当前位置: 仪器信息网 > 行业主题 > >

湿敏电容烟气含湿量检测

仪器信息网湿敏电容烟气含湿量检测专题为您提供2024年最新湿敏电容烟气含湿量检测价格报价、厂家品牌的相关信息, 包括湿敏电容烟气含湿量检测参数、型号等,不管是国产,还是进口品牌的湿敏电容烟气含湿量检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合湿敏电容烟气含湿量检测相关的耗材配件、试剂标物,还有湿敏电容烟气含湿量检测相关的最新资讯、资料,以及湿敏电容烟气含湿量检测相关的解决方案。

湿敏电容烟气含湿量检测相关的论坛

  • 烟气含湿量如何能测准

    我们用的是干湿球法测含湿量的烟气采样仪,在检测过程中发现,当含湿量过大时显示数值就不对了,咨询过厂家,工程师给我的回复是当烟气中湿度过大时,干湿球的干球也成湿球了,所以没有温差了显示烟气含湿量会严重偏低,我觉得很有道理,但是遇到这种情况我们应该增么做的?烟气中含湿量一般在多少是比较合理的数据?我们有时测的含湿量在百分之零点几这样的数据可信吗?

  • 固定污染源常见烟气含湿量测量方法介绍

    固定污染源常见烟气含湿量测量方法介绍

    [align=center][color=#262626] [/color][/align][align=center][color=#262626]谁家烟囱里的烟气还没点水分呐?[/color][/align][align=center][img=,690,459]http://ng1.17img.cn/bbsfiles/images/2018/07/201807111159580050_8474_3254867_3.jpg!w690x459.jpg[/img][/align][align=center][color=#262626]有水分的工况,基本都需要测含湿量。[/color][/align][color=#262626] 因为烟气中污染物的浓度是指在标准状态下[/color][b][color=#00B0F0]干烟气[/color][/b][color=#262626]中该物质的含量,烟气含湿量作为重要的烟气参数,在大气污染源监测过程中为必测因子,其准确性与否直接影响排放总量或污染物浓度的计算。[/color][align=center][color=#262626][img=,690,459]http://ng1.17img.cn/bbsfiles/images/2018/07/201807111200529505_3788_3254867_3.jpg!w690x459.jpg[/img][/color][/align][color=#262626] 烟气含湿量指湿烟气中实际水气压与同温下饱和水气压的百分比,含湿量的主要影响因素有烟温、烟气流速、烟气负压、烟气饱和度、环境条件等。[/color][align=center][img=,690,459]http://ng1.17img.cn/bbsfiles/images/2018/07/201807111201246304_954_3254867_3.jpg!w690x459.jpg[/img][/align][color=#262626] 因为含湿量在烟气测量中的重要性非比寻常,因此很多标准中都会提及含湿量测量方法。比如,在GB/T 11605-2005《湿度测量方法》中介绍了伸缩法、干湿球法、冷凝露点法、氯化锉露点法、电阻电容法、电解法和重量法7种含湿量测量方法;在GBT16157-1996《固定污染源排气中颗粒物测定与气态污染物采样方法》中提到了干湿球法、重量法和冷凝法;在HJ 836-2017《固定污染源废气 低浓度颗粒物的测定 重量法》中提到了重量法和冷凝法。[/color][color=#262626] 尽管含湿量测量方法多种多样,但是目前在固定污染源工况中普遍使用的方法是[/color][b][color=#C00000]干湿球法[/color][/b][color=#262626]和[/color][b][color=#C00000]阻容法[/color][/b][color=#262626],而作为基准方法的[/color][b][color=#C00000]重量法[/color][/b][color=#262626]和[/color][b][color=#C00000]冷凝法[/color][/b][color=#262626]则是众多方法中极为准确的两种方法。所以,今天我们着重介绍一下以上四种含湿量测量方法:[/color][color=#333333] [/color][b][color=#0070C0]一、[/color][color=#0070C0]干湿球法[/color][/b][color=#262626] 使气体在一定的速度下流经干、湿球温度计。根据干、湿球温度计的读数和测点处排气的压力,计算出排气的水分含量。[/color][color=#7F7F7F](摘自GBT16157-1996《固定污染源排气中颗粒物测定与气态污染物采样方法》)[/color][color=#262626] 首先你要知道干湿球法如何得出最后的烟气含湿量,也就是标准中规定的计算公式:[/color][color=#262626][/color][align=center][img=,690,457]http://ng1.17img.cn/bbsfiles/images/2018/07/201807111202253197_9198_3254867_3.jpg!w690x457.jpg[/img][/align][color=#262626] 污染源领域所用干湿球法通常采用2支完全相同的感温元件(如温度计),分别测量干球温度和湿球温度。干球温度的感温元件处于烟气气流主体中,湿球温度的感温元件用棉纱布包裹,棉纱布与盛水容器相连。