样技术导则》(HJ 1019-2019).pdf; /span /a /p p   本标准规定了地块土壤和地下水中挥发性有机物采样的技术要求,标准为首次发布,适用于地块土壤和地下水环境调查和监测中挥发性有机物的现场采样。 /p p   挥发性有机物(VOCs)一般是指沸点范围在 50~260℃,室温下饱和蒸气压超过 133.3 Pa,常温下以蒸气形式存在的有机物,主要包括:低分子量的芳烃、脂肪烃、卤代烃、酮类、醋酸类、腈类、丙烯酸类、醚类等。VOCs是污染地块中的典型污染物之一,美国超基金污染场地中约78%存在VOCs污染。近年来,我国在城市工业企业搬迁后遗留了大量污染地块,特别是焦化类、农药类、石油化工类、有机合成类等污染地块,部分污染地块土壤和地下水中 VOCs 污染非常严重,具有含量高、分布广的特点。 /p p   由于具有易挥发的特性,污染地块土壤和地下水中的VOCs能够通过一系列的迁移转化过程进入大气或室内空气环境被人体呼吸摄入,最终对人体健康造成危害。 /p p   近年来,我国发生的多起污染地块相关事件,与VOCs呼吸暴露可能引起的健康危害密切相关,污染地块VOCs环境管理已经成为我国环境保护工作的热点之一。 /p p   我国已经发布的污染地块系列标准中的HJ 25.1、HJ 25.2,环境监测技术规范中的 HJ/T 164、HJ/T 166以及监测方法中的HJ 605、HJ 686、HJ 741等,均对土壤和地下水采样技术要求进行了相应规定,但针对VOCs的采样,存在技术要求过于分散、不完全一致、规定的采样环节较少、部分关键技术规定操作性差等问题,由此导致污染地块环境监测过程中获取的VOCs数据可靠性较低,难以客观反映地块中土壤和地下水污染的实际情况。 /p p   自2015年该标准的制修订工作立项以来,期间经历一系列相关专家的讨论、论证,《地块土壤和地下水中挥发性有机物采样技术导则》征求意见稿于2018年7月份印发,征求意见稿发布不到一年的时间,发布稿即正式公开。 /p p   该标准的制订将作为现有环境保护标准体系的必要补充,属于污染地块系列环境保护标准之一,能够起到衔接污染地块系列标准与环境监测系列标准的重要作用,为提升污染地块VOCs调查和监测结果的可靠性提供重要支持。 /p p    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201905/attachment/a0e85d28-6229-405e-b035-8e2bd3b0f2cb.pdf" target=" _self" title=" 二.pdf" textvalue=" 二、《土壤和沉积物 石油烃(C6-C9)的测定 吹扫捕集/气相色谱法》(HJ 1020-2019).pdf " style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 二、《土壤和沉积物 石油烃(C6-C9)的测定 吹扫捕集/气相色谱法》(HJ 1020-2019).pdf /span /a /p p   本标准规定了测定土壤和沉积物中石油烃(C6-C9)的吹扫捕集/气相色谱法。本标准的附录A为资料性附录。本标准为首次发布。 /p p    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201905/attachment/c59a7aed-b8ff-46bc-b9e4-c3c7049572ce.pdf" target=" _self" title=" 三.pdf" textvalue=" 三、《土壤和沉积物 石油烃(C10-C40)的测定 气相色谱法》(HJ 1021-2019).pdf " style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 三、《土壤和沉积物 石油烃(C10-C40)的测定 气相色谱法》(HJ 1021-2019).pdf /span /a /p p   本标准规定了测定土壤和沉积物中石油烃(C10-C40)的气相色谱法。本标准的附录A~附录B为资料性附录。本标准为首次发布。 /p p    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201905/attachment/5918cccd-f914-44b4-b840-da415c0a9811.pdf" target=" _self" title=" 4.1.pdf" textvalue=" 四、《土壤和沉积物 苯氧羧酸类农药的测定 高效液相色谱法》(HJ 1022-2019).pdf;" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 四、《土壤和沉积物 苯氧羧酸类农药的测定 高效液相色谱法》(HJ 1022-2019).pdf; /span /a /p p   本标准规定了测定土壤和沉积物中苯氧羧酸类农药的高效液相色谱法。本标准的附录A为规范性附录,附录B~附录D为资料性附录。本标准为首次发布。 /p p    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201905/attachment/63f23d6c-073a-42d9-bebf-ae9c12020bbd.pdf" target=" _self" title=" 五.pdf" textvalue=" 五、《土壤和沉积物 有机磷类和拟除虫菊酯类等47种农药的测定 气相色谱-质谱法》(HJ 1023-2019).pdf;" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 五、《土壤和沉积物 有机磷类和拟除虫菊酯类等47种农药的测定 气相色谱-质谱法》(HJ 1023-2019).pdf; /span /a /p p   本标准规定了测定土壤和沉积物中有机磷类、拟除虫菊酯类等47种农药的气相色谱-质谱法。本标准的附录A为规范性附录,附录B~附录C为资料性附录。本标准为首次发布。 /p p    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201905/attachment/bdbc24aa-10a1-4083-bb88-32c607641035.pdf" target=" _self" title=" 六.pdf" textvalue=" 六、《土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法》(HJ 491-2019).pdf。" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 六、《土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法》(HJ 491-2019).pdf。 /span /a /p p   本标准规定了测定土壤和沉积物中铜、锌、铅、镍和铬的火焰原子吸收分光光度法。本标准是对《土壤质量 铜、锌的测定 火焰原子吸收分光光度法》(GB/T 17138-1997)和《土壤质量 镍的测定 火焰原子吸收分光光度法》(GB/T 17139-1997)的第一次修订,是对《土壤 总铬的测定 火焰原子吸收分光光度法》(HJ 491-2009)的第二次修订。 /p p   以上标准自2019年9月1日起实施,自以上标准实施之日起,《土壤 总铬的测定 火焰原子吸收分光光度法》(HJ 491-2009)废止 《土壤质量 铜、锌的测定 火焰原子吸收分光光度法》(GB/T 17138-1997)和《土壤质量 镍的测定 火焰原子吸收分光光度法》(GB/T 17139-1997)在相应的环境质量标准和污染物排放(控制)标准实施中停止执行。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/72ee02d1-5f57-4dde-a2a7-a1d02c67def6.jpg" title=" 绿· 仪社.jpg" alt=" 绿· 仪社.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 扫二维码加“绿· 仪社”为好友 了解更多对科学仪器市场的分析评论! /span br/ /p
  • 近600万!2022年山西等17省(区、市)国家地下水监测工程(水利部分)地下水水质监测项目
    项目编号:OITC-G220320263-8项目名称:2022年山西等17省(区、市)国家地下水监测工程(水利部分)地下水水质监测项目预算金额:586.6600000 万元(人民币)最高限价(如有):586.6600000 万元(人民币)采购需求:根据《水利部办公厅关于做好2022年国家地下水监测工程运行维护和地下水水质监测工作的通知》(办水文函[2022]79号)任务安排,严格执行水利部《水环境监测规范》(SL 219-2013)、《地下水水质样品采集技术指南》(地下水[2018]91号)以及《地下水监测工程技术规范》(GB/T 51040-2014)等有关规定,2022年山西等17省(区、市)国家地下水监测工程(水利部分)地下水水质监测项目共有1112个地下水水质监测站,111个同步监测站,涉及山西省、内蒙古自治区、辽宁省、安徽省、河南省、贵州省、云南省、广西壮族自治区、广东省、海南省、重庆市、福建省、西藏自治区、陕西省、青海省、新疆维吾尔自治区、新疆生产建设兵团等17省(区、市)。具体工作任务和简要技术要求如下:1、1112个监测站采样前抽水等准备工作,准备全部水样容器。2、1112个监测站20项、111个同步监测站93项水质采样。样品的保存及送检要求应满足《地下水质量标准》(GB/T 14848-2017)附录A的相关要求。3、1112个监测站、111个同步监测站水样运输(运送、寄送)。4、1112个监测站水质样品进行1次20项水质检测,检测方法应满足《地下水质量标准》(GB/T 14848-2017)要求,质量控制措施按照《水环境监测规范》(SL 219-2013)中相关要求开展。出具水质评价报告、质控报告、检测报告,提供水质监测数据成果汇总表、采样记录表、采样人员现场采样照片及样品照片等。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。
  • 3053万大单!国家地下水监测工程运行维护与地下水质监测(2021-2023)
