当前位置: 仪器信息网 > 行业主题 > >

流量定量控制仪工作原理

仪器信息网流量定量控制仪工作原理专题为您提供2024年最新流量定量控制仪工作原理价格报价、厂家品牌的相关信息, 包括流量定量控制仪工作原理参数、型号等,不管是国产,还是进口品牌的流量定量控制仪工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合流量定量控制仪工作原理相关的耗材配件、试剂标物,还有流量定量控制仪工作原理相关的最新资讯、资料,以及流量定量控制仪工作原理相关的解决方案。

流量定量控制仪工作原理相关的论坛

  • 流量控制阀的工作特点及其原理

    流量控制阀是在一定压力差下,依靠改变节流口液阻的大小来控制节流口的流量,从而调节执行元件(液压缸或液压马达)运动速度的阀类。主要包括节流阀、调速阀、溢流节流阀和分流集流阀等。安装形式为水平安装。 流量控制阀的产品特点: 流量控制阀又称400X流量控制阀,是一种采用高精度先导方式控制流量的多功能阀门。适用于配水管需控制流量和压力的管路中,保持预定流量不变,将过大流量限制在一个预定值,并将上游高压适当减低,即使主阀上游的压力发生变化,也不会影响主阀下游的流量。 流量控制阀的选型:可根据管道等径选用。可根据最大流量和阀门的流量范围选用。 流量控制阀的工作原理: 数显流量控制阀其结构是由自动阀芯,手动阀芯及显示器部分组成。显示部分则由流量阀机芯、传感器发讯器、电子计算器显示器部分组成。 它的工作是及其复杂的。被测水流经阀门,水流冲击流量机芯内的叶轮,叶轮旋转与传感发讯器感应,使传感器发出与流量成正比的电讯号,流量电讯号通过导线送入电子计算器,经过计算器计算、微处理器处理后,其流量值显示出来。 手动阀芯是用来调节流量的,根据显示值来设定所需的流量值。自动阀芯是用来维持流量恒定的,即在管网压力变化时,自动阀芯就会在压力的作用下自动开大火关小阀口来维持设定流量数值不变。

  • 【原创大赛】气相色谱仪流量控制原理与维护 (一-二) 进样口手工流量控制器和电子流量控制器原理

    【原创大赛】气相色谱仪流量控制原理与维护   (一-二) 进样口手工流量控制器和电子流量控制器原理

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]流量控制原理与维护[/font][/align][align=center][font=宋体] [font=宋体](一)[/font] [font=宋体]进样口手工流量控制器原理[/font][/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体][font=宋体]以分流[/font]/[font=宋体]不分流进样口为例,讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]进样口手工流量控制的基本原理。[/font][/font][font=宋体] [/font][align=center][font=宋体]分流不分流进样口的流量工作原理[/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析中使用的各类进样口中,最为常见的是分流[/font]/[font=宋体]不分流([/font][font=Calibri]Split/Spliless[/font][font=宋体])进样口。进样口流量控制方式有手工流量控制和电子流量控制两种,手工流量控制方式的色谱仪价格较为低廉,抗污染能力强,运行与维护成本较低,目前仍旧在普通化工分析等行业中使用。[/font][/font][font=宋体] [/font][align=center][font=宋体]常见的手工流量控制方式[/font][/align][font=宋体]进样口手工流量控制器大致分流两类,压力控制方式和总流量控制方式。[/font][font=宋体][font=宋体]图[/font]1[font=宋体]所示为压力控制方式,载气由压力控制器调节到适合压力,即为柱前压。[/font][/font][font=宋体]隔垫吹扫流量和分流流量分别由对应的针型阀控制,调节到合适的流量。[/font][font=宋体]柱流量由色谱柱来确定。[/font][font=宋体]压力控制器调节速度较快,适合气体阀进样或者样品气化体积较大的场合。分流流量、隔垫吹扫流量、柱流量各自独立,需要单独测定各流路流量,调节工作量较大。[/font][align=center][img=,690,457]https://ng1.17img.cn/bbsfiles/images/2020/09/202009010003569364_7168_1604036_3.png!w690x457.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font]1 [font=宋体]压力控制方式原理[/font][/font][/align][align=center][img=,690,453]https://ng1.17img.cn/bbsfiles/images/2020/09/202009010004036078_273_1604036_3.png!w690x453.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font]2 [font=宋体]总流量控制方式原理[/font][/font][/align][font=宋体]载气由总流量控制器调节,输入进样口固定的流量,进样口压力缓慢上升,当压力达到设定值后,分流控制器开启,使得进样口压力恒定于设定值。[/font][font=宋体]分流控制器一般是背压阀,当输入压力达到设定值时才能开启。进样口的压力最终由分流控制进行调节。[/font][font=宋体]总流量控制方式,进样口流量调节工作量较小,总流量和进样口压力之间有相互影响,系统的调节惯性较大。样品气化气体较大或者气体进样阀进样时一般可能会观测到相对较长时间的压力流量扰动。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体][font=宋体]分流[/font]/ [font=宋体]不分流进样口常见控制方式的原理和性能比较。[/font][/font][font=宋体][font=宋体][/font][/font][font=宋体][font=宋体][/font][/font][font=宋体][font=宋体][/font][/font][font=宋体][font=宋体][/font][/font][font=宋体][font=宋体][/font][/font]------------------[font=宋体][font=宋体][/font][/font][align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]流量控制原理与维护[/font][/align][align=center][font=宋体] (二) 进样口电子流量控制器原理[/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体]以分流/不分流进样口为例,讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]进样口电子流量控制的基本原理。[/font][font=宋体] [/font][align=center][font=宋体]分流不分流进样口的流量工作原理[/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析中使用的各类进样口中,最为常见的是分流/不分流([font=Calibri]Split/Spliless[/font])进样口。目前较多使用电子流量控制器,不同仪器厂家对于电子流量控制命名不同,如[font=Calibri]AFC[/font]、[font=Calibri]EPC[/font]、[font=Calibri]EFC[/font]等,其大致原理比较接近,都是采用了基于电磁阀通断气流结合流量控制器和压力计来实现进样口的流量(压力)控制。[/font][font=宋体]图1为常见的分流[font=Calibri]/[/font]不分流进样口电子流量控制器的结构框图,当[font=Calibri]GC[/font]系统开启后,总流量控制器向进样口注入设定的流量,压力计测定的进样口压力会逐渐上升,在分流控制器的调解下,进样口压力达到设定值,进样口的流量状态达到就绪。[/font][font=宋体]隔垫吹扫流量值较低,受进样口压力的限制。[/font][font=宋体]色谱柱流量为计算值,电子流量控制器实际上只控制进样口压力。色谱柱是否安装正确,色谱柱是否堵塞,色谱柱是否断开,实际上进样口并不能感知到。[/font][font=宋体] [/font][align=center][font=宋体] [img=,690,419]https://ng1.17img.cn/bbsfiles/images/2020/09/202009010005202895_1475_1604036_3.png!w690x419.jpg[/img][/font][/align][align=center][font=宋体]图1 分流[font=Calibri]/[/font]不分流进样口结构原理[/font][/align][font=宋体]在分流工作方式下,进样口的总流量等于分流流量、隔垫吹扫流量和柱流量之和。[/font][font=宋体]当由于某种原因,进样口压力发生增大现象,此时GC系统会控制分流控制器增加分流出口流量,以降低进样口压力,使得进样口压力恢复设定值;反之亦然。在进样较大体积的液体或者气体样品时,一般会观察到进样口压力(流量)的瞬间变化。[/font][font=宋体] [/font][font=宋体]在不分流进样状态下,进样瞬间分流控制器将分流流量关闭,此时进样口总流量等于柱流量和隔垫吹扫流量之和。[/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体] [/font][font=宋体]电子流量控制器,实际上只控制进样口的输入总流量和压力。[/font]

  • 气相色谱仪流量控制原理与维护 —— 手工流量控制系统和电子流量控制系统

    气相色谱仪流量控制原理与维护 —— 手工流量控制系统和电子流量控制系统

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体]手工流量控制系统和电子流量控制系统[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体]稳定可靠、精确度良好的气体流量(压力)控制对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析结果的准确性和可靠性而言至关重要。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]工作时需要稳定可靠、精确度良好的气体流量(压力)控制,包括载气、检测器气体和其他辅助气体流量控制,以获得良好的保留时间和峰面积的重现性。[/font][font=宋体]目前实验室常见的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量系统,分为手工流量控制和电子流量控制两种形式,在实际使用场合下各有其优劣。电子流量控制因其高精度、高重复性、易用性、可编程等特性,在现代的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]气体控制系统中的使用日益广泛。[/font][align=center][font=宋体]手工流量(压力)控制系统优势和缺点[/font][/align][font=宋体]手工流量控制系统一般由恒压阀、恒流阀、针型阀、背压阀、压力表、流量计和阻尼器等部件组成。需要通过色谱工作者手工操作,调节各种阀针旋钮,读取压力表数值和使用流量计辅助工作,以实现系统气体流量的控制。[/font][font=宋体]手工流量控制系统的优势:制造成本较低,工作可靠性较好,对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]实验室环境要求不高、维护和维修成本较低、系统抗污染能力较强,可以在无电源状态下工作。[/font][font=宋体]手工流量控制系统使用的各种阀,机械结构较为坚固,色谱工作者只需要保证气源清洁干净,阀本身不容易损坏。装备有手工流量控制系统的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量部分的常见故障往往与气源不良有关,例如气源中含有水、固体颗粒物或油污等。[/font][font=宋体]实验室空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量较差、灰尘严重或者存在一定腐蚀性气体时,对于手工流量控制系统的影响不大。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]分流出口连接的针型阀或者背压阀,可能有样品流过内部,如果维护不足,可能会造成污染。采用手工流量控制方式的仪器,针型阀或背压阀的清洗维护方法较为简单,如果需要更换,维修成本也比较低。[/font][font=宋体][font=宋体]某些意外情况下例如实验室意外断电时,装备有手工流量控制系统的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]载气并不会停止工作,可以保护色谱柱和检测器,例如[/font][font=Times New Roman]ECD[/font][font=宋体]、[/font][font=Times New Roman]TCD[/font][font=宋体]、强极性色谱柱。但是需要注意[/font][font=Times New Roman]FID[/font][font=宋体]、[/font][font=Times New Roman]FPD[/font][font=宋体]火焰的问题,如果意外断电情况下,检测器容易发生积水问题,会造成检测器内部发生锈蚀或者损坏喷嘴等后果。[/font][/font][font=宋体]手工流量控制系统的缺陷:[/font][font=宋体][font=宋体]一、[/font] [font=宋体]重现性差,调控精度低[/font][/font][font=宋体] [font=宋体]手工流量控制系统使用的机械部件控制精度较低,并且由于螺杆调节存在间隙、机械磨损、弹性元件疲劳等问题,该系统难以获得良好的重复性,面临复杂样品或复杂分析系统,手工流量控制系统往往难以应对。机械阀调节联合压力表指示的调控方式也难以实现较高的调节精度。[/font][/font][font=宋体][font=宋体]例如精密多阀多柱分析系统、反吹系统、中心切割分析系统、[/font][font=Times New Roman]PONA[/font][font=宋体]分析等,这些系统要求保留时间的重复性较高,往往要求[/font][font=Times New Roman]0.01min[/font][font=宋体]范围的偏差,这些情况下手工流量控制器难以达到要求。[/font][/font][font=宋体][font=Times New Roman]1.1 [/font][font=宋体]螺纹间隙造成调节问题。[/font][/font][font=宋体][font=宋体]机械阀一般采用螺杆的方式实现阀调节,但是由于螺纹存在间隙将会造成调节问题,如图[/font][font=Times New Roman]1[/font][font=宋体]所示,螺杆顺时针旋转和逆时针旋转到相同角度时,螺杆在左右方向上移动距离存在一定程度的偏差。[/font][/font][font=宋体]色谱工作者旋转阀旋钮时需要注意操作手法,尽量减弱此现象造成的调节偏差。以带有刻度盘的稳流阀为例,建议规定阀旋钮的操作方向,例如逆时针。如果当前刻度低于设定值,可以直接逆时针旋转至设定刻度;如果当前刻度高于设定值,需要顺时针旋转至旋钮刻度低于设定值,然后再逆时针旋转旋钮。[/font][align=center][img=,424,165]https://ng1.17img.cn/bbsfiles/images/2022/11/202211161434357590_9342_1604036_3.jpg!w690x269.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]螺杆转动存在间隙问题[/font][/font][/align][font=宋体][font=Times New Roman]1.2 [/font][font=宋体]机械部件磨损[/font][/font][font=宋体]阀部件由于机械运动,总是不可避免的存在磨损问题,造成调节偏差。[/font][font=宋体][font=Times New Roman]1.3 [/font][font=宋体]弹性元件的机械变形或疲劳[/font][/font][font=宋体]压力表和机械阀中存在弹簧管或弹性膜之类的弹性元件,长期受压使用后会发生机械变形,造成弹性变化,最终造成偏差。[/font][align=center][img=,268,190]https://ng1.17img.cn/bbsfiles/images/2022/11/202211161434421573_5012_1604036_3.jpg!w615x435.jpg[/img][font='Times New Roman'] [/font][/align][font=宋体]一般情况下,仪器停机之后,需要将机械阀调节至关机状态,有些气路中安装有泄压阀以保护压力表和调节阀。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]配套的气源钢瓶,分析结束关闭[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统之后,建议将所有压力表泄压为零,并关闭减压阀。[/font][font=宋体]二、 [/font][font=宋体]调节不方便、调节速度慢。[/font][font=宋体]流量或压力的修改,靠色谱工作者手工操作完成,最终的精度和稳定性与操作习惯相关。如果某台[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]需要开展多个分析项目,需要修改不同分析条件时,流量的调节比较费时费力。[/font][font=宋体]机械阀旋钮的调节位置一般不能与输出压力或流量直接相关,某些机械阀设计有刻度盘,但是不能彻底解决问题,调节螺杆注意手法。[/font][font=宋体]恒流阀的调节惯性较大,调节速度较慢。[/font][font=宋体]三、体积笨重[/font][font=宋体]各种阀一般不能单独工作,稳压阀和背压阀一般需要压力表协助工作,稳流阀、针型阀一般需要流量计辅助工作,才可以保证调节的准确性。调节和显示部件较多,手工流量控制系统体积较大,系统较笨重。[/font][font=宋体]三、 [/font][font=宋体]无法编程工作[/font][font=宋体]手工流量控制系统难以实现程序升压(程序升流)或程序降压(程序降流)功能。[/font][font=宋体] [/font][align=center][font=宋体]电子流量控制系统的优势的缺陷[/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]电子流量控制系统一般由比例电磁阀,电子压力传感器、电子流量传感器,控制线路和阻尼器等部件组成,基于传感器和计算机技术,在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]中央处理器([/font][font=Times New Roman]CPU[/font][font=宋体])的程序控制下协同工作,实现高精度的流量(压力)控制,现代[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]装备有高精度电子流量控制器是总体发展趋势。[/font][/font][font=宋体]电子流量控制系统的优势:可以编程控制,调节方便快速,精度和重现性好。[/font][font=宋体][font=Times New Roman]1 [/font][font=宋体]重现性好[/font][/font][font=宋体][font=宋体]随着现代电子技术和计算机技术的发展,采用电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]可以达到较高的保留时间和峰面积重复性性能,高端的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]保留时间重复性指标一般[/font][font=Times New Roman]RSD[/font][font=宋体]小于[/font][font=Times New Roman]0.01%[/font][font=宋体],峰面积相对标准偏差一般小于[/font][font=Times New Roman]1%[/font][font=宋体],并且可以长期稳定运行。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统重新开关机,无需校准和调节也可以达到开关机之前的稳定状态。[/font][/font][font=宋体][font=Times New Roman]2 [/font][font=宋体]调节精度高[/font][/font][font=宋体][font=宋体]以进样口为例,现代的高端[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]可以实现[/font][font=Times New Roman]0.01kPa[/font][font=宋体]的压力或[/font][font=Times New Roman]0.01ml/min[/font][font=宋体]的流量控制精度。[/font][/font][font=宋体][font=Times New Roman]3 [/font][font=宋体]调节方便、速度快[/font][/font][font=宋体]色谱工作者可以简单的在色谱数据工作站输入目标流量和压力,电子流量控制器可以在数秒的时间范围内完成调节。[/font][font=宋体][font=Times New Roman]4 [/font][font=宋体]体积小,重量轻[/font][/font][font=宋体][font=宋体]电子流量控制器([/font][font=Times New Roman]EPC[/font][font=宋体]、[/font][font=Times New Roman]AFC[/font][font=宋体]或者[/font][font=Times New Roman]EFC[/font][font=宋体])是现代机械、电子计算机技术的结晶,所有的流量控制部件可以集成在在几十[/font][font=Times New Roman]cm[/font][font=宋体]见方,重量不超过[/font][font=Times New Roman]1kg[/font][font=宋体]的模块中。[/font][/font][font=宋体][font=Times New Roman]5 [/font][font=宋体]可以编程[/font][/font][font=宋体]安装有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],可以方便的实现程序升压(程序升流)、程序降压(程序降流)或者定时开关等复杂气流控制功能。[/font][font=宋体]电子流量控制器的缺陷:制造成本高,实验室环境要求高,维护和维修成本高,必须在有电源的状态下工作,需要经常校准。[/font][font=宋体]装备有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]对气源要求较高。一旦发生气源不良问题,例如气源含水、固体颗粒物或油污,会造成电子流量控制器输出流量发生错误,甚至造成流量控制器损坏。实验室湿度较大,存在较多灰尘、有机蒸汽或者腐蚀性气体都可能会对电子流量控制器造成不良影响。[/font][font=宋体]安装于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]分流出口的电子流量控制器对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的维护有更高的要求,如果样品沸点较高并且浓度较大,分流出口捕集阱需要加强维护,否则可能造成电子流量控制器的污染或者损坏。该类型的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]总体维护和维修的成本较高。[/font][font=宋体]由于电子元器件的特性,某些压力或流量传感器会发生电气性能变化,造成输出流量或压力的不正确,需要经常进行校准。[/font][align=center][font=宋体]小结[/font][/align][font=宋体]综述手工流量控制系统和电子流量控制系统的优势和缺陷。[/font]