[/color][align=center][img=,690,459]http://ng1.17img.cn/bbsfiles/images/2018/07/201807111202524484_2813_3254867_3.jpg!w690x459.jpg[/img][/align][color=#262626] 通过测量和采集湿球、干球表面温度及通过湿球表面压力及排气静压等参数,同时由湿球表面温度导出该温度下饱和水蒸气压力,结合输入大气压,根据公式自动计算出烟气含湿量。[/color][color=#262626] 干湿球法适用于测量低温环境下烟气的含湿量,当烟温较高时烟气的含湿量线性较差。[/color][color=#262626] 崂应代表性仪器:[/color][align=center][img=,690,345]http://ng1.17img.cn/bbsfiles/images/2018/07/201807111240184597_3153_3254867_3.jpg!w690x345.jpg[/img][/align][b][i] [/i][color=#0070C0]二、[/color][color=#0070C0]阻容法[/color][/b][color=#262626] 利用湿敏元件的电阻值、电容值随环境湿度的变化而按一定规律变化的特性进行湿度测量。[/color][color=#7F7F7F](摘自GB/T 11605-2005《湿度测量方法》)[/color][align=center][img=,690,459]http://ng1.17img.cn/bbsfiles/images/2018/07/201807111233137647_7125_3254867_3.jpg!w690x459.jpg[/img][/align][color=#262626] 阻容法能克服烟道内烟气高温髙湿等复杂的工况(通常180℃以下),实现对固定污染源排气中含湿量现场稳定可靠的测量,并且直接显示测量结果。不仅如此,该方法还具有测量灵敏,对其他气体无交叉干扰的优点,因此具有广阔的发展前景。[/color][color=#262626] 崂应代表性仪器:崂应1062A型阻容法烟气含湿量检测器[/color][align=center][img=,690,164]http://ng1.17img.cn/bbsfiles/images/2018/07/201807111235026554_7016_3254867_3.jpg!w690x164.jpg[/img][/align][b][i] [/i][color=#0070C0]三、[/color][color=#0070C0]重量法[/color][/b][color=#262626] 利用五氧化二磷吸收管吸收气样中的水蒸气,用精密天平称取该水蒸[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量,同时测量通过吸收管而被干燥的气体体积,并记录测量时的室温和大气压,即可按公式计算气样中的水蒸[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量混合比。[/color][color=#7F7F7F](摘自GB/T 11605-2005《湿度测量方法》)[/color][align=center][img=,690,459]http://ng1.17img.cn/bbsfiles/images/2018/07/201807111234008164_8064_3254867_3.jpg!w690x459.jpg[/img][/align][color=#7F7F7F]以上定义摘自GBT16157-1996《固定污染源排气中颗粒物测定与气态污染物采样方法》[/color][color=#262626] 重量法是在所有湿度测量方法中可以达到极高准确度的方法,但是这种方法测试复杂,测试条件要求高,测试时间长,无法在现场获取监测数据,数据的实效性较差,通常用于湿度的精密测量和仲裁测量。[/color][color=#333333] [/color][b][color=#0070C0]四、[/color][color=#0070C0]冷凝法[/color][/b][color=#262626] [/color][color=#262626]由烟道中抽取一定体积的排气使之通过冷凝器,根据冷凝出来的水量,加上从冷凝器排出的饱和气体含有的水蒸汽量,计算排气中的水分含量。[/color][color=#7F7F7F](摘自GBT16157-1996《固定污染源排气中颗粒物测定与气态污染物采样方法》)[/color][align=center][img=,690,459]http://ng1.17img.cn/bbsfiles/images/2018/07/201807111234311154_6049_3254867_3.jpg!w690x459.jpg[/img][/align][color=#262626] 冷凝法和重量法原理类似,优缺点也基本相同。冷凝法的测量准确度也是非常高,同样也无法避免测试复杂,条件要求高,测试时间长等,因此也多用于湿度的精密测量。[/color][color=#333333] [/color][color=#262626] [b]综上所述,重量法和冷凝法虽然准确,但操作非常繁琐,不适合用户现场采样使用;干湿球法操作简便,在低温工况下可使用;相比其他,阻容法优势明显,不仅能克服烟道内烟气高温髙湿等复杂的工况,且测量结果稳定可靠,并且可以直接显示测量结果,倍受用户喜爱,具有广阔的发展前景。[/b][/color][color=#333333] [/color][color=#262626] 以上内容仅供交流参考,具体内容以国家相关标准为准。[/color]

