当前位置: 仪器信息网 > 行业主题 > >

数显圆跳动仪的结构原理

仪器信息网数显圆跳动仪的结构原理专题为您提供2024年最新数显圆跳动仪的结构原理价格报价、厂家品牌的相关信息, 包括数显圆跳动仪的结构原理参数、型号等,不管是国产,还是进口品牌的数显圆跳动仪的结构原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合数显圆跳动仪的结构原理相关的耗材配件、试剂标物,还有数显圆跳动仪的结构原理相关的最新资讯、资料,以及数显圆跳动仪的结构原理相关的解决方案。

数显圆跳动仪的结构原理相关的资讯

  • 4020公示稿 药典玻璃容器垂直轴偏差和圆跳动仪要求
    4020公示稿 药典玻璃容器垂直轴偏差和圆跳动仪要求2024年6月国家药典委发布了“4020玻璃容器垂直轴偏差和圆跳动测定法-第三次公示稿”。此标准将会体现在2025版中国药典的药包材部分。此标准是在2015版YBB药包材标准上YBB00192003-2015《垂直轴偏差测定法》修订而来,同时参考了国家GB标准《玻璃瓶罐垂直轴偏差试验方法》GB/T 8452-2008 与ISO标准《Glass bottles — Verticality — Test method》ISO 9008-1991的标准。结合国内的实际情况,增加了标准的可操作性和实用性。应该算是国内较为完善的药包材玻璃容器垂直轴偏差和圆跳动测定方法。此次标准修订,与原标准有几点差异,三泉中石在此加以说明:测试方法:这次改动增加了圆跳动测试的定义,原来圆跳动测试因为是针对安瓿瓶的测试,因此只体现在药包材玻璃安瓿瓶标准内。此次是将其与垂直轴偏差仪器独立成为一个新标准。定义:此次标准上对两种测试都给了定义,垂直轴偏差系指玻璃瓶绕瓶底中心轴旋转一周时,瓶口的中心绕瓶底中心轴所作圆的直径的二分之一。圆跳动系指玻璃安瓿绕瓶底中心轴旋转一周时,丝外径的最大变化量。为满足新老标准要求,三泉中石的电子轴偏差测量仪ZPY-60U兼顾了垂直轴偏差和圆跳动两种测试模式,一机两用减少了检测费用,同时电子轴偏差测量仪ZPY-60U以其高精度和多功能性,成为质检中心、瓶厂、瓶用户及科研单位检测瓶垂直度偏差的理想选择。电子轴偏差测量仪不仅适用于药品玻璃容器,同样适用于安瓿瓶圆跳动检测。测试原理:ZPY-60U电子轴偏差测量仪采用的测试原理,是通过将瓶底固定在水平板的旋转盘上,使瓶口与测量装置(如千分表)接触,旋转360°后读取最大值和最小值,二者之差的一半即为垂直轴偏差数值。其设计巧妙地利用了三爪自定心卡盘的高同心度特性,配合一套可以自由调节高度和方位的高自由度支架,确保了对各类容器瓶身和瓶肩等关键部位的垂直度偏差进行精确检测。测试结果:根据“4020玻璃容器垂直轴偏差和圆跳动测定法”要求,垂直轴偏差测定时,使瓶口与测量装置接触旋转360°,读取最大值和最小值,或直接读取垂直轴偏差数值;圆跳动测定时,应将测量点(距瓶口约3 mm处)与测量装置接触,旋转360°读取最大值和最小值。此次较为明确的指出了测量位置,ZPY-60U电子轴偏差测量仪能够准确找到测量位置,自动计算测量结果,测试精度高达0.001mm,满足测量要求(标准要求测量数值精确度应不小于0.1 mm)。适用范围:ZPY-60U电子轴偏差测量仪的适用范围极为广泛,不仅包括啤酒瓶、西林瓶、输液瓶等玻璃容器,还涵盖了安瓿瓶、化妆品瓶、矿泉水瓶、饮料瓶等塑料瓶,满足了不同行业对瓶容器垂直度偏差测定的需求。作为专业从事药品包装玻璃容器检测仪器的行业制造商-济南三泉中石实验仪器有限公司,紧跟国家标准的要求,也参与部分国家药包材标准的制定工作。利用自身在药品包装检测领域多年的技术积累和行业应用经验,为标准的制定工作提供数据和理论的支持,为国家标准体系的建立添砖加瓦。
  • 再现奇迹,科学家打印一颗会跳动的心!
    人造器官再现奇迹科学家打印出会跳动的心近期,美国卡耐基梅隆大学(CMU)的研究人员找到了解决方案。他们开发了一种叫做Freeform Reversible Embedding of Suspended Hydrogels(FRESH)技术,以胶原蛋白为生物墨水,3D生物打印了人类心脏的功能性部件(血管、瓣膜和心室搏动),并实现了前所未有的分辨率和保真度。相关研究结果发表在《Science》杂志上。在最新的研究中,Feinberg实验室开发的FRESH 3D生物打印方法允许胶原蛋白在支持凝胶中逐层沉积,使胶原蛋白有机会在从支持凝胶中取出之前固化。使用FRESH技术,打印完成后,通过将凝胶从室温加热至体温,即可将支持凝胶融化。这样,研究人员就可以在不破坏胶原蛋白或细胞打印结构的前提下移除支持凝胶。▲卡内基梅隆大学研究人员开发出一种3D生物打印胶原蛋白技术,可以制造人体心脏的全功能成分。( 图片来源:CMU )FRESH这种方法对于3D生物打印领域来说是非常令人兴奋的,因为它允许胶原支架打印大尺寸的人体器官。而且它不限于胶原蛋白,纤维蛋白、藻酸盐、透明质酸等多种软性生物材料均可作为生物墨水。通过FRESH技术进行3D生物打印,为组织工程提供了一个强大且适应性强的平台。更重要的是,研究人员还做了开源设计,这样任何人都可以构建并获得低成本、高性能的3D生物打印机。Feinberg表示,近期会进行例如因心脏病或肝脏受损而丧失功能的心脏修补工作。展望未来,从伤口修复到器官生物工程,FRESH在再生医学的许多方面都会有所应用。目前仍然存在的挑战是打印大型组织需要数十亿的细胞,如何实现制造规模以及遵循监管程序,以便能在动物和人类中进行测试。尽管任重道远,但我们距离实现3D生物打印全尺寸人类心脏的梦想又近了一步。您的首选3D打印技术综合解决方案供应商CELLINK在这领域中所扮演的角色使用FRESH 3D生物打印实现更复杂的几何形状FRESH 已迅速成为许多组织工程师首选的生物打印平台。FRESH 能够以更高的分辨率使用任何软凝胶生物材料进行生物打印,而不受几何复杂性的限制。FRESH 可以集成到标准生物打印工作流程中,并在 BIO X™ 等挤压式生物打印机上实现。FRESH 彻底改变了生物打印,使研究人员能够应对复杂组织结构和功能的紧迫挑战。例如,FRESH 消除了特定墨水打印优化这种繁琐的任务,让研究人员可以更专注于生物打印真正的 3D 支架和组织。在 BIO X™ 上进行 FRESH 3D 生物打印非常简单,只需将准备好的 LifeSupport™ 盘放在打印平台上,然后将打印针放入盘的中心即可开始制造复杂的几何形状。探索一些最有潜力的潜在研究方向:第一:类组织的复杂打印第二:形成血管化组织第三:多材料生物打印通过将 BIO X™ 生物打印机与 FRESH 相结合,研究人员可以迈入以往梦寐以求的打印复杂性和功能新领域。
  • 天池大赛-冷冻电镜蛋白质结构建模大赛圆满落幕
    随着云计算技术的加持,生命科学行业加速驶向了快车道。为更好地推动这一前沿学科的发展和人才培养,阿里云联合英特尔(中国)面向全球开发者,组织了天池大赛—“创新大师杯”冷冻电镜蛋白质分子结构建模大赛,致力于探索智能计算在生命科学领域的应用与创新。本次挑战赛吸引了全球1917支高水平队伍参赛,横跨美国、新加坡、印度等41个国家和地区,不仅有世界顶尖院校参加,还吸引了中国科学院、国家超算中心、国家数字化工程中心、字节跳动、科大讯飞等知名的科研机构和企业参加。经过数月激烈角逐,在2022年8月5日,阿里云召开的生命科学与智能计算峰会上,本届大赛颁奖典礼也如期举行。  蛋白质的空间结构是结构生物学的关键研究对象,其对于理解蛋白质功能以及相关生物学过程的工作机理有非常重要的意义。准确的蛋白质结构原子模型不仅能够帮助研究者在理论上理解生命活动的内在原理,同时也能为药物研发等诸多工程实践提供指导。  枚举每一种蛋白质可能存在的结构,需要花费大量的时间。最近,在强大的算法与算力的支持下,DeepMind将运算时间从数月缩短至了数小时。AI生物学带来了极致的效率革命,这对于人类攻克癌症等疑难杂症有着划时代的意义。要在数据洪流的时代实现重大的科学突破、分析基因组数据,应用于药物研发、疾病检测、个性化治疗,依赖于高效便捷的大数据分析技术和强大的计算平台支持。蛋白质破解的事件是一个标志,在生命科学领域取得突破性进展还需要高效的HPC系统和强大的算力,分析计算复杂、散点化、非结构化的生物医学大数据。  本次大赛基于阿里云弹性高性能计算(Elastic High Performance Computing,E-HPC)进行。阿里云E-HPC平台,基于阿里云基础设施,可灵活生产基于任何ECS实例构成的HPC集群,满足不同应用特征的性价比要求。阿里云E-HPC主要面向教育科研、企事业单位和个人,提供快捷、弹性、安全的一站式公共云HPC服务。计算实例基于intel第三代至强可扩展处理器(CooperLake),通过高效、面向未来的服务器基础设施提供卓越的性能和灵活性,推动新的业务突破和科学发现。深度学习加速和增强型AVX-512等内置优势提供了人工智能和HPC的融合以及工作负载性能。同时运用基于IceLake的Software Guard Expressions技术,通过内存中独立于操作系统或硬件配置的应用程序隔断,提供细粒度的数据保护。  本次大赛意在探索基于大数据训练的人工智能方法在由电势能分布获取蛋白质原子模型方面的潜力,为未来云计算和生命科学领域的人才储备。
  • 字节跳动、联想之星投资科学仪器企业上海汇像
    据企查查APP显示,1月28日,上海汇像信息技术有限公司发生工商变更,新增字节跳动关联公司北京量子跃动科技有限公司、联想之星关联公司北京星麟创业投资合伙企业(有限合伙)为股东,注册资本增至545万元人民币,增幅21.33%。进军实验室自动化智能化系统领域。官网信息显示,上海汇像专注于实验室自动化智能化系统供应。截图来源自企查查北京量子跃动科技有限公司成立于2018年6月。2021年12月29日,字节跳动有限公司全资控股上海微荷医学检验所有限公司成立,进一步拓展医学领域。企查查信息显示,上海汇像成立于2009年8月,法定代表人为刘家朋,经营范围包含:物联网应用服务;玻璃仪器制造;玻璃仪器销售;智能仪器仪表制造等。其产品范围涵盖从食品安全、药品安全到生命科学领域的智能机器人工作站系统、全流程检验检测实验室自动化、智能化整合系统以及配套自动化智能化仪器设备及相关耗材等。
  • 高速三维动态成像 苏州医工所在结构光照明超分辨显微成像仪器研制方面取得进展
    对于生物医学研究,著名物理学家理查德费曼有句名言:“...很多基础生物学的问题是很容易被回答的;你只是需要看到它们就够了”。这句话一定程度上说明了直接观察的光学显微镜对于细胞生物学、发育生物学、免疫学、病理药理学等生物医学研究的重要性。但是受衍射极限的限制,传统光学显微镜的分辨率理论上只能达到光波长的一半。近20年来,超分辨荧光显微成像技术的出现有效打破了光学衍射极限的束缚。基于单分子定位技术的超分辨显微镜(SMLM)和受激发射损耗显微镜(STED)以及结构光照明超分辨显微镜(SIM)等技术在众多课题组的努力下都得到了长足发展,尤其是结构光照明显微镜由于成像速度快、光毒性小、无需特殊荧光标记等优势,已成为生命科学领域尤其是活细胞成像中最受欢迎的技术手段。近期,苏州医工所李辉课题组围绕着结构光照明超分辨显微成像方法、高保真SIM重构算法、以及国产化的SIM显微镜研制等方面取得了一系列重要进展。   三维成像方法因可以获取到更多的生物样品信息而备受关注。但是现有的三维成像不可避免的带来离焦模糊和时间分辨率差的问题,很难用于对样品的快速三维动态成像。为了实现对厚样品的快速三维成像,李辉课题组发展了基于数字微镜阵列器件(DMD)和液体变焦透镜(ETL)的结构光照明层切显微技术,并开发了基于两张原始图像的层切成像算法。该方法将传统的三维层切成像的速度提高了数倍以上,课题组利用该技术对斑马鱼和大脑血管的心血管系统进行了高速动态成像,清晰地显示了心脏跳动期的收缩-舒张过程以及腹部血管的蠕动特性。相关成果以“Four-dimensional visualization of zebrafish cardiovascular and vessel dynamics by a structured illumination microscope with electrically tunable lens”为题发表在Biomedical Optical Express(2020)上,其中博士生陈冲为论文第一作者。   图1 基于两张正反图像的结构光照明层切算法(左);斑马鱼心脏跳动过程的快速三维成像(右)。   结构光照明超分辨成像技术在多种纳米尺度的亚细胞结构研究中已经得到广泛的应用。但是对于具有大动态范围的样本,例如聚集的细胞囊泡,样品中荧光较强的聚集性区域和亮度较弱的稀疏区域不能同时呈现。现有的SIM方法针对这种样品无法重建出高质量的图像。对此,李辉课题组提出了一种采用多重曝光采集的高动态SIM成像方法HDR-SIM,采集三组不同强度照明的SIM图像然后融合出一帧超分辨图像。用HDR-SIM,强度相差400多倍单个和聚集的荧光小球样本在同一张SIM超分辨图中可以同时观察到,并且对分辨率不会产生影响。在使用本方法观测不同尺度的细胞囊泡结构,单个小囊泡和大的囊泡聚集都可以同时获得清晰的分辨。相关成果以“High Dynamic Range Structured Illumination Microscope Based on Multiple Exposures”为题发表在Frontiers in Physics (2021)上,其中梁永为论文第一作者。   图2 高动态SIM成像原理(左);“聚集-单个”的荧光小球高动态SIM成像(右)。   在结构光照明成像过程中,超分辨图像重建算法尤为关键。SIM重建算法的一些固有缺陷造成超分辨图像中经常出现重构伪影,使得SIM图像的保真度经常受到质疑,并且图像重建时需要完成一系列复杂的参数设定,限制着普通用户对SIM技术应用。李辉课题组开发了一种基于点频谱优化的高保真SIM重建算法。该算法有效克服了常规SIM算法极易产生重构伪影且光学层切能力差的问题,对不同质量原始数据的处理均能获得具有极少伪影和良好光学层切的高质量超分辨图像,有效提高了SIM成像的保真度。同时,该算法对OTF失配和用户自定义参数不敏感,使用生成的理论OTF和较少的参数即可重构高质量SIM图像,降低了SIM成像对实验实施和后处理重构的高要求,提升了算法对普通用户的友好度。相较于几种传统的SIM算法, HiFi-SIM算法对多种不同图像质量、不同样品复杂度、不同图像来源(商用设备/自主搭建SIM系统)的原始数据进行重建, HiFi-SIM均展现出了最少的重建伪影和最优的图像质量。相关成果以“High-fidelity structured illumination microscopy by point-spread-function engineering”为题发表在国际光学类顶级期刊Light: Science & Applications (2021) 上,其中文刚为论文第一作者。   图3 高保真结构光照明超分辨成像重建算法HiFi-SIM(左);细胞结构HiFi-SIM与其他算法重建结果比较(右)。   李辉课题组自2014年以来一直专注SIM成像的技术创新、仪器研发和应用推广,开发了多种形式的结构光照明显微镜系统。最近,基于课题组最新的研究成果,研发了一套可集成于显微镜下层光路的结构光照明插件,具有结构紧凑、方便易用等特点。插件可配置国产倒置荧光显微镜,实现了SIM超分辨成像系统的国产化替代。首台机器已经于近期交付某大学用户进行试用。 图4 插件式结构光照明超分辨成像系统   以上工作得到了国家重点研发计划项目和国家自然科学基金委项目的支持。
  • 热变形维卡软化点温度测定仪:原理、结构、操作方法
    热变形维卡软化点温度测定仪是一种用于测量材料在高温环境下的热变形和软化点的实验设备。这种设备在质量控制、材料科学、塑料工业等领域都有广泛的应用。本文将详细介绍热变形维卡软化点温度测定仪的原理、结构、操作方法以及可能出现的误差和处理方法。和晟 HS-XRW-300MA 热变形维卡软化点温度测定仪热变形维卡软化点温度测定仪主要由加热装置、测试系统和测量仪器等组成。加热装置包括电炉、热电偶和加热炉壳等部分,用于提供高温环境。测试系统包括试样、加载装置和位移传感器等,用于测量材料的热变形和软化点。测量仪器则是用于记录和显示测量数据的设备。操作热变形维卡软化点温度测定仪需要遵循一定的步骤和注意事项。首先,选择合适的试样和试剂,确保试样在高温环境下能够充分软化和变形。其次,将试样放置在加热装置中,并使用加载装置施加一定的压力。然后,逐渐升高温度,并记录试样的变形量和温度变化。最后,通过测量仪器输出测量结果,并进行数据处理和分析。在使用热变形维卡软化点温度测定仪时,可能会出现一些误差。例如,由于加热不均匀或加载压力不一致,可能会导致测量结果出现偏差。此外,由于试样本身的性质和制备方法也会对测量结果产生影响。因此,在进行测量时,需要采取一些措施来减小误差,例如多次测量取平均值、选择合适的加热方式和加载压力等。热变形维卡软化点温度测定仪的测量结果可以反映材料在高温环境下的性能和特点。因此,正确理解和使用测量结果是至关重要的。在实践中,需要根据具体的实验条件和要求,选择合适的测定仪器和试剂,并严格按照操作规程进行测量。同时,需要充分考虑误差和处理方法,以确保测量结果的准确性和可靠性。总之,热变形维卡软化点温度测定仪是一种重要的实验设备,可以用于测量材料在高温环境下的热变形和软化点。了解其原理、结构、操作方法以及可能出现的误差和处理方法,对于科学研究和实际应用都具有重要意义。
  • 北京质检院冬奥食品保障项目预算1918万采购仪器 1/6数量接受进口
    北京市产品质量监督检验院冬奥会食品相关产品保障任务能力建设项目其他专用仪器仪表采购项目公开招标,预算近1918万元采购液相色谱串联质谱联用仪等货物一批,分6个包,共143套仪器,其中24套接受进口,约占总数量的1/6。招标项目的潜在投标人应在网上购买,以邮件形式提交报名资料,电汇支付标书款,售后不退。(只接受对公账户汇款)获取招标文件,并于2021-01-29 13:30(北京时间)前递交投标文件。一、项目基本情况项目编号:PXM2020_001102_000001-JH001-XM001项目名称:冬奥会食品相关产品保障任务能力建设项目其他专用仪器仪表采购项目预算金额:1917.66 万元(人民币)采购需求:包号序号货物名称数量(套)是否接受进口预算(万元)11液相色谱串联质谱联用仪1是398.602堆肥箱11否3超高压液相色谱仪1是24顶空进样器1、22是320.425气相色谱质谱仪11是6气相色谱仪(带NPD、ECD检测器)11是7热脱附装置11是8VOC含量测试环境测试舱1否9微机控制电子万能试验机1否10氮吹仪2否11微电脑抗压强度试验仪1否12背胶剥离强度测试仪1否13吸水倍率测试仪1否14槽纹仪1否15吸收速度测试仪1否16微电脑层间剥离试验仪1否17可分散性测试仪1否18包装耐压强度试验仪1否19智能密封仪1否20卧式拉力强度试验仪2否21智能垂直载压测试仪1否22微电脑弯曲挺度测试仪11否23微电脑纸板戳穿强度测试仪1否24掉粉率测定仪1否25滤速仪1否26快速水分测定仪1否27白度测定仪1否28可勃吸收性测定仪1否29触摸屏耐破强度测试仪1否30可勃式吸水度测试仪1否31渗透性测试仪1否32吸水率测试仪1否33定量取样器1否34暗箱紫外分析仪1否35施胶度测定仪1否336热脱附装置21是378.7037火焰石墨炉原子吸收分光光度计1否38差热扫描量热仪1是39全自动冷冻研磨仪1是40热重分析仪1是41电解法水蒸气透过系统1否42氙弧灯老化试验箱2否43通用烘箱1是44RoHS无卤检测仪1否45索氏自动提取脂肪仪2否46免水自动定氮仪1否47条码检测仪1否48涂层测厚仪1否49火焰光度计1否50手柄阻燃性1否51观察箱2否52高度仪1否53电子拉力试验机1否54盐雾试验箱1否55磨擦试验机11否56UPS电源1否57平面耐磨试验机1否58加热炉2否59马丁代尔耐磨试验仪1否60手柄抗扭强度试验机1否61表面温度计1否62超高阻绝缘电阻测量仪1否63全自动油墨耐摩擦脱色测试仪1否64邵氏硬度计D型1否65光栅式位移传感器是带有原点标识型光栅式测微仪1否66马弗炉1否67冷冻箱1否68克列姆吸收性试验机1否69圆珠笔蕊抗划伤试验机1否70实验室固相萃取仪 12位24位固相萃取装置1否71四联实验室水处理不锈钢杯式高敏度快速过滤器抽滤装置1否72实验室用小型破碎机1否73可勃吸收性试验仪1否74渗漏性测定仪1否75耐黄变试验箱1否76锅身厚度测量仪1否77打塞机1否78手柄紧固螺丝测试装置1否479液相色谱仪1是269.3980凝胶色谱仪1是81气相色谱仪1是82卧式加压杀菌釜1是83重力对流式热老化试验箱(GB/T 11026.4)不带强制循环装置/强制通风式热老化试验箱(GB/T 11026.4)强制循环装置2否84色牢度摩擦仪1否85玻璃瓶耐内压测试仪1否86玻璃瓶耐热冲击试验仪1否87剥离/抗张测试仪1否88光切法显微测厚仪1否89智能偏光应力仪1否90真空干燥箱2否91凯氏蒸馏设备1否92盐水自动试验机1否93数字式渗水性测定仪2否94验布机1否95电热恒温鼓风干燥箱3否96玻璃瓶抗冲击试验仪1否97旋转蒸发仪2否98测厚仪1否99线热膨胀系数仪1否100全智能纸箱抗压强度测试仪1否101低温超声波萃取仪1否102折断力测试仪1否103微电脑弯曲挺度测试仪21否104球型耐破试验机1否105等速伸长试验仪1否106壁厚测厚仪(底厚壁厚)1否107颗粒法耐水性装置1否108瓶口边厚仪1否109触摸屏测控压缩强度试验仪1否110全电脑测控剥离强度试验仪1否111振动耐磨试验机1否112巴柯尔硬度测试仪1否113单翼跌落强度试验仪1否114MIT全智能耐折强度测试仪1否115全智能数显戳穿强度测试仪1否116电子压辊试验机1否117环压试验机电脑测控压缩试验仪边压环压测试仪1否118圆跳动测试仪1否119台式高速离心机1否5120离子研磨仪1是263.40121扫描电子显微镜1是122能谱分析仪1是123离子溅射仪1是6124堆肥箱21否287.15125顶空进样器3、42是126气相色谱质谱仪21是127气相色谱仪(带NPD、ECD检测器)21是128紫外可见光分光光度计1否129磨擦试验机21否二、获取招标文件时间:2021-01-08 至 2021-01-15,每天上午08:30至11:30,下午13:30至16:30(北京时间,法定节假日除外)地点:网上购买,以邮件形式提交报名资料,电汇支付标书款,售后不退。(只接受对公账户汇款)方式:网上购买,以邮件形式提交报名资料,电汇支付标书款,售后不退。(只接受对公账户汇款)售价:¥500 元,本公告包含的招标文件售价总和
  • 万字讲懂离子色谱仪原理、结构、分类、应用、常见品牌等 | 仪器博物馆
