当前位置: 仪器信息网 > 行业主题 > >

太赫兹反射式光谱仪原理

仪器信息网太赫兹反射式光谱仪原理专题为您提供2024年最新太赫兹反射式光谱仪原理价格报价、厂家品牌的相关信息, 包括太赫兹反射式光谱仪原理参数、型号等,不管是国产,还是进口品牌的太赫兹反射式光谱仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合太赫兹反射式光谱仪原理相关的耗材配件、试剂标物,还有太赫兹反射式光谱仪原理相关的最新资讯、资料,以及太赫兹反射式光谱仪原理相关的解决方案。

太赫兹反射式光谱仪原理相关的资讯

  • 太赫兹脉冲时域反射计系统在半导体行业的开发与应用
    1、前言随着半导体封装变得更小、集成度更高,使用非破坏性、高分辨率技术定位故障的能力变得越来越重要。对失效分析手段提出了挑战,故障高分辨率定位能力的需求逐渐增大。为满足这些要求,Advantest开发了TS9001TDR方案,该系统分析通过利用专有的短脉冲信号处理技术进行高分辨率时域反射测量(Time Domain Reflectometry, TDR),对先进半导体封装、电子元件和印刷电路板中的导线故障区域进行快速、高精度和无损分析。 2、主要应用以3D集成电路为代表的高密度集成电路中存在着无限小的布线结构,布线故障在封装、印刷电路板封装过程中频繁出现。检测故障点需要几十微米分辨率。由于上升时间(约20ps)和抖动(约1ps)的限制,传统示波器TDR方法的故障距离分辨率仍保持数百微米的分辨率。使用TS9001TDR系统可以准确分析各种尖端半导体封装的布线质量,如倒装芯片BGA、晶圆级封装和2.5D/3D IC封装,能够直接连接客户的射频探测系统,针对其设备形状和故障分析环境,实现高速、高分辨率的测量,提供灵活的解决方案。(1) 高度集成的集成电路封装故障分析1) 封装引线故障分析:确定引线故障点位于Si Interposer内还是封装内,识别故障是由预处理还是后处理中的因素引起的2) C4 Bump故障分析:利用测试回路确定和分析安装Si Interposer的条件,对测试回路的菊花链结构进行故障点分析,并对安装条件进行反馈3) TSV、Micro-Bump故障分析:识别层压芯片的故障层4) 印刷电路板PCB故障分析:识别PCB板中通孔和信号线的故障点3、原理与优势(1)原理与技术太赫兹脉冲时域反射计的原理参见上图。其利用两个的飞秒激光器分别泵浦光电导电线,产生高频的太赫兹脉冲信号。飞秒激光器的中心波长1550nm,脉冲宽度50fs。其中,一个飞秒激光器的重复频率50MHz,另一个激光器的重复频率稍有区别。采用两个激光器的重复频率稍有差别的缘由在于,利用两个激光器的差频延迟,可以实现高频太赫兹信号的产生和探测。其工作是高频太赫兹信号通过探针接触芯片的管脚,高频太赫兹信号在芯片封装的引线中传播。当芯片封装没有开断路时,高频太赫兹沿着引线向前传播;当芯片封装的引线等出现开路时,将反射回正峰脉冲信号;当芯片封装引线出现短路时,将反射回负峰脉冲信号。(2)技术优势为了识别故障点,常用的封装无损检测方法包括光发射显微镜(emission microscope)和示波器时域反射计(Time domain Reflectometry, TDR)等,但是这些无损检测方法受到时域信号抖动的限制(信号抖动约1ps),导致分辨率不高,不能定位微米级的失效位置,无法以高分辨率检测开路、短路故障。故亟需高分辨率时域反射计,以提供快速且精准的失效定位。Advantest通过独有的光学采样和电短脉冲生成技术,借助飞秒激光技术,产生抖动小于30fs的超短采样脉冲。可以实现5μm的故障定位分辨率。通过使用自动探针的自动触地功能,进行精确的可重复测量,具有更高精度和效率的故障位置测量。TS9001TDR系统通过自动探针和与CAD设计联动,实例分析芯片封装的引线开路和短路故障定位,可以直观快速定位芯片封装的故障点,实现先进封装的失效分析。4、国内外发展现状Advantest的TS9001TDR系统中采用两个超短脉冲激光器异步采样,采取异步采样技术可以使系统不再需要机械式的光学延迟线,并且具有超高速的信号扫描速度。是目前全球独一的技术,目前国内外没有同类设备。5、发展趋势随着晶圆代工制程不断缩小,摩尔定律逼近极限,先进封装是后摩尔时代的必然选择,3D封装迅猛发展。作为一种全新的实现定位方法,在未来的几年里,太赫兹TDR技术将继续保持高速发展的势头。随着关键技术的不断发展,相关产品的种类将越来越丰富,行业应用和相关配套服务也将越来越广泛。搭载脉冲电磁波产生和高速采样的超短脉冲光纤激光器的太赫兹TDR设备,有助于半导体3D封装的故障分析。 6、总结与展望 在实际芯片测量过程中,太赫兹脉冲信号耦合至芯片内部衰减较为严重,对于太赫兹脉冲的信噪比提出了很高的要求。为了进一步提高测量精度和芯片内的传输路径,提高信噪比是亟需攻克的问题。另外芯片内部的引线存在阻抗不匹配又没有完全开路的情况,对于这类Soft Open的芯片检测,TDR波形分析需要结合信号模拟仿真,增强对信号的解读。对于材料的吸收系数、折射率、介电常数等光谱特性,可以用太赫兹时域光谱仪表征,这也是爱德万测试太赫兹技术的核心应用。目前爱德万测试已经有太赫兹时域光谱成像系统,通过发射和接收时域太赫兹信号至样品,可以实现生物医学样品、食品农产品、化学品、复合材料、通讯材料等的光谱特性表征。(爱德万测试(中国)管理有限公司 供稿)
  • 西安交大张留洋老师课题组《Laser & Photonics Reviews》:3D打印的反射式手性
    手性是一种有趣的几何概念,指物体不能通过平移、旋转和缩放等变换与其镜像重合的特性,其应用范围涉及光学、生物学、化学、医药和生命科学等领域。在光学领域,当手性介质被不同旋向的圆极化光激发时,表现出不同的手性光学效应:当左旋圆极化 (LCP) 光和右旋圆极化 (RCP) 光经过手性介质后的透射率或反射率不同,从而显示出圆二色性(Circular dichroism, CD);若这两种光在手性介质中的折射率不同,导致透射光相比于入射光的偏振面发生旋转,则显示出旋光性(Optical activity, OA)。尽管光学手性在自然界中无处不在,但天然材料中的手性响应极其微弱,且难以灵活控制,这严重阻碍了极化相关器件的微型化和集成化应用。由于具有比自然材料高几个数量级的手性光学响应,由人工设计的亚波长单元结构阵列构成的手性超材料/超表面为实现可控手性光学响应提供了一条途径。然而,尽管常见多层手性超表面具有很强的本征光学手性,但其设计过程相对复杂,且加工所需的多步光刻工艺存在技术要求和加工成本高的问题。近日,西安交通大学张留洋老师课题组提出了一种反射式手性超表面的简单、通用的设计方法及其低成本、无光刻的制备策略,该工作与深圳大学范殊婷老师课题组合作完成。通过结合新型微立体光刻技术实现了手性超表面的3D打印,实验测试结果验证了手性响应机理的准确性相关成果以“Chiral Metasurfaces with Maximum Circular Dichroism Enabled by Out-of-Plane Plasmonic System”为题发表于国际期刊Laser & Photonics Reviews上, 影响因子10.9。 图1. 反射式手性超表面通用设计流程示意图对于任意的谐振器,跟随提出的通用设计流程,仅需简单两步即可打破其n重旋转对称性(n 1)和镜像对称性,从而获得一个具有面外形态的反射式手性超表面。以工作于太赫兹频段的U型手性超表面为例,其圆极化反射谱和圆二色性谱如图2所示。不同的面外形态方向,可获得具有相反手性响应的对映体A和B。 图2. 基于U型共振器的太赫兹手性超表面及其手性响应通过调控超表面的偏置高度可实现对其损耗的调控,根据耦合模理论可知,当其辐射损耗等于耗散损耗时,此时一种圆极化波被近完美的选择性吸收,而另一种圆极化波被非共振地反射,从而可获得最强的圆二色性值(图3(d))。 图3. U型太赫兹手性超表面圆极化反射谱和圆二色性谱通过结合微尺度3D打印技术,提出的手性超表面可由简单的三步工艺制备得到。其中,周期性阵列的面外形态结构采用面投影微立体光刻3D打印技术(nanoArch S130,摩方精密)加工得到。实验结果表明:得益于高精度的微尺度3D打印技术,加工得到的手性超表面具有良好的表面质量和形状精度,测试所得的太赫兹反射谱与圆二色性谱与数值模拟结果较为吻合。 图4. 太赫兹手性超表面制造策略及表征结果 图5. 太赫兹手性超表面实验验证
  • 太赫兹无损检测技术及应用
    1. 太赫兹技术太赫兹(Terahertz,THz)又称远红外波,被评为“改变未来世界的十大技术”之一,其频率位于0.1 THz至10 THz,如图1所示。从能量辐射角度,太赫兹辐射能量介于电子与光子之间,在无线电领域被称为亚毫米波,在光学领域通常被命名为远红外辐射。太赫兹波段两侧的微波与红外波段技术研究已经非常成熟,且得到了广泛应用。然而,由于太赫兹源的功率强度和太赫兹接收器的探测灵敏度落后于邻近的微波和红外波段,一定程度上限制了太赫兹技术发展,使得该频段很长一段时间被称为“太赫兹间隙”。从本世纪八十年代中期以来,伴随着物理学超快激光技术的发展,太赫兹源越来越强大,探测器也越来越灵敏,太赫兹技术得以迅猛发展。太赫兹时域光谱技术、太赫兹成像技术以及利用非线性效应产生大功率太赫兹是其中为数不多的重大突破,将太赫兹研究推向了中心舞台。太赫兹技术在无极性非金属材料检测方面明显优于传统方法,而且比其他方法有更高的时间分辨率,极大促进了太赫兹技术在无损检测领域应用。图1 THz波频谱分布2. 太赫兹时域光谱系统依据太赫兹波源类型差异,太赫兹检测技术可分为脉冲型和连续型。连续型太赫兹成像系统效率较高,但其频谱宽度较窄且缺乏时间信息。这促使脉冲型太赫兹时域光谱(Terahertz-time domain spectroscopy, THz-TDS)技术成为无损检测与分析领域的“舞台新星”。该技术具有以下独特优点:(1)相干性:由于光电导与光整流产生太赫兹脉冲的独特机制,使得其单色性较好,具有极强时间与空间相干性,太赫兹脉冲的相干长度甚至可以达到ns量级。这一特性使太赫兹相干测量技术得以实现。(2)强穿透性:太赫兹的穿透性与物质的颜色等物理性质无关,仅仅取决于物质的极性,太赫兹无法透过极性物质,而对于纸张、陶瓷以及涂层等非极性材料,太赫兹对绝大部分非极性物质具有极强的穿透性,其透过非极性物质时能量衰减极小。(3)低能性:相较于物质中各种化学键的键能,1 THz单光子能量远低于键能,一般仅仅为4.1 meV,不会引起物质发生电离作用,也就不会导致被测物质损伤,从而保证了该技术的安全性。(4)瞬态性:太赫兹脉冲时间宽度通常仅为皮秒量级,甚至能达到亚皮秒量级,可以用于材料的超快过程研究。(5)特征指纹性:脉冲太赫兹辐射的频谱范围从数百GHz到几THz,而许多生物大分子的振动和转动能级、以及半导体和超导材料的声子振动能级均落在太赫兹频段。分子振动和转动能级在太赫兹频段往往具有独特的吸收峰,这种独特的吸收特性使得每种物质拥有独一无二的指纹吸收谱。因此,特征指纹性使得太赫兹技术在光谱分析和物质识别等方面具有得天独厚的优势和广阔的应用前景。太赫兹时域光谱系统检测原理,如图2所示。图2 太赫兹时域光谱系统原理飞秒脉冲激光器产生飞秒脉冲激光,脉冲激光在光纤中传输会产生色散、偏振以及非线性效应等,这些现象均会对脉冲品质产生不利影响。在光纤中传输后的飞秒脉冲激光首先需要进行色散补偿,再由偏振分束镜将飞秒激光分为探测光和泵浦光两束,探测光将会直接照射在用于探测的光电导天线上,另一束泵浦光先汇聚在太赫兹发射器上并通过光电导天线两侧的偏置电压产生THz脉冲。最后用准直透镜和非球面聚焦透镜对THz脉冲聚焦后,将THz脉冲准直聚焦照射在待测样品上,携带样品信息的THz信号再次经过分束器的反射后返回太赫兹探测器,光电导天线检测器上的探测光通过测量THz电场的变化来获得微弱的电流信号,该电流信号经过锁相放大等操作后转化为THz时域信号波形,最后计算机通过A/D转换器等效采样收集获得样品的THz检测信号。3. 太赫兹无损检测技术研究进展由于太赫兹技术的安全性、高分辨率和无接触非破环性等优点,在无损检测领域备受关注,该技术在检测领域主要可分为以下两个方面:(1)缺陷成像太赫兹(Terahertz, THz)成像技术在许多领域被视为最前沿技术之一,在无损检测中取得了巨大进步。中国矿业大学范孟豹教授课题组在THz成像取得了相关研究进展。2020年,该团队基于时域有限差分数值模型模拟了热障涂层不同脱粘缺陷情况下的太赫兹信号,基于支持向量机方法实现了缺陷自动辨识。同年,发表了太赫兹成像技术进展综述论文。2021年,团队分析了太赫兹图像乘性噪声产生机理,提出基于同态滤波的THz图像增强模型,消除了太赫兹图像局部伪影,提高了图像的边缘强度。同年,课题组结合蜂窝材料纹理提出了新型滤波算子,称为苯环算子,消除了边缘与高斯-泊松噪声在高频混叠现象,提高成像质量。同时,撰写了THz超分辨率成像系统与信号处理技术综述论文。图3 苯环算子去噪方法(2)参数检测参数测量是表征材料服役与状态关键一环,在无损检测行业中备受关注。White首次使用反射式THz时域光谱系统对热障涂层厚度进行检测,但在其研究中取热障涂层折射率为固定经验值,并不能适用不同制备工艺条件和所有服役工况下的热障涂层;Fukuchi提出定位THz反射信号的三个反射峰,通过朗伯比尔定理获得了热障涂层的折射率,该方法需要THz信号的反射峰,不适应于薄涂层与多层结构的涂层。Krimi等人利用广义的Rouard模型来模拟任意多层薄膜内的太赫兹波与物质的相互作用,然而其使用的遗传优化算法存在收敛速度慢、控制变量较多等问题。近年来,随着人工智能方法快速,发展太赫兹与机器学习相结合参数测量方法应用广泛。中国矿业大学范孟豹教授课题组在参数测量方面取得了相关研究进展。2020年,范孟豹教授团队构建了多层涂层太赫兹信号解析模型,提出了基于全局优化算法减小实验与仿真信号间残差,反演出涂层厚度与折射率参数。2021年,课题组提出了差分进化自适应教与学优化算法,平衡全局与局部寻优能力,准确求解出热障涂层材料参数。同年,课题组针对Fuhucki方法需要手动定位反射的问题,提出了将长短时记忆神经网络与太赫兹技术相结合,完成了时域信号中多反射峰自动定位,实现热障涂层厚度与折射率在线测量。2022年,团队从THz参数测量机理出发,分析出折射率测量需要频域信息,据此开展了小波时频研究,并基于卷积神经网络建立了时频图与厚度、折射率间数学映射。同年,团队提出了全新的THz参数测量视角,深入探究了THz波与热障涂层间作用机理,发现了THz信号前两反射峰携带了测厚关键信息,阐述了实验与仿真信号在峰值处吻合度高的原因。据此,提出了基于模型驱动的THzResNet网络新结构,形成了可解释网络框架,最终实验结果表明THzResNet能够准确预测出热障涂层厚度,测量误差小于1%。图4 多反射峰自动定位方法图5 THzResNet新结构4. 总结随着材料科学技术进步,非金属材料应用逐渐广泛,使得具有非接触、非电离、波长短等优点太赫兹技术必将成为无损检测行业新星,解决缺陷成像与光学参数测量的行业痛点问题。作者简介范孟豹,博士,教授,博士研究生导师,机器人工程系主任,专业负责人,入选江苏省六大人才高峰资助计划。2009年6月毕业于浙江大学控制科学与工程专业,获工学博士学位,2015年1月至2016年1月在英国Newcastle University大学做访问学者。主要研究方向为智能机器人感知理论及应用研究。作为项目负责人,主持国家自然基金项目3项、JKW基础加强项目子课题、“863”计划子课题、江苏省自然科学基金面上项目、高等学校博士学科点专项科研基金新教师项目、国家博士后科学基金特别资助项目、国家博士后科学基金面上项目等项目,承担各类项目近30项。在国内外期刊及学术会议上发表SCI收录论文50余篇、EI收录10余篇。申请国家发明专利40余项,授权发明专利25项,出版专著1部。获国家安全生产监督管理总局科技进步一等奖、浙江省科技进步三等奖、中国腐蚀与防护学会一等奖等省部级奖励3项。担任科技部重点研发项目评审专家、教育部和浙江省科技奖励评审专家、国家自然科学基金项目函评专家、重庆与江西省基金项目评审专家,担任IEEE Transactions on Industrial Informatics、IEEE Transactions on Industrial Electronics、Mechanical Systems and Signal Processing、IEEE Transactions on Instrumentation and Measurement、NDT&E International、Measurement、IEEE Sensors Journal、机械工程学报、中国机械工程等30多个期刊审稿人。欢迎对太赫兹检测技术有兴趣的同行通过邮件联系:wuzhi3495@cumt.edu.cn。近三年课题组与太赫兹检测技术相关的学术论文:(1) 参数测量[1] Binghua Cao, MengyunWang, Xiaohan Li, Mengbao Fan, et al. Accurate thickness measurement of multilayer coatings on metallic substrate using pulsed terahertz technology. IEEE Sensors Journal, 2020, 20(6): 3162-3171.[2] Fengshan Sun, Mengbao Fan, Binghua Cao, et al. Terahertz based thickness measurement of thermal barrier coatings using long short-term memory networks and local extrema[J]. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2508-2517.[3] Fengshan Sun, Mengbao Fan, Binghua Cao, et al. THzResNet: A physics-inspired two-stream residual network for thermal barrier coating thickness measurement [J]. IEEE Transactions on Industrial Informatics, 2022, Early Access.[4] 孙凤山, 范孟豹, 曹丙花, 等. 基于时频关键信息融合的热障涂层太赫兹准确测厚方法. 机械工程学报, 2022. (录用).[5] 曹丙花, 郑德栋, 范孟豹, 孙凤山, 等. 基于太赫兹时域光谱技术的多层涂层高效可靠测厚方法[J]. 光学学报, 2022, 42(01): 127-137.(2) 缺陷成像[1] Binghua Cao, Enze Cai, Mengbao Fan. NDE of Discontinuities in thermal barrier coatings with terahertz time-domain spectroscopy and machine learning classifiers[J]. Materials Evaluation, 2021, 79(2) :125-135.[2] 曹丙花, 李素珍, 蔡恩泽, 范孟豹, 淦方鑫.太赫兹成像技术的进展[J]. 光谱学与光谱分析, 2020, 40(09): 2686-2695.[3] 曹丙花, 张宇盟, 范孟豹, 孙凤山, 等. 太赫兹超分辨率成像研究进展[J]. 中国光学, 2022, 15(03): 405-417.[4] 孙凤山, 范孟豹, 曹丙花, 等. 基于几何纹理与Anscombe变换的蜂窝材料太赫兹图像降噪模型[J]. 机械工程学报, 2021, 57(22): 96-105.[5] 孙凤山, 范孟豹, 曹丙花, 等. 基于混沌映射与差分进化自适应教与学优化算法的太赫兹图像增强模型[J]. 仪器仪表学报, 2021, 42(04): 92-101.