    项目编号:0733-22171032项目名称:国家地下水监测工程运行维护与地下水质监测(2021-2023)预算金额:3053.6900000 万元(人民币)采购需求:1、本次公开招标项目名称:国家地下水监测工程运行维护与地下水质监测(2021-2023),共15包,各包均为2022年和2023年一招两年,合同一年一签。资金来源为中央财政资金,其中2022年财政资金已落实,2023年度预算金额为预估金额,最终预算以财政部门最终批复为准。2、招标项目概况和简明技术要求及各包预算等如下表:序号分包编号分包名称2022年分包预算(万元)2023年分包预算(万元)(预计金额)主要工作内容/工作量工作周期2022年2023年2022年2023年10733-22171032/1国家地下水监测工程2022年度运行维护(河北省部分)220.30345.74开展607处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展215处地下水监测站点样品采集与37项常规指标检测分析。运行河北秦皇岛地下水与海平面综合监测站,确保实验场环境的正常运行。开展607处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展607处地下水监测站点样品采集与37项常规指标检测分析。运行河北秦皇岛地下水与海平面综合监测站,确保实验场环境的正常运行。2022年5-12月2023年5-12月20733-22171032/2国家地下水监测工程2022年度运行维护(山西省部分)193.07230.13开展338处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展133处地下水监测站点样品采集与37项常规指标检测分析。开展338处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展338处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月30733-22171032/3国家地下水监测工程2022年度运行维护(内蒙古自治区部分)264.49368.25开展500处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展190处地下水监测站点样品采集与37项常规指标检测分析。开展500处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展500处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月40733-22171032/4国家地下水监测工程2022年度运行维护(辽宁省部分)161.13297.14开展455处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展166处地下水监测站点样品采集与37项常规指标检测分析。开展455处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展455处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月50733-22171032/5国家地下水监测工程2022年度运行维护(吉林省部分)213.56339.07开展498处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展187处地下水监测站点样品采集与37项常规指标检测分析。开展498处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展498处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月60733-22171032/6国家地下水监测工程2022年度运行维护(黑龙江省部分)234.13365.31开展496处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展192处地下水监测站点样品采集与37项常规指标检测分析。开展496处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展496处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月70733-22171032/7国家地下水监测工程2022年度运行维护(江苏省部分)117.66191.38开展336处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展124处地下水监测站点样品采集与37项常规指标检测分析。开展336处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展336处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月80733-22171032/8国家地下水监测工程2022年度运行维护(安徽省部分)189.42313.68开展370处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展115处地下水监测站点样品采集与37项常规指标检测分析。开展370处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展370处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月90733-22171032/9国家地下水监测工程2022年度运行维护(山东省部分)290.78435.76开展640处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展256处地下水监测站点样品采集与37项常规指标检测分析。开展640处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展640处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月100733-22171032/10国家地下水监测工程2022年度运行维护(河南省部分)226.30330.22开展485处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展187处地下水监测站点样品采集与37项常规指标检测分析。运行河南郑州地下水均衡试验场运行维护,确保实验场环境的正常运行。开展485处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展485处地下水监测站点样品采集与37项常规指标检测分析。运行河南郑州地下水均衡试验场运行维护,确保实验场环境的正常运行。2022年5-12月2023年5-12月110733-22171032/11国家地下水监测工程2022年度运行维护(四川省部分)140.80188.60开展277处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展109处地下水监测站点样品采集与37项常规指标检测分析。开展277处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展277处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月120733-22171032/12国家地下水监测工程2022年度运行维护(陕西省部分)161.60255.13开展360处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展136处地下水监测站点样品采集与37项常规指标检测分析。开展360处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展360处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月130733-22171032/13国家地下水监测工程2022年度运行维护(甘肃省部分)232.77368.25开展500处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展186处地下水监测站点样品采集与37项常规指标检测分析。开展500处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展500处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月140733-22171032/14国家地下水监测工程2022年度运行维护(青海省部分)148.70232.91开展266处国家地下水监测站点及辅助设施的 看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展98处地下水监测站点样品采集与37项常规指标检测分析。开展266处国家地下水监测站点及辅助设施的 看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展266处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月150733-22171032/15国家地下水监测工程2022年度运行维护(新疆维吾尔自治区部分)258.98370.40开展410处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展162处地下水监测站点样品采集与37项常规指标检测分析。运行新疆昌吉地下水均衡试验场运行维护,确保实验场环境的正常运行。开展410处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展410处地下水监测站点样品采集与37项常规指标检测分析。运行新疆昌吉地下水均衡试验场运行维护,确保实验场环境的正常运行。2022年5-12月2023年5-12月合计3053.694631.973、本项目为非专门面向中小企业采购项目,采购标的对应的中小企业划分标准所属行业:《中小企业划型标准规定》(工信部联企业〔2011〕300号)中(十六)其他未列明行业。4、本项目评标、授标均以包为单位。拆包投标或多包合并一个报价投标将被视为无效投标。5、本项目各包均为2022年和2023年一招两年,合同一年一签。其中2022年财政资金已落实,2023年度预算金额为预估金额,最终预算以财政部门最终批复为准。6、本项目为国家财政预算投资项目,如因国家政策调整或其他不可抗拒的因素造成预算调整或取消,采购人和招标代理机构将不对投标人和中标人作出任何补偿,请投标人注意风险。合同履行期限:合同签订之日起至2023年12月。本项目( 接受 )联合体投标。
  • 发布G.O.Sampler智能化地下水低速采样系统新品