    离子色谱仪是高效液相色谱的一种,作为测定阴离子、阳离子及部分极性有机物种类和含量的一种液相色谱方法,已被广泛应用在环境监测、食品分析、自然水工业、农业、地质等多个领域。今天小谱就其发展史、检测原理、结构等和大家进行探讨,一文把离子色谱仪讲通透。(如果读完文章您觉得还有哪些想听的知识点没有讲到,亦或是觉得文章中有哪些观点您不太认同,欢迎您积极留言。)01离子色谱的“前世今生”1975年,Dow Chemical(陶氏化学)的H.Small等人发表的第一篇离子色谱方面的论文在美国分析化学上;在分离用的离子交换柱后端加入不同极性的离子交换树脂填料,该树脂填料呈氢型或氢氧根型。如阴离子交换柱后端加入氢型的阳离子,交换树脂填料阳离子交换柱后端加入氢氧根型的阴离子,交换树脂填料当由分离柱流出的携带待测离子的洗脱液在检测前发生两个简单而重要的化学反应,一个是将淋洗液转变成低电导组分以降低来自淋洗液的背景电导,另一个是将样品离子转变成其相应的酸或碱以增加其电导。这种在分离柱和检测器之间降低背景电导值而提高检测灵敏度的装置后来组成独立组件称为抑制柱(或抑制器),通过这种方式使电导检测的应用范围扩大了;在H-Small等人提议下称这种液相色谱为离子色谱。离子色谱一经诞生就立即商品化;1975年,第一家离子色谱公司诞生——戴安公司(Dow Ion Exchange),由H-Small和T-S.Stevens研发;1979年,美国阿华州大学的J.S.Fritz等人建立了单柱型离子色谱,许多其它公司生产了离子色谱;1983年,中国核工业第五研究所刘开禄研究员刘开禄带领团队在青岛崂山电子实验仪器所研制成我国第一台离子色谱仪的原理样机ZIC-1,并实现产业化。性能基本与国外同类仪器(美国Dionex-14型)相接近,填补了国内空白;第六届“科学仪器行业研发特别贡献奖”获奖者 刘开禄ZIC-1型离子色谱仪第一台离子色谱仪成功商品化后,高效阳离子分离柱、五电极式电导检测器、阴离子分离柱、连续自再生式高效离子交换装置等一系列创造性的研究工作不断取得成功,极大的推动了中国离子色谱仪的发展。1985年6月,赵云麒、刘开禄研制ZIC-2型离子色谱仪,包含双模式理论和适用于阳离子分析的“五级电导检测”电路。1987年12月22日 ,ZIC-2型离子色谱仪通过了专家鉴定并投产,核心技术目前仍应用在中国的核潜艇水质监测。1995年,ZIC-3型离子色谱仪由张烈生、荆建增设计完成并获得国家科技成果完成者证书。左:ZIC-2型离子色谱仪、中:ZIC-2A型离子色谱仪、右:ZIC-3型离子色谱仪目前,随着技术的发展,电化学等技术在离子色谱仪中得到了更广泛的应用,比如新型抑制器技术、淋洗液发生器以及新型的电化学检测器-电荷检测器等均已商品化。而目前离子色谱技术发展也主要集中在色谱固定相、脉冲安培检测器以及抑制器等方面。不过,我国离子色谱的研发虽然取得了一定的成绩,但仍需更进一步的发展。02离子色谱的原理和结构离子色谱的原理基于离子交换树脂上可离解的离子与流动相中具有相同电荷的溶质离子之间进行的可逆交换和分析物溶质对交换剂亲和力的差别而被分离。适用于亲水性阴、阳离子的分离。工作过程: 输液泵将流动相以稳定的流速( 或压力) 输送至分析体系, 在色谱柱之前通过进样器将样品导入, 流动相将样品带入色谱柱, 在色谱柱中各组分被分离, 并依次随流动相流至检测器, 抑制型离子色谱则在电导检测器之前增加一个抑制系统。即用另一个高压输液泵将再生液输送到抑制器, 在抑制器中, 流动相的背景电导被降低, 然后将流出物导入电导检测池, 检测到的信号送至数据系统记录、处理或保存。非抑制型离子色谱仪不用抑制器和输送再生液的高压泵, 因此仪器的结构相对要简单得多, 价格也要便宜很多。离子色谱的结构离子色谱仪一般由流动相输送系统、进样系统、分离系统、抑制或衍生系统、检测系统及数据处理系统六大部分组成。1、流动相输送系统离子色谱的输液系统包括贮液罐、高压输液泵、梯度淋洗装置等,与高效液相色谱的输液系统基本一致。1.1贮液罐溶剂贮存主要用来供给足够数量并符合要求的流动相,对于溶剂贮存器的要求是:(1)必须有足够的容积,以保证重复分析时有足够的供液;(2)脱气方便;(3)能承受一定的压力;(4)所选用的材质对所使用的溶剂一律惰性。出于离子的流动相一般是酸、碱、盐或络合物的水溶液,因此贮液系统一般是以玻璃或聚四氟乙烯为材料,容积一般以0.5~4L为宜,溶剂使用前必须脱气。因为色谱柱是带压力操作的,在流路中易释放气泡,造成检测器噪声增大,使基线不稳,仪器不能正常工作,这在流动相含有有机溶剂时更为突出。脱气方法有多种,在离子色谱中应用比较多的有如下方法:(1)低压脱气法:通过水泵、真空泵抽真空,可同时加温或向溶剂吹氮,此法特别适用纯水溶剂配制的淋洗液。(2)吹氧气或氮气脱气法:氧气或氮气经减压通入淋洗液,在一定压力下可将淋洗液的空气排出。(3)超声波脱气法:将冲洗剂置于超声波清洗槽中,以水为介质超声脱气。一般超声30min左看,可以达到脱气日的。新型的离子色谱仪,在高压泵上带有在线脱气装置,可白动对琳洗液进行在线自动脱气。1.2高压输液泵高压输液泵是离子色谱仪的重要部件,它将流动相输入到分离系统,使样品在柱系统中完成分离过程。离子色谱用的高压泵应具备下述性能:(1)流量稳定:通常要求流量精度应为±1%左右,以保证保留时间的重复和定性定量分析的精度。(2)有一定输出压力,离子色谱一般在20MPa状态下工作,比高效液相色谱略低。(3)耐酸、碱和缓冲液腐蚀,与高效液相色谱不同,离子色谱所有淋洗液含有酸或碱。泵应采用全塑Peek材料制作。(4)压力波动小,更换溶剂方便,死体积小,易于清洗和更换溶剂。(5)流量在一定范围任选,并能达到一定精度要求。(6)部分输液泵具有梯度淋洗功能。目前离子色谱应用较多的是往复柱塞泵,只有低压离子色谱采用蠕动泵,但蠕动泵所能承受的压力太小,实际操作过程中会出现问题。由于往复柱塞泵的柱塞往复运动频率较高,所以对密封环的耐磨性及单向阀的刚性和精度要求都很高。密封环一般采用聚四氟乙烯添加剂材料制造,单向阀的球、阀座及柱塞则用人造宝石材料。1.3梯度淋洗装置梯度淋洗和气相色谱中的程序升温相似,给色谱分离带来很大的方便,但离子色谱电导检测器是一种总体性质的检测器,因此梯度淋洗一般只在含氢氧根离子的淋洗液中采用抑制电导检测时才能实现。采用梯度淋洗技术可以提高分离度、缩短分析时间、降低检测限,它对于复杂混合物,特别是保留强度差异很大的混合物的分离,是极为重要的手段。另外,新型抑制器通过脱气使淋洗液中CO2去除,碳酸盐的淋洗液背景电导很低,使灵敏度大大增加,也可以实现碳酸盐的梯度淋洗。离子色谱梯度淋洗可分为低压梯度和高压梯度两种,现分别介绍如下:(1)低压梯度低压梯度是采用比例调节阀,在常压下预先按一定的程序将溶剂混合后,再用泵输入色谱柱系统,也称为泵前混合。(2)高压梯度它是由两台高压输液泵、梯度程序控制器、混合器等部件所组成。两台泵分别将两种淋洗液输入混合器,经充分混合后,进入色谱分离系统。它又称为泵后高压混合形式。梯度淋洗的溶剂混合器必须具备容积小、无死区、清洗方便、混合效率高等性能,能获得重复的、滞后时间短的梯度淋洗效果。2、进样系统离子色谱的进样主要分为3种类型:即气动、手动和自动进样方式。(1)手动进样阀手动进样采用六通阀,其工作原理与HPLC相同,但其进样量比HPLC要大,一般为50μL。其定量管接在阀外,一般用于进样体积较大时的情况。样品首先以低压状态充满定量管,当阀沿顺时针方向旋至另一位置时,即将贮存于定量管中固定体积的样品送入分离系统。(2)气动进样阀气动阀采用一定氮气或氮气气压作动力,通过两路四通加载定量管后,进行取样和进样,它有效地减少了手动进样因动作不同所带来的误差。(3)自动进样自动进样器是在色谱工作站控制下,自动进行取样、进样、清洗等一系列操作,操作者只须将样品按顺序装入贮样机中。自动进样可以达到很宽的样品进样量范围的目的。3、分离系统分离系统是离子色谱的核心和基础。离子色谱柱是离子色谱仪的“心脏”,要求它具有柱效高、选择性好、分析速度快等特点。离子色谱柱填料的粒度一般在5~25μm之间,比高效液相色谱的柱填料略大,因此其压力比高效液相色谱的要小,一般为单分散,而且呈球状。3.1高分子聚合物填料离子色谱中使用得最广泛的填料是聚苯乙烯——二乙烯苯共聚物。其中阳离子交换柱一般采用磺酸或羧酸功能基,阴离子交换柱填料则采用季胺功能基或叔胺功能基。离子排斥柱填料主要为全磺化的聚苯乙烯 二乙烯苯共聚物,这类离子交换树脂可在pH0~14范围内使用。如果采用高交联度的材料来改进,还可兼容有机溶剂,以抗有机污染。一般来说,离子交换型色谱柱的交换容量均很低。3.2硅胶型离子色谱填料该填料采用多孔二氧化硅柱填料制得,是用于阴离子交换色谱法的典型薄壳型填料。它是用含季胺功能基的甲基丙烯十醇酯涂渍在二氧化硅微球上制备的。阳离子交换树脂是用低相对分子质量的磺化氟碳聚合物涂渍在二氧化硅微粒上制备的。这类填料的pH值使用范围为4~8,一般用于单柱型离子色谱柱中。3.3色谱柱结构一般分析柱内径为4mm,长度为100~250mm,柱子两头采用紧固螺丝。高档仪器特别是阳离子色谱柱一般采用聚四氟乙烯材料,以防止金属对测定的干扰。随着离子色谱的发展,细内径柱受到人们的重视,2mm柱不仅可以使溶剂消耗量减少,而且对于同样的进样量,灵敏度可以提高4倍。4、离于色谱的抑制系统对于抑制型(双柱型)离子色谱系统,抑制系统是极其重要的一个部分,也是离子色谱有别于高效液相色谱的最重要特点。抑制器的发展经历了多个发展时期,而目前商品化的离子色谱仪亦分别采用不同的抑制手段及相关研究成果。4.1树脂填充抑制柱该抑制系统采用高交换容量的阳离子树脂填充柱(阴离子抑制),通过硫酸,将树脂转化为氢型。它抑制容量不高,需要定期再生,而且死体积比较大,对弱酸根离子由于离子排斥的作用,往往无法准确定量。目前这类抑制器目前已经基本不用。4.2纤维抑制器这种抑制系统采用阳离子交换的中空纤维作为抑制器,外通硫酸作为再生液,可连续对淋洗液进行再生,这种抑制器的死体积比较大,抑制容量也不高。4.3微膜抑制器这种抑制系统采用阳离子交换平板薄膜,中间通过淋洗液,而外两侧通硫酸再生液。这种抑制器的交换容量比较高,死体积很小,可进行梯度淋洗。4.4电解抑制器这种抑制系统采用阳离子交换平板薄膜,通过电解产生的H+,对淋洗液进行再生。早期的这类抑制器是由我国厦门大学田昭武发明,并投入了生产,但它需要定期加入硫酸来补充H+。美国Dionex公司对这类抑制器进行了改进,使之成为自再生,只要用淋洗液自循环或去离子水电解就可能实现再生,抑制容量可以通过改变电流的大小加以控制,而且死体积很小。5、检测系统5.1电导检测器电导检测是离子色谱检测方式中最常用的一种。它是基于极限摩尔电导率应用的检测器,主要用于检测无机阴阳离子、有机酸和有机胺等。由于电导池中的等效电容的影响,施加到电导池上的电压和电流之间的关系是非线性的,这给测量电导值带来很大困难。另外,流动相中本底电导值很高,从较大的背景值中准确测量待测组分的信号,也是电导检测中的重要问题。目前采用较多的方法有:(1)双极脉冲检测器:在流路上设置两个电极,通过施加脉冲电压,在合适的时间读取电流,进行放大和显示。容易受到电极极化和双电层的影响。(2)四极电导检测器:在流路上设置四个电极,在电路设计中维持两测量电极间电压恒定,不受负载电阻、电极间电阻和双电层电容变化的影响,具有电子抑制功能(阳离子检测支持直接电导检测模式)。(3)五极电导检测器:在四极电导检测模式中加一个接地屏蔽电极,极大提高了测量稳定性,在高背景电导下仍能获得极低的噪声,具有电子抑制功能(阳离子检测支持直接电导检测模式)。5.2安培检测器安培检测器是基于测量电解电流大小为基础的检测器,主要用于检测具有氧化还原特性的物质。安培检测主要包括恒电位(直流安培)、脉冲安培以及积分安培三种方式。(1)直流安培检测模式:该方法是将一个恒定的直流电位连续地施加于检测池的电极上,当被测物被氧化时,电子从待测物转移至电极,得到电流信号。在此过程中,电极本身为惰性,不参与氧化反应。该方法具有较高的灵敏度,可以测定pmol级的无机和有机离子,主要用于抗坏血酸、溴、碘、氰、酚、硫化物、亚硫酸盐、儿茶酚胺、芳香族硝基化合物、芳香胺、尿酸和对二苯酚等物质的检测。(2)脉冲安培检测模式:脉冲安培检测器出现在20世纪80年代初,是美国Dionex公司为满足糖的测定而研制的。糖类化合物的pKa值为12~14,在强碱性介质中以阴离子形式存在,可以用阴离子交换色谱分离。因为糖的分离是在碱性条件下完成的,检测方法必须与此相匹配,用金电极的脉冲安培检测法适合于这个条件。金电极的表面可为糖的电化学氧化反应提供一个反应环境。用脉冲安培检测法可检测pmol~fmol级的糖,而且不需要衍生反应和复杂的样品纯化过程。该检测器主要用于醇类、醛类、糖类、胺类(一二三元胺,包括氨基酸)、有机硫、硫醇、硫醚和硫脲等物质的检测,不可检测硫的氧化物。(3)积分脉冲安培检测模式:积分脉冲安培检测法为脉冲安培检测的升级模式,于1989年由Welch等人首先提出,并运用此技术,用金电极实现了对氨基酸的检测。与脉冲安培检测法相似,积分脉冲安培检测法中加到工作电极上的也是一种自动重复的电位对时间的脉冲电位波形,不同之处是:脉冲安培检测法是对每次脉冲前的单电位下产生的电流积分;而积分脉冲安培检测法是对每次脉冲前循环方波或三角波电位下产生的电流积分,即是对电极被氧化形成氧化物和氧化物还原为其初始状态的一个循环电位扫描过程中产生的电流积分。由积分整个高-低采样电位下的电流所得到的信号仅仅是被分析物产生的信号。在没有待测物(可氧化物)存在时,静电荷为零。积分脉冲安培检测法的优点在于通过施加方波或三角波电位消除了氧化物形成和还原过程中产生的电流。正、反脉冲方向的积分有效地扣除了电极氧化产生的背景效应,使得那些可受金属氧化物催化氧化的分子产生较强的检测信号和获得稳定的检测基线成为现实。此外,离子色谱还可以采用紫外、可见光、荧光等高效液相色谱常用的检测器,其原理与常规的高效液相色谱检测相似。6、数据处理系统离子色谱一般柱效不高,与气相色谱和高效液相色谱相比一般情况下离子色谱分离度不高,它对数据采集的速度要求不高,因此能够用于其他类型的数据处理系统,同样也可用于离子色谱中。而且在常规离子分析中,色谱峰的峰形比较理想,可以采用峰高定量分析法进行分析。主要数据处理系统为:6.1记录仪记录仪要求满刻度行程时间≤1s,输入阻抗高,屏蔽好,纸速稳定。采用双笔式记录仪,可以同时测量样品中高浓度和痕量浓度组分,也可进行双检测器分析。6.2自动积分仪它是一种通过A/D转换,采用固定程序,分析色谱信息,打印色谱图的仪器。采用自动积分仪大大减少了记录仪中色谱手工处理的繁琐手续。6.3数据工作站通过A/D转换,将数据采集于电脑,然后通过对采集的数据分析,得到相关的色谱信息。随着个人电脑的普及,数据工作站将得到广泛的应用。03离子色谱的分类通常情况下,离子色谱可以分为三种类型:离子交换色谱、离子排斥色谱、离子对色谱。离子交换色谱:离子交换色谱以离子间间作用力不同为原理,主要用于有机和无机阴、阳离子的分离。离子排斥色谱:离子排斥色谱基于Donnan排队斥作用,是利用溶质和固定相之间的非离子性相互作用进行分离的。它主要用于机弱酸和有机酸的分离,也可以用于醇类、醛类、氨基酸和糖类的分离。离子对色谱:离子对色谱的分离机理是吸附、分离的选择性主要由流动相决定。该方法主要用于表面活性阴离子和阳离子以及金属络合物的分离。根据应用场景可分为:实验室、便携式、在线离子色谱。便携式离子色谱:适用的主要场景比如户外检测、或者在移动检测车上使用等等。在线离子色谱:适用的主要场景,比如大气环境的连续监测、或者工厂流水线中的连续监测等等。实验室离子色谱:相对来讲,就是最常规的离子色谱类型了,用户采购量也是相对最大。04离子色谱的应用离子色谱作为20世纪70年代发展起来的一项新的分析技术,由于具有快速、灵敏、选择性好等特点,尤其在阴离子检测方面有着其它方法所的优势,因此被广泛地应用于化工、医药、环保、卫生防疫、半导体制造等行业,并在某些领域被列为标准测定方法。涉及离子色谱的国内标准分析方法行业标准部分国际标准05离子色谱使用的注意事项1、淋洗液淋洗液作为系统的流动相,其品质对分析结果有重要影响。流动相的脱气是离子色谱分析过程中的一个重要环节。输液泵的扰动或色谱柱前后的压力变化以及抑制过程都可能导致流动相中溶解的气体析出,形成小气泡。这些小气泡会产生很多尖锐的噪声峰,较大的气泡还可能引起输液泵流速的变化,因此对流动相要进行脱气处理。2、分离柱分离柱柱体材料为PEEK(聚醚醚酮)。分离相由聚乙烯醇颗粒组成,粒径为9μm,表面有离子交换官能团。这种结构可保证高度的稳定性,并对可穿过内置过滤板的极细颗粒具有很高的容耐性,适用于水分析的日常测试任务。为保护分离柱不受外来物质侵害(这些物质会对分离效率产生影响),对淋洗液、也对样品作微孔过滤(0.45μm过滤器),并通过吸液过滤头吸取淋洗液。分离柱堵塞会导致系统压力上升,分离能力变差会导致保留时间波动、样品重复测量平行性差。分离柱接入系统时,需要先冲洗10分钟以上再接检测器,冲洗时出口向上,便于将气泡赶出。 分离柱的保存:短时间不用,可直接将柱子两端盖上塞子,放在盒中保存。阴离子柱长时间不使用(1个月以上),应保存到10mmol/LNa2CO3中。3、高压泵sp 岛埃仑YC3000离子色谱仪青岛埃仑YC7000型离子色谱仪 等▲ 青岛埃仑YC3000离子色谱仪B. 岛津
  • HALT/HASS试验箱原理概述
    p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 0 引言 /strong /span /p p style=" text-align: justify text-indent: 2em " 随着科技的发展,电子设备的集成度越来越高,升级换代的速度越来越快,随之而来的可靠性问题也越来越突出。传统的可靠性试验已经很难满足发展的要求,因此近些年越来越多机构开始引进高加速寿命试验(HALT:Highly Accelerated Life Testing)/高加速应力筛选(HASS:Highly Accelerated Stress Screening)试验方法,用于克服传统的可靠性试验存在的周期长、成本高和效率低等问题。 /p p style=" text-align: justify text-indent: 2em " a)HALTHALT主要应用于产品的研制阶段,是为了得出产品的设计裕度和极限承载能力(破坏或损伤极限)而设计的一种试验,主要试验步骤有: /p p style=" text-align: justify text-indent: 2em " 1)低温步进应力试验(以5℃或10℃为步长); /p p style=" text-align: justify text-indent: 2em " 2)高温步进应力试验(以5℃或10℃为步长); /p p style=" text-align: justify text-indent: 2em " 3)温度循环试验(温度变化速率为60℃/min,5个循环); /p p style=" text-align: justify text-indent: 2em " 4)振动步进应力试验(以5 Grms为步长); /p p style=" text-align: justify text-indent: 2em " 5)综合应力试验(第3)和第4)步综合试验)。 /p p style=" text-align: justify text-indent: 2em " b)HASS /p p style=" text-align: justify text-indent: 2em " HASS应用于产品量产阶段,目的是在极短的时间内发现批量生产的成品是否存在生产质量上的隐患。HASS试验剖面的选择主要是依据HALT的结果、产品性能测试所需要的时间、 产品试验过程中所施加的应力和产品产量等,其一般试验如下所述。& nbsp /p p style=" text-align: justify text-indent: 2em " 1)温度循环 /p p style=" text-align: justify text-indent: 2em " 试验温度一般取工作极限温度范围的80%,试验温度保持时间一般取决于样品温度到达平衡所需要的时间和测试样品工作状态所需要的时间,温度变化速率为40~60℃/min。 /p p style=" text-align: justify text-indent: 2em " 2)振动应力 /p p style=" text-align: justify text-indent: 2em " 振动量级一般取破坏极限的50%,如果超过工作极限,则取工作极限的80%。以上是开展HALT/HASS的基本要求,能满足HALT/HASS试验要求的试验设备要求如下:温度范围为-100~+200℃,温度变化速率为40~60℃/min,气动式三轴六自由度振动台(可产生多轴连续的超高斯宽带伪随机振动信号)的振动频率为5 Hz~10 kHz,振动方向包括X、Y、Z轴向的线加速度和转动加速度。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 1 设备介绍& nbsp /strong /span /p p style=" text-align: justify text-indent: 2em " 基于上述试验要求,需要有一套试验设备才能满足HALT/HASS试验的开展。现以广五所研制的HALT/HASS试验箱来阐述其实现原理。本试验箱可用于电子、电工和军工产品按国标、国军标和行业标准进行上述单项环境应力或多环境综合应力组合的可靠性与模拟环境试验。 /p p style=" text-align: justify text-indent: 2em " strong 1.1 技术指标和性能 /strong /p p style=" text-align: justify text-indent: 2em " a)标称内容积:1.0 m sup 3 /sup 。 /p p style=" text-align: justify text-indent: 2em " b)温度范围:-100~+200℃。 /p p style=" text-align: justify text-indent: 2em " c)温度波动度:≤2 ℃。 /p p style=" text-align: justify text-indent: 2em " d)温度最大变化速率: /p p style=" text-align: justify text-indent: 2em " 1)≥70℃/min(标准负载下,-80~+150℃,全程平均,试验空间入风区控制点测量); /p p style=" text-align: justify text-indent: 2em " 2)≥60℃/min(标准负载下,-100~+200℃,全程平均,试验空间入风区控制点测量)。 /p p style=" text-align: justify text-indent: 2em " e)标准负载:10kg铝锭。 /p p style=" text-align: justify text-indent: 2em " f)气锤振动台:采用三轴6个自由度的随机振动,频率范围为5~10 kHz。 /p p style=" text-align: justify text-indent: 2em " g)振动能量:100 Grms,90%的振动能量集中在5 Hz~4 kHz低频范围内。 /p p style=" text-align: justify text-indent: 2em " h)振动稳定度:± 1 Grms(达到稳定设定值1 min内)。 /p p style=" text-align: justify text-indent: 2em " i)控制精度:± 1 Grms(稳定1 min后),最小1 Grms起振,步进1 Grms。 /p p style=" text-align: justify text-indent: 2em " j)台面振动均匀度:振动台面振动均匀度在30%以内。 /p p style=" text-align: justify text-indent: 2em " strong 1.2 主要特点 /strong /p p style=" text-align: justify text-indent: 2em " a)适用于温度、振动应力综合试验。 /p p style=" text-align: justify text-indent: 2em " b)控制方式:液氮比例控制阀控制冷量,可实现温度变化速率无级可调,高效节能,控制精度高。 /p p style=" text-align: justify text-indent: 2em " c)结构紧凑,占地面积少。 /p p style=" text-align: justify text-indent: 2em " d)噪声低。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 2 试验箱结构及控制原理 /strong /span /p p style=" text-align: justify text-indent: 2em " 试验箱主要由试验箱体、振动机构、液氮机构和电气控制系统组成。其剖面结构图如图1所示,图中主要功能部件名称为:1. 试验箱体保温层,2. 液氮系统,3. 电机及叶轮,4. 气压平衡口(排气口),5. 加热器,6. 出风口,7. 指示灯,8. 人机界面,9. 控制端子,10. 电控部分,11. 气动部分,12. 气锤振动台,13. 安装座,14. 气锤。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/9afcefb0-fa4e-4345-8b8a-156eb0bfd143.jpg" title=" 图1.jpg" alt=" 图1.jpg" / /p p style=" text-align: center " strong 图1 试验箱总体结构 /strong /p p style=" text-align: justify text-indent: 2em " strong 2.1 试验箱体 /strong /p p style=" text-align: justify text-indent: 2em " 试验箱体由外箱、内箱和保温层组成。外箱为双面镀锌钢板,表面喷塑处理,外箱内侧辅以钣金结构件或型材作为骨架加强。各个零件间采用CO sub 2 /sub 气体保护电弧焊、点焊和压铆等工艺进行连接,整体结构牢固美观。内箱材料选用需考虑到满足温度范围、防止生锈、振动和可焊接性等因素,板材方面使用SUS304不锈钢板,具有高的耐蚀性,较好的冷作成型和焊接性,很好的机械性能。在低温、室温和高温下均有较高的塑性和韧性。试验箱体保温层由硬质聚氨脂发泡层和玻璃纤维材料进行绝热保温,硬质聚氨脂板是一种具有保温与防水功能的新型合成材料,其导热系数仅0.022~0.033 W/(m.K)。硬质聚氨脂发泡层通过多异氰酸酯、组合聚醚(多元醇)、阻燃剂、催化剂和发泡剂等其他助剂混合而成,覆盖在外箱内表面。玻璃纤维是一种无机质纤维,具有成型好、体积密度小、热导率低、保温绝热、吸音性能好、耐腐蚀和化学性能稳定等特点。 /p p style=" text-align: justify text-indent: 2em " strong 2.2 电气控制 /strong /p p style=" text-align: justify text-indent: 2em " 本试验箱的电控部分所使用的测量系统、IO模块、HMI和CPU模块都是由广五所研发,使用RS485通讯方式,电控系统的总体框图如图2所示。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/77b077ac-921a-4a77-81e7-40557824311d.jpg" title=" 图2.jpg" alt=" 图2.jpg" / /p p style=" text-align: center " strong 图2 试验箱电控总体框图 /strong /p p style=" text-align: justify text-indent: 2em " strong 2.3 温度调节机构及控制 /strong /p p style=" text-align: justify text-indent: 2em " 温度调节结构是温度控制的关键部分,包括加热器、液氮系统和搅拌风机。其中,加热器、液氮雾化喷嘴和搅拌风机按顺序(如图1所示)设置在箱体的气体调节通道内。其工作原理为:采用强制空气对流的方法来进行热量的传递, 以保证试验空间的温度均匀性。 试验箱气体由离心风机叶轮从回风口吸入, 通过导流装置后吹出, 可以使调节通道内的加热器和雾化后的液氮进行充分的热量交换,经过搅拌均匀后的风经导风口吹出进入试验区域, 导风口还可以安装导风管,可以通过导风管使大件样品和散热口不在风流方向的样品内部能以最快的速率实现温度变化。出风口设置有温度测量元件,连接至测量板,测量数据通过通讯电缆传送给CPU单元,算法运算后输出控制量。 /p p style=" text-align: justify text-indent: 2em " 本试验箱要求温度变化速率要超过60℃/min,这是温度控制的关键,升温功能由镍铬丝通电发热实现。镍铬丝具有较高的电阻率,表面抗氧化性好,温度级别高,并且在高温下有较高的强度,有良好的加工性能和可焊性,是现有高效的加热材料,应用时设计为三相平衡。由于机械制冷很难实现这样的降温速率,因此本试验箱采用的是液氮制冷方式。液氮的沸点低,价格相对便宜,常压下液氮的温度为-196℃,1 m3的液氮可以膨胀至696m3、21℃的纯气态氮。虽然液氮汽化后变为氮气,氮气是惰性气体,在大气中重量比75.5%,但是在实验室内,如果试验时氮气不能及时排到室外,可能会造成室内人员缺氧,因此试验箱配有气压平衡装置把氮气排到室外,由于气化过程中压强升高,气体能从试验区顺利排出,避免箱体受压变形,这也是气压平衡装置名称的由来。 /p p style=" text-align: justify text-indent: 2em " 液氮系统是温度调节结构的核心,其结构示意图如图3所示,各个功能部分的名称如下:1.空气压力报警,2.空气调压阀,3.空气电气比例阀,4.液氮比例控制阀,5.液氮管路排气电磁阀,6.液氮压力安全泄压阀,7.液氮压力报警,8.液氮主管路电磁阀,9.保温层,10.液氮雾化喷嘴。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/75049ce4-c225-4da0-8243-899fea2e5ab3.jpg" title=" 图3.jpg" alt=" 图3.jpg" / /p p style=" text-align: center " strong 图3 液氮系统图 /strong /p p style=" text-align: justify text-indent: 2em " 液氮由氮气罐接口接入,通过液氮电磁阀控制通断,液氮电磁阀在运行时打开,设备故障或停止时关闭。排气阀的作用是试验前对液氮管路进行排空,保证试验时管路里面都是液态氮,以确保试验的可靠性、稳定性和可重复性。液氮比例控制阀属于节流元件,是控制执行器的关键器件,开度在0~100范围接近线性的输出,以利于大范围的调整,能保证降温时的大流量要求,也可以满足恒定时小流量的需要,具有明显的节能效果。由于液氮在常压下 span style=" text-indent: 2em " 的蒸发温度为-196℃,与试验设定温度相差很大,因而需要精确控制流量才不会造成温度过冲或大幅回升。为了保证对温度的精确控制,就要考虑响应时间的问题,传统的电动执行装置响应时间过长,明显不能满足这个需要。因此本试验箱采用的是气动驱动以保证快速响应。 为了使液氮比例控制阀的响应速率满足要求,我们使用了一个称为电气比例阀的驱动器来控制供气的压强, 它可以把控制输出的模拟电信号转化为压强输出,电气比例阀的输入信号 类型及范围需要和控制输出一致,输出压强范围要和液氮比例控制阀一致,这样才能保证控制精度。为了防止快速升温、降温过程中过冲量过大,还需要做控制算法上的处理,如果不能及时预判当前温差、温度变化的速率,就会造成过冲量大,震荡次数多,或者过早减少输出保证不了速率。针对长距离快速温度变化,对设定曲线增加一些非线性的降温处理,并在降温转恒温阶段由PID控制切换到PI控制。针对短距离步进,使用模糊控制加PID的控制方式,并对输出的范围加以约束。经过液氮比例控制阀的液化氮送到雾化组件进行雾化,雾化组件的核心部件是液氮喷嘴,其作用就是把液氮雾化,喷到通道后快速汽化,雾化后颗粒的大小、喷射角度和流量的多少都要与降温的需要相一致,这样才能保证控制精度。流量决定了降温速率的达成可能性,喷射角度和雾化后颗粒直径决定了换热的效率,颗粒越小越好,喷射角度越大越好。 /span /p p style=" text-align: justify text-indent: 2em " strong 2.3 振动系统及控制 /strong /p p style=" text-align: justify text-indent: 2em " 振动台系统由振动台、供气系统和控制系统组成。 /p p style=" text-align: justify text-indent: 2em " 振动台有两层结构面板,由结构螺丝连接,上层固定待测物,下层锁紧气锤,其特点是台面质量轻,同时增加台面刚性,刚性加强后可以有更好的振动传导特性,低频振动能量较高。频率范围更宽,扩展到5~1 000 Hz,并且90%的能量都集中在5~4 000 Hz范围内,因为大部分电子产品的失效频率都集中在这一频段内,可以有效地快速激发产品故障。 /p p style=" text-align: justify text-indent: 2em " 振动台上表面采用衬垫式的安装螺孔,并有凸起部分,采用此结构的设计理念,一是可以改善振动的传导特性,把更多的振动激励传导到样品上;第二是凸起结构可以使得样品或夹具和台体表面具有一定的空余间隙,风流可以顺利通过样品或夹具底部从而保证样品的上下表面温度更加均匀。 /p p style=" text-align: justify text-indent: 2em " 振动台面增加陶瓷涂层的结构设计,可以抗腐蚀,耐高低温,更好地保护振动平台和气锤,延长使用寿命;还可以保证设备长时间在高低温环境下运行,延长设备的使用寿命。 /p p style=" text-align: justify text-indent: 2em " 气锤分大中小3种不同的型号,多种气锤的组合更有利于台面激励的均匀性,采用高压油雾器对气锤进行润滑,可以降低气锤的故障率,延长气锤的使用寿命。排气时气体统一由消声器排出,降低振动噪音。 /p p style=" text-align: justify text-indent: 2em " 振动台安装在箱内弹簧隔离座上,可起到减震作用,不影响气锤工作时的激励作用。在密封连接处理上,振动台面与试验箱底板采用软连接,需要时可以拆装。 /p p style=" text-align: justify text-indent: 2em " 对振动台的控制其实就是对气锤的控制,也就是对进入气锤的气体压强的控制,有点类似于液氮的控制方法,既需要振动的快速性又需要稳定性,这里也用到了电气比例阀。由于加速度的测量不像温度测量那样稳定,需要用到振动信号的转换板,将其转化为模拟信号或者通过通讯反馈到CPU单元,进行算法运算,输出模拟信号给电气比例阀,控制进入气锤的气体压强,从而控制气锤产生的激励。只要气源压力和供气管路保证流量,正常的负反馈控制都可以实现。这里有两个难点,都属于硬件的固有特性方面的问题。一个是加速度传感器的信号微弱,测量值不够精确稳定,需要在测量时做滤波处理,转换为数字量后还可能需要再次做滤波处理,这两次滤波效果会直接影响控制精度和控制品质;另一个就是气锤在较小能量级时整个台面不太稳定,会造成加速度传感器测量跳动比较大,也会影响控制品质,这时候需要更慢的输出变化。 /p p style=" text-align: justify text-indent: 2em " strong 3 结束语 /strong /p p style=" text-align: justify text-indent: 2em " 本文对HALT/HASS试验箱的结构和工作原理进行了阐述,以上系统经多个客户的使用证明完全满足HALT/HASS的要求。通过该试验箱进行HALT/HASS能切实提高电子设备的可靠性, 大大地降低试验成本。此结构简单紧凑,运行噪声小,能耗适中,可靠性高。此类试验设备在国内的产品化对HALT/HASS试验的推进起到了积极作用,可大大地提高电子行业及其他相关行业产品整体的可靠性。 /p p br/ /p
  • 仪器信息网|2023年6月解决方案排行榜
    解决方案,释义是针对某些已经出现的,或可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方法。 仪器信息网【行业应用】栏目收录了各大仪器厂商发布的解决方案,可为用户在实际应用过程中提供一定参考。解决方案是用户了解厂商仪器功能及使用方法的重要途径,也是厂商强大技术储备的重要依据。 为了解厂商解决方案发布动向,掌握市场热点,应用趋势,特整理2023年6月厂商解决方案发布排行榜及 热点应用领域。 一、2023年6月解决方案发布排行榜 2023年6月解决方案发布篇数TOP榜单 (点击可查看公司详细信息)排名厂商名称Top1佳士科商贸有限公司Top2山东普创工业科技有限公司Top3山东三体仪器有限公司Top4海能未来技术集团股份有限公司Top5济南兰光机电技术有限公司Top6上海荣计达仪器科技有限公司Top7济南赛成电子科技有限公司Top8力森诺科科学仪器(上海)有限公司Top9安东帕(上海)商贸有限公司Top10浙江福立分析仪器股份有限公司注:根据2023年6月,各仪器厂商在行业应用栏目发布且被收录的解决方案篇数由高到低排名整理得出。 本次发布的榜单中,佳士科商贸有限公司以绝对性优势位居榜首,其发布的解决方案TOP3应用领域为生物、制药、食品。涉及到主推的仪器类型有:JASCONRS5000/7000共聚焦激光拉曼光谱仪、JASCO傅立叶变换红外光谱仪FT/IR-6000、JASCO高效色谱仪LC-4000等。 山东普创工业科技有限公司是一家专业从事包装检测理论研究与检测硬件开发并具有独立的自主知识产权的高科技企业。产品广泛服务于质检药检机构、印刷、包装、医药、日化、科研院校、食品、医药、化工、新能源、新材料等领域。涉及到主推的仪器类型有:普创-安瓿瓶电子轴偏差(圆跳动)测试仪CRT-01-E、水蒸气透过率测试仪/透湿仪WVTR-RC6普创paratronix、普创-医药包装物理性能测试仪-PMT-05等。 山东三体仪器有限公司主营业务是研发、生产:农药残留检测仪、兽药残留检测仪、食品安全检测设备等仪器仪表,为食品药品监督委员会、第三方检测机构,以及农副产品检测等相关领域提供综合解决方案。涉及到主推的仪器类型有:综合食品安全检测仪 ST-SD10T、食品安全检测仪厂家ST-GB12等。二、2023年6月用户关注的热点领域排行榜2023年6月解决方案用户关注的热点领域排名行业Top1食品/农产品Top2环保Top3石油/化工Top4制药/生物制药Top5生物产业Top6其他Top7医疗/卫生Top8农/林/牧/渔Top9电子/电气Top10能源/新能源备注:根据2023年6月,用户所浏览解决方案所属的一级领域的浏览量由高到低排名,整理得出。 由上表可以看出,食品、环保、石油化工、制药是6月份发布解决方案较多的四大领域。三、2023年6月热门解决方案速览:1、做好VOCs监测,必须要分清这些问题……2、生产监控|电池片PID测试仪PIDcon bifacial3、凯氏定氮与杜马斯定氮—概述和比较4、天美锂电池行业应用解决方案2023.6.55、何首乌中2,3,5,4'-四羟基二苯乙烯-2-O-β-D-葡萄糖苷的测定6、用于定量色度和浊度测量的紫外可见分光光度计7、瑞绅葆液氮冷冻研磨机研磨中草药8、高效液相色谱法测定液体乳中三聚氰胺9、根据《中国药典》2020版标准分析人免疫球蛋白类制品IgG单体加二聚体10、疾病预防控制中心采样设备检测设备配套方案 【行业应用】栏目不仅提供上述众多领域的应用方案,还将定期根据时事热点,制作热点专题,并定向向用户推送相关仪器及解决方案。在此,诚邀各大厂商积极上传解决方案,参与共建热点专题。近期热点专题参考:行业应用栏目简介:(http://www.instrument.com.cn/application/) 【行业应用】是仪器信息网专业行业导购平台,汇聚了行业内国内外主流厂商的优质分析方法及相应的仪器设备。栏目建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、农/林/牧/渔、石化、汽车、建筑、医疗卫生等二十余个使用仪器相对集中的行业领域,目前,已经收录行业解决方案6万+篇。
  • 仪器信息网|2023年7月解决方案排行榜
    解决方案,释义是针对某些已经出现的,或可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方法。 仪器信息网【行业应用】栏目收录了各大仪器厂商发布的解决方案,可为用户在实际应用过程中提供一定参考。解决方案是用户了解厂商仪器功能及使用方法的重要途径,也是厂商强大技术储备的重要依据。 为了解厂商解决方案发布动向,掌握市场热点,应用趋势,特整理2023年7月厂商解决方案发布排行榜及 热点应用领域。一、2023年7月解决方案发布排行榜 : 2023年7月解决方案发布篇数TOP榜单(点击可查看公司详细信息)排名厂商名称Top1山东三体仪器有限公司 Top2山东普创工业科技有限公司Top3上海荣计达仪器科技有限公司 Top4海能未来技术集团股份有限公司 Top5济南兰光机电技术有限公司 Top6佳士科商贸有限公司 Top7济南赛成电子科技有限公司 Top8丹麦福斯分析仪器 Top9广东皓天检测仪器有限公司 Top10中国格哈特 注:根据2023年7月,各仪器厂商在行业应用栏目发布且被收录的解决方案篇数由高到低排名整理得出。 本次发布的榜单中,山东三体仪器有限公司以绝对性优势位居榜首,较上月上升两名,其发布的解决方案集中在食品/农产品应用领域。涉及到主推的仪器类型有:综合食品安全检测仪 ST-SD10T、食品安全检测仪厂家ST-GB12、蔬菜农药残留检测仪 ST-NY12Z等。 山东普创工业科技有限公司是一家专业从事包装检测理论研究与检测硬件开发并具有独立的自主知识产权的高科技企业。产品广泛服务于质检药检机构、印刷、包装、医药、日化、科研院校、食品、医药、化工、新能源、新材料等领域。涉及到主推的仪器类型有:普创-鲁尔接头综合性能测试仪-LCCT-01A、水蒸气透过率测试仪/透湿仪WVTR-RC6普创paratronix、普创-安瓿瓶电子轴偏差(圆跳动)测试仪CRT-01-E等。 上海荣计达仪器科技有限公司产品涉及水泥砂浆检测仪器、混凝土检测仪器、公路土工检测仪器、沥青防水材料检测仪器、油漆涂料物理性能检测恒温恒湿试验箱、高低温试验箱、高低温交变湿热试验箱、高低温冲击试验箱、超低温试验箱、氙灯耐候试验箱、甲醛释放舱、VOC释放舱、步入式高低温环境试验箱沙尘试验箱淋雨试验箱橡胶臭氧老化箱、耐老化试验系列、盐雾试验箱振动、跌落试验系列、电磁式振动试验台、模拟运输振动台、跌落试验台等几大类。涉及到主推的仪器类型有:高低温冲击循环试验箱GDC系列、高温老化试验箱等。二、2023年7月用户关注的热点领域排行榜:2023年7月用户关注的热点领域排名行业Top1环保Top2食品/农产品Top3制药/生物制药Top4石油/化工Top5能源/新能源Top6医疗/卫生Top7农/林/牧/渔Top8其他Top9电子/电气Top10钢铁/金属备注:根据2023年7月,用户所浏览解决方案所属的一级领域的浏览量由高到低排名,整理得出。 由上表可以看出,环保、食品/农产品、制药/生物制药、石油/化工是7月份发布解决方案较多的四大领域。环保领域解决方案关注的用户量较上月有很明显的增加。本月钢铁/金属领域新进前十热点解决方案关注领域,生物产业领域则掉出前十。各厂商也可针对热点领域多多提交审核方案,增加在该行业领域中的影响力。三、2023年7月热门解决方案速览1、GB 5749-2022《生活饮用水卫生标准》 应用文集2、饮用水中高氯酸盐的LC-MS/MS定量分析3、生活饮用水中11种PFAS的液质定量分析4、交通大气环境移动源监测系统5、半导体材料检测应用文集6、LCMSMS直接进样快速分析生活污水中毒品及代谢物7、赛默飞半导体全产业链解决方案8、EDX-7200筛选分析玩具塑料中的8种有害元素含量9、废水样品中总汞的测量10、傅立叶变换红外光谱法测定橡胶密封件表面硅油含量 【行业应用】栏目不仅提供上述众多领域的应用方案,还将定期根据时事热点,制作热点专题,并定向向用户推送相关仪器及解决方案。在此,诚邀各大厂商积极上传解决方案,参与共建热点专题。近期热点专题参考: ══════════▼▼▼══════════行业应用栏目简介:(http://www.instrument.com.cn/application/ ) 【行业应用】是仪器信息网专业行业导购平台,汇聚了行业内国内外主流厂商的优质分析方法及相应的仪器设备。栏目建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、农/林/牧/渔、石化、汽车、建筑、医疗卫生等二十余个使用仪器相对集中的行业领域,目前,已经收录行业解决方案6万+篇。
  • 第15期线上讲座:泵与比例阀的结构原理与常见故障
    答疑解惑时间:2009年7月8日---7月24日 热烈欢迎pandora98先生光临仪器论坛进行讲座!   在4月份我们刚在液相色谱与液质联用版面联合举办第12期的线上讲座---剖析液相色谱仪和液质联用仪,而今液相色谱版面又迎来了新一期在线讲座。   本期讲座我们邀请了pandora98先生就泵与比例阀的结构和工作原理以及常见故障展开一期专题讲座。本期讲座共分两章,第一章是对泵的单向阀、泵的比例阀、泵的梯度系统等的结构及工作原理进行详细阐述 第二章就对泵的单向阀漏液、泵的比例阀漏液、二元泵的问题等常见故障进行详细的解剖,并介绍自己的维修的经验及心得体会。   本次的线上讲座将开展16天(2009年7月8日---24日)。这次讲座以某一款仪器为例,主要讲解泵、泵的单向阀、比例阀的知识,重点介绍泵与比例阀的常见故障及pandora98老师的维修经验、心得。希望大家珍惜此次交流机会,共同参与探索液相色谱泵的奥妙之处,有利于提高液相色谱的操作能力。   再次感谢pandora98先生提供的丰富的讲座,也感谢pandora98先生与大家一起交流心得和经验。pandora98先生从事色谱分析工作多年,有丰富的实践经验,欢迎大家就液相色谱仪器泵的单向阀、比例阀的的问题前来提问,也欢迎液相色谱方面的高手前来与pandora98先生一起交流切磋。 第15期线上讲座泵与比例阀的结构原理与常见故障 线上导览论坛线上活动导览
  • 新冠检测造富效应减弱,第三方医检却成“香饽饽”?字节跳动都在跨界入局
    伴随国内疫情防控形势趋稳,如何应对红利消退后的发展,是ICL企业绕不开的命题。  一场新冠肺炎疫情让第三方医学检验(Independent Clinical Laboratory,ICL)行业迎来高光时刻,也吸引了互联网巨头们的入局。  2020年12月29日,上海微荷医学检验所有限公司(下称“微荷医学”)成立,注册资本100万元,经营范围包括检验检测服务、医疗服务、医学研究和试验发展等。天眼查股权穿透显示,微荷医学由小荷健康科技(北京)有限公司100%控股,后者为字节跳动的全资子公司。  第三方医学检验是指在卫生行政部门许可下,具有独立法人资格,独立于医疗机构之外、从事医学检验或病理诊断服务,能独立承担相应医疗责任的医疗机构。目前,无论是渗透率还是可检测项目数量上,国内的第三方医学检验与发达国家都存在较大差距。相关数据显示,国内第三方医学检验机构的渗透率仅为5%-6%,而这一数字在美国、欧洲和日本已分别达到38%、50%和67%。  自疫情爆发以来,旺盛的新冠病毒核酸检测需求,带动了ICL相关企业的业绩,但伴随国内疫情防控形势趋稳,如何应对红利消退后的发展,是企业绕不开的命题。  “从目前的政策,还有民众健康需求来看,整个行业的发展都是向上的,前景很好。新冠肺炎疫情扩大了检验行业的曝光度,它是一个红利期,有些企业赶上了,自然就吃到了一波红利。””一不愿具名的ICL行业资深人士告诉时代财经,“但仅靠新冠检测业务无法实现长足发展,第三方医检仍然要回到常规业务,尤其是一些创新方向,比如分子诊断。尤其是没有赶上新冠红利期的企业,更要在非新冠业务方向上做拓展,否则很容易被行业所淘汰。”  疫情年成业绩分水岭  针对新型冠状病毒的检测方法主要有核酸检测、抗体检测和抗原检测等。核酸检测具备早期诊断、灵敏度和特异性高等特点,被称为新冠病毒检测的“金标准”,在“抗疫”中得到最广泛应用。  基于庞大的检测需求,作为能独立承担相应医疗责任的医疗机构,第三方医学检验机构在疫情时期国内检测承压的现实状况下,获得了政策红利和市场需求的双双驱动,成为新冠病毒检测的主力军。  据产业信息网数据,疫情期间,在武汉地区的新冠病毒检测中,ICL检测量约为80%,公立医院检测量约为20%。  财报数据显示,在疫情爆发的2020年,相关公司的业绩都取得了爆发式增长,其中迪安诊断(300244.SZ)的营收直接冲破百亿,达到历年最高值;金域医学(603882.SH)的净利润增长率最高,达到275.24%;凯普生物(300639.SZ)的净利增长率也超过一倍,且营收增长率高达85.7%。以ICL龙头金域医学为例,财报数据显示,2017-2021年,公司的营收和利润均呈现上涨趋势,但新冠肺炎疫情爆发当年成为金域医学营收的分水岭。  在2019年之前,金域医学的营收增长相对平缓,增速基本维持在15-20%之间。到了2019年,金域医学的净利润相比往年增长近两倍,2020年则更上一层楼,营收直接从52.69亿元跃升至82.44亿元。而2021年前三季度,这一数字已经达到了86.17亿元,超过2020年全年营收。  从其营收的产品成分来看,第三方医学诊断服务占比较大,且毛利率增长也在2019年出现分水岭,实现从负增长转为正增长,到了2020年,第三方医学诊断服务的营业收入直接从不到50亿元增长至近80亿元。 ICL走热,资本也在闻风而动。仅从2021年来看,国内ICL行业已经发生多起投融资、上市等事件。2021年4月,北京智德医学检验所有限公司宣布完成2000万元Pre-A轮融资;紧接着6月份,中国ICL三巨头之一艾迪康走上上市之旅,在港交所递交了招股说明书;兰卫医学(301060.SZ)也在9月于深交所上市,发行价为4.17元/股,此后股价一路飞涨;2022年1月6日,兰卫医学报收32.79元/股,较发行价涨幅高达686.33%,总市值超过130亿元。  新冠检测造富效应减弱  从国内来看,大范围的全员检测需求已经大幅下降,目前核酸检测需求集中在局部疫情反弹地区以及出入境流动较大的地区。  并且,新冠检测单价持续下降。疫情以来,国内包括北京、广东、陕西、浙江等省份都开展了新冠试剂集采。2021年11月,国家医保局启动第三轮全国联调,指导各地进一步降低公立医院新冠病毒核酸检测的价格和费用,单次核酸检测费用降低到40元以下。日前,陕西省医疗保障局决定联动广东联盟新冠病毒核酸检测试剂集中带量采购中选品种价格,价格联动后,检测试剂盒价格最高降幅75.08%,平均降幅34.24%;一次性病毒采样管(器)(单检)价格最高降幅77.81%,平均降幅25.16%。  集采政策下,国内相关产品价格进一步承压,相关企业的利润空间面临被压缩。  “目前的试剂集采政策对公司的主营业务不会造成不良影响。公司是以‘产品+服务’为核心的医学诊断整体化解决方案提供商,集采会促使IVD(体外诊断产品)成本进一步下降,有助于规模化效益下的诊断服务板块扩大成本领先竞争优势;其次,集采会促使粗放式的代理模式逐渐被淘汰,以迪安为代表的龙头渠道商集中度效应会显著提升。”迪安诊断董秘在互动平台上回复时代财经的提问时称。  “大范围集采后,无论是医院,还是第三方医检机构,新冠检测的成本都被拉到同一个水平,剩下的就是效率和规模的竞争。如果一家医院发现自身的检测量有限,长期发展并不会带来相应的利润,那么它就会考虑把检测项目外包出去,这对于第三方医检机构来说,是有益处的。”上述ICL行业资深人士对时代财经称,“除此之外,弊端也是存在的。因为集采使得整个核酸检测的价格变得透明,这意味着留给第三方医检调动的空间十分有限,最终还是要以量获利。”  寻找新利润增长点  据艾迪康的招股书,弗若斯特沙利文的数据显示,中国ICL市场规模已从2016年的117亿元增长至2020年的198亿元,复合年增长率为14.0%。该机构预计,整体市场规模将于2025年达到463亿元,复合年增长率为18.4%。  疫情带来的业绩高增长不具有可持续性已经成为业内的基本共识。“仅靠新冠检测业务无法实现长足发展,第三方医检仍然要回到常规业务,比如肿瘤、生殖健康、感染性疾病等诊断产品,但是一旦回到常规业务,行业发展不稳的问题便日渐暴露。实际上,第三方医检在国内的发展并不久,要打通业务渠道、成为医院的外包合作方等并非易事。”业内人士告诉时代财经。  多家ICL企业开始在人工智能辅助诊断、精准医学诊断、互联网医疗等方向发力和探索。  其中,金域医学组建基因组临床服务和数据中心,试图聚焦遗传性罕见病、血液肿瘤和实体肿瘤等疾病领域,同时在营销和冷链物流上着力;迪安诊断则在液相质谱、核酸质谱、分子诊断及细胞病理等领域均有产品布局。  “第三方医检本质来说还是服务行业,商业逻辑还是要符合服务行业的规律。如果一家机构提供的服务没有太高的技术含量,其他机构也能够提供,那么机构本身并不具备核心竞争力,而且利润水平也十分有限。但是如果企业能够提供一些比较优质的产品,做到产品上的差异化,能提供给患者更精准的诊断水平和更好的服务,那么整个企业的发展水平都会被提高。在历经新冠洗牌后,如何去做创新、满足患者和健康人群的需求,对第三方医检来说很重要。”前述ICL行业资深人士向时代财经坦言道。  除了医院外包业务,面向患者开设C端业务也在龙头企业的布局当中。尽管目前字节跳动并未对成立第三方医检公司做出回应,但是互联网公司进驻医学检验在国内并非首次。  2021年10月15日,迪安诊断与百度健康在北京签订战略合作协议,双方表示将整合各自优势资源,提供健康管理、疾病诊断与管理、检验科普教育、预约检验等服务。  迪安诊断2021年中报显示,目前to c 事业部已经开设居家自采、采血点采血套餐及线上检验科开单三类产品,在国内开设采血点超500家,据时代财经观察,在电商平台的官方旗舰店里,充值满减、直播带货等多种玩法都被采用。  “目前的检验企业不会局限于仅成为医院外包的发展模式,如何在更大的范围中获客对企业的发展尤为关键,互联网企业带有很多的流量入口和渠道,这对于第三方医检来说是一种辅助。其次,从更长远的角度来说,精准医学是当下业内发展的趋势,但是要做到精准便意味着要有大数据,对于传统的检测企业来说,在数据的处理和人工智能的一些技术上多少存在欠缺,与互联网企业合作也能对企业在精准医学的大数据获取和处理上产生一定的加成。”前述ICL行业资深人士向时代财经表示。  不过,从平台旗舰店披露的数据来看,新冠核酸检测产品及服务的购买次数最多,其次HPV检测也拥有一定的购买量,其他产品仅有零星购买。  “这实际上涉及到消费需求是否刚需的问题,在新冠疫情时期,核酸检测是刚需,但是在其他的一些新兴诊断产品上,刚性不足,产品面向的多是对健康问题较为关注的群体,而且对于这个群体来说,也存在‘可做可不做’的问题,大部分情况下的话是选择不做,除非有人为他买单;其次,认知不足也是导致产品难以推广的问题。以HPV产品为例,在国内HPV相关产品已经被讨论了一段时间,公众对疾病风险的认知已经被建立起来,那么自然而然也会去购买相关的诊断产品。”前述ICL行业资深人士向时代财经称,“换句话说,产品对购买群体有没有获益点很重要。”
  • 线上开讲:基于XRD数据精修晶体结构模型的数学原理
