当前位置: 仪器信息网 > 行业主题 > >

布拉班德粉质仪工作原理

仪器信息网布拉班德粉质仪工作原理专题为您提供2024年最新布拉班德粉质仪工作原理价格报价、厂家品牌的相关信息, 包括布拉班德粉质仪工作原理参数、型号等,不管是国产,还是进口品牌的布拉班德粉质仪工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合布拉班德粉质仪工作原理相关的耗材配件、试剂标物,还有布拉班德粉质仪工作原理相关的最新资讯、资料,以及布拉班德粉质仪工作原理相关的解决方案。

布拉班德粉质仪工作原理相关的资讯

  • 我国口岸首次截获巴布拉旋蜗牛
    日前,广西防城港检验检疫局从一批重6.2万吨的澳大利亚进口油菜籽中截获大量软体动物死虫,经鉴定为巴布拉旋蜗牛和地中海白蜗牛。其中,巴布拉旋蜗牛为我国口岸首次截获,其对农业生产具有重大潜在威胁。   巴布拉旋蜗牛又称小尖角蜗牛,形态和习性与另一种检疫性有害生物尖头旋蜗牛相似。该种蜗牛原产于欧洲,1900年传入澳大利亚,现已广泛分布在西澳大利亚州、南澳大利亚州和新南威尔士州,为澳大利亚限制性检疫有害生物,此蜗牛取食广泛,适生性强,几乎能在所有酸性或碱性类型的土壤中生存,对农业生产、自然生态环境具有重大潜在威胁。   地中海白蜗牛对谷类作物和柑橘类果实危害特别严重。潜在危险性大,于2012年增补进《中华人民共和国进境植物检疫性有害生物名录》。
  • 从口感到数据:手持式辣度检测仪的工作原理与应用
    辣椒的独特辣味为美食增添了无数风味,那么如何快速准确测量不同辣椒计辣椒制品的辣度呢?手持式辣度检测仪通过电化学测量方法,将辣味从主观感受转化为可量化的数据,为食品加工和质量控制提供了有力支持。了解更多手持辣度检测仪产品详情→https://www.instrument.com.cn/show/C578542.html工作原理:电化学测量辣味手持式辣度检测仪的核心在于其电化学测量原理。辣椒素类物质是辣味的主要来源,其中包括辣椒素和二氢辣椒素,它们共同构成了辣椒素类物质的90%左右。检测仪利用一次性三电极片,在电位作用下,辣椒素在工作电极表面富集,然后在特定的工作电压下进行氧化还原反应。这个过程中,辣椒素得失电子所产生的电流信号,会在显示器上呈现出相应的氧化还原峰。通过对峰电流大小的分析,仪器可以精确地定量检测出样品中辣椒素的含量,从而提供一个客观的辣度数据。优势:便捷、快速、可靠手持式辣度检测仪以其便捷性和快速性,显著提升了辣度检测的效率。首先,仪器设计紧凑、便于携带,适合在实验室外进行现场检测。其次,电化学测量方法使得检测过程不再依赖复杂的前处理步骤,只需简单操作即可获得准确结果。再者,检测仪的高灵敏度使得它能够对辣椒素进行精准的定量分析,这对于食品生产商在进行产品配方调整和质量控制时至关重要。应用:从田间到餐桌的全程监测手持式辣度检测仪还能适应各种辣椒及其制品的检测需求,无论是干辣椒、鲜辣椒还是辣椒粉,都可以通过这款仪器进行快速测定。对于辣椒种植者来说,仪器可以帮助他们在田间快速检测辣椒的辣度,以决定收获时机。食品加工企业则可以通过检测仪对原材料和成品进行质量控制,确保产品符合既定的辣度标准。在餐饮行业,手持式辣度检测仪还可以用于检测不同菜品的辣度,满足顾客对辣味的不同需求。总的来说,手持式辣度检测仪以其电化学测量原理和多功能应用,帮助行业实现了从口感到数据的科学转化。不仅提高了辣度检测的效率和准确性,更为食品行业的品质提升提供了重要的技术支持。
  • 各种仪器分析的基本原理及谱图表示方法
    紫外吸收光谱UV   分析原理:吸收紫外光能量,引起分子中电子能级的跃迁   谱图的表示方法:相对吸收光能量随吸收光波长的变化   提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息   荧光光谱法FS   分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光   谱图的表示方法:发射的荧光能量随光波长的变化   提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息   红外吸收光谱法IR   分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁   谱图的表示方法:相对透射光能量随透射光频率变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   拉曼光谱法Ram   分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射   谱图的表示方法:散射光能量随拉曼位移的变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   核磁共振波谱法NMR   分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁   谱图的表示方法:吸收光能量随化学位移的变化   提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息   电子顺磁共振波谱法ESR   分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁   谱图的表示方法:吸收光能量或微分能量随磁场强度变化   提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息   质谱分析法MS   分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离   谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化   提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息   气相色谱法GC   分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:峰的保留值与组分热力学参数有关,是定性依据 峰面积与组分含量有关   反气相色谱法IGC   分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力   谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线   提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数   裂解气相色谱法PGC   分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型   凝胶色谱法GPC   分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:高聚物的平均分子量及其分布   热重法TG   分析原理:在控温环境中,样品重量随温度或时间变化   谱图的表示方法:样品的重量分数随温度或时间的变化曲线   提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区   热差分析DTA   分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化   谱图的表示方法:温差随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   TG-DTA图   示差扫描量热分析DSC   分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化   谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   静态热―力分析TMA   分析原理:样品在恒力作用下产生的形变随温度或时间变化   谱图的表示方法:样品形变值随温度或时间变化曲线   提供的信息:热转变温度和力学状态   动态热―力分析DMA   分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化   谱图的表示方法:模量或tg&delta 随温度变化曲线   提供的信息:热转变温度模量和tg&delta   透射电子显微术TEM   分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象   谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象   提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等   扫描电子显微术SEM   分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象   谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等   提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等   原子吸收AAS   原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。   (Inductivecouplinghighfrequencyplasma)电感耦合高频等离子体ICP   原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。   X-raydiffraction,x射线衍射即XRD   X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。   满足衍射条件,可应用布拉格公式:2dsin&theta =&lambda   应用已知波长的X射线来测量&theta 角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量&theta 角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。   高效毛细管电泳(highperformancecapillaryelectrophoresis,HPCE)   CZE的基本原理   HPLC选用的毛细管一般内径约为50&mu m(20~200&mu m),外径为375&mu m,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象 电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。   MECC的基本原理   MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。   扫描隧道显微镜(STM)   扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。   原子力显微镜(AtomicForceMicroscopy,简称AFM)   原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。   俄歇电子能谱学(Augerelectronspectroscopy),简称AES   俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。
  • 研究开发出基于FBG传感原理的触觉传感器应用于微创手术组织触诊