  • 气相色谱仪流量控制原理与维护 —— 压力控制模式与流量控制模式

    气相色谱仪流量控制原理与维护 —— 压力控制模式与流量控制模式

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体]压力控制模式与流量控制模式[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统的载气和辅助气体所采用的流量控制方式主要分为压力控制和流量控制模式(线速度控制模式可以认为是一种特殊的流量控制模式,线速度本质上与色谱柱流量相同),在色谱分析系统的具体应用场合中各自有其优势,下文对两种控制方式的特点予以说明。[/font][align=center][font=宋体]简介[/font][/align][align=center][font=宋体]恒压力控制模式[/font][/align][font=宋体][font=宋体]压力控制模式或称之为恒压控制模式,即在整个分析过程中保持供气压力不变,常用于进样口载气控制,如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][align=center][img=,286,187]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740208012_3978_1604036_3.jpg!w690x450.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]恒压控制方式的进样口结构[/font][/font][/align][font=宋体]通常情况下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统使用恒压阀或者电子压力传感器用以实现恒压力控制模式,进样口系统采用开环方式进行控制,系统惯性较小。[/font][font=宋体]当色谱工作者进行液体进样时,由于样品受热发生瞬间气化,样品体积迅速增加,可能会影响进样口压力(流量)的稳定;采用气体进样(包括阀进样、热解析进样、顶空进样等进样器)时,由于进样过程中载气流路发生较短时间的阻断,也可能会影响进样口压力(流量)的稳定。可能会干扰色谱图基线,造成色谱分析重复性问题或者产生定量问题。[/font][font=宋体]进样口采用恒压模式控制时,由于进样导致的压力(流量)扰动发生之后,再次恢复原始状态所需的平衡时间较短,并且压力(流量)扰动的程度也比较弱。但是如果进样口发生轻微漏气,由于系统开环控制的原因,进样口不能自动识别轻微漏气问题。此时[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统的分流比将变化,色谱分析灵敏度降低,长期工作下,由于空气的渗入色谱柱可能发生损坏。[/font][font=宋体]即使采用电子流量控制器(可以自动识别程度较严重的进样口漏气),在一定的泄漏程度范围之内,也同样存在此问题。[/font][align=center][font=宋体]进样阀导致气路的瞬间阻断[/font][/align][align=center][font='Times New Roman'] [/font][/align][font=宋体][font=宋体]气体进样经常采用六通阀进行,六通阀有带有三个刻槽转子和带有气路通孔的定子组成,以平面型六通阀为例,其结构如图[/font][font=Times New Roman]2[/font][font=宋体]所示,[/font][/font][align=center][img=,195,127]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740300223_2270_1604036_3.jpg!w690x450.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]六通阀结构[/font][/font][/align][font=宋体][font=宋体]六通阀一般工作于[/font][font=Times New Roman]Load[/font][font=宋体]和[/font][font=Times New Roman]inject[/font][font=宋体]两个状态其工作位置,如图[/font][font=Times New Roman]3[/font][font=宋体]所示。在两个位置下,载气都可以畅通的流过阀系统。[/font][/font][align=center][img=,296,112]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740396160_8660_1604036_3.jpg!w690x260.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]六通阀的工作状态[/font][/font][/align][font=宋体][font=宋体]六通阀的转子旋转[/font][font=Times New Roman]60[/font][font=宋体]°,完成位置的转换(一般情况下即完成进样),但是需要注意转子旋转需要一定的时间,在转子旋转过程中的某些时间范围内,气路发生阻断现象,如图[/font][font=Times New Roman]4[/font][font=宋体]所示。例如转子旋转[/font][font=Times New Roman]30[/font][font=宋体]°时,载气在进样阀之前积累,气路压力升高,当转子旋转到[/font][font=Times New Roman]60[/font][font=宋体]°之后,较高的压力通过阀通道进入进样口,造成压力扰动。[/font][/font][align=center][img=,189,101]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740464564_753_1604036_3.jpg!w690x369.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]4 [/font][font=宋体]气路阻断状态[/font][/font][/align][align=center][font=宋体]恒流量控制模式[/font][/align][font=宋体][font=宋体]通常情况下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统使用恒流阀阀或者电子压力传感器用以实现恒流量控制模式,进样口系统采用闭环方式进行控制,系统惯性较大,进样口流量结构如图[/font][font=Times New Roman]5[/font][font=宋体]所示。[/font][/font][align=center][img=,417,236]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740530012_9952_1604036_3.jpg!w690x390.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]5 [/font][font=宋体]恒流方式的进样口结构图[/font][/font][/align][font=宋体]采用恒流量方式控制的进样口(填充柱进样口较为常见),流量控制惯性相对较大,流量调节速度较慢。如果进样口发生微漏问题时,某些情况下(例如采用填充柱的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析系统)会导致进样口压力的变化,从而影响色谱峰的保留时间,使得色谱工作者可以及时发现故障并进行处理。[/font][font=宋体][font=宋体]某些型号的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]也支持进样口的恒线速度控制方式,该方式可以认为是特殊的流量控制方式[/font][font=宋体]——本质上讲线速度和柱流量是相同的概念。但是恒线速度方式,不可以通过机械阀实现,只可以通过电子流量控制器的压力程序来实现。[/font][/font][font=宋体]线速度可以认为是色谱柱平均流速的表示方法,采用线速度控制方式更加容易使分析条件符合范德蒙特方式曲线,容易实现稳定和高效的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析,获得较短的分析时间和较高的理论塔板数。使用较宽温度范围程序升温的分析条件时,建议选择恒线速度方式控制进样口流量。[/font][font=宋体]安装有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],可以通过计算和调节进样口压力程序的方法,实现进样口的恒压力、恒流量或恒线速度控制。[/font][align=center][font=宋体]阀系统控制恒压与恒流的区别[/font][/align][font=宋体][font=宋体]某些复杂的分析场合下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]会安装有较多进样和切换阀,用来实现进样和色谱柱的选择调控。阀系统的重要特点是色谱系统阻尼的时变和瞬变[/font][font=宋体]——在色谱分析过程中,色谱系统的阻尼(一般来自色谱柱)会发生随时间的缓慢变化和切换时间点上的阻尼瞬间变化。安装有阀的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统,经常会观察到“不稳定”的基线,例如在某个确定的时间点上,会发生确定的基线跳跃、尖刺、负峰等信号。[/font][/font][font=宋体][font=宋体]色谱系统在恒压工作模式下,系统流量在阀切换之后恢复速度较快。但是需要做阻尼匹配,如图[/font][font=Times New Roman]6[/font][font=宋体]所示。例如某系统中使用图[/font][font=Times New Roman]6[/font][font=宋体]所示的色谱柱选择阀,阀发生切换动作是,色谱柱[/font][font=Times New Roman]C[/font][font=宋体]或者阻尼[/font][font=Times New Roman]R[/font][font=宋体]将会被连接入色谱分析系统,色谱系统的阻尼将发生瞬间的变化。如果色谱柱[/font][font=Times New Roman]C[/font][font=宋体]和[/font][font=Times New Roman]R[/font][font=宋体]的阻尼差异较大,那么系统出口的流速变化也会较大,那么最终会导致基线水平的变化,最终影响色谱定量,严重情况下会导致[/font][font=Times New Roman]FID[/font][font=宋体]检测器熄灭。[/font][/font][font=宋体]阻尼匹配一般使用阻尼柱或阻尼管(细内径管路)或者针型阀,需要实验确认良好的阻尼匹配,最终获得状态良好的基线,同时系统流量恢复的时间也更短。[/font][font=宋体][font=宋体]色谱系统在恒流工作模式下,系统流量在阀切换之后恢复速度较慢,基线扰动的幅度较大,扰动的时间长度较长,但是可以省略阻尼,即图[/font][font=Times New Roman]6[/font][font=宋体]中的阻尼柱可以用空管路代替,降低色谱系统成本。[/font][/font][align=center][img=,350,175]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091741006422_7415_1604036_3.jpg!w690x345.jpg[/img][font=宋体] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font][/font][font=宋体][font=Times New Roman]6[/font][/font][font='Times New Roman'] [/font][font=宋体]阻尼匹配[/font][/align][font='Times New Roman'] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简单说明色谱系统的进样口和阀系统使用恒压力和恒流量控制模式的特性。[/font]

  • 【原创大赛】气相色谱仪分流不分流进样口 手工流量控制器的结构原理

    【原创大赛】气相色谱仪分流不分流进样口 手工流量控制器的结构原理

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]分流不分流进样口 手工流量控制器的结构原理 [align=center]概述[/align][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]分流/不分流进样口手工流量控制原理简介,各部件介绍和控制方式的特点。[align=center]简介[/align]分流/不分流进样口是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的重要部件,其气流控制的稳定性、精确度会显著影响[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析的结果的重复性、样品的真实性。随着电子技术的发展、手工流量控制器再现性较差,调整不方便等原因,进样口配备有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]逐渐成为实验室仪器的主流配置。但是手工流量控制因其安装和维护成本低廉、性能可靠等优点,目前仍然在较多的实验室具有一定的存量。尤其是对于色谱行业的初学者,有机会使用手工流量控制类型的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],将会有助于较快的学习和领会到[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的基本结构和原理。[align=center]手工流量控制模式[/align]目前实验室常见的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]分流/不分流进样口的手工流量控制模式大致有两种,压力控制模式和流量控制模式。1.1压力控制模式其结构原理如图1所示,色谱仪通过恒压阀的调节,提供进样口的柱前压力(即控制柱流量);通过分流流路和隔垫吹扫流路针型阀的调节,实现分流流量和隔垫吹扫流量的控制。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191903058201_1362_1604036_3.jpg[/img][/align][align=center]图1 压力控制模式基本原理图[/align]下面以较为经典的Shimadzu的GC-2014为例予以说明,其调节阀结构如图2所示。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191903059080_3480_1604036_3.jpg[/img][/align][align=center]图2 进样口压力控制模式阀结构图[/align]载气首先经由两级稳压阀的一级减压和二级减压,输送进入进样口,提供稳定的柱前压力,根据色谱柱尺寸、载气种类和操作温度,调节合适的压力。流出进样口的载气流量分成三部分,柱流量、分流流量和隔垫吹扫流量,其中分流流量和隔垫吹扫流量的具体调节都通过针型阀来实现。隔垫吹扫流路和分流流路均存在捕集阱,一般填充活性炭、硅胶之类的吸附剂,用以吸附流经气体中的高沸点杂质,用以保护针型阀和分流电磁阀,避免过多的杂质凝结在阀中造成堵塞和开关失效。在分流流路中设计有电磁阀,当进样口需要工作在不分流状态之下时,通过电磁阀的通断操作,实现分流流路的切断和恢复。1.2 压力控制模式的优点和缺点采用控制柱前压力的方法来实现色谱柱流量的控制,执行部件使用了恒压阀,恒压阀的调节速度较快。色谱进样时,由于液体样品的受热迅速膨胀或者进样阀造成的流路瞬间切断,会导致进样口压力变化。采用压力控制方案(即使用恒压阀控制),进样口的压力会快速恢复。恒压阀和针型阀各自独立工作,互相不存在干扰和反馈的问题。其缺陷是结构较为复杂,分析方法开发时,调节不太方便。例如更换不同色谱柱之后,进样口压力、分流流量和隔垫吹扫流量均需要进行调节。此外如果进样口存在一定程度泄漏时,系统并不会有明显的异常。在色谱柱安装之后,一定要仔细检查泄漏。2.1流量控制模式其结构原理如图3所示,色谱仪通过总流量控制器(恒流阀)的调节,向进样口提供正确的进样口载气流量,由分流控制器(背压阀)提供正确的柱前压,同时提供正确的分流比。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191903059959_5598_1604036_3.jpg[/img][/align][align=center]图3 流量控制模式原理[/align]其阀结构如图4所示,[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191903060554_1498_1604036_3.jpg[/img][/align][align=center]图4 进样口流量控制模式阀结构图[/align]载气首先经由稳压阀进行减压,输送给恒流阀,向进样口提供稳定的载气流量。流出进样口的载气流量分成三部分,柱流量、分流流量和隔垫吹扫流量,其中隔垫吹扫流量的调节通过针型阀来实现。分流流量通过背压阀来调节,背压阀的工作特性是可以使阀输入的压力保持稳定不变。利用这个特点背压阀可以同时调节进样口压力。通过三通电磁阀的状态切换,实现进样口分流和不分流状态的调整,如图5所示。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191903062977_9863_1604036_3.jpg[/img][/align][align=center]图5 分流和不分流状态阀结构图[/align]流量控制模式结构简单,背压阀的调节较为重要,调节速度和进样口压力扰动的恢复速度比压力模式要低。另外还有一类采用混合控制模式的手工流量控制器,将进样口入口侧的恒流阀改换成恒压阀,进样口压力控制速度得到改善。但是进行方法开发时,稳压阀和背压阀会互相影响,流量调节就会比较耗费时间。

  • 气相色谱仪流量控制原理与维护 —— 背压阀与电子背压控制

    气相色谱仪流量控制原理与维护 —— 背压阀与电子背压控制

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体]背压阀与电子背压控制[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体][font=宋体]背压阀一般情况下安装于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]分流[/font][font=Times New Roman]/[/font][font=宋体]不分流进样口或者进样阀的输出端,为进样口或者进样阀的定量环提供合适的工作压力。背压阀调节迟滞现象较弱,调节速度快。[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]背压阀简介[/font][/align][font=宋体][font=宋体]背压阀可以在一定输出端流量变化范围内保持阀输入端的压力恒定,其经常安装于某些[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的分流不分流进样口或者进样阀的输出端,以保证进样口或进样阀的定量环工作于合适的压力之下,其常见的安装位置如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][font=宋体][font=宋体]在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的分流[/font][font=Times New Roman]/[/font][font=宋体]不分流进样口中,背压阀一般安装于进样口的分流出口端,通过旋转阀控制旋钮调节进样口压力。[/font][/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用气体进样阀进样时,如果进样阀定量环压力与进样口压力差异较大,进样之后可能会在色谱图上产生明显的进样干扰信号,进样口压力和流量控制也比较容易发生震荡的现象,从而造成基线的扰动。在进样阀定量环的输出端安装背压阀,调节定量环压力与进样口压力相同,可以改善阀进样产生的基线扰动。此外,通过背压阀的工作,可以保证每次进样时定量环压力的一致性,从而改善定量重复性。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]在使用高压液体进样阀时,例如分析丁烯丙烯类样品,需要保持系统定量环的压力,不至于产生样品减压造成部分或者全部气化,最终影响定量重复性和准确性。[/font][img=,553,408]https://ng1.17img.cn/bbsfiles/images/2022/10/202210241301270100_9686_1604036_3.jpg!w690x508.jpg[/img][font='Times New Roman'] [/font][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]背压阀的安装位置[/font][/font][/align][font=宋体][font=宋体]背压阀原理基于压力平衡,其结构如图[/font][font=Times New Roman]2[/font][font=宋体]所示,由调节膜、旋钮、弹簧组成。弹簧和旋钮施加的压力[/font][font=Times New Roman]F[/font][font=宋体]与阀腔体内压力[/font][font=Times New Roman]P1[/font][font=宋体]达到平衡,即:[/font][/font][align=center][font=宋体][font=Times New Roman]F = P1*A[/font][/font][/align][font=宋体][font=宋体]式中[/font][font=Times New Roman]A[/font][font=宋体]为调节膜表面积。[/font][/font][align=center][img=,137,224]https://ng1.17img.cn/bbsfiles/images/2022/10/202210241301346664_1685_1604036_3.jpg!w388x636.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font][/font][font=宋体][font=Times New Roman]2[/font][/font][font='Times New Roman'] [/font][font=宋体]背压阀的[/font][font='Times New Roman'][font=宋体]结构图[/font][/font][/align][align=center][font=宋体]背压阀稳定输入压力的工作原理[/font][/align][font=宋体][font=宋体]阀开启时,当输入端压力[/font][font=Times New Roman]P1[/font][font=宋体]与弹簧压力相同时,调节膜位置上升,阀进入开启状态,气体由输出端流出。如果输出端由于某种原因发生阻尼变化,造成腔体压力[/font][font=Times New Roman]P1[/font][font=宋体]上升,此时调节膜位置上升,阀输出流量增大,从而降低腔体压力,使其恢复原状,从而保证输入压力不变;当输出端由于某种原因发生阻尼变化造成腔体压力[/font][font=Times New Roman]P1[/font][font=宋体]下降,此时调节膜位置下降,阀输出流量降低,从而提高腔体压力,使其恢复原状,从而保证输入压力不变。[/font][/font][align=center][font=宋体]背压阀的特点和使用注意事项[/font][/align][font=宋体]背压阀内部反馈回路较短,阀响应速度快,系统迟滞现象较弱,调节比较方便。这一点在进样口的压力控制方面较为理想,由样品气化或者阀切换带来的压力扰动,可以迅速得到恢复。[/font][font=宋体]背压阀不论连接于进样口的分流出口,还是连接于六通阀的定量环输出端口,含有大量样品的气体将通过阀释放,那么阀的维护比较重要,一般情况下需要在阀的入口端之前安装净化器,避免由于样品冷凝造成阀内部污染或者造成阀损坏。[/font][align=center][font=宋体]电子背压控制[/font][/align][font=宋体][font=宋体]电子式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的分流[/font][font=Times New Roman]/[/font][font=宋体]不分流进样口,一般采用压力传感器和比例电磁阀组成的负反馈系统实现进样口的压力控制。进样口压力传感器一般安装于隔垫吹扫出口以减轻污染,比例电磁阀一般安装于分流出口,通过调节阀开度的方法,调节分流出口的气体流出流量从而控制进样口压力,如图[/font][font=Times New Roman]3[/font][font=宋体]所示:[/font][/font][align=center][img=,462,280]https://ng1.17img.cn/bbsfiles/images/2022/10/202210241301491986_2628_1604036_3.jpg!w690x417.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]3 [/font][font=宋体]电子式分流不分流进样口结构[/font][/font][/align][font=宋体]分流不分流进样口在工作时,不断比较实际压力与设定压力之前的差值,如果发生较大负偏差(即实际压力低于设定压力),[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]控制系统主动降低分流出口的比例电磁阀开度,分流出口的流量降低,从而使进样口压力升高恢复设定值,反之亦然。[/font][font='Times New Roman'] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简单介绍背压阀的基本用途、原理、结构和使用注意事项。[/font]