    《地块土壤和地下水中挥发性有机物采样技术导则》(HJ1019-2019)提出了地下水采样的几条具体操作要求。(1)洗井低速抽水。开始洗井(采样前洗井,并非成井洗井)时,以低流量抽水,速率应在100~500ml/min,洗井过程应实时测定地下水位,确保水位降幅<10cm。(2)洗井过程中连续三次测定的水质稳定。记录抽水开始时间,同时洗井过程中每隔5分钟读取并记录pH、温度、电导率、溶解氧、氧化还原电位及浊度,连续三次采样达到以下要求(表1)即可结束洗井。检测指标稳定标准pH±0.1以内温度±0.5℃以内电导率±10%以内氧化还原电位±10mV以内,或在±10%以内溶解氧±0.3mg/L以内,或在±10%以内浊度≤10NTU,或在±10%以内(3)取样过程避免样品与空气接触。地下水洗井和采样都应避免对井内水体产生气提气曝等扰动,尤其是以VOC为分析目标的采样。各种对水体的扰动,都会引起溶解氧的变化和水中挥发性物质的散逸,导致样品分析结果不准确。因此,尽量避免取水全过程中水样与空气的接触。智能化地下水低速采样系统布设在采样井中,通过气囊泵采样、水质参数监控和智能化控制的系统,实现地下水自动化和定制化采样目标,完全符合HJ1019-2019的技术要求。现场布设完成后,即可实现自动化和标准化操作,大大提高了采样效率。主要原理智能化地下水低速采样系统,采用带有泄降控制单元的气囊泵,固定在地下水位以下,水体在水位压力的作用下自动充满气囊。地面智能控制器内的高压充气泵提供气源动力,对泵体内气囊进行挤压,将气囊中的水样提升至地面的水质智能检测单元,对pH、温度、电导率、氧化还原电位、溶解氧和浊度等6个参数进行实时监测。当6个参数的变化符合HJ1019-2019的技术要求时,水样自动流入样品收集器。采样过程中,地下水位的变化由泄降控制单元进行监控,当水位下降超过10cm时,控制器自动停止工作,当含水补给水位恢复到10cm以内时,控制器自动启动采样。水样与空气全过程无接触,气囊和水样管路均采用特定材料,对VOC没有化学吸附,最大程度地保留水样的原来状态。技术优势G.O.Sampler智能化地下水低速采样系统属于创新型产品,多项技术在国内属于首创,具有独特的技术优势。l 完全符合规范HJ1019-2019的标准化采样(低速、无扰动、洗井监测),全过程自动化。l 水位泄降控制单元与气囊泵一体化设计,具有大气压补偿功能,水位测量更准确。l 水路管道均为特定材料,无化学吸附,最大程度保持样品原状。l 采样信息自动记录。l 采样频次和监测频次可调节。l 洗井完成后水质数据可作为现场测量的指标存储和传输。l 多种数据协议接口,兼容第三方数据平台。l 系统维护频率低。主要构成G.O.Sampler智能化地下水低速采样系统主要包括:气囊泵、水位泄降控制单元、水质智能监测单元、智能控制器、管路系统。(1)气囊泵气囊泵(图1)是一种低流速、无扰动式地下水洗井及采样设备,适合于各类地下水尤其是VOC类污染物样品的采集,适于各种大小监测井。泵体内有气囊,上端连接进气管和出水管,分别与控制器和水质智能监测单元连接,全过程空气与水样无接触。气囊泵的应用,可以大大减少洗井水量,与传统的抽水泵洗井采样方式相比,具有低流量、低速率、无扰动的优势。(2)泄降控制单元泄降控制单元用于地下水采样中的水位降幅监测,通过地面的智能控制器内大气压力补偿,获取精准的地下水动态水位。泄降控制单元集成于气囊泵泵体,采用一体化设计,完全实现水位变化与泄降控制的协同自动化。(3)水质智能监测单元水质智能监测单元包括一个特定材料的流速池和多个水质测量传感器,可以对水样中的pH、温度、电导率、氧化还原电位、溶解氧和浊度等6个参数进行实时测量,用于采样条件的自动判定。同时也可以作为地下水水质连续监测的水质数据,为后续地下水水质监测大数据平台提供支撑。(4)智能控制器智能控制器是整个采样系统的中控枢纽,可实现提供气源、泄降控制启停、采样间隔设置、水质参数读取存储、洗井结束提示、废水管与样品出水管的自动切换、采样记录的显示与传输等多个功能。同时预留多种数据接口,可匹配接入大数据平台;还具有无线传输和手机App同步功能,可实现数据平台和手机的反向控制。智能控制器和水质智能监测单元作为一体化组合元件,设置在自动监测站内。(5)管路系统管路系统包括气路、水路和电路。其中,水路与气路相互独立,样品全程不与外源气体接触,确保样品的合规性。技术参数单元指标描述气囊泵泵身316不锈钢气囊材料惰性材料最小监测井内径5cm最大操作压力100 psi最小操作压力5 psi最大采样深度61m水质传感器pH范围0~14,精度±0.01温度精度±0.1℃溶解氧范围0~20mg/L,精度±0.2%FS电导率范围1~2000μS/cm,精度±1μS/cm浊度范围0~400NTU,精度±1.0%FS氧化还原电位范围-2000~2000mV,精度±0.01mV智能控制器RS-485通讯接口支持标准的Modbus RTU控制协议,最高支持不低于50Kbps的无差错传输速率。Modbus TCP控制协议以太网口支持标准,传输速率可达到100Mbps4G无线模块支持MQTT标准协议,传输速率5Mbps窄带物联网模块以NB模块为标准,带宽为180KHZ。支持移动、联通NB-IOT卡。创新点:智能化地下水低速采样系统布设在采样井中,通过气囊泵采样、水质参数监控和智能化控制的系统,实现地下水自动化和定制化采样目标,完全符合HJ1019-2019的技术要求。现场布设完成后,即可实现自动化和标准化操作,大大提高了采样效率。 G.O.Sampler智能化地下水低速采样系统
  • 贵州省土壤、地下水和农村生态环境保护规划发布,建48个点位的地下水质量考核网络
    近日,贵州省生态环境厅、省发展改革委、省财政厅、省自然资源厅、省住房城乡建设厅、省水利厅、省农业农村厅联合印发《贵州省“十四五”土壤、地下水和农村生态环境保护规划》,围绕土壤污染、地下水污染、农业农村环境治理、生态环境监管等布局了一系列任务,其中包括:严格控制涉重金属行业企业污染物排放。依据《中华人民共和国大气污染防治法》《中华人民共和国水污染防治法》以及重点排污单位名录管理有关规定,将符合条件的排放镉等有毒有害大气、水污染物的企业纳入重点排污单位名录;纳入大气重点排污单位名录的涉镉等重金属排放企业,2023年底前对大气污染物中的颗粒物按排污许可证规定实现自动监测,以监测数据核算颗粒物等排放量。落实地下水防渗和监测措施。督促“一企一库”“两场两区”采取防渗漏措施,按要求建设地下水环境监测井,开展地下水环境自行监测。指导地下水污染防治重点排污单位优先开展地下水污染渗漏排查,针对存在问题的设施,采取污染防渗改造措施。市(州)生态环境部门开展地下水污染防治重点排污单位周边地下水环境监测。健全监测网络。完善土壤环境监测网,优化调整土壤环境监测点位,定期开展国控网络和省控土壤环境质量监测,持续开展农产品产地土壤和农产品协同监测。至少完成一轮土壤污染重点监管单位周边土壤环境监测。探索开展建设用地安全利用卫星遥感监测。建成48个点位的国家地下水环境质量考核网络。对218个国家地下水环境质量监测点和152个省级监测点位开展监测。组织开展12个特色村农村环境质量监测,加强农村“万人千吨”饮用水水源地水质监测,加强日处理能力20吨及以上农村生活污水设施排口、规模化畜禽养殖场排污口、水产养殖集中区养殖尾水等监测。附1:为加强土壤环境监测检测,仪器信息网3i讲堂拟于5月9日-10日举办“第四届土壤检测技术与应用”网络会议,点击即可报名:https://www.instrument.com.cn/webinar/meetings/soil230509/附2:规划全文如下贵州省“十四五”土壤、地下水和农村生态环境保护规划为贯彻落实党的二十大精神,深入打好污染防治攻坚战,加强土壤及地下水污染防治,强化农村生态环境保护,根据《中华人民共和国土壤污染防治法》《中共中央国务院关于深入打好污染防治攻坚战的意见》《中共中央国务院关于全面推进乡村振兴加快农业农村现代化的意见》《国务院关于支持贵州在新时代西部大开发上闯新路的意见》《“十四五”土壤、地下水和农村生态环境保护规划》和《贵州省生态环境保护“十四五”规划》,制定本规划。一、规划背景(一)工作进展“十三五”时期,贵州省深入贯彻习近平生态文明思想和习近平总书记对贵州工作重要指示精神,认真落实党中央、国务院决策部署,大力实施《贵州省土壤污染防治工作方案》,全省土壤环境质量总体保持稳定,农用地和建设用地土壤环境安全得到基本保障,土壤环境风险得到基本控制,地下水和农业农村生态环境保护取得积极成效。1.土壤污染风险得到基本管控土壤污染防治多部门联动机制、协调推进和调度考核机制基本形成。2020年完成国家下达受污染耕地安全利用和严格管控总任务1039.35万亩(其中安全利用类任务834.75万亩,严格管控类任务204.6万亩),污染地块安全利用率达到100%,超额完成《贵州省土壤污染防治目标责任书》和净土保卫战确定的目标任务。顺利完成农用地土壤污染状况详查和重点行业企业用地土壤污染状况调查,基本查明我省农用地土壤污染的面积、分布及其对农产品质量的影响;完成2227个重点行业企业用地地块基础信息采集、风险筛查及典型地块布点采样监测,确定地块环境风险等级,建立优先管控名录。完成全省耕地土壤环境质量类别划定,实施分类管理。严格建设用地土壤污染风险管控,对204个纳入全国污染地块土壤环境管理信息系统的地块开展调查,将75个地块纳入建设用地土壤污染风险管控和修复名录,确保130万平方米疑似污染地块和污染地块安全利用。强化土壤污染源头管理,按年度公布《贵州省土壤污染重点监管单位名录》,截至2020年底,已将201家企业纳入土壤污染重点监管单位,监督企业落实土壤污染源头防控措施;排查整治耕地周边涉镉等重金属污染源,将29个污染源纳入排查整治。建立贵州省土壤信息化管理平台,土壤环境信息化管理水平显著提升。土壤环境监测网络基本形成。铜仁市土壤污染综合防治先行区建设任务全面完成。“十二五”以来,全省累计投入土壤污染防治资金22.21亿元,实施了土壤污染防治相关项目188个,历史遗留重金属废渣治理率达到87.8%,环境风险得到有效管控。2.地下水生态环境保护有序推进贯彻落实《全国地下水污染防治规划(2011-2020年)》《地下水污染防治实施方案》,全省2051座加油站共7036个地下油罐完成双层罐更换或防渗池建设。持续开展地下水污染现状调查评价,基本掌握12.3万平方公里1:25万比例尺区域地下水质量。完成1926眼废弃井封井回填。地下水监测点位不断优化,截至2020年底,全省共建成地下水水质监测点位409个。3.农业农村生态环境保护取得初步进展农村环境整治稳步推进。截至2020年底,累计完成3027个行政村农村环境整治。各地编制县域农村生活污水治理专项规划并组织实施,建成农村生活污水处理设施8175套,日污水处理能力约20.73万吨,建成配套污水收集管网8961.91公里,农村生活污水处理设施覆盖行政村4202个,全省农村生活污水治理率10.2%,圆满完成农业农村污染治理攻坚战确定的主要目标任务,2020年底全省农村生活垃圾收运处置体系行政村覆盖率94.4%以上,农村生活垃圾、生活污水无序排放得到有效管控和治理;养殖业、种植业污染得到有效防控,全省畜禽粪污综合利用率达86.44%,规模养殖场粪污处理设施装备配套率达99.57%;化肥、农药持续减量增效。农业农村环境监管能力进一步提高,村民参与农业农村环境保护的积极性和主动性显著增强,农村生态环境得到较大改善。(二)存在的主要问题1.部分区域存在地质高背景导致土壤重金属“超标”六盘水市、毕节市等部分区域因地质高背景导致农用地镉“超标”严重,安全利用和严格管控类耕地划定面积过大。贵阳市、黔东南州、黔西南州等地部分地块因存在地质高背景,建设用地土壤环境质量不满足开发利用要求,制约了土地的开发利用。2.地下水污染底数不清、治理难度大我省喀斯特地貌特征显著,地下水埋藏较深,地下水污染较隐蔽,化工集聚区、垃圾填埋场、危险废物处置场地下水污染风险尚不明确。六盘水市、毕节市、铜仁市、黔南州、黔西南州等局部区域因历史上煤矿、硫磺矿、锑矿、锰矿等开采导致地下水污染,形成矿井涌水对土壤和地表水产生影响,目前尚未探索出适宜岩溶山区地下水污染防治的技术路径和方法。