    近日,中国科学院深圳先进技术研究院医工所微创中心研究员王磊团队在基于布拉格光栅光纤传感原理在微创手术的应用——活体组织触诊的研究中实现了活体组织的精准力信息反馈和肿块信息的定位检测功能。相关研究成果以Development of a Fiber Bragg Grating-based Force Sensor for Minimally Invasive Surgery ―Case Study of Ex-vivo Tissue Palpation为题,发表在IEEE Transactions on Instrumentation and Measurement上。  随着医疗技术的快速发展,微创手术(MIS)逐渐成为现实。但是,传统手术中发现的一些问题仍与MIS有关。例如,在进行微创外科手术期间,医护人员会暴露在手术室中发现的放射线和整形外科危害中。引入机器人辅助微创手术的技术成为了比传统微创手术更好的替代方案;然而,机器人辅助手术过程中伴随着外科医生的触觉丧失。外科医生通过操作机器人来进行微创手术,手术期间医生无法直接接触人体组织并且分析人体器官,因此无法保证所进行的手术的可靠性。在传统手术过程中,医生通过触觉去感知器官的异常情况,进而判断器官中是否存在肿瘤和肿块。但随着医疗机器人的普及,这种可获得的触觉信息尚未有效集成到机器人辅助的微创手术中,因此要求机器需要具有更高精确度和灵敏度的触觉信息反馈。深圳先进院科研人员在此基础上提出一种用于微创手术组织触诊中的高灵敏度布拉格光栅光纤(FBG)传感方案,与以往的电容式传感方案不同,光纤传感器与手术期间的磁共振(MR)系统和成像系统兼容。   为此,研究设计了用于微创手术的一维远端力传感器。其中,传感器结构中嵌有双光栅元件可用于解耦传感器在使用过程中受到的应变和温度交叉影响,实现更精准的力觉检测。研究中,科研人员基于双光栅元件结构设计出发,推导出相应的柔性结构理论模型。通过fmincon函数对柔性件进行了基于物理模型的优化设计,确定了结构的关键参数。采用有限元法对柔性件的静态和动态特性进行分析,在理论基础上验证了该柔性件的可行性。为了进一步提高传感器性能,并基于前馈神经网络对数据进行标定,该网络模型可精准预测力与波长偏移量的关系。研究还进行了温度补偿实验,验证了双光栅元件能够有效的进行温度解耦方案。实验结果表明,FBG传感器能够在1N范围内感知力值,平均相对误差小于满量程的2%;温度补偿后的误差0.8 mN。科研人员进一步对猪肝器官进行组织触诊实验,验证所提传感器设计在微创手术中的有效性和适用性。   研究实现了组织触诊中器官肿块信息的精准力反馈和定位检测,并提出了新型的温度解耦方案和传感器标定方法,为微创手术中手术机器人的触觉信息检测提供了有效技术路线,有望推动手术机器人在介入式医疗中的手术路径导航和机器控制中的应用。   研究工作得到国家自然科学基金、深圳市科技计划等的资助。   论文链接
  • 解析恒奥德仪器便携式交流电子脱扣器校验装置引言概述原理工作流程
    解析恒奥德仪器便携式交流电子脱扣器校验装置引言概述原理工作流程 引言概述:电子脱扣器是一种广泛应用于电子设备中的关键元件,其工作原理是通过控制电流流过特定的电路,实现对电子器件的脱扣操作。本文将详细介绍电子脱扣器的工作原理,包括其基本原理、工作流程、应用场景、优势以及未来发展方向。一、基本原理1.1 电磁感应原理:电子脱扣器利用电磁感应原理,通过电流流过线图产生的磁场,引起磁铁的吸引或排斥,从而实现脱扣操作。1.2 磁铁工作原理:电子脱扣器中的础能够产生足够的磁场强度,以实现可靠日永磁材料,具有较强的磁性1.3电路控制原理:电子脱扣器中的电|电流的大小和方向,调节磁场的强弱和方向,从而实现对磁铁的控制脱扣操作。 二、工作流程:2.1 输入信号检测:电子脱扣器首先要检测输入信号,通常是通过传感器或开关来实现,一旦检测到输入信号,即可触发脱扣操作。2.2 电路控制:一旦输入信号被检测到,电子脱扣器会根据事先设定的参数,通过控制电路来调节电流的大小和方向,以实现对磁铁的控制。2.3 脱扣操作:当电子脱扣器控制电路调世刚合适的状态后,磁铁会受到电磁力的作用,实现脱扣操作,将电子器件从离出来。 3.1 电子产品制造:电子脱扣器广泛应用于电子产品的制造过程中,用于将电子器件从 PCB板上脱离,以便进行后续的加工和组装。3.2 电子设备维修:在电子设备维修过程中,电子脱扣器可以帮助技术人员快速、安全地分离电子器件,减少损坏的风险。3.3 生产自动化:随着生产自动化水平的提商,电子脱扣器被广泛应用于自动化生产线上,提高生产效率和质量。 优4.1 高效快速:电子脱扣器能够在短时间内完成脱扣操作,提高生产效率。4.2 精准可靠:电子脱扣器能够精确控制电流和磁场,确保脱扣深作的准确性和可靠性。4.3 安全环保:电子脱扣器在脱扣过程中不会产生大量的热量和噪音,对环境和操作人员都比敦安全。五、未来发展方向:5.1 智能化:未来的电子脱扣器将更加智能化,能够根据不同的工作环境和需求进行自动调节和优化。5.2 多功能化:电子脱扣器将会融合更多的功能,例如温度检测、电流监测等提供更全面的服务。g5.3 节能环保:未来的电子脱扣器将更加一源的节约和环境的保护,采用更高效的电路和材料。
  • 泡罩药板密封性测试仪的工作原理
    泡罩药板密封性测试仪的工作原理在医药包装、食品封装等领域,产品的密封性能直接关系到其保质期、安全性和使用效果。因此,对包装材料的密封性进行准确、高效的检测显得尤为重要。泡罩药板密封性测试仪,作为一种采用色水法原理的检测设备,凭借其直观、可靠的检测方式,在行业内得到了广泛应用。本文将详细介绍基于色水法原理的泡罩药板密封性测试仪的工作原理、操作流程及其在评估试样密封性能中的关键作用。一、工作原理泡罩药板密封性测试仪MFY-05S通过模拟包装物在特定条件下的压力变化,检测其密封完整性。其核心在于利用色水(常选用亚甲基蓝溶液以增强观察效果)作为介质,在真空室内形成一定深度的水层。当测试样品置于该水层之上,并对真空室进行抽真空操作时,样品内外形成显著的压力差。这一压力差促使空气(如果存在泄漏通道)从样品内部通过潜在泄漏点逸出,并在释放真空后,通过观察样品形状的恢复情况及色水是否渗入样品内部,来评估其密封性能。二、济南三泉中石的MFY-05S泡罩药板密封性测试仪操作流程准备阶段:首先,向真空室中注入适量的清水,并加入适量的亚甲基蓝溶液,搅拌均匀,使水呈现明显的蓝色,便于后续观察。同时,将待测样品按照测试要求放置在真空室上方的指定位置。抽真空过程:启动真空泵,对真空室进行抽气,直至达到预设的真空度。在此过程中,随着真空度的增加,样品内外压力差逐渐增大,可能存在的微小泄漏通道将被放大,使得空气或气体从样品内部向外逸出。保压与观察:在达到所需真空度后,保持一段时间(根据测试标准设定),以便充分观察样品在压力差作用下的反应。此时,若样品密封良好,则形状基本保持不变,色水不会渗入;若存在泄漏,则可能观察到样品形状发生变化,且色水会沿泄漏路径渗入样品内部。释放真空与评估:释放真空室内的真空状态,恢复至常压。仔细观察样品表面是否有色水渗入痕迹,以及样品形状的恢复情况。根据观察结果,结合测试标准,判定样品的密封性能是否符合要求。三、济南三泉中石的MFY-05S泡罩药板密封性测试仪优势与应用直观性:色水法的应用使得泄漏现象一目了然,无需复杂的数据分析即可快速判断样品的密封性能。高效性:测试过程简单快捷,提高检测效率。广泛适用性:不仅适用于泡罩药板包装,还可用于其他类型包装材料的密封性检测,如瓶盖、软管等。总之,济南三泉中石的MFY-05S泡罩药板密封性测试仪以其独特的色水法原理,为包装材料的密封性检测提供了一种高效、直观且可靠的解决方案。
  • 雷尼绍发布拉曼新品 助力临床研究
    p   2019年3月,雷尼绍发布一款拉曼光谱新品——RA816生物分析仪,这是一款紧凑型的台式拉曼成像系统,主要用于生物和临床研究。该仪器易于使用,可以从一系列生物样本,包括组织和生物液体中快速收集详细信息。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/9ad0ad1b-347f-4bcb-8895-531765a253a8.jpg" title=" RA816 Biological Analyser.jpg" alt=" RA816 Biological Analyser.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" style=" width: 450px height: 300px " / /p p   RA816生物分析仪可以帮助生物学家和临床医生识别和评估不同阶段疾病的生化变化。他们不需要事先知道特定的分子靶标,不需要费时的标记或染色,就能获得完整的生化信息。易于使用的硬件和软件使其成为适用于临床研究环境的、性能非常高的拉曼光谱工具。 /p p   RA816生物分析仪可以快速获取生物样品中生物化学物质的分布和数量方面的详细信息,包括组织活检、组织切片和生物液体。它将拉曼光谱的生化分析能力和先进的光学、光谱成像技术结合在一起,行成一个紧凑、简单易用、强大的系统。用户可以从生物样本中获取多方面的信息,从组织中外源和内源化合物的分布,到检测药物相互作用和组织损伤引起的蛋白二级结构变化。 /p p   雷尼绍生命科学高级应用科学家Martin Isabelle说:“该生物分析仪是专门为生物和临床用户设计的,这款仪器可同时测定生物样品中的多种分子元素,节省了时间和金钱。高特异性有助于早期发病的疾病标志物的发现和验证,使拉曼成为临床研究的理想工具。” /p p   据悉,雷尼绍的RA816生物分析仪已经在多个地点进行了广泛的测试,包括英国牛津拉德克利夫医院(Oxford Radcliffe Hospital)的神经肿瘤科和位于意大利米兰的Humanitas医院(Humanitas Hospital),他们研究脑组织,对神经胶质瘤进行基因分类。 /p
  • 仪器百科|拍打式均质器工作原理与应用分析
    拍打式均质器是一种广泛应用于生物医学和食品科学领域的实验设备,其主要功能是通过物理手段将样本与溶剂混合均匀,以便于后续分析和检测。本文将详细介绍拍打式均质器的工作原理及其应用领域。更多拍打式均质器产品详情→https://www.instrument.com.cn/show/C560253.html工作原理拍打式均质器的工作原理是将原始样本与液体或溶剂一起放入专用的均质袋中,然后通过仪器内部的锤击板反复敲击均质袋。具体过程如下:样本准备:将需要处理的样本(例如脑、肾、肝、脾等组织)切成约10×10毫米的小块,以便于均质处理。样本放置:将切好的样本与一定量的液体或溶剂一起放入均质袋中,确保密封良好。锤击处理:启动均质器后,内部的锤击板会反复对均质袋进行敲击。这个过程中,锤击板会产生一定的压力,并引起样本和溶剂的振荡。加速混合:在锤击和振荡的作用下,样本与溶剂快速混合,使得微生物或其他成分在溶液中均匀分布,达到理想的均质效果。通过这种物理手段,拍打式均质器可以有效避免样本污染,同时确保样本中的微生物或化学成分在溶液中均匀分布,为后续的分析和检测提供了可靠的基础。应用领域拍打式均质器在多个领域具有重要应用,尤其在生物医学和食品科学中表现尤为突出。生物医学研究:拍打式均质器广泛用于处理脑、肾、肝、脾等组织样本。通过均质器的处理,可以获得均一的样本悬液,便于后续的显微镜观察、培养、基因检测等实验操作。食品科学:在食品安全检测中,拍打式均质器常用于处理食品样本,如肉类、蔬菜、水果等。通过均质处理,可以有效释放样本中的微生物、病毒或其他有害物质,便于后续的微生物检测和安全评价。分子生物学:在分子生物学研究中,拍打式均质器用于样本制备,如DNA、RNA和蛋白质的提取。通过均质处理,可以确保样本的均匀性和完整性,为分子生物学实验提供高质量的样本。总之,拍打式均质器作为一种高效、可靠的样本处理设备,为生物医学、食品科学和环境监测等领域的研究提供了强有力的支持。其独特的工作原理和广泛的应用范围,使其成为实验室中不可缺少的重要工具。
  • 博纳艾杰尔科技样品前处理仪器原理及操作培训班开讲啦!