    晶体结构精修过程,本质上是一个不断调整结构模型参数以使结构模型与XRD数据最为吻合的过程。7月18日,国家纳米科学中心正高级工程师、中国科学院大学物理科学学院岗位教授贺蒙将于第四届X射线衍射技术及应用进展网络研讨会期间分享报告,重点讲述这一过程背后的数学原理,帮助大家通过了解相关数学原理,加深对于结构精修本质的认识,了解单晶结构精修和Rietveld法粉末衍射结构精修的区别,并正确理解各种结构精修残差因子(R因子)的意义。关于第四届X射线衍射技术及应用进展网络研讨会为促进相关人员深入了解X射线衍射技术发展现状,掌握相关应用知识,仪器信息网将于2023年7月18日组织召开第四届X射线衍射技术及应用进展网络研讨会,邀请业内技术和应用专家,聚焦X射线衍射前沿技术理论、分析方法、热点应用领域等分享报告,欢迎大家参会交流。会议详情链接:https://www.instrument.com.cn/webinar/meetings/xrd2023
  • 山东省医疗器械质检中心采购大批实验室设备
    山东省医疗器械产品质量检验中心实验室设备采购公开招标公告   一、采购人:山东省医疗器械产品质量检验中心,地址:济南市高新技术开发区天泺路99号,联系方式:郭维 82682928   二、采购代理机构:山东省国际招标有限公司,地址:济南市燕子山路2-2号燕翔大厦357室,联系方式:尹宏 88193765   三、项目名称:山东省医疗器械产品质量检验中心实验室设备采购(项目编号:SDITC-2011-045)   四、采购内容及分包情况: 包号 设备名称 数量 备注 A 18角度激光光散射仪 1套 进口 B 电化学工作站 1套 进口 库仑水分滴定仪 1套 进口 C 流变仪 1套 进口 D 超高效液相色谱仪 1套 进口 E 测厚仪 1套 进口 软包装密封性能测试仪(真空检漏仪) 1套 进口 F 电子天平 1套 进口 G 高静压测试仪 1套进口 H 金属试验引申计 1套 进口 I 径向圆跳动仪 1套 国产 J 金相显微镜 1套 进口 K 全自动生化分析仪 1套 进口 L 研究级显微镜 1套 进口 显微镜带数码显微成像系统 1套 进口 M 蒸汽灭菌温度压力记录器 1套 进口 N 示波器 1套 进口 O 气流分析仪 1套 进口 双量程模拟肺 1套 进口 双量程模拟肺气密性检测工装 1套 进口   本项目为山东省医疗器械产品质量检验中心所需实验室设备采购,共分为十五个包,具体内容详见招标文件。   投标人资格要求: 1、符合《中华人民共和国政府采购法》第二十二条的规定;2、具有独立法人资格,注册资金不低于100万人民币 3、具有生产厂商针对本项目的授权文件。   五、获取招标文件地点:山东省国际招标有限公司(济南市燕子山路2-2号燕翔大厦357室) 时间:2011年5月27日至2011年 6月 21日9:00-11:30,13:00-17:00(节假日除外)   方式:请携带营业执照副本原件或复印件(加盖公章) 相关资质证明文件复印件(加盖公章)一份。 售价:每包200元   六、投标截止日期:2011年6月22日上午8:30至9:30(北京时间)   七、开标日期:2011年6月22日上午9:30(北京时间) 开标地点:省级政府采购招标大厅 开标会议室(五)   八、本项目联系人:尹宏 联系电话:0531-88193765-803
  • 俞书宏院士团队与吴恒安教授团队发现河蚌铰链脆性成分中的抗疲劳结构
    脆性材料作为结构或功能部件被广泛应用于航空航天、电子器件和组织工程等领域。由于人工脆性材料对微裂纹和不易察觉的缺陷很敏感,在长时间的循环载荷作用下,材料很容易累积损伤产生疲劳裂纹,进而存在失效的风险。随着可折叠穿戴设备的发展,对具有高疲劳抗性的可变形功能材料的需求日益凸显。通过模仿典型的生物矿物材料如珍珠母、骨骼等的结构设计可以提升脆性材料疲劳抗性,但这常依赖于疲劳裂纹扩展过程中增韧行为,然而一旦裂纹开始扩展,就会对器件的性能产生不可逆的影响,因此寻找并开发新的耐疲劳结构模型对未来可变形功能材料的设计制备具有重要的科学意义和应用价值。中国科学技术大学俞书宏院士团队和吴恒安教授团队成功揭示了双壳纲褶纹冠蚌铰链内的可变形生物矿物硬组织的耐疲劳机制,提出了一种多尺度结构设计与成分固有特性相结合的耐疲劳设计新策略,为未来耐疲劳结构材料的合理创制发展提供了新的见解。研究成果以“Deformable hard tissue with high fatigue resistance in the hinge of bivalve Cristaria plicata”为题,于6月23日发表在国际顶尖学术期刊《Science》上。审稿人评价称:“这份手稿展示了一个非常有趣的工作”、“这是一份令人兴奋的稿件。它集成了诸多表征技术来理解双壳纲铰链组织的显著疲劳抗性”、“这无疑激发了对生物复合材料的进一步研究,以设计抗疲劳性能增强的新材料”。同期《Science》观点栏目(Perspectives)以“A bendable biological ceramic”为题发表了评述(Science 2023, 380, 1216-1218),评述称“通过整合不同尺度的原理——从铰链的整体结构到单个晶体的原子结构——孟等人揭示了大自然如何主要从脆性成分中创造出抗疲劳、可弯曲、有弹性的结构。这些跨尺度原理要求在最精细的尺度上精确,而软体动物如此精确地沉积壳的细胞和分子机制是一个正在探索的领域”;“匹配生物精细控制对于对生物启发材料感兴趣的人类工程师来说是一个特别的挑战,正如开发模仿珍珠质强度和韧性的复合材料所面临的困难所证明的那样”;“尽管孟等人研究的力学性能与这种特殊生物体的需求相匹配,这些原理如何在更广泛的系统范围内得到完善,这是令人兴奋的前景。”论文共同第一作者为中国科学技术大学合肥微尺度物质科学国家研究中心博士研究生孟祥森,近代力学系周立川博士(现就职于合肥工业大学)、化学系刘蕾博士。我校俞书宏院士、吴恒安教授和茅瓅波副研究员为论文通讯作者。双壳纲动物褶纹冠蚌(Cristaria plicata)又称鸡冠蚌,是一种常见的淡水蚌类。为了满足生存需求(滤食、运动等),其外壳在一生中需要进行数十万次的开合运动,而连接两片外壳的铰链部位也会经历反复的受压和变形,表现出优异的耐疲劳性能。本工作中,研究人员揭示了铰链部位中的折扇形矿物硬组织所蕴含的跨尺度耐疲劳设计原理。从计算机断层扫描图(CT)和剖面光学照片可以看出,铰链可以分为两个不同的区域:外韧带(OL)和折扇形矿物硬组织(FFR)(图1,A和B)。研究人员首先观察了这两个区域在双壳开合过程中的运动行为(图1,D和E),并结合有限元分析(FEA),明晰了不同区域所承担的力学角色。在闭合过程中,OL发生拉伸,承担主要的周向应力并储存大部分弹性应变能;FFR区域在周向弯曲变形,并在受限的径向变形下提供强有力的径向支撑用以固定OL(图1,F到H)。图1(A)褶纹冠蚌和截面照片;(B)铰链切片照片和CT重构图;(C)在正常开合和过载状态下的疲劳测试结果;(D)开合前后铰链各区域形状变化及其轮廓图;(E)有限元模型对应的开合前后的铰链各区域形状变化及其轮廓图;(F)铰链有限元分析模型示意图;(G)开合状态下铰链各区域周向应力分布;(H)开合状态下铰链各区域径向应力分布。研究人员对FFR在不同尺度上的观察发现,其具有跨尺度多级结构特征。在宏观尺度上,FFR的扇形外形能使其在OL和外壳之间实现有效的载荷传递。进一步的深入观察发现,FFR由弹性有机基质和嵌入其中的脆性文石纳米线组成。文石纳米线直径约为100-200纳米,线的长轴方向在形貌上和扇形的径向方向一致,在晶体学上纳米线沿002晶向取向(图2,A到H)。考虑到文石晶体在002晶向的压缩模量远大于其他晶向,这种微观形貌和晶体学取向上的一致性意味着FFR能有效地为OL的拉伸提供支撑(图2,I和J)。这一结果也通过压缩力学和FEA模拟进行了进一步的验证。此外,FEA模拟结果显示,这种微米尺度上的软硬复合微观结构在压缩、拉伸、剪切三种受力状态下能够进行协调变形,在这个过程中有机基质承担了大部分的压缩和剪切应变,极大地减少了材料内部的应力集中,从而避免了文石纳米线侧向断裂,降低了FFR发生疲劳损伤的可能性。图2(A)FFR在纵向上的自然断面扫描图;(B)FFR在横向上的自然断面扫描图;(C和D)FFR脱钙处理之后的扫描图;(E和F)文石纳米线中的孪晶结构透射电子显微图片;(G和H)文石纳米线沿长度方向上的晶体学特征;(I和J)整个FFR中纳米线在形貌上和晶体学上的取向分析示意图。从FFR的横截面观察,文石纳米线呈近似六边形,研究人员通过高分辨透射电子显微镜也在纳米线中发现了纳米孪晶结构,考虑到文石纳米线沿002方向生长,这一结构可能与文石晶体Pmcn空间群易形成(110)孪晶界密切相关。这种沿纳米线纵向方向的孪晶结构的存在,在纳米尺度上大大强化了纳米线抗弯曲断裂的能力(图2,E和F)。与典型的天然硬质生物矿物材料(如骨骼、牙釉质)以及人工材料(如金属、水凝胶)等相比,FFR所展现的特殊之处在于它能在承担较大周向变形的同时,保持长时间的结构功能的稳定。这项研究从宏观到微纳米尺度上揭示了FFR的跨尺度多级结构设计原则(图3)。图3 典型生物和人工结构材料的耐疲劳设计机制。FFR中所具备的跨尺度结构特征使其在可变形能力上明显优于典型的生物矿物如牙釉质和骨骼,与常见的人工弹性体材料相比,FFR也一定程度保持了其高硬度和刚度。这项研究揭示了含脆性基元的生物矿物材料在较大形变下的耐疲劳设计新机制,填补了国际上含脆性组元的仿生耐疲劳材料设计的空白,所提出的整合跨尺度结构特征与功能特性的设计策略,能够在不同尺度上充分发挥每种成分的固有特性,从而实现材料整体性能的优化。这种兼顾变形性和耐疲劳性的跨尺度设计原则有望为未来功能材料的仿生设计和创制提供崭新思路。该研究得到了国家重点研发计划、新基石科学基金会、国家自然科学基金重点项目和中国科学院青促会等项目的资助支持。
  • TA仪器2018年度巨献——流变学原理与前沿应用大师课程
    本次为期两天的流变大师课程旨在为化学家,石油工程师,生物医学研究者,药剂师以及材料工程师介绍流变基础理论知识,操作原理及在实际问题中的应用。课程将涵盖流变现象里的分子及微观结构基础包括聚合物,悬浮体,表面活性剂及生物高聚物网络。我们很荣幸地邀请到了大师中的大师-世界流变学权威、界面流变创始人gerald g. fuller院士、全球权威期刊polymer engineering and science编委、以及美国工程院院士christopher macosko教授亲自来到中国开授此次大师课程。同时,两位杰出的青年流变学家也将参与大师课程的部分授课内容。在此次大师课程中,两位世界级顶尖流变学家将从梳理基于聚合物、胶体、自组装表面活性剂、生物大分子凝胶等流变现象入手,使得参加课程者通过学习典型实际案例掌握流变学基本原理、定量表征技术、实验数据提炼和分析方法。 大师课程授课时间与地点:时间: 2018年4月9日-10日地点:上海市新园华美达广场酒店b楼3层兴园厅(上海市漕宝路509号b楼3层) 日程安排2018年4月9日(周一) 8:00学员登记8:30流变学介绍:主要现象,材料性能christopher macosko 院士9:30线性黏弹性amy shen 教授茶歇11:00线性黏弹性微观结构基础gerald g fuller 院士午餐13:00线性黏弹性课堂实践乔秀颖 博士13:30般粘性流体christopher macosko 院士14:30剪切流变仪christopher macosko 院士课间休息16:00剪切变稀,剪切增稠的微观结构基础gerald g fuller 院士17:00休会 2018年4月10日(周二)8:30非线性黏弹性christopher macosko 院士9:30拉伸流变仪gerald g fuller 院士茶歇11:00非线性现象的微观结构基础gerald g fuller 院士午餐及教员答疑13:00应力,絮凝悬浮体christopher macosko 院士14:00界面流变学gerald g fuller 院士课间休息15:30凝胶及实例分析christopher macosko 院士gerald g fuller 院士16:30微流变测量amy shen 教授17:30课程结束 授课专家(排名不分先后) gerald fuller, 斯坦福大学化学工程系fletcher jones教授。研究集中于光学流变学,拉伸流变学及界面流变学三方面。研究旨在应用于广泛的软物质材料如聚合物溶液和熔体,液晶,悬浮体及表面活性剂等。最近的应用与生物材料有关。fuller教授曾获得流变学会宾汉奖章,并且是国家工程学院的院士。christopher w. macosko, 明尼苏达大学化学工程与材料科学系教授,国家工程学院院士。组织教学并著有广为使用的流变学教材。曾协助一些商用流变仪及大量测试方法的开发。他的团队目前致力于聚合物共混物,聚合物纳米复合材料及反应体系的流变学研究。曾获aiche及spe的奖项及流变学会宾汉奖章。 amy shen,日本冲绳科学技术研究所微流体/生物流体/纳流体部门教授,2014 年就职于日本之前曾于华盛顿大学担任机械工程系教员。shen教授的研究主要聚焦于复杂流体的微流体,粘弹性及小尺度惯性弹性的不稳定性,这些研究在纳米技术及生物技术方面得到应用。amy shen最近还被流变学学会选为学术委员。2003年荣获ralph e. powe junior faculty enhancement award奖项,2007年获得国家自然科学基金奖,2013获得富布莱特学者奖。 乔秀颖, 上海交通大学材料科学与工程学院副研究员,中国科学院长春应用化学研究所博士,曾于斯坦福大学,美国阿克伦大学,德国马克斯普朗克胶体与界面研究所进行博士后及国际合作研究项目。目前的研究方向包括智能及功能性高分子复合材料及纳米复合材料,聚合物融体流变学,悬浮体及表面活性剂。曾获得洪堡经验研究学者成员奖,并发表了70多篇文章及10多篇授权专利。 大师课程参加对象及相关费用1. 免费开放给拥有ta流变仪的高校及研究院所学生,研究生及以上学历(每个实验室2人免费名额)2. 企业界听众,酌收800元/2天华美达酒店自助午餐及茶歇费用。3. 课程人数:由于课程内容需要,仅限100名参会者。席位有限, 先到先得!
  • 聚焦离子束(FIB)技术原理与发展历史
    20世纪以来,微纳米科技作为一个新兴科技领域发展迅速,当前,纳米科技已经成为21 世纪前沿科学技术的代表领域之一,发展作为国家战略的纳米科技对经济和社会发展有着重要的意义。纳米材料结构单元尺寸与电子相干长度及光波长相近,表面和界面效应,小尺寸效应,量子尺寸效应以及电学,磁学,光学等其他特殊性能、力学和其他领域有很多新奇的性质,对于高性能器件的应用有很大潜力。具有新奇特性纳米结构与器件的开发要求开发出具有更高精度,多维度,稳定性好的微纳加工技术。微纳加工工艺范围非常广泛,其中主要常见有离子注入、光刻、刻蚀、薄膜沉积等工艺技术。近年来,由于现代加工技术的小型化趋势,聚焦离子束(focused ion beam,FIB)技术越来越广泛地应用于不同领域中的微纳结构制造中,成为微纳加工技术中不可替代的重要技术之一。FIB是在常规离子束和聚焦电子束系统研究的基础上发展起来的,从本质上是一样的。与电子束相比FIB是将离子源产生的离子束经过加速聚焦对样品表面进行扫描工作。由于离子与电子相比质量要大的非常多,即时最轻的离子如H+离子也是电子质量的1800多倍,这就使得离子束不仅可以实现像电子束一样的成像曝光,离子的重质量同样能在固体表面溅射原子,可用作直写加工工具;FIB又能和化学气体协同在样品材料表面诱导原子沉积,所以FIB在微纳加工工具中应用很广。本文主要介绍FIB技术的基本原理与发展历史。离子源FIB采用离子源,而不是电子束系统中电子光学系统电子枪所产生的加速电子。FIB系统以离子源为中心,较早的离子源由质谱学与核物理学研究驱动,60年代以后半导体工业的离子注入工艺进一步促进离子源开发,这类离子源按其工作原理可粗略地分为三类:1、电子轰击型离子源,通过热阴极发射的电子,加速后轰击离子源室内的气体分子使气体分子电离,这类离子源多用于质谱分析仪器,束流不高,能量分散小。2、气体放电型离子源,由气体等离子体放电产生离子,如辉光放电、弧光放电、火花放电离子源,这类离子源束流大,多应用于核物理研究中。3、场致电离型离子源是利用针尖针尖电极周围的强电场来电离针尖上吸附的气体原子,这种离子源多应用于场致离子显微镜中。除场致电离型离子源外,其余离子源均在大面积空间内(电离室)生成离子并由小孔引出离子流。故离子流密度低,离子源面积大,不适合聚焦成细束,不适合作为FIB的离子源。20世纪70年代Clampitt等人在研究用于卫星助推器的铯离子源的过程中开发出了液态金属离子源(liquid metal ion source,LMIS)。图1:LMIS基本结构将直径为0.5 mm左右的钨丝经过电解腐蚀成尖端直径只有5-10μm的钨针,然后将熔融状态的液态金属粘附在针尖上,外加加强电场后,液态金属在电场力的作用下形成极小的尖端(约5 nm的泰勒锥),尖端处电场强度可达10^10 V/m。在这样高电场作用下,液尖表面金属离子会以场蒸发方式逸散到表面形成离子束流。而且因为LMIS发射面积很小,离子电流虽然仅有几微安,但所产生电流密度可达到10^6/cm2左右,亮度在20μA/Sr左右,为场致气体电离源20倍。LMIS研究的问世,确实使FIB系统成为可能,并得到了广泛的应用。LMIS中离子发射过程很复杂,动态过程也很复杂,因为LMIS发射面为金属液体,所以发射液尖形状会随着电场和发射电流的不同而改变,金属液体还必须确保不间断地补充物质的存在,所以发射全过程就是电流体力学和场离子发射相互依赖和相互作用的过程。有分析表明LMIS稳定发射必须满足三个条件:(1)发射表面具有一定形状,从而形成一定的表面电场;(2)表面电场足以维持一定的发射电流与一定的液态金属流速;(3)表面流速足以维持与发射电流相应的物质流量损失,从而保持发射表面具有一定形状。从实用角度,LMIS稳定发射的一个最关键条件:制作LMIS时保证液态金属与钨针尖的良好浸润。由于只有将二者充分持续地粘附在一起,才能够确保液态金属很好地流动,这一方面能够确保发射液尖的形成,同时也能够确保液态金属持续地供应。实验发现LMIS还有一些特性:(1) 存在临界发射阈值电压。一般在2 kV以上;电压超过阈值后,发射电流增加很快。(2) 空间发射角较大。离子束的自然发射角一般在30º左右;发射角随着离子流的增加而增加;大发射角将降低束流利用率。(3) 角电流密度分布较均匀。(4) 离子能量分散大(色差)。离子能散通常约为4.5 eV,能散随离子流增大而增大,这是由于离子源发射顶端存在严重空间电荷效应所致。由于离子质量比电子质量大得多,同一加速电压时离子速度比电子速度低得多,离子源发射前沿空间电荷密度很大,极高密度离子互斥,造成能量高度分散。减小色差的一个最有效的办法是减小发射电流,但低于2uA后色差很难再下降,维持在4.5eV附近。继续降低后离子源工作不稳定,呈现脉冲状发射。大能散使离子光学系统的色差增加,加重了束斑弥散。(5) LMIS质谱分析表明,在低束流(≤ 10 μA)时,单电荷离子几乎占100%;随着束流增加,多电荷离子、分子离子、离子团以及带电金属液滴的比重增加,这些对聚焦离子束的应用是不利的。以上特性表明就实际应用而言,LMIS不应工作在大束流条件下,最佳工作束流应小于10μA,此时,离子能量分散与发散角都小,束流利用率高。LMIS最早以液态金属镓为发射材料,因为镓熔融温度仅为29.8 ºC,工作温度低,而且液态镓极难挥发、原子核重、与钨针的附着能力好以及良好的抗氧化力。近些年经过长时间的发展,除Ga以外,Al、As、Au、B、Be、Bi、Cs、Cu、Ge、Fe、In、Li、Pb、P、Pd、Si、Sn、U、Zn都有报道。它们有的可直接制成单质源;有的必须制成共熔合金(eutectic alloy),使某些难熔金属转变为低熔点合金,不同元素的离子可通过EXB分离器排出。合金离子源中的As、B、Be、Si元素可以直接掺杂到半导体材料中。尽管现在离子源的品种变多,但镓所具有的优良性能决定其现在仍是使用最为广泛的离子源之一,在一些高端型号中甚至使用同位素等级的镓。FIB系统结构聚焦离子束系统实质上和电子束曝光系统相同,都是由离子发射源,离子光柱,工作台以及真空和控制系统的结构所构成。就像电子束系统的心脏是电子光学系统一样,将离子聚焦为细束最核心的部分就是离子光学系统。而离子光学与电子光学之间最基本的不同点:离子具有远小于电子的荷质比,因此磁场不能有效的调控离子束的运动,目前聚焦离子束系统只采用静电透镜和静电偏转器。静电透镜结构简单,不发热,但像差大。图2:聚焦离子束系统结构示意图典型的聚焦离子束系统为两级透镜系统。液态金属离子源产生的离子束,在外加电场( Suppressor) 的作用下,形成一个极小的尖端,再加上负电场( Extractor) 牵引尖端的金属,从而导出离子束。第一,经过第一级光阑后离子束经过第一级静电透镜的聚焦和初级八级偏转器对离子束的调节来降低像散。通过一系列可变的孔径(Variable aperture),可以灵活地改变离子束束斑的大小。二是次级八极偏转器使得离子束按照定义加工图形扫描加工而成,利用消隐偏转器以及消隐阻挡膜孔可以达到离子束消隐的目的。最后,通过第二级静电透镜,离子束被聚焦到非常精细的束斑,分辨率可至约5nm。被聚焦的离子束轰击在样品表面,产生的二次电子和离子被对应的探测器收集并成像。离子与固体材料中的原子碰撞分析作为带电粒子,离子和电子一样在固体材料中会发生一系列散射,在散射过程中不断失去所携带的能量最后停留在固体材料中。这其中分为弹性散射和非弹性散射,弹性散射不损失能量,但是改变离子在固体中的飞行方向。由于离子和固体材料内部原子质量相当,离子和固体材料之间发生原子碰撞会产生能量损失,所以非弹性散射会损耗能量。材料中离子的损失主要有两个方面的原因,一是原子核的损失,离子与固体材料中原子的原子核发生碰撞,将一部分能量传递给原子,使得原子或者移位或者与固体材料的表面完全分离,这种现象即为溅射,刻蚀功能在FIB加工过程中也是靠这种原理来完成。另一种损失是电子损失:将能量传递给原子核周围的电子,使这些电子或被激发产生二次电子发射,或剥离固体原子核周围的部分电子,使原子电离成离子,产生二次离子发射。离子散射过程可以用蒙特卡洛方法模拟,具体模拟过程与电子散射过程相似。1.由原子核微分散射截面计算总散射截面,据此确定离子与某一固体材料原子碰撞的概率;2.随机选取散射角与散射平均自由程,计算散射能量的核损失与电子损失;3.跟踪离子散射轨迹直到离子损失其全部携带能量,并停留在固体材料内部某一位置成为离子注入。这一过程均假设衬底材料是原子无序排列的非晶材料且散射具有随机性。但在实践中,衬底材料较多地使用了例如硅单晶这种晶体材料,相比之下晶体是有晶向的,存在着低指数晶向,也就是原子排列疏密有致,离子一个方向“长驱直入”时穿透深度可能增加几倍,即“沟道效应”(channeling effect)。FIB的历史与现状自1910年Thomson发明气体放电型离子源以来,离子束已使用百年之久,但真正意义上FIB的使用是从LMIS发明问世开始的,有关LMIS的文章已做了简单介绍。1975年Levi-Setti和Orloff和Swanson开发了首个基于场发射技术的FIB系统,并使用了气场电离源(GFIS)。1975年:Krohn和Ringo生产了第一款高亮度离子源:液态金属离子源,FIB技术的离子源正式进入到新的时代,LMIS时代。1978年美国加州的Hughes Research Labs的Seliger等人建造了第一套基于LMIS的FIB。1982年 FEI生产第一只聚焦离子束镜筒。1983年FEI制造了第一台静电场聚焦电子镜筒并于当年创立了Micrion专注于掩膜修复用聚焦离子束系统的研发,1984年Micrion和FEI进行了合作,FEI是Micrion的供应部件。1985年 Micrion交付第一台聚焦离子束系统。1988年第一台聚焦离子束与扫描电镜(FIB-SEM)双束系统被成功开发出来,在FIB系统上增加传统的扫描电子显微系统,离子束与电子束成一定夹角安装,使用时试样在共心高度位置既可实现电子束成像,又可进行离子束处理,且可通过试样台倾转将试样表面垂直于电子束或者离子束。到目前为止基本上所有FIB设备均与SEM组合为双束系统,因此我们通常所说的FIB就是指FIB-SEM双束系统。20世纪90年代FIB双束系统走出实验室开始了商业化。图3:典型FIB-SEM 双束设备示意图1999年FEI收购了Micrion公司对产品线与业务进行了整合。2005年ALIS公司成立,次年ZEISS收购了ALIS。2007年蔡司推出第一台商用He+显微镜,氦离子显微镜是以氦离子作为离子源,尽管在高放大倍率和长扫描时间下它仍会溅射少量材料但氦离子源本来对样品的损害要比Ga离子小的多,由于氦离子可以聚焦成较小的探针尺寸氦离子显微镜可以生成比SEM更高分辨率的图像,并具有良好的材料对比度。2011年Orsay Physics发布了能够用于FIB-SEM的Xe等离子源。Xe等离子源是用高频振动电离惰性气体,再经引出极引出离子束而聚焦的。不同于液态Ga离子源,Xe等离子源离子束在光阑作用下达到试样最大束流可达2uA,显著增强FIB微区加工能力,可以达到液态Ga离子FIB加工速度的50倍,因此具有更高的实用性,加工的尺寸往往达到几百微米。如今FIB技术发展已经今非昔比,进步飞快,FIB不断与各种探测器、微纳操纵仪及测试装置集成,并在今天发展成为一个集微区成像、加工、分析、操纵于一体的功能极其强大的综合型加工与表征设备,广泛的进入半导体行业、微纳尺度科研、生命健康、地球科学等领域。参考文献:[1]崔铮. 微纳米加工技术及其应用(第2版)(精)[M]. 2009.[2]于华杰, 崔益民, 王荣明. 聚焦离子束系统原理、应用及进展[J]. 电子显微学报, 2008(03):76-82.[3]房丰洲, 徐宗伟. 基于聚焦离子束的纳米加工技术及进展[J]. 黑龙江科技学院学报, 2013(3):211-221.[3]付琴琴, 单智伟. FIB-SEM双束技术简介及其部分应用介绍[J]. 电子显微学报, 2016, v.35 No.183(01):90-98.[4]Reyntjens S , Puers R . A review of focused ion beam applications in microsystem technology[J]. Journal of Micromechanics & Microengineering, 2001, 11(4):287-300.