3.土壤和地下水污染源头预防压力较大纳入土壤污染重点监管单位、涉镉行业企业需进一步筛选和完善;部分企业有毒有害物质跑冒滴漏、事故泄漏等污染土壤和地下水的隐患没有得到根本消除,污染隐患排查、自行监测等法定义务落实不到位。部分污染源周边地下水污染扩散趋势未得到有效控制,地下水环境质量存在恶化风险。4.农业农村生态环境保护任务十分艰巨农村环境整治存在明显短板,农村生活污水治理率低,约90%的行政村还需接续开展农村环境整治。已整治地区成效还不稳定。现有污水处理设施运行效果差,资源化利用水平不高,资金投入严重缺乏,长效机制不健全,治理成效不明显;农村生活垃圾和农业废弃物处理处置机制尚不完善;畜禽养殖粪污处理和资源化利用方式不规范,养殖生产布局需进一步优化。化肥农药使用量偏高,部分地区地膜残留量大等问题突出。5.土壤、地下水及农业农村污染防治体系基础比较薄弱土壤、地下水和农业农村生态环境监管人员设备不足、监测和执法能力不足,难以满足监管需要。部分地方对用途变更为住宅、公共管理与公共服务用地土壤环境准入管理认识不一、责任落实不到位,部门联动、信息共享等齐抓共管的工作机制尚不健全。土壤和地下水治理修复、风险管控和二次污染防治缺乏有效的环境监管手段。土壤重金属污染成因尚不清晰,区域土壤地质背景调查工作尚未开展,建设用地土壤砷等元素地质高背景边界不清晰。二、总体要求(一)指导思想以习近平新时代中国特色社会主义思想为指导,全面贯彻落实党的二十大精神,深入贯彻落实习近平生态文明思想和习近平总书记视察贵州重要讲话精神,以“在生态文明建设上出新绩”为总目标,以深入实施大生态战略行动为总路径,以深入打好污染防治攻坚战为总抓手,坚持保护优先、预防为主,坚持问题导向、系统治理,坚持强化监督、依法治污,解决一批土壤、地下水和农业农村突出生态环境问题,保障农产品质量安全、人居环境安全、地下水生态环境安全,全面推进乡村振兴,建设生态宜居美丽乡村,努力建设贵州人与自然和谐共生的现代化。(二)主要目标到2025年,全省农用地和建设用地土壤污染风险得到进一步管控,受污染耕地和重点建设用地安全利用得到巩固提升;重点园区地下水污染趋势得到基本遏制,农业面源污染得到初步管控,农村环境基础设施建设稳步推进,农村生态环境持续改善。表1 “十四五”土壤、地下水和农业农村生态环境保护主要指标类  型指标名称2020年(现状值)2025年指标属性土壤生态环境受污染耕地安全利用率—93%左右约束性重点建设用地安全利用1—有效保障约束性地下水 生态环境地下水国控点位V类水比例26%8.1%左右预期性“双源”点位水质—总体保持稳定预期性农业农村生态环境主要农作物化肥使用量—减少预期性主要农作物农药使用量—减少预期性农村环境整治村庄数量3027新增2000个预期性农村生活污水治理率310.2%25%预期性注:1.重点建设用地指用途变更为住宅、公共管理与公共服务用地的所有地块。 2.地下水国控点位V类水比例指国家级地下水质区域监测点位中,水质为Ⅴ类的点位所占比例(2020年考核点位33个,十四五考核点位为37个,因考核点位数增加,2025年目标较2020年对应提高了2.1%)。 3.农村生活污水治理率是指生活污水得到处理和资源化利用的行政村数占行政村总数的比例。三、主要任务(一)推进土壤污染防治1.加强耕地污染源头治理管控严格控制涉重金属行业企业污染物排放。2023年起,在矿产资源开发活动集中、安全利用类和严格管控类耕地集中的毕节市赫章县,执行《铅、锌工业污染物排放标准》中颗粒物和镉等重点重金属特别排放限值。依据《中华人民共和国大气污染防治法》《中华人民共和国水污染防治法》以及重点排污单位名录管理有关规定,将符合条件的排放镉等有毒有害大气、水污染物的企业纳入重点排污单位名录;纳入大气重点排污单位名录的涉镉等重金属排放企业,2023年底前对大气污染物中的颗粒物按排污许可证规定实现自动监测,以监测数据核算颗粒物等排放量。(省生态环境厅、省农业农村厅、省粮食和物资储备局按职责分工负责,地方各级人民政府负责落实。以下均需地方各级人民政府落实,不再列出)排查整治涉重金属矿区历史遗留固体废物及河道底泥。以市(州)为单位,全面开展安全利用类和严格管控类耕地集中区域周边重有色金属、硫铁矿等矿区历史遗留固体废物及河道底泥排查,明确历史遗留固体废物环境风险,围绕保障农产品质量安全和改善土壤环境质量目标,建立矿区历史遗留固体废物风险管控与治理修复台账,有序开展风险管控及修复治理。(省生态环境厅、省农业农村厅、省自然资源厅按职责分工负责)开展耕地土壤重金属污染成因排查。以贵阳市、六盘水市、毕节市、铜仁市、黔南州、黔西南州等土壤重金属污染问题突出的18个县(市、区)为重点,开展耕地土壤重金属污染途径识别和污染源头追溯,探明耕地土壤重金属污染成因,为耕地土壤污染精准科学防控和安全利用提供基础数据。(省生态环境厅、省农业农村厅按职责分工负责)2.防范工矿企业新增土壤污染严格建设项目土壤环境影响评价制度。对涉及有毒有害物质可能造成土壤污染的新(改、扩)建项目,依法进行环境影响评价,提出并落实防腐蚀、防渗漏、防遗撒等土壤污染防治具体措施。(省生态环境厅负责)强化重点监管单位监管。动态更新土壤污染重点监管单位名录。将土壤污染重点监管单位土壤污染防治义务载入排污许可证,全面落实有毒有害物质排放报告、污染隐患排查、土壤(地下水)自行监测、设施设备拆除污染防治要求,2025年底前,至少完成一轮土壤和地下水污染隐患排查“回头看”,动态更新污染源整治清单。定期开展土壤污染重点监管单位周边土壤环境监测。对已查明用地土壤严重污染的企业,督促落实必要的污染源隔断、污染区域阻隔等风险管控措施。(省生态环境厅负责)推动实施绿色化改造。鼓励土壤污染重点监管单位因地制宜实施管道化、密闭化改造,重点区域防腐防渗改造,以及物料、污水管线架空建设和改造。聚焦铅、镉、汞污染,推动毕节市赫章县、铜仁市万山区、黔东南州台江县等地重有色金属采选及冶炼、涉重金属无机化工行业企业升级改造,鼓励企业实施清洁生产和提标升级改造,进一步减少污染物排放。(省生态环境厅、省发展改革委按职责分工负责)3.深化耕地分类管理切实加大保护力度。依法将符合条件的优先保护类耕地划为永久基本农田,在永久基本农田集中区域,不得规划新建可能造成土壤污染的建设项目。加强农业投入品质量监管,从严查处向农田施用重金属不达标肥料等农业投入品行为。在粮食主产区,实施强酸性土壤降酸改良工程。(省自然资源厅、省农业农村厅、省生态环境厅、省市场监管局按职责分工负责)全面落实受污染耕地安全利用和严格管控措施。“十四五”期间,每年完成受污染耕地安全利用年度工作计划,明确行政区域内安全利用类耕地和严格管控类耕地的具体管控措施,以县(市、区、特区)或市(州)为单位全面推进落实。在毕节市、铜仁市、黔西南州等地选择一批受污染耕地面积较大的县(市、区)开展农用地安全利用示范。对安全利用类耕地,分区分类探索实施安全利用技术和农作物种植推荐清单;对严格管控类耕地,依法采取风险管控措施,探索划定特定农产品严格管控区。积极争取国家资金支持开展耕地生产障碍修复利用,到2025年,耕地生产障碍修复利用面积累计不少于50万亩,其中联合攻关区面积不少于0.8万亩,集中推进区面积不少于19万亩。沿用贵州省土壤污染防治技术指导委员会专家组及技术组成员,加强对各市(州)农用地安全利用及严格管控的工作指导。加强粮食收储和流通环节监管,杜绝重金属超标粮食进入口粮市场。(省农业农村厅、省林业局、省生态环境厅、省自然资源厅、省市场监管局、省粮食和物资储备局按职责分工负责)动态调整耕地土壤环境质量类别。根据土地利用变更、土壤和农产品协同监测结果等,动态调整耕地土壤环境质量类别,调整结果经省人民政府审定后报送农业农村部和生态环境部,并将清单上传至全国土壤环境信息平台。原则上禁止将曾用于生产、使用、贮存、回收、处置有毒有害物质的工矿用地及重金属历史遗留废渣堆存点、治理点复垦为种植食用农产品耕地。(省农业农村厅、省生态环境厅、省自然资源厅按职责分工负责)4.严格建设用地准入管理开展土壤污染状况调查评估。推动用途变更为“一住两公”(住宅、公共管理与公共服务用地)的地块依法开展土壤污染状况调查。鼓励各地因地制宜适当提前开展土壤污染状况调查,化解建设用地土壤污染风险管控和修复与土地开发进度之间的矛盾。及时将注销、撤销排污许可证的企业用地纳入监管视野,防止腾退地块游离于监管之外。土壤污染重点监管单位生产经营用地的土壤污染状况调查报告应当依法作为不动产登记资料送交地方人民政府不动产登记机构,并报地方人民政府生态环境主管部门备案。严格执行土壤平行样采测制度,强化土壤污染状况调查等涉及土壤监测环节质量监管。到2025年,全省开展100个疑似污染地块、高风险地块土壤污染状况调查或风险评估。(省生态环境厅、省自然资源厅按职责分工负责)因地制宜严格污染地块用地准入。从事土地开发利用活动,应当采取有效措施,防止、减少土壤污染,并确保建设用地符合土壤环境质量要求。合理规划污染地块用途,从严管控农药、化工等行业中的重度污染地块规划用途,确需开发利用的,鼓励用于拓展生态空间。地方各级自然资源部门对列入建设用地土壤污染风险管控和修复名录的地块,不得作为“一住两公”用地;不得办理土地征收、收回、收购、土地供应以及改变土地用途等手续。依法应当开展土壤污染状况调查和风险评估而未开展或未完成的地块,以及未达到土壤污染风险评估报告确定的风险管控、修复目标的地块,不得开工建设与风险管控、修复无关的项目。鼓励市(州)因地制宜制定建设用地土壤污染联动监管具体办法或措施,细化准入管理要求。(省自然资源厅、省生态环境厅、省住房城乡建设厅按职责分工负责)优化土地开发和使用时序。涉及成片污染地块分期分批开发的,以及污染地块周边土地开发的,要优化开发时序,防止污染土壤及其后续风险管控和修复影响周边拟入住敏感人群。原则上居住、学校、养老机构等用地应在毗邻地块土壤污染风险管控和修复完成后再投入使用。(省自然资源厅、省生态环境厅按职责分工负责)强化部门信息共享和联动监管。建立完善污染地块数据库及信息平台,共享疑似污染地块及污染地块空间信息。生态环境部门、自然资源部门应及时共享疑似污染地块、污染地块有关信息,用途变更为“一住两公”的所有地块信息,土壤污染重点监管单位生产经营用地用途变更或土地使用权收回、转让信息。将疑似污染地块、污染地块空间信息叠加至国土空间规划“一张图”。(省生态环境厅、省自然资源厅按职责分工负责)5.有序推进建设用地土壤污染风险管控与修复明确风险管控与修复重点。以用途变更为“一住两公”的污染地块为重点,依法开展风险管控与修复。以危险化学品生产企业搬迁改造、长江经济带化工污染整治等专项行动遗留地块为重点,对暂不开发利用的,加强风险管控。以化工等行业企业为重点,鼓励采用原位风险管控或修复技术,探索在产企业边生产、边管控土壤污染风险模式。推广绿色修复理念,强化修复过程二次污染防控。积极探索“环境修复+开发建设”模式。到2025年,完成20个污染地块土壤修复或风险管控。(省生态环境厅、省自然资源厅按职责分工负责)强化风险管控与修复活动监管。探索建立污染土壤转运联单制度,防止转运污染土壤非法处置。严控农药类等污染地块风险管控和修复过程中产生的异味等二次污染。针对采取风险管控措施的地块,强化后期管理。严格管控修复效果评估,确保实现土壤污染风险管控与修复目标。(省生态环境厅负责)加强从业单位和个人信用管理。依法将从事土壤污染状况调查和土壤污染风险评估、风险管控、修复、风险管控效果评估、修复效果评估、后期管理等活动的单位和个人的执业情况和违法行为记入信用记录,纳入全国信用信息共享平台。