    2016年9月21——23日,博纳艾杰尔科技样品前处理原理及操作培训班正式开讲啦!本次培训为期三天,课程包含样品前处理仪器讲解和上机操作两部分,涉及仪器原理,操作技巧,方法建立,故障排除等内容。为了保证效果,培训以小班形式进行,每期人数不超过10人。来自各地的多名客户参加了本次培训班。授课期间由博纳艾杰尔科技的应用工程师及仪器产品经理分别为大家讲解了样品前处理原理、方法开发及前处理仪器的相关介绍并现场实际操作练习了“果蔬中农残检测方法(spe、quechers方法)”“动物源性食品中兽残检测”。23日,第一期的样品前处理仪器原理及操作培训班已正式结束,课程的设置及讲师们的讲解获得了客户们的一致好评!27-29日,第二期培训班即将与您见面,欢迎您的到来!博纳艾杰尔客户培训中心讲师在为培训人员实地介绍操作
  • 新品发布!1064Defender 手持式拉曼分析仪
    近年来,海洛因、芬太尼、摇头丸等致命毒品的泛滥形势日益严峻和复杂,这给需要在现场进行快速毒品鉴别和采取决策行动的执法人员带来了新的挑战。新款 Thermo Scientific™ 1064 Defender™ 拉曼分析仪帮助用户轻松应对这一挑战。新款分析仪采用非接触式、有针对性的方法,加强了对街头海洛因和其他有荧光毒品的鉴别能力,无需取出包装即可直接检测。明确的结果,高度的灵活性1. 非接触式瞄准扫描,可保证用户安全;2. 灵活性强,通过自定义界面,确保您与仪器配合默契;3. 可靠的监管链包含管制物质、稀释剂和前体的综合库;4. 设计引领生活 (WiFi, WebUI,可拆卸式电池)。清晰直观的界面1. 鉴别模式 - 对未知化学品进行详细分析;2. 筛查模式 - 监测是否存在重要的目标化学物质。通过配备全面、模块化以及可自定义管制列表的数据库,这款设备的扫描分析模式以清晰的警告或警报界面呈现结果,确保用户获知最佳的后续行动建议。通过结合GPS 和数码摄像功能,分析仪加强了查缉流程和证据监管链的可靠性。1064 Defender 拉曼分析仪还具有 Wi-Fi 和 USB 连接功能,便于用户实现数据的无缝传输。Thermo Scientific 1064 Defender 灵活易用,用户可以按需进行个性化定制。其价格极具竞争力,对于缉毒、边检、海关等需要禁毒的执法机构来说,又新添一款新的现场检测利器。扫描下方二维码联系我们了解赛默飞1064 Defender 手持式拉曼分析仪赛默飞世尔科技中国简介赛默飞世尔科技进入中国发展已超过35年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约为5000名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有7家工厂分别在上海、北京、苏州和广州等地运营。我们在全国还设立了8个应用开发中心以及示范实验室,将世界级的前沿技术和产品带给中国客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心,拥有100多位专业研究人员和工程师及70多项专利。创新中心专注于针对垂直市场的产品研究和开发,结合中国市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2600名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com
  • 超声波细胞破碎机的工作原理【莱恩德新品】
    超声波细胞破碎机,也称为超声细胞破碎仪,其工作原理主要基于超声波在液体中的空化效应。以下是其工作原理的详细解释:    1.电能转换:首先,超声波细胞破碎机将电能通过换能器转换为声能。换能器作为核心部件,能够将电能高效地转换为超声波能量。    2.空化效应:当超声波在液体中传播时,它会在液体中产生空化作用。这种空化作用表现为液体中的微小气泡迅速形成并随后炸裂。这些炸裂的气泡会产生类似小炸弹的能量,形成高强度的剪切力和高频交变水压。    3.细胞破碎:这些高强度的剪切力和高频交变水压作用于细胞壁,使细胞壁受到压力变化而破碎。同时,由于超声波在液体中的剧烈扰动,粒子会产生大的加速度,使它们相互碰撞或与装置壁碰撞而破碎。    4.主要应用:超声波细胞破碎机广泛应用于中药提取、细胞、细菌、病毒组织的破碎等领域。其高效的破碎能力使得这些生物样本的处理更加快速和有效。    此外,超声波细胞破碎仪还有一些其他的特性和功能,例如:   结构特点:超声探头通常采用进口钛合金材质,具有高能效换能器和振幅自动调节功能。这些特性保证了设备的高效性和稳定性。    技术参数:工作频率范围通常为20~25KHz,具有频率自动跟踪功能。设备可储存多套常规程序数据和一套组合程序,工作方式有定时和计数两种。这些参数和功能使得设备更加灵活和易用。    综上所述,超声波细胞破碎机的工作原理主要基于超声波在液体中的空化效应,通过电能转换、空化效应和细胞破碎等步骤实现对生物样本的高效处理。点击此处可了解更多产品详情:超声波细胞破碎机
  • 威视发布拉曼 同方威视 RT2000 高性能便携拉曼新品
    拉曼光谱仪-同方威视RT2000高性能便携式拉曼简介:RT2000 拉曼光谱仪是一款超高性能便携式拉曼光谱仪,它不仅性能稳定,操作简单,环境适应强,适宜车载,而且具有高灵敏度、高信噪比,光谱范围宽等极为优异的性能。RT2000拉曼光谱仪整机配置灵活,可以根据用户需求定制产品,并可提供针对检测需求专用的探头和样品支架,能够充分满足科研院所、监管机构、基层客户在化学分析、高分子材料、医药、食品安全、刑侦鉴定、环境污染检测等研究中的需求。 技术特点:l 性能优异:科研级光谱性能,具有高分辨率、高灵敏度、高信噪比 l 无损检测:无需开封,可透过透明或半透明包装直接检测 l 操作简单,功能完善,兼容多种操作系统 l 配备多种检测附件,适用于固体、粉末、液体检测;l 超高像素,超低温TE制冷l 小巧便携,克服了传统科研级拉曼光谱仪机型笨重的难题;创新点:1、性能优异:科研级光谱性能,具有高分辨率、高灵敏度、高信噪比 2、操作简单,自主研发软件系统,兼容多种操作系统 3、超高像素,-60℃超低温TE制冷 4、小巧便携,克服了传统科研级拉曼光谱仪机型笨重的难题; 拉曼 同方威视 RT2000 高性能便携拉曼
  • ​深圳三思纵横试验机|粉末压实密度仪:解析工作原理与应用领域
    在材料科学、化工、制药等众多领域中,粉末材料的处理与测试是不可或缺的一环。粉末压实密度仪作为一种专用的测试设备,在粉末材料的压实密度测量中发挥着至关重要的作用。本文深圳三思纵横试验机小编将探讨粉末压实密度仪的工作原理、应用领域以及未来发展趋势,大家一起来看下吧。一、粉末压实密度仪的工作原理粉末压实密度仪的工作原理主要基于粉末在受到外力作用下的压实过程。测试时,将一定量的粉末样品置于压实模具中,通过施加压力使粉末颗粒重新排列、相互接触并发生一定的塑性变形,从而达到压实效果。压实密度仪通过测量压实前后粉末的体积变化,并结合样品的质量信息,计算得出粉末的压实密度。二、粉末压实密度仪的应用领域粉末压实密度仪广泛应用于多个领域,尤其在材料科学、化工、制药等行业具有重要地位。1、材料科学领域粉末压实密度仪可用于评估粉末材料的可压性、流动性和成型性能,为材料制备和加工工艺的优化提供数据支持;2、化工领域粉末压实密度仪可用于测定催化剂、吸附剂等粉末材料的压实密度,为反应器的设计和操作提供重要参数;3、制药行业粉末压实密度仪可用于评估药物粉末的堆密度和压实性,为药物制剂的制备和质量控制提供有力保障。三、粉末压实密度仪的未来发展趋势随着科学技术的不断进步和应用需求的日益增长,粉末压实密度仪正朝着更加智能化、高精度和多功能化的方向发展。