  • 废气含湿量监测

    我们单位最近准备上几个固定源废气监测参数,采购了烟气采样仪,但是测不了烟气的含湿量,我想找一个仪器,可以测环境温度、环境湿度、大气压、烟温、烟气流速及烟气含湿量的,最好是国产的,性价比高一点的,大家推荐一下

  • 关于烟气湿度的监测

    对于烟气的工况监测,因为有些固定排放源不需要监测烟尘/O2/SO2/NOX等参数,因此并不需要用到自动烟尘(气)测试仪,我在找有没有一些便携式的烟气工况监测设备,这样可以大大减轻采样人员的负担,但只找到了监测烟气流速,压力,烟温的便携式仪器,没有找到烟气湿度的便携式监测仪器,不知道大家有没有这方面的仪器介绍一下。

  • 【原创】CEMS烟气在线监测系统在火电厂的应用

    1.引言火力发电厂是排放二氧化硫的主要排放源。二十世纪七十年代一些发达国家就开始对烟气排放的二氧化硫进行监测。烟尘分析对于电厂烟气排放也是一个主要指标。烟气连续监测系统(简称CEMS)是为烟气排放污染物连续监测而专门设计的在线监测系统。下面以西克麦哈克(北京)仪器有限公司的SMC-9021为例介绍一下CEMS在火电厂的应用。2. 系统构成该系统由SO2/O2/NOX分析仪、烟尘仪、流量计、压力变送器、湿度/湿度计及数据处理单元(DAS)组成。见下图: 图1:系统构成图2.1. 气态污染物监测系统气态污染物监测系统有三种设计方法:直接抽取法,稀释取样法和现场安装型。对于电厂的脱硫系统过程控制和环境监测,高温处理的直接抽取法是最适合的方法。这种方法的优点是维护方便、校准简单、测量准确。SMC-9021就是这种利用方法。SMC系统采用高温取样,高温输气和快速制冷脱水的方法,保证测量结果的准确性。高温取样探头包括进入烟囱/烟道中的取样管和在烟囱/烟道外的取样过滤器及其恒温控制器。见采样探头示意图。 图2: 采样探头示意图从烟囱/烟道中通过取样探头抽出的样气通过加热输气管线到达气体分析系统。输气管线是自热式的,利用加热材料的居里点进行控温。系统的预处理包括压缩机制冷器、泵、取样/校准/反吹电磁阀组、蠕动泵、细过滤器和流量控制器等。压缩机制冷器降温效果好,SMC-9021采用两级制冷,第一级将温度从140℃降至室温,随后经过泵输入到第二级制冷器把温度降到4℃±0.1℃。整个过程的时间小于5秒钟。因此,SO2可以认为没有损失。蠕动泵将冷凝水排出,收集在储液管中。系统还配备了温度报警、压力报警和湿度报警。对高温取样的状态、取样过滤器的堵塞和冷凝情况进行监控,与取样泵连锁,保证系统取样的准确和仪器工作的可靠性。2.2. 烟尘测定仪在线尘监测仪用得最多的是光学方法。其原理分浊度法测量和激光散射法测量两种。FW300设计中对光路采用两种方案,大烟囱采用单光路单光程,小烟囱采用单光路双光程,使量程和精度得到了兼顾。同时在软件设计中引入了消光值差的慨念,使灵敏度又提高了10倍。即0-100mg/m3的测量范围的灵敏度提高到0-10mg/m3。FW300配备了具有无故障连续工作的特点的2BH13型鼓风机,与清洗连接部件一起使仪器不受烟气的污染,该鼓风机还有故障报警功能。2.3. 气体流速仪气体流速测量有三种方法:压差法、热差法和超声波方法。热差法适宜于便携式测量,超声波法测量结果最好,皮托管差压法为常用方法。在此我们采用超声波方法进行气体流速测量。用的是FLOWSIC100UHA SSTi超声波型流量计。测量过程为非接触式,具有较高的测量精度,并可以进行烟气的温度测量。两套超声波的发射器/接收器成直线安装在烟道中,与烟气流向成一定的夹角a,声波的传输时间随气体的流向变化:在与气流方向相同的方向上,传播时间Tv被缩短;在与气流方向相反方向上,传播时间Tr被延长。声波的传输时间随气体的流向变化;气体流速计算公式为 设烟道横截面积为A,烟气体积流量为: 其中,Vm——测定烟道断面的烟气平均流速L——超声波在烟道中的传播路径a——烟道中心线与超声波的传播路径的夹角Tv——声波顺气流方向在烟道中的传播时间Tr——声波逆气流方向在烟道中的传播时间FLOWSIC100UHA SSTi超声波型流量计是通过测量超声波在烟气中顺流和逆流行进的时间差来计算烟气流速,与环境温度、压力及气体的具体成分没有关系,测量精度高。而且,测量所得是烟道横截面的平均流速,代表性很强。超声波发送器用钛制造,探头用SS316制造,耐腐蚀性很好。系统不需要进行反吹,操作简单。结合中国目前CEMS的安装使用情况,超声波流量计的成本过高,在一般电厂又常采用热差法来测量烟气流量。2.4. 湿度测量系统采用的是一种高温应用的湿度传感器HMP235,该系列湿度连续监测仪采用电容型传感器,湿度变化引起电容解质介电常数的变化,因而使电容量发生变化,通过测量电容就可以测量湿度。其外型图如下: 图5 湿度仪外形图2.5. 数据采集系统系统采用SMC-900型数据采集系统。该采集系统是以数据采集/控制仪为基础建立的,它是以工控机为主体设计的,具有强大的硬件和软件功能。其硬件有:CPU:P4 1.8G或以上、硬盘:40G、内存:256M、光驱:CD-ROM、软驱:3.5”1.44M、显示器:17’纯平、打印机:A4幅面激光打印机、模拟输入:24路4-20mA、状态输入:32路开关量、输入电流:4-20mA、用电量(KVA):0.2、输入阻抗:250Ω、数字接口:RS232,RS485(可选)。软件主要功能有:使用含氧量计算折算浓度、使用湿度计算干气浓度、使用温度,压力计算标态浓度、计算总排放量、形成实时报表、自动生成日报表,月报表,年报表、记录故障事件、故障报警:声,光、缺失数据的处理、记录校准报告、通过数据通讯终端向上位机传送数据和报表,数据处理和表格型式符合HJ/T76-2001的规定。可以扩充的功能有:对气体分析系统的反吹,校准进行控制。对探头堵塞,加热输气管温度,气体湿度进行连锁控制。显示CEMS的流程图,帮助操作人员了解系统运行情形。形成趋势图,棒图、实现无线通信等。3. 结论 SMC-9021系统采用全新模块式设计,可以灵活地根据应用场合及用户的具体需要,进行自由设置和组合。系统可提供6种测量模块,可测量多达60种不同气体组分。在电厂运行中系统可与DCS系统连接并在控制室中进行监测。在古交电厂、合山电厂实际应用效果非常好。[IMG]http://[/IMG]

  • 高含湿量的情况下,烟气怎么采样!