鼓励社会选择水平高、信用好的单位,推动从业单位提高水平和能力。(省生态环境厅、省发展改革委、省市场监管局按职责分工负责)专栏1 土壤污染防治领域重大工程(一)矿区历史遗留固体废物污染源头排查整治。有序推进全省九个市州及贵安新区铅锌矿、汞矿、锑矿、钼镍矿、锰矿、煤矿、硫铁矿等矿区历史遗留固体废物及河道底泥排查,对区域位置敏感、环境风险高的历史遗留固体废物及河道底泥进行风险管控或整治。(二)耕地土壤重金属污染成因排查。对贵阳市、六盘水市、毕节市、铜仁市、黔南州、黔西南州等土壤重金属污染问题突出18个县(市、区)开展耕地土壤重金属污染途径识别和污染源头追溯,查明污染成因。(三)污染源治理。以遵义市、毕节市、铜仁市、黔东南州为重点,围绕铅锌冶炼(铅蓄电池)、含汞试剂生产及汞冶炼、电镀等行业企业实施一批在产企业绿色生产和提标改造工程,防范新增土壤污染。(四)农用地安全利用。选择毕节市、铜仁市、黔西南州等地一批受污染面积较大的县(市、区)开展受污染农用地安全利用示范;开展耕地生产障碍修复利用,修复利用面积累计不少于50万亩,其中联合攻关区示范面积不少于0.8万亩,集中推进区示范面积不少于19万亩。(五)建设用地土壤风险管控与修复。在铜仁市等地开展在产企业土壤污染风险管控试点;开展100个疑似污染地块、高风险地块土壤污染状况调查或风险评估,实施20个污染地块土壤修复或风险管控工程。(六)区域土壤环境背景值调查。以砷等重金属元素为重点,开展贵阳市土壤环境背景值调查试点。(二)加强地下水污染防治1.建立地下水污染防治管理体系制定地下水环境质量达标方案。查明贵阳市扁井及遵义市汇川区高坪街道大桥村、汇川区高桥街道玻璃厂3个国家地下水环境质量考核点位污染来源,制定地下水环境质量达标方案,明确防治措施及完成时限。(省生态环境厅、省自然资源厅按职责分工负责)推动地下水污染防治分区管理。率先在遵义市、安顺市、黔南州等市(州)开展地下水污染防治重点区划定,实施地下水环境分区管理、分级防治,明确环境准入、隐患排查、风险管控、修复等差别化环境管理要求。(省生态环境厅、省自然资源厅、省发展改革委按职责分工负责)建立地下水污染防治重点排污单位名录。研究建立地下水污染防治重点排污单位名录,推动纳入排污许可管理,加强防渗、地下水环境监测、执法检查。(省生态环境厅负责)建设地下水污染防治试验区。推进遵义市地下水污染防治试验区建设,以地下水生态环境状况调查评估、在产企业地下水污染防治、地下水生态环境管理、地表—地下污染协同防治为抓手,探索创新地下水生态环境管理制度,打造西南岩溶地区地下水污染防治样板。(省生态环境厅、省自然资源厅按职责分工负责)2.加强污染源头预防、风险管控与修复开展地下水污染状况调查评估。开展“一企一库”“两场两区”(即化学品生产企业、尾矿库、危险废物处置场、垃圾填埋场、化工产业为主导的工业集聚区、矿山开采区)地下水污染调查评估。到2023年底,完成贵阳市、遵义市、安顺市、铜仁市、黔南州等地7个化工集聚区地下水环境状况调查评估;到2025年,完成一批其他污染源地下水污染调查评估。(省生态环境厅、省自然资源厅、省住房城乡建设厅按职责分工负责)落实地下水防渗和监测措施。督促“一企一库”“两场两区”采取防渗漏措施,按要求建设地下水环境监测井,开展地下水环境自行监测。指导地下水污染防治重点排污单位优先开展地下水污染渗漏排查,针对存在问题的设施,采取污染防渗改造措施。市(州)生态环境部门开展地下水污染防治重点排污单位周边地下水环境监测。(省生态环境厅、省住房城乡建设厅按职责分工负责)实施地下水污染风险管控。针对存在地下水污染的化工产业等工业集聚区、危险废物处置场和生活垃圾填埋场,实施地下水污染风险管控,阻止污染扩散,加强后期环境监管。试点开展废弃矿井、金矿堆浸地下水污染防治及风险管控。(省生态环境厅、省住房城乡建设厅、省能源局按职责分工负责)探索开展地下水污染修复。土壤污染状况调查报告、土壤污染风险管控或修复方案等,应依法包括地下水相关内容,存在地下水污染的,要统筹推进土壤和地下水污染风险管控与修复。开展历史遗留煤矿酸性废水、有色金属采选矿区矿井涌水排查,探索煤矿酸性废水、矿井涌水治理技术模式。(省生态环境厅、省自然资源厅、省科技厅按职责分工负责)3.强化地下水型饮用水水源地保护规范地下水型饮用水水源保护区环境管理。强化县级及以上地下水型饮用水水源保护区划定,设立标志,进行规范化建设。针对水质超标的地下水型饮用水水源地,分析超标原因,因地制宜采取整治措施,确保水源地环境安全。(省生态环境厅、省水利厅、省发展改革委按职责分工负责)加强地下水型饮用水水源补给区保护。开展城镇地下水型饮用水水源保护区、补给区及供水单位周边环境状况调查评估,推进县级及以上城市浅层地下水型饮用水重要水源补给区划定,加强补给区地下水环境管理。(省生态环境厅、省水利厅、省发展改革委按职责分工负责)防范傍河地下水型饮用水水源地环境风险。推进地表水和地下水污染协同防治,加强河道水质管理,减少受污染河段侧渗和垂直补给对地下水污染,确保傍河地下水型饮用水水源水质安全。(省生态环境厅、省水利厅、省发展改革委按职责分工负责)专栏2 地下水污染防治领域重大工程(一)地下水污染状况调查评估工程。完成贵阳市、遵义市、安顺市、铜仁市、黔南州等地7个化工集聚区地下水环境状况调查评估;开展历史遗留煤矿酸性废水、有色金属矿采选区矿井涌水摸排调查。(二)遵义市地下水污染防治试验区建设。完成遵义市习水县等14个县(市、区)地下水环境状况调查评估与重点区划分,评估地下水环境状况、环境及健康风险,建立地下水污染防治分区划分体系,提出针对性的管理对策措施。(三)地下水综合治理试点工程。实施鱼洞河、坝辉河等一批历史遗留煤矿酸性废水、锑矿采选区矿井涌水等地下水污染综合治理试点工程。(三)深化农业农村环境治理1.加强种植业污染防治持续推进化肥农药减量增效。聚焦赤水河、乌江流域重点区域,明确化肥减量增效技术路径和措施。在主要粮油作物上实施精准施肥,分作物制定化肥施用限量标准和减量方案,制定水稻、玉米、油菜等氮肥推荐定额用量,依法落实化肥使用总量控制。大力推进测土配方施肥,优化氮、磷、钾配比,逐步实现在粮食主产区及果菜茶等经济作物优势区全覆盖。改进施肥方式,推广应用机械施肥、种肥同播、水肥一体化等措施,减少养分挥发和流失,提高肥料利用效率。积极推广缓释肥料、水溶肥料、微生物肥料等新型肥料,拓宽畜禽粪肥、秸秆和种植绿肥的还田渠道,在更大范围推进有机肥替代化肥。培育扶持一批专业化服务组织,提供统测、统配、统供、统施“四统一”服务。鼓励以循环利用与生态净化相结合的方式控制种植业污染,农企合作推进测土配方施肥。推进科学用药,推广应用高效低风险农药。推广新型高效植保机械,推进精准施药,提高农药利用效率。2025年,全省化肥农药施用量稳中有降,主要农作物化肥、农药利用率达到43%。(省农业农村厅、省生态环境厅、省供销合作社按职责分工负责)提升秸秆农膜回收利用水平。健全秸秆收储运体系,培育壮大一批产业化利用主体,提升秸秆离田收储、运输和供应能力,完善秸秆资源化利用和台账管理制度。深入实施农膜回收行动,严格落实农膜管理制度,健全农膜生产、销售、使用、回收、再利用全链条管理体系;推广使用标准地膜,发展废旧地膜机械化捡拾,探索推广环境友好全生物可降解地膜。到2025年,秸秆综合利用率保持在86%以上,农膜回收率保持在85%以上。(省农业农村厅、省生态环境厅、省市场监管局、省供销合作社按职责分工负责)2.着力推进养殖业污染防治编制实施畜禽养殖污染防治规划。按照“统筹考虑、一体推进、源头预防”原则,将畜禽污染防治纳入省畜牧业发展规划并组织实施。2022年率先组织开阳、播州、习水、七星关、威宁、思南和松桃7个畜牧大县编制畜禽养殖污染防治规划。以贵阳市为试点,逐步推进市(州)和其他县(市、区、特区)县畜禽养殖污染防治规划编制工作。(省农业农村厅、省生态环境厅、省发展改革委按职责分工负责)加强畜禽粪污资源化利用。健全畜禽养殖场(户)粪污收集贮存配套设施,建立粪污资源化利用计划和台账。创新粪肥还田组织方式,加快建设田间粪肥施用设施,鼓励采用覆土施肥等施肥方式。促进粪肥科学适量施用,推动开展粪肥还田安全检测。培育壮大一批粪肥收运和田间施用社会化服务主体。推进15个国家级畜禽粪污资源化利用“整县推进”示范县建设,重点支持养殖大县、粮食和蔬菜主产区、生态保护重点区域,选择基础条件好、地方政府积极性高的县(市、区),整县开展粪肥就地消纳、就地还田,实现示范县域内“一控、两减、三基本”目标。到2025年,全省畜禽粪污综合利用率稳定在80%以上。(省农业农村厅、省生态环境厅、省发展改革委按职责分工负责)加强畜禽养殖污染环境监管。落实畜禽规模养殖场环境影响评价及排污许可制度,依法规范畜禽养殖禁养区管理。推动畜禽规模养殖场配备视频监控设施,防止粪污偷运偷排。推动设有排污口的畜禽规模养殖场定期开展自行监测。依法严查环境违法行为。(省生态环境厅、省农业农村厅按职责分工负责)推动水产养殖污染防治。因地制宜发展池塘工程化循环水养殖、大水面增殖渔业、稻渔综合种养等绿色生态健康养殖模式。鼓励采取进排水改造、生物净化、人工湿地、种植水生蔬菜花卉等技术措施开展集中连片池塘养殖区域和工厂化养殖尾水处理,推进养殖尾水节水减排。深入实施生态健康养殖、养殖尾水治理、水产养殖用药减量、水产种业提升“四大行动”,因地制宜研究制定地方水产养殖业水污染物排放标准,加强水产养殖尾水监测,规范工厂化水产养殖尾水排污口设置。以赤水河流域、乌江流域等区域为重点,依法加大环境监管执法检查力度。(省农业农村厅、省生态环境厅按职责分工负责)3.推进农业面源污染治理监督指导以乌江流域为重点,开展黔南州贵定县农业面源污染治理与监督指导试点。优化完善监测点位,开展水质水量同步监测,加强汛期等重点时段水质监测;以小流域为单元,开展污染负荷评估,确定监管重点地区和重要时段,编制优先治理区域清单;实施治理工程,分区分类建立适宜管理模式和技术体系;开展治理绩效评估。(省生态环境厅、省农业农村厅按职责分工负责)4.整治农村黑臭水体明确整治重点。建立全省农村黑臭水体监管清单,优先整治纳入国家监管、群众反映强烈的黑臭水体,实行“拉条挂账、逐一销号”,稳步消除较大面积的农村黑臭水体。进一步核实黑臭水体排查结果,对新发现的黑臭水体及时纳入监管清单,加强动态管理。到2025年,国家监管的农村黑臭水体整治率达100%。(省生态环境厅、省农业农村厅、省乡村振兴局按职责分工负责)系统开展整治。针对黑臭水体问题成因,以控源截污为根本,综合采取清淤疏浚、生态修复、水体净化等措施,将农村黑臭水体整治与生活污水、垃圾、种植、养殖等污染统筹治理,确保治理成效。对垃圾坑、粪污塘、废弃鱼塘等淤积严重的水体进行底泥污染调查评估,采取必要的清淤疏浚措施。对清淤产生的底泥,经无害化处理后,可通过绿化等方式合理利用,禁止随意倾倒。根据水体的集雨、调蓄、纳污、净化、生态、景观等功能,科学选择生态修复措施。对于滞流、缓流水体,采取必要的水系连通和人工增氧等措施。(省生态环境厅、省水利厅、省农业农村厅、省乡村振兴局按职责分工负责)推动“长治久清”。充分发挥河湖长制平台作用,压实责任,实现水体有效治理和管护。对已完成整治的农村黑臭水体,开展效果评估,确保达到水质指标和村民满意度要求。严禁表面治理和虚假治理,禁止简单采用冲污稀释、一填了之等“治标不治本”做法。