1、智能化与自动化未来的粉末压实密度仪将更加注重智能化和自动化的发展。通过引入先进的传感器和控制系统,实现测试过程的自动化操作和数据的实时采集、处理与分析。此外,智能化的粉末压实密度仪还将具备自我诊断和维护功能,提高设备的稳定性和可靠性;2、高精度化随着材料科学和制药等领域的不断发展,对粉末压实密度的测量精度要求也越来越高。因此,粉末压实密度仪将不断提高测量精度,采用更先进的测量技术和算法,以满足更精细的测试需求;3、多功能化除了基本的压实密度测量功能外,未来的粉末压实密度仪还将具备更多的测试功能。如可同时测量粉末的粒度分布、比表面积、孔隙率等参数,为研究者提供更全面的材料性能信息。此外,还可通过集成其他测试模块,实现一站式测试服务,提高测试效率和便捷性;4、绿色化与环保在环保意识日益增强的背景下,粉末压实密度仪的绿色化设计将成为未来的发展趋势。通过优化设备结构、采用环保材料和节能技术,降低设备在运行过程中的能耗和排放,实现可持续发展。三思纵横粉末压实密度仪作为粉末材料测试领域的重要工具,其原理、应用和发展趋势均体现了科技进步和市场需求的推动。随着技术的不断创新和市场的不断拓展,三思纵横粉末压实密度仪将在更多领域发挥重要作用,为材料性能评估、质量控制以及工艺优化提供有力支持。未来,我们可以期待三思纵横粉末压实密度仪在性能、功能和智能化方面取得更大的突破,为科研和工业生产带来更多便利和价值。
  • 当遇到拉曼和幸运分子 光谱创新便一路向前——《寻找光谱仪器创新的力量》系列约稿
    在筹办今年第四届拉曼光谱网络会议时,仪器信息网的叶编就说要推出《寻找光谱仪器创新的力量》系列专栏,问我敢不敢写一篇。等发布约稿通知,我一看要讲光谱仪器创制和课题组成果转化案例,就不敢写了,因为没干过或没干成。本周叶编在微信问我“想起之前跟您的约稿,寻找光谱仪器创新的力量,还记得吗?”当然记得。和叶编认识于N年前的全国光散射学术会议,2018年上海师范大学承办第二届全国拉曼生物医学学术会议时,仪器信息网现场全程报道;在叶编策划下,仪器信息网至今举办了四届拉曼光谱网络会议,除了第一届没印象是否参加,第二届主持了《拉曼光谱在生命科学领域的应用》分会场,第三和第四届由上海师范大学与仪器信息网共同主办,每届邀请拉曼领域三十几位资深专家分享年度最新进展。特别是,疫情封控点燃了在线学术交流的热情,其中2022年第四届拉曼光谱网络会议的拉曼粉丝超一万,人气爆棚!和叶编真是老朋友了,怯怯地觉得必须盛情难却,只能勉为,谈谈自己与拉曼的缘分吧,虽然已在仪器信息网其它专栏里说过了,也是叶编约的稿。上海师范大学杨海峰教授课题组1997年,上海师范大学购置法国Dilor LabRamanII的激光共焦拉曼系统,液氮冷却CCD,暗电流小,灵敏度高。章宗穰先生说仪器是厦门大学田中群老师推荐的型号,他去匹兹堡参加仪器展时现场定购,由于我有长期红外光谱分析经验,希望我读他的硕士,开展相关的研究工作。果然仪器刚安装好,田中群老师就带着硕士生刘峰铭飞来上海做实验,期待硅基底有SERS,田老师还自己准直了光路,希望有更高的灵敏度。2002年,经章宗穰先生推荐,我去湖南大学攻读分析化学博士,湖大刚购置一台LabRamanII,所以我的硕士和博士学位都与一家法国仪器公司Dilor有关,这家公司后被Horiba并购了。我博士期间导师有三位,俞汝勤先生、沈国励先生和章宗穰先生,先生们学问渊博,待人亲切,教导学生都是授之以渔。俞先生起初希望我用化学计量学解析生物医药拉曼成像(Raman mapping)数据,当时畏难放弃了,错过了化学计量学。这个课题后由师妹林伟琦在蒋健晖老师指导下完成,药片活性成分分布拉曼成像化学计量学研究成果发表在Analytical Chemistry上。寒假回上海,徒弟刘泓找我,想用拉曼光谱测植物提取物中的植酸含量,没成功。但我一眼就喜欢上了植酸,六元碳环上长了6个磷酸键,可以和所有的金属离子作用,而且来源植物易得,毒性与食盐相当。当时刚完成第一个博士论文工作,主要围绕电极表面自组装辅酶I分子吸脱附行为的原位拉曼光谱电化学研究,搞清楚了腺嘌呤环以2个N原子垂直吸附于表面,由于磷酸酯键弹性,烟酰胺环也会有弱吸附,文献中对此原有争议,论文后发表在Journal of Raman Spectroscopy上;2003年恰遇SARS疫情,我也逆行了一次,从上海返回湖大实验室,将植酸以单分子自组层组装到银表面,用电化学极化方法发现不同pH条件下获得的单分子层对电极缓蚀性能差异大,通过Raman mapping、原位拉曼光谱电化学实验和分子模拟等揭示了机理,即在特定pH下,植酸分子由5个磷酸酯键与银表面作用,形成致密的保护层。2004年,相关成果发表在Journal of Physical Chemistry B上;2005年湖大博士毕业后,回上师大建立课题组,主要的研究领域是有机小分子金属缓蚀机理拉曼研究,在国家自然科学基金支持下,发现植酸钙、植酸纳和植酸铜等对金属都有很好的缓蚀性能。2008年,组里开始关注SERS在食品安全和环境分析领域的应用,是因为朱璇同学用植酸作为稳定剂合成了纳米银项链,SERS性能不错,加之我看到当时有几款市售的SERS基底卖得挺贵而且性能一般,也想着能发点基底财。王娜同学接着朱璇师姐的课题做,她也很聪明且勤奋心细,在合成过程中,不停取样测电镜,发现植酸在一定pH下沸腾时会自组装成纳米囊泡,作为纳米反应器可制备纳米银,SERS信号很强且由于纳米囊泡抓着银纳米粒子,在四个月里都很稳定。后又减弱还原剂的还原性,让纳米银慢慢长大,获得了2nm植酸层包埋的核壳纳米银,易形成SPR热点,且放置1年半稳定。对于食品安全和环境分析领域SERS应用,高增强因子、高稳定SERS基底的商品化是关键,我们正在不懈努力。王娜毕业后入职赛默飞公司担任拉曼和红外技术支持工程师。王娜的师弟马志远,在组里是专攻可呼吸介观尺度SERS基底制备,主要用于生物标志物检测,毕业后也去了赛默飞从事拉曼仪器的技术支持工作。组里第一个做生物标志物拉曼分析的是杨天溪同学,本科学药学,本科还未毕业就从烟台来组里工作。来得太早,我就让天溪重复师兄一个工作,她意外地用植酸合成出了稳定的磁性网状纳米粒子,负载上纳米金后,在磁场调控下可富集痕量分子并聚集粒子形成SPR热点,可检测出飞摩尔水平的福美双农药,研一就在Small上发表论文,提出了磁优化SERS策略,课题也获国家基金委面上项目的支持。天溪基于磁性基底SERS分析了尿液中肺癌标志物和唾液毒品生物标志,相关成果发现在Biosensors & Bioelectronics 和ACS applied Materials and Interfaces上。天溪毕业后去了Umass读博,做了一站博士后,在美国FDA做食品安全相关研究的科学家,现在加拿大不列颠哥伦比亚大学(UBC)建组,拓展SERS技术在安全和可持续性农业-食品系统中的应用研究。此外,组里的郭小玉老师利用植酸修饰贵金属基底开发重金属离子SERS探针,结合手持拉曼光谱仪器在环境分析、烟草制品和食品安全领域的应用也具有广阔的应用前景。组里现在8位老师,硕博研究生45人,有5台拉曼。其中,共焦拉曼系统2台,一台是赛默飞的DRX2拉曼成像光谱仪器,适合于细胞成像、农残洗涤评价和化妆品评价,由于配置EMCCD,灵敏度高,成像速度快,学生要排队预约。大概8年前,LabRamanII拉曼系统经Horiba的弗拉克(Franck)改装CCD后,青春焕发,LabRamanII今年已经25岁了还天天开工,弗拉克技术真是好。3台小拉曼分别是DeltaNu、卓立汉光和滨松的。组里正在围绕小拉曼应用场景,利用化学反应性分子修饰基底,开发特异性拉曼检测探针,提高分析选择性,并针对具体的问题提供技术解决方案,在食用油痕量苯并芘检出、微量爆炸物、肿瘤标志物分析、烟草甲醛、唾液血糖、皮肤炎症和肾炎POCT等领域有了些初步的工作。随着拉曼仪器的小型化、智能化和便携化,构建云端数据解析系统,研制可靠的特异性SERS探针,形成技术解决方案,必将在疾病早期诊断、病毒细菌检测、食品安全,环境安全和公共安全等领域大有作为。同仁们特别是年轻的拉曼爱好者一起努力,为美好生活贡献拉曼界的智慧和力量,光谱创新未来无敌!(作者 上海师范大学杨海峰教授)