  • 零辐射太赫兹人体安检仪年内北京试运用
    前不久,成都双流机场“弱光子人体安检仪”引发轩然大波。经查,所谓“弱光子人体安检仪”实际采用的是X射线检测。因使用X射线人体安检设备对公众进行无差别安检扫描,不具备正当性,环保部于10月10日正式下文叫停使用该类安检设备。  据了解,今年年底春运期间,北京部分火车站或将试用一种没有辐射的太赫兹人体安检仪。  现状 人体安检有盲区 G20峰会启用人体安检仪  据了解,目前,我国公共场所的安检主要是针对行李物进行检测,采用的技术都是比较成熟的X射线检测技术 适用于人体的安检方式,除了人工手检外,就是金属探测门及手持探测器。而对金属之外的物品,并没有特别有效的检测技术。如何能兼顾人身安全与安检效率,成为公众关注的问题。实际上,国外已经出现了无辐射风险同时又能准确检测的新技术,即太赫兹人体安检技术。这类安检新技术,国内也已经从实验室走向应用。在今年的G20峰会上,就出现了我国自主研发生产的适用于人体安检的“被动式太赫兹人体安检仪”。  该类设备已经在国内多地完成场地实验。很快将会在一些火车站进行试点测试。安检仪样子  专家 新型太赫兹安检技术对人体无害  太赫兹波是什么?它对人体无害的科学原理是什么?未来它将如何影响世界?为此,记者采访了中科院院士、我国最早致力于太赫兹波研究的著名激光与非线性光学专家姚建铨。姚院士详细介绍了太赫兹波的特性及科学原理,以及未来的应用前景。  为了便于理解,姚院士还特意在纸上画了一张图,将目前人类已知的各种波段在上面标注。据他介绍,2004年,太赫兹技术首次被美国提出,并且美国政府将太赫兹技术评为 “改变未来世界的十大技术”之一 2005年,日本更是将其列为“国家支柱十大重点战略目标”之首,举全国之力进行研发。太赫兹,因此成为本世纪最为重要的新兴学科之一。  姚院士  “人类社会中存在声波、电磁波、震动波、伽马射线、X射线等各种各样的波。各种波频率有高低。声波的位置比较低,最高频的是伽马射线、X射线。太赫兹波在电子波段里不长不短,正好比光波要低一些,比声波和电磁波要高一些。”  姚院士解释说,太赫兹波之所以对人体无害,与其单光子能量低相关。太赫兹波在频谱图里的位置,位于微波和红外之间,其最大特点是单光子能量很低,仅仅相当于X射线单光子能量的1/124。姚院士说,由于它释放的能量很小,不会对人体产生有害的光致电离 而为什么伽马射线、X摄线对人体有一定的影响?因为它频率高,频率越高对人体的影响越大。所以说,安全性好,是太赫兹波的特性之一。也就是说,太赫兹波用于人体安检,无论主动式还是被动式,它对人体都是安全无害的。也正因为如此,世界上一些发达国家都在利用太赫兹技术在安检和安防领域。  其次,由于人体体温即可发射出太赫兹波,人体和物体之间的温度差,形成强弱不同的太赫兹波,机器接收后进行处理转换,最终实现探测成像 此外,太赫兹波对于某些电介质材料具有很强的穿透效果,除了可测量由材料吸收而反映的空间密度分布外,还可以通过相位测量得到折射率的空间分布,从而获得与材料相关的的更多信息。特别适合于可见光不能透过、而X射线成像的对比度又不够的场合。所以,利用太赫兹电磁波可检查机场通关的旅客与行李,检查邮件中是否藏有毒品、炭疽菌粉或炸弹等违禁物品。也就是说,利用太赫兹波不仅能检测成像,还可以检测物质成分,让毒品、爆炸物等无所遁形。可以预见,太赫兹技术未来将在反恐领域得到广泛应用。  另外,太赫兹和电磁波频谱中其它波段不一样,它几乎兼具通信、雷达和遥感测距等所有功能,而且每项应用的表现都比现有技术占优。因此,通信、军事、航天、生物诊断都是其大显身手的领域。  但是,姚院士也坦言,目前中国乃至全世界对于太赫兹波的了解还不是很深入,只是最近五年研究和应用的速度比较快。而民用方面,主要是在安全检测上。一些发达国家已经出现了太赫兹波人体安检仪,而我国也开始从实验室阶段进入到实际应用。今年,杭州举办的G20峰会期间,一种被称为“被动式太赫兹人体安检仪”的设备就已经投入测试使用。  进展 零辐射人体安检或春运期间北京试用  为了直观感受新型太赫兹人体安检设备的效果与效率,记者特意前往设立在北京亦庄锋创科技园的北京市科协院士专家工作站,现场观摩了在G20峰会期间使用过的被动式太赫兹人体安检仪的检测过程。  当随身携带金属刀、陶瓷刀、速溶奶茶、水、发胶等物品的被检人员,与没有携带物品的人员,依次从一台如银行ATM机般的机器前走过时,现场技术人员随即通过屏幕上人体图像的明暗对比,准确地排查出携带物品的可疑人员。 他介绍说,“今天演示的是双机对扫,人站在两台机器中间,这样就不用转身,大约3秒即可完成检测,非常便利。而且因为是非接触机器检查,避免了手检的尴尬和麻烦。”  据了解,检测是通过屏幕上明暗不同的成像效果来分辨人体是否携带异物。在演示现场,记者看到,一位携带陶瓷刀具的被检人员,其检测图像上能明显看出裤兜处阴影部分,技术人员说,阴影部分就是可疑物品,在实际安检中,这种情况会被要求做进一步人工安检   现场技术负责人赵光贞博士介绍,之所以该设备命名为“被动式太赫兹人体安检仪’,是相对于X射线和毫米波等主动式安检仪而言的。所谓主动式,都是由机器主动发射出光源穿透物体(或者反射回来),而被动式则是由机器被动接收人体发射出来的太赫兹波,本质上决定了“被动式太赫兹人体安检仪”是一种零辐射、零伤害的检测方式。“不同物品的温度不一样,利用温差,检测仪显示出不同颜色的呈像。”  另外,现场技术人员还告诉记者,被动式太赫兹人体安检仪还可实现动态检测,即对正在行进中的人进行扫描检测。据了解,动态扫描检测适用人流密集、安检级别高的场所,比如机场的旅客安检。但技术人员也告诉记者,这套设备虽然能实现动态检测,但是在动态模式下,成像的清晰度会受到一些影响。不过,让人期待的是,研发生产该仪器的航天十一院相关单位已经研发出第二代太赫兹人体安检设备,动态检测效果更佳。而且,新设备的示范应用点已经确定。将在今年春运期间完成测试应用。
  • 太赫兹光谱新应用:打击时尚仿冒品
    每年高仿奢侈品都会给各大奢侈品集团带来巨额的损失,所以打假这一活动几乎每个品牌都在做,Louis Vuitton更是不惜在全球范围内对仿制者提起诉讼。现在有一项新的高科技似乎为这个世界性的难题提出了好的解决办法,它就是由英国国家物理实验室开发的太赫兹光谱。   该技术利用一种介于微波和红外光之间的电磁束照射布料,然后根据不同的布料的吸收和反射的情况加以标示,这些信息就是原版服饰的身份谱,也成为了假货难以藏匿的直接证据。   以往通过肉眼和手感很难测出的天然丝绸和人造丝绸、澳洲美利奴羊毛与开司米羊绒,都能被分别甄选出来。英国方面已经决定将这项技术用于海关以抑制愈发猖獗的高仿事业。   这一高端技术的问世,对深陷盗版泥沼的时装产业无疑是个利好消息。统计显示,英国时尚产业因为山寨竞争,每年至少损失35亿英镑(约合人民币331亿元)的巨额亏损,像巴宝莉(Burberry)这样的大牌更是屡遭重创。   然而即使高科技打假技术出现了,时尚品牌打假之路还是步履维艰。只能识别材质的高科技打假远不能从源头制止仿冒,近年来,大牌奢侈品的代工厂监守自盗现象频繁被爆出,这些代工厂利用与真货无异的原材料生产的高仿产品流入市场,更是增加了高科技打假的难度。
  • 屹持光电提供高速线性太赫兹相机样机展示
    为满足广大用户在无损检测及质量控制等领域的需求,上海屹持光电将提供新型THz线性扫描成像系统样机展示,展示时间:2017年7月1日-2017年10月1日,欢迎业内各位专家前来参考指导! Terasense推出的新一代THz线性扫描成像系统——高速线性扫描太赫兹成像系统,搭配Type-2太赫兹源,成像效果得到显著提高。此太赫兹成像系统具有超快的响应速率,可以应用于速度高达15m/s的传送带生产过程中。(可参考视屹持官网频链接:新型线性扫描THz成像系统) 线性太赫兹成像系统由两部分构成:太赫兹线性相机和太赫兹源。新型太赫兹线性扫描系统搭配高功率太赫兹源(输出功率110mW),输出口配置有特殊的平板喇叭锥设计,经过曲面反射镜,使得太赫兹源发射出的THz光束均匀且有效的覆盖到THz相机的每个像素。100GHz(波长3mm)的太赫兹源决定了成像的空间分辨率为1.5mm,这个分辨率足够满足于大多数工业应用。 应用领域:高速线性THz成像系统可以应用于非金属材料的无损探伤、箱包检测、食品药品及化妆品等异物快速检测、木材建材缺陷快速检测、农牧业和文物等无损检测。 垂询电话:021-62209657,更多相关信息欢迎关注上海屹持官方网站了解详细信息: http://www.eachwave.com/
  • 盛志高研究团队成功研发出一种主动智能化的太赫兹电光调制器
    近日,中科院合肥研究院强磁场中心盛志高研究团队依托稳态强磁场实验装置成功研发了一种主动智能化的太赫兹电光调制器。相关研究成果发表在国际期刊 ACS Applied Materials & Interfaces 上。虽然太赫兹技术具有优越的波谱特性和广泛的应用前景,但其工程应用还严重受制于太赫兹材料与太赫兹元器件的开发。其中,围绕智能化场景应用,采用外场对太赫兹波进行主动、智能化的控制是这一领域的重要研究方向。瞄准太赫兹核心元器件这一前沿研究方向,强磁场中心磁光团队继2018年发明一种基于二维材料石墨烯的太赫兹应力调制器[Adv. Optical Mater. 6, 1700877(2018)]、2020年发明一种基于强关联氧化物的太赫兹宽带光控调制器[ACS Appl. Mater. Inter. 12, 48811(2020)]、2021年发明一种基于声子的新型单频磁控太赫兹源[Advanced Science 9, 2103229(2021)]之后,选择关联电子氧化物二氧化钒薄膜作为功能层,采用多层结构设计和电控方法,实现了太赫兹透射、反射和吸收多功能主动调制(图a)。研究结果表明,除了透射率和吸收率,反射率和反射相位也可被电场主动调控,其中反射率调制深度可以达到99.9%、反射相位可达~180o调制(图b)。更为有趣的是,为了实现智能化的太赫兹电控,研究人员设计了一种具有新型“太赫兹-电-太赫兹”的反馈回路的器件(图c)。不管起始条件和外界环境如何变化,该智能器件可以在30秒左右自动达到太赫兹的设定(预期)调制值。(a)基于VO2的电光调制器示意图(b)透射率、反射率、吸收率和反射相位随外加电流变化(c)智能化控制原理图这一基于关联电子材料的主动、智能化太赫兹电光调制器的研发为太赫兹智能化控制的实现提供了新的思路。该工作获得了国家重点研发计划、国家自然科学基金、强磁场安徽省实验室方向基金的支持。文章链接:https://pubs.acs.org/doi/10.1021/acsami.2c04736
  • 全新一代纳米光谱与成像系统-neaSCOPE,在可见、红外和太赫兹光谱范围实现10 nm高分辨光谱和成像!