  • 专家约稿|压电力显微术的基本技术原理与使用注意事项
    原子力显微术(AFM)作为一种表征手段,已成功应用于研究各个领域的表面结构和性质。随着人们对多功能和更高精度的需求,原子力显微技术得到了快速发展。目前,原子力显微镜针对不同的研究对象,搭配特定的应用功能模块可以研究材料的力学、电学以及磁学等特性。其中压电力显微术(PFM)已被广泛应用于研究压电材料中的压电性和铁电性。1. 压电材料与铁电材料压电材料具有压电效应,从宏观角度来看,是机械能与电能的相互转换的实现。当对压电材料施加外力时,内部产生极化现象,表面两侧表现出相反的电荷,此过程将机械能转化为电能,为正压电效应。与之相反,若给压电材料的施加电场,材料会产生膨胀或收缩的形变,此过程将电能转化为机械能,为逆压电效应。铁电材料同时具备铁电性和压电性。铁电性指在一定温度范围内材料会产生自发极化。铁电体晶格中的正负电荷中心不重合,没有外加电场时也具有电偶极矩,并且其自发极化可以在外电场作用下改变方向。并非所有的压电材料都具有铁电性,例如压电薄膜 ZnO。压电铁电材料广泛应用于压电制动器、压电传感器系统等各个领域,与我们的生活息息相关,还应用于具有原子分辨率的科学仪器技术,例如在原子力显微镜中扫描的精度在很大程度上取决于内部压电陶瓷管扫描器的性能。2. PFM工作原理原子力显微镜是一种表面表征工具,通过检测针尖与样品间不同的相互作用力来研究样品表面的不同结构和性质。针尖由悬臂固定,激光打在悬臂的背面反射到位置敏感光电二极管上,由于针尖样品间作用力发生变化会使悬臂产生相应的形变,激光光束的位置会有所偏移,通过检测光斑的变化可获得样品的表面形貌信息。 图1 压电力显微术工作原理PFM测量中导电针尖与样品表面接触,样品需提前转移到导电衬底上,施加电压时可在针尖在样品间形成垂直电场。为检测样品的压电响应,在两者之间施加AC交流电场,由于逆压电效应,样品会出现周期性的形变。当施加电场与样品的极化方向相同时,样品会产生膨胀,反之,当施加电场与样品的极化方向相反时,样品会收缩。由于样品与针尖接触,悬臂会随着样品表面周期性振荡发生形变,悬臂挠度的变化量与样品电畴的膨胀或收缩量直接相关,被AFM锁相放大器提取,获得样品的压电响应信号。3. PFM的测量模式图2 压电力显微术的三种测量模式PFM目前有三种测量模式,分别为常规的压电力显微术、接触共振压电力显微术和双频共振追踪压电力显微术。常规的压电力显微术在测量过程中针尖的振动频率远小于其自由共振频率,将其称为Off-resonance PFM。这种模式得到的压电信号通常较小,一般需要施加更高的电压,通常薄层材料的矫顽场较小,有可能会改变样品本身的极性,不利于薄层材料压电响应的测量,存在一定的局限性。此时获得的振幅值正比于压电系数,利用针尖的灵敏度可直接将振幅得到的PFM 信号转换为样品的表面位移信息,获得材料的压电系数。接触共振的压电力显微术测量称其为contact-resonance PFM,可以有效放大信号,针尖的振动频率为针尖与样品接触时的接触共振频率,一般是针尖自由共振频率的3-5倍。此时无需施加很高的外场就能得到较强的PFM信号,不会改变样品的极化方向。此时测得 PFM 压电响应信号比常规FPM测量的响应信号幅值放大了 Q 倍(Q为共振峰品质因子),计算压电系数时需考虑放大的倍数。但此技术也存在一定的局限性,针尖的接触共振频率是在某一位置获得的,接触共振频率取决于此位置的局部刚度。在扫描的过程中,针尖与样品之间的接触面积会发生变化,引起接触共振频率的变化,若以单一的接触共振频率为针尖的振动频率会使得信号不稳定,测得的振幅信号在共振频率处放大,其余地方信号较弱,极大的影响压电系数的定量分析,得到与理论值不符的压电系数。与此同时PFM信号易与形貌信号耦合,产生串扰。双频共振追踪压电力显微术(DART-PFM)可以有效避免压电信号与形貌的串扰。在这项技术中,通过两个锁相放大器分别给针尖施加在接触共振峰两侧同一振幅位置的频率,当接触共振频率变化时,振幅会随之变化,锁相放大器中的反馈系统会通过调节激励频率消除振幅的变化,由此获得清晰的形貌和压电信号。此时在量化压电系数时需要额外的校准步骤确定振幅转化为距离单位的值,目前一般是通过三维简谐振动模型去校准修订得到压电材料的压电系数。 4. PFM的表征与应用PFM测量中可获得样品的振幅和相位图。图中相位的对比度反映样品相对于垂直电场的极化方向,振幅信息显示极化的大小以及畴壁的位置。一般来说,材料的压电响应是矢量,具有三维空间分布,可分为平行和垂直于施加外场的两个分量。图3 BFO样品的PFM表征图[1]若样品只存在与电场方向平行的极化响应,PFM所获得的振幅和相位信息可直接反映样品形变的大小和方向,若样品畴极化方向与外加电场相同,相位φ=0;若样品畴极化方向与外加电场相反,则相位φ=180°。此时垂直方向的压电响应常数可直接由获得的振幅与施加的外场计算出来,在共振频率下可以定量测量。值得说明的是,PFM获得的压电响应常数很难与块体材料相比较,因为样品在纳米尺度的性质会与块体材料有显著的不同。若样品具有平行和垂直于电场的压电响应,在施加电场时,样品的形变出现面内和面外两个方向。利用Vector PFM可以同时获得悬臂的垂直和横向位移,可以将得到的信号矢量叠加,获得样品的三维PFM图像。压电力显微术不仅可以成像,还能用于研究铁电材料的电滞回线,并且可以对铁电材料进行写畴。铁电材料的相位和振幅与施加的电压呈函数关系,测得的电滞回线和蝴蝶曲线可以用于判断铁电材料的矫顽场,矫顽场是铁电材料发生畴极化反转时的外加电压。一般的电滞回线的获取需要施加大于±10V的直流偏压,但值得注意的是较高的直流电压会增加针尖与样品间的静电力贡献,静电力信号有可能超过压电响应信号,从而掩盖畴极化反转信号。图4 SS-PFM的工作原理图开关谱学压电力显微术(SS-PFM)可以有效减小静电力的影响,原理如图4所示与普通PFM在测量电滞回线时线性施加DC电压的方式不同,SS-PFM将DC电压以脉冲的形式初步增加或减小,每隔一定的时间开启和关闭DC电压,并且持续施加AC交流电。其中DC用于改变样品的极化,AC交流电用于记录DC电压接通和关闭时的压电信号。图为研究二维异质材料MoS2/WS2压电性能时利用SS-PFM测得的材料特性曲线。 图5 二维异质材料MoS2/WS2的材料特性曲线[2]铁电材料与普通压电材料最大不同是在没有外加电场时也具有电偶极矩,并且其自发极化可以在外电场作用下改变方向,因此可利用是否能够写畴来区分铁电材料。知道压电材料的矫顽场之后可以对样品进行局部极化样品进行写畴,畴区可以自定义,正方形、周期阵列型或者更加复杂的图案。最简单的写畴是先选择一10×10μm正方形区域,其中6×6μm区域施加正偏压,4×4μ区域施加负偏压,获得回字形写畴区域,在相位图中可以清晰的看到所写畴区。图6 Si掺杂HfO2样品的回字形写畴区域[3]5. 注意事项在PFM测量中首先要保证在样品处于电场之中,在样品的前期准备时需将样品转移至导电衬底,并确定针尖和放置样品的底座可以施加电信号,此时才能保证施加电压时在针尖在样品间具有垂直电场。在PFM测量中静电效应的影响也不容忽略,导电针尖电压的电荷注入可诱导静电效应并影响材料的压电响应,导致PFM振幅和相位信息与特性曲线失真。尽管静电效应在 PFM 测试中无可避免,但可以使用弹簧常数较大的探针或者施加直流偏压来尽量减小其中的静电影响。此外针尖的磨损也会极大的影响PFM测量。由于针尖与样品间相互接触,加载力不宜过高,过高会损坏样品表面,保持恒定适中的加载力。此外使用较软的针尖在扫描过程中可以保护针尖不受磨损,并且保护样品。PFM测量中常用的针尖为PtSi涂层的导电针尖,以获得较稳定的PFM信号。参考文献[1] HERMES I M, STOMP R. Stabilizing the piezoresponse for accurate and crosstalk-free ferroelectric domain characterization via dual frequency resonance tracking, F, 2020 [C].[2] LV JIN W. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides [J]. Science (New York, NY), 2022, 376: 973-8.[3] MARTIN D, MüLLER J, SCHENK T, et al. Ferroelectricity in Si-doped HfO2 revealed: a binary lead-free ferroelectric [J]. Adv Mater, 2014, 26(48): 8198-202.作者简介米烁:中国人民大学物理学系在读博士研究生,专业为凝聚态物理,主要研究方向为低维功能材料的原子力探针显微学研究。程志海:中国人民大学物理学系教授,博士生导师。2007年,在中国科学院物理研究所纳米物理与器件实验室,获凝聚态物理博士学位。2011年-2017年,在国家纳米科学中心纳米标准与检测重点实验室,任副研究员/研究员。曾获中国科学院“引进杰出技术人才计划”和首届“卓越青年科学家”、卢嘉锡青年人才奖等。目前,主要工作集中在先进原子力探针显微技术及其在低维量子材料与表界面物理等领域的应用基础研究。
  • 瓶口边厚仪是如何测量瓶口边缘厚度的?基于何种技术或原理
    在现代工业生产中,瓶口边厚仪作为一种关键的质量控制设备,广泛应用于医药、化工、食品等多个领域,尤其在玻璃瓶、塑料瓶等包装容器的生产中发挥着至关重要的作用。本文将深入探讨瓶口边厚仪的工作原理、所采用的技术或原理。一、瓶口边厚仪的工作原理概述瓶口边厚仪是一种高精度测试设备,主要用于测量玻璃瓶或塑料瓶瓶口边缘的厚度。其工作原理基于机械接触式测量技术,通过精确的传感器和数据处理系统,实现对瓶口边缘厚度的准确测量。该设备不仅具有高度的测试准确性和重复性,还能在不对被测物体造成损伤的情况下完成测量,确保测试结果的可靠性。二、机械接触式测量技术详解1. 探头组件与传感器的作用瓶口边厚仪的核心部件包括探头组件和传感器。探头组件通常采用碳纤维等轻质高强度材料制成,确保在测量过程中既能稳定接触瓶口边缘,又不会对瓶子造成损伤。传感器则负责将探头接触到的物理信号(如位移、压力等)转换为电信号,供后续数据处理系统分析。2. 信号处理与显示转换后的电信号经过信号放大器放大后,进入数据处理系统。该系统利用先进的数字信号处理技术,对信号进行滤波、去噪、线性化等处理,最终得出瓶口边缘的厚度值。测量结果通过数字显示屏实时显示,便于操作人员读取和记录。三、高精度测量的实现1. 精密的机械结构设计为了实现高精度的测量,瓶口边厚仪的机械结构设计十分精密。探头组件与瓶口边缘的接触点需保持恒定且均匀的压力,以确保测量结果的准确性。同时,设备的整体结构需具备较高的刚性和稳定性,以抵抗外界干扰和振动对测量结果的影响。2. 先进的测量算法除了精密的机械结构外,瓶口边厚仪还采用先进的测量算法对信号进行处理。这些算法能够自动校正测量过程中的系统误差和随机误差,提高测量结果的精度和稳定性。同时,算法还能实现数据的实时处理和统计分析,为质量控制提供有力支持。四、非接触式测量技术的探索虽然机械接触式测量技术在瓶口边厚测量中占据主导地位,但非接触式测量技术也在不断发展和探索中。例如,基于激光或超声波的非接触式测量技术具有不损伤被测物体、测量速度快等优点,但其在瓶口边厚测量中的应用还需进一步研究和验证。五、应用实例与市场需求1. 医药行业的应用在医药行业中,瓶口边厚仪被广泛应用于药品包装容器的质量检测中。通过测量瓶口边缘的厚度,可以评估包装容器的密封性、耐压性等关键性能指标,确保药品在储存和运输过程中的安全性和有效性。2. 化工行业的需求化工行业对包装容器的要求同样严格。瓶口边厚仪在化工瓶罐的生产过程中发挥着重要作用,通过测量瓶口边缘的厚度,可以及时发现并纠正生产过程中的偏差和缺陷,提高产品的整体质量和市场竞争力。3. 市场需求与未来展望随着工业生产的不断发展和消费者对产品质量要求的不断提高,瓶口边厚仪的市场需求将持续增长。未来,随着技术的不断进步和创新,瓶口边厚仪将更加智能化、自动化和便携化,为各行各业提供更加高效、准确的质量控制手段。六、结语瓶口边厚仪作为现代工业生产中的重要质量控制设备,其工作原理和技术特点决定了其在多个领域中的广泛应用和重要地位。通过不断的技术创新和产品优化,瓶口边厚仪将不断提高测量精度和稳定性,为企业的质量控制和市场竞争提供有力支持。同时,我们也期待非接触式测量技术在瓶口边厚测量中的进一步发展和应用,为工业生产的智能化和自动化注入新的活力。
  • 【有奖直播课】无机碳如何影响有机碳检测?Sievers ICR(无机碳去除器)的原理、结构及维护
    小碳小碳又和大家见面啦!我们的#小碳微课堂#第六期将于9月25日开课。本期直播课,我们还将从报名观众中随机抽取10名幸运儿,送出一份小礼品,快来报名吧!(报名时,请准确填写您的邮寄地址。获奖名单将于10月初在微信公众号中公布,敬请留意。)Sievers® ICR(无机碳去除器)的原理、结构及维护时间:2020年9月25日周五,14:00形式:网络直播课,注册报名后可随时回看费用:免费分析仪在测量总有机碳 (Total Organic Carbon,TOC)时,都必须处理无机碳(Inorganic Carbon,IC)。IC是指CO2、HCO3-、CO32-里的碳。IC的来源包括溶解的石灰石和从空气中吸收的二氧化碳。几乎所有样品水中都含有有机碳和无机碳,它们统称为总碳(Total Carbon,TC)。有机碳 (TOC) = 总碳 (TC) - 无机碳 (IC)当水样中的IC小于TOC时,分析仪可以直接测量IC,然后用TC减去IC,即得到TOC。但当IC较高且TOC较低时(例如,IC=10倍的TOC),如果不去除或降低IC,TOC的测量结果就会变得不稳定。此时就需要去除或降低IC以提高仪器的分析性能。Sievers分析仪采用无需气体的ICR(无机碳去除器)来降低IC含量。该方法已获得专利,并获USEPA批准用于合规监测。常见应用包括监测原始地表水和地下水。有时,降低或去除IC也有利于监测成品饮用水。对于在线连续监测的应用,应对所有样品启用ICR,并保持ICR的运行。ICR安装在Sievers M系列实验室、便携式、在线型TOC分析仪的机箱内部,环保效果最佳,使用方便,占据空间小。此次直播课程中,我们将与您分享ICR相关的以下议题,欢迎收看:- 为何要使用ICR?- Sievers® ICR的工作原理- Sievers® ICR的使用方法- Sievers® ICR的维护与验证- Sievers® ICR的常见报警与处理讲师介绍娄海彦售后服务经理Sievers分析仪娄海彦经理是苏伊士水务技术与方案-Sievers分析仪的售后服务经理。具有多年仪器行业从业经历,熟悉TOC分析仪的软硬件、日常操作、维护及故障排除。报名方式扫下列二维码,进行会议注册,注册成功后,我们将于直播当天通过微信公众号给您发送课程直播提醒,直播时登录直播链接,验证注册时的手机号,即可收看课程。若您未收到微信提醒,直播时可通过苏伊士Sievers分析仪的微信公众号菜单:最新资讯-小碳微课堂进入课程直播。如您当天无法收看直播,课程结束后您也可以登录直播链接,验证注册时的手机号,收看课程回放。
  • 粒子束成像设备的分辨能力测试原理和测试方式
    一、测试原理粒子束成像设备如SEM、FIB等,成像介质为被聚焦后的高能粒子束(电子束或离子束)。以扫描电镜(SEM)为例,通过光学系统内布置的偏转器控制这些被聚焦的高能电子束在样品表面做阵列扫描动作,电子束与样品相互作用激发出信号电子,信号电子经过探测器收集处理后,即可得到由电子束激发的显微图像。图1:偏转器的结构示意(左);电镜图像(右)基于以上原理,一台粒子束设备在进行显微成像时,其分辨能力与下落至样品表面的粒子束的束斑尺寸相关,束斑的尺寸越小,扫描过程中每个像元之间的有效间距即可越小,设备的分辨本领越高。当相邻的两个等强度束斑其中一个束斑的中心恰好与另一个束斑的边界重合时,设备达到分辨能力极限(图2)。图2:分辨能力极限示意图不考虑粒子衍射效应时,经聚焦后的粒子束截面可视为圆形(高斯斑),其束流强度沿中心向边缘呈高斯分布(图3)。以扫描电镜为例,在光学设计和实验阶段,通常使用直接电子束跟踪和波光计算(direct ray-tracing and wave-optical calculations)方法,来获得聚焦电子束的束斑轮廓。该过程是将电子束的束流分布采用波像差近似算法来计算图像平面上的点展宽函数PSF(Point Spread Function),基于PSF即可估算出包含总探针电流的某一部分(如50%或80%)的圆的直径,从而得到设备的分辨能力水平。图3:高斯斑的截面形状和强度分布示意图但是在设备出厂后,由于粒子束斑尺寸在纳米量级,无法直接测量,因此行业通常使用基于成像的测试方法,测试粒子束设备的分辨能力。 锐利物体边界的边界变化率法是行业目前达到共识的测试粒子束斑尺寸的方法,即使用粒子束成像设备对锐利物体(通常是纳米级金颗粒)进行成像,沿图像中锐利物体的边缘绘制亮度垂直边缘方向的变化曲线,并选取曲线上明暗变化位置一定比例对应的物理距离,来表示设备的分辨率(图4)。为了保证测试准确性,可以在计算机帮助下取数百、数千个锐利边界的亮度变化率曲线求取均值,以获知设备的整体分辨能力。图4:金颗粒边界测量线(上图红线);测量线上的亮度变化(下左);取多条测量线后得到的设备分辨率示意(下右)边界变化率曲线上亮度25%-75%位置之间的物理距离d,可以近似认为是粒子探针束流50%时所对应的粒子束斑直径,在粒子束成像设备行业通常用此距离d来最终标识设备的分辨能力。图5:边界变化曲线与高斯斑直径对应示意图二、测试方式「 样品的选择 」金颗粒通常采用CVD或者PVD等沉积生长的方法获得,由于颗粒形核长大的过程可以人工调控,因而最终得到的金颗粒直径的大小可以被人工控制,所以视不同用途,金颗粒的规格也不同。以Ted Pella品牌分辨率测试金颗粒为例,用于SEM分辨率测试的标准金颗粒有五种规格,其中颗粒尺寸较小的高分辨、超高分辨金颗粒(如617-2/617-3)通常用于测试场发射电镜的分辨能力;颗粒尺寸较大的金颗粒(如617/623)通常用于测试钨灯丝或小型化电镜的分辨能力,详细的颗粒尺寸和适用设备见图6。测试时,不合适的金颗粒选择无法准确反映一台电镜的分辨能力。图6:Ted Pella品牌金颗粒规格及适用机型「 SEM光学参数的设置 」分辨率的测试旨在测试设备在不同落点电压下的各个探测器的极限分辨能力,因此,与电子光学相关的成像参数设置需要注意以下内容:(1)视场校准:保证放大倍数、视场尺寸的准确;(2)目标电压:这里特指落点电压,即电子束作用在样品上的真实撞击电压;(3)探测器:不同探测器收取信号的能力不同,因此获得图像的极限分辨能力不同,因此都要测试,通常镜筒内探测器ETBSE;(4)光阑/束斑:通常在每个电压下使用可以正常获得图像的最小光阑(以获得极限分辨能力);(5)工作距离:通常在每个电压下使用可以正常获得图像的最小工作距离(以获得极限分辨能力)。「 SEM图像采集条件 」(1)合理的测试视野/放大倍数测试时,所选用的测试视野(放大倍数)需要根据设备的分辨能力做出调整,一般放大倍数取每个像素的pixel size恰好与真实束斑尺寸接近即可。比如:对于真实分辨能力约1.5nm的设备,调整放大倍数使屏幕上每个像素对应样品上的真实物理尺寸为1.5nm,即在采集1024*1024像素数的图像进行测试的前提下,选择不大于1024*1.5nm≈1.5um的视野进行测试即可。表1:分辨率测试的FOV及放大倍数估算表(2)合理的亮度、对比度采集金颗粒图像时,亮度和对比度的选择也需要合理,也就是通常所讲的不要丢失信息。在不丢失信息的前提下,图像亮度对比度稍微偏高或偏低,只要边缘变化曲线的高线和低线均未超出电子探测器采集能力的上限或者下限,曲线虽然在强度方向(Y方向)出现的位置和差值有所变化,但距离方向(X方向)及变化趋势均不改变,因此使用25%-75%变化率对测量出来的分辨率数值d基本没有影响(图7)。然而,当使用过大的亮度、对比度设定后,当边缘变化曲线的高线和低线至少一边超出电子探测器采集能力的上限或者下限,再使用25%-75%变化率对测量出来的分辨率数值d就不再准确,这时测出的分辨率数值无效(图8)。图7:合理的亮度对比度及边界变化率的曲线图8:不合理的亮度对比度及边界变化率的曲线三、总结基于上述图像学进行的分辨率测试,是反映粒子束设备整体光学、机械、电路、真空等全面综合性能的关键手段。该测试在设备出厂交付时用于验证设备的性能指标,在设备运行期间不定期运行该测试以关注分辨率指标,可以快速帮助使用人员和厂商工程师快速发现设备风险,从而及时制定维护、维修方案,以延长设备的稳定服役时间。 钢研纳克是专业的仪器设备制造商,同时提供完善可靠的第三方材料检测服务、仪器设备校准服务,力求在仪器设备产品的开发、生产、交付、运行全流程阶段遵循行业标准和规范,采用统一的品质监控手段,保证所交付产品品质的稳定可靠。参考文献[1] J Kolo&scaron ová, T Hrn&ccaron í&rcaron , J Jiru&scaron e, et al. On the calculation of SEM and FIB beam profiles[J]. Microscopy and Microanalysis, 2015, 21(4): 206-211.[2] JJF 1916-2021, 扫描电子显微镜校准规范[S].本技术文章中扫描电镜图像由钢研纳克FE-2050T产品拍摄。
  • 12月份有245个与仪器检测相关的国家标准将实施