  • 新品发布|低本底多道γ能谱仪的技术原理和参数_霍尔德
    【低本底多道γ能谱仪←点击此处可直接转到产品界面,咨询更方便】低本底多道γ能谱仪原理:采用低本底铅室及低钾NaI(Tl)探头实现对待检测样品的放射性测量,基于高性能数字化能谱仪实现对NaI(Tl)探头的高精度伽马能谱测量,通过上位机能谱测量与分析软件实现对能谱的采集、存储、处理与解谱分析,最终实现对检测样品中放射性核素的识别与放射性比活度的测量。低本底多道γ能谱仪应用领域:医院放射性核素γ能谱测量分析;建材、土壤、生物、地质样品等γ能谱测量分析;建筑材料的快速无损检测;铀矿地质样品镭(铀)、钍、钾含量分析;可按用户要求配备铀、铯、钴、碘等人工核素分析软件。低本底多道γ能谱仪功能特点:1、具备实时快速低能γ射线稳谱技术的低本底数字化能谱仪,可保证开机快速测量以及长期稳定性;传统低本底数字化能谱仪需要人工反复调整谱仪参数才能够工作,且无法长时间稳定工作;2、自带数字化稳谱功能,可选择本底镅源γ射线稳谱、天然特征峰稳谱等数字化稳谱方式;3、支持粒子图谱、能谱曲线、梯形成形信号与原始脉冲信号显示;4、数字化能谱仪具备LIST-MODE模式,可实现粒子事件信息(时间、位置、幅度等)的实时采集,各通道数字化谱仪具备时钟同步功能,同步精度不低于15ns;粒子事件信息可传输到计算机上成谱,从而满足快速移动测量的要求;5、双谱测量:支持能谱与时间谱测量;6、高分辨率:采用16位80MSPS高速高精度模数转换器;7、高数字成形频率:数字成形频率高达80MHz。低本底多道γ能谱仪技术参数:探测器:Φ50×50mmNaI(Tl)晶体;总道数:512、1024、2048、4096、8192、16384道任选,标准道数:2048道;能量分辨率:37Bq/kg):10%;电源:220V(±10%)50Hz;温度范围:+5℃~+40℃;相对湿度:≤90%
  • 1200℃单双温区开启式真空气氛管式电炉:工作原理与优势
    在科研和工业生产中,电炉是不可或缺的重要设备。其中,1200℃单双温区开启式真空气氛管式电炉因其高精度、高效率的工作特点,被广泛应用于各种高温实验和材料制备。那么,这种电炉是如何工作的,它又具备哪些优势呢?接下来,让我们一起深入了解。  1200℃单双温区开启式真空气氛管式电炉的工作原理涉及到多个方面。在加热原理上,电炉主要依靠电力产生热量,通过高温电阻丝将电能转化为热能。这种方式的优点是能量转化效率高,加热速度快。在温度控制方面,电炉采用了先进的PID温度控制系统,可以实现对温度的精确控制。同时,由于采用先进的智能芯片控制,温度波动小,精度高。气氛控制是这种电炉的另一大特点。通过向炉内通入特定的气体,可以创造出不同的气氛环境,如还原性、氧化性或中性气氛,以满足不同实验和材料制备的需求。  1200℃单双温区开启式真空气氛管式电炉的优势有哪些呢?首先,其加热速度快,可以在短时间内达到高温,且温度均匀性非常好。这大大缩短了实验时间,提高了工作效率。其次,由于采用了先进的智能控制系统,电炉的操作非常简便。用户只需设定温度和时间等参数,电炉即可自动完成实验过程。此外,这种电炉还具有高可靠性和长寿命的特点。由于其内部采用优质材料和精密制造工艺,电炉的使用寿命长,可靠性高。  1200℃单双温区开启式真空气氛管式电炉还具有多种安全保护功能。例如过温保护、过流保护等,确保实验过程的安全可靠。  1200℃单双温区开启式真空气氛管式电炉以其高效、精确、安全的特点,成为科研和工业生产中的重要工具。无论是材料合成、化学反应还是高温烧结等应用场景,这种电炉都能提供出色的性能表现。随着技术的不断进步和应用需求的增加,我们有理由相信,未来的1200℃单双温区开启式真空气氛管式电炉将会更加智能化、高效化、安全化,为科研和工业生产带来更多的便利和可能性。
  • 负氧离子检测仪的工作原理与选择
    空气中负氧离子的含量是空气质量好坏的关键。在自然生态系统中,森林和湿地是产生空气负(氧)离子的重要场所。在空气净化、城市小气候等方面有调节作用,其浓度水平是城市空气质量评价的指标之一。自然界中空气正、负离子是在紫外线宇宙射线、放射性物质、雷电、风暴、瀑布、海浪冲击下产生,既是不断产生,又不断消失,保持某一动态平衡状态。由于负离子的特性,空所中的负离子产生与消失会保持一个平衡,因此判断环境下负离子浓度需要借助专门的空气离子检测仪进行准确测量。负氧离子是带负电荷的单个气体分子和轻离子团的总称,简言之就是带负电荷的氧离子。在自然生态系统中,森林和湿地是产生空气负氧离子的重要场所。其浓度水平是城市空气质量评价的指标之一,有着 “空气维生素”之称。工作原理:空气离子测量仪是测量大气中气体离子的专用仪器,它可以测量空气离子的浓度,分辨离子正负极性,并可依离子迁移率的不同来分辨被测离子的大小。一般采用电容式收集器收集空气离子所携带的电荷,并通过一个微电流计测量这些电荷所形成的电流。测量仪主要包括极化电源、离子收集器、微电流放大器和直流供电电源四部分。首要要了解自己选负离子检测用途,目前有进口的负离子检测仪,国产的负离子检测仪,仿冒的负离子检测仪等等。分为便携的负离子检测仪,在线的负离子检测仪,按原理分又分为平行电极负离子检测仪和圆通电容器负离子检测仪两种。空气负氧离子检测分为 “平极板法测空气负离子” 和”电容法测空气负离子“这两种原理,其中“平极板”原理是比较常用的一种方法,检测快速,经济实惠,用于个人、工厂、实验室等单位。电容法测空气负离子检测仪是一种高性能检测方法,具有防尘、防潮等特点,相对于平极板法测空气负离子更加,特别适合于森林、风景区的使用,是林业局,科研单位测量空气质量的常见仪器。按收集器的结构分,负离子检测仪可以划分为平行板式和Gerdien 冷凝器式/双重圆筒轴式两种类型。1.Ebert式/平行电板式离子检测仪平行电板式离子检测仪是目前低端空气离子检测仪比较常用的一种方法。A跟B是一组平行的且相互绝缘的电极,B极顶端边着一个环形双极电极,空气通过右下角的风扇吸入,空气中的负离击打A/B电极放电,电荷传导到E环形电极形成自放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上比较成熟,造价成本也比较低,但是易受外部环境影响,另外这种结构自身的弱点容易导致电解边缘效应,容易造成气流湍流,造成检测结果偏移较大。2.Gerdien冷凝器式/双重圆筒轴式双重圆筒轴式离子检测仪是目前中高端空气离子检测仪成熟的一种方法。整体结构由3个同心圆筒组成,外围筒身及内轴为电极,空气通过圆筒时,离子撞击筒身跟轴产生放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上已非常成熟,但由于内部复杂的结构及控制,造价成本高昂,这种结构可以有效解决平行电板式结构固有的电解边缘效应,同时圆筒本身的结构及特殊的进气方式可以保持气流通过的平顺性,对离子数量及大小的检测精确性有极大提高。
  • 从细胞到光信号:ATP微生物检测仪的工作原理解析