    昨天我们去了一个现场。垃圾发电厂的在线比对。 含湿量20%,温度在165左右。我们需要测试烟气流量、烟气流速、氮氧化物(一氧化氮、二氧化氮)、一氧化碳、二氧化硫、氯化氢。但是在线仪器上面数据除了二氧化氮的数据在3-5之间跳动外。其他的都能测出。但是我们在测烟气数据的时候(我们采用电化学法氯化氢除外)在用普通的烟气枪(没有加热功能)枪时,二氧化硫的数据基本上是测不出来。用加热枪也是测不出来二氧化硫的数据。但是在刚用加热枪的时候,在预热阶段的时候我们也是测不出来的。但是15分钟后,预热阶段完成时,二氧化硫的数据在我们的测试仪器上面显示在200左右。在接着显示的二氧化硫的数据基本上又是归零了。高湿度的情况下一般高温的状况下,烟气该如何采样。 在我们采样过程中冷凝下来的水,我收集下来。带回实验室测试PH 值在2.34。冷凝水中是否含有二氧化硫、氯化氢。因为还在实验当中。但是一般而言,烟气采样电位法的话一般都是用加热枪来辅助,如果加热枪都没有效果的话,国标方法中目前就推荐了这两种方法吧! 那碰到这种情况,该怎么操作呢?怎么样才能捕集到二氧化硫?

  • 关于HJ/T 288-2006湿式烟气脱硫除尘装置中检测项目的问题,求助!

    本人这边检测,主要针对标准当中性能要求这一块的项目。其中脱硫效率、除尘效率、阻力、漏风率、烟气含湿量。都可以通过青岛崂应的烟尘采样仪来直接实现。不过本人对标准中的,循环水利用率及液气比,这两个项目,不是很理解。没有具体的一个方法或者是方式来描述,这两个项目,具体操作起来是怎么个样子。求各位专家指导。

  • 【我们不一YOUNG】烟气湿度单位

    [font=宋体]HJ 75-2017_固定污染源烟气(S02、NOX、颗粒物)排放连续监测技术规范和HJ 76-2017_固定污染源烟气(S02、NOX、颗粒物)排放连续监测系统技术要求及检测方法中“烟气湿度”的提法及单位不一致,建议统一湿度的提法,并是否明确单位为体积比的百分数(vol-%、%vol或%V/哪一个准确?)1、HJ 75-2017 P20页中Xsw的单位"%”是否应明确为体积百分比 2、HJ 75-2017 P31、34页中“Xsw-烟气含湿量”是否应明确单位为体积百分比 3、HJ 75-2017 P32页中“Xsw-烟气绝对湿度(又称水分含量)”提法是否正确,应为“烟气湿度,体积百分比,%”:4、HJ 75-2017 中其它页面出现的有关湿度的提法,单位是否需要统- 5、HJ 76-2017 P25“Xsw-烟气绝对湿度(含水量),%”提法是否正确,应为“烟气湿度,体积百分比,%” 6、HJ 76-2017P35中烟气湿度等单位为(%V/V),意思是体积百分比,在HJ 76-2007 9.1.9中提法为“烟气湿度,体积百分比%”[/font][font=宋体][font=宋体]回复[/font][font=宋体]:[/font][/font][font=宋体][font=宋体]《固定污染源烟气[/font][font=宋体](SO2、NOx、颗粒物)排放连续监测技术规范》(HJ75-2017)和《固定污染源烟气(SO2、NOx、颗粒物)排放连续监测系统技术要求及检测方法》(HJ76-2017)中烟气含湿量和烟气湿度(水分含量)的概念相同,均表示烟气中水分的体积百分比,单位为%。[/font][/font]

  • 关于烟气含湿量测量仪校准确认的请教

    关于烟气含湿量测量仪校准确认的请教

    想请教论坛里的各位老师,现在公司里一台阻容式烟气含湿量测量仪拿到了校准证书,结果如附图,那我设备确认应该怎么做呢?万分感谢[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/09/201909090850406243_2274_2741534_3.jpg!w690x920.jpg[/img]

  • 如何测试含湿量较高的烟气

    在一次采集裂解炉烟气二氧化硫的过程中,发现含水量在30%左右,一氧化碳在10%左右。我用的是德图仪器测量二氧化硫,结果没有。我知道是水份太大受到影响的结果。后来用了加热除湿枪采样,效果也不是很好。请高手指点。

  • 【崂应有奖答题】如何降低烟气预处理系统中被测气体的损失率?

    活动二:2. 参与公共讨论话题,并将您的见解发表在论坛的回帖当中。本活动并无标准答案,仅供版友们分享心得和见解之用。活动二问题:如何降低烟气预处理系统中被测气体的损失率?对取样管进行加热保温,可有效降低烟气预处理系统中被测气体的损失率。问题分析:相对湿度反映了烟气中水蒸气的含量接近饱和的程度,烟气中相对湿度的RH值大小对要SO2的监测结果有很大影响,对于含湿量在5﹪以上的烟气进行监测时,若对取样管不进行加热保温,SO2的监测结果会明显偏低。因为二氧化硫容易容易溶于水开成酸酐,在正常情况下每ml水可溶解SO2约40ml,从而严重影响测量结果,使得SO2的监测结果会低于实际值。崂应1080D型烟气预处理器用于对工况湿烟气进行滤尘、加热、冷凝脱水及自动排水处理有很大应用效果,与崂应3012H系列烟尘(气)测试仪(或崂应3022型烟气综合分析仪、崂应3023型紫外差分烟气综合分析仪以及崂应3026型红外烟气综合分析仪)配套使用,可有效降低烟气成分监测时的损失,并可有效提高配套主机测量精度,延长传感器使用寿命。

  • 求助关于烟气检测问题

    我想自己搭建一个烟气检测系统,要测量的气体中主要含有CO2、水蒸汽以及炭黑,初步想采用光学方法检测,想请教各位高手一下应该选用什么光源及传感器,另外有什么注意事项,多谢了!