将农村黑臭水体排查结果和整治进展向社会公开公示,鼓励群众积极参与,对排查结果、整治情况监督举报。(省生态环境厅、省农业农村厅、省水利厅、省乡村振兴局按职责分工负责)5.治理农村生活污水积极稳妥推进治理。以解决农村生活污水等突出问题为重点,提高农村环境整治成效和覆盖水平。加强城乡统筹治理,扎实推进乡村建设行动,推动县域农村生活污水治理统筹规划、建设和运行,与供水、改厕、水体整治等一体推进,有效衔接。聚焦赤水河流域、乌江流域等水环境敏感区域流域,重点治理饮用水源保护区、黑臭水体集中区域、中心村、城乡接合部、旅游风景区,加强与传统村落、特色田园乡村示范试点建设等相衔接,因地制宜开展污水处理与资源化利用。城镇所在村及周边村,有条件的可以纳入城镇生活污水处理系统处理;居住较为集中、环境要求高的村庄,集中建设农村生活污水处理设施;居住分散、人口较少的非敏感区,结合厕所粪污无害化处理和资源化利用,对生活污水进行有效管控。在满足排放标准的前提下,大力推进运行费用低、管护简便的治理技术,优先选择三格式化粪池+厌氧池或小型人工湿地等无(微)动力生态处理技术。聚焦解决污水乱排乱放问题,开展农村生活污水治理成效评估。到2025年,全省新增完成2000个行政村环境整治任务,农村生活污水治理率达到25%。其中有基础、有条件地区,农村生活污水治理率达到40%左右;有较好基础、基本具备条件地区,农村生活污水治理率达到25%左右;基础较弱、经济欠发达地区,农村生活污水治理水平有新提升。(省生态环境厅、省发展改革委、省科技厅、省住房城乡建设厅、省乡村振兴局、省农业农村厅按职责分工负责)加强农村改厕与生活污水治理有效衔接。科学选择改厕技术模式,宜水则水、宜旱则旱。因地制宜推进厕所粪污分散处理、集中处理与纳入污水管网统一处理,鼓励联户、联村、村镇一体处理。已完成水冲厕所改造的地区,目前具备污水收集处理条件的,优先将厕所粪污纳入生活污水收集和处理系统;暂时无法纳入污水收集处理系统的,应建立厕所粪污收集、贮存、资源化利用体系。计划开展水冲式厕所改造的地区,鼓励将改厕与生活污水治理同步设计、同步建设、同步运营;暂时无法同步建设的,预留后续污水治理空间。(省生态环境厅、省农业农村厅、省乡村振兴局、省卫生健康委按职责分工负责)6.治理农村生活垃圾推进农村生活垃圾减量化资源化。按照垃圾“减量化、资源化、无害化”的原则,多措并举宣传推进农村生活垃圾分类,构建“政府主导、企业主体、全民参与”垃圾分类体系,引导村民分类投放,实现源头减量。鼓励社会资本参与农村生活垃圾资源化减量化,推进现有生活垃圾收运体系与资源再回收利用网络的衔接。(省住房城乡建设厅、省农业农村厅牵头,省乡村振兴局、省生态环境厅、省供销合作社按职责分工负责)健全农村生活垃圾收集、转运和处置体系。根据当地实际,统筹县、乡镇、村三级设施建设和服务,合理选择收运处置模式。完善农村生活垃圾收运处置设施,构建稳定运行的长效机制,加强日常监督,不断提高运行管理水平。因地制宜采用小型化、分散化的无害化处理方式,降低收集、转运和处置设施建设和运行成本。(省住房城乡建设厅、省乡村振兴局、省生态环境厅按职责分工负责)7.加强农村饮用水水源地环境保护完成乡镇级集中式饮用水水源保护区划定,规范设立保护区标志,必要时采取隔离防护措施。实施饮用水水源、供水单位供水和用户水龙头水质状况监测评估,并由县级以上地方人民政府有关部门依法向社会公开饮用水安全状况信息。(省生态环境厅、省水利厅、省卫生健康委按职责分工负责)专栏3 农业农村污染防治领域重大工程(一)农村生活污水治理工程。实施2000个行政村农村生活污水治理工程。(二)农村黑臭水体整治工程。实施织金县阿弓镇狗场村、平坝区羊昌乡稻香村、清镇市卫城镇南门村、花溪区石板镇盖冗村、花溪区高坡乡新安村、惠水县摆金镇关山村等56条农村黑臭水体整治工程。(三)畜禽粪污资源化利用整县推进工程。实施15个县畜禽粪污资源化利用整县推进工程,进一步提高粪污资源化利用率。(四)贵定县农业面源污染治理与监督指导试点工程。开展贵定县农业面源调查、监测及负荷评估,为贵州山区农业面源污染治理与监督指导提供示范。(四)提升生态环境监管能力1.完善法规标准推进《贵州省土壤污染防治条例(草案)》立法工作。制修订《贵州省农村生活污水资源化利用指南》《农村生活污水处理适用技术指南》《贵州省农村生活污水处理设施建设与运行维护技术指南》《贵州省农村生活污水处理技术规范》《贵州省农村生活污水处理设施运行维护管理办法》。(省生态环境厅、省司法厅、省市场监管局按职责分工负责)2.健全监测网络完善土壤环境监测网,优化调整土壤环境监测点位,定期开展国控网络和省控土壤环境质量监测,持续开展农产品产地土壤和农产品协同监测。至少完成一轮土壤污染重点监管单位周边土壤环境监测。探索开展建设用地安全利用卫星遥感监测。建成48个点位的国家地下水环境质量考核网络。对218个国家地下水环境质量监测点和152个省级监测点位开展监测。组织开展12个特色村农村环境质量监测,加强农村“万人千吨”饮用水水源地水质监测,加强日处理能力20吨及以上农村生活污水设施排口、规模化畜禽养殖场排污口、水产养殖集中区养殖尾水等监测。(省生态环境厅、省农业农村厅、省自然资源厅、省水利厅按职责分工负责)3.加强生态环境执法依法开展土壤、地下水和农业农村生态环境保护行政执法。严厉打击固体废物特别是危险废物非法倾倒或填埋,以及利用渗井、渗坑、裂隙、溶洞等逃避监管的方式向地下排放污染物等行为,对涉嫌污染环境犯罪的,及时移送公安机关。落实生态环境损害赔偿制度,按要求开展污染土壤和地下水的生态环境损害调查评估。组织开展监管执法工作培训,提升执法水平。(省生态环境厅负责)4.强化科技支撑优化整合科技计划,支持土壤、地下水和农业农村污染治理相关技术研发。开展高背景农用地土壤中镉等重金属元素生物有效性及向农产品迁移转化规律研究。推进铅、汞、镉、砷污染土壤安全利用、风险管控和修复共性关键技术、设备研发及应用。积极探索适宜我省地下水污染防治技术模式,围绕鱼洞河废弃煤矿酸性水流域地表水—地下水污染、松桃“两井四库”锰矿渣场渗漏废水等地下水生态环境突出问题,开展综合探查、酸性水生成速率控制、生物处理工艺和污染协同防治技术研究和开发利用。开展农业面源污染防治关键技术和喀斯特地区农村分散式污水无动力处理关键技术研发。推进土壤、地下水和农业农村生态环境保护领域省级重点实验室建设。(省科技厅、省生态环境厅、省自然资源厅、省农业农村厅按职责分工负责)四、保障措施(一)强化组织领导地方各级人民政府是实施本规划的主体,市(州)制定并公布本行政区域土壤、地下水和农村生态环境保护相关规划,确定目标任务和主要措施,县(市、区、特区)将土壤、地下水和农村污染防治工作纳入国民经济和社会发展规划、环境保护规划。建立部门协同推进机制,有关部门按照职责分工,落实“一岗双责”,密切协作配合,形成工作合力。(二)强化政策支持落实生态环境领域省以下财政事权和支出责任划分改革方案要求,充分发挥各级财政资金作用,争取国家财政资金支持,积极拓宽资金渠道,探索建立多元化投融资机制。积极通过地方政府债券支持符合条件的农业农村生态环境保护项目。继续通过现有资金渠道持续推动化肥农药减量增效、生物防治等相关工作,推进农业绿色发展。紧密衔接国土空间规划编制,预留农村生活污水治理等环保基础设施建设用地,积极推动将农村环保基础设施用电纳入农业生产用电范畴。(三)强化宣传引导充分利用电视、广播、报刊、互联网、微信公众号等媒体,结合世界环境日、世界土壤日、全国土地日、贵州生态日等主题宣传活动,有针对性地宣传普及土壤、地下水和农业农村生态环境保护知识,增强公众生态环境保护意识。采用培训班、现场会、视频会等形式,强化宣传培训。推进土壤、地下水和农业农村生态环境保护融入党政机关、学校、工厂、社区、农村等环境宣传培训工作,大力推广绿色生产生活方式,形成全社会保护土壤、地下水和农业农村生态环境的良好氛围。(四)强化效果评估实行目标责任制和考核评价制度,分解落实目标任务。省生态环境厅会同相关部门围绕本规划目标指标、主要任务、重大工程进展情况进行调度。在2023年、2025年底,分别对本规划实施情况进行中期评估和总结评估。
  • 国土资源部公开地下水监测数据
    2月25日,北京律师黄乐平等三人致函国土资源部,申请公开全国地下水监测详情。3月25日,三名律师收到书面回复,一并寄达的还有厚达400页的水质报表。专家分析时指出,报表呈现的总体水质状况可能与现实不符,我国目前使用的地下水质量标准仍是20年前的,早已过时,建议重新制定相关标准。   公开 规定期限作出答复   申请信息公开的黄乐平、韩世春和叶明欣,为北京义联劳动法援助与研究中心的律师。   2月25日,三位律师通过电子邮件和EMS快递,向国土资源部申请公开2011年全国200个城市地下水水质监测的各城市的具体结果。申请缘由是:早在2012年5月,国土资源部发布《2011年中国国土资源公报》,公布了2011年地下水监测概况,但没有详细数据。   3月22日,黄乐平等三人尚未收到回复。三人“以为国土资源部不予回复”,遂委托北京义贤律师事务所发出律师函,恳请予以答复。律师函发出3天,三人收到信息公开告知书。   《告知书》落款时间为3月18日,落款为国土资源部政府信息公开工作办公室(国土资源部办公厅(代章))。   其内容称,2月27日收到申请,该部依法受理,根据《政府信息公开条例》作出答复。根据《政府信息公开条例》第二十四条,行政机关收到政府信息公开申请,不能当场答复的,应当自收到申请之日起15个工作日内予以答复。以此推算,国土资源部的回复是在15个工作日内作出的。   对此,该申请项目的执行人叶明欣认为,国土资源部的回应很及时。   涉及八百个监测点   与回函同时寄达的,还有厚达400多页的资料,全称为《2011年度国家级监测点地下水水质监测数据报表》(以下简称《报表》)。该报表由国家级地下水监测数据采集项目组制作,完成于2012年5月。   《报表》前言介绍,该表是依据我国31个省级地质环境监测总站(院、中心)上报的2011年度国家级监测点地下水水质监测数据汇编而成,监测点主要分布在全国31个省(自治区、直辖市)的151市,其中,包含地级以上市139个,区、县级市12个,共计800个监测点,2万余条检测数据。   《公告书》解释,2011年《国土资源公报》关于200个城市地下水水质的表述,是该部根据800个国家级监测点数据,通过与各省(区、市)国土资源部主管部门进行地下水监测成果会商得出的。   检测标准未予说明   《报表》统计表显示,全国800个监测点中,北京为26个,上海为14个。监测点数量较多的,依次为安徽省66个,吉林省63个,山东省60个。监测点数量最少的是山西省、江苏省和新疆,均为5个。   昨天,记者查看各监测点的地下水水质报表,每张报表中的检测指标共计36项,每个分析项目,对应相应的检测结果,但每个数据是否超标,表格上未明确体现,需要查询相关标准对照。   此外,每份报表并无水质情况的综合结果,因此,简单翻看表格,并不能得出某个监测点水质的直观结论。   对于这份报表,黄乐平等人同样不能直接解读。黄乐平说,专业数据显得枯燥,普通人不易消化。因此,他们将邀请环保专家及研究人员参与解读,分析这些数据可能呈现的地下水水质污染问题。   “2011年《国土资源公报》关于200个城市地下水水质的表述,只有一张纸。从400页到一页纸的结论,应该有份说明。”黄乐平说,在分析完《报表》后,下一步,可能会申请公开相关数据的计算标准和详细的分析报告。   