  • 气相色谱仪流量控制原理与维护 —— 电子流量控制器中的比例电磁阀

    气相色谱仪流量控制原理与维护 —— 电子流量控制器中的比例电磁阀

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][font=宋体]电子流量控制器[/font][/font][font=宋体]中的比例电磁阀[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体]装备有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],执行流量控制时的常用核心部件是比例电磁阀,其原理类似于气体流路中的可调节阻尼。工作过程中,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统通过改变比例电磁阀的开度来调节其阻尼,进而控制气体流量。[/font][font='Times New Roman'] [/font][align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量的调控方式[/font][/align][font='Times New Roman'] [/font][font=宋体]一、机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制方式[/font][align=center][img=,388,253]https://ng1.17img.cn/bbsfiles/images/2022/09/202209021647096104_6103_1604036_3.jpg!w690x450.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制方式[/font][/font][/align][font=宋体][font=宋体]传统的机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]调控气体流量的方法主要有三种,如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][font=宋体][font=宋体]方式[/font][font=Times New Roman]a[/font][font=宋体],气体流路中按顺序安装稳压阀和针型阀,稳压阀提供恒定压力,通过调节针型阀的阀针,改变其阻尼,实现流量的调节。实际情况下,由于针型阀本身阻尼范围有限,针型阀并不单独使用,一般需要在针型阀之后再串联阻尼器,使流量调节更加容易。[/font][/font][font=宋体]此种方式仪器硬件结构较为简单,针型阀惯性小,流量调节速度快。[/font][font=宋体][font=宋体]方式[/font][font=Times New Roman]b[/font][font=宋体],气体流路中按顺序安装稳压阀和稳流阀,稳压阀提供恒定压力,通过调节恒流阀的阀针,改变其输出流量。[/font][/font][font=宋体]此种方式仪器硬件成本略高,由于恒流阀一般具有较大的惯性,流量调节速度相对较慢,一般常见于填充柱进样口的流量控制器,实现色谱柱的恒流量控制。[/font][font=宋体][font=宋体]方式[/font][font=Times New Roman]c[/font][font=宋体],气体通道中安装稳压阀和阻尼器,通过调节稳压阀的不同输出压力实现流量的调节。[/font][/font][font=宋体]此种方式结构更加简单,硬件成本低,调节速度快,对稳压阀要求较高。[/font][font=宋体] [/font][font=宋体]二、[/font][font=宋体]电子流量控制器流量控制方式[/font][font=宋体][font=宋体]装备有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],一般采用比例电磁阀为核心的流量控制系统来控制气体流量和压力,其结构原理如图[/font][font=Times New Roman]2[/font][font=宋体]所示。控制系统的输入端气源压力需要保持恒定。[/font][/font][font=宋体] [/font][align=center][img=,392,75]https://ng1.17img.cn/bbsfiles/images/2022/09/202209021647174276_6168_1604036_3.jpg!w690x132.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font][/font][font=宋体][font=Times New Roman]2[/font][/font][font='Times New Roman'] [/font][font=宋体]比例电磁阀控制系统原理[/font][font='Times New Roman'][font=宋体]图[/font][/font][/align][font=宋体][font=宋体]比例电磁阀与普通电磁阀不同,可以通过调节其输入电压或者电流,获得阀不同的开度,改变电磁阀阻尼[/font][font=宋体]——类似图[/font][font=Times New Roman]1-a[/font][font=宋体]中的针型阀,从而实现气体流量的调节。[/font][/font][font=宋体]流量控制系统在负反馈方式下工作,如果输出气体流量(或压力)小于设定值,流量计(或压力计)检测到此异常反馈给控制器,系统发出命令增大阀的开度,使气体流量重新稳定于设定值。反之,如果输出气体流量(或压力)大于设定值,系统发出命令较小阀开度,使气体流量稳定。[/font][font=宋体][font=宋体]三、阀开度的控制[/font][font=宋体]——占空比[/font][/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统一般通过调节比例电磁阀的供电方波电压的占空比来调节阀开度,方波电压占空比的意义如图[/font][font=Times New Roman]3[/font][font=宋体]所示,。[/font][/font][align=center][img=,260,135]https://ng1.17img.cn/bbsfiles/images/2022/09/202209021647241020_6000_1604036_3.jpg!w500x260.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]占空比原理图示[/font][/font][/align][font=宋体]一般情况下色谱系统采用较高的恒频率方波电压控制比例阀,方波的高电平状态下电磁阀开启,低电平状态下电磁阀关闭。[/font][font=宋体][font=宋体]高电平工作的时间与方波周期的比例为方波电压的占空比([/font][font=Times New Roman]T[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体][font=Times New Roman]/T[/font][font=宋体]),方波电压的占空比越高,电磁阀在工作过程中开启的比例越高——即开度越大,比例电磁阀的阻尼越小。[/font][/font][font=宋体][font=宋体]当系统输出气体流量大于设定值时,色谱系统减小比例电磁阀供电方波电压的占空比,此时比例电磁阀开度减小,阀阻尼增大,系统输出气体流量降低恢复到设定值。如图[/font][font=Times New Roman]4[/font][font=宋体]所示:[/font][/font][align=center][img=,313,64]https://ng1.17img.cn/bbsfiles/images/2022/09/202209021647306013_696_1604036_3.jpg!w690x141.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]4 [/font][font=宋体]占空比减小[/font][/font][/align][font=宋体][font=宋体]当系统输出气体流量小于设定值时,色谱系统增大比例电磁阀供电方波电压的占空比,此时比例电磁阀开度增大,阀阻尼减小,系统输出气体流量升高恢复到设定值。如图[/font][font=Times New Roman]5[/font][font=宋体]所示:[/font][/font][align=center][img=,319,76]https://ng1.17img.cn/bbsfiles/images/2022/09/202209021647379254_2500_1604036_3.jpg!w690x164.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]5 [/font][font=宋体]占空比增加[/font][/font][/align][font=宋体] [/font][font=宋体] [/font][font=宋体]附:[/font][font='Times New Roman'][color=#666666]KOFLOC[/color][/font][font=宋体][font=宋体]公司的电磁阀外观照片,可以在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的[/font][font=宋体]EPC/AFC/EFC部件中看到。[/font][/font][font=宋体] [/font][align=center][img=,114,114]https://ng1.17img.cn/bbsfiles/images/2022/09/202209021647431813_8832_1604036_3.jpg!w420x420.jpg[/img][font='Times New Roman'] [/font][/align][font='Times New Roman'] [/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]小结[/font][/font][/align][font='Times New Roman'][font=宋体]本文简单[/font][/font][font=宋体]介绍[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]电子流量控制器中比例电磁阀的基本原理[/font][font='Times New Roman'][font=宋体]。[/font][/font]

  • 气相色谱仪流量控制原理与维护 —— 电子流量控制器中的流量传感器 —— 差压式流量计

    气相色谱仪流量控制原理与维护 —— 电子流量控制器中的流量传感器  —— 差压式流量计

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font][/font][font=宋体] [font=宋体]—— 电子流量控制器中的流量传感器 —— 差压式流量计[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的[/font][/font][font=宋体]电子[/font][font='Times New Roman'][font=宋体]流量控制[/font][/font][font=宋体]单元的[/font][font='Times New Roman'][font=宋体]流量测量[/font][/font][font=宋体]原理[/font][font='Times New Roman'][font=宋体]和[/font][/font][font=宋体]常见流量传感器[/font][font='Times New Roman'][font=宋体]的原理[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]差压式流量计(节流式流量计)[/font][/align][font='Times New Roman'][font=宋体] 采用电子流量控制方式[/font][/font][font=宋体]的[/font][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],[/font][/font][font=宋体]进样口、检测器或者其他辅助部件单元中,均安装有[/font][font='Times New Roman'][font=宋体]电子流量控制[/font][/font][font=宋体]单元[/font][font='Times New Roman'][font=宋体],[/font][/font][font=宋体]可以给进样口、色谱柱、检测器以及特殊部件提供准确和稳定的气体流量。[/font][font=宋体] 气体流量的大小可以由流量控制单元内置的流量计予以测定,流量计的具体形式较多,其中[/font][font='Times New Roman'][font=宋体]比较常见的为差压式流量计。[/font][/font][font='Times New Roman'][font=宋体] 差压式流量计是工业生产中[/font][/font][font=宋体]用以测定[/font][font='Times New Roman'][font=宋体]气体、液体和蒸汽流量的[/font][/font][font=宋体]较为常见[/font][font='Times New Roman'][font=宋体]的[/font][/font][font=宋体]一类[/font][font='Times New Roman'][font=宋体]流量计[/font][/font][font=宋体],包括节流式流量计、均速管流量计、弯管流量计等。其中使用最多的是节流装置和差压计组成的节流式流量计[/font][font='Times New Roman'][font=宋体]。[/font][/font][font=宋体] 节流式流量计具有结构简单、工作可靠、成本低、易标准化的优点,在工业生产中应用较为广泛。其[/font][font='Times New Roman'][font=宋体]基本原理如图[/font]1[font=宋体]所示,管路中如果存在截面积小于管路的[/font][/font][font=宋体]节流装置[/font][font='Times New Roman']R[font=宋体],[/font][/font][font=宋体]当[/font][font='Times New Roman'][font=宋体]流体通过[/font][/font][font=宋体]该节流装置[/font][font='Times New Roman'][font=宋体]时,在[/font][/font][font=宋体]节流装置[/font][font='Times New Roman'][font=宋体]的前后[/font][/font][font=宋体]两端[/font][font='Times New Roman'][font=宋体]将产生一定的压力差。[/font][/font][font='Times New Roman'][font=宋体] 在一定的流体参数条件之下([/font][/font][font=宋体]节流装置的[/font][font='Times New Roman'][font=宋体]尺寸、压力测量位置、[/font][/font][font=宋体]节流装置[/font][font='Times New Roman'][font=宋体]前后的管路状况),[/font][/font][font=宋体]节流装置[/font][font='Times New Roman'][font=宋体]前后的压力差[/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']p[/font][font=宋体]与流体[/font][font='Times New Roman'][font=宋体]流量[/font]F[/font][sub][font='Times New Roman']v[/font][/sub][font='Times New Roman'][font=宋体]之间有[/font][/font][font=宋体]确[/font][font='Times New Roman'][font=宋体]定的函数关系。因此可以通过测量[/font][/font][font=宋体]节流装置[/font][font='Times New Roman'][font=宋体]前后的差压来确定流体的流量。[/font][/font][align=center][img=,298,176]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010911348571_4335_1604036_3.jpg!w684x403.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]差压式流量计结构示意图[/font][/font][/align][font='Times New Roman'][font=宋体] 对于可压缩流体([/font][/font][font=宋体]例如[/font][font='Times New Roman'][font=宋体]气体),体积流量[/font]F[/font][sub][font='Times New Roman']v[/font][/sub][font='Times New Roman'][font=宋体]与[/font][/font][font=宋体]节流装置两端[/font][font='Times New Roman'][font=宋体]压力差[/font][/font][font=宋体]的[/font][font='Times New Roman'][font=宋体]流量关系式为:[/font][/font][align=center][img=,170,52]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010913553235_7720_1604036_3.jpg!w559x133.jpg[/img][font=宋体] [font=宋体]([/font][font=Times New Roman]1-1[/font][font=宋体])[/font][/font][/align][font=宋体] [font=宋体]公式[/font][font=Times New Roman]1-1[/font][/font][font='Times New Roman'][font=宋体]中[/font][/font][font=宋体]:[/font][font=宋体] [/font][font='Times New Roman']Α[/font][font=宋体] [/font][font='Times New Roman'] [/font][font=宋体]—— [/font][font='Times New Roman'][font=宋体]流体的流量系数[/font][/font][font='Times New Roman'] [/font][font=宋体] [/font][font='Times New Roman']ε[/font][font='Times New Roman'] [/font][font=宋体] [font=宋体]—— [/font][/font][font='Times New Roman'][font=宋体]可膨胀性系数[/font][/font][font='Times New Roman'] [/font][font=宋体] [/font][font='Times New Roman']A[/font][sub][font='Times New Roman']0[/font][/sub][font='Times New Roman'] [/font][font=宋体] [font=宋体]—— [/font][/font][font='Times New Roman'][font=宋体]管路截面积[/font][/font][font='Times New Roman'] ρ [/font][font=宋体] [font=宋体]—— [/font][/font][font='Times New Roman'][font=宋体]流体密度[/font][/font][font='Times New Roman'] Δ[/font][font='Times New Roman']p[/font][font=宋体] [font=宋体]—— 节流装置两端的压力差[/font][/font][font=宋体][font=Times New Roman] F[/font][/font][sub][font=宋体][font=Times New Roman]v [/font][/font][/sub][font=宋体]—— 流体的体积流量[/font][font=宋体] 该公式中流量系数、可膨胀系数与流体的粘度、可压缩性、温度均有关。[/font][font=宋体] 差压式流量计适用于性质和状态均匀的牛顿流体的流量测量,一般不适用于流体脉动较大的场合。[/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font=宋体]差压式流量传感器[/font][/align][font=宋体][font=宋体] 随着微电子[/font][font=宋体]——微机械系统的发展,差压式流量计目前可以被制作成体积较小的单个电子元件——流量传感器,可以安装于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的进样口流量控制单元或者系统辅助流量控制单元中,其结构原理如图[/font][font=Times New Roman]2[/font][font=宋体]所示。[/font][/font][font=宋体] 流量传感器内置有微气体阻尼器,代替经典差压式流量计的节流装置,阻尼器的两端集成两个微压力传感器,测定阻尼器两端的压力差。[/font][font=宋体] [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统根据实际工作过程中使用的气体种类(不同的气体粘度和可压缩系数)、环境温度等参数,对阻尼器压力差进行计算和修正,获得正确的气体流量。[/font][align=center][img=,389,98]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010911232086_5053_1604036_3.jpg!w690x204.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]流量传感器原理示意图[/font][/font][/align][font=宋体][font=宋体]流量传感器一般安装在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的进样口电子流量控制单元或辅助流量控制单元内部,与微电磁阀等部件构成负反馈控制系统,在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统的指令协调下多个部件联合工作,用以提供流量准确、重现性良好的气体,如图[/font][font=Times New Roman]3[/font][font=宋体]所示。[/font][/font][align=center][img=,526,177]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010911470920_3574_1604036_3.jpg!w690x232.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]流量传感器在流量控制单元中的位置[/font][/font][/align][font=宋体] [/font][font=宋体] [/font][align=center][font=宋体]差压式流量计的特点和使用注意事项[/font][/align][font=宋体][font=宋体] 与传统的机械阀方式调节流量控制器相比较,电子流量控制器有更高的精密度和重现性,在保留时间要求较高的分析应用场合下(例如复杂样品的[/font][font=Times New Roman]PONA[/font][font=宋体]分析,多阀多柱的复杂[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分析系统等),有更好的应用表现。[/font][/font][font=宋体][font=宋体] 差压式流量计组成元件较少,结构比较简单,长期运行的可靠性较高,装配差压式电子流量计的电子流量控制器的故障率较低。通过良好的电气[/font][font=Times New Roman]-[/font][font=宋体]气流控制设计,差压式流量计可以获得较好的惯性,压力[/font][font=Times New Roman]-[/font][font=宋体]流量调节速度较快。差压式流量计的流量测量范围较大,适用色谱分析方法的范围较广。[/font][/font][font=宋体] 使用带有电子流量传感器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],需要注意以下几个方面的问题:[/font][font=宋体][font=Times New Roman] 1 [/font][font=宋体]气体类型的配置信息必须准确[/font][/font][font=宋体][font=宋体] 由公式[/font][font=Times New Roman]1-1[/font][font=宋体]可知,气体流量与节流装置(阻尼器)两端的压力差与气体种类、环境温度等参数有关,使用不同种类的气体,流量——压力差的特性不同。[/font][/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的硬件[/font][font=Times New Roman]/[/font][font=宋体]软件配置需要正确指定正确的气体类型,否则最终测定的气体流量数值不正确。[/font][/font][font=宋体][font=Times New Roman] 2 [/font][font=宋体]流量——压力需要进行校准[/font][/font][font=宋体][font=宋体] 色谱系统在长时间运行之后,有可能存在电子元件电气性能变化,从而造成流量传感器测定的阻尼两端的压力值的偏差,进而导致流量值测定发生错误,在必要的情况下需要运行压力[/font][font=宋体]——流量的校准。[/font][/font][font=宋体][font=Times New Roman] 3 [/font][font=宋体]气源的要求[/font][/font][font=宋体][font=宋体] 流量传感器要求气源洁净,操作时尽可能去除气体中的水分、[/font] [font=宋体]油污等有机物杂质和固体颗粒物,以避免损坏压力传感器和堵塞阻尼,造成流量测量产生一定误差。[/font][/font][font=宋体]避免气源或管路气流压力、流量的瞬间剧烈变化,可能对流量计造成较大的压力和流量冲击。[/font][font=宋体]气源压力不可超出色谱系统允许输入压力,避免损坏流量计中的压力传感器。[/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]小结[/font][/font][/align][font=宋体]本文简单介绍压差式流量测量的原理,和压差式流量传感器的原理和使用注意事项。[/font][font='Times New Roman'] [/font]

  • 气相色谱仪流量控制原理与维护 —— 流量——压力转换单元

    气相色谱仪流量控制原理与维护 —— 流量——压力转换单元

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体][font=宋体]流量[/font][font=宋体]——压力转换单元[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统在较多情况下用控制压力的方式实现气体流量的控制,例如供给检测器的辅助气体流量,供给色谱阀系统的气源控制单元流量,毛细管色谱柱的柱流量等。实现此功能的色谱仪部件,可以称之为压力[/font][font=宋体]——流量控制单元。[/font][/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]工作于压力控制模式下,通常具有较低的硬件成本和较快的响应速度。压力控制方式的场合下,阀动作对色谱基线产生的干扰比较小,不易干扰检测器火焰状态或者造成检测器火焰的熄灭,色谱柱系统恢复切换之前流量的时间间隔也较短。压力[/font][font=宋体]——流量控制单元在机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]和电子流量式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]中压力控制模式时得到了较为广泛的应用。[/font][/font][align=center][font=宋体]一、[/font][font=宋体][font=宋体]机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的压力[/font][font=宋体]——流量转换单元[/font][/font][/align][font=宋体][font=宋体]传统的机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]中的压力[/font][font=宋体]——流量转换单元按照其硬件结构主要分为两种,如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][font='Times New Roman'] [/font][align=center][img=,388,178]https://ng1.17img.cn/bbsfiles/images/2022/09/202209062143598722_3198_1604036_3.jpg!w690x316.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]场合下压力[/font][font=Times New Roman]-[/font][font=宋体]流量转换单元[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][font=宋体][font=宋体]方式[/font][font=Times New Roman]a[/font][font=宋体],气体流路顺序安装稳压阀和针型阀,稳压阀提供恒定压力,通过调节针型阀的阀针,改变针型阀单元的阻尼,实现对气路流量的调节。[/font][/font][font=宋体]实际情况下,由于针型阀本身阻尼范围有限,针型阀并不单独使用,一般需要在针型阀之后再串联阻尼器,使流量调节更加容易。[/font][font=宋体]此种方式仪器硬件结构较为简单,针型阀惯性小,流量调节速度快。[/font][font=宋体][font=宋体]方式[/font][font=Times New Roman]b[/font][font=宋体],气体通道中安装稳压阀和阻尼器,通过调节稳压阀的不同输出压力实现流量的调节。[/font][/font][font=宋体]此种方式结构更加简单,硬件成本低,调节速度快,对稳压阀要求较高。[/font][font=宋体][font=宋体]两种方式下阻尼的前端均安装有压力计,当阻尼器确定、通过阻尼器的气体类型确定、温度确定的情况下,阻尼两端的压力[/font][font=宋体]——流量响应关系也是确定的。一般情况下,机械方式的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的说明书中会配备有该阻尼的压力——流量响应关系曲线,如图[/font][font=Times New Roman]2[/font][font=宋体]所示。[/font][/font][align=center][img=,243,142]https://ng1.17img.cn/bbsfiles/images/2022/09/202209062144132310_5286_1604036_3.jpg!w413x242.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]2 [/font][font=宋体]阻尼器的压力——流量响应关系曲线[/font][/font][/align][font=宋体][font=宋体]严格意义上讲,阻尼器的压力[/font][font=宋体]——流量关系会受到阻尼器所处环境温度的影响。但阻尼器的安装环境一般处于室温,而室温的变化范围较为有限,室温对阻尼器的压力——流量响应关系影响不大。[/font][/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的常见检测器[/font][font=宋体]——例如[/font][font=Times New Roman]FID[/font][font=宋体]、[/font][font=Times New Roman]ECD[/font][font=宋体]、[/font][font=Times New Roman]FPD[/font][font=宋体]、[/font][font=Times New Roman]NPD[/font][font=宋体]——的氢气、空气、尾吹气的流量控制经常会采用此两种方式。[/font][/font][font=宋体][font=宋体]某些型号的机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],控制毛细管柱流量时,也采用了压力控制的模式,此意义上也可以视为一种压力[/font][font=宋体]——流量转换单元。[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]二、[/font][font=宋体][font=宋体]电子流量式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的压力[/font][font=宋体]——流量转换单元[/font][/font][/align][font=宋体][font=宋体]配备有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],压力[/font][font=宋体]——流量控制单元一般由比例电磁阀、阻尼器和压力计构成。[/font][/font][font=宋体] [/font][align=center][img=,338,72]https://ng1.17img.cn/bbsfiles/images/2022/09/202209062144227918_2898_1604036_3.jpg!w690x145.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font][/font][font=宋体][font=Times New Roman]2[/font][/font][font='Times New Roman'] [/font][font=宋体]比例电磁阀控制系统原理[/font][font='Times New Roman'][font=宋体]图[/font][/font][/align][font=宋体][font=宋体]该系统的输入端一般直接连接气源(氢气、空气或者尾吹气),色谱系统调节比例电磁阀的开度,以调整比例电磁阀的整体阻尼,使得阻尼器分配到正确的压力。与机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]原理上相同,根据阻尼器确定的压力[/font][font=宋体]——流量关系,色谱图系统通过调节的压力,实现通过阻尼流量的调节。[/font][/font][font=宋体]当毛细管色谱柱的尺寸规格确定、载气气体类型确定、色谱柱工作温度确定的情况下,色谱柱的阻尼也是确定的。电子流量式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]控制毛细管色谱柱的柱流量时,本质上通过控制色谱柱的柱前压力来控制毛细管柱流量。[/font][font='Times New Roman'] [/font][align=center][font=宋体]三、[/font][font=宋体][font=宋体]压力[/font][font=宋体]——流量转换单元的特点[/font][/font][/align][font=宋体][font=宋体]压力[/font][font=宋体]——流量控制单元一般具有较为简单的硬件结构,成本较低、可靠性较高、使用方便、调节速度快。[/font][/font][font=宋体][font=宋体]但是压力[/font][font=宋体]——流量转换单元本质上属于开环控制系统,色谱系统并不能感知真实输出的气体流量,如果阻尼器发生堵塞、断裂等问题,阻尼器的压力——流量关系会发生变化,系统的输出流量会发生错误。[/font][/font][font=宋体][font=宋体]压力[/font][font=宋体]——流量转换单元的输出端一般只适合连接无阻尼的检测器或者固定阻尼的部件——例如确定的其他阻尼器或者色谱柱。阻尼器前端的压力传感器建议定期进行校准,否则也可能导致系统输出流量不准确。[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]四、[/font][font=宋体]与差压式流量计的区别[/font][/align][font=宋体][font=宋体]压力[/font][font=宋体]——流量转换单元与差压式流量控制器结构较为近似,核心均为阻尼器。差压式流量计通过测定阻尼两端的压力差确定系统输出流量,系统输出端可以连接不同的阻尼,例如色谱柱等。通过色谱系统的控制,实现恒流量或者程序流量。[/font][/font][font=宋体][font=宋体]压力[/font][font=宋体]——流量转换单元的输出一般情况下为常压,不可以连接阻尼,否则会造成流量显示错误。[/font][/font][font='Times New Roman'] [/font][align=center][img=,248,62]https://ng1.17img.cn/bbsfiles/images/2022/09/202209062144354098_6251_1604036_3.jpg!w690x174.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]4 [/font][font=宋体]差压式流量计[/font][/font][/align][font='Times New Roman'] [/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]小结[/font][/font][/align][font='Times New Roman'][font=宋体]本文简单[/font][/font][font=宋体][font=宋体]压力[/font][font=宋体]——流量转换单元的基本原理和使用注意事项。[/font][/font]