  • 【资料】烟气监测系统论述

    摘 要:针对目前部分电厂已安装的在线监测系统的选型、安装、调试、验收、运行及维护等问题进行了经验性阐述。  关键词:火电厂;烟气污染物;在线监测系统   Abstract:This paper presents an experienced explanation on model selection,installation,commissioning,acceptance,operation and maintenance of fluegas pollutant on-line supervisory systems already installed in some power plants.  Keywods:fossilfired power plants flue gas pollutant on-line supervisory system  烟气污染物在线监测系统(CEMS)是实时、连续监测污染物参数的系统,主要监测烟气中的颗粒物浓度(或浊度)、气态污染物浓度(SO2、NOx、CO、CO2)、辅助参数(烟气温度、流速、氧量、湿度、压力)等。颗粒物浓度监测方法有激光透射法、激光反散射法及电荷感应法,气态污染物浓度监测方法主要有完全抽取法、稀释法、电化学法3种。在电力行业中,颗粒物监测主要采用激光透射法,气态污染物浓度监测主要采用完全抽取法。1系统组成及功能1.1系统组成 一个完整的CEMS主要包括颗粒物监测子系统、气态污染物监测子系统、烟气排放参数监测子系统、系统控制及数据采集处理子系统、气源电源通讯等辅助设施子系统。1.2主要功能  颗粒物监测子系统主要对烟气中的烟尘浊度进行监测,并通过试验标定转换为烟气浓度参数。气态污染物监测子系统主要对烟气中SO2、NOx、CO、CO2的浓度进行监测,常见的分析原理为红外吸收法(或紫外吸收法)。烟气排放参数监测子系统主要测试烟气温度、流速、压力、湿度、氧量等参数,通过流速可以得出烟气流量,同时根据烟气温度、压力、湿度得出标准干烟气量,通过氧量将浓度换算为规定过剩空气系数下的浓度。系统控制子系统主要对反吹、采样进行控制,数据采集处理子系统对信号采集、进行数据处理并生成报表等。气源为系统提供反吹气体,电源为系统提供相应电压等级的电能,通讯系统进行模/数转换及数据通信等。2设备选型应注意的问题  目前各电厂安装的CEMS系统均由设备厂家全权负责,已安装的CEMS系统不能正常投运的重要原因之一是CEMS选型中存在着各种不完善之处,因此选型时应有针对性地从源头进行质量控制。2.1监测参数应实用、全面  标准的监测参数主要有8个,包括3个污染物参数(SO2、NOx、烟尘),3个湿流量参数(流速、温度、压力),2个换算参数(换算干基的湿度、折算浓度的氧量)。  CEMS系统至少应包括上述8个参数,但是在实际中,设备厂家为了降低成本,在实际投标中少一个或几个参数的情况时有发生,例如没有湿度测量装置而规定一个数值,甚至部分系统没有氧量测量装置而人为地输入一个值,这都不能真实反映烟气中实际污染物的浓度值。而有的系统又多增加设备以测量参数,如目前流量计大多都有测量烟气温度参数的功能,而在CEMS系统中又额外增加热电偶来测量温度,增加了设备投资。2.2联锁保护及报警系统应完善  有的设备厂家为了能中标,在标书中将各种联锁保护功能加入很多,报警功能也很多,但在实施中根本未实现,或有些报警系统根本不需要。例如:当采样管线堵塞时样气流量降低造成采样泵负荷加大,系统在无低流量报警或有低流量报警而无停泵联锁时,泵长期在低流量下运行而损坏。2.3仪表量程及校准用标准气应根据实际情况选用  某些烟气分析仪表未结合实际选定量程。在已经安装CEMS系统的电厂,出现某些烟气分析仪表因SO2量程选择偏低而无法正常监测污染物浓度的问题,或某些分析仪表量程选择偏高,如对于某些CFB锅炉烟气中NOx浓度较低,一般为100 mg/m3(标准状态下)左右,而分析仪表选择的量程又偏大而造成监测精度不高。  对于校准用的标准气浓度,一般应选满量程的70%~100%,而部分电厂标准气浓度选择过低或过高。如选择过低则降低了系统值的准确性,过高时又根本无法用此标气进行标定。2.4系统监视画面及组态  由于CEMS标准中并未对上位机中的监视画面做出具体、详细的规定,所以各个设备厂家设计的CEMS的画面水平差异很大。数据处理系统采用高级语言编程或采用组态软件,两种方式各有优劣:采用高级语言编程方式报表功能较强,但当系统配置变化时软件修改不方便 采用组态软件对配置变化后重新组态及修改非常方便,但对于相关标准要求的报表功能相当弱化。故应根据实际情况选择合适的方式。