    一、 neaspec推出全新一代纳米光谱与成像系统neaSCOPE系列产品 近期,全球知名纳米显微镜领域制造商neaspec推出了纳米光学显微镜neaSCOPE全新一代系列产品,加载了全新技术,拓展了产品功能,以满足客户多样的实验需求。neaSCOPE是基于针增强的纳米成像和光谱,以应用为目的,满足客户在科学,工程和工业研究等不同领域的科研需求。由于其高度的可靠性和可重复性,neaSCOPE已成为纳米光学领域热点研究方向的科研设备,在等离子激元、二维材料声子化、半导体载流子浓度分布、生物材料红外表征、电子激发及衰减过程等众多研究方向得到了许多重要科研成果。neaSCOPE技术特点和优势包括:♢ 行业的针增强技术,高质量的纳米分析实验数据。♢ 采用模块化设计,针对用户的实验需求量身定制配置,同时兼顾未来的升需求,无需重复购置主机。♢ 软件使用方便,提供交互式用户引导功能,让新用户也能快速上手。流程化的软件界面,逐步引导用户轻松完成实验操作。♢ 功能多样、可靠性高,已得到大量发表文章的印证,在纳米光学领域有很深的影响力,是国内外实验室的头号选择。二、neaSCOPE全新一代产品型号 IR-neaSCOPE:基于AFM 针的激光诱导光热膨胀的纳米红外成像和光谱。IR-neaSCOPE可测量纳米红外吸收谱。该设备利用AFM-IR机械信号来检测样品中激光诱导的光热膨胀。IR-neaSCOPE无需红外探测器和光学干涉仪,为热膨胀系数大的样品(如聚合物、生物材料等)提供了一种经济高效的纳米红外成像及光谱研究的解决方案。IR-neaSCOPE提供红外吸收成像,点光谱和高光谱成像,并可升到IR-neaSCOPE+s,拓展更多功能,实现更多种类材料的研究。♢ 将样品的光学与机械性质有效地去耦,实现无伪影的吸收测量。♢ 将激光地聚焦在探针上,实现优化条件下对样品的无损表征。♢ 互动式软件界面,帮助新用户直接上手,获取高质量数据。IR-neaSCOPE+s:探测商用AFM针的弹性散射光,实现纳米红外成像和光谱。IR-neaSCOPE+s能实现10 nm空间分辨率的化学分析和电磁场成像。该设备利用先进的近场光学显微镜技术来测量红外吸收和反射率,以及局部电磁场的振幅和相位。设备支持红外纳米成像、点光谱、高光谱、以及纳米 FTIR,可使用CW照明源,宽波激光器,以及同步辐射源。IR-neaSCOPE+s在有机和无机材料分析方面具有广泛的应用案例以及特殊的近场表征手段,如定量s-SNOM或亚表面分析。♢ 同时探测样品吸收和反射,适用于各类型材料。♢ 快速可靠的s-SNOM成像和光谱系统,在不影响数据质量的情况下实现高效数据产出。♢ 结合多光路设计和多项技术,实现大量选配功能(纳米 FTIR、透射、底部照明、光电流等)。...… VIS-neaSCOPE+s:局部电磁场偏振分辨的近场成像(振幅和相位)。VIS-neaSCOPE+s优化了可见光波长范围内的振幅和相位的矢量场成像。利用的s-SNOM技术实现对等离子体纳米结构和波导结构的近场成像和光谱研究。VIS-neaSCOPE+s提供灵活的光路配置,能够进行偏振测量、侧面和底部照明。同时支持升纳米FTIR 和TERS功能。♢ 检测局域电磁场的振幅和相位,实现对波衰减、模场和色散的全面表征。♢ 有的100%无背景检测技术和稳定的无像差对焦,保证在可见光全波数范围内的实验结果。♢ 灵活的光路选配,可将光源聚焦到样品或探针上,适用于等离子体不同的研究方向。 THz-neaSCOPE+s:纳米尺度太赫兹 (THz) 近场成像和光谱多功能平台。THz-neaSCOPE+s可在纳米尺度上实现太赫兹成像和光谱。该设备基于完全集成的紧凑型 THz-TDS 系统,可直接用于半导体纳米结构、二维纳米材料和新型复合材料系统的电导率研究。THz-neaSCOPE+s同时支持用户自由耦合太赫兹和亚太赫兹源,并集成了市面上SPM仪器中的软件界面,是强大的纳米太赫兹分析仪器。 ♢ 全反射光路,大程度上兼容宽波和单波太赫兹源,覆盖全部光谱范围。♢ 模块化设计和多光束路径设计,支持多种分析功能,包括光电流、泵浦以及纳米FTIR。♢ 基于THz-TDS 技术,实现紧凑且完全集成的太赫兹纳米光谱。 IR-neaSCOPE+fs:10 fs 时间分辨率和 10 nm 空间分辨率的超快泵浦光谱。IR-neaSCOPE+fs实现了泵浦光谱空间分辨率的突破。设备基于纳米FTIR 的fs激光系统,提供完全集成的硬件和软件系统,实现纳米的时间动态研究。该系统具备有的双光路设计、无色散光学元件、以及可选配的SDK,兼容各种泵浦激光器,使用成熟的高功率实验配置进行突破性的超快研究。♢ 完全集成的系统,帮助用户免于复杂的设备调试,专注于研究本身。♢ 无芯片的光学元件进行光聚焦和收集达到大时间分辨率。♢ 灵活的硬件和软件界面,可根据客户实验需求定制。 IR-neaSCOPE+TERs:nano-FTIR与nano-PL和TERS相结合,突破性的纳米尺度光谱探测技术。IR-neaSCOPE+TERs将纳米FTIR与针增强拉曼TERS和光致发光(PL)光谱相结合,在同一显微镜内利用弹性和非弹性散射光同时进行表征。该系统通过简单的光路校准可实现互补的红外光和可见光散射,可使用商用镀金的AFM探针进行稳定的纳米拉曼和PL表征。 ♢ 模块化设计和多光路设计,实现AFM探针在同一位置的纳米FTIR和纳米拉曼/PL光谱。♢ 通过简单的光路校准收集AFM探针针的强弹性散射光。♢ 使用商用AFM探针获得大 TERS 信号。♢ 优化的软件数据收集处理,在同一用户界面进行所有测量。 cryo-neaSCOPE+xs:超低温环境纳米光学成像和光谱。cryo-neaSCOPE+xs可在端低温下实现近场光学纳米成像和纳米光谱。该设备可获得高质量的近场信号,且支持可见光、红外光、以及太赫兹源。因此,该系统可实现10 K以下不同能相关的研究。cryo-neaSCOPE+xs 基于全自动干式低温恒温器,无需液氦。该系统同时具备共聚焦以及接电功能,以实现低温条件下的多功能研究。♢ 的s-SNOM和纳米FTIR技术,实现低温下纳米光学分析,温度低至10K。♢ 使用neaspec 照明和检测模块,兼容红外到太赫兹光源,应用领域广泛。♢ 使用全自动闭式循环高真空干式低温恒温器,降温速度快,使用成本低。 三、背景简介neaspec创立于2007年,起源于德国马克斯普朗克研究所,因其在纳米分析领域的一系列突破性技术而受到广泛关注。neaspec和Quantum Design结为全球战略合作伙伴,并于2013年次引入中国。产品经过多次升换代,设备的各方面性能均已达到高度优化。目前在国内的用户包括清华大学、北京大学、中国科学技术大学、中山大学、中科院诸研究所等高校和研究所。此次升使得系统在软件用户交互性、模块化、后续升兼容性方面具有更大的提升。 四、应用案例1. Nature: 双层旋转的范德瓦尔斯材料中的拓扑化激元和光学魔角 相关产品:IR-neaSCOPE+s 2018年W. Ma等在Nature报道了范德瓦尔斯材料α-MoO3 中的面内双曲声子化激元的重要发现。2020年6月,G.W. Hu等在此基础上通过理论预测并在实验上证实了双层旋转范德瓦尔斯材料α-MoO3体系,可以实现由转角控制的声子化激元从双曲到椭圆能带间的拓扑变换。在这个变换角附近,光学能带变成平带,从而实现激元的直线无衍射传播。类比于双层旋转石墨烯中的电子在费米面的平带,作者因此将这一转角命名为光学魔角。 研究中作者采用散射型近场光学显微镜(s-SNOM)对双层α-MoO3 旋转体系进行扫描测试。实验结果显示,在接近魔角时,光学能带变平,声子化激元沿直线无衍射传播。此外,通过测试不同转角的双层体系,作者成功观测到在不同频段大幅可调的低损耗拓扑转换和光学魔角。这一重要发现奠定了“转角光子学”的基础,为光学能带调制、纳米光操控和超低损耗量子光学开辟了新的途径,同时也衍生出“转角化激元”这一重要分支研究方向,为进一步发展“转角声学”或“转角微波系统”提供了重要的线索和启发。(引自:中国光学-公众号,2020年6月11日《Nature:光学魔角!二维材料转角遇见光》) 【参考】 Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 2020, 582, 209-213.2. Nature: 天然双曲材料的声子化研究 相关产品:IR-neaSCOPE+s W. Ma在自然材料体系(α-MoO3)中观察到在平面内各项异性传播的声子化激元,包括传播速度不同的平面椭圆型和单向传播的平面双曲型声子化激元;并发现了在α-MoO3中支持的声子化激元具有低的损耗。实验发现,α相三氧化钼在两个光谱范围内存在两个剩余射线带,声子化激元的传播行为在两个剩余射线带内表现出不同的性质。在低剩余射线带内,α相三氧化钼可以在中红外波段支持双曲型声子化激元,也就是说声子化激元仅沿一个方向传播([001]方向),在垂直方向[100]的传播完全被抑制,这种化激元有多种具吸引力的性质,它具有强的场局域特性,可以支持厚度可调节的波导模式,并且损耗低。而在另外一个剩余射线带内,α相三氧化钼在中红外波段支持椭圆型声子化激元,化激元沿着[001]和垂直方向[100]以不同的波长进行传播,这种化激元传播寿命高达约8 ±1 ps,远高于目前已知的高寿命。研究进一步促进了光学器件的微型化和多元的调制特性,并且再次证明自然材料中仍然具有无穷的挖掘潜力。 【参考】 In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature, 2018, 562, 557–562. 3. 纳米空间分辨超快光谱和成像系统在范德瓦尔斯半导体研究中的应用 相关产品:IR-neaSCOPE+fs近年来,范德瓦尔斯(vdW)材料中的表面化激元(SP)研究,例如等离化激元、声子化激元、激子化激元以及其他形式化激元等,受到了广大科研工作者的关注,成为了低维材料领域纳米光学研究的热点。其中,范德瓦尔斯原子层状晶体存在特的激子化激元,可诱导可见光到太赫兹广阔电磁频谱范围内的光学波导。同时,具有较强的激子共振可以实现非热刺激(包括静电门控和光激发)的光波导调控。2020年7月,美国哥伦比亚大学Aaron J. Sternbach和D.N. Basov教授等研究者在Nature Communications上发表了题为:“Femtosecond exciton dynamics in WSe2 optical waveguides”的研究文章。研究者以范德瓦尔斯半导体中的WSe2材料为例,利用德国neaspec公司的纳米空间分辨超快光谱和成像系统,通过飞秒激光激发研究了WSe2材料中光波导在空间和时间中的电场分布,并成功提取了飞秒光激发后光学常数的时间演化关系。同时,研究者也通过监视波导模式的相速度,探测了WSe2材料中受激非相干的A-exciton漂白和相干的光学斯塔克(Stark)位移。【参考】 Aaron J. Sternbach et.al. Femtosecond exciton dynamics in WSe2 optical waveguides, Nature Communications, 11, 3567 (2020) 4. ACS Nano:光致发光、拉曼、近场光学同步测量技术揭示二维合金材料新特性 相关产品:IR-neaSCOPE+TERs 单层异质结构的应用潜力直接受到材料内在和外在的缺陷影响。乔治亚大学的研究人员在Abate教授的带领下,利用neaSNOM散射式近场光学显微镜,研究了二维(2D)单层合金光致氧化过程中纳米尺度下的奇异界面现象。他们发现界面张力可以通过建立稳定的局部势阱来集中本征激子,从而实现高的热稳定性和光降解稳定性。该实验结果由neaspec公司特的nano-PL / Raman和s-SNOM同步测量技术所采集,并已发表在ACS NANO中。在实验中,作者合成了由单层面内MoS2-WS2异质结构制成的2D纳米晶体,这些晶体在富Mo的内部区域和富W的外部区域间,显示出了较强的纳米合金界面。在针增强照明刺激下(100天),作者进一步观察到,光降解过程中界面的激子稳定性、局域性和不均匀性。得益于高度敏感的s-SNOM成像技术,作者探测到富W的外部区域的反射率出现急剧下降。该反射率始于晶体边缘,并随时间向内传播。在同一样品区域获得的高光谱纳米光致发光(nano-PL)图像显示,W氧化相关的激子的猝灭会遵循与s-SNOM相同的模式(在边缘开始并向内传播)。值得注意的是,合金界面的内部区域表现出了强大的抗氧化能力。即使在光降解100天后,它仍具有很强的s-SNOM信噪比和未淬灭的nano-PL信号。为了进一步研究结构变化,作者使用nano-PL进行了增强拉曼高光谱纳米成像测量,并在同一扫描区域的每个像素处获取了空间和光谱信息。实验结果表明,在整个晶体的光降解过程中,WS2拉曼峰逐渐消失,而在内部区域中的MoS2仍然存在。该结果表明在相同的环境条件、同一显微镜下测量相同的晶体,由于热诱导的合金和基底晶格常数的不匹配,导致光氧化与局部应变存在一定的关联。而合金界面可防止该应变传播到内部区域,从而防止其降解。 【参考】 Photodegradation Protection in 2D In-Plane Heterostructures Revealed by Hyperspectral Nanoimaging: The Role of Nanointerface 2D Alloys. ACS Nano 2021, 15, 2, 2447–2457. 5. Cryo-SNOM低温近场在氧化物界面的新应用 相关产品:cryo-neaSCOPE+xs 氧化物界面处的二维电子体系(2DES)做为一个特的平台,将典型复合氧化物、强电子相关的物理特性以及由2DES有限厚度引起的量子限域集成于一体。这些特的性质使其在电子态对称性、载流子的有效质量和其它物理特性方面与普通半导体异质结截然不同,可以产生不同于以往的新现象。然而氧化物界面多掩埋于物质间使其难以探测,为探究其局限2DES需要一个无创并且具有很高空间分辨率的表征技术,如果还能提供一个较宽范围内温度变化的平台将大地推进该领域的研究。通常光学显微镜可用于上述研究,其中,远场的探测技术由于受到波长和衍射限的限制缺乏空间分辨率,而红外波段的光束探测传导电子的Drude反应分辨率仅有几个微米的量,无法满足测试需求,而利用散射式近场光学显微镜(s-SNOM)可以克服这一限制,使其具有10-20 nm的空间分辨率并获得光响应信号中的强度和相位信息。近期,Alexey B. Kuzmenko团队在Nat. Commun.上获得新进展,他们利用s-SNOM来研究从室温下降到6K时LaAlO3/SrTiO3界面的变化情况,从近场光学信号,特别是其中的相位分量信息可以看出对于界面处的电子系统的输运性质具有其高的光学敏感度。这一模型说明了2DES敏感性来源于AFM针和耦合离子声子模型在很小穿透深度下的相互作用,并且该模型可以定量地将光信号的变化与冷却和静电选通控引起的2DES传输特性的变化相关联,从而提供操控光学信息的有效手段。从利用s-SNOM得到的实验结果和建立的模型结果来看,二者之间具有很好的拟合,这一结果说明了电子声子相互作用对于在零动量时的表面声子离子模型的散射化吸收具有至关重要的作用。【参考】 High sensitivity variable-temperature infrared nanoscopy of conducting oxide interfaces. Nature Communications 2019, 10, 2774. 6. Science:近场太赫兹光电流-石墨烯等离子体在近费米速度传播下的非局域量子效应 相关产品:THz-neaSCOPE+s西班牙光子科学研究所(ICFO)的 Marco Polini教授和Frank H. L.Koppens教授在《Science》上发表了题为:Tuning quantum nonlocal effects in graphene plasmonics的文章。 在本篇文章中,研究者利用散射式近场光学手段,对石墨烯-(h-NB)-金属复合体系表面进行了纳米尺度下的精细扫描,由此观测到了太赫兹波段下的石墨烯等离子体以近费米速度进行传播。研究发现,在慢的速度(数百倍低于光速)下,石墨烯等离子的非局域响应得以探测,通过近场成像能够以无参数匹配手段清晰地揭示无质量的Dirac电子气体的量子描述,进而展示了三种类型的非局域量子效应,即单粒子速率匹配,相互增强费米速率和相互减弱压缩性。通过该近场光学的研究方法,研究者终提供了确定电子体系的全时空反应的新途径。 【参考】 Tuning quantum nonlocal effects in graphene plasmonics. Science 2017, 357, 187. 五、部分发表文章[1]. Nature (2021) 596, 362[2]. Science (2021) 371, 617[3]. Nature Physics (2021) 17, 1162[4]. Nature Phot. (2021) 15, 594[5]. Nature Chem. (2021) 13, 730[6]. Nature (2020) 582, 209[7]. Nature Phot. (2020) 15, 197[8]. Nature Nanotech. (2020) 15, 941[9]. Nature Mater. (2020) 19, 1307[10]. Nature Mater. (2020) 19, 964[11]. Nature Phys. (2020) 16, 631[12]. Nature (2018) 562, 557 [13]. Nature (2018) 359, 892[14]. Science (2018) 362, 1153 [15]. Science (2018) 361, 6406 [16]. Science (2018) 359, 892[17]. Science (2017) 357, 187[18]. Science (2014) 344, 1369[19]. Science (2014) 343, 1125