  • 咖啡机液体流量如何实现定量控制

    咖啡机液体流量如何实现定量控制

    [font=宋体][color=#1E1F24][back=white]咖啡机液体流量的定量控制在咖啡制作过程中起着至关重要的作用。为了确保每一杯咖啡的口感和质量一致,咖啡机需要能够精准地控制液体的流量。而实现这一目标的关键就在于安装一个小型流量计。[/back][/color][/font][font=宋体][color=#1E1F24][back=white]在咖啡机内部安装一个小型流量计,是实现咖啡机液体流量定量控制的常用方法。而霍尔流量计作为一种精确度高、一致性强的流量计,被广泛应用于咖啡机等领域。它具有体积小、安装简易等特点,并符合[/back][/color][/font][font='Segoe UI',sans-serif][color=#1E1F24][back=white] FDA[/back][/color][/font][font=宋体][color=#1E1F24][back=white](美国食品和药物管理局)和[/back][/color][/font][font='Segoe UI',sans-serif][color=#1E1F24][back=white] FLGB[/back][/color][/font][font=宋体][color=#1E1F24][back=white](食品设备安全法规)的相关要求。[/back][/color][/font][align=center][img=小型流量计,639,367]https://ng1.17img.cn/bbsfiles/images/2023/10/202310161638194487_8485_4008598_3.jpg!w639x367.jpg[/img][/align][font='Segoe UI',sans-serif][color=#1E1F24][back=white] [/back][/color][/font][font=宋体][color=#1E1F24][back=white][url=https://www.eptsz.com]霍尔流量计[/url]利用霍尔效应来实现流量的测量和控制。它通过将带有两极磁铁的叶轮置于垂直于磁场中,当液体经过叶轮时,叶轮的转动会产生霍尔电压,从而将流量转换成脉冲信号输出。这样,咖啡机就可以根据接收到的脉冲信号来准确计量流量,并控制液体的流速。[/back][/color][/font][font=宋体][color=#1E1F24][back=white]霍尔流量计不仅具有高精度和一致性,还支持多种高低流量的控制。通过调整流量计的参数,咖啡机可以根据需要定制不同的流量范围,从而满足不同用户的口味偏好。无论是制作浓郁的意式咖啡还是清淡的美式咖啡,咖啡机都能够根据设定的流量控制准确地调配咖啡粉和水的比例,从而保证每一杯咖啡的口感和质量一致。[/back][/color][/font][font=宋体][color=#1E1F24][back=white]咖啡机液体流量的定量控制可以通过在咖啡机内部安装一个小型霍尔流量计来实现。这种流量计具有精确度高、一致性强、体积小、安装简易等特点,并符合相关的食品安全法规要求。利用霍尔效应,流量计能够将液体流量转换成脉冲信号输出,从而实现咖啡机对液体流量的精准控制。无论是制作浓郁的意式咖啡还是清淡的美式咖啡,咖啡机都能够根据设定的流量参数,准确地调配咖啡粉和水的比例,保证每一杯咖啡的口感和质量一致。[/back][/color][/font]

  • 【求助】关于喷金仪的气体流量控制单元

    请教各位~mass flow control(质量流量控制)的原理是啥呀~这个在喷金仪的氩气控制上有用,但是不知道是怎么工作的。。。附上文献一篇,查了,但是看不懂啊~各位帮帮忙,谢谢了~[~160708~]

  • 【原创大赛】气相色谱仪流量控制原理与维护 (六-九) 进样口的三流量

    【原创大赛】气相色谱仪流量控制原理与维护   (六-九) 进样口的三流量

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]流量控制原理与维护[/font][/align][align=center][font=宋体] [font=宋体](六)[/font] [font=宋体]柱流量[/font][/font][/align][align=center][font=Calibri] [/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体][font=宋体]以分流[/font]/[font=宋体]不分流进样口为例,讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]进样口色谱柱流量的控制原理和注意事项。[/font][/font][font=宋体] [/font][font=宋体]用压力代替流量[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]常见的电子流量控制器,实际是通过控制进样口压力的方式来实现色谱柱流量的调节。在确定的柱温、载气种类、色谱柱尺寸之下,进样口压力和色谱柱流量之间存在确定的数学关系。[/font][font=宋体][font=宋体]柱[/font]liuliang [font=宋体]([/font][font=Calibri]Fc[/font][font=宋体])与进样口压力的关系如图[/font][font=Calibri]1[/font][font=宋体]所示。需要注意的是,该公式给出的柱流量([/font][font=Calibri]Fc[/font][font=宋体]),为平均流量。[/font][/font][align=center][img=,690,195]https://ng1.17img.cn/bbsfiles/images/2020/09/202009032045156121_4915_1604036_3.png!w690x195.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font]1 [font=宋体]色谱柱流量与压力的关系[/font][/font][/align][font=宋体]那么色谱仪面板或者色谱数据工作站设定的柱流量值,是根据色谱柱的尺寸规格和载气类型以及色谱柱温度条件计算出来的。那么在操作的时候,就需要注意,色谱工作站进行硬件配置的时候,特别重要的是色谱柱尺寸的正确输入。[/font][font=宋体]否则有可能色谱柱流量难以控制或者已经开发完毕的分析方法无法正常转移到其他[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]上。[/font][font=宋体]例如工作站(或者色谱仪内置固件)中配置了小口径、长度较大的色谱柱,实际安装的色谱柱为大口径、长度较小的色谱柱,那么开机后,可能会造成进样口压力难以达到设定值,甚至出现泄漏的误报警。[/font][font=宋体]此外,如果色谱柱发生靠近检测器部分的断裂(有效色谱柱长度变化不大),或者色谱柱内部发生堵塞等问题,电子流量控制模块是无法识别的。[/font][font=宋体]建议色谱从业者,养成在分析之前确认色谱柱流量的习惯。常见的操作是这样的,安装好色谱柱的进样口部分,然后开启色谱系统的流量控制,然后将色谱柱的出口浸入装有溶剂的小瓶,观察色谱柱出口的气泡是否正常,然后在进行下一步的操作。[/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]色谱工作站或者色谱硬件给出的柱流量,需要加以确认。[/font][font=宋体] [b](七) 柱流量和线速度的选择[/b] 概述 两个问题,平均流速和柱后流速。线速度和柱流量的关系。 色谱分析时,需要根据色谱柱和分析条件的不同,选择合适的柱流速,已实现在较快速度下完成较高柱效的色谱分析。 经常可以在文献中看到色谱柱流量和线速度的提法,二者的区别可以参见: [url]https://bbs.instrument.com.cn/topic/4462136[/url] 常见的色谱理论书籍里面都会提到范德蒙特方程曲线,如图2所示:[img=,613,592]https://ng1.17img.cn/bbsfiles/images/2020/09/202009032108003666_9373_1604036_3.png!w613x592.jpg[/img][font=宋体]由于气体的粘度随温度上升而增加,如果宽范围的程序升温中使用恒压力方式,可能会造成高温段下的塔板数下降。例如氮气做载气的某色谱实验,初始柱温下设定线速度为20cm/s,随着柱温不断升高,色谱柱线速度会逐渐降低,工作点可能会达到[font=Calibri]U[/font]型曲线的左侧,使分析柱效降低。[/font][font=宋体]程序升温建议使用恒线速度方式,可以在整个分析过程中实现较高和较稳定的柱效。[/font][font=宋体]所谓恒线速度或者恒流量在仪器技术上也比较简单,只要根据色谱柱的温度程序,进样口电子流量控制给出对应的压力程序即可。此种情况下,因为进样口压力不断上升,需要注意色谱仪外接气源的压力是否满足要求。[/font][/font][align=center][font=宋体]小结[/font][/align][font=宋体]温度范围较宽的程序升温分析,建议采用恒线速度方式来控制柱流量。[/font][font=宋体][b](八)隔垫吹扫流量[/b] 概述 隔垫吹扫流量的作用,控制方式和注意事项 进样隔垫吹扫气的作用 进样隔垫在存贮过程中可能会吸附环境空气中的有机杂质而造成污染,或者污染来自进样隔垫的制造工艺,或者来自分析过程中样品的不断进样——进样隔垫在每次液体进样中,都会擦拭可能残留有样品和杂质的进样针外壁。 受污染的进样隔垫在较高的分析温度之下,可能会释放出某些挥发性物质,从而干扰色谱图。比较典型的现象是,在程序升温色谱分析条件下,谱图中出现较多强度接近,保留时间间隔相近的鬼峰。 在进样隔垫的下方,供给较低流量的隔垫吹扫气(常见的流量范围1-6ml/min),有助于减弱或者消除此类鬼峰。 进样口压力的限制 电子流量控制器中对隔垫吹扫气的控制原理和色谱柱流量比较近似,实际上都是在控制流路的压力。隔垫吹扫流路位于进样口出口之后,那么隔垫吹扫的压力必然会收到进样口压力的限制,这一点需要色谱工作者特别的予以注意。 例如在使用大内径、长度较短色谱柱的场合下,进样口压力设定值一般可能会低于30kPa(或者5psi),此时隔垫吹扫气的流量就不可以设定的过高。否则可能会出现隔垫吹扫气不能达到设定值,从而造成色谱系统的错误流量报警。 为避免错误报警,可以采用比较简单的设定方法,将进样口压力值(kPa)除以10,设置为隔垫吹扫流量值的上限,例如进样口压力为20kPa,那么隔垫吹扫气的流量不要超过2ml/min。 此外,在使用PTV/OCI进样口时,如果需要增大隔垫吹扫气流量以辅助排除进样口的大量低沸点溶剂时,可以设定隔垫吹扫气的流量程序。 小结 隔垫吹扫气是分流不分流进样口必要的气体,设定流量范围受操作条件限制。[/font][font=宋体][b](九)分流流量[/b] 概述分流流量的作用和进样口电子流量控制器中控制原理分流的作用和设定原则因其良好的分辨率和检测限,毛细管柱(尤其是小内径毛细管柱)目前使用的场合日益增大,但是由于毛细管的较小内径,使得毛细管的样品允许承载量降低。现在日常使用的微量注射器,难以准确和重现的将0.01ul级别体积的样品注入到色谱系统中。分流进样方式解决了这一问题,样品进入进样口受热气化之后被分成两部分,一般情况下小部分进入色谱柱,大部分释放到空气中,以适应色谱柱容量的要求。一般的,色谱柱内径越小,适合的分流比越大,反之则越小。这样来设置分析条件的原因有两个,其一是色谱柱容量的问题,色谱柱内径越小,柱容量就越小,那么就需要更多的释放样品。其二是物质起始谱带的原因,如果小口径柱使用较低分流比,那么样品在进样口衬管内气化之后的运行速度就会比较慢,可能会损失柱效。 电子流量控制器中分流的控制原理 与我们的想象不同,进样口电子流量控制器严格说来是不测量分流出口流量的。分流出口的控制器,只是通过流量的调控,来保证进样口压力的正确和稳定。所以如果存在较微弱的漏气,常规的分析条件下,可能无法察觉。此外,色谱工作者在使用某些外围设备的时候,需要对这个问题特别予以重视。例如顶空进样器,某些型号的顶空进样器自带气流控制(外观上一般是传输线插入进样口方式),相当于在进样口引入了第二个气源。进样口内部的工作状态不再满足 “总流量等于柱流量、分流流量和隔垫吹扫流量之和”,顶空进样器引入的气流,最终要从分流出口释放。这就可以解释某些顶空进样器接入系统后,分流比变得不正确,调节分流比之后,色谱峰的响应并不依照分流比的变化而变化。小结 电子流量控制器实际并不测量分流出口流量,需要引起注意。[/font]

  • 【原创大赛】气相色谱仪电子流量控制原理与维护 (三-五) 流量传感器和测控注意事项

    【原创大赛】气相色谱仪电子流量控制原理与维护   (三-五)  流量传感器和测控注意事项

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]电子流量控制原理与维护[/font][/align][align=center][font=宋体] [font=宋体](三)[/font] [font=宋体]压力和流量传感器的位置[/font][/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]如何测量进样口压力和流量[/font][font=宋体] [/font][align=center][font=宋体]简介[/font][/align][font=宋体][font=宋体]与常见的工业测量场合不同,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]进样口的压力(流量)传感器并不处于样品流路之中,或者说压力(流量)传感器可能会直接接触样品,如图[/font]1[font=宋体]所示:[/font][/font][align=center][img=,690,242]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030023467318_8346_1604036_3.png!w690x242.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font]1 [font=宋体]常见工业测量场合[/font][/font][/align][font=宋体][font=宋体]不论进样口采用手工流量控制器或者自动流量控制器,不论进样口使用压力表、转子流量计或者电子传感器,含样品气体都不会直接接触传感器表面。如图[/font]2[font=宋体]所示:[/font][/font][align=center][img=,690,213]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030023590096_8789_1604036_3.png!w690x213.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font]2 [font=宋体]进样口压力(流量)传感器的位置[/font][/font][/align][font=宋体]手工流量控制器经常采用的的压力测量单元是压力表,流量测量单元是流量计。[/font][font=宋体]电子流量控制器的压力测定一般是基于压阻式压力传感器的。核心部件类似应变片,不耐有机污染物和水。[/font][font=Calibri] [/font][font=宋体] [/font][font=宋体]柱流量的测量:[/font][font=宋体]柱流量的控制一般通过进样口压力的控制来实现。[/font][font=宋体]柱流量一般数值比较小,较小的流量和不容易测量准确。如果在色谱柱后检测器之前放置流量传感器,那么传感器一般难以承受色谱柱的高温,样品导致的污染,腐蚀等问题。[/font][font=宋体]另外压力或流量传感器一般会存在较大的死体积,会对气流的控制带来不良的影响。[/font][font=宋体]隔垫吹扫流量的测量:[/font][font=宋体]隔垫吹扫流量面临与柱流量较为类似的问题。[/font][font=Calibri] [/font][font=宋体]分流流量的测量:[/font][font=宋体]分流出口往往存在较大量的样品,可能会严重污染传感器。日常使用中,一定要注意分流出口捕集阱的使用和维护,以保护控制器。[/font][font=宋体][/font][font=宋体][/font][font=宋体][/font][font=宋体][/font][font=宋体] [/font][font=宋体][/font][font=宋体][/font][font=宋体] [/font][font=宋体][/font][font=宋体][/font][align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]电子流量控制原理与维护[/font][/align][align=center][font=宋体] (四) 进样口是否漏气的判定[/font][/align][align=center][font=Calibri] [/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体]以Shimadzu [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-2010/[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-2030系列[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]为例,讲述进样口泄漏检查的方法。[/font][font=宋体] [/font][align=center][font=宋体]电子流量控制器的缺陷[/font][/align][font=宋体]目前越来越多的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]安装了电子流量控制器,可以比较智能的感知到进样口的“比较严重”的泄漏问题,一般会发出报警、强制停机以利于实验人员进行确认和解决。[/font][font=宋体]但是不可以过分依赖电子流量控制器。[/font][font=宋体]可能有两种情况:微漏和实际上不漏。[/font][font=宋体]如果进样口漏气的情况比较微弱,那么电子流量控制器是不能感知到的,此时[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]系统也不会报警,但是实验数据会发生保留时间和峰面积的重复性不良。[/font][font=宋体]如果分析方法不良,造成电子流量控制器误报警。[/font][font=宋体]我们还是回顾一下电子流量控制的结构原理,如图1[/font][img=,690,419]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030025211084_352_1604036_3.png!w690x419.jpg[/img][font=Calibri] [/font][font=宋体] [/font][align=center][font=宋体] [/font][/align][align=center][font=宋体]图1 分流[font=Calibri]/[/font]不分流进样口结构原理[/font][/align][font=宋体]电子流量控制器开启后,流量控制器向进样口供给确定的流量,如果进样口压力升高到设定值以上,那么分流控制打开,使得进样口压力稳定在设定值。[/font][font=宋体]如果进样口存在微漏,那么分流控制器仍然可以控制保持进样口压力,那么[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]系统就会认为不漏气。[/font][font=宋体]如果分析方法中给定的进样口总流量过低,进样口的压力长时间不能达到设定值,[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]系统就会错误的认为进样口存在泄漏,而产生误报警。特别需要注意的,使用小口径色谱柱时,一定要避免使用太小的分流比。[/font][font=宋体] [/font][align=center][font=宋体]进样口漏气的确认[/font][/align][font=宋体]Shimadzu的[font=Calibri][url=https://insevent.instrument.com.cn/t/Mp]gc[/url]2010[/font]或[font=Calibri]2030[/font]系列的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],可以利用不分流方式或者直接注入方式,来确认进样口是否漏气。[/font][font=宋体]在仪器面板或者工作站,将进样口工作方式修改为“不分流”或者“直接注入”,当系统流量状态达到就绪之后,由于分流关闭的原因,进样口的总流量应该等于柱流量和隔垫吹扫流量之和。[/font][img=,690,368]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030025289045_632_1604036_3.png!w690x368.jpg[/img][font=Calibri] [/font][align=center][font=宋体]图2 进样口进样模式[/font][/align][font=宋体]如果在仪器面板或者工作站的监视器中观察到总流量大于柱流量和隔垫吹扫之和,那么进样口应该存在泄漏。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]不要过分依赖电子流量控制器。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体][/font][font=宋体][/font][font=宋体] [/font][font=宋体][/font][font=宋体][/font][align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]流量控制原理与维护[/font][/align][align=center][font=宋体](五) [/font][font=宋体]进样口压力流量不稳定的原因[/font][/align][align=center][font=宋体]概述[/font][/align][align=center][font=宋体]进样口电子流量控制器的控制原理,和进样口压力流量不稳定的可能原因。[/font][/align][align=center][font=宋体] [/font][/align][align=center][font=宋体]进样口压力流量的控制原理[/font][/align][font=宋体]进样口电子压力(流量)控制系统是一个比较典型的闭环控制系统,大致的原理如图1所示:[/font][align=center][img=,690,215]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030026598217_4950_1604036_3.png!w690x215.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体]图1 进样口流量压力闭环控制原理[/font][/align][font=宋体]以流量为例讲述:[/font][font=宋体]流量控制器在工作的同时,会不断的测量输出流量反馈回比较器,当系统的输出流量由于某种原因产生增加,比较器将感知这一变化,输送给流量调节器“降低流量”的命令,最终使输出流量稳定下来。[/font][font=宋体] [/font][align=center][font=宋体]电子流量控制器的延迟[/font][/align][font=宋体]在这个控制过程中,存在一个时间延迟的问题,比较器可以迅速的感知输出流量的变化,但是命令发送给流量控制器后。流量控制器开始动作(降低输出流量)与实际流量恢复动作之间是存在时间延迟的。在延迟的期间内,系统仍旧检测到流量偏大的现象,就会发出流量再次降低的指令,就会造成调节过度。最终就会观察到流量震荡的现象。[/font][font=宋体]实际仪器设计的时候,流量的感知和控制器动作之间特意设计一段时间的延迟,以满足实际硬件系统的要求,达到流量稳定。[/font][font=宋体] [/font][align=center][font=宋体]流量压力震荡的原因[/font][/align][font=宋体]当仪器的硬件系统出现时间延迟的较大变化(或者说系统阻尼变化),就会破坏控制,产生流量震荡。[/font][font=宋体] [/font][font=宋体]常见的原因有[/font][font=宋体]1 气源压力流量不稳定。[/font][font=宋体]任何控制系统都会对输入量的稳定性有一定要求,如不满足,系统难以稳定。[/font][font=宋体]2 堵塞造成系统阻尼变化。[/font][font=宋体] 分流部分、隔垫吹扫部分的堵塞,都可能导致流量(压力)震荡。[/font][font=宋体]3 漏气会造成系统阻尼变化[/font][font=宋体]4 外设的引入会影响阻尼,例如顶空,热解析,吹扫捕集,进样阀等部件。[/font][font=宋体]5 进样口输入流量太小,会使阻尼变化[/font][font=宋体]6 进样口工作与分流和不分流状态下,阻尼不同,如果进样口压力可以恒定,就不影响进样。[/font][font=宋体] [/font][font=Calibri] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]流量控制器的阻尼变化,是压力流量震荡的主要原因。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=Calibri] [/font]