    12月份有245个与仪器检测相关的国家标准将实施雪花飘飘,北风萧萧,2021年即将离我们而去。在2021年有大量的新标准发布实施,那么在最后一个月还有哪些标准将要实施呢?跟随小编来梳理一番吧。首先,科学仪器息息相关的标准就是“拉曼光谱仪通用规范 ”将正式实施了,这是拉曼光谱仪器首个国标。其次,多份质量管理体系相关的国标也是首次上线,这也为我们进一步提升检测服务质量夯实基础。最后,食品、医药卫生、环境、石油化工、机械、电力等诸多领域的大量标准也将实施。12月份即将实施的标准如下,需要的可以收藏。点击链接即可下载收藏↓科学仪器标准GB/T 40219-2021 拉曼光谱仪通用规范 GB/T 12807-2021 实验室玻璃仪器 分度吸量管 GB/T 40216-2021 智能仪器仪表的数据描述 属性数据库通用要求 GB/T 40333-2021 真空计 四极质谱仪的定义与规范 质量管理标准GB/T 19010-2021 质量管理 顾客满意 组织行为规范指南 GB/T 19011-2021 管理体系审核指南 GB/T 19013-2021 质量管理 顾客满意 组织外部争议解决指南GB/T 19015-2021 质量管理 质量计划指南 GB/T 19016-2021 质量管理 项目质量管理指南 GB/T 27021.2-2021 合格评定 管理体系审核认证机构要求 第2部分:环境管理体系审核与认证能力要求 GB/T 27021.3-2021 合格评定 管理体系审核认证机构要求 第3部分:质量管理体系审核与认证能力要求 GB/T 29790-2020 即时检验 质量和能力的要求 GB/T 40149-2021 检验检测机构从业人员信用档案建设规范 GB/T 40259-2021 综采工作面支护质量检测技术条件 GB/T 4930-2021 微束分析 电子探针显微分析 标准样品技术条件导则 食品农业标准GB/T 18916.53-2021 取水定额 第53部分:食糖 GB/T 20373-2021 变性淀粉中乙酰基含量的测定 滴定法 GB/T 40138-2021 南方菜豆花叶病毒检疫鉴定方法 GB/T 40135-2021 葡萄细菌性疫病菌检疫鉴定方法 GB/T 40140-2021 葡萄轴枯病菌检疫鉴定方法 GB/T 40141-2021 榆韧皮部坏死植原体检疫鉴定方法 GB/T 40150-2021 粮油储藏 储粮机械通风均匀性评价方法 GB/T 40152-2021 蜂蜜中蔗糖转化酶的测定 分光光度法 GB/T 40154-2021 饲料原料 棉籽蛋白 GB/T 40170-2021 质粒抽提及检测通则 GB/T 40173-2021 水溶性壳聚糖中还原性端基糖的测定 分光光度法 GB/T 40174-2021 工具酶纯度的检测方法 GB/T 40176-2021 植物源性产品中木二糖的测定 亲水保留色谱法 GB/T 40179-2021 植物中有机酸的测定 液相色谱-质谱/质谱法 GB/T 40184-2021 畜禽基因组选择育种技术规程 GB/T 40193-2021 长芒苋检疫鉴定方法 GB/T 40194-2021 大麦条纹花叶病毒检疫鉴定方法 GB/T 40195-2021 阿洛葵检疫鉴定方法 GB/T 40196-2021 X射线荧光能谱仪测定防腐木材和木材防腐剂中CCA和ACQ的方法 GB/T 40220-2021 植物代谢产物大豆凝集素测定 酶联免疫吸附法 GB/T 40223-2021 植物代谢产物游离棉酚测定 酶联免疫吸附法 GB/T 40266-2021 食品包装用氧化物阻隔透明塑料复合膜、袋质量通则 GB/T 40267-2021 植物源产品中左旋多巴的测定 高效液相色谱法 GB/T 40331.1-2021 植物保护机械 大田作物喷雾沉积量的测试 第1部分:在水平地面上的测试 GB/T 40331.2-2021 植物保护机械 大田作物喷雾沉积量的测试 第2部分:在作物上的测试 医疗卫生、化妆品标准GB 38456-2020 抗菌和抑菌洗剂卫生要求 GB/T 13163.2-2021 辐射防护仪器 氡及氡子体测量仪 第2部分:222Rn和220Rn测量仪的特殊要求 GB/T 13173-2021 表面活性剂 洗涤剂试验方法 GB/T 16137-2021 X射线诊断中受检者器官剂量的估算方法 GB/T 19703-2020 体外诊断医疗器械 生物源性样品中量的测量 有证参考物质及支持文件内容的要求 GB/T 22114-2021 牙膏用保湿剂 甘油和聚乙二醇 GB/T 39381.1-2020 心血管植入物 血管药械组合产品 第1部分:通用要求 GB/T 39552.2-2020 太阳镜和太阳镜片 第2部分:试验方法 GB/T 40113.1-2021 生物质热解炭气油多联产工程技术规范 第1部分:工艺设计 GB/T 40145-2021 化妆品中地索奈德等十一种糖皮质激素的测定 液相色谱/串联质谱法 GB/T 40171-2021 磁珠法DNA提取纯化试剂盒检测通则 GB/T 40172-2021 哺乳动物细胞交叉污染检测方法通用指南 GB/T 40177-2021 光学和光学仪器 眼科学 分度盘刻度GB/T 40181-2021 一次性卫生用非织造材料的可冲散性试验方法及评价 GB/T 40183-2021 DNA甲基化的测定 焦磷酸测序法 GB/T40185-2021 牙膏中5种氯铵类抗菌剂的检测方法 高效液相色谱法 GB/T 40186-2021 微生物诱变育种致遗传物质损伤强度测定 Umu法 GB/T 40187-2021 核酸适配体亲和性和特异性评价技术导则 GB/T 40188-2021 畜禽分子标记辅助育种技术规程 GB/T 40189-2021 牙膏中甲硝唑和诺氟沙星的测定 高效液相色谱法 GB/T 40190-2021 牙膏中禁用漂白剂的测定 高效液相色谱法 GB/T 40191-2021 牙膏中限用防腐剂的测定 高效液相色谱法 GB/T 40192-2021 刺盘孢属实时荧光PCR检疫鉴定方法 GB/T 40225-2021 肌动蛋白抗体的检测 免疫印迹法 GB/T 40249-2021 斑节对虾杆状病毒病诊断规程 PCR检测法 GB/T 40251-2021 牡蛎单孢子虫病诊断规程 原位杂交法 GB/T 40252-2021 美澳型核果褐腐病菌活性检测方法 GB/T 40253-2021 牡蛎小胞虫病诊断规程 显微镜检查组织法 GB/T 40254-2021 轮枝菌属实时荧光PCR检疫鉴定方法 GB/T 40255-2021 对虾肝胰腺细小病毒病诊断规程 PCR检测法 GB/T 40256-2021 牡蛎马尔太虫病诊断规程 显微镜检查组织法 GB/T 40257-2021 桃拉综合征诊断规程 RT-PCR检测法 GB/T 40265-2021 酶免疫检测抗体检测通则 GB/T 40268-2021 免疫磁性材料性能检测方法 GB/T 40269-2021 吸收性卫生用纸制品 生产过程质量安全状态监测与评价指南 GB/T 40357-2021 发制品 假发透气性的测定 环境标准GB/T 2423.18-2021 环境试验 第2部分:试验方法 试验Kb:盐雾,交变(氯化钠溶液) GB/T 2423.33-2021 环境试验 第2部分:试验方法 试验Kca:高浓度二氧化硫试验 GB/T 2423.38-2021 环境试验 第2部分:试验方法 试验R:水试验方法和导则 GB/T 2424.5-2021 环境试验 第3部分:支持文件及导则 温度试验箱性能确认 GB/T 2424.6-2021 环境试验 第3部分:支持文件及导则 温度/湿度试验箱性能确认 GB/T 40133-2021 餐厨废油资源回收和深加工技术要求 GB/T 40199-2021 城市园林废弃物资源回收和深加工技术要求 GB/T 40200-2021 工业有机废气净化装置性能测定方法 GB/T 40201-2021 农村生活污水处理设施运行效果评价技术要求 GB/T 40226-2021 环境微生物宏基因组检测 高通量测序法 GB/T 4798.2-2021 环境条件分类 环境参数组分类及其严酷程度分级 第2部分:运输和装卸地质冶金标准GB/T 12719-2021 矿区水文地质工程地质勘查规范 GB/T 14949.12-2021 锰矿石 化合水含量的测定 重量法 GB/T 14949.5-2021 锰矿石 钛含量的测定 二安替吡啉甲烷分光光度法 GB/T 18341-2021 地质矿产勘查测量规范 GB/T 20228-2021 砷化镓单晶 GB/T 40067-2021 碳化钨粉末微观组织及缺陷检测方法 GB/T 40112-2021 地质灾害危险性评估规范 GB/T 40114-2021 首饰 贵金属含量的测定 ICP差减法 GB/T 40130-2021 煤矿专门水文地质勘查规范 GB/T 9966.11-2021 天然石材试验方法 第11部分:激冷激热加速老化强度测定 GB/T 9966.13-2021 天然石材试验方法 第13部分:毛细吸水系数的测定 GB/T 9966.9-2021 天然石材试验方法 第9部分:通过测量共振基本频率测定动力弹性模数 机械标准GB/T 11270.1-2021 超硬磨料制品 金刚石圆锯片 第1部分:焊接锯片 GB/T 11270.2-2021 超硬磨料制品 金刚石圆锯片 第2部分:烧结锯片 GB/T 11344-2021 无损检测 超声测厚 GB/T 12265-2021 机械安全 防止人体部位挤压的最小间距 GB/T 12604.6-2021 无损检测 术语 涡流检测 GB/T 12604.7-2021 无损检测 术语 泄漏检测 GB/T 12773-2021 内燃机气阀用钢及合金棒材 GB/T 14229-2021 齿轮接触疲劳强度试验方法 GB/T 14230-2021 齿轮弯曲疲劳强度试验方法 GB/T 15242.3-2021 液压缸活塞和活塞杆动密封装置尺寸系列 第3部分:同轴密封件沟槽尺寸系列和公差 GB/T 15242.4-2021 液压缸活塞和活塞杆动密封装置尺寸系列 第4部分:支承环安装沟槽尺寸系列和公差 GB/T 16754-2021 机械安全 急停功能 设计原则 GB/T 17909.2-2021 起重机 起重机操作手册 第2部分:流动式起重机 GB/T 2351-2021 流体传动系统及元件 硬管外径和软管内径 GB/T 23537-2021 超硬磨料制品 金刚石或立方氮化硼砂轮和磨头 极限偏差和圆跳动公差 GB/T 23540-2021 涂附磨具 装有卡盘或未装卡盘的砂页轮 GB/T 23902-2021 无损检测 超声检测 超声衍射声时技术检测和评价方法 GB/T 24619-2021 同步带传动 G、H、R、S齿型曲线齿同步带与带轮 GB/T 24810.2-2021 起重机 限制器和指示器 第2部分:流动式起重机GB/T 29716.3-2021 机械振动与冲击 信号处理 第3部分:时频分析方法 GB/T 3480.5-2021 直齿轮和斜齿轮承载能力计算 第5部分:材料的强度和质量 GB/T 37162.3-2021 液压传动 液体颗粒污染度的监测第3部分:利用滤膜阻塞技术 GB/T 39974-2021 钢水测氧用镁稳定氧化锆陶瓷元件 GB/T 39975-2021 氮化铝陶瓷散热基片 GB/T 39985-2021 钛镍形状记忆合金板材 GB/T 39987-2021 钯锭 GB/T 39989-2021 超弹性钛镍形状记忆合金棒材和丝材 GB/T 40116-2021 箔片轴承 气体动压径向轴承性能 静态承载能力、摩擦因数和寿命测试 GB/T 40117-2021 无损检测 无损检测人员视力评价 GB/T 40118-2021 滑动轴承 流体动压和混合润滑条件台架试验 GB/T 40119-2021 射频卡灌溉智能控制系统通用技术条件 GB/T 40123-2021 高纯净细晶铝及铝合金圆铸锭 GB/T 40134-2021 航天系统电磁兼容性要求 GB/T 40307-2021 无损检测 材料织构的中子检测方法 GB/T 40324-2021 无损检测 大直径圆棒聚焦超声检测方法 GB/T 40330-2021 机床安全 固定式磨床 GB/T 40332-2021 无损检测 超声检测 超声测厚仪性能特征和测试方法 GB/T 40335-2021 无损检测 泄漏检测 示踪气体方法 GB/T 40336-2021 无损检测 泄漏检测 气体参考漏孔的校准 GB/T 40337-2021 气焊及相关工艺设备的气密性 GB/T 5900.1-2021 机床 主轴端部与卡盘连接尺寸 第1部分:圆锥连接 GB/T 6068-2021 汽车起重机和轮胎起重机试验规范 GB/T 6577-2021 液压缸活塞用带支承环密封沟槽型式、尺寸和公差 GB/T 7925-2021 数控往复走丝电火花线切割机床 参数 GB/T 8243.12-2021 内燃机全流式机油滤清器试验方法 第12部分:颗粒计数法滤清效率和容灰量 GB/T 8366-2021 电阻焊 电阻焊设备 机械和电气要求
  • 【综述】红外热成像无损检测技术原理及其应用
    常规的无损检测技术如射线检测、超声波检测、磁粉检测、渗透检测等,这些方法在实践应用中都有各自的缺点及局限性。红外热成像无损检测技术是近年来应用逐渐广泛的一种新兴检测技术,广泛应用于航空航天、机械、医疗、石化等领域。与其他的无损检测技术相比,红外热成像技术的特点有:1. 测量速度快,因为红外探测器通过物体表面发射的红外辐射能来测得物体表面的温度,所以响应极快,能测得迅速变化的温度场;2. 非接触性,拍摄红外图片时,红外摄像仪与被测物体是保持一定距离的,对被测温度场没有干扰,操作安全、方便;3. 测量结果直观形象,热像图以彩色或黑白的图像形式对结果进行输出,从图上可以方便地读取各点的温度值,并且热像图中还包含有丰富的与被测物体有关的其它信息;4. 测温范围广,由于是采用辐射测温,与玻璃测温计和热电偶测温计相比,测温范围大大扩展,理论上可从绝对零度到无穷大;5. 测量精度高;6. 易于实现自动化和实时观测。红外热成像无损检测原理红外线是一种电磁波,为0.78~1000 μm,可分为近红外、中红外和远红外。任何物体只要不是绝对零度,都会因为分子的旋转和振动而发出辐射能量。红外辐射是其中一种,如果把物体看成是黑体,吸收所有的入射能量,则根据斯蒂芬-玻尔兹曼定律,在全波长范围内积分可得到黑体的总辐射度为:式中:为黑体的光谱辐射度;c1、c2为辐射常数,c1=3.7418×108 Wm-2μm4,c2=1.4388×104 μmK;σ为斯蒂芬-玻尔兹曼常数,为5.67×10-8 Wm-2K-4。实际大部分人工或天然材料都是灰体,与黑体不同,灰体材料的发射率ε≠1,灰体表面能反射一部分入射的长波(λ>3 μm)辐射,因此灰体表面的辐射由自身发射的和环境反射的两部分组成,用红外探测器可直接测量灰体发射和反射的总和Map,但无法确定各自的份额。通常假设物体表面为黑体,将Map称为表观辐射度,为便于理解,一般将其转换为人们较熟悉的温度单位,称为表观温度Tap,即:上述表观温度Tap即为红外探测器测量所得温度,在无损检测中测量距离一般较近,可以忽略大气的影响,故被测物体的表面发射率ε的取值是否准确是影响测量精度的关键因素。检测方式1. 主动式检测为了使被测物体失去热平衡,在红外热成像无损检测时为被测物体注入热量。被测物体内部温度不必达到稳定状态,内部温度不均匀时即可进行红外检测的方法即为主动式红外检测。该种检测方式是人为给试样加载热源的同时或延迟一段时间后测量表面的温度场的分布。从而确定金属、非金属、复合材料内部是否存在孔洞、裂缝等缺陷。2. 被动式检测被动式红外热成像无损检测利用周围环境的温度与物体温度差,在物体与环境进行热交换时,通过对物体表面发出的红外辐射进行检测缺陷的一种方式。这种检测方法不需要加载热源,一般应用于定性化的检测。被测物本身的温度变化就能显示内部的缺陷。它经常被应用于在线检测电子元器件和科研器件及运行中设备的质量控制。红外热成像技术在无损检测中的应用1. 材料热物性参数检测与其它的测温技术相比,红外热像仪能迅速、准确地测量大面积的温 值,且测温范围宽。因此,当需要准确测量较大范围的温度边界条件时,红外热像仪具有其它测温仪器不可比拟的优越性。哈尔滨工业大学的研究人员针对焊接温度场中材料的传热系数随温度升高而变化的情况进行了研究,证明了焊接过程热传导系数反演算法的可行性,结合红外热像法与热电偶测量了LY2铝合金固定TIG点焊过程的焊接温度场,通过计算分别获得了加热和冷却过程的热传导系数随温度变化的曲线。热传导反问题的研究,具有广泛的工程应用前景,近年来在热物性参数的识别、边界形状的识别、边界条件的识别、热源的识别等多方面已经取得了很多研究成果。在进行传热反问题研究时,采用红外热像技术测量研究对象的温度图,可以方便快捷地解决温度边界的测量问题,该方法在热传导反问题的研究中已被广泛采用。2. 结构内部损伤及材料强度的检测目前利用红外热像技术进行的结构损伤研究有混凝土内部损伤检测、混凝土火灾损伤研究、焊缝疲劳裂纹检测、碳纤维增强混凝土内部裂纹检测等,由于损伤部位的导热系数的变化,导致红外热像图中损伤位置温度异常。与常规的探伤方法如X射线、超声波等相比,红外热像技术具有不需要物理接触或耦合剂,操作简单方便、无放射性危害等优点。同济大学的研究人员采用红外热像技术对混凝土火灾损伤进行了实验研究,得出了火灾损伤混凝土红外热像的平均温升随时间的变化曲线,及混凝土红外热像的平均温升与其受火温度与强度损失之间的回归方程。将红外热像技术应用于火灾混凝土检测,在国际上尚属首创,突破了传统的检测模式,为进行混凝土的火灾损伤评价开创了一条新途径。但将该方法运用于实际工程检测中,尚有许多问题需要解决,如混凝土强度等级、碳化深度、级配、火灾类型等对检测结果的可靠性的影响,以及检测时的加热措施等。近年在光热红外技术的基础上发展的超声红外技术发挥了红外技术和超声技术的优点,该方法以超声脉冲作为激发源,当超声脉冲在试件中传播遇到裂纹等缺陷时,缺陷引起超声附加衰减而局部升温,从而利用红外热像技术可以检测出这些裂纹缺陷。南京大学的研究人员将红外热像仪与超声波发射器结合起来,用超声波发射器对有疲劳裂纹的铝合金试件进行热量输入,拍摄红外热图像,与计算机模拟计算结果进行比较,试验表明超声红外热像技术对裂纹缺陷、不均匀结构及残余应力非常敏感。3. 在建筑节能中检测的应用在建筑物节能检测方面,瑞典早在1966年就开始采用红外热像技术检测建筑物节能保温,美国、德国等许多国家的研究人员也都进行过这方面的研究工作。在我国随着对建筑节能要求的提高,建筑物的节能检测势在必行。目前我国对建筑围护结构传热系数的检测多采用建筑热工法现场测量,红外热像技术只作为辅助手段,通过检测围护结构的传热缺陷,综合评价建筑物的保温性能。目前我国红外热像技术在节能检测领域的研究尚属于起步阶段,还没有确定的指标对建筑物的红外热像图进行节能定量评价,由于建筑物立面形式和饰面材料的多样性,编制专用的图像分析与处理软件和建立墙体内外饰面材料的发射率基础数据库成为该项研究中一个重要环节。4. 在建筑物渗漏检测中的应用建筑物的渗漏有由供水管道引起的渗漏和屋顶或外墙开裂引起的雨水渗漏等,由于渗漏部位的含水率和正常部位不一样,造成在进行热传导的过程中二者温度有差异,因而可以用红外热像仪拍摄湿度异常部位墙面的红外热图像,与现场直接观察结果进行对比分析,可以找出渗漏源的位置。结语红外热像技术在无损检测中的应用前景非常广泛,相应的研究工作也取得了初步的研究成果,并逐步地从定性研究走向定量研究,但总体来说在目前尚属起步阶段,能应用于实际工程中的研究成果不多,且多属一些定性的结论,缺乏相应的操作规范。因此,应加强定量研究工作,提高对红外热像图的处理能力。
  • X射线光电子能谱(XPS)的原理及应用
    01 原理XPS是利用 X 射线辐射样品,使得样品的原子或分子的内层电子或者价电子受到激发而成为光电子,通过测量光电子的信号来表征样品表面的化学组成、元素的结合能以及价态。X 射线光电子能谱技术作为一种高灵敏超微量的表面分析技术,对所有元素的灵敏度具有相同的数量级,能够观测化学位移,能够对固体样品的元素成分进行定性、定量或半定量及价态分析,广泛地应用于元素分析、多相研究、化合物结构分析、元素价态分析。此外在对氧化、腐蚀、催化等微观机理研究,污染化学、尘埃粒子研究,界面及过渡层研究等方面均有所应用。02 应用1 XPS在木质材料中的应用XPS 技术成为木质材料分析、应用领域的重要手段。XPS 对木材领域的分析不仅可以获得材料本身的元素组成和物质结构,而且对木材的修饰、应用等方面的研究有重要意义。运用 XPS的表层与深层分析,在木材加工、合成、防护等领域都有着重要作用,在测得材料成分的含量与性质后,也可以得知涂饰性能、风化特性、硬度、抗弯度等基本性质,再对木材分类以进行定向加工,这将极大提高木材的利用效率,扩大应用领域。2 XPS在能源电池中的应用麦考瑞大学黄淑娟和苏州大学马万里等人报道了在钙钛矿表面沉积同源溴化物盐以实现表面和本体钝化以制造具有高开路电压的太阳能电池的策略。与先前工作给出的结论不同,即FABr等同源溴化物仅与 PbI2反应在原始钙钛矿之上形成大带隙钙钛矿层,该工作发现溴化物也穿透大部分钙钛矿薄膜并使钙钛矿中的钙钛矿钝化。通过吸光度和光致发光 (PL) 观察到的小带隙扩大;在飞行时间二次离子质谱 (TOF-SIMS) 和深度分辨 X 射线光电子能谱 (XPS) 中发现溴化物元素比例的增加。各种表征证实了钙钛矿器件中非辐射复合的明显抑制。使用同种溴化物钝化的非封装器件在环境储存2500 小时后仍保持其初始效率的97%,在85°C下进行520小时热稳定性测试后仍保持其初始效率的59%。该工作提供了一种简单而通用的方法来降低单结钙钛矿太阳能电池的电压损失,还将为开发其他高性能光电器件提供启示,包括基于钙钛矿的串联电池和发光二极管 (LED)。3 XPS的表面改性物质表面的化学组成改变和晶体结构变形都会影响材料性能,如黏附强度、防护性能、生物适应性、耐腐蚀性能、润滑能力、光学性质和润湿性等。一种材料可能包含几种优良性能。XPS 分析技术广泛应用于材料的表面改性,主要有以下几点原因:(1) XPS对表面测量灵敏度高,用其进行表面改性是一种有效方法;(2) 由于 XPS分析技术可以获得相应的化学价态信息,因此通常用来检测改性时的表面化学变化;(3) 由于 XPS 只能检测样品表面 1~10 nm 的薄层,故 XPS 可以测量改性表层的化学组成分布情况。4 XPS在生物医学中的应用XPS 逐渐被应用在生物医学研究以及生物大分子的组成、状态和结构等方面。由于生物试样在制备过程中有一定难度,因此 XPS在医学上的应用仍处于探索阶段。03 来源文献[1]杨文超,刘殿方,高欣,吴景武,冯均利,宋浅浅,湛永钟.X射线光电子能谱应用综述[J].中国口岸科学技术,2022,4(02):30-37.[2]Homologous Bromides Treatment for Improving the Open-circuit Voltage ofPerovskite Solar Cells[J]. Advanced Materials, 2021.