  • 重庆研究院生物大分子太赫兹近场成像光谱仪研究获进展
    p   近日,中国科学院重庆绿色智能技术研究院太赫兹技术研究中心在生物大分子太赫兹近场成像光谱仪研究中获得进展,相关结果以《基于扫描探针显微镜的近场超空间分辨指纹光谱技术研究现状》为题在《红外与毫米波》期刊上进行发表。 /p p   在中国科学院科研装备项目的支持下,该团队开展了生物大分子太赫兹成像光谱仪的研制工作,欲利用金属化纳米探针在纳米级针尖附近形成的局域增强太赫兹波来照射生物大分子,从而能突破光学衍射极限实现对纳米级大小的生物大分子进行成像。 /p p   目前,该研究利用可见的氦氖激光对不可视太赫兹波主体光路(图1)的准直、聚焦状态进行精准的辅助调节,已完成了对近场太赫兹波信号相干放大的迈克尔逊干涉仪的调试,实现了利用外部信号发生器来驱动金属化原子力探针在垂直方向做周期的机械运动,获得了金属化原子力探针与铝基底的太赫兹光谱(图2)。 /p p style=" TEXT-ALIGN: center" img style=" FLOAT: none" title=" 111.jpg" src=" http://img1.17img.cn/17img/images/201509/insimg/88d7a724-d2b9-455e-9c3f-828584592b50.jpg" / /p p style=" TEXT-ALIGN: center" & nbsp /p p style=" TEXT-ALIGN: center"   图1 基于连续波太赫兹源的太赫兹近场成像系统原理图 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 549px FLOAT: none HEIGHT: 416px" title=" 222.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201509/insimg/942e5038-8282-4a4d-865f-c824014c3659.jpg" width=" 549" height=" 416" / /p p style=" TEXT-ALIGN: center"   图2 金属探针与铝基底的太赫兹光谱 /p p /p
  • 我国首台高平均功率太赫兹自由电子激光饱和出光
    p   由我国科学家自主研发的国内首台高平均功率太赫兹自由电子激光装置,日前在四川成都首次饱和出光。经第三方检测,实验真实可靠且装置运行稳定。我国太赫兹源从此正式进入自由电子激光时代。 /p p   8月29日,由中国工程物理研究院应用电子学研究所牵头的高平均功率太赫兹自由电子激光装置(CTFEL)首次饱和出光,并实现稳定运行。9月20日,经过专家组现场测试和中国兵器工业第205研究所第三方检测,CTFEL装置太赫兹频率在1.99THz、2.41THz和2.92THz三个频率点稳定运行,平均功率均大于10W,最高达到17.9W 微脉冲峰值功率均大于0.5MW,最高达到0.84MW。通过调节电子束能量和磁场强度,可以实现输出激光频率连续可调。 /p p   太赫兹(THz)辐射通常指频率在0.1THz—10THz区间的电磁辐射,波段位于微波和红外光之间,是人类尚未完全认识并很好加以利用的最后一个波(光)谱区间。物质的太赫兹光谱(包括发射、反射和透射)包含有丰富的物理和化学信息,研究有关物质在这一波段的光谱响应,探索其结构性质及其所揭示的新的物理内容已成为一个新的研究方向。自由电子激光(FEL)由于具有频率连续可调、功率大、线宽窄、方向性好、偏振强等优点,使得在同一台装置上实现太赫兹波段全覆盖的大功率理想太赫兹源成为了可能,故自由电子激光是目前该波段最有前途的高功率可调谐相干光源。 /p p   CTFEL装置是依托科技部支持的国家重大科学仪器设备开发专项“相干强太赫兹源科学仪器设备开发”项目,于2011年立项启动。作为一种新型相干强太赫兹光源,CTFEL装置在材料、生物医学等领域有着重要应用前景。 /p
  • 青源峰达太赫兹研发团队在光学领域期刊《Photonics》发表文章
    近日,青岛青源峰达太赫兹科技有限公司高级产品经理刘平安联合中国计量大学李向军副教授在SCI期刊《Photonics》上发表了题为“Enhancing the Terahertz Absorption Spectrum Based on the Low Refractive Index All‐Dielectric Metasurface”的研究性论文。Photonics期刊2022年影响因子为2.536。文章设计了一个角度复用的低折射率介质超表面,用于增强乳糖的太赫兹吸收光谱。首先设计并优化了ABS树脂正方形的单元结构。利用青岛青源峰达太赫兹科技有限公司的QT-TO1000 太赫兹三维层析成像系统及电动角度转盘(2-DD01)改变太赫兹波的入射角度,试验探究了介质表面的共振峰随角度平移情况。在介质超表面制备不同厚度的α-乳糖薄膜,研究其增强效果。多角度复用低折射率介质表面吸收光谱的共振峰幅度随样品的吸收光谱变化很大。结果表明,谐振峰相连的包络线形成的增强吸收谱比没有超表面结构的乳糖薄膜吸收谱强45倍。提出的介电超表面在测量薄膜太赫兹吸收谱方面具有很大的潜力,可用于检测痕量物质。▲ 太赫兹三维层析成像系统及电动角度转盘装置示意图▲ 基于介质表面多角度复用的太赫兹吸收增强检测原理图(a)具有多个入射角α的介质表面的角复用原理(b)介质表面的单元结构▲ 太赫兹波入射角和单元结构参数对反射谱和Q值变化的影响α=20-40°,w = 120-200μm▲ α-乳糖的介电常数和表面涂覆乳糖膜的响应特性 (a)α-乳糖的介电常数(b)乳糖涂层石英衬底的反射 (c)透射和(d)吸收▲ 基于角度复用的太赫兹吸收光谱增强介电表面(a)介电表面单元结构 (b)无α-乳糖涂层介电表面反射和(c)透射 (d)涂覆3μm厚α-乳糖涂层的介电表面的反射和(e)与无涂层对比 (f)涂覆3μm厚α-乳糖涂层的介电表面的吸收特性▲ 不同入射角下乳糖涂层介质表面的电场分布(a)入射角为15°,共振频率为0.511THz(b)入射角为25°,共振频率为0.527THz(c)入射角为35°,共振频率为0.534THz(d)入射角为45°,共振频率为0.545THz▲ 研究介质表面的多极分解的散射功率其中P、M QE、QM、ET和MT分别是电偶极子、磁偶极子、电四极子、磁四极子电环形偶极子和磁环形偶极子(a)入射角为15°,共振频率为0.511THz (b)入射角为25°,共振频率为0.527THz (c)入射角为35°,共振频率为0.534THz (d)入射角为45°,共振频率为0.545THz▲ 不同厚度的乳糖涂覆的电介质表面的增强吸收光谱(a)1μm (b)1.5 μm (c)2μm (d)2.5μm (e)3μm (f)比较结果
  • 校园招聘 I 青岛盛瀚-青岛青源峰达太赫兹科技有限公司
    面对当下内卷的就业环境,这届年轻人开启了“找工作不看钱看什么”的人间清醒模式。那对于应届生同学来讲,想要一份高薪工作,投递什么岗位才合适呢? 目前我国正在大力发展高技术制造、新能源等产业,这些行业目前缺乏高技术人才,具备薪酬优势。机械工程、材料科学与工程、电子科学与技术,生物,化学,环境,材料,食品等业有机会进入高薪行业。 近期小编整理了一些理科工科好岗必投企业~欢迎大家来投递。 今日主推青岛盛澣关联公司【青岛青源峰达太赫兹科技有限公司】。 青岛青源峰达太赫兹科技有限公司由中国工程物理研究院流体物理研究所与青岛盛瀚色谱技术有限公司共同组建,属于国家级高新技术企业。青岛盛瀚色谱技术有限公司专业从事离子色谱仪及其核心部件的研发、 生产、销售和技术服务,在离子色谱细分领域国内仪器占有率 50%以上,产品远销世界 60 多个国家和地区,并建有面向仪器产业配套的公共服务平台,在仪器产业化领域具有深厚的积累。 青源峰达太赫兹科技有限公司高度重视研发工作,建有绵阳技术研发中心和青岛产品研发中心,汇聚海内外专业人才,硕、博士学历占比 90%以上,具备太赫兹基础技术、集成技术和应用技术的设计、研发能力。青岛青源峰达太赫兹科技有限公司成立以来以太赫兹相关技术研发为核心,积极与外部机构开展合作,现为“中国工程物理研究院博士定向委培单位”、“中物院流体物理研究所博士生实践基地”、“青岛市太赫兹光谱成像专家工作站”、“山东省计量测试学会会员单位”、“青岛大学产学研合作基地”以及“海洋观测与宽带通信技术协同创新中心”。 通过与外部科研机构的广泛合作,青源峰达公司已形成了立足太赫兹技术和产品研发,辐射其他波段光电产品研发能力的综合研发平台。公司已顺利完成高精度太赫兹时域光谱系统、快速太赫兹时域光谱系统、太赫兹三维层析成像系统等三款太赫兹系统的成果转化,并随后相继推出了太赫兹时域光谱教研系统、高速太赫兹时域光谱系统以及自动随形太赫兹无损检测系统三款新产品。在实现太赫兹光谱及成像系统产品化基础上,开展了高精度光纤延迟线、快速光纤延迟线、太赫兹源和探测器、飞秒激光器、集成太赫兹镜头、高精度二维扫描平台、样品仓单元、信号采集和处理单元、锁相放大器等核心部件的开发工作,是国内少数具备全链条太赫兹核心部件自主研发和生产能力的企业之一。 【岗位需求 1:光学工程师】 岗位职责:1.光学零件(透镜、棱镜、反射镜、光栅等)的仿真;2.光学零件(同上)的公差分析、图纸绘制、加工厂家寻找;3.光学零件的测试与验收;4.根据公司产品与研发需要,设计透射光路、反射光路和分光光路等;5.对设计的光路或系统进行仿真、分析与加工等;6.对设计的光路或者系统进行装调、实验与验收等。任职要求:1.光电工程、精密仪器、仪器仪表、测控技术与仪器等相关专业;2.精通 zemax 或 code v;SolidWorks 或者 CAD,Tracepro3.熟悉几何光学、光谱测量等基本原理;4.主导或参与过光谱仪或者紫外检测器或者荧光检测器全过程者优先考虑;5.硕士及以上学历。【岗位需求2:应用研发工程师】 岗位职责:1、调研行业应用需求,并做相关技术验证,就新应用场景制定全方位解决方案;2、客户现场考察,技术交流等,针对客户需求不断改进应用方案;3、产品整机及应用端测试与改进。任职条件:1.硕士及以上学历,光学、太赫兹、光电子等相关专业,了解光纤光学、光电探测原理;2、熟悉各种光纤光学仪器、器件,有光学系统搭建、调试与系统应用测试经验;3、协助销售开拓新的应用市场4、具有行业应用调研、开发经验优先考虑;5、具有 MATLAB,python,SolidWorks 等多种专业软件操作及数据挖掘能力。【岗位需求3:算法工程师】岗位职责:1.研究太赫兹前沿算法论文与代码复现2.熟悉机器学习与深度学习算法及原理3.之前熟悉python、matlab 、C++中任意两种编程语言任职条件:1.物理学、数学等理科背景优先考虑,接收应届硕士毕业生。【岗位需求4:FPGA工程师】岗位职责:1、FPGA的项目需求分析,任务书、概要设计、详细设计等开发文档的编写;2、负责根据系统设计要求进行FPGA代码的设计、验证与测试、维护;3、配合软硬件工程师进行产品设计过程中的软硬件联调和验证;任职条件:1、通信、信号与信息处理、计算机、电子技术及自动化等相关专业;2、有丰富FPGA设计经验,熟悉主流厂家芯片、国产FPGA芯片系列和开发工具;3、熟悉相关语言,能独立进行FPGA时序设计/分析/仿真;4、熟悉相关通信接口;5、熟悉DDR、PCIe、1000Basex、高速serdes等常用接口者优先录用。6、能够读懂原理图,有一定的硬件电路基础。 【联系方式】应聘公司:青源峰达太赫兹科技有限公司公司地址:山东省青岛市崂山区澳柯玛智慧产业园2号楼3层联系人:人力资源经理 王先生简历投递通道:https://www.instrument.com.cn/job/activity/toSoleIndex?id=143成立20周年,聚焦科学仪器行业&检验检测行业的,行业专属垂直招聘平台,让找工作变轻松。轻松选公司,每家都和行业相关专注于服务仪器厂商/代理商,检测机构,科研院所/高校,工业企业,学会/协会,政府机构等组织。轻松选职位,每个都和专业相关专注于提供真实有效的行业专属职位,覆盖高级管理,市场营销,技术研发,售前售后,检测分析,科研学术等就业机会。行业精英内推通道,欢迎联系“仪小才”,加微信rencaizhaopin1717。
  • 太赫兹技术“未来可期”“太赫兹光谱与测试工作组”正式成立
    p style=" text-indent: 2em text-align: justify " strong 仪器信息网讯& nbsp /strong span style=" text-indent: 2em " 太赫兹光谱与测试应用研讨会”暨“太赫兹光谱与测试工作组”成立大会于2020年1月12日在天津举行。本次大会由毫米波太赫兹产业发展联盟主办,莱仪特太赫兹(天津)科技有限公司承办,爱德万测试(中国)管理有限公司、中国科学院上海微系统与信息技术研究所与天津大学精密仪器与光电子工程学院联合协办。近百位太赫兹领域的专家学者、各领域的企业用户齐聚天津,分享科研成果、企业需求,共话太赫兹技术与产业发展道路。 /span /p p style=" text-align: justify text-indent: 2em " 太赫兹电磁波段具有频谱资源丰富、穿透性强等特点。随着太赫兹科学技术研究的不断发展,技术应用需求市场正在形成,其中尤为突出的是对于太赫兹光谱技术应用需求。太赫兹光谱检测与成像技术作为太赫兹领域的基础技术,正在食品安全、公共安全、材料科学及生物技术领域显示出其独特的优势和广阔的应用前景。 /p p style=" text-align: justify text-indent: 2em " 国内太赫兹科技研究发展迅速,对太赫兹技术的应用需求与日俱增,将带动国内太赫兹光谱检测与成像技术相关的芯片、模块、系统以及太赫兹数据的爆发式增长。据统计数据显示,2017年中国太赫兹光谱检测与成像技术的市场规模约为2亿元,预计2020年将达5亿元,到2023年中国太赫兹光谱检测与成像技术的市场规模将超10亿元。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/6e629ed1-2554-421c-bd65-6f74be431475.jpg" title=" 会议照片.jpg" alt=" 会议照片.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong style=" text-indent: 0em " 会议现场 /strong /p p style=" text-align: justify text-indent: 2em " 在此次会议上,毫米波太赫兹产业发展联盟特别成立了“太赫兹光谱与测试工作组”,旨在通过工作组的努力,推动太赫兹光谱技术的应用及其标准化工作,并促进太赫兹光谱检测应用的发展,填补我国太赫兹频段物质光谱与材料电磁特性数据库的空白。 /p p style=" text-align: justify text-indent: 2em " 会议由毫米波太赫兹产业发展联盟秘书长刘海瑞主持,他首先对联盟的组织架构、联盟单位、工作进展以及“太赫兹光谱与测试工作组”的主要成员进行了介绍,并宣布“毫米波太赫兹产业发展联盟· 太赫兹光谱与测试工作组”正式成立。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/8627ed3b-02fd-479f-9ffe-8033d602f756.jpg" title=" 刘海瑞.jpg" alt=" 刘海瑞.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong style=" text-indent: 0em " 毫米波太赫兹产业发展联盟秘书长 刘海瑞 /strong /p p strong style=" text-indent: 0em " /strong /p p style=" text-indent: 2em text-align: justify " 随后,揭牌仪式正式开始,由天津市科学技术委员会生物医药处处长王锐与太赫兹光谱与测试工作组组长、天津大学何明霞教授共同揭牌,并为工作组理事单位颁发牌匾。 /p p style=" text-align: center text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/2ade9f08-8358-4590-9183-96bd5c54051a.jpg" title=" 揭牌.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" alt=" 揭牌.jpg" / /p p style=" text-align: center" img style=" width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/5e497f39-5a58-4659-b731-631b58547eeb.jpg" title=" 揭牌2.