  • 气相色谱仪流量控制原理与维护 —— 稳流阀和电子流量控制器

    气相色谱仪流量控制原理与维护 —— 稳流阀和电子流量控制器

    [font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体]稳流阀和电子流量控制器[/font][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体]载气和辅助气体流量的稳定,对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]至关重要。载气和辅助气体的量如果发生不稳定,会对定性与定量分析结果、基线稳定性、阀切换准确性带来不良影响。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]一般采用稳流阀或者电子流量控制器调节和稳定气体流量,下文简述稳流阀和电子稳流控制器的基本工作原理和使用注意事项。[/font][font='Times New Roman'] [/font][align=center][font=宋体]稳流阀原理简介[/font][/align][font=宋体][font=宋体]机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]填充柱进样口的载气流量控制器或者某些型号的分流[/font][font=Times New Roman]/[/font][font=宋体]不分流进样口载气控制器均安装有稳流阀,为色谱柱或者进样口提供流量稳定不变的载气。某些情况下,在检测器气体控制或者阀切换系统中也可以见到稳流阀的安装。[/font][/font][font=宋体][font=宋体]稳流阀(恒流阀)在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统中的常见安装位置,如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][img=,527,258]https://ng1.17img.cn/bbsfiles/images/2022/10/202210172218523975_3668_1604036_3.jpg!w690x337.jpg[/img][font='Times New Roman'] [/font][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]稳流阀在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的安装位置[/font][/font][/align][font=宋体][font=宋体]较为常见的是膜片反馈式稳流阀,由针型阀和压力反馈部件组成,其结构原理如图[/font][font=Times New Roman]2[/font][font=宋体]所示。[/font][/font][font=宋体][font=宋体]载气经过稳压阀稳定压力之后,由输入端进入稳流阀,并充满腔体[/font][font=Times New Roman]A[/font][font=宋体],其内部压力为[/font][font=Times New Roman]P1[/font][font=宋体]。如果此时针型阀处于关闭状态,腔体[/font][font=Times New Roman]B[/font][font=宋体]内压力较低,膜片在压力作用下移动,封闭稳流阀出口。[/font][/font][font=宋体][font=宋体]当调节阀针使稳流阀开启,输入端的气体充满针型阀阻尼充满腔体[/font][font=Times New Roman]B[/font][font=宋体],使腔体[/font][font=Times New Roman]B[/font][font=宋体]压力升高为[/font][font=Times New Roman]P2[/font][font=宋体],当腔体[/font][font=Times New Roman]A[/font][font=宋体]压力[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体][font=宋体]、膜片弹簧力[/font][font=Times New Roman]F[/font][font=宋体]和腔体[/font][font=Times New Roman]B[/font][font=宋体]压力[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]2[/font][/font][/sub][font=宋体][font=宋体]达到平衡时,稳流阀可以有稳定的流量输出,输出端的压力为[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]3[/font][/font][/sub][font=宋体]。[/font][font=宋体]稳流阀的静态平衡式为:[/font][font=宋体][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体][font=Times New Roman]A = P[/font][/font][sub][font=宋体][font=Times New Roman]2[/font][/font][/sub][font=宋体][font=Times New Roman]A + F[/font][/font][font=宋体][font=宋体]其中,[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体][font=宋体]为阀输入压力(腔体[/font][font=Times New Roman]A[/font][font=宋体]压力),[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]2[/font][/font][/sub][font=宋体][font=宋体]为腔体[/font][font=Times New Roman]B[/font][font=宋体]压力、[/font][font=Times New Roman]A[/font][font=宋体]为膜片工作面积,[/font][font=Times New Roman]F[/font][font=宋体]为弹簧压力。[/font][/font][align=center][img=,406,286]https://ng1.17img.cn/bbsfiles/images/2022/10/202210172219014946_6417_1604036_3.jpg!w690x486.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font][/font][font=宋体][font=Times New Roman]2[/font][/font][font='Times New Roman'] [/font][font=宋体]稳流阀[/font][font='Times New Roman'][font=宋体]结构图[/font][/font][/align][align=center][font=宋体]稳流阀流量调节的原理[/font][/align][font=宋体]可以通过调节针型阀的开度来调节针型阀的输出流量。[/font][font=宋体][font=宋体]当调节针型阀使其开度增大,腔体[/font][font=Times New Roman]B[/font][font=宋体]压力上升,[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]2[/font][/font][/sub][font=宋体][font=Times New Roman]A + F [/font][font=宋体]> [/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体][font=Times New Roman]A[/font][font=宋体],此时膜片向上移动,更多气体流出稳流阀,系统达到新的平衡状态,稳流阀输出流量增大并达到稳定。档调节针型阀使其开度减小,腔体[/font][font=Times New Roman]B[/font][font=宋体]压力下降,[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]2[/font][/font][/sub][font=宋体][font=Times New Roman]A + F [/font][font=宋体]< [/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体][font=Times New Roman]A[/font][font=宋体],此时膜片向下移动,更少气体流出稳流阀,系统达到新平衡状态,稳流阀的输出流量减小并达到稳定。[/font][/font][align=center][font=宋体] [/font][/align][align=center][font=宋体]稳流的工作原理[/font][/align][font=宋体]稳流阀内部反馈系统和针型阀协同工作,通过维持针型阀输出输入端固定压力差的方法,实现阀输出流量的恒定。[/font][font=宋体][font=宋体]当稳流阀输出端的阻尼增大(例如柱温升高造成载气粘度增大、色谱柱长度变长等、增加阻尼器等),此时阀输出端压力[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]3[/font][/font][/sub][font=宋体][font=宋体]增大,阀输出流量[/font][font=Times New Roman]F[/font][font=宋体]降低,此时[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]2[/font][/font][/sub][font=宋体][font=宋体]上升,导致膜片位置上升,更多气体流出腔体[/font][font=Times New Roman]B[/font][font=宋体],使得[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]2[/font][/font][/sub][font=宋体][font=宋体]下降恢复至[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体][font=Times New Roman]-P[/font][/font][sub][font=宋体][font=Times New Roman]2[/font][/font][/sub][font=宋体][font=宋体]为恒定值,并使阀输出流量[/font][font=Times New Roman]F[/font][font=宋体]恢复至设定值。[/font][/font][font=宋体][font=宋体]当稳流阀输出端阻尼减小(例如柱温降低造成载气粘度减小、色谱柱长度变短、减小阻尼器等),此时阀输出压力[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]3[/font][/font][/sub][font=宋体][font=宋体]减小,阀输出流量增加,造成[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]2[/font][/font][/sub][font=宋体][font=宋体]下降,导致膜片位置下降,较少气体流出腔体[/font][font=Times New Roman]B[/font][font=宋体],使得[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]2[/font][/font][/sub][font=宋体][font=宋体]上升恢复至[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]1[/font][/font][/sub][font=宋体][font=Times New Roman]-P[/font][/font][sub][font=宋体][font=Times New Roman]2[/font][/font][/sub][font=宋体][font=宋体]位恒定值,并使阀输出流量[/font][font=Times New Roman]F[/font][font=宋体]恢复至设定值。[/font][/font][font=宋体][font=宋体]由针型阀的气体流量方程可知,当针型阀的开度一定时,即针型阀的流通面积一定时,对于确定的同种流体,只要维持[/font][font=Times New Roman]P[/font][/font][sub][font=宋体][font=Times New Roman]1 [/font][/font][/sub][font=宋体][font=Times New Roman]- P[/font][/font][sub][font=宋体][font=Times New Roman]2[/font][/font][/sub][font=宋体]压力差[/font][font=宋体]值不变,就可以实现输出稳定的流量。[/font][img=,142,72]https://ng1.17img.cn/bbsfiles/images/2022/10/202210172219095525_1260_1604036_3.jpg!w683x153.jpg[/img][font=宋体] [/font][font=宋体]需要注意:[/font][font=宋体][font=宋体]稳流阀输入端一般需要连接稳压阀的输出端,保证[/font][font=Times New Roman]P1[/font][font=宋体]压力的稳定,否则难以保证稳定工作。如果[/font][font=Times New Roman]P1[/font][font=宋体]发生变化,那么稳流阀将不能输出恒定气体流量。[/font][/font][font=宋体]稳流阀工作时的输入和输出端不可以接反,否则无法正常工作。[/font][font=宋体]稳流阀不可以作为开关阀使用,并且避免将阀针过分拧紧,否则会造成阀针的机械损伤。建议在气路通气之前首先开启稳流阀,然后缓慢调节阀针,按从大到小的顺序调节稳流阀输出流量。[/font][font=宋体]稳流阀的输出端可以空载,即不连接色谱柱或者阻尼,直接放空。稳流阀输出端不可以封闭,此时输入端压力将与输出端压力相同。[/font][font=宋体][font=宋体]由于反馈系统和针型阀阻尼的特性,此外还包含阀出口连接色谱柱阻尼或者其他系统的影响,稳流阀的[/font][font=宋体]“惯性”较大——稳流阀调节时的滞后现象较为明显。色谱柱或者稳流阀输出连接部件的阻力越大,此滞后现象越明显。使用稳流阀调节流量时,需要控制阀旋钮的运行速度和幅度,在观察色谱柱压力和输出流量计的同时,缓慢调节阀旋钮。[/font][/font][font=宋体][font=宋体]稳流阀最终控制的是阀输出流体的绝对量,即质量流量。色谱分析中需要控制的柱后流量稳定,即质量流量稳定。当色谱柱因温度变化等原因产生阻尼增加现象时,必须使稳流阀输出压力[/font][font=Times New Roman]P3[/font][font=宋体]增大,才可以保证流过色谱柱的流体质量不变,反之亦然。在程序升温的场合下,尤其是使用填充柱的情况下,柱温升高,柱前压力随之增大。[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]电子稳流器原理[/font][/align][font=宋体]电子式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]一般安装电子稳流器,给填充柱进样口或者分流不分流进样口提供稳定可靠的流量,其流量精度较高、重现性好、调节滞后性较好,目前在实验室中得到了更广泛的应用。[/font][font=宋体][font=宋体]电子稳流器一般由比例电磁阀、流量传感器和控制线路组成,各个部件在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]计算机控制下,构成负反馈系统,以稳定流路的输出流量,其原理结构如图[/font][font=Times New Roman]3[/font][font=宋体]所示。[/font][/font][align=center][img=,452,165]https://ng1.17img.cn/bbsfiles/images/2022/10/202210172219179636_8164_1604036_3.jpg!w679x248.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]电子流量控制器系统框图[/font][/font][/align][font=宋体]电子流量控制器工作时,系统内部的流量计(常见的为压差式流量计和质量流量计)不断测定系统输出流量,然后反馈至比例阀的输入端,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统不断比较实际输出流量与系统预设流量之间的偏差,然后给予比例电磁阀合适的控制电压(或电流)。[/font][font=宋体]电子流量控制器的实际输出流量增大,流量计可以感知此流量的变化并反馈至[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]总控制器,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统比较输出真实流量与预设流量的偏差大小(并给予一定的延迟、放大、积分或微分等数据处理),然后发出指令改变比例电磁阀的供电电压占空比,使比例电磁阀的开度减小合适的数值,以期望降低输出流量,最终达到输出流量稳定。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统还可以不改变系统的硬件,仅仅通过方便内部软件控制,实现恒定柱后流量、恒定线速度、恒定柱压力等不同的进样口气体程序控制。[/font][font='Times New Roman'] [/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简述稳流阀和电子流量控制器的基本原理是使用注意事项。[/font]