  • 掠入射X射线衍射原理、测试方法及其应用
    掠入射X射线衍射是一种用于薄膜材料结晶结构表征的高级测试方法,具有可以消除或减小基底信号的影响、增强衍射信号、得到薄膜的三维结晶结构信息等优点,目前被广泛应用于功能薄膜材料的研究中。7月18日,中国科学院长春应用化学研究所张吉东研究员将于第四届X射线衍射技术及应用进展网络研讨会期间分享报告,介绍掠入射X射线衍射的原理和测试方法以及数据分析方法,并结合其在有机高分子薄膜材料中的典型性结果展示该方法的应用。关于第四届X射线衍射技术及应用进展网络研讨会为促进相关人员深入了解X射线衍射技术发展现状,掌握相关应用知识,仪器信息网将于2023年7月18日组织召开第四届X射线衍射技术及应用进展网络研讨会,邀请业内技术和应用专家,聚焦X射线衍射前沿技术理论、分析方法、热点应用领域等分享报告,欢迎大家参会交流。会议详情链接:https://www.instrument.com.cn/webinar/meetings/xrd2023
  • 拆机详解|红外体温计(耳温枪)结构原理 掌握正确使用要领
    p style=" text-indent: 2em " 本文首发在仪器信息网-仪器社区在疫情期特别上线的 a href=" https://bbs.instrument.com.cn/class_471.htm" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 抗击新冠肺炎版块 /span /a ,为仪器信息网社区版友sc360xp(版友笔名: span style=" color: rgb(0, 112, 192) " 仪器信息网sc360xp /span )在其原创拆机文基础上编写,特此感谢。 /p p style=" text-align: center" a href=" https://bbs.instrument.com.cn/class_471.htm" target=" _blank" img style=" max-width: 100% max-height: 100% width: 500px height: 138px " src=" https://img1.17img.cn/17img/images/202002/uepic/bd6efefb-f5ef-46b3-abca-8eb68a06d078.jpg" title=" 1.png" alt=" 1.png" width=" 500" height=" 138" border=" 0" vspace=" 0" / /a /p p style=" text-indent: 2em " 目前临床上使用的体温计种类有水银体温计、电子体温计、红外线体温计。由于红外线体温计检测快速、非接触的优点,在抗击“COVID-19”病毒战役中普遍使用。 /p p style=" text-indent: 2em " 红外线体温计有额温及耳温两种检测方式,又称额温枪及耳温枪。在公共场所,普遍使用非接触的额温枪,准确度稍差,受环境波动影响较大。耳温枪测量的准确度较高,但耳温枪使用时,其耳套要与被测人耳朵接触,在公共场所使用,需要频繁更换耳套。耳温枪更适合家庭测量体温使用。 /p p style=" text-indent: 2em " & nbsp 额温枪及耳温枪的电路基本原理相同,只是在外形及算法上有所不同。有的厂家设计了二者通用产品。下面通过了解耳温枪结构原理,谈谈正确使用耳温枪的注意事项。 /p p style=" text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 一、测量耳温原理 /strong /span /p p style=" text-indent: 2em " 人的大脑深部有一个叫下视丘的地方,它是人脑自主神经系统的主要管制中枢。主要功能是管制内分泌、维持新陈代谢正常、调节体温,并与饥饿、渴、性等生理活动有密切的关系。下视丘里面有一个支配人体恒温的“定点”(set-point)构造,是人体温度的中心点。当人体发烧时,也就是该“定点”温度接受一些循环在血流中的发炎性化学物质之后调高的结果,所以下视丘是人体体温最早上扬的地方。 /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319189573_9036_1807987_3.jpg!w544x535.jpg" width=" 450" height=" 443" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319189573_9036_1807987_3.jpg!w544x535.jpg" style=" border: 0px display: inline width: 450px height: 443px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 耳膜接近下视丘。下视丘得到颈动脉流血充分供应,而供应耳膜与供应下视丘的血流互有交通,因此耳膜温度可以及时反映出人体的温度变化,耳膜也是可以最早侦测到人体是否有发烧的地方。耳温枪用热电堆红外传感器检测耳膜6~15μm区域的红外辐射能量,转换为电信号送入专用MCU进行处理,对应的体温值由液晶屏显示出来。 /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319195244_3245_1807987_3.jpg!w690x506.jpg" width=" 450" height=" 330" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319195244_3245_1807987_3.jpg!w690x506.jpg" style=" border: 0px display: inline width: 450px height: 330px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 二、仪器简要情况 /strong /span /p p style=" text-indent: 2em " 以前在TB上拍的,仪器有医疗器械注册文号,有厂家地址等,是正规产品,包邮才58元一只。现在,没有这个价位的产品出售了。 /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319198923_3272_1807987_3.jpg!w690x362.jpg" width=" 450" height=" 236" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319198923_3272_1807987_3.jpg!w690x362.jpg" style=" border: 0px display: inline width: 450px height: 236px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 仪器平时搁放在耳温枪座上,粉红色按钮是检测时扫描按钮。该仪器是非耳套更换型,耳温枪座只是一个搁仪器的机座,没有“博朗”那样的耳套存放功能。使用前,需用酒精棉擦拭耳筒清洁消毒。 /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319202054_7877_1807987_3.jpg!w690x355.jpg" width=" 450" height=" 232" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319202054_7877_1807987_3.jpg!w690x355.jpg" style=" border: 0px display: inline width: 450px height: 232px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 正面中间的按钮是开机按钮,兼读取存储数据、清零: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132324360523_9545_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132324360523_9545_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 耳筒对准耳道后,按下背面的扫描按钮,进行检测: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319207384_3147_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319207384_3147_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 体温正常,显示屏背景光为绿色。当体温接近发烧时(低烧),显示屏背景光为黄色: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319209733_4917_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319209733_4917_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 体温发烧,显示屏背景光为红色,蜂鸣器发出滴滴滴警告声讯。这种颜色光提醒设计比较实用: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319212684_9156_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319212684_9156_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 停止使用30秒钟后,自动关机,节约电池电量: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132328229853_1828_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132328229853_1828_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 三、拆机及电路元件 /strong /span /p p style=" text-indent: 2em " 取下电池盖,使用两节7号电池,比较耐用: /p p style=" text-align: center text-indent: 0em " img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319184123_6857_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319184123_6857_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 取下电池,看见电池仓中的电路板上12个触点,是耳温枪厂家调校用的: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333587730_739_1807987_3.jpg!w690x385.jpg" width=" 450" height=" 251" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333587730_739_1807987_3.jpg!w690x385.jpg" style=" border: 0px display: inline width: 450px height: 251px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 卸掉电池仓中一颗固定螺丝,外壳是卡扣设计,比较容易分离开: /p p style=" text-align: center text-indent: 0em " img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333590920_3574_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333590920_3574_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 下面是检测按钮,导电橡胶触点: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333594568_1650_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333594568_1650_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 电路结构,由于采用了专用MCU,使得仪器电路显得格外简单: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333598688_5573_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333598688_5573_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 这是检测头,内部热电堆传感器的电信号,用红白绿黑四根导线引出,焊接在电路板上: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132334004331_3502_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132334004331_3502_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 电路板左边的空位较多,说明这个是简化版,阉割了一些功能: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132334011292_6996_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132334011292_6996_1807987_3.jpg!w690x517.jpg" style=" border: 0px font-family: " microsoft=" " font-size:=" " white-space:=" " background-color:=" " display:=" " width:=" " height:=" " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " U2是存储器,采用低电压E2PROM--T24C02A(2K),用于存储10组体温检测数据: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132338426058_5787_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132338426058_5787_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 卸下电路板上的四颗固定螺丝,取下电路板: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132334014728_7530_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132334014728_7530_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 电路板背面,没有啥元件: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333582258_3625_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333582258_3625_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 仔细观察,电路板上的那些圆触点不是“装饰”,通向电路,是厂家生产时调校用: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342421018_5551_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342421018_5551_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 电路板上的L1、L2分别是绿、红LED,起到发出三色(绿、黄、红)背景灯作用: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342424958_9108_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342424958_9108_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 液晶显示板采用导电橡胶条连接;右边粉红色是开机按钮: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342427718_8047_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342427718_8047_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 先将检测头反时针旋转,然后向外拉出: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342432494_6549_1807987_3.jpg!w690x269.jpg" width=" 450" height=" 175" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342432494_6549_1807987_3.jpg!w690x269.jpg" style=" border: 0px display: inline width: 450px height: 175px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 卸下检测头上的两颗固定螺丝,取出传感器组件(传感器装在金属管内): /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342433588_1882_1807987_3.jpg!w690x279.jpg" width=" 450" height=" 182" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342433588_1882_1807987_3.jpg!w690x279.jpg" style=" border: 0px display: inline width: 450px height: 182px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 将热电堆传感器从金属管中取出,传感器外壳上有密封胶,取出时要特别小心: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342435938_8876_1807987_3.jpg!w690x312.jpg" width=" 450" height=" 203" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342435938_8876_1807987_3.jpg!w690x312.jpg" style=" border: 0px display: inline width: 450px height: 203px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 传感器上没有标识(或被抹去),不知道型号: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342438788_7998_1807987_3.jpg!w690x514.jpg" width=" 450" height=" 335" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342438788_7998_1807987_3.jpg!w690x514.jpg" style=" border: 0px display: inline width: 450px height: 335px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 安装传感器的金属管没有磁性,是铜质镀克罗米,它的作用是增大检测探头传感器的热容量,使检测数据稳定可靠: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342441568_8890_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342441568_8890_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 仪器“全家福”图片: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342446185_9267_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342446185_9267_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 四、电路原理分析 /strong /span /p p style=" text-indent: 2em " 根据拆机情况,绘出仪器电路结构示意框图如下: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342418113_1628_1807987_3.jpg!w690x451.jpg" width=" 450" height=" 294" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342418113_1628_1807987_3.jpg!w690x451.jpg" style=" border: 0px display: inline width: 450px height: 294px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " strong 仪器工作原理: /strong /p p style=" text-indent: 2em " 热电堆传感器感受到耳膜上的热辐射后,产生微弱的电势信号。这个电信号送入专用MCU进行处理,其温度值由LCD显示出来。对应不同的温度值,显示绿(正常)、黄(低烧)、红(高烧)三种颜色的背光。检测到高烧时,蜂鸣器同时发出“滴滴滴”警告声讯。热电堆传感器中的热敏电阻,用于检测热电堆本身温度,供内置程序分析计算使用。 /p p style=" text-indent: 2em " 由于耳温枪要吸收热源,为了达到稳定的热平衡,热电堆传感器要安装在热容量大的金属热容管上,减少温度快速变化的干扰。 /p p style=" text-indent: 2em " 至于温度的原点,就必须要在厂内调校。调校的过程是,把耳温枪放入恒温槽,设定原点的温度,然后依据温升的程度,加以计算,得到正确的温度。所以,厂家在说明书中提示,一般保用期3年,过期应进行校核。 /p p style=" text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 五、正确使用耳温枪的注意事项 /strong /span /p p style=" text-indent: 2em " 耳温枪使用看似简单,但许多人不能正常使用。需要注意以下问题。 /p p style=" text-indent: 2em " strong 1、正常体温对于每个人来说都是独一无二的 /strong ,从34.7℃~38℃不等,取决于测量温度的部位和个体差异。世卫组织(WTO)提供的人体正常体温的参考数值是: /p p style=" text-indent: 2em " 耳内:35.8℃—38℃ /p p style=" text-indent: 2em " 腋窝:34.7℃—37.3℃ /p p style=" text-indent: 2em " 口腔:35.5℃—37.5℃ /p p style=" text-indent: 2em " 直肠:36.6℃—38℃ /p p style=" text-indent: 2em " 这个正常范围受到诸多因素的影响,比如体力劳动,昼夜变化,年龄增长。你可以为本人或家人在身体状况良好的情况下,在一天内多次测量体温来获得这一数据,以备需要时,作为判断发烧的参考数据。 /p p style=" text-indent: 2em " strong & nbsp 2、耳温枪使用的温度环境 /strong /p p style=" text-indent: 2em " 国家标准给出的耳温枪使用环境温度为16 ℃~35 ℃。当超过16 ℃~35 ℃使用范围,准确度没有得到有效验证,误差会较大。冬季一般应当在室内测量。 /p p style=" text-indent: 2em " & nbsp 耳温枪是不知道标准温度的,就像数字相机不知道颜色坐标,必须作白平衡一样。耳温枪开机之后,会先测量环境温度作为基准温度;然后测量耳温。正规厂家的使用说明书上会告诉消费者,到别的温差大的房间取用耳温枪,要等大约30分钟、直到温度平衡稳定后,才能开机使用。人从温差大的外部环境回来,应滞留5分钟左右,与房间温度平衡后再测量。手持部分,必须离检测头越远越好。耳温枪使用时远离任何热源,不要在风扇口、空调下测量。除了温度变动因素,长时间手持仪器,被测人有中耳炎、耳屎、插入耳朵位置不准,电池电量不足等,也会影响准确度。 /p p style=" text-indent: 2em " 3、由于耳温枪对于热辐射十分敏感的特点,要发挥耳温枪的正常测量功能,一定要仔细阅读使用说明书,正常操作。 /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & quot Arial Narrow& quot white-space: normal text-indent: 2em text-align: center " ------------------------------------------- br style=" margin: 0px padding: 0px " / /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & quot Arial Narrow& quot white-space: normal text-indent: 2em " span style=" font-family: arial, helvetica, sans-serif " strong style=" margin: 0px padding: 0px " 征稿活动: /strong “红外体温检测仪技术及相关应用”主题征稿活动进行中,一经入选,将在资讯栏目发布并支付一定稿酬,并择优邀请做线上专家报告 span style=" margin: 0px padding: 0px color: rgb(127, 127, 127) " (新冠病毒主题研讨会---红外体温检测仪检测技术与应用现状) /span 。让我们共同努力,携手抗“疫”! span style=" margin: 0px padding: 0px color: rgb(0, 176, 240) " (投稿或自荐邮箱:yanglz@instrument.com.cn) /span /span /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & quot Arial Narrow& quot white-space: normal text-indent: 2em " span style=" margin: 0px padding: 0px color: rgb(0, 0, 0) font-family: arial, helvetica, sans-serif " 更多红外体温检测仪技术与应用相关资讯点击关注以下专题: /span /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & quot Arial Narrow& quot white-space: normal text-align: center " a href=" https://www.instrument.com.cn/zt/hwcwy" target=" _blank" style=" margin: 0px padding: 0px color: rgb(42, 123, 192) text-decoration-line: none background-color: rgb(255, 255, 255) !important " img src=" https://img1.17img.cn/17img/images/202002/uepic/6214fb81-41dd-4869-b8d4-8361d93b54d2.jpg" title=" 3.png" alt=" 3.png" width=" 600" height=" 171" border=" 0" vspace=" 0" style=" margin: 0px padding: 0px border: 0px max-width: 100% max-height: 100% width: 600px height: 171px " / /a /p
  • 这台发射宇宙射线的神秘设备,能给西安古城墙做“CT”