  • 【资料】烟气自动监控系统(CEMS)简介及发展

    1.1 CEMS是英文Continuous Emission Monitoring System的缩写,是指对大气污染源排放的气态污染物和颗粒物进行浓度和排放总量连续监测并将信息实时传输到主管部门的装置,被称为“烟气自动监控系统”,亦称“烟气排放连续监测系统”或“烟气在线监测系统”。CEMS分别由气态污染物监测子系统、颗粒物监测子系统、烟气参数监测子系统和数据采集处理与通讯子系统组成。气态污染物监测子系统主要用于监测气态污染物SO2、NOx等的浓度和排放总量 颗粒物监测子系统主要用来监测烟尘的浓度和排放总量 烟气参数监测子系统主要用来测量烟气流速、烟气温度、烟气压力、烟气含氧量、烟气湿度等,用于排放总量的积算和相关浓度的折算 数据采集处理与通讯子系统由数据采集器和计算机系统构成,实时采集各项参数,生成各浓度值对应的干基、湿基及折算浓度,生成日、月、年的累积排放量,完成丢失数据的补偿并将报表实时传输到主管部门。1.2 SO2 CEMS测量技术及其产品开发研制现状烟气的采样方法:有非抽取法和抽取法2种。抽取法又分为直接抽取法和稀释抽取法。SO2的分析方法依其分析量程不同而异。紫外荧光法适用于低量程(稀释抽取法),该法灵敏度高,选择性好。所用仪器中涉及紫外灯的脉冲点燃技术,必须有寿命长且光强稳定的紫外灯、可长期连续工作的光电倍增管以及去除干扰的膜式过滤装置,目前所用仪器主要靠进口,价格较昂贵。非分散红外法和紫外吸收法简便可靠,适用于未经稀释的高浓度样品,其中非分散红外法的动态范围较窄。电化学法的灵敏度不够高,且因其传感器寿命短,维护工作复杂,漂移(积累型)严重,不适用于连续监测。SO2 CEMS常用组合测量技术及其国内外主要产品非抽取+红外或紫外吸收法国外此类技术的早期产品出现在20世纪70年代末至80年代初,即将一束红外或紫外光直接照射到烟气上,在探头上开孔,烟气从中流过,利用SO2的特征吸收光谱进行测量。其技术简单,响应快,勿需抽气管线可直接实时测量湿基,缺点是探头易被烟尘堵塞,分析仪易污染 探头为开孔式,无法进行在线校标,精度差。90年代中期,以英国Procal公司为首,推出了封闭式产品,即用金属烧结材料将探头光路封闭,该材料在过滤掉烟尘的同时,气体渗透到光路中进行测量。这一由开口式向封闭式的改进使非抽取方式得以实现在线校标,同时解决了烟尘对SO2的测定干扰问题。封闭式探头对光路的防污染要求高,须使用清洁压缩空气吹扫技术和独特的结构设计排除烟尘和烟气对光路的污染。该技术在全球市场的占有率为5%,产品价格较低。国外有美国AIM公司的产品(红外法),国内如北京牡丹联友公司的产品HP 5000(紫外双波长)。直接抽取+非分散红外吸收法该技术出现于20世纪80年代中期,烟气经除尘除湿后,测量的为烟气干基,且克服了非抽取方式烟尘干扰的问题,但烟气除尘、除湿(采样管加热)等预处理维护工作复杂,抽气口易堵塞,采样管线是负压运行,稍有泄漏会影响测定结果。该技术在全球市场的占有率约为9 5%,产品价格适中。国外主要为日本岛津公司和英国XENTRA4900型产品,国内如北京北分麦哈克分析仪器有限公司的GXH 902及GXH9021M,其主机UNOR及MULTOR为德国MAIHAK公司制造,还有北京天融环保设备中心的产品(德国技术)。稀释抽取+紫外荧光法该技术出现于20世纪90年代初期,其技术特点是稀释采样降低样品露点温度,解决了烟气冷凝水问题,一般情况下勿需跟踪加热采样管线,并解决了采样探头的腐蚀与堵塞问题,连续工作时间长。采样管线在正压下工作,从而防止由于泄漏所引入的误差 经稀释的烟道气样品,可使气体浓度最大减少到1350,可用灵敏度高的环境监测仪器完成分析 由于湿度未从样品中消除,测定的为湿基。缺点是响应时间稍长(3min) 干燥压缩空气纯度要求高,除水除硫制备繁杂,成本高 紫外荧光分析仪须进口,价格昂贵。该技术在全球市场占有率约为85%,在美国高达90%。国外主要为美国热电子(Thermo Electron公司)环境仪器公司200型产品及法国环境仪器公司(ESA)的产品,国内如北京航天益来电子科技有限公司CYA 200型及深圳中兴新通讯设备有限公司的产品。