  • 气相色谱仪流量控制原理与维护 —— 电子流量控制器中的流量传感器 —— 质量流量计

    气相色谱仪流量控制原理与维护 —— 电子流量控制器中的流量传感器  —— 质量流量计

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][font=宋体]电子流量控制器中的流量传感器 [/font][font=Times New Roman]—— [/font][font=宋体]质量流量计[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的电子流量控制单元的流量测量原理和常见流量传感器(质量流量计)的原理[/font][/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]质量流量计[/font][/font][/align][font='Times New Roman'][font=宋体]工业监控中常见的容积式、叶轮式、涡街式流量计都被用来直接测定流体的体积流量(压差式流量计可以通过流体参数的转化计算获得质量流量),质量流量计与其不同,可以用来直接测定流体的质量流量,而不受流体密度、温度或者压力的影响。[/font][/font][font='Times New Roman'][font=宋体]质量流量计的压力损失较低、流量测量范围较大。内部无可动部件,可靠性和精度较好,可以用于较低气体流量的测量和控制。[/font][/font][font='Times New Roman'][font=宋体]质量流量计可以分成科里奥利质量流量计和热式质量流量计两类,可以用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url][/font][/font][font=宋体]的电子流量控制器[/font][font='Times New Roman'][font=宋体]中气体流量测定的是热式流量计([/font]Thermal Mass Flowmeters[font=宋体],[/font][font=Times New Roman]TMF[/font][font=宋体])。[/font][/font][font='Times New Roman'][font=宋体]热式质量流量计利用流体流过外热源加热的管路时产生的温度场变化来测量流体的质量流量;或者利用加热流体时流体温度上升某一数值所需能量与流体质量之间的关系来测定流体质量流量。[/font][/font][font='Times New Roman'][font=宋体]热式[/font][/font][font='Times New Roman'][font=宋体]质量流量[/font][/font][font='Times New Roman'][font=宋体]计利用[/font][/font][font='Times New Roman'][font=宋体]热[/font][/font][font='Times New Roman'][font=宋体]传导原理测定气体的质量流量,即气体的放热量或者吸热量与该气体的质量成正比[/font][/font][font='Times New Roman'][font=宋体]。[/font][/font][font='Times New Roman'][font=宋体]被测定[/font][/font][font='Times New Roman'][font=宋体]气体流过[/font][/font][font='Times New Roman'][font=宋体]对称排布的两个或者多个温度传感器[/font][/font][font='Times New Roman'][font=宋体]表面[/font][/font][font='Times New Roman'][font=宋体],[/font][/font][font='Times New Roman'][font=宋体]在不同的质量流速下,温度传感器表面温度会发生不同变化。在一定的流量范围之内,温度变化与气体质量流量存在确定的对应关系,可以利用此原理来进行流量测定,其基本结构如图[/font]1[font=宋体]所示。[/font][/font][align=center][img=,352,249]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011513235212_6069_1604036_3.jpg!w624x442.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font]1 [font=宋体]质量流量计结构示意图[/font][/font][/align][font='Times New Roman'][font=宋体]如图[/font]1-a[font=宋体]所示,在气体流经的管路中安装有加热器[/font][font=Times New Roman]Heater[/font][font=宋体],在其前后对称的位置,各安装一个温度传感器[/font][font=Times New Roman]TS[/font][/font][sub][font='Times New Roman']1[/font][/sub][font='Times New Roman'][font=宋体]和[/font]TS[/font][sub][font='Times New Roman']2[/font][/sub][font='Times New Roman'][font=宋体]。[/font][/font][font='Times New Roman'][font=宋体]当气体流速为[/font]0[font=宋体]时,由于温度场分布是对称于加热器[/font][font=Times New Roman]Heater[/font][font=宋体],那么两个传感器的[/font][/font][font=宋体]测定[/font][font='Times New Roman'][font=宋体]温度相同,均为[/font]T[/font][sub][font='Times New Roman']0[/font][/sub][font='Times New Roman'][font=宋体]。[/font][/font][font=宋体]当[/font][font='Times New Roman'][font=宋体]气体质量流量[/font][/font][font=宋体]逐渐增加时[/font][font='Times New Roman'][font=宋体],[/font][/font][font=宋体]气体将逐渐[/font][font='Times New Roman'][font=宋体]携带[/font][/font][font=宋体][font=宋体]加热器[/font][font=Times New Roman]Heater[/font][font=宋体]表面的[/font][/font][font='Times New Roman'][font=宋体]部分热量,[/font][/font][font=宋体]流量计内部[/font][font='Times New Roman'][font=宋体]温度场[/font][/font][font=宋体]的[/font][font='Times New Roman'][font=宋体]对称性被破坏,温度传感器[/font]TS[/font][sub][font='Times New Roman']1[/font][/sub][font='Times New Roman'][font=宋体]表面温度下降[/font][/font][font=宋体][font=宋体],由[/font][font=Times New Roman]T[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font='Times New Roman'][font=宋体]变成[/font]T[/font][sub][font='Times New Roman']1[/font][/sub][font='Times New Roman'][font=宋体],[/font][/font][font=宋体]温度传感器[/font][font='Times New Roman']TS[/font][sub][font='Times New Roman']2[/font][/sub][font='Times New Roman'][font=宋体]表面温度上升[/font][/font][font=宋体][font=宋体],由[/font][font=Times New Roman]T[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font='Times New Roman'][font=宋体]变为[/font]T[/font][sub][font='Times New Roman']2[/font][/sub][font='Times New Roman'][font=宋体]。[/font][/font][font='Times New Roman'][font=宋体]在一定的[/font][/font][font=宋体]气体[/font][font='Times New Roman'][font=宋体]流量范围内,两个温度传感器的温度差[/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font='Times New Roman'][font=宋体]([/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font=宋体] [font=Times New Roman]= [/font][/font][font='Times New Roman']T2[/font][font=宋体] [/font][font='Times New Roman']-[/font][font=宋体] [/font][font='Times New Roman']T1[/font][font=宋体] [/font][font='Times New Roman'][font=宋体])[/font][/font][font='Times New Roman'][font=宋体]与流体的质量流量有确定定量关系[/font][/font][font=宋体]。[/font][font=宋体]两个温度传感器温度差[/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font=宋体]会随着质量流量的增加而增加,[/font][font='Times New Roman'][font=宋体]当气体的质量流量趋向于无穷大时,两个温度传感器接触到的几乎都是未被加热的气体,温差[/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font='Times New Roman'][font=宋体]也趋向于[/font]0[font=宋体],如图[/font][font=Times New Roman]2[/font][font=宋体]所示。[/font][/font][align=center][img=,372,166]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011513338640_4809_1604036_3.jpg!w690x307.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]温差与质量流量的关系特性[/font][/font][/align][font=宋体][font=宋体]由温差[/font][font=宋体]——质量流量关系特性曲线可知,[/font][/font][font='Times New Roman'][font=宋体]热式[/font][/font][font='Times New Roman'][font=宋体]质量流量[/font][/font][font='Times New Roman'][font=宋体]计[/font][/font][font='Times New Roman'][font=宋体]不适合分析[/font][/font][font=宋体]过高[/font][font='Times New Roman'][font=宋体]的气体流速。[/font][/font][font=宋体]测量微小气体流量由于信号微弱,也存在测量精度较低的问题。[/font][font=宋体]质量流量计测定的[/font][font='Times New Roman'][font=宋体]气体的质量流量[/font]F[/font][sub][font='Times New Roman']m[/font][/sub][font='Times New Roman'][font=宋体]与两个温度传感器的温度差[/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font=宋体]的[/font][font='Times New Roman'][font=宋体]关系式为:[/font][/font][align=center][img=,143,52]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011513409949_3356_1604036_3.jpg!w690x138.jpg[/img][font='Times New Roman'] [font=宋体]([/font]1-1[font=宋体])[/font][/font][/align][font='Times New Roman'] [font=宋体]公式[/font]1-1[font=宋体]中:[/font][/font][font='Times New Roman'] F[/font][sub][font='Times New Roman']m[/font][/sub][font='Times New Roman'] [font=Times New Roman]—— [/font][font=宋体]气体的质量流量[/font][/font][font='Times New Roman'] E —— [font=宋体]加热器的功率值[/font][/font][font='Times New Roman'] Cp —— [font=宋体]气体的比热容[/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font=宋体] [/font][font='Times New Roman'] [font=Times New Roman]—— [/font][font=宋体]温度差[/font][/font][font=宋体][font=宋体]随着现代微电子[/font][font=Times New Roman]-[/font][font=宋体]微机械技术的发展,出现了微型热分布式质量流量计,外观尺寸可以缩小到[/font][font=Times New Roman]cm[/font][font=宋体]级别,可以作为一个单独的电子元件,方便的安装在色谱仪电子流量控制器的线路板上,并且可以成功解决测定微小气体流量的问题。[/font][/font][font=宋体][font=宋体]其基本原理与热式质量流量计相同,但是加热部件和温度传感器部件的排布方式有所不同,其结构原理如图[/font][font=Times New Roman]3[/font][font=宋体]所示[/font][/font][align=center][img=,338,104]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011513483717_5810_1604036_3.jpg!w690x213.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]热分布式质量流量计结构图[/font][/font][/align][font=宋体]流量计的温度传感器在内部电气线路设计方面被连接成电桥方式,可以感知极微弱的温度差异,并且由于总体部件尺寸的缩小,微型热分布式质量流量计可以测定微小的气体流量。与热式流量计相似,热分布式质量流量计不太适合直接测定过高的气体流量。当需要测定较大流量时,需要配备有分流部件,可以较大范围扩展其测量范围。[/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font=宋体]质量流量计的特点和[/font][font='Times New Roman'][font=宋体]使用注意事项[/font][/font][/align][font=宋体]质量流量计具有较高的流量测定精度,比较适合测定微小的气体流量,测量灵敏度较高,使用性能稳定可靠。可以安装在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的进样口载气电子流量控制器中。[/font][font=宋体][font=宋体]比较差压式流量计,质量流量计的惯性较大,不容易实现迅速的流量控制;[/font][font=宋体]’气体的温度和压力变化对流量计的测量准确性影响较小。[/font][/font][font=宋体]质量流量计的使用注意事项:[/font][font='Times New Roman']1 [font=宋体]气体[/font][/font][font=宋体]的类型设置[/font][font=宋体][font=宋体]对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],不同的载气具有不同的比热容,会对流量计的温度[/font][font=宋体]——流量响应关系带来一定的影响[/font][/font][font='Times New Roman'][font=宋体]。[/font][/font][font=宋体]在设定[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析方法时,需要在色谱仪硬件和色谱数据工作站软件中设置正确的载气类型。[/font][font='Times New Roman'] [/font][font='Times New Roman']2 [/font][font=宋体]质量[/font][font='Times New Roman'][font=宋体]流量[/font][/font][font=宋体]——压力[/font][font='Times New Roman'][font=宋体]校准[/font][/font][font=宋体][font=宋体]与差压式流量计相同,配置有质量流量计的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]随着运行时间的增长,电气部件性能会发生逐渐变化,流量计内的管路散热情况也会因为堵塞、污染等问题产生差异,都会影响流量计的温度[/font][font=宋体]——质量流量关系,从而影响流量测定的准确性。[/font][/font][font='Times New Roman']3 [font=宋体]气源的要求[/font][/font][font=宋体]气源要求洁净、不含有油污、水分或者固体颗粒物,尽量避免气源压力和流量的瞬间剧烈变化造成流量计的损坏。[/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]小结[/font][/font][/align][font='Times New Roman'][font=宋体]本文简单[/font][/font][font=宋体]介绍[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]电子流量控制器内置质量流量计的基本原理和使用[/font][font='Times New Roman'][font=宋体]注意事项。[/font][/font]

  • 霍尔流量计流量控制原理

    [size=24px][font=宋体]在我们的日常生活中,流量计的应用也越来越广泛,不同的设备、功能及液体,所适用的[url=http://www.eptsz.com/Products.aspx?CategoryID=5][b]流量计[/b][/url]是不一样的。[/font][font=宋体]下面要介绍的这款[url=http://www.eptsz.com/Products.aspx?CategoryID=5][b]霍尔流量计[/b][/url],是属于小流量计类型的,适用于一些流量比较小的设备上,[/font][font=宋体]比如咖啡机、冲奶机、饮料机、饮水机等小流量控制的,流量能够实时统计。[/font][font=宋体][font=宋体][b]霍尔流量计[/b]内部有一个两极磁铁、一个叶轮和一个霍尔元件,当叶轮转动一圈所产生的[/font][font=Calibri]GS[/font][font=宋体]值转换成一个脉冲信号输出,根据脉冲数计算流量,[b]霍尔流量计[/b]是利用脉冲来实现流量控制的。[/font][/font][font=宋体][font=宋体]例如在自动饮料机的应用,如果我只需要[/font][font=Calibri]100ml[/font][font=宋体]的饮料,那么通过[url=http://www.eptsz.com/Products.aspx?CategoryID=5][b]霍尔流量计[/b][/url]就可以实现固定的[/font][font=Calibri]100ml[/font][font=宋体]的饮料。[/font][/font][/size][font=宋体][size=24px][font=宋体][b]霍尔流量计[/b]不仅体积小、而且安装简易、流量精度高、精度可达[/font][font=Calibri]3%[/font][/size][font=宋体][size=24px]、一致性强、还可以用于多种高低流量控制。 ——深圳市能点科技有限公司[/size][/font][/font]

  • 气相色谱仪流量控制原理与维护 —— 针型阀

    气相色谱仪流量控制原理与维护 —— 针型阀

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体]针型阀[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体]针型阀可以用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]进样口或者检测器部分的流量控制部分,可以实现较为精细的流量调节[/font][font='Times New Roman'][font=宋体]。[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]简介[/font][/align][font=宋体][font=宋体]机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]通常使用针型阀对气路流量进行精细调节,例如氢火焰离子化检测器([/font][font=Times New Roman]FID[/font][font=宋体])通常安装针型阀用以调节氢气、空气流量;分流不分流进样口安装针型阀用以调节隔垫吹扫流量和分流流量等,如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][align=center][img=,533,268]https://ng1.17img.cn/bbsfiles/images/2022/10/202210121531539149_3954_1604036_3.jpg!w690x346.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]检测器流量和进样口流量结构图[/font][/font][/align][font=宋体][font=宋体]常见的圆锥式针型阀的结构如图[/font][font=Times New Roman]2[/font][font=宋体]所示,通过阀针与阀体之间的接触程度来调节其整体阻尼,从而实现气体流量的调控。当旋转针型阀的控制旋钮时,螺杆旋转带动阀针在左右方向移动,改变阀针与阀体之间的环形流通面积,可以改变阀整体的阻尼。[/font][/font][align=center][img=,318,110]https://ng1.17img.cn/bbsfiles/images/2022/10/202210121532019282_8779_1604036_3.jpg!w690x239.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font][/font][font=宋体][font=Times New Roman]2[/font][/font][font='Times New Roman'] [/font][font=宋体]针型阀[/font][font='Times New Roman'][font=宋体]结构图[/font][/font][/align][font=宋体][font=宋体]针型阀的输出流量[/font][font=Times New Roman]F[/font][font=宋体]与流通面积和阀输入输出端压力差均相关,在阀结构确定的情况下,对同一流体,当压差一定时,流量与流通面积成正比;当流通面积一定时,流量与压差的平方根成正比,其流量方程为:[/font][/font] [img=,654,501]https://ng1.17img.cn/bbsfiles/images/2022/10/202210121534384988_5836_1604036_3.jpg!w654x501.jpg[/img][font=宋体] [/font][font='Times New Roman'] [/font][font=宋体]针型阀在气路中只能起到可调节阻尼的作用(某些情况下针型阀不单独使用,与固定式阻尼器串联协同工作,共同调节流量),不能稳定输出压力和输出流量。通过精密机械加工技术可以精确控制螺杆螺距的尺寸,针型阀可以实现精细的流量调节[/font][font='Times New Roman'][font=宋体]。[/font][/font][align=center][font=宋体]针型阀使用注意事项[/font][/align][font=宋体]针型阀死体积小、调节速度快、成本较低、性能可靠、维护方便,在机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]、色谱仪的外围进样设备中较为常见,也可以用于某些标准气体钢瓶。进样口分流流路出口流量使用针型阀控制的时候,样品冷凝导致的针型阀堵塞,可以简单的加以清洗即可解决,如果需要拆解或者装配,对维修人员的技术要求也比较低。[/font][font=宋体]针型阀在使用过程中需要注意:[/font][font=宋体][font=Times New Roman]1 [/font][font=宋体]针型阀不建议作为截止阀使用,避免造成阀针的机械损伤。调节针型阀,旋钮应该避免过分旋紧,造成阀针的损伤。[/font][/font][font=宋体][font=Times New Roman]2 [/font][font=宋体]注意针型阀方向,不要连接错误。[/font][/font][font=宋体][font=Times New Roman]3 [/font][font=宋体]针型阀上时间不使用时,建议旋松旋钮以保护阀针。[/font][/font][font=宋体][font=Times New Roman]4 [/font][font=宋体]调节不同类型气体时,针型阀阻尼大小不同。[/font][/font][align=center][font=宋体]小结[/font][/align][font=宋体]针型阀的基本原理和使用注意事项。[/font]

  • 气相色谱仪流量控制原理与维护 —— 转子流量计的原理和注意事项

    气相色谱仪流量控制原理与维护 —— 转子流量计的原理和注意事项

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font][/font][font=宋体] [font=宋体]—— 转子流量计的原理和注意事项[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体] 转子流量计也可以视为一种特殊的差压式流量计,结构简单,使用方便。是较为传统的流量计,目前在某些低成本[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器和应用场合下还可以见到。[/font][font='Times New Roman'] [/font][align=center][font=宋体]转子流量计的原理[/font][/align][font=宋体] 转子流量计又名浮子流量计(或面积流量计),是通过改变流体流通面积来改变流量的仪表。结构较为简单、使用维护方便,流量计压力损失小并且固定等优点,在工业流量控制系统中应用广泛。[/font][font=宋体][font=宋体] 转子流量计由向上扩张的锥形管和置于锥形管中可以自由上下移动的浮子组成,如图[/font][font=Times New Roman]1[/font][font=宋体]所示。流量计垂直安装在测量管路上,流体自下而上流过流量计推动浮子。流量增大时,浮子位置上升,使流体流过的面积增大,反之则减小。[/font][/font][font=宋体][font=宋体] 在稳定的状态下,浮子悬浮的高度[/font][font=Times New Roman]h[/font][font=宋体]与通过流量计的流体流量[/font][font=Times New Roman]F[/font][font=宋体]之间存在一定的比例关系,所以可以根据浮子的高度直接读取流量计的流量值。[/font][/font][font=宋体] 为了避免浮子在锥形管中运动时碰到管壁,通常会在浮子上开出几条斜槽,流体流过浮子时,浮子会旋转以保持稳定和居中,因此浮子也被称为转子[/font][font='Times New Roman'][font=宋体]。[/font][/font][align=center][img=,150,225]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010958081389_3749_1604036_3.jpg!w523x782.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]转子流量计结构[/font][/font][/align][font='Times New Roman'][font=宋体] 对于可压缩流体([/font][/font][font=宋体]例如[/font][font='Times New Roman'][font=宋体]气体),体积流量[/font]F[/font][sub][font='Times New Roman']v[/font][/sub][font='Times New Roman'][font=宋体]与[/font][/font][font=宋体]浮子在流量计内高度的[/font][font='Times New Roman'][font=宋体]流量关系式为:[/font][/font][align=center][img=,135,52]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010958159796_4045_1604036_3.jpg!w559x133.jpg[/img][font=宋体] [font=宋体]([/font][font=Times New Roman]1-1[/font][font=宋体])[/font][/font][/align][font=宋体] [font=宋体]公式[/font][font=Times New Roman]1-1[/font][/font][font='Times New Roman'][font=宋体]中[/font][/font][font=宋体]:[/font][font=宋体] [font=Times New Roman]F[/font][/font][sub][font=宋体][font=Times New Roman]v [/font][/font][/sub][font=宋体]—— 流体体积流速[/font][font=宋体] [font=宋体]α [/font][/font][font='Times New Roman'] [/font][font=宋体]—— 浮子流量计的流量系数[/font][font='Times New Roman'] [/font][font=宋体] [font=Times New Roman]D[/font][/font][sub][font=宋体][font=Times New Roman]f[/font][/font][/sub][font='Times New Roman'] [/font][font=宋体] [font=宋体]—— 流量计锥形管零刻度位置内径[/font][/font][font='Times New Roman'] [/font][font=宋体] [font=Times New Roman]C[/font][/font][font='Times New Roman'] [/font][font=宋体] [font=宋体]—— 常数(与流体密度、浮子体积、浮子迎流面积有关)[/font][/font][font=宋体][font=Times New Roman] h[/font][/font][font='Times New Roman'] [/font][font=宋体] [font=宋体]—— 浮子高度[/font][/font][font=宋体][font=宋体] 该公式中的常数[/font][font=Times New Roman]C[/font][font=宋体]与流体的温度、压力、密度和粘度有关,使用中需要根据流体物理性质的不同,测量流量时应该予以修正。[/font][/font][font=宋体] 转子流量计适合于较小管径下较低流速的测量,压力损失较低,流量测定范围宽,结构简单,价格低廉,使用和维修比较方便。[/font][font=宋体] 但是需要注意转子流量计的流量刻度,仅仅在流量计的标准标定状态下才是准确的,如果流体介质、流体温度、流体压力与标定状态不同,那么流量刻度值需要进行转换,否则读取到的流量不正确。[/font][align=center][font=宋体]转子流量计在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器中的应用[/font][/align][font=宋体] 随着现代电子技术的发展,采用电子流量控制模式的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]在实验室中越来越常见。但是采用手工流量控制模式(机械阀加流量计模式)的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],目前还依然存在于某些实验室中。[/font][font=宋体][font=宋体] 虽然不如电子流量控制模式的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]那样具有良好的流量[/font][font=Times New Roman]/[/font][font=宋体]压力重复性和精密度,但是手工流量控制模式的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]价格低廉,可靠性高,维护成本较低。并且实验对象的样品如果性质不良(浓度较高、沸点较高、粘度和稳定性不良),采用手工流量控制模式的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]日常维护成本都低,发生故障后的维修比较方便。[/font][/font][font=宋体]转子流量计一般用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的载气(尤其是填充柱系统的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url])或者尾吹气的测量,流量数值读取方便。[/font][font=宋体] [/font][align=center][font=宋体]转子流量计的安装位置[/font][/align][font='Times New Roman'] [/font][font=宋体] 转子流量计在手工控制模式的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统中常见的安装位置常见有以下三种方式:[/font][font=宋体][font=宋体] 方式[/font][font=Times New Roman]1[/font][font=宋体]:转子流量计安装在载气控制部分的气源稳压阀之后,进样口的流量调节阀之前。[/font][/font][font=宋体] 在这种安装方式下,转子流量计读取流量数值比较方便。但是流量计需要在特殊条件下(流量计的入口压力确定)进行标定,一般需要使用厂家专用的定制流量计。[/font][font=宋体] 使用时必须保证流量计的输入压力和气体的类型与标定时的压力一致、,否则读数不准确。[/font][align=center][img=,454,166]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010958288505_9534_1604036_3.jpg!w690x252.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]1 [/font][font=宋体]转子流量计安装位置 方式[/font][font=Calibri]1[/font][/font][/align][font=宋体][font=宋体] 方式[/font][font=Times New Roman]2[/font][font=宋体]:转子流量计安装在载气的流量调节阀之后,进样口之前[/font][/font][font=宋体] 在这种情况下,可以使用普通型转子流量计,但是需要进行读数修正。在不同的进样口压力、不同载气类型的情况下,需要进行流量刻度值的转换。[/font][font=宋体] [/font][align=center][img=,373,122]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010958350951_5526_1604036_3.jpg!w690x226.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]2 [/font][font=宋体]转子流量计安装位置 方式[/font][font=Calibri]2[/font][/font][/align][align=center][font=Calibri] [/font][/align][font=宋体][font=宋体] 方式[/font][font=Times New Roman]3[/font][font=宋体]: 转子流量计的出口直接连接检测器[/font][/font][font=宋体] 在这种情况下,转子流量计的流量刻度接近标定状态,一般情况下可以直接读取流量数值。[/font][align=center][img=,374,139]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010958405395_2107_1604036_3.jpg!w690x256.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]3 [/font][font=宋体]转子流量计安装位置 方式[/font][font=Calibri]3[/font][/font][/align][align=center][font=Calibri] [/font][/align][font='Times New Roman'] [/font][align=center][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]流量传感器原理示意图[/font][/font][/align][font=宋体] [/font][align=center][font=宋体]转子流量计的特点和使用注意事项[/font][/align][font=宋体] [/font][font=宋体][font=宋体] 转子流量计结构简单,性能可靠,拆解和维修方便,一般情况下不需要进行校准,运行不需要电源和控制线路的支持,可以独立适用。目前在低成本的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]和某些进样或采样设备[/font][font=宋体]——例如热解析进样器——中还可以见到。[/font][/font][font=宋体] 使用转子流量计的过程中需要注意如下问题:[/font][font=宋体][font=Times New Roman] 1 [/font][font=宋体]气体类型和工作状态的修正[/font][/font][font=宋体] 实际工作环境与流量计标准标定状态不同时,需要对流量计进行压力、温度和密度流量转换。某些流量计的说明书或者标签明确标识有可以测量的气体种类,如果用于测定其他气体,必须予以校准。[/font][font=宋体] 例如带有氮气标签的转子流量计,不建议用于测量氢气。如果一定需要测定氢气流量,那么必须进行转换。[/font][font=宋体] 转子流量计安装于进样口前端时,由于流量计内压力大于大气压力,流量计的显示数值可能不准确,可能需要进行压力校准。[/font][font=宋体] 某些型号的转子流量计预先规定了操作压力,如果流量计安装于气源之后,载气流量调节单元之前,可以不做校准。[/font][font=宋体][font=Times New Roman] 2 [/font][font=宋体]安装位置[/font][/font][font=宋体] 一般情况下,转子流量计必须垂直安装在系统中,系统无明显振动。[/font][font=宋体][font=Times New Roman] 4 [/font][font=宋体]最大截面积读数[/font][/font][font=宋体] 读取流量刻度时,应该选取转子截面积最大的部分。[/font][font=宋体][font=Times New Roman] 4 [/font][font=宋体]气源要求[/font][/font][font=宋体] 气源应该洁净、无大量水、油污或固体颗粒物,避免流量突然变化的剧烈冲击。[/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]小结[/font][/font][/align][font=宋体] 转子流量计的基本原理和使用注意事项。[/font]