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" alt=" 揭牌2.jpg" / /p p style=" text-indent: 0em text-align: center " strong 揭牌仪式 /strong /p p br/ /p p style=" text-align: center text-indent: 0em " img src=" https://img1.17img.cn/17img/images/202001/uepic/fd76136e-a905-43b6-8c70-20314ad4b7da.jpg" title=" lingjiang .jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" alt=" lingjiang .jpg" style=" width: 600px height: 400px " / /p p style=" text-indent: 0em text-align: center " strong 颁发理事单位牌匾 /strong /p p style=" text-indent: 2em text-align: justify " 天津大学精密仪器与光电子工程学院院长曾周末教授、太赫兹光谱与测试工作组组长、天津大学精仪学院何明霞教授和首都师范大学张存林教授分别致辞,表达他们对工作组成立的祝贺与期望。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/972b8f45-0e07-4ef3-8c0c-fe7b135d16a5.jpg" title=" 院长.jpg" alt=" 院长.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong style=" text-indent: 0em " 天津大学精密仪器与光电子工程学院 院长 曾周末 /strong /p p strong style=" text-indent: 0em " /strong /p p style=" text-align: center" img style=" width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/a3dd1525-346b-4d55-8f44-68c3d1116704.jpg" title=" hemingxia.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" alt=" hemingxia.jpg" / /p p br/ /p p style=" text-align: center text-indent: 0em " strong 赫兹光谱与测试工作组组长、天津大学 教授 何明霞 /strong /p p br/ /p p style=" text-align: center text-indent: 0em " img src=" https://img1.17img.cn/17img/images/202001/uepic/b3ce6e8f-0196-47d8-9023-b491d0cad414.jpg" title=" 张存林.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" alt=" 张存林.jpg" style=" width: 600px height: 400px " / /p p style=" text-indent: 0em text-align: center " strong 首都师范大学 教授 张存林 /strong /p p style=" text-indent: 2em text-align: justify " 大会报告环节中,8位太赫兹领域的专家及工作者进行了精彩的分享。 /p p style=" text-align: center text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/90b59608-61c7-45d5-9ecd-0659b8c93984.jpg" title=" 年夫顺.jpg" alt=" 年夫顺.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 中国电子科技集团有限公司 首席科学家 年夫顺 /strong br/ /p p style=" text-align: center text-indent: 0em " strong 报告题目:基于电子学的太赫兹材料电磁特性测试与结构成像技术研究进展 /strong /p p style=" text-align: justify text-indent: 2em " 在材料测量中,太赫兹材料测量可以深入材料内部,具有电磁特性且对人体无害,有其不可替代性。年夫顺从太赫兹工程相关问题思考、关键技术仪器设备、材料电磁特性测量、材料三维结构成像仪及团队建设未来展望几个部分进行了分享。他还指出,太赫兹目前还没有相应的标准,需要联盟和工作组的共同努力,将太赫兹技术“发扬光大”。 /p p style=" text-align: center text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/facef07b-04f9-4eec-9199-37709da8242f.jpg" title=" 朱亦鸣.jpg" alt=" 朱亦鸣.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 上海理工大学 教授 朱亦鸣 /strong br/ /p p style=" text-align: center text-indent: 0em " strong 报告题目:太赫兹波谱技术进展及其应用 /strong /p p style=" text-indent: 2em text-align: justify " 太赫兹因其独特的性质已成为各国争相抢占的科学制高点,它既是科学前沿,又是国家的重大需求。朱亦鸣从目前国内太赫兹技术的发展状况,以及它在食用油油品检测、危险品检测、公共安全检测、中药有效成分检测和癌细胞检测等相关领域的应用对国内太赫兹发展的整体状况进行了介绍。随后,他还分享了太赫兹成像新技术——太赫兹近场超分辨显微镜。 /p p style=" text-align: center text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/3d3627d6-6994-4227-aaf4-1f650554325c.jpg" title=" 黎华.jpg" alt=" 黎华.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 中国科学院上海微系统与信息技术研究所 研究员 黎华 /strong br/ /p p style=" text-align: center text-indent: 0em " strong 报告题目:新型太赫兹激光光频梳及光谱应用 /strong /p p style=" text-indent: 2em text-align: justify " 科学与应用的发展对表征技术提出了新的需求,包括超高空间分辨、超快时间分辨及精细光谱分辨等,且表征方法也在向低能量尺度表征发展。黎华基于高性能半导体太赫兹量子级联激光器与光频梳,结合近场显微技术,实现了太赫兹波段时间、空间、光谱的高分辨,解决了色散,主/被动稳频三大挑战,并在国际上首次实现了紧凑型实时太赫兹光谱仪。 /p p style=" text-align: center text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/60ae14fe-ace0-4b87-bd15-cd818d3985ae.jpg" title=" 曲秋红.jpg" alt=" 曲秋红.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 莱仪特太赫兹(天津)科技有限公司 技术总监 曲秋红 /strong br/ /p p style=" text-align: center text-indent: 0em " strong 报告题目:太赫兹光谱检测应用研究及莱仪特检测平台 /strong /p p style=" text-indent: 2em text-align: justify " 太赫兹技术应用前景十分广泛,但太赫兹光谱技术发展还存在很多在技术、成熟度及应用场景中的问题。曲秋红在报告中对莱仪特太赫兹(天津)科技有限公司的检测平台进行了简要的介绍,并分享了平台为食品、中药、太赫兹研究等领域用户提供检测服务的典型案例。 /p p style=" text-align: center text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/4a9f2910-9926-455d-91df-8c28c4ba6261.jpg" title=" 赵红卫.jpg" alt=" 赵红卫.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 中国科学院上海高等研究院研究员 赵红卫 /strong br/ /p p style=" text-align: center text-indent: 0em " strong 报告题目:太赫兹光谱技术在生物化学中的应用研究 /strong /p p style=" text-indent: 2em text-align: justify " 太赫兹在生物化学和生物医学等领域具有广阔的前景。报告中,赵红卫从太赫兹在生物化学检测和手性生物分子的应用入手,介绍了太赫兹在生物化学及生物医学领域的应用,并分享了太赫兹光谱解析的一些心得。最后,她对太赫兹未来的发展提出了一些展望。 /p p style=" text-align: center text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/a3f6f0ad-9320-48bc-a52f-e47acdb6e7bb.jpg" title=" 张彦华.jpg" alt=" 张彦华.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 爱德万测试(中国)管理公司 新业务高级拓展经理 张彦华 /strong br/ /p p style=" text-align: center text-indent: 0em " strong 报告题目:“蒲公英花开”——太赫兹谱数据共享平台 /strong /p p style=" text-indent: 2em text-align: justify " 目前,国内外多家单位拥有一定量的太赫兹光谱数据,但都规模较小、检测平台仪器型号多样,导致各单位交流难度大,且无统一的测样标准。张彦华介绍了爱德万测试(中国)管理公司的蒲公英太赫兹谱数据共享平台,是如何通过用户单位共享的方式让用户获得更加完整的数据库。他还展示了数据平台的相关功能。 /p p style=" text-align: center text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/2f1a6ace-c861-4a8a-92d4-d7cdf410fcfd.jpg" title=" 叶伟斌.jpg" alt=" 叶伟斌.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 清华大学天津电子信息研究院 电子综合检测中心总监 叶伟斌 /strong br/ /p p style=" text-align: center text-indent: 0em " strong 报告题目:测试太赫兹材料与器件电磁参数的技术与方法 /strong /p p style=" text-indent: 2em text-align: justify " 毫米波太赫兹通信具有设备小、定向性强、频谱资源丰富、具有穿透等离子体能力等特点,可以应用于雷达探测、材料成像、生物探测和通讯技术中。报告中,叶伟斌首先简要介绍了清华大学天津电子信息研究院电子综合检测中心的电子综合检测平台,随后,他分享了平台检测雷达芯片的实际案例,最后他还列出了平台提供的毫米波太赫兹的检测服务项目。 /p p style=" text-align: center text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/ef2c7fd7-a93c-462d-a8cb-39e20d1f081d.jpg" title=" 邓玉强.jpg" alt=" 邓玉强.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 中国科学院计量院 研究员 邓玉强 /strong br/ /p p style=" text-align: center text-indent: 0em " strong 报告题目:太赫兹计量研究 /strong /p p style=" text-indent: 2em " 太赫兹是宏观电子学和微观光子学的桥梁,近年来,各类太赫兹测量仪器不断涌现,但却没有统一的标准。邓玉强研究员介绍了他在太赫兹计量领域的一些研究成果。如太赫兹时域光谱计量、太赫兹辐射功率计量、太赫兹波长频率计量、太赫兹空域参数计量,以及太赫兹计量应用几个部分。 /p p style=" text-align: center text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/e2619468-d700-4ff9-b1f3-6f98caa85110.jpg" title=" heying.jpg" alt=" heying.jpg" / /p p style=" text-align: center text-indent: 0em " strong 全体与会代表合影 /strong br/ /p
  • 滨松开发出全球首款基于超材料天线的太赫兹图像增强器
    据麦姆斯咨询报道,近日,滨松光子(Hamamatsu Photonics)开发出全球首款太赫兹图像增强器。该产品具有实时无损成像能力,可应用于食品异物检测和人体扫描等领域。滨松开发的太赫兹图像增强器“THz-I.I.”这款图像增强器“THz-I.I.”是基于滨松多年来开发的成像技术。该公司表示,“THz-I.I.”具有高分辨率和快速响应等特点,允许对通过目标物体传输或从目标物体反射的太赫兹波脉冲进行实时成像。太赫兹波在电磁波中的位置“THz-I.I.”概述图像增强器是主要为星光下的夜视(弱光情况下的辅助视觉)而开发的一种图像增强管。典型的图像增强器包括将入射光转换为电子的光电阴极、放大电子的微通道板、将电子转换为光的荧光屏,所有这些都密封在真空管之中。通过选择光电阴极材料,可以将包括可见光和不可见光在内的入射光转化为电子,然后在真空中进行倍增。这使得能够对发光现象进行高速、高分辨率和高灵敏度成像。滨松一直在与丹麦技术大学(Technical University of Denmark)进行合作研究,以开发利用小型超材料天线将太赫兹波转换为电子的光电转换技术。这种光电转换技术应用于滨松的成像技术,在“THz-I.I.”输入窗口的内表面形成超材料天线。滨松还重新设计了天线结构,以提高将太赫兹波转换为电子的效率——电子在真空中被有效地倍增。太赫兹图像增强器“THz-I.I.”工作原理太赫兹图像增强器“THz-I.I.”主要参数滨松评论说:“我们已经成功开发了一种快速响应、高分辨率的太赫兹图像增强器——THz-I.I.,能够对穿过目标物体或从目标物体反射的太赫兹波进行实时成像。这种太赫兹图像增强器还可以通过改变天线设计以匹配所需的应用,从而对任何频段的太赫兹波进行成像。”该太赫兹图像增强器有望扩大无损检测的应用范围,例如:(1)食品生产中的异物(指甲和薄膜等)的快速在线检测,(2)使用传统的X射线检测技术通常很难检测到污染物。由于太赫兹波对人体无害,“THz-I.I.”也有望应用于安检领域的人体扫描仪,在火车检票口和活动场地入口处进行安全检查时,这将被证明是非常有效的人体扫描手段。在科学研究领域,“THz-I.I.”将用作获取太赫兹光束轮廓或调整太赫兹光学系统的工具。滨松说:“作为未来的目标,我们将继续推进‘THz-I.I.’具有更高的实际使用灵敏度,目标是在一年内开始交付该产品的样品。”
  • 2012太赫兹科学仪器及前沿技术专题研讨会在京成功召开