    ATP微生物检测仪作为一种可靠的检测工具,以生物化学反应将微生物的存在转化为可测量的光信号为检测原理,不仅实现了对微生物数量的快速检测,也为各种应用领域提供了关键的卫生状况评估。了解更多ATP微生物检测仪产品详情→https://www.instrument.com.cn/show/C541815.htmlATP的基本概念三磷酸腺苷(ATP)是一种在所有活细胞中广泛存在的能量转移分子。它在细胞的能量代谢过程中起着核心作用,每个活细胞都包含恒定量的ATP。因此,ATP的存在可以作为生物活性的指标,反映样品中微生物的数量和活动状况。ATP的检测对于评估细菌、真菌以及其他微生物的存在和数量具有重要意义。检测过程的第一步:ATP的释放ATP微生物检测仪的工作始于样品中的ATP释放。检测过程中,首先使用ATP拭子从样品中提取ATP。ATP拭子含有特殊试剂,这些试剂能够裂解细胞膜,从而释放细胞内的ATP。这一过程是确保所有可测量的ATP都从细胞中释放出来的重要步骤,为后续的荧光检测提供了充足的ATP源。荧光反应的核心:荧光素酶—荧光素体系释放出的ATP与拭子中含有的荧光素酶和荧光素发生反应,形成荧光反应。荧光素酶是一种催化剂,它能够将ATP转化为荧光素,通过与荧光素的反应产生光信号。这一反应基于萤火虫发光的原理,其中荧光素酶催化荧光素与ATP结合,生成光信号。这一过程的核心是荧光素酶的催化作用,它使得ATP的存在能够通过发光现象被检测到。光信号的测量与结果分析产生的光信号通过荧光照度计进行测量。荧光照度计能够准确地捕捉到反应产生的光信号强度,并将其转化为数字信号。光信号的强度与样品中ATP的浓度成正比,因此,可以通过测量光信号强度来推断样品中微生物的数量。较强的光信号通常意味着较高的ATP含量,从而反映出样品中微生物的较多存在。应用与优势ATP微生物检测仪因其快速、准确的检测能力,被广泛应用于食品安全、医疗卫生、制药和环境监测等领域。其能够实时、可靠地评估样品中的卫生状况,确保环境和产品的质量。相较于传统微生物检测方法,ATP检测法提供了更为便捷和即时的结果,帮助我们迅速做出响应和决策。结论ATP微生物检测仪通过将细胞中的ATP转化为光信号,提供了一种可靠的微生物检测方法。其工作原理涵盖了从ATP的释放、荧光反应的核心到光信号测量,为微生物检测提供了科学、准确的解决方案。这一技术的应用更大地提升了卫生监测的效率,确保了各种行业的安全与质量。
  • 青岛能源所等发明基于拉曼组原理的益生菌单细胞质检技术
    目前市场上有大量的益生菌品牌和产品,但质量参差不齐,给消费者带来极大困扰,也阻碍了产业的健康发展。此问题的根源在于目前业界缺乏快速、准确、全面、低成本的益生菌产品质检手段。青岛能源所单细胞中心联合中国食品发酵工业研究院、青岛东海药业和青岛星赛生物科技有限公司等,开发了基于拉曼组原理的益生菌单细胞质检技术SCIVVS,为突破这一紧迫的技术瓶颈提供了全新的解决方案。该工作近日发表于iMeta杂志。 基于拉曼组原理发明益生菌单细胞质检技术SCIVVS   益生菌产品的市场规模已近千亿,但是存在大量的“鱼目混珠”现象。其重要原因是益生菌质检的方法学局限性。由于这些方法大多依赖于分离培养或元基因组测序,因此存在耗时长、成本高、难以快速测定细胞活性和代谢活力及其细胞间异质性、复合益生菌产品深度质检困难、流程繁琐、难以自动化等瓶颈性问题。这些局限性导致益生菌产品难以快速、低成本、全面、深度地进行质检,很大程度上阻碍了益生菌产业的健康发展。   针对这一产业瓶颈,青岛能源所单细胞中心张佳副研究员、任立辉高级工程师、张磊博士、公衍海助理研究员等带领的研究小组,联合中国食品发酵工业研究院、青岛东海药业和青岛星赛生物等团队,基于拉曼组原理,开发了一种名为SCIVVS(Single-Cell Identification, Viability and Vitality tests and Source-tracking)的单细胞精度益生菌质检技术体系。针对益生菌产品,SCIVVS首先不是提取总核酸或者进行平板培养,而是提取所有的细胞进行重水饲喂和单细胞拉曼光谱的高通量采集。在每一张拉曼光谱上,利用其指纹区,基于与益生菌单细胞拉曼光谱参照数据库的比对,快速完成每个细胞的种类鉴定环节。通过构建21种法定可食用益生菌的标准菌株拉曼光谱数据库,SCIVVS可实现平均高达93%的分辨准确度。同时,利用其重水利用峰(C-D峰),则可针对每个物种,量化每个细胞的活性、代谢活力等。进而可通过拉曼激活单细胞分选技术,快速获得目标种类或目标代谢活力的单细胞,从而对接下游单细胞全基因组测序或培养。   为了支撑SCIVVS,在国家重大科学仪器研制、国家重点研发计划等项目的支持下,青岛能源所和青岛星赛生物合作研制成功了单细胞拉曼光镊分选仪(RACS-Seq)、高通量流式拉曼分选仪(FlowRACS)等原创仪器产品。运用RACS-Seq,研究人员直接从纯种或复合益生菌产品出发,在5个小时之内,完成了精确到每个物种的活细胞计数、活力定量和活力异质性测量。同时,针对乳酸杆菌、双歧杆菌或链球菌等各种益生菌,均能产出高质量的单细胞基因组(覆盖度可高达99.4%),从而完成精准溯源。   对比目前的益生菌产品质检方法,SCIVVS具有快速、准确、全面、低成本、易于自动化等优势,较传统方法快20倍以上,而成本仅为传统方法的1/10,且能免培养、高精度、自动化、一站式地完成产品中每个物种的活细胞计数、活力定量、活力异质性测量和溯源,有望形成新的技术标准。在此基础上,该合作团队将基于“益生菌单细胞技术联盟(A-STEP)”,联合益生菌产业领军企业,建立一个“标准化”、“一站式”、“公益性”的技术服务体系,为实现从生产端到消费端的益生菌产品质量规范化,提供一个原创的、切实可行的解决方案。   该工作由单细胞中心徐健、中国食品发酵工业研究院姚粟、青岛东海药业崔云龙等主持完成,得到了国家自然科学基金、山东省自然科学基金和国家重点研发计划青年科学家项目等项目的支持。
  • 威视发布拉曼 同方威视 新RT5000食品安全检测仪新品
    同方威视拉曼光谱仪RT5000系列产品,针对食品安全领域研究开发,借助与清华大学共同研发的纳米增强试剂及增强基片,实现多目标物痕量筛查。该系列产品利用拉曼光谱的“指纹”识别特性,结合表面增强拉曼光谱技术、具有自主知识产权的全自动前处理装置、线性定量模型以及混合物识别算法,专注于提供多目标物、非特异性痕量筛查的食品安全整体解决方案。本款便携拉曼光谱仪是同方威视RT5000食品安全检测系列最新款产品,添加光纤探头及升级版的定量检测模块,检测方式更灵活检测结果更准确。 RT5000食品安全检测仪可以检测农药残留、非食用化学物质、易滥用食品添加剂、兽药残留、保健品非法添加、有毒有害物质等六大类100余项物质,可实时显示分析结果,并生成检测报告。适合于工商行政管理部门、检验检疫部门、卫生行政部门、质量监督部门等领域的日常监测,也可为重要场所、重大活动的食品卫生提供快速安全保障。 经过在食品安全领域的长期耕耘,同方威视的表面增强拉曼光谱检测技术取得了多个国家级研究检验机构的技术评价报告,在2017年开展的贵州省、陕西省和浙江省食品药品监督管理局组织的拉曼食品快速检测产品现场评价中名列前茅,并已申报国家食药品监督管理总局公开征集的第二批食品快速检测方法《液态乳中三聚氰胺的快速检测拉曼光谱法》。 同时,同方威视RT5000食品安全检测仪在贵州省、山东省、新疆省等多地食药监、检验检疫单位、公安系统、研究所及科研机构得以应用,并受到客户的广泛好评。创新点:1、该产品利用拉曼光谱的“指纹”识别特性,结合表面增强拉曼光谱技术,混合物识别算法及多年深入行业的研发,专注于提供多目标物、非特异性痕量筛查的食品安全整体解决方案。 2、本款便携拉曼光谱仪添加光纤探头及升级版的定量检测模块,检测方式更灵活检测结果更准确。 拉曼 同方威视 新RT5000食品安全检测仪
  • 无机碳去除器(ICR)的工作原理与应用建议