  • 气相色谱仪流量控制原理与维护 —— 压力传感器

    气相色谱仪流量控制原理与维护 —— 压力传感器

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体]压力传感器[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体][font=宋体]压力传感器是电子流量控制器([/font][font=Times New Roman]EPC[/font][font=宋体]、[/font][font=Times New Roman]AFC[/font][font=宋体]或[/font][font=Times New Roman]EFC[/font][font=宋体])的重要组成元件,目前常见[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]配备的压力传感器主要为压阻式传感器,其灵敏度高、分辨率高、体积小、工作频带宽、响应速度快。[/font][/font][align=center][font=宋体]简介[/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]维修人员在检查或维修电子流量式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]过程中,当拆解或者检查电子流量控制器时[/font][font=宋体]——不论是进样口流量控制器或者检测器流量控制器,都可以观察到如图[/font][font=Times New Roman]1[/font][font=宋体]所示的元器件,尺度大约[/font][font=Times New Roman]10mm*10mm[/font][font=宋体]左右,此即为压力传感器,用来测定气体压力和协助控制气体流量。[/font][/font][align=center][img=,189,150]https://ng1.17img.cn/bbsfiles/images/2022/11/202211231551479727_3572_1604036_3.jpg!w531x423.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]压力传感器外观[/font][/font][/align][font=宋体]目前常见[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]配备的压力传感器主要为压阻式传感器,其灵敏度高、分辨率高、体积小、工作频带宽、响应速度快。压阻传感器的工作原理基于压阻效应,压力敏感元件是使用集成电路工艺在半导体材料的基片上制成的扩散电阻,当受到流体压力作用于敏感元件时,扩散电阻的阻值发生对应的变化。[/font][font=宋体][font=宋体]对于某个确定的导电材料,其电阻值的变化率可以由公式[/font][font=Times New Roman]1[/font][font=宋体]决定:[/font][/font][font=宋体] [/font][img=,240,76]https://ng1.17img.cn/bbsfiles/images/2022/11/202211231551556750_971_1604036_3.jpg!w600x191.jpg[/img][font=宋体] [/font][font=宋体][font=宋体]公式[/font] [font=Calibri]1[/font][/font][font=宋体][font=宋体]公式中[/font][font=Times New Roman]R [/font][font=宋体]为电阻值、ρ为电阻率、[/font][font=Times New Roman]l[/font][font=宋体]为导电材料长度、[/font][font=Times New Roman]s[/font][font=宋体]为导电材料截面积。[/font][/font][font=宋体]对于金属电阻(常见于工业测量中使用的金属应变片),上式中的[/font][font=宋体]Δ[/font][font=宋体][font=宋体]ρ[/font][font=Times New Roman]/[/font][font=宋体]ρ项数值较小,即电阻率变化较小,而尺度的变化率([/font][/font][font=宋体]Δ[/font][font=宋体]l/l和[/font][font=宋体]Δ[/font][font=宋体]s/s[/font][font=宋体])较大,所以金属电阻阻值的变化主要由其尺寸变化率引起。而对于半导体电阻,受力时其尺寸变化率较小,而电阻率变化率([/font][font=宋体]Δ[/font][font=宋体][font=宋体]ρ[/font][font=Times New Roman]/[/font][font=宋体]ρ)较大,这就是压阻式传感器的基本工作原理。[/font][/font][font=宋体][font=宋体]当压力作用于半导体硅晶片时,硅晶体晶格发生变形,是载流子产生不同能谷之间的散射,载流子的迁移率发生变化,从而使硅晶片的电阻率发生变化。对于半导体电阻,其压阻系数较大,压阻传感器的灵敏度是金属应变片灵敏度的[/font][font=Times New Roman]50-100[/font][font=宋体]倍。[/font][/font][align=center][font=宋体]压阻式传感器的结构[/font][/align][align=center][font=宋体] [/font][/align][font=宋体]压阻传感器的压力敏感元件是采用集成电路工艺在半导体基片(硅晶片)上制成的扩散电阻,扩散电阻依附于弹性元件才能工作。单晶硅材料纯度高、功耗低、滞后和蠕变小、机械稳定性好,传感器的制造工艺和硅集成电路工艺有很好的兼容性,所以扩散硅压阻传感器作为检测元件的压力测试仪表在工业测量领域得到广泛应用。[/font][align=center][img=,221,213]https://ng1.17img.cn/bbsfiles/images/2022/11/202211231552062434_3094_1604036_3.jpg!w332x320.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]压阻传感器的结构[/font][/font][/align][font=宋体][font=宋体]图[/font][font=Times New Roman]2[/font][font=宋体]为压阻式传感器的机构示意图,在硅膜片上用离子注入和激光修正方法形成[/font][font=Times New Roman]4[/font][font=宋体]个阻值相等的扩散电阻,并连接成惠斯登电桥形式,如图[/font][font=Times New Roman]3[/font][font=宋体]所示。[/font][/font][align=center][img=,215,194]https://ng1.17img.cn/bbsfiles/images/2022/11/202211231552138775_83_1604036_3.jpg!w690x624.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]惠斯登电桥[/font][/font][/align][font=宋体][font=宋体]使用[/font][font=Times New Roman]MEMS[/font][font=宋体]技术在硅膜片上形成一个压力室,一测与大[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]连(或真空),一侧与取压口相连,此结构即为硅杯。当待测压力作用于膜片上,膜片发生部分拉伸和部分压缩,电桥失去平衡,产生输出电压,电压的大小反应了膜片受到的压力情况。该电路一般采用恒电流工作方式,可以抑制环境温度的变化对传感器带来的影响。[/font][/font][align=center][font=宋体]压阻传感器的使用注意事项[/font][/align][font=宋体][font=宋体]压阻传感器具有灵敏度高、分辨率高、体积小、工作频带宽、测量电路以及传感器一体化等优点。压阻传感器可以测量[/font][font=Times New Roman]0.01kPa[/font][font=宋体]左右的微小压力变化,频率响应高,可以测量数十[/font][font=Times New Roman]kHz[/font][font=宋体]的脉动压力,其有效面积可以做的很小,可以做到[/font][font=Times New Roman]1[/font][font=宋体]平方毫米左右。对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]得到高精度高灵敏的气体流量和压力控制非常有益。[/font][/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]工作者使用电子流量方式的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]时,需要注意避免气源压力过高或者过于剧烈的变化,造成传感器损坏;注意控制气源质量加强维护,避免水、油污或者细小的固体颗粒物进入色谱仪流量控制器内,造成传感器损坏。在使用电解水方式的气体发生器时,尤其需要注意仪器的维护,发生器故障或者维护不足导致气源中含有大量水,对于压力传感器而言是致命的。电子式的压力传感器,随着不断的使用,还存在零点漂移问题,造成压力显示不正确或者出现压力显示为负值等异常现象,需要色谱工作者进行零点校正。[/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]压阻式传感器的原理和使用注意事项。[/font]

  • 毛细柱进样口的电子流量控制(上)

    1 毛细柱进样口的基本结构在毛细柱进样口中,需要控制的气体流量包括三部分:载气流量、分流流量和隔垫吹扫流量。载气的作用是以一定的流速将气体样品或经气化后的样品带入色谱柱进行分离;分流的作用是将气化后的样品按照一定比例排出进样口;隔垫吹扫的作用主要是消除进样时可能带入的杂质和消除进样口密封垫在高温时释放出的杂质。一般而言,载气、分流和隔垫吹扫的相对位置为:隔垫吹扫在最上方,载气在中间,分流管路在最下方。[align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/49/f5/a49f545f9ca474fccb8ad0ef635dede4.jpeg[/img][/align]前文谈到,使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其使用的控制阀的类型主要是稳流阀、稳压阀、背压阀和针型阀等;对于电子流量控制装置而言,并没有与上述几种机械阀一一对应的结构,可以近似的说是利用同一套部件组成的装置采用不同的控制方式/算法而分别实现各种机械阀的功能。扩展而言,毛细柱进样口的电子流量控制装置,也是在机械阀控制系统上发展而来。2 稳流阀-背压阀控制模式多数厂家在毛细柱进样口上使用的是稳流阀-背压阀控制模式进行流量/压力控制,即:采用稳流阀控制进样口总流量,采用背压阀调节进样口压力(柱前压),同时使用针型阀控制隔垫吹扫流量。其简单示意图如下:[align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/cf/34/acf346823f8dd0b62af5a4968371b6eb.png[/img][/align]我们说[color=#ff4c00]毛细柱进样口的电子流量控制装置,是在机械阀控制系统上发展而来[/color]。因此,在进行电子流量控制装置的设计时候,也遵循该种控制方式的原理,并且可以和相应的稳流阀-背压阀装置进行互换。3 安捷伦的电子流量控制装置(EPC)目前国内安捷伦的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]用户较多,使用非常的广泛。安捷伦的电子流量控制装置称之为EPC,其控制原理与稳流阀-背压阀装置类似,以下以安捷伦的电子流量控制装置(EPC)为例进行说明。在毛细柱进样口分流模式下,其EPC的原理图示意如下:[align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/2c/93/32c93ce1d2a0e0b2e228829584145743.png[/img][/align]对上图Valve为比例阀,FS表示流量传感器,PS表示压力传感器,上图分解如下:[align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/a9/ce/7a9ced7dff5f6d31a89ac0456615344a.png[/img][/align][font=微软雅黑, sans-serif](1)总流量的控制[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]根据仪器参数设置(包括柱流量、分流流量/分流比、隔垫吹扫流量),采用 比例阀-电路控制-流量传感器 控制进入毛细柱进样口的总流量,使之达到设定值要求,即 总流量=柱流量设定值+分流流量设定值+隔垫吹扫流量设定值;以上为电子流量控制装置的流量模式,类似于机械阀中的稳流阀。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif](2)柱头压/柱流量的控制[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]当进样口中有气体进入后,采用 比例阀-电路控制-压力传感器-气阻 控制比例阀开度,使柱头压/柱流量达到设定值;以上为电子流量控制装置的背压模式,类似于机械法中的背压阀。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif](3)隔垫吹扫流量控制[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]当进样口中有气体进入后,采用 比例阀-电路控制-压力传感器 控制比例阀开度,使压力传感器处压力达到一定值,通过气阻之后可以达到设定的流量;以上为电子流量控制装置的压力模式,类似于机械法中的稳压阀+固定气阻。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在总流量、柱头压/柱流量和隔垫吹扫流量达到稳定状态之后,分流出口的流量不需要进行测量,根据 总流量=柱流量设定值+分流流量设定值+隔垫吹扫流量 公式,出口流量就是分流设定值。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]一般而言,因为以上模式的柱头压/柱流量的调节是通过分流出口出的比例阀调节的,调节位置在出口处而非进口处,有文献称之为下游调节模式。[/font]以上是在毛细柱进样口分流模式下,其EPC的原理图示意。当在毛细柱进样不分流模式下,进样后的一段时间内,分流阀关闭,其工作状态见下图示意:[align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/76/27/d7627b5cb1d1bdf468c5a2a05cdc7838.png[/img][/align]此种状态下,分流阀关闭,流量传感器不使用;柱头压/柱流量通过 比例阀-电路控制-压力传感器 控制;隔垫吹扫流量采用 比例阀-电路控制-压力传感器-气阻 控制;以上为电子流量控制装置的压力模式。当柱头压/柱流量、隔垫吹扫流量稳定后,总流量不需要经过测定,为两者之和。在不分流进样模式后期,分流阀打开,控制原理则与分流进样相同。

  • 气相色谱中的电子流量控制装置概述

    1 概述[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用电子流量控制装置进行流量/压力控制的装置和技术,岛津称作AFC和APC,安捷伦称作做EPC,瓦里安称作EFC,PE则称之为PPC。无论使用什么样的名词,一言概括,就是可以对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中的载气(以及氢气、空气等各种辅助气体)进行自动化的流量设定和压力设定,避免了重复性的、简单繁琐的使用皂膜流量计手动测定流量;同时,也可以有更多的流量/压力操作模式,如使用压力编程、流量编程等。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/85/8b/5858b3500c995683ff3ef85201d0e334.png[/img][img]https://img.antpedia.com/instrument-library/attachments/wxpic/02/52/50252701047c00b67f30eef56f064434.png[/img]国内厂家对应用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的电子流量控制装置的研究起步较晚,早期多集中在单个比例阀和传感器构成的简单电子流量控制模块的使用上,类似于质量流量计的模式,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/06/cf/206cf3f6eff14718ef9d9bd8abc8be8e.jpeg[/img]上述模式主要应用于单气路通道的填充柱载气控制、检测器的燃气(氢气)、检测器的助燃气(空气)以及尾吹气的使用上;对于毛细柱进样口等需要多气路通道(载气、分流、隔垫吹扫)的结构而言,初期时候是将多个上述模块分别安装的载气、分流、隔垫吹扫气路上,但是实际使用效果很差;后期则逐渐在模块中安装压力传感器,使用压力控制柱前压和毛细柱的载气流量,使用上述模块控制分流流量;目前,多数厂家已经抛弃上述模式,逐渐转向多气路通道(载气、分流、隔垫吹扫)整体和关联调节的集成式的气路模块。二 组成部件和简单的工作原理使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其使用的控制阀的类型主要是稳流阀、稳压阀、背压阀和针型阀等;对于电子流量控制装置而言,并没有与上述几种机械阀一一对应的结构,可以近似的说是利用同一套部件组成的装置采用不同的控制方式/算法而分别实现各种机械阀的功能。电子流量控制装置一般包括气路部件、比例阀、压力传感器/流量传感器和辅助部件以及控制电路。以单气路通道的结构为例,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/5c/56/55c562d04af13eec09a42850ee170c6a.png[/img]其中:气路部件用以气体穿过,同时在气路部件上安装比例阀、流量传感器、压力传感器等其他部件;气路部件一般为金属材质;[img]https://img.antpedia.com/instrument-library/attachments/wxpic/be/63/3be636931161170518396a8f833014ba.png[/img]比例阀通过调节开度的大小来调节出口处的流量或者压力;[img]https://img.antpedia.com/instrument-library/attachments/wxpic/bd/5e/2bd5eed5a52e4b81c88d76c8bdfd5be3.png[/img]流量传感器用以测量比例阀前或者比例阀后流量的大小;压力传感器用以测量比例阀前或者比例阀后压力的大小;在一个电子流量控制模块中,可能只安装流量传感器或者压力传感器,也可能两者同时安装。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/3c/ec/63cec76faee1a7d47079b33fad1de5bf.png[/img]另外,在出口之后根据实际需要,还可能安装有气阻等部件电子流量装置工作的简单原理是:控制电路获取仪器设定的流量或者压力的数值,通过比较压力传感器或者流量传感器的实测值,来调节比例阀的开度大小,从而使设定值和实测值相同。以上是本节的全部内容,在随后的文章中将介绍电子流量控制装置的具体工作模式和其他相关内容,敬请关注