    仪器信息网讯 2012年8月8日-9日,由中国仪器仪表学会、“太赫兹光电子学教育部重点实验室”、《现代科学仪器》编辑部主办的2012太赫兹科学仪器及前沿技术专题研讨会在北京紫玉饭店成功召开。本次会议的宗旨是为太赫兹科学仪器研制开发提供技术交流平台,为太赫兹仪器选购提供技术咨询,并为太赫兹仪器使用提供技术支撑。本次研讨会特别邀请到电子科技大学刘盛纲院士、天津大学姚建铨院士等太赫兹研究领域的多名专家学者做精彩报告,吸引了来自各科研院所、仪器公司的近100位代表参会。 会议现场   开幕式由太赫兹光电子学教育部重点实验室主任张存林教授主持,中国仪器仪表学会副理事长兼秘书长吴幼华先生,电子科技大学刘盛刚院士分别为大会致辞。 中国仪器仪表学会副理事长兼秘书长吴幼华先生 电子科技大学刘盛纲院士   首先,吴幼华先生代表主办方对各位代表表示热烈的欢迎。并介绍到,太赫兹科学仪器涉及的领域很广,专业性很强,是非常重要的交叉前沿领域,其技术进步为技术创新、国民经济发展和国家安全提供了一个非常诱人的发展机遇。   电子科技大学刘盛纲院士在致辞中指出,“重要的科学成就必须以实验研究为基础,在国际上重要的仪器设备是一流大学所必备的条件。近几年,中国也越来越多的认识到科学仪器的重要性。在过去的十几年中,日本人拿了6个诺贝尔奖,以色列拿了两个诺贝尔奖,我们相信中国一定会拿诺贝尔奖,但是不知什么时候。我们有很多好的思想,只是做不出实验结果来,我们国家要想成为科技大国,加强对仪器设备的支持是非常必要的。此外,中国的太赫兹技术发展非常快,也得到了国家自然科学基金委的大力支持,不过目前还存在一些问题,如投资不太集中等”。 国家自然科学基金委员会信息科学部张兆田主任   在开幕式中,国家自然科学基金委员会信息科学部张兆田主任还做了《信息优先资助领域及其基金资助工作》的相关报告。在报告中,张兆田主任介绍了信息科学的发展规律与特点,发展状况与未来发展趋势、重点优先发展领域等。其中,新型毫米波与太赫兹器件就是其优先发展的领域之一,其研究内容包括太赫兹核心器件及阵列检测器、微结构太赫兹功能器件;新型太赫兹探测技术等。此外,张兆田主任还介绍了信息科学部的部门设置、资助方针、资助格局、资助项目类型、项目受理评审过程等相关内容。 首都师范大学物理系张岩主任   此外,首都师范大学物理系张岩主任也介绍了太赫兹科学仪器及前沿技术专题研讨会的会议组织等相关情况。   大会报告 技术发展篇 太赫兹光电子学教育部重点实验室主任张存林教授 报告题目:基于飞秒激光的太赫兹时域光谱仪开发   张存林教授在报告中详细介绍了国家重大科学仪器设备开发专项“基于飞秒激光的太赫兹时域光谱仪开发”的相关情况。介于微波和红外之间的太赫兹是物理与信息领域重大科学技术问题,太赫兹波谱是反应分子结构和空间阵列的指纹谱。太赫兹时域光谱仪未来将向宽谱、高能量、小型化的方向发展,在科研及食品药品鉴定和检测方面具有很重要的应用价值和前景,对经济社会发展、民生改善具有很重要的支支撑作用。在市场方面,近三年来,已经有上百家应用单位有着明确的应用需求。据2010年度太赫兹市场报告的预期,太赫兹在医学、安全和制造业领域相关产品的经济效益到2020年将可达到数千万到数亿美元,市场总额可达到数十亿美元。张存林教授还介绍说按此推算,“基于飞秒激光的太赫兹时域光谱仪开发”项目完成后,若中国市场可占到10%的全球市场份额,预期经济效益也将达到数亿美元。由此,也将拉动中关村高科技示范区高端仪器制造业及相关产业产值约10亿元人民币/年。 上海大学马国宏教授 报告题目:太赫兹脉冲的产生及波前控制研究   马国宏教授介绍到目前THz波的研究主要包括THz源、THz检测和THz传输等方面,要使THz波的研究成果得到广泛的应用,尤其是将THz技术应用到远红外光谱学中,有必要研究THz脉冲的波前控制以及各种THz光子学器件的工作原理,从而实现对THz辐射的人工调控。随后,马国宏教授介绍了上海大学超快光子学实验室近年来在THz波的产生、THz的主动和被动控制、THz光子学和THz自旋电子学等方面开展的一系列研究工作。其中,主要探讨了利用THz波与各种微结构相互作用实现THz波前的控制,包括THz偏振控制、抗反射、全吸收设计、THz全禁带光子晶体以及THz磁共振器件等。中科院紫金山天文台副研究员张文先生 报告题目:太赫兹高灵敏超导热电子探测器技术   张文先生谈到,太赫兹波段存在丰富的分子转动谱线和原子精细结构谱线,通过对这些分子谱线的高频率分辨率观测,可以研究天文、大气和深空探测等领域的重要科学问题。超导HEB混频器是1HTz以上灵敏度最高的相干探测器,已经成功应用到Herschel空间卫星、SOFIA天文台和地面APEX望远镜开展天文观测研究。张文先生所在系统改进了超导HEB热电子混频器的热点模型,深入理解其机制,率先实现了4K闭环制冷环境下的超导HEB混频实验;并研制国际上最高频率(5.3HTz)天线耦合超导HEB混频器,灵敏度率先突破5倍量子噪声极限。此外,张文先生还介绍了其课题组在太赫兹超导HEB混频器应用方面的研究工作。 天津大学姚建铨院士 报告题目:太赫兹技术及太赫兹仪器的发展趋势   姚建铨院士在报告中介绍到,随着太赫兹科学技术的飞速发展,对太赫兹科学仪器也不断提出新的需求,不仅推动了太赫兹科学仪器的快速发展,也催发了太赫兹前沿技术的不断涌现。同时,太赫兹科学仪器的前沿技术也表征着太赫兹科学仪器的先进性和尖端性,引领着太赫兹科学仪器的进一步发展。在这一部分内容中姚建铨院士介绍了太赫兹技术国内外研究及应用概况,光学太赫兹辐射源研究及太赫兹功能器件-微结构材料的应用等方面的情况。并且指出,微结构光学材料在激光技术、THz技术等方面可望实现传输、源、开关、放大、滤波、调制、吸收、偏振等功能,有十分重要的科学价值及实际意义。如果将微结构材料施加各种场(电、磁、声、光、热、机械等)作用可望产生新现象、出现新机理、实现新功能、制成新器件。此外,姚建铨院士还介绍了基于法布里-珀罗干涉仪的THz波长测试法及THz傅立叶变换光谱仪的相关研究工作。 首都师范大学赵国忠教授 报告题目:太赫兹波产生探测及太赫兹时域光谱技术   赵国忠教授谈到,对于太赫兹光谱应用来说,获得宽带太赫兹辐射至关重要,目前,实验室使用的宽带太赫兹辐射源以光整流和电导天线为主。随后详细介绍了基于飞秒激光的宽带光电导天线的设计、研制,光电导天线温控系统和太赫兹辐射测量装置的研制,光电导天线太赫兹辐射特性等方面的研究工作。另外,半导体表面太赫兹辐射可以提供方便的宽带太赫兹源,进一步研究非常必要。其中,富含缺陷的氮化铟有望代替砷化铟成为高效、实用的宽带太赫兹辐射源。此外,赵国忠教授还指出太赫兹发射光学的研究也有助于探索半导体表面和内部的载流子动力学。   此外,北京理工大学胡伟东教授、哈尔滨工业大学(威海)田兆硕教授、中国计量科学研究院孙青博士等也就太赫兹技术现状及研究进展做了精彩的报告。 北京理工大学胡伟东教授 报告题目:Progress in the Terahertz Pulse 3D Imaging System (220GHz) 哈尔滨工业大学(威海)田兆硕教授 报告题目:THz激光F-P旋转透过率研究 中国计量科学研究院孙青博士 报告题目:太赫兹光谱与功率计量技术   大会报告 应用篇 首都师范大学沈京玲教授 报告题目:太赫兹光谱技术在毒品检测中的应用研究   沈京玲教授介绍到,太赫兹波能够用于毒品检测和识别是基于下列两个事实:多数毒品在太赫兹波段具有特征吸收;多数包装材料如纸张、织物、塑料、木头,对太赫兹波是透明的。将两者结合起来,使太赫兹技术非常适于进行毒品的无损检测应用。随后,沈京玲教授详细的介绍了所在课题组近年来在毒品检测识别方面的相关工作:应用太赫兹光谱和成像技术对毒品进行品种鉴定和含量分析,完成了确定毒品纯度和有效成分含量的理论和实验方法;对隐藏在信封和包裹中的毒品进行探查;建立了含有38种纯度在90%以上的毒品的太赫兹光谱数据库等。 上海理工大学副院长朱亦鸣教授 报告题目:基于太赫兹技术的药物分析与检测   朱亦鸣教授介绍到,国内外现有药物检测技术手段无法有效的检测出假药,而且无法做到在线式检测。太赫兹波处于微波电子学与红外光子学的交叉、过渡区域,是被公认的有重要科学价值和巨大应用前景的频率窗口。太赫兹技术先后被列为“改变未来世界的10种技术”及“2011年六大类电子类新技术”之一,是分析分子有机功能基团最有效的手段。基于这些优势,朱亦鸣教授所在课题组利用时域太赫兹波谱系统对中西药做了相关检测,结果显示太赫兹光谱技术对各种药物鉴别率可达90%,扫描速度达到1s/片,可以做到无损探测及真正的在线检测和分析,并且结合HIPHOP模型,还可以进行药理基团的解析。 中国石油大学(北京)赵卉博士 报告题目:太赫兹技术在油气光学中的应用   赵卉博士在报告中介绍说,油气光学是研究油气物质的光学性质、光在油气介质中的传播规律和光学技术在油气领域应用的科学。它是在石油与天然气工程、地球探测与信息技术、材料科学与工程、物理学、光学工程等学科发展与支持的基础上建立起来的一个新兴交叉学科。针对国家重大需求,并且基于太赫兹与油气物质相互作用的认知,赵卉博士所在课题组建设了以油气资源、石油化工为研究对象的太赫兹波谱与探测技术平台,开发了油品光学性能透射式测试装置,岩石光学性能透射式测试装置,基于对岩石有机质、干酪根、基础油、汽油等多种体系的太赫兹频段特征吸收带的认知,建立了石油化工产品太赫兹光谱特性和理化性能之间的关系,为太赫兹技术在油气领域的应用提供了实验基础。   此外,中科院上海微系统所谭智勇博士、中科院工程物理研究院流体物理研究所助研朱礼国先生也就太赫兹技术的应用做了精彩的报告。 中科院上海微系统所谭智勇博士 报告题目:太赫兹量子器件及其成像应用 中科院工程物理研究院流体物理研究所助研朱礼国先生报告题目:超快太赫兹光谱在研究太阳能光伏材料中的应用   除了以上各位专家的报告之外,安捷伦科技(中国)有限公司叶伟斌先生,脉动科技有限公司陆明先生,先锋科技股份有限公司Albert Rsdo-Sanchez先生、Patrick F. Tekavec先生,顶尖科仪(中国)股份有限公司贺雪鹏先生也介绍了公司的产品特点及研发情况。 安捷伦科技(中国)有限公司叶伟斌先生 报告题目:安捷伦毫米波测试解决方案 脉动科技有限公司陆明先生 报告题目固体THz源和异步采样THz时域光谱系统 先锋科技股份有限公司Albert Redo-Sanchez先生 报告题目:Terahertz Instrumentation Status and Market Outlook 先锋科技股份有限公司Patrick F. Tekavec先生 报告题目:High Power THz sources 顶尖科仪(中国)股份有限公司贺雪鹏先生 报告题目:飞秒光纤激光器及其在太赫兹光谱学中的应用   报告会之后,与会代表参观了首都师范大学太赫兹光电子学教育部重点实验室,相关工作人员为与会代表详细介绍了实验室整体概况,并就相关仪器及其研究的课题同与会代表进行了深入的沟通。 与会代表参观太赫兹光电子学教育部重点实验室 太赫兹光电子学教育部重点实验室部分仪器设备 与会代表合影
  • 来自激光尾流场加速光子的多毫焦耳太赫兹辐射
    近日,韩国基础科学研究所的Taegyu Pak等人观察到高功率太赫兹辐射从被100太瓦级激光脉冲照射的气体喷射器中发射出来,用于电子的激光视场加速。在氮气靶上,小于10太赫兹时产生了超过4毫焦耳的能量,激光到太赫兹的转换效率约为0.15%。这种强大的太赫兹辐射被认为是由等离子体电子产生的,这些电子在激光脉冲时间尺度上加速。该模型通过粒子在细胞中的模拟和分析计算进行研究,以更好地理解激光尾流场加速中高能太赫兹辐射的产生机制。太赫兹(THz)是位于电磁波谱的微波和红外区域之间的一个频段,这个频段下传统技术在产生和检测辐射方面效率低下,人们正在通过开发新的太赫兹源和检测器来弥补这一缺口。基于激光的太赫兹源由于能够产生相干的、单周期到多周期的、宽带(或窄带)辐射而备受关注。这种源也可以提供与驱动激光的自然同步,允许超快时间分辨光谱和成像。最近,高功率飞秒激光器被用来产生强大的太赫兹辐射,以及探索新的太赫兹驱动的现象,如分子排列,谐波生成和分子加速等。在许多基于激光的源中,基于激光等离子体的源很适合于高功率太赫兹的产生。等离子体已经被电离,因此可以维持高电磁场,当高功率激光脉冲被聚焦到一个小的体积中用于产生能量可存储的太赫兹时,几乎不需要材料损坏。从激光产生的气体和固体密度等离子体中产生的相干太赫兹已经被广泛地研究。在气体中,单色或双色激光产生的等离子体可以通过超快的激光驱动电流产生相干的宽带太赫兹辐射。在双色激光混合中,通过使用中红外激光驱动器,激光到太赫兹的转换效率提高到百分比水平。最近,从一个被高能量皮秒激光脉冲照射的金属箔中观察到了几十毫焦耳的太赫兹能量。然而,与气体靶材不同,高密度的靶材往往会带来靶材碎片和靶材重装的问题,这使得它们不利于用于连续或高重复率的操作。激光尾流场加速器(LWFA)是一种基于气态等离子体的紧凑型电子加速器方案,可以产生宽带电磁辐射。在激光尾流场加速器中产生的相对论性电子束,当它通过相干过渡辐射离开等离子体-真空边界时,可以发射出太赫兹辐射。当电子束的长度与发射的太赫兹辐射的波长可比拟或小于辐射波长时,就会出现这种情况,且单个电子产生的太赫兹场在辐射方向相干叠加。在实验中,用10 TW级激光器从激光尾流场加速器中观察到小于100纳焦的太赫兹能量,太赫兹辐射的波形被单次测量,也被利用来诊断电子束本身。然而到目前为止,激光尾流场加速器输出的太赫兹能量尚未超过微焦水平,人们也没有研究过太赫兹能量的扩展。韩国基础科学研究所的Taegyu Pak等人通过使用相对论激光科学中心(CoReLS)的150太瓦激光器,在激光尾流场加速器中明显增强了太赫兹的产生,达到了多毫焦耳水平。研究人员测试了激光尾流场加速器和各种目标条件下太赫兹的生成,并同时表征了两种光束,以便更好地了解激光尾流场加速器中太赫兹产生的起源。实验结果表明,多兆焦耳的太赫兹生成并不完全由相干跃迁辐射模型解释。研究人员研究了太赫兹产生的另一种可能机制,即由激光推动力和等离子体加速的等离子体电子的相干辐射。实验装置示意图如图1所示,激光脉冲电离气体射流并通过激光尾流场加速器加速等离子体电子,同时产生太赫兹辐射。在电子束通过带有偶极磁铁的电子光谱仪后,测量电子能谱。从等离子体发出的太赫兹辐射被准直,传送到真空室外,然后重新聚集到热释电检测器上进行检测。图1 激光驱动的电子加速和太赫兹生成示意图发出的太赫兹辐射通过其光谱、能量和偏振进行了表征,得到的太赫兹光谱在图2(a)中以散射形式显示,水平误差条代表滤波器传输带的光谱宽度,红线表示放置在光束路径上所有过滤器的整体传输曲线。其偏振通过一个带有热释电探测器的线栅偏振器来表征,收集35个热释电信号并取其平均值,结果显示在图2(b)中。测量的偏振分布是各向同性的,与电子的径向加速所预期的偏振相一致,沿垂直偏振方向有一些明显的增强。图2 太赫兹辐射的光谱和偏振表征
  • 德国研制可探测宇宙射线小型太赫兹激光仪
    新华社柏林电 德国两家科研机构2010年5月28日报告说,它们合作开发出一种可探测宇宙射线的小型太赫兹激光仪,由于重量轻,该设备可以在科研用飞机上使用,从而方便科学家研究宇宙奥秘。   德国航空航天中心与保罗・ 德鲁德固体电子研究所在一份新闻公报中说,科学家常常借助先进的波谱学方法研究宇宙中的各种微粒,由此探寻恒星和行星演变的来龙去脉。这些微粒发射出的射线常常在0.3到10太赫兹的频率范围内,介于微波和红外线之间。科学家尤其对包含众多信息的4.7太赫兹左右的射线感兴趣,但这些射线会被地球大气层吸收,因此在地面无法测量到,需要将有关设备运到高空进行探测。   德国新研制的这种太赫兹激光仪输入功率只有240瓦,总重量仅15千克,设备核心部件是一个只有几毫米大小的量子级联激光器。
  • 太赫兹光谱有望解释水的异常性质
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201807/insimg/ce83a30b-4cc7-4eaf-8986-3042bceab55b.jpg" title=" 微信图片_20180709110801.jpg" / /p p br/ /p p   液态水维持着地球上的生命,但其物理性质对于研究人员来说仍是个谜。最近,一个瑞士研究团队利用已有的太赫兹光谱技术测量了液态水的氢键。利用这种技术开展的工作,未来或许能帮助解释水的特殊性质。该团队在美国物理联合会(AIP)出版集团所属《化学物理学报》上报告了他们的发现。 /p p   研究人员利用超短可见激光脉冲激发了溶解在水中的染料分子,从而改变了它们的电荷分布。随后,太赫兹脉冲测量了周围水分子的反应。频率相对较低的太赫兹光谱使研究人员得以分析水分子之间存在的力。观察这些分子间的力或能帮助研究人员理解水的异常现象,因为液态水分子中的氢键构成了水的很多意想不到的性质,比如水在4℃时密度最大。 /p p   “我们在太赫兹频率范围内看到的反应极其缓慢。水通常被视为非常快的溶剂,能在亚皮秒量级内作出反应。但我们在太赫兹波段发现了10皮秒左右的时间尺度。”论文作者之一Peter Hamm介绍说。 /p p   但Hamm警告不要对此过分乐观。“结果经常有点令人失望,因为像水一样的液体的太赫兹光谱非常宽,并且极其模糊。这导致从里面提取信息很困难。”最新研究采用的时间分辨技术,或能克服这一限制。下一步,研究人员计划利用该方法探寻水仍处于液态但低于冰点时的结构和动力学机制 。 /p p br/ /p
  • 太赫兹光谱有望首次应用到临床医学
    6月23日,记者从三军医大西南医院获悉,该院综合实验研究中心主任罗阳教授与检验科主任府伟灵教授及其团队在历时4年研究后,成功利用太赫兹光谱首次实现了多种临床致病菌的快速检测,其检测时间只需要10秒左右,这意味着太赫兹光谱将有望首次在临床医学上运用,具有划时代意义。  该研究成果日前发表在国际著名光学期刊《生物光子学》上,题目为《太赫兹时域光谱用于快速无标记检测和评估病原菌》。  “太赫兹波,也就是频率在0.1到10太赫兹之间的电磁波。”府伟灵介绍,和X射线相比,它波长更多,穿透力却远不如X射线。  从2012年起,这个研究团队开展了大量研究,他们发现太赫兹波对水吸收特别敏感,其生成的光谱能检测出不同细胞的含水量,甚至连细胞内部水分子的振动或旋转,光谱都会呈现出不同的形状。  为进一步开发太赫兹光谱的检测潜能,他们开始研发太赫兹生物检测技术。怎么检测?罗阳举例说,以肿瘤为例,肿瘤内部的新生血管远多于正常组织,血管里含有大量水份,太赫兹波一照就出现明显的吸收,从而能准确判断病情。  目前,西南医院检验科已经收集了金葡萄菌、大肠杆菌、绿脓杆菌等细菌的太赫兹特征性光谱。同时,他们已向国内超过100家医院检验科发出邀请,欲建立不同细胞和细菌的光谱数据库。届时,只需要极少量血或唾液,就能快速检测出感染上了什么细菌,结果更准确,实现科学用药。
  • 山东科技大学太赫兹技术实验室通过青岛市重点实验室专家评审