    分析仪在测量总有机碳(Total Organic Carbon,TOC)时,都必须处理无机碳(Inorganic Carbon,IC)。IC是指CO2、HCO3-、CO32-里的碳。IC的来源包括溶解的石灰石和从空气中吸收的二氧化碳。几乎所有的样品水中都含有有机碳和无机碳,它们统称为总碳(Total Carbon,TC)。总碳(TC)=有机碳(TOC)+ 无机碳(IC)当样品中也含有无机碳时,分析仪就无法单独测量有机碳,因此大多数TOC分析仪就测量样品中的TC和IC,然后相减,差值即为TOC。总碳(TC)- 无机碳(IC)实测值 实测值= 有机碳(TOC)计算值TOC分析仪也可以先吹除无机碳,然后再测量碳含量,测量结果不含无机碳。此时测得的总碳即为样品的TOC。该 测 量 值 也 称 为 “ 不 可 吹 除 有 机 碳(Non-Purgeable Organic Carbon,NPOC)”。TC = TOC = NPOC有些TOC分析仪既可以测量IC,又可以去除IC,从而给操作员很大的灵活性,可以根据样品中的IC含量来选择操作方法。当样品中的IC小于TOC时,分析仪无需去除IC即可测得准确结果。分析仪可以直接测量IC,然后用TC减去IC,即得到TOC。但当IC较高且TOC较低时(例如,IC=10倍TOC),如果不去除或降低IC,则TOC测量结果就会变得不稳定。在下面的示例中,仪器测量TC和IC以计算TOC,TC和IC都很高(IC是TC的组成部分),测量TC和IC的仪器误差在最终TOC计算值中占有很大比例。如果在进行分析前,先去除或降低IC,就能提高仪器的分析性能。例如,样品中含100 ppb TOC和1900 ppb IC。我们假设仪器测量TC和IC的准确度为2%。一种情况是不去除IC,另一种情况是将IC降到100 ppb(见表1)。在IC较高、TOC较低的情况下,去除或降低IC能够提高仪器的分析性能。一般来说,在使用Sievers® TOC分析仪时,如果IC高出TOC预期值的10倍以上,我们建议降低或去除IC。去除和降低IC的方法有些TOC分析仪用气体来吹扫样品,以去除IC,而剩下的碳就是需要测量的有机碳。吹扫样品是去除IC的有效方法,但需要考虑以下几个问题:❶ 吹扫气体的纯度(以免气体中的有机物污染样品)。❷ 挥发性有机物的流失。❸ 如果不能100%去除IC,则留下的IC可能被报告为TOC,从而给分析系统带来误差。❹ 吹扫气体会增加成本、提高维护要求、延长样品制备和分析时间。❺ 在EPA TOC方法415.3(“确定水源和饮用水的总有机碳含量和254 nm的特定紫外吸光度”)中,USEPA规定20分钟的吹扫时间,气体流量为100-200毫升/分钟,确保将IC含量降到最低,以测量TOC。在实践中,吹扫时间通常为3-10分钟,具体时间可以根据仪器生产厂的建议和样品的特性而定。表1. 去除和未去除IC的示例计算显示了对TOC结果的影响_未去除IC去除 IC实际TC2000 ppb200 ppb测得TC(有2%误差)1960-2040 ppb196-204 ppb实际IC1900 ppb100 ppb测得IC(有2%误差)1862-1938 ppb98-102 ppb可能的算得TOC22-178 ppb94-106 ppbSievers技术采用无需气体的ICR(无机碳去除器)来降低IC含量。该方法已获得专利,并获USEPA批准用于合规监测。ICR的工作原理在去除IC时,ICR首先酸化样品,以将IC全都变成CO2的形式。酸化之前,IC以离子形式和非离子形式存在。离子形式包括碳酸盐和碳酸氢盐,非离子形式为CO2。离子形式和非离子形式的含量比例取决于pH值。酸化样品可以将IC全都转化为CO2,以方便将其吹除。CO2 → HCO3- → CO32-低 ← pH 值 ← 高当分析仪探测到连接无机碳去除器(ICR)时,会自动进行样品酸化,所使用的酸剂同正常TOC分析时使用的酸剂相同,因而无需添加其他试剂。样品酸化之后,会流过ICR中能渗透CO2的脱气模块。ICR还配有真空泵,用于将脱气模块外部抽成真空,以去除样品中的无机碳(CO2)。内置的化学捕集器先“净化”通过脱气模块的空气,去除空气中的全部有机物,以免污染样品。IC的去除率可达95-99%。无需百分之百去除IC,因为Sievers TOC分析仪会测量剩余的IC,然后用TC减去IC得到TOC。IC含量被大大降低,从而提高了仪器的分析性能。这种降低或去除IC的方法有以下优点。❶ 无需吹扫气体,因而成本较低,去除IC的过程更简单。❷ 样品脱气同样品分析直接连在一起,因而无需花额外时间来降低或去除IC。❸ 此 过 程 使 挥 发 性 有 机 碳(VOC , VolatileOrganic Carbon)的流失降低到最少。进水中流失的VOC会降低进水和出水之间的TOC去除率的计算值。❹ 此过程由分析仪自动完成,无需人员手动操作。如果无需去除IC,操作员可以用ICR的开启和关闭设置来绕过ICR,方便地转换到正常监测模式。应用建议当IC含量超过TOC的10倍时,应考虑使用ICR。常见的应用包括监测原始地表水和地下水。有时,降低或去除IC也有利于监测成品饮用水。对于在线连续监测的应用,应对所有样品启用ICR,并保持ICR的运行。ICR安装在Sievers M系列实验室型、便携式、在线型TOC分析仪的机箱内部,环保效果最佳,使用方便,占据空间小。◆ ◆ ◆联系我们,了解更多!
  • TDLAS检测温室气体原理
    GHK-5100多组分温室气体分析仪基于TDLAS可调式半导体激光器吸收光谱技术,内置激光控制模块、吸收池、泵吸处理控制模块、信号处理模块,可实现进样气的实时在线及现场便携测量,通过扩展激光器可实现多组分气体同步测量。下文简单地为您介绍一下关于“TDLAS检测温室气体原理”。 TDLAS检测温室气体原理为通过电流和温度调谐半导体激光器的输出波长,扫描被测物质的某一条吸收谱线,通过检测吸收光谱的吸收强度获得被测物质的浓度。 TDLAS检测的是激光穿过被测气体通道上的分子数,获得的气体浓度是整个通道的平均浓度。TDLAS的气体浓度定量计算是以Beer-Lambert定律为基础,Beer-Lambert定律指出了光吸收与光穿过被检测物质之间的关系,当一束频率为V的光束穿过吸收物质后,在光束穿过被测气体的光强变化为: I(v)=I0(v)exp[-σ(v)CL] I(v):光束穿过被测气体的透射光强度 I0(v):入射光强度 σ(v):被测气体分子吸收截面 C:被测气体的浓度 L:光程 因此,可通过测量气体对激光的衰减来测量气体的浓度。值得注意的是σ(v)吸收截面是分子吸收线强S(V)和分子吸收线形φ(V)的乘积,吸收线强S(V)受到气体温度的影响,吸收线形φ(V)收到压力展宽的影响,因此在实际检测中,TDLAS分析仪需输入温度和压力值进行补偿,如果过程气体的温度和压力变化比较大,还需要通过接入温度和压力传感器实时进行温度压力补偿。 GHK-5100多组分温室气体分析仪采用模块化定制,体积小、重量轻,采用温度、压力补偿算法以及光源自动锁频技术,环境适应性强,满足用户高精度温室气体在线连续监测需求。
  • 超声波破碎仪的基本工作原理