  • 自动奶茶机如何实现精准流量控制

    自动奶茶机如何实现精准流量控制

    [align=left][font=宋体]随着现代科学技术的不断进步,自动奶茶机也走进了我们的生活,给我们的生活带来方便、快捷的茶饮服务,在自动奶茶机的众多功能中,精准流量控制是其核心之一。为了实现这一功能,小型霍尔流量计发挥了重要作用。[/font][/align][align=left][font=宋体]霍尔流量计是一种基于磁场感应原理的流量测量仪表。当流体流过一个磁场时,会产生电动势,通过测量这个电动势的大小,可以推算出流体的流量。霍尔流量计具有测量精度高、量程大、结构简单等优点,被广泛应用于各种流体流量测量领域。[/font][/align][align=left][font=宋体]在自动奶茶机中,小型霍尔流量计被安装在管道中,霍尔式流量计:[/font][font=宋体]利用霍尔效应,把带有两极磁铁的叶轮置于垂直于磁场中,通过叶轮转动产生的[/font] GS [font=宋体]值转换成脉冲信号输出。这个电信号经过处理后,可以转化为具体的流量值,进而实现精准流量控制。[/font][/align][align=center][img=奶茶机流量控制,633,195]https://ng1.17img.cn/bbsfiles/images/2023/12/202312281721506842_1602_4008598_3.jpg!w633x195.jpg[/img][/align][align=left][font=宋体]通过小型霍尔流量计的精准流量控制,自动奶茶机可以确保每次制作出的奶茶口感一致,不会出现因流量不稳定而导致的口感差异。同时,这种精准流量控制也有助于减少茶饮的浪费,提高了资源利用率。[/font][/align][align=left][font=宋体][url=https://www.eptsz.com]小型霍尔流量计[/url]在自动奶茶机中起到了精准流量控制的作用。它通过磁场感应原理实时监测茶饮的流量,并将电信号转化为具体的流量值,确保了奶茶口感的稳定性和一致性。这种精准流量控制不仅提高了自动奶茶机的智能化水平,也为消费者带来了更好的饮用体验。[/font][/align]

  • 设备如何实现流量控制和缺水检测

    设备如何实现流量控制和缺水检测

    [font=&][color=#333333]咖啡机是我们日常生活中常见的家用电器之一,而流量控制和缺水检测是咖啡机正常运行的关键。在咖啡机中,霍尔流量计是一种常用的传感器,用于实现流量控制和缺水检测的功能。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]首先,让我们来了解一下霍尔流量计的工作原理。霍尔流量计是一种基于霍尔效应的传感器,它利用电磁场的变化来测量流体通过的体积或质量。当流体通过霍尔流量计时,流体中的导电粒子(如离子或电子)会改变磁场的分布,从而引起霍尔元件的输出电压变化。通过测量输出电压的变化,我们可以得到流体的流量信息。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]其次,咖啡机中的霍尔流量计主要用于流量控制。在制作咖啡的过程中,我们需要控制水的流量,以确保咖啡的浓度和口感。通过将霍尔流量计安装在咖啡机的水管中,可以实时监测水的流量,并根据设定的参数来控制水的流量大小。当流量达到设定值时,控制系统会自动停止水的供应,从而实现精确的流量控制。[/color][/font][align=center][img=流量计,633,195]https://ng1.17img.cn/bbsfiles/images/2023/07/202307061351561653_2952_4008598_3.jpg!w633x195.jpg[/img][/align][font=&][color=#333333]最后,[url=https://www.eptsz.com]霍尔流量计[/url]还可以用于缺水检测。在咖啡机中,缺水会导致咖啡机无法正常工作,甚至可能损坏设备。通过在水箱中安装一个霍尔流量计,可以实时监测水的流量情况。当水的流量低于设定的阈值时,控制系统会发出警报或停止咖啡机的运行,以提醒用户及时添加水。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]综上所述,霍尔流量计在咖啡机中起着重要的作用,实现了流量控制和缺水检测的功能。通过准确测量流体的流量,咖啡机可以制作出口感良好的咖啡,并保护设备免受缺水带来的损坏。随着技术的不断进步,我们相信霍尔流量计在咖啡机中的应用将会越来越广泛,为我们带来更好的咖啡体验。[/color][/font][font=&][color=#333333][/color][/font]

  • 气相色谱仪流量控制原理与维护 —— 压力测量元件 压力表和压力传感器

    气相色谱仪流量控制原理与维护 —— 压力测量元件  压力表和压力传感器

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][font=宋体]压力测量元件[/font][/font][/align][align=center][font='Times New Roman'][font=宋体]压力表和电子压力传感器[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统中的载气或者辅助气体控制器,一般需要装备有精确、可靠的压力测量元件,用以正确的显示流路压力。此外压力测量元件也是流量控制器[/font][font=Times New Roman]——[/font][font=宋体]尤其是电子流量控制器[/font][font=Times New Roman]——[/font][font=宋体]的重要组成部分,压力测量元件与比例电磁阀接受色谱系统的控制并协同工作,实现流路气体流量(或压力)的精确控制。[/font][/font][font='Times New Roman'][font=宋体]一般情况下,机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用机械式压力表,电子式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用压力传感器作为压力测量元件。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的外围气源、和某些外接设备中也会有压力测量元件,实时显示和辅助实现准确的压力(或流量)控制。[/font][/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]一[/font] [font=宋体]机械[/font][/font][font=宋体]流量[/font][font='Times New Roman'][font=宋体]式[/font][/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url][/font][font='Times New Roman'][font=宋体]色谱仪的压力测量元件[/font][font=Times New Roman]——[/font][font=宋体]压力表[/font][/font][/align][font='Times New Roman'][font=宋体]压力表是一种以弹簧管为测量元件的指针式测量仪表[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]因其结构坚固、生产成本较低、性能可靠等特点,在机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的载气流量控制和检测器流量控制器中较为常见。[/font][/font][font=宋体]压力表的工作原理为:[/font][font='Times New Roman'][font=宋体]当[/font][/font][font=宋体]待测[/font][font='Times New Roman'][font=宋体]气体压力发生变化时,表内的敏感元件(波登管、膜盒、波纹管)将会发生弹性形变,再由表内机芯的转换机构将压力形变传导至指针,引起指针转动来显示压力。压力表的结构如图[/font]1[font=宋体]所示。[/font][/font][align=center][img=,268,190]https://ng1.17img.cn/bbsfiles/images/2022/09/202209151709527102_9907_1604036_3.jpg!w616x435.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font]1 [font=宋体]压力表结构图[/font][/font][/align][font='Times New Roman'][font=宋体]压力表中的弹簧管(也称为波登管)的自由端是封闭,通过机械传动装置驱动压力表指针。其内部压力发生变化时,弹簧管发生形变,自由端产生位移,其位移量与被测压力的大小成正比。通过机械传动装置驱动指针偏转,在度盘上指示出压力值,如图[/font]2[font=宋体]所示。[/font][/font][img=,513,176]https://ng1.17img.cn/bbsfiles/images/2022/09/202209151709596556_7465_1604036_3.jpg!w690x236.jpg[/img][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]图[/font]2 [font=宋体]不同压力下压力表状态图示[/font][/font][/align][font='Times New Roman'][font=宋体]如果表壳内通有大气,压力表测出的压力为相对压力,如果将表壳密封并抽真空,压力表测出的压力就是绝对压力。一般情况下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的压力表均指示相对压力数值。[/font][/font][font=宋体]压力表一般用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的载气控制器、检测器气体控制器和气源减压阀上,需要注意其响应速度一般极低,不适合测定极速变化的气体压力。[/font][font=宋体]使用时需要注意气源清洁、气源的压力范围符合要求、尽量避免较为剧烈的压力冲击,以避免弹性元件发生故障造成压力显示数值不正确,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]关机或者长时间不使用时,需要将气源的压力表泄压以保护弹性元件。[/font][font='Times New Roman'] [/font][align=center][font=宋体][font=宋体]二、电子流量式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的压力测量元件[/font][font=宋体]——压力传感器[/font][/font][/align][font=宋体]机械流量式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],流量控制系统较为复杂,较为笨重,使用较多的气流控制阀和压力表,调节效率较低,并且重现性较差。电子流量式的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],体积小,调控方法简易,重现性良好,目前在各个行业的实验室中逐渐得到较为广泛的应用。[/font][font=宋体][font=宋体]电子流量控制器主要由比例电磁阀、流量传感器和压力传感器以及对应的控制系统组成,如图[/font][font=Times New Roman]3[/font][font=宋体]所示(以压力传感器为例):[/font][/font][align=center][img=,338,72]https://ng1.17img.cn/bbsfiles/images/2022/09/202209151710067697_8338_1604036_3.jpg!w690x146.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]3 [/font][font=宋体]电子流量控制器组成结构图[/font][/font][/align][font=宋体]某些固体(常见的材质是单晶硅片)收到力的作用后,其电阻值(或电阻率)会发生相应变化,这种现象称为压阻效应。压阻式传感器是利用固体的压阻效应制成的一种测定装置。[/font][font=宋体][font=宋体]现代的压力传感器采用集成电路工艺制成,测量电路和半导体硅片扩散电阻可以集成到零点几毫米大小的尺寸,能够感知[/font][font=Times New Roman]0.01kPa[/font][font=宋体]左右的压力变化,可以显著减小电子流量控制器的尺寸。压阻式传感器体积小、灵敏度较高,分辨率高,响应速度快,广泛的应用于航空、航天、化工、生物医学等多个领域。[/font][/font][font=宋体]需要注意压力传感器测定的气体,不能含有水、固体颗粒等杂质,避免剧烈的压力变化,长时间使用后,可能会产生一定的偏差,需要注意进行压力校准。[/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]小结[/font][/font][/align][font=宋体][font=宋体]简单叙述机械流量和电子流量控制方式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用的压力测量元件[/font][font=宋体]——压力表和压力传感器的基本原理和使用注意事项。[/font][/font]

  • 自动奶茶机如何实现精准流量控制-光学流量计

    自动奶茶机如何实现精准流量控制-光学流量计

    在自动奶茶机的应用中,光学流量计是一种实现精准流量控制的重要工具。它利用叶轮切割光通路产生的脉冲信号,通过计算转轮的转动次数来测量水流量的多少。这种测量方式具有以下特点:不含磁铁:光学流量计采用纯光学感应原理,不涉及磁性材料,因此不会对水质产生磁化或磁性干扰,从而更好地保护水质。对水质保护更好:由于其纯光学感应的特性,光学流量计不会对液体造成任何污染或损害,特别适合用于需要高度清洁和保护液体的场合。适合透光率高的液体:光学流量计主要适用于透光率高的液体,如水等。对于透光性较差的液体,其测量结果可能会有所差异。[align=center][img=,531,347]https://ng1.17img.cn/bbsfiles/images/2024/01/202401051556166823_2341_4008598_3.jpg!w531x347.jpg[/img][/align]适用多种场景:[url=https://www.eptsz.com]光学流量计[/url]的应用范围广泛,不仅适用于自动奶茶机等餐饮设备,还可用于工业生产、家庭、医院等领域的水流量测量和控制。总的来说,光学流量计通过纯光学感应原理实现精准的流量控制,具有不含磁铁、对水质保护更好、适合透光率高的液体等特点。在自动奶茶机中,它的应用有助于确保奶茶的精准配比和水流量的稳定控制,提供给消费者更好的饮用体验。同时,其广泛的应用场景也证明了光学流量计在流量控制领域的卓越性能和价值。

  • 电子流量控制装置的流量校准

    一般认为,电子流量控制装置通过压力传感器和流量传感器可以获得相应的压力值和流量值。但实际上,对于从供应商处购买的传感器,都需要进行校准——因为未经校准的传感器测得的数值和实际数值可能并不一致。压力传感器稍微好一些,流量传感器则可能偏差较大。[font=微软雅黑, sans-serif]校准[/font][font=微软雅黑, sans-serif]在计量上的定义是在规定条件下,为确定计量器具示值误差的一组操作。即是在规定条件下,为确定计量仪器或测量系统的示值,或实物量具或标准物质所代表的值,与相对应的被测量的已知值之间关系的一组操作。在本文中,只进行简单的示意和举例,[color=red]说明流量传感器如何使示值接近真实值[/color],可能并不严格的遵循相应的法律和法规,同时与计量上的检定和校准也略有区别。[/font][font=微软雅黑, sans-serif]简单举例,对于未经校准的流量传感器,其信号值对应的流量是30ml/min,但通过精度和准确度较高的流量计测量,其实际流量可能是40ml/min,也可能是25 ml/min。见下图:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/40/7e/a407ea8c51458ec224ca27729516c8e8.png[/img][/align]依上图所示,初始的流量传感器可以依据流量值-信号值做一条曲线(上图右中的实线);实际中,流量传感器在某一确定的信号输出值处,其流量可能会在一定范围内有偏差(上图右中的虚线)。换句话说,对于某一确定的实际流量(如200ml/min,见图中红线),流量传感器的信号输出值可能是3,也可能是3.5 —— 那么,电子流量控制装置流量的校准,指的就是找到其组成部件流量传感器在某一流量时的真正的信号输出值。实际操作中,一般在一定的温度、压力等条件下,为电子流量控制装置/流量传感器设定一个信号值,通过精度和准确度更高的流量计测量其实际流量;通过测定一系列的点形成信号-实际流量曲线,并将其存入电子流量控制装置内部,从而完成电子流量控制装置的流量校准。[align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/ae/f1/2aef1c833fcb9d04d71b14b1f3509ac3.png[/img][/align]简单来说,电子流量控制装置/流量传感器的校准就相当于色谱分析中的标准曲线法:信号值相当于峰面积,气体流量相当于样品浓度。完成校准以后,电子流量控制装置则可以正常工作。当在仪器上设定一定的流量值之后,电子流量控制装置的比例阀调节开度,使流量传感器的信号值达到曲线上设定流量对应的信号值,从而完成调节。以上是本节的全部内容,最后需要说明的是,压力传感器和流量传感器校准的方法类似。对于电子流量控制装置而言,其校准极为重要,保证准确度可以确保分析的重现性,同时也便于分析方法的比较、讨论和移植。

  • 咖啡机是如何实现流量控制的

    咖啡机是如何实现流量控制的

    [size=24px][font=宋体]现在市面上有种咖啡机可以制作各种咖啡,制作不同的咖啡有不同的配料比,比如卡布奇诺里要加多少牛奶,维也纳咖啡里要加多少的黑咖啡等,而这些不同的比例都可以通过流量计来控制实现。[/font][font=宋体][font=宋体]要实现流量控制,只需在咖啡机里安装一个[url=http://www.eptsz.com/NewsDetails.aspx?ID=821]霍尔流量计[/url],霍尔流量计内有两极磁铁和叶轮,顶部有霍尔元件,工作原理是,利用霍尔效应,把带有两极磁铁的叶轮置于垂直于磁场中,通过叶轮转动产生的[/font]GS[font=宋体]值转换成脉冲信号输出。而咖啡机控制器会从流量计输出的脉冲信号来判断液体的流量变化,以此达到控制流量的目的。[/font][/font][/size][img=,526,274]https://ng1.17img.cn/bbsfiles/images/2022/06/202206181129582868_420_4008598_3.png!w526x274.jpg[/img][font=宋体][size=24px]霍尔流量计安装简易方便,体积小,精确度高,反应灵敏,使用寿命长,同样适用于泡茶机,饮料机,冲奶机,洗地机等。[/size][/font] ——[size=24px]深圳市能点科技有限公司[/size]

  • 电子流量控制装置的控制模式

    在上一节的内容中,我们介绍了[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用的电子流量控制装置的组成和简单原理。对于仪器的气路控制系统而言,使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其使用的控制阀的类型主要是稳流阀、稳压阀、背压阀和针型阀等;对于电子流量控制装置而言,并没有与上述几种机械阀一一对应的结构,可以近似的说是利用同一套部件组成的装置采用不同的控制方式/算法而分别实现各种机械阀的功能。我们将电子流量控制装置分别实现各种机械阀的功能的过程称之为电子流量控制装置的不同的控制模式。本节中将介绍电子流量控制装置常见的控制模式。本篇为《从气源到检测器》专题的第23篇,为《电子流量控制与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]》系列的第2篇。1 概述电子流量控制装置一般包括气路部件、比例阀、压力传感器/流量传感器和辅助部件以及控制电路。以单气路通道的结构为例,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/7b/91/97b91fc3c4cba5c6c10c77f71cfa877e.png[/img]2 电子流量控制装置常见的控制模式电子流量控制装置常见的控制模式主要包括三种,即流量模式、压力模式和背压模式,可以简单地对应稳流阀、稳压阀和背压阀。2.1 流量模式流量模式可以简单地认为是采用 流量传感器-控制电路-比例阀 来进行流量调节和控制的模式。通过比较仪器流量设定值和流量传感器的测定值来调节比例阀开度的大小,从而使实际流量达到设定值。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/58/ad/c58ad91f72c9b9274cba998de8ed6d95.png[/img]流量模式的控制类似于稳流阀(请注意是类似但不等同),可以保证出口的流量在出口之后阻力发生变化情况下保持稳定。填充柱进样口的载气控制一般使用流量控制模式;另外,一些厂家检测器的氢气、空气和尾吹气也是用流量控制模式,简单的示意图如下(没有安装压力传感器):[img]https://img.antpedia.com/instrument-library/attachments/wxpic/56/ff/956ffb3ec7784d65bf857e77728c56a4.png[/img]当然,流量模式并不只是恒定流量模式;也可以实现程序流量模式,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/2a/66/92a66118e06b902e02e9b1b54718f1d8.png[/img]通过仪器设置,可以设定仪器的初始流量,最终流量和变化速率等。2.2 压力模式压力模式可以简单地认为是采用 压力传感器-控制电路-比例阀 来进行压力调节和控制的模式。通过比较仪器压力设定值和压力传感器的测定值来调节比例阀开度的大小,从而使实际压力达到设定值。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/2a/8d/02a8d7b2816440648820a2f35fb572d5.png[/img]压力模式的控制类似于稳压阀(请注意是类似但不等同),可以保证出口的压力在出口之后阻力发生变化情况下保持稳定。[color=#ff4c00]需要特别说明的是[/color],使用压力控制模式,如果要保证出口处压力控制稳定,出口之后应当安装有气阻或者起到气阻作用的色谱柱等以形成压降填充柱进样口的载气控制也可以使用压力控制模式;另外,一些厂家检测器的氢气、空气和尾吹气也是用压力控制模式,简单的示意图如下(没有安装流量传感器,请注意图中气阻的位置和作用):[img]https://img.antpedia.com/instrument-library/attachments/wxpic/ac/74/cac743d48184d1389f5d0d850ea93fd9.png[/img]同样,压力模式并不只是恒定压力模式;也可以实现程序压力模式,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/d4/60/bd460ab2ae094167ec51a6e9900b1f4f.png[/img]通过仪器设置,可以设定仪器的初始压力,最终压力和变化速率等。2.3 背压模式背压模式和压力模式类似,可以简单地认为是采用 压力传感器-控制电路-比例阀 来进行压力调节和控制的模式。通过比较仪器压力设定值和压力传感器的测定值来调节比例阀开度的大小,从而使实际压力达到设定值。区别在于背压模式比例阀在压力传感器之后,压力模式比例阀在压力传感器之前。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/d3/7f/6d37f6454b1185a463e42057d8e04ed7.png[/img]背压模式的控制类似于背压阀(请注意是类似但不等同),可以保证比例阀前的压力在入口压力发生变化情况下保持稳定。背压模式可以用于毛细柱进样口柱前压的调节、阀进样时样品源的稳压控制等。可以参考下图的应用:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/7a/33/37a336a54df9a1c56eb8ce2a3f9ab4fd.png[/img]上图所示,描述了六通阀在进样时候使用电子流量装置的背压模式,保证样品源压力波动时,气体采样阀可以在稳定压力下进样,从而提高了样品量的重现性。以上是本节的全部内容,对于电子流量控制装置常见的三种控制模式——流量模式、压力模式和背压模式而言,多数情况下只使用其中的一种模式,如填充柱进样口的流量和压力控制,检测器的燃气(氢气)、助燃气(空气)和尾吹气(氮气)的流量和控制。对于毛细柱进样口的流量和压力控制则较为复杂一些,是多种模式结合在一起。我们将在后续的文章中进行介绍,敬请关注

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制