    9月8日,青岛市科技局组织专家对申报青岛市重点实验室的山东科技大学太赫兹技术实验室进行评审。青岛市科技局组织的专家,青岛市科技局副局长徐法坚、青岛经济技术开发区科技局局长吴志成,山东科技大学副校长靳奉祥、校长助理贺国平,科研处、学科建设办公室及理学院负责人出席了评审会。会议由青岛市科技局基础处处长张宁主持。   听取情况汇报、实验室现场考察及质询答疑后。专家委员会认为:太赫兹科学与技术作为一门前沿交叉学科,具有重要的学术价值和广阔的应用前景,建立青岛市太赫兹技术实验室,对于促进青岛市在该领域科技创新和产业化发展具有重要意义 拟建实验室拥有一支学术水平高、研发经验丰富的研究团队,承担和完成了多项国家和省、市级科研项目,在太赫兹时域光谱技术及相关器件等方面具有较强的科技创新能力 拟建实验室定位准确,研究方向设置合理、发展思路清晰、专业特色突出、建设方案可行、运行机制规范,具有很好的产学研结合基础,符合青岛市重点产业发展的需求 山东科技大学已经具备了建设“青岛市太赫兹技术重点实验室”的实验条件和基础设施。同时,专家组针对实验室研究方向的优化调整、科研人才的培养等方面提出了意见和建议。   评审会前,靳奉祥在致辞中对各位领导和专家的到来表示欢迎,他说,太赫兹技术实验室是山东科技大学发展过程中加强科学研究的一个重要组成部分,各位专家和领导为实验室的下一步发展提出了宝贵意见和建议,实验室将认真听取意见,积极为青岛市的科技进步和经济社会发展做出贡献。   徐法坚在总结讲话中说,太赫兹技术应用前景广阔,青岛市对山东科技大学太赫兹实验室抱有很大期望,希望实验室今后进一步加强基础研究,发挥优势,形成特色,并在应用研究领域找到与地方经济的结合点,为青岛新兴产业发展提供支持。   最后,贺国平对各位专家和青岛市科技局领导对山东科技大学的支持表示感谢,他说,各位专家提出了中肯意见,实验室将按各位专家和领导的意见和建议,集中力量,求得突破,争取今后为地方经济发展提供更好的服务和支持。   太赫兹辐射指的是频率位于微波和红外光之间的电磁辐射,与传统光源相比,具有可穿透大多数介电材料、被导电材料完全反射等特点,具有可见光和X射线所不具备的优势,太赫兹在物理、化学、天文学、分子光谱、生命科学和医药科学等基础研究领域,以及安全检查、医学成像、环境监测、食品检验、射电天文、卫星通信、武器制导和军用雷达等应用研究领域具有巨大的科学研究价值和广阔的应用前景。   山东科技大学太赫兹技术研究所成立于2003年,由刘盛纲院士任所长,是国内较早开展该领域研究的单位之一。目前在太赫兹时域光谱技术及其成像、光学差频太赫兹源与太赫兹光纤激光器的开发和应用、太赫兹器件三个方向开展研究,具有独特的学科优势和良好的前期研究积累。
  • 上海光机所在单层WSe2-Si超快太赫兹发射光谱研究方面取得进展
    近日,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室与国科大杭州高等研究院和中国科学院空天信息研究院合作,在二维WSe2-Si的混合维度异质结中瞬态电流太赫兹发射动力学以及谷自由度探测方面取得研究进展。相关研究成果以 “Ultrafast Drift Current Terahertz Emission Amplification in the Monolayer WSe2/Si Heterostructure”为题发表于The Journal of Physical Chemistry Letters上。基于单层过渡金属硫族化合物(TMDs)的范德瓦尔斯异质结作为同时具有强的自旋动量锁定效应与能带可调等丰富的光电性质的二维半导体,在片上集成光源、新型光电探测和谷电子学技术中具有重要的应用潜力。图1 (a)太赫兹发射光谱系统示意图;(b) 太赫兹脉冲时域波形;(c) 异质结中耗尽电流辐射太赫兹示意图。本工作首次利用非接触的超快太赫兹发射光谱技术探测了TMDs-Si异质结中耗尽场放大的瞬态光电流,并利用其探测了其中单层二维材料放大的谷自由度并实现了全光操控。本工作为基于二维-三维混合维度异质结的谷电子学探索提供了新思路。在这项工作中,研究人员使用时间分辨太赫兹发射光谱系统,研究了单层WSe2-Si异质结经飞秒激光泵浦后的超快太赫兹发射动力学过程。通过对太赫兹发射机理的分析,发现并验证了WSe2-Si异质结中增强的耗尽电场加速载流子迁移,从而导致更大的瞬态电流与对应10倍增强的太赫兹辐射的作用过程。图2 (a) 光学选择定则示意图;(b) 单层WSe2与异质结中的泵浦光手性依赖现象。同时,利用时间分辨太赫兹发射光谱系统可在无需特殊环境(低温、磁场、应力)的室温条件下探测到单层WSe2与WSe2-Si异质结中泵浦光手性依赖的谷光电流,证实了二维-三维异质结中自旋动量锁定效应的存在,同时也发现单层WSe2材料的谷-动量锁定的光电流手性在异质结中得到了保留。由此利用谷光电流偏振依赖特性,也可以实现对半导体材料发射太赫兹的有效调控。硅基二维-三维材料异质结中实现太赫兹辐射放大的方法拓展了基于超快光学方法的太赫兹辐射源提升效率方式,对于新型片上可集成的太赫兹芯片研究具有重要的意义。此外,超快太赫兹发射光谱在室温条件下对于TMDs材料中谷光电流的无接触探测拓宽了探测自旋动量锁定效应的方法路径,为基于此类异质结的谷电子学的研究提供了新的思路。
  • 美研究人员研制成功一种用于光谱学的新型太赫兹激光器
    从左至右:利哈伊大学(Lehigh University)电气和计算机工程研究生Ji Chen、Liang Gao和Yuan Jin在利哈伊大学Sinclair大楼Sushil Kumar的太赫兹光电子(Terahertz Photonics)实验室  美国研究人员展示了一种具有破记录输出功率的太赫兹半导体激光器,可用于各种形式的光谱学和其他应用。  以强烈的单色辐射光束形式提供的光束是众所周知的技术,可以追溯到1960年推出的第一台激光器。依靠激光器来实现超快速和高容量的数据通信、制造、手术以及商业应用,例如条形码扫描仪、打印机,诸如CD和DVD的光盘,自动驾驶车辆,激光显示表演和动态艺术装置,当然还有光谱学。  从红外到紫外的激光器被广泛使用,然而,利哈伊大学的Sushil Kumar团队研究了太赫兹激光器。太赫兹辐射位于微波和红外区域之间的电磁波谱区域。它们可穿透塑料、织物、纸板和其他材料,可用于检测各种化学品。太赫兹激光有可能用于非破坏性、非侵入性筛查和检测爆炸物,非法药物,检测药物化合物,筛查皮肤癌。  为了真正有用,激光必须以非常精确的波长发射,这通常通过单模激光器中的“分布式反馈”来完成。太赫兹激光器必须是单模的。随着太赫兹辐射的传播,其中一部分会被大气湿度吸收,这是非常不利的。因此,一个用于光学传感和分析的太赫兹激光,不管距离多远,即使几米,也必须避免这个问题。现在,Kumar的团队一直致力于通过提高光功率输出来提高强度和亮度。  他们研究了“表面发射”(而不是“边缘发射”)的单模激光器。已经找到了一种将周期性引入激光器光学腔的方法,使其能够从根本上辐射高质量的光束并提高辐射效率。该团队将这种方法称为“混合二阶和四阶布拉格光栅”。他们建议,他们的混合光栅不一定限于太赫兹激光器,而是可以用于增强几乎任何表面发射半导体激光器。  该团队报告了单模太赫兹激光器的功率输出为170毫瓦的实验结果。这是迄今为止这种激光器中功能最强大的。因此他们证明,它们的混合光栅可以通过简单地改变激光腔内压印光栅的周期来精确控制发射波长。库马尔表示,1000毫瓦的设备应该很快成为可能,这可能会吸引制造商的眼球。  原文请查阅:  Power up: New lasers for spectroscopy  SpectroscopyNOW.com  Channels: Atomic  Published: May 15, 2018 符斌供稿
  • 2012年全球实验室太赫兹光谱市场约2000万美元
    太赫兹光谱的特性使其可以应用在各种行业,并且目前许多大公司已经在应用该技术。新竞争者的加入和技术本身的快速发展预示着其已经成长为分子光谱市场的一个主要部分。   太赫兹波介于微波与红外之间,波长大概在0.1mm(100um)到1mm范围。太赫兹光谱和其他光谱技术形成互补,许多化合物(毒品、炸药和各种形态的原料药)在太赫兹波段具有独特的指纹特征谱。太赫兹波不会引起生物组织的光致电离,人类可以安全接触。各种各样的商业太赫兹光谱仪已经在市场上销售,包括传统的频域系统、时域系统、成像系统和便携式仪器。   在实验室应用方面,太赫兹光谱技术快速地被大公司采用进行质量分析和产品开发。英特尔公司采用该技术验证它在半导体和电子工业的实用性。许多大型制药公司正在使用该技术用于固体制剂的开发和QA&ndash QC。在临床和医学应用方面,太赫兹光谱也有显著的尝试,尽管其中许多工作目前还处于实验室研究阶段。   2012年的全球实验室太赫兹光谱的需求约为2000万美元,并且至少有六个主要的竞争对手能够提供商业化太赫兹光谱仪器。尽管2013年太赫兹光谱市场面临一个具有挑战性的环境,但是仍然会获得中等个位数的增长。而且到2014年这一市场预期会达到两位数的强劲增长。 2012年实验室太赫兹光谱需求的行业分布   半导体、电子产品、纳米技术行业所占份额最大,达25%;其次是制药行业,为23%;位于第三位的是学术研究领域,为21%;其他应用太赫兹光谱较多的领域还有临床和医学领域14%,政府机构为11%,还有6%的份额为其他行业分享。 编译:刘丰秋
  • 上海光机所在太赫兹波电子加速研究中取得重要进展
    近期中国科学院上海光学精密机械研究所李儒新、田野和宋立伟团队在太赫兹波电子加速领域取得重要进展。研究团队基于上海光机所新一代超强超短脉冲激光综合实验装置,利用超强超短激光驱动丝波导产生毫焦耳级太赫兹表面波,并采用表面波进行电子加速,解决了高能量太赫兹波产生以及自由空间太赫兹波至波导能量耦合效率低等难题。该项研究将太赫兹波的产生、传输及耦合集成到波导上,并在波导管中5mm距离实现了最高1.1 MeV的电子能量增益和210 MV/m的平均加速梯度,较当前太赫兹波加速电子能量增益的世界纪录提升了近一个量级,同时为全光学集成化电子加速器研究开辟了崭新途径。相关研究成果于2023年7月13日以“Megaelectronvolt electron acceleration driven by terahertz surface waves”为题发表于《自然光子学》(Nature Photonics)期刊。   小型化集成化的电子加速器将极大地推动其在前沿科学与技术领域的广泛应用。利用太赫兹波驱动电子加速作为近十年来发展的新兴加速技术,能够提供比传统射频加速更高的加速梯度,是实现小型化、低成本加速装置的可靠途径之一,有望将加速器的应用推广向包括小型实验室、医院等在内的更多应用场景。   当前发展的太赫兹电子加速基于自由空间的太赫兹源技术,太赫兹波产生后,经收集、传输、偏振转换,再聚焦至用于加速电子的波导结构。实验上,为了尽可能提高波导内部的太赫兹加速梯度,需要太赫兹源提供足够的能量以弥补光路中散射、反射,以及模式转换的能量损耗。常见的太赫兹源,例如基于光学晶体产生的太赫兹辐射通常需要经过光学元件的收集及导引,并通过分段波片或相移片进行模式转换,不可避免地造成能量损失。相比自由空间的太赫兹辐射,束缚于介质表面的光学表面波,如表面等离极化激元(surface plasmon polaritons, SPP),为太赫兹的导引与模式转换提供了全新的思路。   研究团队近年来在小型化的激光加速电子源与辐射光源等领域长期探索,并于近期发现了太赫兹表面等离极化激元相干放大机制(Nature 611, 55–60 (2022)),能够实现高功率表面等离极化激元相干辐射源。围绕轴对称金属圆柱形波导上的太赫兹表面等离极化激元的索莫菲波属性,以及对低色散基横磁(TM)模式,研究团队进一步将此高功率的太赫兹表面等离极化激元直接与加速波导耦合,实现了85%的耦合效率,能有效将飞秒激光泵浦金属圆柱波导产生的毫焦耳级太赫兹能量与电子束作用,并最终在5mm长度上使电子获得最高1.1 MeV的能量增益及210 MV/m的平均加速梯度,将当前国际上太赫兹波驱动的电子能量增益最好结果提升了近一个量级。   未来,研究团队将基于这一太赫兹表面波模式驱动电子加速的全新方案进一步发展集成化的全光学电子加速技术,并拓展其在小型辐射源及材料检测等领域的交叉应用。   相关研究工作的合作团队包括北京航空航天大学与张江实验室等,该工作共同第一作者为上海光机所博士研究生余谢秋与特别研究助理曾雨珊,工作得到了科技部重点研发计划、中科院先导B、基础研究特区计划、中科院人才引进计划、国家自然科学基金、中科院青促会和上海市科技启明星扬帆计划等支持。图1 太赫兹表面波驱动电子加速实验示意图图2 实验测得的最大电子能量增益结果图3 自由空间(a)与金属圆柱波导(b)太赫兹耦合状态下,加速波导内的电场强度对比(c)
  • 微型光谱仪之反射检测
    1、技术简介  光在两种物质分界面上改变传播方向又返回原来物质中的现象,叫做光的反射。正是因为光在物体表面发生的反射,我们的眼睛才能感知到周围的世界的颜色与景象。反射是通过光入射到物体表面后在不同波长段的反射率差异引起。光谱仪获得的反射光谱信息就像人眼所见到的视觉内容一样,但是光谱信息更为数据化、更客观。反射测量可以测试物体的颜色,或者通过判定物体的反射光谱差异进行多样品的筛选和品控。 镜面 粗糙表面图5.1 反射原理图  2、 应用说明  由于某些检测样本的特殊性,不能完全依赖于化学方法进行检测,反射光谱模型作为一种迅速、高性价比的检测方法,可以作为化学分析方法在其他应用领域的替代方案,甚至可以直接用来测试粉末状样品。反射光谱检测方法不能判定是否适用于被测目标样本的原有模样,所以还是需要尝试多次对照测试它们的反射光谱,提高光谱数据的准确性。  化学分析的方法可以用来提高最低检出限,并确定掺杂成分,但是光学的方法可以进行预先的快速查看与筛选。将反射光谱检测与化学计量学相结合,利用可见光和近红外漫反射光谱提供快速、无损的检测。在实际检测中,可以分析不同的样本之间的差异。数学上来说,主成分包含在了定义的所有波长多维空间的范围内。主成分使我们能够获得多维数据集和重要维度,然后从无意义的噪音中分离出有意义的信息。  食品安全:香料检测,香蕉成熟度分析,芒果与鳄梨区分检测等   自然环境:水体汞污染监测,农作物分析等  3 、典型产品和配置  颜色检测配置:  1. 光谱仪  2. 光源  3. 积分球:积分球可以180° 收集样品表面的反射光,所以它能尽可能多地收集样品表面的反射光。反射式积分球还能使用在弯曲表面,或者颜色测量。它能将样品表面发射的光很好地在积分球内部进行匀化,然后再耦合到光谱仪。反射光通过圆形的入射光孔径进入积分球,然后经过分球内壁涂抹的特殊涂层材料的均匀反射。图2 积分球示意图  4. 反射探头:当需要快速测量样品或者应用在样品表面非常小的采样点时,反射探头既可以测量镜面反射,也可以测量漫反射,而且可以基于光源和光谱仪的配置不同,选择不同类型的扩大波长范围的反射探头。探头的发射光和反射光是同一方向的,接收到的光是反射光的一部分,所以使用反射探头测量反射光谱是一种相对测量。图3 反射探头  5. 采样附件(光纤、滤光片、透反射支架、动态样品台等):透反射支架用来固定反射探头的标准配件,同时也可以用于透射测量。使用透反射支架,可以有效地减少光源对样品的过度加热,对于生物样品或者有机样品,还有那些低熔点的样品非常重要 动态样品台,基于样品台旋转或者直线移动来对样品进行测量,并获得测量的平均信号。这种测量方式避免了结果的多样性,提高了样品测量的均一性结果,特别是对于谷物、种子和土壤类等不均一的样品,是比较理想的选择。 图4 反射支架和样品台  6. 准直透镜:在做反射测量时,准直透镜可以使用在光纤的末端来准确地固定入射光和反射光的角度。镜面发射或者漫反射都可以使用这样的测量方式,但是我们需要固定夹具来对测量系统进行固定。准直透镜必须预先调焦来避免光束的发散,来保证获得更好的光谱。  7. 光谱仪控制软件图5 反射检测典型配置  典型配置  典型产品:高灵敏度光谱仪,光源,滤光片,积分球,透反射支架,动态样品台,准直透镜  4 、应用文章  4.1 香料掺假检测图6 不同香料检测光谱  4.2 香蕉成熟度检测图7 不同成熟度香蕉光谱图  4.3 芒果与鳄梨区分检测图8 芒果与鳄梨检测光谱  4.4 基于SPR快速检测花生过敏源图9 过敏源光谱  4.5 无人机智能农业检测 图10 无人机农业检测光谱图  4.6 农作物成分检测图11 农作物成分光谱图  4.7 水体汞污染监测图12 水体检测光谱图(来源:海洋光学)
  • 通知|太赫兹光谱与测试应用研讨会 暨“太赫兹光谱与测试工作组”成立大会 邀请函