1.3烟尘CEMS测量技术及其产品开发研制现状我国实施烟尘CEMS的有关技术规定国家环保总局行业标准《烟气连续排放监测系统技术条件及检验方法》(目前为报批稿)中规定烟尘的连续监测方法为光学法和β射线法,且在技术说明中对电荷法提出了明确质疑,在产品开发研制或选用时应谨慎。烟尘CEMS测量技术及其国内外主要产品β射线法:原理是β射线通过物质时强度被衰减,其衰减强度与物质的质量成正比。该法不受样品颜色大小及原子量影响,可直接测量烟尘质量浓度,与重量法相关性好。缺点是烟气中水气等其它气态物有干扰 采用β同位素源如封闭不好可能存在辐射 适于便携式直读或间歇式连续监测,不适合现场恶劣环境下长期在线连续监测。国外产品如法国ESA公司BETA5M型测尘仪,由内置的马达与流速调节阀组成的系统完成等速采样。国内北京怡孚兴业有限公司系引进法国ESA公司同型产品,北京地海天环境科技开发中心的BDY I与BDY II β传感器式烟尘测试仪。光学法:光学不透明度法该技术采用等速采样称重法测出烟尘质量浓度,再与同时测得的光学不透明度建立函数关系,一般为线性关系。该技术特点是量程宽,监测范围0~10g/m3任选,可连续实时在线监测。缺点是只能监测较大的烟尘颗粒,监测精度差 不同大小烟尘颗粒透光率不同,需作相关校准 镜面维护问题等。国外如澳大利亚GOYEN公司CPA1000型(扩散式光源),德国SICK公司FW56 1型(国内北京北分麦哈克分析仪器公司代理,红外光),国内如北京牡丹联友电子工程有限公司的HP 5000型(可见光)。光学后向散射法光源照射到烟道中,光束被烟尘颗粒散射,其散射光被与入射光成一定夹角的接收器接收,光强度与烟尘质量浓度符合朗伯 比尔定律。该法测量结果受烟尘颗粒颜色的影响较大,不大适用于煤种不稳定的工况测试 亦需作相关校准。产品如北京凯尔科技发展有限公司的BKS 3000型烟尘在线监测仪,其光源为红外线,测定范围0.005~10g/ m3。激光测尘法使用激光测尘的光学法有激光反射法和激光对穿法。二法均成熟,稳定,可靠性强,使用寿命长,目前国外应用较多。激光反射法与烟尘颗粒颜色有关,要求煤种尽可能稳定。激光对穿法与重量法相关性好,稳定、灵敏、精度高,设备体积小,镜面维护量小。国外产品如美国热电子公司LM3188型激光测尘仪(激光对穿) 法国OLDHAM公司的EP1000烟尘分析仪(反射法) 德国SICK公司的FW100含尘量监测仪(北分代理,反射法)。国内如北京航天益来电子科技有限公司的CYA 200(激光对穿法) 北京天融环保设备中心的TR系列设备(对穿法)。1.4烟气流速的连续测量技术烟气参数包括流速、含氧量、湿度、温度、压力等,本文仅介绍其中的首要参数———流速的连续测量技术。皮托管法是烟气流速连续测量常用方法,该法与手工常规方法一致,缺点是易堵,需要不断吹扫。北京牡丹联友等公司产品为此技术。热平衡法该法连续工作性能好,适用于烟尘污染严重的场合。能测量极低(0 1m s)的流速,但测得的是质量流量,需用体积流量仪现场标定,再用比重系数修正。北京航天益来等公司产品用此技术。超声波法探头与气体流量方向成一定角度,声波沿不同方向传送的时间差与气体流速有关,从而进行气体流速测定。该法不受温度、压力、烟气成分变化影响,但产品价格较贵(如北分代理德国SICK公司制造FLOWSIC流速测定仪14万元 套)。1.5数据采集处理与通讯子系统以微机为核心的数据采集与通讯子系统主要起以下作用:数据采集:数据采集器定时采集各项参数,并生成各污染物浓度对应的干基、湿基及折算浓度数据处理:实时监测所采集到的数据量非常大,微机根据程序指令生成小时浓度均值及日、月、年的累积排放总量。在均值计算中,按设定方法剔除异常值。最后可根据需要制成各类报表或图形。自动控制:由微机控制实现监测仪器的定时开关、校零、校标,按一定时段处理数据,定时传输数据等。在微机运行程序中根据需要可编入各种指令,据此就能根据给定的各种定值与随时取得的各种信号值比较后的情况进行故障报警,延时,过压、欠压保护等自动控制。通讯系统:烟气自动监控系统中各子站的微机负责数据的采集和处理或日常所需的数据,负责操纵各控制元器件的动作。中心站的微机负责监控并可干预各子站微机的运行情况,负责各子站数据的汇总、贮存及进一步生成。子站与中心站各设一台调制解调器(MODEM),子站的微机通过MODEM即可将数据信息经公共电话网传递到中心站,再经MODEM进入中心站的微机。