同时,黄乐平也建议,希望国土资源部进一步在网站上公开《报表》资料,方便全国公众查阅,以了解身边地下水水质的情况。   分析 部分重要指标未呈现   昨天,知名环保专家、中国环境科学研究院研究员赵章元查阅了这份《报表》。赵章元表示,这份资料很难得,国土资源部也从未公开过,“我本人也没有查到过”。由于《报表》数据庞杂,赵章元表示,需要仔细研究后,才能得出结果。   赵章元初步分析,《报表》检测的项目,使用的是国家技术监督局1993年制定的《地下水质量标准》(以下简称《标准》)。该标准中,地下水质量的分类指标共有39项,而国土资源部此次公开的《报表》中,监测数据为36项指标,包括《标准》中的23项。已监测的另外13项,则不在标准中。   资料显示,《标准》中的39项指标,有16项不在公布的范围内,包括总大肠菌群、细菌总数、滴滴涕(DDT)等。而总大肠菌群和细菌总数,却是水污染常规分析指标,反映水体受到生物性污染的程度。   赵章元指出《报表》的不足:“像钾离子、钠离子等一些物质,属于无关紧要的,不测也可以,但大肠杆菌和细菌总数,是必须要测的,但《报表》中却没呈现。”   部分地方水质检测缺项多   《报表》显示,各城市的监测点,很多指标的检测结果为空白。而据《报表》前言介绍,空白“表示缺失该项信息。”   其中,北京一共有8个区县、26个监测点。但36项指标中,只有25项有对应的数据,有11项为空白,“重金属如铅、镉等物质,都没有检测。”   资料还显示,在其他城市中,宁夏银川市的监测点可能是最完整的报表。表格中包括34项指标,仅空缺两项。而丹东市的部分监测点则仅有14项检测结果,空缺22项。   “有的地方水质检测缺项太多,这样的检测是起不到作用的,有一项没有数据,都没有办法计算出水质的总体情况。”赵章元说,缺失的信息,很可能是没检测,而官方公布的水质概况却建立在这些数据的基础上,由此,其可信度大打折扣。   建议 更新水质检测标准   赵章元介绍,之前,国家公布的地下水重污染占64%,轻污染的占33%。而根据2011年《国土资源公报》的数据显示,污染较差和极差的水质一共占到了55%,从数据上来说水质是变好了很多。   但赵章元认为,水质好转与实际情况可能不符。“近年来,各地水污染事件频发。企业污水排放的总量在增加,环保部门的有效措施却很少看到。”他分析,结论和现实的误差,可能出现在实测项目和计算上。   赵章元指出,1993年制定《标准》时,主要的污染物是无机物,而如今最大的污染来自有机物,“但《标准》中,没有有机物的监测项,比如石油烃。20年没有改变,根本跟不上水质变化的速度。这说明标准本身已经过时了,应该重新制定。”   相关新闻:律师申请公开地下水监测详情
  • 人大代表:政府对地下水污染情况了解不够
    从地下水污染问题,到PM2.5的测定再到北京连续多日的雾霾天气,环境问题前所未有的挑动着人们的神经,也成为了“两会”上的热门词汇。   3月11日,全国政协委员、民进湖南省副主委,湖南省环境保护厅副厅长潘碧灵、全国人大代表、中科院科技政策与管理科学研究所副所长王毅、全国工商联环境商会会长文一波就PM2.5、地下水污染以及在城镇化推进过程中的农村环境问题接受媒体了采访。   地下水污染问题已经在几个月内迅速成为了人们关注的焦点,王毅向21世纪网表达看法时称,他认为目前政府对于地下水污染的研究工作做得太少了,具体情况了解的仍不够。   对于企业在环境问题上的一再违规与忽略,王毅对21世纪网表示,违法成本低是最主要的原因。文一波则从企业的角度表示,一家公司修建环保措施的成本并不高,只是其中很多钱被无谓的浪费了。   而王毅和文一波同时对21世纪网称,政府应该通过增减税种和相关政策制定引导企业重视环保问题。   另一方面,随着城镇化推进,农村环境问题成为了越来越迫切的议题,潘碧灵就此对21世纪网表示,基本环境质量是政府提供的公共产品,这种产品不止是提供给城市居民,也要提供给农民,农村环境如果不治理好,城市环境也无法改善。   而王毅则通过21世纪网提出呼吁,希望新出台的2010年到2020年城镇化规划中能够把环保作为重要的因素提出来。   违法成本低   日前,国务院批准了《华北平原地下水污染防治工作方案》。其中提出,到2015年,初步建立华北平原地下水质量和污染源监测网,基本掌握地下水污染状况,加强华北平原地下水重点污染源和重点区域地下水污染防治。到2020年,全面监控华北平原地下水环境质量和污染源状况,科学开展地下水污染修复示范,地下水环境监管能力全面提升,地下水污染风险得到有效防范。   21世纪网对此寻求王毅看法时,王毅表示,政府对于地下水污染的调查研究工作仍然“任重道远”。   “政府能够出台条例自然是好的,但是当前的研究工作做得太不够了,最重要是要了解具体情况,科学制定政策,现在我们这方面还差的很远。”王毅对21世纪网表示。   企业为何在环保问题上频频“有恃无恐”?王毅对21世纪网表示,环境破坏的违法成本低是最主要的原因。   “如果违法成本只有二十万,企业为什么不违法?像日本、欧美那种‘最严格的环保政策’,实际就是企业一旦出现环境污染问题,就把企业告到破产为止。但是目前我们的法律没有严格到这个份儿上。   潘碧灵也表达了同样的观点:“我国原来《水污染防治法》最高处罚20万,修改过后最高处罚也只有100万,但是有些污染造成的影响则是几千万乃至数十亿。”   除了违法成本低之外,人们普遍认为环保成本高也是企业逃避责任的原因之一。不过,文一波告诉21世纪网,企业实施环保措施本身所需资金并不多,但现在企业花了很多冤枉钱。   “其实企业解决污染问题不需要花很多钱,但是现在之所以成本高是因为很多钱浪费掉了。就像我之前所说的,一个公司要建污水处理厂,但是占地比较大,这个污水处理厂要交很多土地税和房产税,投资的百分之十几交税了。政策没能起到引导的作用。”   王毅对21世纪网表达了同样的观点。他认为,政府要通过调整税收来引导企业重视环保。   王毅称,他主张收环境税,政府可以减去一部分企业需要交的所得税。这样使整个税制比较平衡,既不增加企业负担,也可以通过增加环境税可以引导企业更加重视环境问题,所以他一直认为税收是调整行为的办法之一。   政府搞环保“不专业”   2012年四季度,国务院进一步“下放”了企业审批的权力,而此举在促进地方企业发展的同时,王毅也表达了自己的担忧。他认为,环保的监管作用在如今的情形下越来越重要,如果地方政府不重视、不治理环境问题,未来还会存在很多风险。   而当进一步谈到政府与企业关于环保工作的职责分工时,潘碧灵与文一波的观点产生了激烈的交锋。   潘碧灵以我国城市的垃圾处理做例子。   “目前我国垃圾处理的主要方向是焚烧,大家最担心是垃圾焚烧后产生的二噁英。实际上,当焚烧温度在800度以上时,产生的二噁英就很少了,如果企业来建设垃圾焚烧项目,企业可能为了利益和成本,使(焚烧)温度达不到800度,所以类似这样的项目就要政府来做,统一管理,再加上社会监督,就能够既解决垃圾焚烧的问题,同时又不出现由于温度烧得不够或者其他原因带来二噁英的影响。   文一波对此观点表达了坚决反对。   文一波认为,首先,政府不能既当运动员又当裁判。应该把企业能做的交还给企业。如果企业造成污染或没有达到环境要求,可以直接取消企业特许经营权,这样使企业的相关投入打了水漂,是很有震慑力的。第二,政府是非专业化的机构,几个官员到处旅游考察,回国之后就指导一个从事垃圾处理20年、专门学环保的人来干事情,这样是非常不科学的。   新城镇化应重视农村环保   随着城镇化的推进,其过程中给农村环境所带来的破坏与污染也不可小觑。据了解,目前农村环境污染占总污染量的60%。21世纪网就此采访了潘碧灵和刘毅的意见。   潘碧灵对21世纪网表示,基本环境质量是政府提供的公共产品,这种产品不止是提供给城市居民,也要提供给农民,这是维护公民的环境权益。   “农村环境如果不治理好,城市环境也难以治理,应该把工业与农业、城市与农村放到同等重要的位置上,推进城乡环境一体化。”潘碧灵对21世纪网称。   据了解,国务院从2008年开始部署农村环境治理的工作,5年共投入135亿,治理了2.6万个行政村,占总体的4.3%。但潘碧灵对21世纪网称,政府从工作推进的步伐和力度上都远远不够,到“十二五”末,预计也只能治理10%左右的新农村,中央出台了十个关于”三农“工作的“一号文件”,但到现在还没有关注到农村环保。   而王毅则通过21世纪网呼吁,希望新出台的2010年到2020年城镇化规划中能够把环保作为重要的因素提出来,将怎样走一个绿色、低碳、环保的道路放到更为突出的地位。   王毅同时表示,关于农村环境治理,我们过去没有成熟经验,现在也看不到特别明确的解决办法,需要各方一起探索。
  • 水业速览 ▏地下水管理条例颁布,你准备好了吗?
    水业速览 ▏地下水管理条例颁布,你准备好了吗?2021国务院正式颁布了地下水管理条例(中华人民共和国国务院令第748号)新颁布的《地下水管理条例》深入贯彻落实“节水优先、空间均衡、系统治理、两手发力”的治水思路,规定了地下水节约保护、超采治理、监督管理等制度措施,对区域地下水管控、节约用水、取用水监管等提出明确要求和方向,为加强地下水管理、促进地下水可持续利用提供了重要的法律依据。条例主要内容包括:一严格总量控制,强化区域地下水管控实行地下水取水总量控制实行地下水水位控制严格地下水禁、限采区等重点区域管理二强化节水优先,提高地下水利用效率大力推广应用先进节水技术、工艺、设备和产品。着力提高农业用水效率加快建设节水型社会三严格地下水取水许可和计划管理加强地下水取水工程监管推进地下水取水计量实行特殊类型工程监管强化经济手段运用《条例》针对地下水污染的特点,贯彻预防为主的方针,聚焦以下四方面关键因素,提出管控措施,具有很强的针对性和可操作性。一、实施分区分类防治二、对点源实施严格管控三、加强生产建设活动管理四、加强土壤污染防治条例的颁布,为地下水水位,水量,水质的监测和检测提出了更进一步的要求,其中地下水水位,地下水取水口流量,地下水水体电导率,氮磷等参数的检测,以上4方面是地下水水体质量重要的参考指标。污染防治,检测先行。未来地下水环境监控将提升到更高标准。对相关检测产品的技术、质量有更高要求。地下水现场监测面临着,地域广,覆盖面大,综合影响因素复杂等困难局面,对相应的监测设备提出了更加智能化,小型化,便携化,多参数检测能力的要求。让我们一起用更准确、快速、灵活、便捷的检测手段为地下水质量保驾护航,为国家水安全贡献力量。END
  • 多位专家解析华北地下水治污“处方”