    p style=" text-align: justify text-indent: 2em " strong 太赫兹电磁波段具有频谱资源丰富、穿透性强等特点。 /strong 随着太赫兹科学技术研究的不断发展,技术应用需求市场正在形成,其中尤为突出的是对于太赫兹光谱技术应用需求。太赫兹光谱检测与成像技术作为太赫兹领域的基础技术, strong 正在食品安全、公共安全、材料科学及生物技术领域显示出其独特的优势和广阔的应用前景 /strong 。 /p p style=" text-align: justify text-indent: 2em " 在多家科研机构与相关企业的努力下, strong 毫米波太赫兹产业发展联盟拟成立“太赫兹光谱与测试工作组” /strong ,将会对太赫兹光谱技术的应用及其标准化工作产生非常积极的影响,并促进加快太赫兹光谱检测应用的发展,填补我国太赫兹频段物质光谱与材料电磁特性数据库的空白。为了进一步推进太赫兹光谱与测试应用的相关工作,加快服务平台建设, strong 联盟将于2020年1月12日举办“太赫兹光谱与测试应用研讨会”暨“太赫兹光谱与测试工作组”成立大会,旨在分享科研成果,加强企业交流,探讨产业发展道路。 /strong 欢迎各位联盟成员积极参与,献言献策,共同推进太赫兹产业发展。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/55c27dd3-a921-420e-9149-f3c3928176fe.jpg" title=" 捕获1.JPG" alt=" 捕获1.JPG" / /p p style=" text-align: center text-indent: 0em " span style=" font-family: 黑体, SimHei font-size: 24px " strong 大会组织 /strong /span /p p style=" text-align: justify text-indent: 2em " strong 主办单位 /strong :毫米波太赫兹产业发展联盟 /p p style=" text-align: justify text-indent: 2em " strong 承办单位: /strong 莱仪特太赫兹(天津)科技有限公司 /p p style=" text-align: justify text-indent: 2em " strong 协办单位: /strong 爱德万测试(中国)管理有限公司 中国科学院上海微系统与信息技术研究所 天津大学精密仪器与光电子工程学院 /p p style=" text-align: justify text-indent: 2em " strong 支持媒体: /strong 仪器信息网 /p p style=" text-align: center text-indent: 0em " span style=" font-family: 黑体, SimHei font-size: 24px " strong 大会信息 /strong /span /p p style=" text-align: justify text-indent: 2em " strong 会议规模: /strong 120人 /p p style=" text-align: justify text-indent: 2em " strong 时间: /strong 2020年1月12日 13:30-17:40 /p p style=" text-align: justify text-indent: 2em " strong 地点: /strong 天津高新区党群活动中心三层会议大厅举行(天津市西青区海泰发展三道8号) /p p style=" text-align: justify text-indent: 2em " strong 会议签到: /strong 13:00-13:30,三层会议大厅走廊 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 633px height: 546px " src=" https://img1.17img.cn/17img/images/201912/uepic/93942039-2a47-4988-acab-22f423d5b644.jpg" title=" 捕获2.JPG" alt=" 捕获2.JPG" width=" 633" height=" 546" / /p p style=" text-align: center text-indent: 0em " span style=" font-size: 24px " strong span style=" font-family: 黑体, SimHei " 报名方式 /span /strong /span /p p style=" text-align: justify text-indent: 2em " 如您需要报名,请扫描下方二维码,填写报名信息,期待您的到来! /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 194px height: 197px " src=" https://img1.17img.cn/17img/images/201912/uepic/89c5de2e-48e4-4e9e-a3b6-675b1c6e2800.jpg" title=" 捕获.JPG" alt=" 捕获.JPG" width=" 194" height=" 197" / /p p style=" text-align: center " span style=" text-indent: 0em " 扫描二维码,填写报名信息 /span /p p style=" text-align: center text-indent: 0em " span style=" font-family: 黑体, SimHei font-size: 24px " strong 会议赞助 /strong /span /p p style=" text-align: justify text-indent: 2em " 本次研讨会的会场外侧具有上百平米的展示区域, strong 赞助单位 /strong 可展示易拉宝、产品、宣传手册等,感兴趣的单位请与 strong 联盟 /strong (下方主办单位)取得联系。 /p p style=" text-align: justify text-indent: 2em " strong 联系方式 /strong /p p style=" text-align: justify text-indent: 2em " 主办单位:毫米波太赫兹产业发展联盟 /p p style=" text-align: justify text-indent: 2em " 联系人:王贺娟 /p p style=" text-align: justify text-indent: 2em " 联系方式:17810282650 /p p style=" text-align: justify text-indent: 2em " 微信公众号:毫米波太赫兹产业发展联盟 /p p style=" text-align: justify text-indent: 2em " 邮箱:service@chinamta.org.cn /p p br/ /p p style=" text-align: justify text-indent: 2em " strong 承办单位:莱仪特太赫兹(天津)科技有限公司 /strong /p p style=" text-align: justify text-indent: 2em " 联系人:崔鹤峰 /p p style=" text-align: justify text-indent: 2em " 联系方式:13672188587 /p p style=" text-align: justify text-indent: 2em " 微信公众号:莱仪特太赫兹& nbsp & nbsp & nbsp & nbsp /p p style=" text-align: justify text-indent: 2em " 邮箱:let@letthz.onaliyun.com /p p style=" text-align: justify text-indent: 2em " br/ /p p style=" text-align: justify text-indent: 2em " strong 关于毫米波太赫兹产业发展联盟(附入会指南及申请表) /strong /p p style=" text-align: justify text-indent: 2em " 毫米波太赫兹产业发展联盟(下文简称:联盟)于 2019 年 4 月 26 日上午在京成立,其宗旨是加快我国毫米波太赫兹产业发展,搭建产业协作与孵化平台,充分运用政用产学研,提高产业创新能力,提升我国在通信、自动驾驶、航空航天、安全防护、生物医学、工业互联网等应用领域的技术水平与产业化能力。在政府、产业界、学术界之间发挥桥梁和纽带作用,分享学术界的科研成果,对接企业需求解决实际问题,实现毫米波太赫兹产业创新发展。 /p p style=" line-height: 16px text-indent: 2em " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/201912/attachment/e81299b1-fd2d-4fc1-b803-5ff83253195d.pdf" title=" 指南 毫米波太赫兹产业发展联盟入会指南.pdf" 指南 & nbsp 毫米波太赫兹产业发展联盟入会指南.pdf /a /p p style=" line-height: 16px text-indent: 2em " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/201912/attachment/3ad5e21e-d5a3-4fc7-858e-9a0e1619cf8c.docx" title=" 申请表 毫米波太赫兹产业发展联盟.docx" 申请表 毫米波太赫兹产业发展联盟.docx /a /p
  • 仪器情报,科学家首次发现了高达3 THz频谱的太赫兹声子超材料!
    【科学背景】在过去几十年中,声子工程在微波频率范围内取得了显著进展,推动了微波声学滤波器、声光调制器和量子信息处理中量子比特的转换。然而,随着科学技术的发展和需求的增加,太赫兹频率下的声子工程成为了一个备受关注的领域。太赫兹频率的声子工程不仅有望带来更高速度和更大带宽的声学技术,还能够在更高温度下实现单声子量子态,同时对于非金属固体中的热传导也具有重要意义。太赫兹频率(约为6 THz)下的声子工程存在着诸多挑战,主要包括在亚纳米尺度下实现精确的材料控制和在这一频段有效声子耦合的困难。由于太赫兹频率下的声子波长约为3 nm,要生成和操控这些相干声子需要超高精度的材料工程技术。此外,宽带检测太赫兹声子不仅需要超快的时间响应,还需对纳米厚度材料中的振动具有高度敏感性。为了解决这些挑战,美国加利福尼亚大学伯克利分校王枫教授团队依托范德瓦尔斯异质结构,精确集成了原子薄层,利用几层石墨烯作为超宽带声子换能器,成功实现了高达3 THz频谱内容的太赫兹声子的高效产生。同时,利用单层WSe2作为敏感传感器,通过激子-声子耦合和强光-物质相互作用,实现了对太赫兹声子的高保真度检测。通过在单个异质结构中结合这些能力,并检测对入射机械波的响应,作者开展了太赫兹声子光谱学,类似于传统光谱学中对电磁波响应的检测。特别地,本研究还展示了单层WSe2嵌入六方氮化硼中能够有效阻挡太赫兹声子传输的能力,通过量化分析确定了异质界面处的力常数,从而深入理解了这些结构在太赫兹频率下声子传播的特性。这些成果为超宽带声学滤波器和调制器的实现提供了新的技术路径,同时也为热工程中结构化材料的设计提供了新的思路和方法。【科学亮点】(1)实验首次通过精确集成原子薄层在范德瓦尔斯异质结构中,研究团队使用几层石墨烯作为超宽带声子换能器,并利用单层WSe2作为高灵敏度的声子传感器。(2)实验通过以下几个关键点取得了突破性的结果:&bull 首次展示了几层石墨烯能够高效转换飞秒近红外脉冲为高达3 THz的宽带声子脉冲。&bull 单层WSe2显示出优异的激子-声子耦合和强光-物质相互作用,实现了对太赫兹声子的高保真度检测。&bull 利用合适设计的范德瓦尔斯异质结构堆叠,成功实现了对太赫兹声子的灵活操控和高品质因子声子腔的构建。&bull 单层WSe2嵌入六方氮化硼中有效阻挡了太赫兹声子的传输,同时量化了异质界面处的力常数和声子在材料中的传播速度。【科学图文】图1: 具有范德瓦尔斯异质结构的太赫兹声子谱。图2:在六方氮化硼hexagonal boron nitridehBN中,声子传播速度的测定。图3:太赫兹声子腔和法布里-珀罗模式。图4: 太赫兹反射和透射光谱,以及一维质量-弹簧模型模拟。【科学结论】本文利用范德瓦尔斯异质结构实现太赫兹频率下声子的高效生成、检测和操控。通过精确控制原子薄层的集成,作者展示了几层石墨烯作为宽带声子换能器和单层WSe2作为高灵敏度传感器的效果。这不仅为超快声学控制和量子声子操作提供了新的技术途径,还为新型热材料设计带来了可能性。本文揭示了太赫兹声子的特殊物理性质,如超短波长、大能量带宽和高Q值,这些性质为声子布里渊区的控制提供了全新视角。此外,利用太赫兹声子进行声学测距和声光效应不仅可能实现对亚纳米级界面的高分辨率探测,还能在极紫外和X射线波段上实现声学控制。这些发现不仅在基础科学上有重要意义,还为开发高性能声学器件、声子超材料以及人造热绝缘体提供了理论和实验基础。原文详情:Yoon, Y., Lu, Z., Uzundal, C. et al. Terahertz phonon engineering with van der Waals heterostructures. Nature (2024). https://doi.org/10.1038/s41586-024-07604-9
  • 英国尝试用太赫兹射线“剿灭”癌症
    2006年11月,英国物理学家如今正在研制一种杀伤力最强的太赫兹射线,并尝试用它破坏生长在培养器中的皮肤癌细胞。利物浦大学的这一试验将帮助科学家进一步了解太赫兹技术在治疗人类疾病上的运用。据英国广播公司报道,这是科学家首次进行利用太赫兹技术杀伤癌细胞的试验,这一技术还将运用于遗传物质的识别。   太赫兹波是指频率在0.1至10太赫兹(波长为3000至30微米)范围内的电磁波,在电磁波谱上位于微波和红外线之间。这一波段的电磁辐射具有很强的透视能力,可以作为一种特殊的“探针”用来对物质内部进行深入研究。   太赫兹射线不仅可以检测出脱氧核糖核酸(DNA)物质的转变,而且能够帮助医生根据个体患者的遗传信息实施相应的药物治疗。此外,由于太赫兹波具备穿透衣服、纸张、木头、墙体、塑胶和陶瓷等物体的能力,因而还被运用于探测隐秘武器、识别爆炸物和毒品。太赫兹波还能“感受”到分子的振动和旋转,因而可以用来对物质的内部进行深入研究。利物浦大学的研究人员如今正在开发这一“杀伤力”最为强大的技术,使其广泛运用于各个领域。   研究人员指出,细胞死亡的形式分成两大类:一是凋亡——细胞招致损伤而导致胀大和破裂 二是细胞的计划性死亡——细胞的自然老化。前者是在液体环境下迅速变化完成的,而后者则不是。这两种形式的不同之处在于细胞保持水分程度的差异。   利用太赫兹射线治疗皮肤癌正是建立在这样的理论基础之上——癌细胞与其他组织水分中的细胞差别甚微,通常癌细胞相对来说更大、更活跃。因而,含水量较多的癌细胞才能被组织水分中大量吸收的太赫兹射线杀死。   研究人员认为,现在迫切需要的就是从第四代光源中制造高能量太赫兹射线。太赫兹成像和太赫兹光谱能够破译出在低能量太赫兹射线下所得到的肿瘤影像的结构和成分 能量高的太赫兹射线有利于近场成像。而高清晰度的太赫兹成像和太赫兹光谱对识别癌细胞非常重要。   据介绍,基底细胞癌(BCC)是最常见的皮肤恶性肿瘤。这种皮肤癌细胞会对皮肤、组织甚至骨头造成损害,并且能导致死亡。40%的患者会转化为多发性病变。脸和脖子是最为常见的局部病变部位,常常需要实施大规模的整形外科手术。英国每年有3万多起BCC案例,65岁以上的人中有1/5的人可能罹患该病。   参与此项研究的利物浦大学物理学教授Peter Weightman说:“第四代光源的产生与直线加速器原型密不可分。而破坏组织培养器中癌细胞的太赫兹射线的部分能量来源就是加速器周围高速运转的电子。”“培养器是用来繁殖皮肤癌细胞的,而太赫兹射线是用来轰击这些癌细胞的。当太赫兹射线照射到培养器的时候,射线波被浸泡癌细胞的液体吸收,吸收放射性物质后的液体进入到癌细胞内部,从而将癌细胞彻底杀灭。”他补充道。   据悉,开发太赫兹射线项目是由英国西北地区发展署资助的,该项目的开发将用到由达斯伯里实验室开发的第四代光源的原型。
  • 一种用于太赫兹光谱连续检测的液体样品池装置发明成功
    近日,中国科学院重庆绿色智能技术研究院太赫兹技术研究中心汤明杰等发明的“用于太赫兹光谱连续检测的液体样品池装置”获得国家发明专利授权(专利号ZL201310697401.2)。  该发明提供一种适用于太赫兹光谱连续检测的低吸收液体样品池装置。目前,国内外市场还没有成熟的、廉价的太赫兹液体样品池出售,唯一见诸报道的bruker公司生产的主要用于红外光谱检测的液体样品池A145价格不菲,且由于是石英窗口吸收性相对偏高,并需要逐个更换样品,无法满足多个样品的连续测量。  该发明以物理注塑法成型的COP塑料为原料,构建液体样品池具有低太赫兹吸收、低折射率、高透光率和可旋转换样、连续测量的优良性质,其吸收系数低于1cm?1,折射率1.5左右,透光率达到90%以上,优于现有的石英、聚乙烯等材料制备的用于太赫兹光谱检测的液体样品池。用于太赫兹光谱连续检测的液体样品池装置立体图
  • EMCORE推出便携式太赫兹光谱仪PB7200
    2011年底,EMCORE公司推出最新PB7200便携式频域太赫兹光谱仪。此光谱仪是为那些需要在太赫兹频段以高分辨率研究物质特性的太赫兹研究者和应用开发者设计的。这项技术的主要应用在于炸药的识别和勘测以及对物质的无损检验。   EMCORE公司声称PB7200是第一个真正意义上能在100GHz到2.0THz以上频率范围内实现单一快速检测有着高频分辨率的经济的太赫兹系统,并采用了精确的隧道化,光纤连接的拥有先进光混合器做信号发生和检测的半导体激光器。除此之外,PB7200还集成了精密的数字控制硬件和软件,用来提供一个完全便携的太赫兹光谱仪。   “PB7200代表了太赫兹技术领域的最新突破,因为它在同类系统一半价格的基础上有着卓越的表现。它可以支持单频或者宽频范围内特殊光谱域内不同分辨率的工作。多用性使得它成为众多应用的有效工具。”EMCORE公司高级光学部门的Joseph Demers博士说道。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制