  • CEMS 烟气排放连续监测系统

    烟气排放连续监测系统(CEMS),主要应用于对各种工业废气源的连续监测中,如火电厂,垃圾焚烧厂,煤炭、石油化工厂,造纸厂等行业。随着大气污染问题的日益突出,政府对工厂和企业废气排放的监督也更加重视。如何对一个工厂的烟气排放进行监控,并判断是否达到排放标准,这都得依靠CEMS来完成。CEMS有两个很重要的目的是分别对固体颗粒物浓度和污染性气体含量进行检测,而在这些气体中二氧化硫(SO2)是一种对环境危害性比较大的气体,需要二氧化硫传感器来进行测量。CEMS主要由气态污染物监测子系统、颗粒物浓度监测子系统、排放流量参数监测子系统和数据采集处理与通讯系统组成。这里对二氧化硫含量的监测属于气态污染物监测子系统,二氧化硫气体传感器通过对经处理后废气中二氧化硫的测量,判断所排放含量是否达到要求,是否要进一步进行脱硫处理。同时二氧化硫气体传感器的测量值也为可能需要的进一步处理提供了数据上的依据,能起到提高脱硫效率的作用。

  • 求助环境监测-冲天炉烟气监测的问题

    我熟悉并常参加锅炉等固定源的监测。但是没有学习、参加过对冲天炉的监测,也没有见过冲天炉监测的过程。因此求教了解这方面技术的前辈,尤其是从事过冲天炉监测的专家,希望能给指教一下。问题:掺风系数冲天炉工艺理论空气需要量一般有铭牌标识,那么从加料口等处进入炉体的空气量怎么测算呢?这里有些疑问1.可以在鼓风机管道监测冲天炉工作时实际的鼓风量,这个风量是不是等同于从加料口等处进入炉体的空气量呢?那样,是不是鼓风量/理论空气量=掺风系数。鼓风量应该与烟气排放量基本一致呢。2.冲天炉除尘器系统里的引风机风量肯定大于冲天炉原始烟气排放量,原始烟气在处理工程中又加入了空气,这样以来用鼓风量/理论空气量计算掺风系数是不是不合理?3.在除尘器出口进行烟气监测时,能否这样计算:掺风系数=(烟气排放量-理论空气量)/理论空气量。希望大家能多多帮忙,我这个人脑子很僵,好多问题想不明白,还请大家给予帮助。

  • 【分享】污染源烟气、烟尘连续监测系统

    污染源烟气、烟尘连续监测系统点击次数:914 发布时间:2007-1-31 13:47:42污染源烟气、烟尘连续监测系统 主要技术内容 一、基本原理:定电位电解法就是电化学传感器在一定电位作用下,当被测气体通过传感器渗透膜进入电解槽时,发生电化学反应而产生电流,电流信号的大小与被测气体浓度成正比。其特点是:灵敏度高、测量范围宽、预处理要求条件不高,造价低。烟尘监测采用交流耦合原理,安装方便,维护量少。流速采用热式质量流量计,无须反吹。系统具有监测、校准自动切换、积水定时排放、数据定时上传、远程维护、远程故障诊断、管理中心将曲线、棒图、日报、月报、年报打印备案等功能。 二、技术关键:该系统采用自制的采样枪,有效地除去烟气中的灰尘,保证长时间不堵塞;半导体制冷技术实现汽水快速分离,确保系统可靠运行,提高监测精度。上述技术已获得了三项中国专利。 主要技术指标及条件 一、技术指标:烟尘:0~1000mg/Nm3;二氧化硫:0~10000mg/Nm3;流速:0~30m/s;温度:0~500℃;压力:-01~0MPa、0~01MPa。 二、条件要求:现场配备AC220V电源和电话线。 主要设备及运行管理 一、主要设备:1工控机AWS-825PB,2数据采集处理装置,3系统控制装置,4数据库管理系统,5数据通讯系统,6气体预处理装置,7气体成分分析装置,8EMS6交流耦合烟尘仪,9454FT热式质量流量计,10温度、压力检测装置。 二、运行管理:每月整理数据,将日报、月报及各种曲线打印出来;每三个月清理采样枪及气路。 投资效益 总投资49.58万元,其中设备投资47.58万元,主体设备寿命10年。运行费用2万元/年。 国家环保总局科技司于2000年11月对该系统组织了鉴定,认为:该系统采用抽取式测量,较好解决了多级过滤除尘、半导体制冷、快速冷冻脱水等技术关键,消除了干扰,提高了系统的可靠性。仪器在现场运行一年多,稳定性较好。该系统具有监测、校准自动切换、数据管理与传输功能,还可对系统的运行状况进行远程查询、故障诊断等功能。该系统具有监测烟气其它污染物的扩展功能。该系统经检测表明,零点漂移、量程漂移、重复性、准确度符合企业标准,现场监测结果与国家标准方法监测结果有良好的可比性。

  • [求助] 关于环保局要求加装的烟气监测装置

    大家好,我公司是一个小型的自备热电厂,现在应环保局的要求需加装烟气监测装置,有几个问题想问下的: 1 这种烟气监测装置是不是要用在线式的阿?是不是全天候监测,然后将数据传送到环保局的? 2 这种烟气监测装置,是不是就是大家所说的cems,我了解了下,一般的cems,整套加起來一般都在50萬左右,這個比較昂貴了,從網上看到了一些集成的方法,不知道能不能用到我這種情況上?還有,是不是可以不用cems,使用简单的烟气监测仪器,不知道烟气监测仪器能不能与环保局进行联络通讯的?还有一般的烟气分析仪器,大概是不能长时间工作的吧,这个就要&环保局协商了,能不能由他们提出监测的时间,然后使用烟气分析仪器监测,呵呵。 3 通讯传输的方法,一般的好像是采用电话线传输的吧,不知道这个方法价格怎么样?我现在在想的就是,从投资上看,找出简单便捷便宜实用的通讯办法,不知道gprs是不是可行?因为感觉到通讯办法的不同,也影响到系统的不同,想找个比较省的,呵呵。 4 不知道有么有朋友是做这个的,能不能留下通讯方法啊?我现在最希望的就是不要采用cems系統,而是采用普通的煙氣監測仪器,尽量的降低投入,当然,在符合环保局的要求下。不知道能不能跟环保局沟通下,让他们采用时段监测的方式,呵呵。 谢谢大家看了我这一大段,呵呵,请指教,大家帮帮我吧。

  • 关于烟气监测结果的报告出具

    请问大家1、烟气和废气报告都是先给出三个浓度再取均值的吗?2、SO2、NOx也是也测三个数据再取均值吗?我连续检测15-45min(具体看工况及数据是否稳定),每分钟一个数据取平均可以吗??3、天然气锅炉连续监测两个周期是否已经足够了?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制