    3月22日,又是一年世界水日。   地下水污染问题让每一个中国人揪心。而在华北平原,地下水是居民饮用水的大部分来源,但其污染问题早就受到各方面的关注。如今,有调查显示,在华北平原众多取样点中,大约一半的水样被严重污染,污染物包括了无机盐、有机难降解物以及重金属。   所以,华北平原地下水污染问题几乎成为全中国地下水污染的标本。如何解决这一问题,已经成为中国环境问题的当务之急。   3月8日,环保部公布,《华北平原地下水污染防治工作方案》(下称《方案》)已经得到国务院批复。14日,环保部部长周生贤公开表示“我们有一个治理规划,并向国务院作了汇报”。《方案》是2011年《全国地下水污染防治规划(2011-2020年)》出台以来,环保部给地下水污染开出的第二次“处方”,也是专门为华北地下水治污开出的“第一处方”。   那么,这份华北平原地下水的“第一处方”是如何出台的?它是否将真的对治理华北平原地下水污染有效?科学家、政府和企业家还有哪些担忧?   《中国科学报》记者带着这些问题,探访了多位业内专家。   高分项目这样炼成   “首次”查清华北平原地下水“有机污染”状况,为全国地下水污染调查评价工作起到了重要的技术支撑和示范作用   记者注意到,就在环保部《方案》获批前两个月,中国地质科学院水文地质环境地质研究所公布了“华北平原地下水污染调查评价”项目的评审结果。   评审结果中提到,该项目“首次”查清华北平原地下水“有机污染”状况,为全国地下水污染调查评价工作起到了重要的技术支撑和示范作用,总体达到“国际先进水平”,最终“以94分的优秀成绩”通过评审。   中国工程院院士、中国地质科学院研究员卢耀如是项目评审专家之一。接受《中国科学报》记者采访时,卢耀如透露,《方案》正是基于这个高分项目的一些成果而制定的。   作为一名水文地质专家,卢耀如经常参与科研项目评审,而获得如此高分的项目他也很少遇到。卢耀如说:“这个项目之所以得高分,是因为其在研究问题重要性的指标上得分非常高。”   中国对地下水问题的关注由来已久,上世纪80年代初的“六五”期间,我国设立了若干国家科技攻关项目,其中第38项便是“华北平原地下水污染评价”。   卢耀如告诉《中国科学报》记者:“那时候水质监测标准相对低一些,地下水更突出的问题是硬水、水位下降、地面沉降这些问题。”涉及水质污染的指标只有“三氮”:硝酸盐——氮、亚硝酸盐——氮以及铵氮。   随后,华北平原发展了钢铁、化工企业,加之农业生产中的农药使用,研究者和管理者才开始看重水质污染。   如今,究竟华北地下水污染到了什么程度?有哪些污染物已经进入地下水环境?这些问题仍是个谜。   2006年,中国地质调查局在国土资源大调查项目的资助下,首次在华北平原开展系统的地下水调查。调查的具体工作由地科院水文地质环境地质研究所(简称水环所)承担。   根据地调局对水环工作的记载,2006年3月,项目启动之初,中国地质调查局便和清华大学联合举办了“地下水污染调查评价培训班”。在为期四天的培训里,河北、天津、北京、山东等省市属地调院、地质环境监测总站的业务骨干学习了这一项目有关地下水污染调查评价的技术。   4月,水环所成立了项目综合组,常务办公人员6人,设组长和副组长。综合组经过协商后,将该项目划分为11个工作项目,并确定了2006年该项目的工作重点是在供水水源地进行地下水污染调查,以及一系列的野外取样工作规范。   项目负责人、水环所副所长张兆吉在采访中告诉《中国科学报》记者,希望这个项目发展起来的技术标准能推广到全国。   2009年,该项目已经完成了1比25万区域地下水污染调查15万平方千米。结果发现,所有采样点中,不用任何处理直接可以饮用的地下水(即I到III类)占36%,经适当处理可以饮用的地下水(IV类)占24%,另有39%的地下水(V类)需经专门处理后才可利用。项目还建设了有机污染物的实时质量监控管理系统,研发了中国特色的地下水样品采集设备,并最终入选中国地质学会2009年度十大地质科技进展。   2010年,该项目还实施过一次规模较大的野外验收。当时,专家组历时10天,沿唐山、天津、北京、河北、河南、山东的野外抽查路线,检查了各取样点的采样记录,确定质量符合要求。同年,地下水污染数据库建立。   这个项目还带动了一系列对华北平原地下水污染的研究。例如,2009年,水环所承担了我国第一个地下水“973”计划项目“华北平原地下水演变机制与调控”,由水环所所长石建省担任首席科学家。据悉,项目的起止年限为2010年至2014年,共5年,总经费4500万元,其中国家“973”专项经费3000万元,自筹经费1500万元。   立项之初,卢耀如作为顾问,多次参加了学术研讨会。“这也是为了配合国土部更好地进行调查。”他说。   这个高分项目便这样按部就班地开展了。   从大科学走向大政策   在历时6年的华北平原地下水污染治理科学研究项目基础上,环保部通过《华北平原地下水污染防治工作方案》   2011年10月,项目接近尾声。正在这时,发生了一个插曲。一名记者联系到张兆吉和石建省,对该项目的调查结果进行了采访,报道指出了最终调查结果“因涉及敏感问题不能公开”,一度将项目组置于颇为尴尬的境地。   一时间,这篇报道在各大网络媒体上大量转载,引起公众的巨大反响。其中不乏批评的声音,舆论指责科学研究不能向公众保密,相关管理部门也批评他们未经允许就披露尚未完成的研究结果。作为项目负责人的张兆吉曾向同行倒过苦水,“感到有些委屈”。   不过,调查项目的继续进行并没有因此受到影响。如今,张兆吉和同事们将已经完成的调查结果以学术论文的形式发表在2012年9月的《吉林大学学报》上。这个插曲反而让调查项目的重要性更引人关注。   按照惯例,一些科研项目在研究过程当中,科研者便会将阶段成果以咨询报告的形式递交给决策部门,以推动在科学研究中发现的问题变成具体措施,进而在现实中得到解决。有的甚至还有可能向国家高层领导递交介绍研究重要性和成果的内参。   卢耀如透露,这次调查也不例外。“研究人员给国务院写了报告,强调地下水污染的严重性,希望能从国家层面重视起来。”他说。据卢耀如了解,除了调查中发现的污染日趋严重外,报告中还涉及今年春节前后向地下含水层打排污井的传言。   2012年初,国务院总理的温家宝在沸沸扬扬的舆论声中看到这份报告。很快,总理的批示下来了,提到由国土资源部、水利部、住房城乡建设部和环保部来共同解决华北平原地下水污染的问题。   “最后加了一句,由环保部牵头。”卢耀如说。   这时,华北平原地下水污染治理这项历时6年的科学研究项目彻底从实验室走了出来。   去年3至4月间,得到温家宝总理批示后,环保部开始着手进一步的政策制定。2012年10月,环保部通过《华北平原地下水污染防治工作方案(2012-2020年)》。方案估计,国家为此将投入200亿元专项资金。   该方案最终获得国务院批复,正式成为华北平原地下水治污“第一处方”。《方案》提出两个目标,即2015年初步建立华北平原地下水质量和污染源监测网、摸清华北平原地下水污染情况,2020年全面监控华北平原地下水环境质量和污染源状况、开展地下水污染修复示范。   今年3月8日,环保部网站公布了这一消息。《方案》提出了三个工作任务:一是加强地下水环境监测,建立华北平原地下水质量监测网 二是保障地下水饮用水源安全,严格地下水饮用水源环境执法,分类防治超标的地下水饮用水源 三是强化重点污染源和重点区域污染防治,加大对重点污染源废水排放和堆放场地污染物渗漏等防治力度,积极推进重金属、有机物和氨氮、硝酸盐氮和亚硝酸盐氮等污染较严重区域的地下水污染综合防治。   此外,《方案》还要求,进一步完善地下水法规制度体系,健全投融资机制和经济政策,加大相关科技研发力度,强化企业和地方防治责任。   无疑,正是环保部该方案的出台,华北地下水“第一处方”从“大科学”真正走向了“大政策”。   避免“多头管理”   地下水管理涉及机构多,但权力机构责任不明。各部门应进一步明确责任,将地下水污染防治工作标准化、程序化   谈到《方案》的评价,接受采访的专家纷纷表示没有阅读全文。即使作为国家环境咨询委员会成员的卢耀如,至今也没有见到该方案的全文。   “从目前来看,这份方案只是提出了非常初步的期望,接下来还有很多工作要做。”卢耀如说,“部门之间怎么协作、重要的防治地点对不对、怎么样投入、哪些力量介入,这些问题现在都不清楚。”   记者了解到,《方案》编制由环保部污防司饮用水处处长石效卷主持,环保部环境规划院副院长吴舜泽是主要编制人。记者随后向环保部提出采访《方案》编制者申请,截至发稿日,尚未得到回复。《方案》编写的过程如同一个“黑箱”。   专家们试图就现有的只言片语对这份“第一处方”初步轮廓进行解读。   首先,《方案》由“环保部牵头”,并由国土部、水利部、住建部共同编制,意味着未来的污染防治责任也由这几个部门共同承担。   一直以来,我国对地下水污染问题的管理饱受诟病。对此,中科院地理科学与资源研究所研究员宋献方称:“业内有句话,叫‘环保不下水、水利不上岸’。”在宋献方看来,目前,我国地下水的管理涉及城建、地质、水利、环保等多个部门。   “各个部门都有自己的调查监测系统和标准,信息资料也都分别分布在这些部门中。”宋献方告诉《中国科学报》记者:“涉及机构多,但权力机构责任不明。”   宋献方建议,如果能使各个部门进一步明确责任,将地下水污染防治工作标准化、程序化会更有利于这项工作。他还指出:“环境问题是一个系统问题,正如地下水问题必须与地表水结合起来看,因此,由环保部门统领,各部门的通力合作也是解决这一问题的良药。”   卢耀如也认为:“《方案》计划建设的监测网,如果光靠环保部重新建立一个新的监测网,既浪费又达不到长期积累数据的目的,这就需要利用现有的监测点和数据资料。”   卢耀如强调:“2015年目标的实现,主要取决于这方面的工作。”   另外,现有技术下,有机污染物仍然靠人工取样、化学分析的方式进行检测,实时在线监测尚未实现。宋献方认为:“2015年要实现监测网,我们还要加大传感器的开发力度。”   总之,业内专家一致认可这一点,环保部出台的这份方案仅仅为未来防治地下水污染的蓝图勾画了一个粗略的轮廓,但释放了政府决心从国家层面推动这项工作的信号。   改变政府“一肩挑”   地下水修复费用昂贵,市场规模被业内专家看好。吸引民间资金的进入,无疑是我国环保事业未来发展的趋势   无论《方案》细则如何,市场往往对来自国家层面的信号格外敏感。伊尔姆环境资源管理咨询(上海)有限公司首席顾问彭勇告诉《中国科学报》记者:“尽管没有参与制定《方案》,但作为相关行业的一员,仍然非常关注和期待。”   彭勇所在的公司业务范围是环保咨询。他说:“未来当地下水防治措施实施相对成熟时,环保咨询行业将会更深入地参与进去。”   卢耀如回忆,当“华北平原地下水污染调查评价”刚刚提出要重点调查有机污染时,澳大利亚一家专门做有机分析的公司马上就看到了商机。   “2006年前后,那家公司派人在上海开了个培训班,把专家请到中国来,仪器也搬来了,我们后来用的仪器和技术就是从那里引进过来的。”卢耀如说。   在他看来,光靠政府的力量难以支撑费用如此昂贵的地下水调查乃至修复。 “搞分析和监测的企业在良好的机制下就能进来,从打井、监测到化验都可以让企业来做。”卢耀如建议。   中投顾问产业研究中心环保行业研究员盘雨宏告诉《中国科学报》记者:“水质监测、污染处理、相关设备制造等产业都将受到国家政策的影响,其中水质监测是整个产业链条的关键环节,影响着下游处理环节的发展趋势。”   而我国地下水污染治理产业还处于萌芽状态,重点污染城市仍然缺乏高效完善的水质监测系统。据悉,“十二五”期间,国家将投入27亿元用于建立水质监测系统,尤其对饮用水水源、化工厂、工业园等污染较大的区域进行重点布局。   因此,盘雨宏认为,建立水质监测系统是污染处理产业扩张市场的首要步骤,预计该环节将是未来几年的重要内容。涉足监测设备制造及技术引进、合作的企业前景将被看好。   未来,在更长一段时间内,考虑到地下水修复费用更为昂贵,市场规模便更受到业内专家的看好。业内人士认为,吸引民间资金的进入,改变当前政府“一肩挑”的现状无疑是我国环保事业未来发展的趋势。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制