    ◎ 采写丨科技日报记者 王迎霞 颉满斌◎ 策划丨赵英淑 滕继濮 林莉君吴春至今记得第一次做CT的情景。被推进舱里的那一刻,她紧张、害怕,担心查出问题,也担心射线对身体造成影响。多年过去,她再次经历了这样的不安,只不过,这次做CT的是古城墙。吴春是陕西省西安城墙管理委员会副主任,在她的积极联系和鼎力支持下,兰州大学核技术创新与产业化团队带着研发的国内首套塑闪宇宙射线缪子成像设备,给西安古城墙做了一次“CT”。“一定不要给城墙造成损伤,但也一定要知道‘五脏六腑’都有啥毛病。”吴春提出要求。这是她作为历史文化遗产守护者的底线。叫缪子的宇宙射线有着600多年历史的西安古城墙,也像人体一样,会随着时间的推移出现“健康”问题。北方夏季雨水较多,西安古城墙被雨水长时间浸泡后,部分墙面出现了快速裂缝和沉陷的现象。尽管城墙管委会一直都在高度关注城墙的各类安全问题,但有些损害在墙体内部,仅凭肉眼无法观测。如何检测古城墙内部情况,进而有针对性地展开修复工程,成为摆在西安城墙管委会面前的重要难题。西安城墙正北门—安远门在现代医学技术的加持下,要想掌握人体的病灶情况,我们可以使用B超、CT、核磁共振等各种影像仪器。想知道一座几十米高的古城墙的健康状况,该怎么办?“以往,我们用得最多的是钻孔法,就是通过在墙体上打孔取材的方式,来判断其内部情况。但这种勘探方式会直接破坏墙体,后期还需要对损坏部分进行修复。”吴春说。另一种是雷达监测法。雷达的频率越小,穿透程度便会越深,但其精度会相应变差,成像可能出现偏差;而如果探测太浅,又不能够满足古建筑、山脉等大型物体的探测深度需要。“钻孔法对城墙有损,而使用雷达法,基本上70%的情况都探不出来。”吴春做梦都想找到能够无损探测的方法。一个偶然的机会,她结识了兰州大学核技术创新与产业化团队。在给城墙南门的一面墙做三维激光扫描的过程中,吴春不由地感慨:“这激光扫描呀,如果能透视到里面就好了。省得我们苦苦找隐患点,又无计可施。”这时,操作扫描的老师说自己认识一位兰州大学教授,他能用一种宇宙射线对物体进行成像,或许可以帮到她。是物探,还是遥感?对方说好像都不是,是一种新方法,具体是什么,他也说不清。这下吴春来了兴致:“刚好58号马面(在城墙外侧依一定距离修建的凸出墩台,平面有长方形和半圆形,因外观狭长如马面,故名)出了一些问题,我联系试试!”他们说的宇宙射线,就是缪子。星际空间有很多高能粒子,其中最主要的是质子。高能的质子通过大气层时会发生核反应、电离等级联反应,从而一生二、二生四,从上往下越来越多,有点像烟花,也像射灯。到达海平面时,里面就富含各种组分,缪子只是其一,还有中子、β射线和γ射线等。它们都被称为“宇宙射线次级射线”。“根据估算,海平面上每平方米面积上每分钟会落下10000个缪子,也就是说,每秒钟就会有一个缪子穿过我们的手掌。”兰州大学核技术创新与产业化团队相关负责人打比方道,“它们就像下雨一样浇着我们,淋着我们,时时刻刻穿透我们的身体。”作为宇宙中的基本粒子之一,缪子的带电量为一个负电荷,质量为电子的207倍,它与物体发生相互作用的方式与电子类似。相比于中子、X射线和γ射线等,宇宙射线缪子具有更强的穿透能力。很多人都好奇这种神奇的物质,究竟是如何为我所用的。原来,科研人员在被测物体周边放置缪子探测器,根据缪子射线在物体中不同方向的穿透情况,搜集肉眼看不见的缪子计数,进而在计算机上进行分析,通过数据分析计算实现被测物体的三维成像。工作人员正在组装探测器“对于城墙这样十几米甚至几十米厚的物体来说,如果里面有个一米大的空洞,我们完全可以通过缪子成像技术检测到。”该团队成员刘军涛从团队2018年着手干这件事开始,他就跟着全程参与了缪子成像系统的研发。藏着秘密的“冰柜”2021年9月,兰州大学核科学与技术学院两位骨干教师,带着由两位工程师以及四五位学生组成的团队,向着古都西安出发。与他们同行的,是一个长1.6米形状酷似冰柜的仪器。“之所以看起来像一台冰柜,是因为我们给原来只能在实验室使用的探测仪器增设了金属外壳,使设备可以防潮、避光,方便移动。”刘军涛说。正在作业中的探测器刘军涛告诉吴春,仪器定型的时间不长,没有成熟商业产品那样漂亮的外观,但探测效果不受影响。吴春的话给他吃了很大一颗定心丸:“不管啥方法,只要是科学的,我们都欢迎!”这台貌不惊人的方疙瘩,隐藏着能给城墙看病的秘密。它包括多对探测器层和采集板,负责收集从宇宙中散落下来的缪子与信息转换;一个用于数据传输监测与存储的主机系统;一台移动电源,可确保仪器在野外运行时有稳定的供电;一个用于调控设备内温度和湿度的空调系统……缪子成像技术研究,目前国内也有少数同行团队在做。兰州大学核技术创新与产业化团队的不同之处在于,他们已经从实验室测试阶段走向了实际应用。2020年11月,该团队成功研发我国首套塑闪宇宙射线缪子成像系统,并顺利完成专家验收。“‘塑闪’是塑料闪烁体的简写。缪子通过塑料闪烁体后会产生光,有闪烁光就代表有缪子通过这个材料。我用光电转换的器件,可以把光信号转为电信号,看到脉冲后,表示已经捕捉到了缪子。”刘军涛说。采集缪子只是第一步。随后,他们不断完善软件模型,模拟成像场景,调整各类参数,最终将其带到西安古城墙下,开始“首秀”。缪子成像技术主要有两种成像原理,即角度散射成像和强度衰减成像。此次西安古城墙探测运用的便是强度衰减成像法。这一成像方法的原理是,缪子在物体内部穿行过程中会损失能量,而当其能量损失殆尽时便会被物体吸收,这将使探测到的缪子强度减小,所以宇宙射线缪子强度减小量取决于物体的厚度及材料密度。因此,在已知物体外部轮廓的情况下,通过探测缪子强度衰减,可以推导得到被探测物体的密度,从而对物体的内部结构与物质组成进行重构。“这就像人们利用X射线扫描身体,通过透视人体骨骼从而成像一样。”刘军涛介绍说,山体、建筑物、历史遗迹等大型物体的内部结构成像,用的也是这一原理。吴春给他们指定的测试段是城墙58号马面处。正如给人体做三维影像检查会采用放射源与探测器旋转多角度成像,想要给城墙做“CT”,也需要从不同角度采集多组数据。团队采取了环绕马面设置6个观测点的方案,放置探测器进行数据采集。正在作业中的探测器没想到,刚把机器安放好,又一波全国范围的新冠疫情席卷而来。那是2021年秋,实验面临的最大问题是,因为防疫政策需要,探测器不能按照计划不停地变换位置。团队只能因陋就简,顺势而为,及时改变了测量计划。终于在2022年春节前夕,他们将仪器带回兰州。让吴春吃惊的是,这个团队成功测试出了城墙中的低密度区域——也就是一个配电室。在测试团队事先并不知道的情况下,他们通过宇宙缪子成像技术清晰地呈现出它的位置、形状、大小。“这一高精度成像再次验证了使用缪子成像技术能够完成被测物体三维成像的可行性。”刘军涛表示。他们和58号马面科研从来无坦途。兰州大学核技术创新与产业化团队虽然首战告捷,但在实际探测过程中,还是遇到了不少困难。宇宙射线缪子成像技术利用的是不需要人工放射源产生的天然射线,具有无接触勘探、不受时空限制、不会对勘探物体造成任何伤害、绿色环保等特点,但它的使用受客观条件影响较大。“不像医院里使用人工射线源,环境比较单纯,我们的仪器往往放置在室外,得经历风吹日晒等自然环境的考验。”兰州大学2020级能源动力专业硕士研究生姚凯强说。在室外使用就会出现各种问题,比如电路短路,或者电压波动较大等,设备接收到的信号也会跳动不稳。整个墙体的勘探过程耗时将近4个月,为了应对各种环境的考验,团队对实验室内原来使用的平板探测器进行了升级与调整。姚凯强和另一名师兄专门留在了西安,隔两天就得去现场调整仪器。另外,后期也需要处理那些不稳定环境下接收到的杂乱数据。与数据收集相比,更大的挑战在于开发反演成像的算法平台。“我们在进行文物探测的过程中总会遇到一个问题,就是测量到的数据比待解的未知量少很多。比如有两个变量一个方程的情况下,方程的解是无穷多的。”对2021级核技术专业硕士研究生刘国睿来说,这就需要她和小伙伴在庞杂的结果中挑选出能够同时满足多个方程的模型,选择最合理的结果。来西安之前,刘国睿、姚凯强等人首先根据描述对城墙进行了可行性分析,几何模型比较简单,仅仅知道城墙的长宽高,里面可能有什么情况。在仿真中,他们需要先把城墙的模型大致建好,再进行正演计算,用正演的结果去反演成像。“相当于我们先算一个可能得到的测量结果,然后用这个测量结果做反演,看能不能给里面的防空洞成出一个三维图像来。”刘国睿说。确定做58号马面后,他们把模型更加细化了。初期建的模型特别简单,就是一个矩形的堆,后来又加上马面,对尺寸进行调整。激光测绘把整个城墙的轮廓描绘清楚之后,他们决定换模型,尽管那时6个探测点都已确定。最后一次模拟时,探测点位早已敲定,团队更新了非常细化的城墙轮廓,决定重新建模再做一次。根据优质成像的分辨率,他们在马面里假设了一个防空洞,看能不能成像。另一个难题是遇到密度异常部分时的演算。刘国睿念大三时就加入该课题组学习,后继续在此攻读研究生,在她看来,整体测算并不困难,但密度异常体与周边部分衔接地带,算起来有难度。“这些地方的密度解出来可能会带有系统偏差。”她说。最终的研究结果就是,这次试验精度可以对城墙内部一个长宽高均为1米的防空洞成像出来。“我们还测到马面北面比较空虚,当时比较质疑这个结果,为此做了好多验证。”刘国睿强调,他们必须排除是不是自己技术方面的原因,比如数据处理不当、测量问题之类。排除过后,得出结论——58号马面北墙附近的夯土密度确实较低。回想起这一幕,这个性格沉静的女孩,终于有了笑意。追寻“中国方案” 兰州大学师生付出的所有努力,吴春都看在眼里。实际上,58号马面的情况,她早有掌握。她就想看看这宇宙射线缪子成像技术,到底行不行。刘国睿在分析马面数据的过程中发现,砖和夯土之间好像有空腔,因为不确定,就反复向吴春求证。“小姑娘问,里面是不是有空腔?为什么会有?是真的有,还是我们收集的数据不够、计算方法不对而导致的偏差?我当时就欣慰地笑了。”但吴春并没有挑明,而是让她继续往下做。后来的成果报告会上,吴春正式向有关部门汇报称,兰州大学核技术创新与产业化团队的缪子成像结果,跟西安城墙管委会掌握的情况基本吻合。从此,她对他们更加信任了。这份信任,源于科研人员对自身的严格要求。在所有人看来,大胆质疑、小心求证是科学精神最重要的品格之一,他们恪守这一理念,初心不改。“为什么是这个,而不是那个?哪一步出了错,都无法导出正确结果。”刘军涛深谙其研究之复杂,意义之深远。刘军涛给学生们讲解缪子探测系统如今,团队已经扩展至30余人,每个人分工明确。导师的悉心培养和团队的互帮互助,让青年科研人员受益匪浅。在读研二的刘国睿,已在物理学经典期刊上发表研究论文,内容便是针对宇宙射线缪子技术在实地应用中出现的问题,并提出探索性的解决方案。每一位成员的心里,都有浩瀚宇宙。中华文明上下五千年,源远流长,在悠悠岁月中厚重沉淀。当前,随着科技已经成为考古发展新动力,他们在完成西安城墙成像工作的过程中,逐渐感受到缪子成像技术未来在科技考古领域的广阔前景。“这项技术以后在大型遗迹考古中一定会发挥作用,我们也想在科技考古领域做成标杆性的亮点。”刘军涛告诉记者,今年,敦煌研究院也与团队接触并计划建立合作关系,他们将在深入探测石窟内部结构的工作中共同努力。与不断发展的成像技术相辅相成的,是持续更新的应用场景。一直以来,缪子成像技术应用的瓶颈主要在于探测系统现场应用场景的适应性、成本控制等。在团队不断优化完善下,这项技术也从考古探测发展到了地质勘查、矿产勘探、集装箱检测等更广阔的空间。前段时间,团队又有了新思路:是否可以使用缪子成像技术探测青藏高原的冰川厚度,明晰岩石边界?对他们来说,制作轻量化、耐低温的缪子成像仪器,正在成为新的探索方向。值得一提的是,从仪器组装所需要的材料等硬件到算法系统软件,兰州大学核技术创新与产业化团队都致力于将其本土化。是啊,要想获得“中国方案”、作出“中国贡献”,必须实现技术国产化,这是每位科研人员肩负的重大使命。刘军涛欣喜地透露,现在团队这项技术的国产化率已经达到了95%左右。今年,一直致力于文物保护高质量发展的吴春,又与兰州大学团队取得了联系,看实验能否深入开展。她寄希望于下一步的合作能够证实这种技术更安全、更准确,同时辅以地质勘查,为墙体的修缮工程提供可靠参考,使得预防性保护更具前瞻性。“经过这样完整的检验之后,我们希望这种技术能够得到广泛应用。可以相信,科技将助力中国考古迎来‘黄金时代’。”吴春说。考古科技化,技术国产化,归根到底都是高水平科技自立自强。这是一条遥远而艰辛的路。每个人都渴望化身滴水,汇入时代的海河,信念灼灼。科技日报•深瞳工作室出品文中图片均由受访者提供微信编辑丨宋慈审核丨朱丽终审丨王郁
  • 电镜学堂丨扫描电子显微镜的结构(一) - 电子光学系统
    这里是TESCAN电镜学堂第四期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!扫描电子显微镜主要由电子光学系统、信号收集处理系统、真空系统、图像处理显示和记录系统、样品室样品台、电源系统和计算机控制系统等组成。第一节 电子光学系统电子光学系统主要是给扫描电镜提供一定能量可控的并且有足够强度的,束斑大小可调节的,扫描范围可根据需要选择的,形状完美对称的,并且稳定的电子束。电子光学系统主要由电子枪、电磁聚光镜、光阑、扫描系统、消像散器、物镜和各类对中线圈组成,如图3-1。图3-1 SEM的电子光学系统§1. 电子枪(Electron Gun)电子枪是产生具有确定能量电子束的部件,是由阴极(灯丝)、栅极和阳极组成。灯丝主要有钨灯丝、LaB6和场发射三类。① 钨灯丝电子枪:如图3-2,灯丝是钨丝,在加热到2100K左右,电子能克服大约平均4.5eV的逸出功而逃离,钨灯丝是利用热效应来发射电子。不过钨灯丝发射电子效率比较低,要达到实用的电流密度,需要较大的钨丝发射面积,一般钨丝电子源直径为几十微米。这样大的电子源直径很难进一步提高分辨率。还有,钨灯丝亮度差、电流密度低、单色性也不好,所以钨灯丝目前最高只能达到3nm的分辨率,实际使用的放大倍数均在十万倍以下。不过由于钨灯丝价格便宜,所以钨灯丝电镜得到了广泛的应用。图3-2 钨灯丝电子枪② LaB6电子枪:要提高扫描电镜的分辨率,就要提高电子枪的亮度。而一些金属氧化物或者硼化物在加热到高温之后(1500~2000K),也能克服平均逸出功2.4eV而发射热电子,比如LaB6,曲率半径为几微米。LaB6灯丝亮度能比钨灯丝提高数倍。因此LaB6灯丝电镜有比钨灯丝更好的分辨率。除了LaB6外,类似的还有CeB6等材料。不过目前在扫描电镜领域,LaB6灯丝价格并不便宜,性能相对钨灯丝提升有限,另外就是场发射的流行,使得LaB6灯丝的使用并不多见。图3-3 LaB6电子枪② 场发射电子枪:1972年,拥有更高亮度、更小电子束直径的场发射扫描电镜(FE-SEM)实现商品化,将扫描电镜的分辨率推向了新的高度。场发射电子枪的发射体是钨单晶,并有一个极细的尖端,其曲率半径为几十纳米到100nm左右,在钨单晶的尖端加上强电场,利用量子隧道效应就能使其发射电子。图3-4为场发射电子枪的结构示意图。钨单晶为负电位,第一阳极也称取出电极,比阴极正几千伏,以吸引电子,第二阳极为零电位,以加速电子并形成10nm左右的电子源直径。图3-5为场发射电子枪的钨单晶灯丝结构,只有钨灯丝支撑的非常小的尖端为单晶。图3-4 场发射电子枪结构示意图图3-5 场发射电子枪W单晶尖端场发射电子枪又分为冷场发射和热场发射。热场发射的钨阴极需要加热到1800K左右,尖端发射面为或取向,单晶表面有一层氧化锆(如图3-6),以降低电子发射的功函数(约为2.7eV)。图3-6 热场发射电子枪钨单晶尖端冷场发射不需加热,室温下就能进行工作,其钨单晶为取向,逸出功最小,利用量子隧道效应发射电子。冷场电子束直径,发射电流密度、能量扩展(单色性)都优于热场发射,所以冷场电镜在分辨率上比热场更有优势。不过冷场电镜的束流较小(一般为2nA),稳定性较差,每个几小时需要加热(Flash)一次,对需要长时间工作和大束流分析有不良影响。不过目前Hitachi最新的冷场SEM,束流已经能达到20nA,稳定性也比以往提高了很多,能够满足一些短时间EBSD采集的需要,不过对于WDS、阴极荧光等分析还不够。热场发射虽然电子束直径、能量扩展不及冷场,但是随着技术的发展,其分辨率也越来越接近冷场的水平,有的甚至还超越了冷场。特别是热场电镜束流大,稳定性好,有着非常广阔的应用范围。从各个电镜厂商对待冷场和热场的态度来看,欧美系厂商钟情于热场电镜,而日系厂商则倾向于冷场电镜。不过目前日系中的日本电子也越来越多的推出热场电镜,日立也逐步推出热场电镜,不过其性能与自家的冷场电镜相比还有较大差距。① 各种类型电子源对比:各类电子源的对比如表3-1。表3-1 不同电子源的主要参数SEM的分辨率与入射到试样上的电子束直径密切相关,电子束直径越小,分辨率越高。最小的电子束直径D的表达式为:其中D为交叉点电子束在理想情况下的最后的束斑直径,CS为球差系数、CC为色差系数、ΔV/V0为能量扩展、I为电子束流、B为电子源亮度,a为电子束张角。由此可以看出,不同类型的电子源,其亮度、单色性、原始发射直径具有较大的差异,最终导致聚焦后的电子束斑有明显的不同,从而使得不同电子源的电镜的分辨率也有如此大的差异。通常扫描电镜也根据其电子源的类型,分为钨灯丝SEM和冷场发射SEM、热场发射SEM。§2. 电磁透镜电磁透镜主要是对电子束起汇聚作用,类似光学中的凸透镜。电磁透镜主要有静电透镜和磁透镜两种。① 静电透镜一些特定形状的并成旋转对称的等电位曲面簇可以使得电子束在库仑力的作用下进行聚焦,形成这些等电位曲面簇的装置就是静电透镜,如图3-7。图3-7 静电透镜静电透镜在扫描电镜中使用相对较少。不过电子枪外的栅极和阳极之间,自然就形成了一个静电透镜。另外一些特殊型号的电镜在某些地方采用了所谓的静电透镜设计。② 磁透镜电子束在旋转对称的磁场中会受到洛伦兹力的作用,进而产生聚焦作用。能使产生这种旋转对称非均匀磁场并使得电子束聚焦成像的线圈装置,就是磁透镜,如图3-8。图3-8 磁透镜磁透镜主要有两部分组成,如图3-9。第一部分是软磁材料(如纯铁)制成的中心穿孔的柱体对称芯子,被称为极靴。第二部分是环形极靴的铜线圈,当电流通过线圈的时,极靴被磁化,并在心腔内建立磁场,对电子束产生聚焦作用。图3-9 磁透镜结构磁透镜主要包括聚光镜和物镜,靠近电子枪的透镜是聚光镜,靠近试样的是物镜,如图3-10。一般聚光镜是强励磁透镜,而物镜是弱励磁透镜。图3-10 聚光镜和物镜聚光镜的主要功能是控制电子束直径和束流大小。聚光镜电流改变时,聚光镜对电子束的聚焦能力不一样,从而造成电子束发散角不同,电子束电流密度也随之不同。然后配合光阑,可以改变电子束直径和束流的大小,如图3-11。当然,有的电镜不止一级聚光镜,也有的电镜通过改变物理光阑的大小来改变束流和束斑大小。图3-11 聚光镜改变电流密度、束斑和束流物镜的主要功能是对电子束做最终聚焦,将电子束再次缩小并聚焦到凸凹不平的试样表面上。虽然电磁透镜和凸透镜非常像似,不过电子束轨迹和光学中的光线还是有较大差别的。几何光学中的光线在过凸透镜的时候是折线;而电子束在过磁透镜的时候,由于洛伦兹力的作用,其轨迹是既旋转又折射,两种运动同时进行,如图3-12。图3-12 电子束在过磁透镜时的轨迹§3. 光阑一般聚光镜和物镜之间都有光阑,其作用是挡掉大散射角的杂散电子,避免轴外电子对焦形成不良的电子束斑,使得通过的电子都满足旁轴条件,从而提高电子束的质量,使入射到试样上的电子束直径尽可能小。电镜中的光阑和很多光学器件里面的孔径光阑或者狭缝非常类似。光阑一般大小在几十微米左右,并根据不同的需要选择不同大小的光阑。有的型号的SEM是通过改变光阑的孔径来改变束流和束斑大小。一般物镜光阑都是卡在一个物理支架上,如图3-13。图3-13 物理光阑的支架在电镜的维护中光阑的状况十分重要。如果光阑合轴不佳,那将会产生巨大的像散,引入额外的像差,导致分辨率的降低。更有甚者,图像都无法完全消除像散。另外光阑偏离也会导致电子束不能通过光阑或者部分通过光阑,从而使得电子束完全没有信号,或者信号大幅度降低,有时候通过的束斑也不能保持对称的圆形,如图3-14,从而使得电镜图像质量迅速下降。还有,物镜光阑使用时间长了还会吸附其它物质从而受到污染,光阑孔不再完美对称,从而也会引起额外的像差,信号的衰弱和图像质量的降低。图3-14 光阑偏离后遮挡电子束因此,光阑的清洁和良好的合轴,对扫描电镜的图像质量来说至关重要。光阑的对中调节目前有手动旋拧和电动马达调节两种方式。TESCAN在电镜的设计上比较有前瞻性,所有型号的电镜都采用了中间镜技术,利用电磁线圈代替了传统的物镜光阑。中间镜是电磁线圈,可以受到软件的自动控制,并且连续可调,所以TESCAN的中间镜相当于是一个孔径可以连续可变的无极孔径光阑,而且能实现很多自动功能。 §4. 扫描系统① 扫描系统扫描系统是扫描电镜中必不可少的部件,作用是使电子束偏转,使其在试样表面进行有规律的扫描,如图3-15。图3-15 扫描线圈改变电子束方向扫描系统由扫描发生器和扫描线圈组成。扫描发生器对扫描线圈发出周期性的脉冲信号,如图3-16,扫描线圈通过产生相应的电场力使得电子束进行偏转。通过对X方向和Y方向的脉冲周期不同,从而控制电子束在样品表面进行矩形的扫描运动。此外,扫描电镜的像素分辨率可由X、Y方向的周期比例进行控制;扫描的速度由脉冲频率控制;扫描范围大小由脉冲振幅进行控制;另外改变X、Y方向脉冲周期比例以及脉冲的相位关系,还可以控制电子束的扫描方向,即进行图像的旋转。图3-16 扫描发生器的脉冲信号另外,从扫描发生器对扫描线圈的脉冲信号控制就可以看出,电子束在样品表面并不是完全连续的扫描,而是像素化的逐点扫描。即在一个点驻留一个处理时间后,跳到下一个像素点。值得注意的是扫描电镜的放大率由扫描系统决定,扫描范围越大,相应的放大率越小;反之,扫描的区域越小,放大率越大。显示器观察到的图像和电子束扫描的区域相对应,SEM的放大倍数也是由电子束在试样上的扫描范围确定。① 放大率的问题有关放大率,目前不同的电镜上有不同的形式,即所谓的照片放大率和屏幕放大率,不同的厂家或行业有各自使用上的习惯,故而所用的放大率没有明确说明而显得不一样。这只是放大率的选择定义不一样而已,并不存在放大率不同的问题。首先是照片放大率。照片放大率使用较早,在数字化还不发达的年代,扫描电镜照片均是用照片冲洗出来。业内普遍用宝丽来的5英寸照片进行冲洗。所用冲洗出来的照片的实际长度除以照片对应样品区域的实际大小之间的比值,即为照片放大率。不过随着数字化的到来,扫描电镜用冲洗出来的方式进行观察已经被淘汰,扫描电镜几乎完全是采用显示器直接观察。所以此时用显示器上的长度除以样品对应区域的实际大小,即为屏幕放大率。同样的扫描区域,照片放大率和屏幕放大率会显示为不同的数值。不过不管采用何种放大倍数,在通常的图片浏览方式下,其放大率通常都不准确。对于照片放大率来说,只有将电镜图像冲印成5英寸宝丽来照片时观察,其实际放大倍数才和照片放大率一致,否则其它情况都会存在偏差;对屏幕放大率来说,只有将电镜照片在控制电镜的电脑上,按照1:1的比例进行观察时,实际放大倍数才和屏幕放大率一致。否则照片在电脑上观察时放大、缩小、或者自适应屏幕,或者照片被打印成文档、或者被投影出来、或者不同的显示器之间会有不同的像素点距,都会造成实际放大率和照片上标出的放大率不同。不过不管如何偏差,照片上的标尺始终一致。所以在针对放大率倍数发生争执时,首先要弄清楚照片上标的放大倍数为何种类型,尽量回避放大率的定义,改用视野宽度或者标尺来进行比对。 §5. 物镜扫描电镜的物镜也是一组电磁透镜,励磁相对较弱,主要用于电子束的最后对焦,其焦距范围可以从一两毫米到几厘米范围内做连续微小的变化。① 物镜的类型:物镜技术是相对来说比较复杂,不同型号的电镜可能其它部件设计相似,但是在物镜技术上可能有较大的差异。目前场发射的物镜通常认为有三种物镜模式,即所谓的全浸没式、半磁浸没式和无磁场式,如图3-17。或者各厂家有自己特定的名称,但是业界没有统一的说法,不过其本质是一样的。图3-17 全浸没式(左)、无磁场式(中)、半磁浸没式(右)透镜A.全浸没式:也被称为In-LensOBJ Lens,其特点是整个试样浸没在物镜极靴以及磁场中,顾名思义叫全浸没模式。但是其试样必须做的非常小,插入到镜筒里面,和TEM比较类似。这种电镜在市场里面非常少,没有引起人们的足够重视。B.无磁场式:也叫Out-lensOBJ Lens,这也是电镜最早发展起来的,大部分钨灯丝电镜都是这种类型的物镜。此类电镜的特点是物镜磁场开口在极靴里面,所以物镜产生的磁场基本在极靴里面,样品附近没有磁场。但是绝对不漏磁是不可能的,只要极靴留有让电子束穿下来的空隙,就必然会有少量磁场的泄露。这对任何一家电镜厂商来说都是一样,大家只能减少漏磁,而不可能彻底杜绝漏磁,因为磁力线总是闭合的。采用这种物镜模式的电镜漏磁很少,做磁性样品是没有问题的。特别是TESCAN的极靴都采用了高导磁材料,进一步减少了漏磁。TESCAN的VEGA、MIRA、LYRA系列均是采用此种物镜。C. 半磁浸没式:为了进一步提高分辨率,厂商对物镜做了一些改进。比较典型的就是半浸没式物镜,也叫semi-in-lens OBJ Lens。因为全浸没式物镜极少,基本别人忽视,所以有时候也把半浸没式物镜称为浸没式物镜。半浸没式物镜的特点是极靴的磁场开口是在极靴外面,故意将样品浸没在磁场中,以减少物镜的球差,同时产生的电子信号会在磁场的作用下飞到极靴里面去,探测器在极靴里面进行探测。这种物镜最大的优点是提高了分辨率,但是缺点是对磁性样品的观察能力相对较弱。为了弥补无磁场物镜分辨率的不足和半浸没物镜不能做磁性样品的缺点,半磁浸没物镜的电镜一般将无磁场式物镜和半磁浸没式物镜相结合,形成了多工作模式。从而兼顾无磁场和半浸没式的优点,做特别高的分辨率时,使用浸没式物镜(如TESCAN MAIA3和GAIA3的Resolution模式),做磁性样品的时候,关闭浸没式物镜使用一般的物镜(如TESCAN的Field模式)。从另一个角度来说,在使用无磁场模式物镜时,对应的虚拟透镜位置在镜筒内,距离样品位置较远;使用半浸没式物镜时,对应的透镜位置在极靴下,距离样品很近。根据光学成像的阿贝理论也可以看出,半浸没式物镜的分辨率相对更高,如图3-18。图3-18 无磁场式(左)和半磁浸没式(右)透镜对应的位置① 物镜的像差电磁透镜在理想情况下和光学透镜类似,必须满足高斯成像公式,但是光学不可避免的存在色差和像差以及衍射效应,在电子光学中一样存在。再加上制造精度达不到理论水平,磁透镜可能存在一定的缺陷,比如磁场不严格轴对称分布等,再加上灯丝色差的存在,从而使得束斑扩大而降低分辨率。所以减少物镜像差也一直是电镜在不断发展的核心技术。A.衍射的影响:由于高能电子束的波长远小于扫描电镜分辨率,所以衍射因子对分辨率的影响较小。图3-19 球差、色差、衍射的对束斑的影响B.色差的影响:色差是指电子束中的不同电子能量并不完全相同,能量范围有一定的展宽,在经过电磁透镜后焦点也不相同,导致束斑扩大。不同的电子源色差像差很大,也造成了分辨率的巨大差异。C.像差的影响:像差相对来说比较复杂,在传统光学理论中,由于成像公式都是基于旁轴理论,所以在数学计算上做了一定的近似。不过如果更严格的考虑光学成像,就会发现在光学成像中存在五种像差。a. 球差:电子在经过透镜时,近光轴的电子和远光轴电子受到的折射程度不同,从而引起束斑的扩大。而电镜中的电子束不可能细成完美的一条线,总会有一定的截面积,故而球差总是存在。不过球差对扫描电镜的影响相对较小,对透射电镜的影响较大。b. 畸变:原来横平竖直的直线在经过透镜成像后,直线变成曲线,根据直线弯折的情况分为枕形畸变和桶形畸变,如图3-20。不过在扫描电镜中因为倍数较大,所以畸变不宜察觉,但是在最低倍率下能观察到物镜的畸变。特别是扫描电镜的视场往往有限,有的型号的电镜具有了“鱼眼模式”,虽然增加了视场但却增加了畸变。TESCAN的电镜很有特点,利用了独特的技术,既保证了大视野,又将畸变减小到了最低甚至忽略不计,如图3-21。图3-20 透镜的畸变图3-21鱼眼模式和TESCAN的视野模式c. 像散:像散是由透镜磁场非旋转对称引起的一种像差,使得本应呈圆形的电子束交叉点变成椭圆。这样一个的束斑不再是完美对称的圆形,会严重影响电镜的图像质量。以前很多地方都说极靴加工精度、极靴材料不均匀、透镜内线圈不对称或者镜头和光阑受到污染,都会产生像散。但是,像散更是光学中的一种固有像差,即使极靴加工完美,镜头、光阑没有污染,也同样会有像散。当然由于加工及污染的问题,会进一步加大像散的影响。在光学理论中,不在光轴上的物点经过透镜后,用屏去截得到的光斑一般不再是圆形。其中有三个特殊位置如图3-23,一个叫做明晰圆位置,这里的光斑依然是圆形;而另外两个特殊的位置称为子午与弧矢,这里截到的是两条正交的直线;其它任意位置截到的是一个会随位置而变化的椭圆。图3-22 电镜中的消像散图3-23 光学理论中的像散 对于电子束来说也一样,原来圆形的束斑在经过电磁透镜后,会因为像散的存在变得不再是完美的圆形,引起图像质量的降低。要消除像散需要有消像散线圈,它可以产生一个与引入像散方向相反、大小相等的磁场来抵消像散,为了能更好的抵消各个方向的像散,消散线圈一般都是两组共八级线圈,构成一个米字形,如图3-24。如果电镜的像散没有消除,那么图像质量会受到极大的影响。图3-24 八级消像散线圈d. 慧差和像场弯曲:慧差也总是存在的,只是在扫描电镜中不易被发觉,不过在聚焦离子束中对中状况不好时可以发现慧差的存在;由于扫描电镜的成像方式和TEM等需要感光器件的仪器不同,像场弯曲在扫描电镜中也很难发现。慧差和像场弯曲在扫描电镜中都可以忽略。 福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。奖品公布上期获奖的这位童鞋,请后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。【本期问题】哪种物镜设计的扫描电镜可以观测磁性样品(特指可充磁性样品)?↓ 往期课程,请关注微信“TESCAN公司”查阅以下文章:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应
  • 电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应
    这里是TESCAN电镜学堂第三期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第四节 各种信号与衬度的总结前面两节详细的介绍了扫描电镜中涉及到的各种电子信号、电流信号、电磁波辐射信号和各种衬度的关系,下面对常见的电子信号和衬度做一个总结,如图2-36和表2-4。图2-36 SEM中常见的电子信号和衬度关系表2-4 SEM中常见的电子信号和衬度关系第五节 荷电效应扫描电镜中还有一种不希望发生的现象,如荷电效应,它也能形成某些特殊的衬度。不过在进行扫描电镜的观察过程中,我们需要尽可能的避免。§1. 荷电的形成根据前面介绍的扫描电镜原理,电子束源源不断的轰击到试样上,根据图2-6,只有原始电子束能量在v1和v2时,二次电子产额δ才为1,即入射电子和二次电子数量相等,试样没有增加也没减少电子,没有吸收电流的形成。而只要初始电子束不满足这个条件,都要形成吸收电流以满足电荷的平衡, i0= ib+is+ia。要实现电荷平衡,就需要试样具备良好的导电性。对于导体而言,观察没有什么问题。但是对于不导电或者导电不良、接地不佳的试样来说,多余的电荷不能导走,在试样表面会形成积累,产生一个静电场干扰入射电子束和二次电子的发射,这就是荷电效应。荷电效应会对图像产生一系列的影响,比如:① 异常反差:二次电子发射受到不规则影响,造成图像一部分异常亮,一部分变暗;② 图像畸变:由于荷电产生的静电场作用,使得入射电子束被不规则偏转,结果造成图像畸变或者出现阶段差;③ 图像漂移:由于静电场的作用使得入射电子束往某个方向偏转而形成图像漂移;④ 亮点与亮线:带点试样经常会发生不规则放电,结果图像中出现不规则的亮点与亮线;⑤ 图像“很平”没有立体感:通常是扫描速度较慢,每个像素点驻留时间较长,而引起电荷积累,图像看起来很平,完全丧失立体感。如图2-37都是典型的荷电效应。图2-37 典型的荷电效应§2. 荷电的消除荷电的产生对扫描电镜的观察有很大的影响,所以只有消除或降低荷电效应,才能进行正常的扫描电镜观察。消除和降低荷电的方法有很多种,这里介绍一下常用的方法。首先,在制样环节就要注意以便减小荷电:1) 缩小样品尺寸、以及尽可能减少接触电阻:这样可以增加试样的导电性。2)镀膜处理:给试样镀一层导电薄膜,以改善其导电性,这也是使用的最多的方法。常用的镀膜有蒸镀和离子溅射两种,常用的导电膜一般是金au和碳,如果追求更好的效果,还可使用铂pt、铬cr、铱ir等。镀导电膜不但可以有效的改善导电性,还能提高二次电子激发率,而且现在的膜厚比较容易控制,一定放大倍数内不会对试样形貌产生影响。不过镀膜也有其缺点,镀膜之后会有膜层覆盖,影响样品的真实形貌的,严重的话还会产生假象,对一些超高分辨的观察或者一些细节(如孔隙、纤维)的测量以及eds、ebsd分析产生较大影响。如图2-38,石墨在镀pt膜后,产生假象;如图2-39,纤维在镀金之后,导致显微变粗,孔隙变小。图2-38 石墨镀金膜之后的假象图2-39 纤维在镀金前(左)后(右)的图像除了制样外,还要尽可能寻找合适的电镜工作条件,以消除或减弱荷电的影响:3) 减小束流:降低入射电子束的强度,可以减小电荷的积累。4) 减小放大倍数:尽可能使用低倍观察,因为倍数越大,扫描范围越小,电荷积累越迅速。5) 加快扫描速度:电子束在同一区域停留时间较长,容易引起电荷积累;此时可以加快电子束的扫描速度,在不同区域停留的时间变短,以减少荷电。6) 改变图像采集策略:扫描速度变快后,图像信噪比会大幅度降低,此时利用线积累或者帧叠加平均可以减小荷电效应同时提升信噪比。线积累对轻微的荷电有较好的抑制效果;帧叠加对快速扫描产生的高噪点有很好的抑制作用,但是图像不能有漂移,否则会有重影引起图像模糊。如图2-40,样品为高分子球,在扫描速度较慢时,试样很容易损伤而变形,而快速扫描同时进行线积累的采集方式,试样完好且图像依然有很好的信噪比。图2-40 高分子球试样在不同扫描方式下的对比7)降低电压:减少入射电子束的能量(降至v2以内)也能有效的减少荷电效应。如图2-41,试样是聚苯乙烯球,加速电压在5kV下有明显的荷电现象,降到2kV下荷电基本消除。不过随着加速电压的降低,也会带来分辨率降低的副作用。图2-41 降低加速电压消除荷电影响8)用非镜筒内二次电子探测器或者背散射电子探测器观察:在有大量荷电产生的时候,会有大量的二次电子被推向上方,倒是镜筒内二次电子接收的电子信号量过多,产生荷电,尤其在浸没式下,此时使用极靴外的探测器,其接收的电子信号量相对较少,可以减弱荷电效应,如图2-42;另外,背散射电子能量高,其产额以及出射方向受荷电的影响相对二次电子要小很多,所以用bse像进行观察也可以有效的减弱荷电效应,如图2-43,氧化铝模板在二次电子和背散射图像下的对比。图2-42 镜筒内(左)和镜筒外(右)探测器对荷电的影响图2-43 SE(左)和BSE(右)图像对荷电的影响9) 倾转样品:将样品进行一定角度的倾转,这样可以增加试样二次电子的产额,从而减弱荷电效应。 除此之外,电镜厂商也在发展新的技术来降低或消除荷电,最常见的就是低真空技术。低真空技术是消除试样荷电的非常有效的手段,但是需要电镜自身配备这种技术。10)低真空模式:低真空模式下可以利用电离的离子或者气体分子中和产生的荷电,从而在不镀膜或者不用苛刻的电镜条件即可消除荷电效应。不过低真空条件下,原始电子束会被气体分子散射,所以分辨率、信噪比、衬度都会有一定的降低。如图2-44,生物样品在不镀导电膜的情况下即可实现二次电子和背散射电子的无荷电效应的观察。图2-44 低真空BSE(左)和SE(右)的效果对比福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。奖品公布上期获奖的这位童鞋,请您关注“TESCAN公司”微信公众号,后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。【本期问题】低真空模式下,空气浓度高低对消除荷电能力的强弱有什么影响?(快关注微信去留言区回答问题吧~)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。↓ 往期课程,请关注微信查阅以下文章:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制