    超声波破碎仪的基本工作原理超声波破碎仪是一种利用超声波振动产生的高频机械波动力,对样品进行破碎、分散、乳化等处理的实验仪器。其基本工作原理涉及超声波的产生和传播,以及超声波在液体中产生的声波效应。以下是超声波破碎仪的基本工作原理: 超声波的产生: 超声波破碎仪内部通常包含一个压电陶瓷晶体,该晶体可以通过电压的作用发生振动。当施加高频电压时,压电晶体会迅速振动,产生高频的超声波。超声波的传播: 通过振动的压电晶体,超声波会传播到连接样品的处理装置(通常是破碎杵、破碎管或破碎尖等)。这个处理装置的设计可以将超声波传递到液体中的样品。声波效应: 超声波在液体中产生高强度的声波效应,形成破碎区域。当超声波传播到液体中,它会产生交替的高压和低压区域,形成声波节点和反节点。在高压区域,液体分子受到挤压,形成微小的气泡;在低压区域,气泡迅速坍塌,产生局部高温和高压。这种声波效应称为“空化”效应。空化效应的作用: 空化效应导致液体中的气泡在瞬间形成和坍塌,产生局部高温和高压。这些瞬时的高能量作用于样品中的细胞、分子或颗粒,导致物质的破碎、分散或乳化。作用于样品: 超声波的高频振动和声波效应作用于样品,可以打破细胞膜、细胞壁或分散颗粒,使样品更均匀地分散在液体中。总体而言,超声波破碎仪利用超声波的机械波效应,通过声波在液体中产生的高压和低压区域的交替作用,实现对样品的破碎、分散和乳化等处理。这种方法在生物、化学和材料科学等领域中被广泛应用。
  • 两位诺奖得主回忆结构生物学发展史
    转载自Knowable Magazine "Structural biology: How proteins got their close-up"前言从细菌到人类,所有的生物都由细胞组成。细胞由四种大型生物分子构成:碳水化合物、脂肪、核酸(即DNA和RNA)和蛋白质。这些生命的重要组成部分小到肉眼无法观测,甚至用光学显微镜也难以成像。因此,尽管19世纪的科学家们知晓这些"隐形"分子的存在,也能够通过实验找出它们的化学成分,但科学家们却看不到它们:这些分子结构的任何细节始终是个谜题。这就是今天的主题:这些"隐形"分子是如何在20世纪被人们成功观测到的。 "许多基础的生物问题是非常容易解决的:只要能看到它们就行!" —理查德• 费曼这是一个漫长而艰辛的故事:关于开发能够解析生物分子结构的工具和技术,以及对这些分子结构的解析如何使我们能够理解它们的功能,并设计出阻止或加强其作用的药物。为了讲述这个故事,我们将重点放在蛋白质上:这些大分子参与了我们身体中几乎所有的化学过程:它们解读遗传密码、催化化学反应、并充当我们细胞的守门员。蛋白质由名为氨基酸的小分子链构成。了解这些链如何折叠成三维结构至关重要,因为正是蛋白质的三维形态决定了它们的功能。若要创建一个准确的蛋白质三维模型,我们需要知道组成该蛋白质的所有氨基酸中的所有原子在空间中的排列。 我们无法看到原子,因为它们比可见光的波长还要小。 为了探测这些原子,我们需要一种波长更短且穿透性极佳的波:这种波使我们能够同时对蛋白质内部和外部的原子进行观测。因此,今天的故事开始于德国的维尔茨堡大学城。在那里,伦琴发现了X射线。X射线的发现那是1895年,威廉• 伦琴正在实验室里工作。像他那一代的许多物理学家一样,他正在做阴极射线的实验:在一个叫做克鲁克司管的设备中产生的电子流。但与他同时代的人不同的是,伦琴注意到了一些意想不到的事情:离克鲁克司管相当远的一个屏幕在发光。伦琴认为,那个屏幕太远了,发光绝不可能是由阴极射线引起的。在接下来的几周里,他研究了这种发光的荧光,并意识到他发现了一种能够穿透固体物体的新型射线。 就在圣诞节前,他把他的妻子带到实验室,给她的手拍了一张照片。 在照片中,她的血肉消失了,但骨头和戒指都清晰可见。威廉• 伦琴因发现X射线于1901年获首届诺贝尔物理奖关于他的发现,伦琴写了一份的报告。1896年初,一份英文译本发表了在《自然》杂志上。"我们看到,一些剂能够穿透对紫外线、阳光或弧光不透明的黑色纸板。所以,研究其他物体能在多大程度上被同一个剂穿透是很有意义的。"该报告继续说道:"厚的木块仍然是透明的。两三厘米厚的松木板只吸收了很少的光线。一块15毫米厚的铝板仍然能够让X射线通过,但大大减少了发出的荧光。"伦琴的发现立即产生了影响。在几个月内,医生们就开始用X射线来拍摄骨折。人们为X射线写诗,奇妙的X射线也成为各大展览中的热点。1901年,伦琴因其发现被授予第一个诺贝尔物理学奖:这是本故事中授予科学家们的众多诺贝尔奖中的第一个。与此同时,在实验室里,物理学家们对X射线的性质感到困惑。它们究竟是波还是粒子?另一位德国物理学家马克斯• 冯• 劳厄推断,如果X射线是波,那么它们的波长可能与晶体中原子之间的规则空间相似,从而提供一种破译晶体结构的方法。马克斯• 冯• 劳厄因发现晶体中X射线的衍射现象获得1914年诺贝尔物理学奖这是一个非常重要的推断,它启蒙了X射线晶体学的发展,这种技术最终将使科学家们能够弄清蛋白质结晶的结构,但走到这一步却花了几十年。起初,X射线晶体学被应用于更小的分子。而在这之前,弄清楚该技术的原理也花费了很长的时间。X射线晶体学时代1912年夏天,数学家和物理学家威廉• 亨利• 布拉格和他的儿子,另一位物理学家劳伦斯• 布拉格在英国的海边度假时听闻了冯• 劳厄的一个讲座。 假期结束后,父子俩回到他们的大学,思考晶体对X射线的衍射问题。那年晚些时候,老布拉格给《自然》杂志写信。 他首先描述了通过发射X射线获得的显著效果。"...细小的X射线流在通过晶体后并被发射到照相板时,有了显著效果。在照相板上发现了一种奇怪的斑点排列,其中一些斑点与中心斑点相距甚远,以至于它们必须被解释为大角度的散射....."这些是被晶体中的原子散射的X射线,在胶片上形成了一个独特的斑点图案。"这些斑点的位置似乎取决于简单的数字关系,以及晶体对入射流的呈现方式。我发现,当晶体(锌闪石)被放置到入射光线平行于晶体中立方体的边缘时,斑点的位置可以通过以下简单规则预测。假设原子以矩形方式排列,相邻原子产生的斑点距离为NA,其中A是相邻原子之间的距离,而N是一个整数......"闪锌矿的X射线衍射照片布拉格父子找到的数学规则提供了一种解释X射线产生的衍射图案的方法,从而揭示了晶体中原子的排列。老布拉格设计了一种新的、更强大的方法来进行X射线衍射,发明了一种叫做X射线光谱仪的仪器。1914年,冯• 劳埃因其工作获得了诺贝尔奖。第二年,布拉格父子也得到了诺贝尔奖。当时只有25岁的小布拉格目前仍是最年轻的诺贝尔奖科学得主。布拉格父子的布拉格定律使科学家能够解析各种晶体的原子结构获1915年诺贝尔物理奖起初,布拉格的方法被应用于简单物质,如食盐、苯和糖分子,揭示了它们结构的秘密。许多科学家对像蛋白质结构这样复杂的东西能否用这种方法解析持怀疑态度。1936年,《生物化学年度评论》中讨论了X射线研究的进展。DOI: 10.1146/annurev.bi.05.070136.000431"对于像糖和氨基酸这样的晶体物质,晶体内分子和原子的排列是能被完全解析的;但对于像多糖和蛋白质这样的物质,其中原子的排列不太规则,同时缺乏共同的晶体外观,我们不能指望完全解析它们。"但几年后,即1939年,有人提出了一个更乐观的观点:作者指出,像X射线晶体学这样的技术,正在深刻地改变生物学。 当作者考虑到各种可能性时,他似乎相当兴奋。DOI: 10.1146/annurev.bi.08.070139.000553"生物学迅速成为了一门分子科学,站在物理学和化学的肩膀上,生物学的前景广阔,人们迫切地想知道生物学会将人类带向何方。生物分子的结构成为了学界的主流追求。这些分子中最重要的是蛋白质,而蛋白质的结构解析也是最激动人心的。"为了解决蛋白质问题,需要取得一些进展:寻找更好的蛋白质结晶方法,并用新的数学方法解析X射线的衍射图案;以及用计算机计算数据。 英国剑桥的科学家们正致力于应对所有这些挑战。1953年,X射线晶体学获得了巨大突破:它被用于解析一个极其重要的结构, 并不是蛋白质,而是DNA,詹姆斯• 沃森、弗朗西斯• 克里克和莫里斯• 威尔金斯为此获得了诺贝尔奖。因解析DNA分子结构,以及一些相关研究获1962年诺贝尔生理学或医学奖的三位得主约翰• 肯德鲁是沃森和克里克在剑桥的同事,作为一位非常积极的研究人员,他下决心解析肌红蛋白的结构。 肌红蛋白是在肌肉中储存氧的蛋白质。肯德鲁选择它的原因是尺寸:肌红蛋白并不大。 他的首要任务是培育适合被X射线解析的晶体。在尝试对马、鼠海豚、海豹、海豚、企鹅、乌龟和鲤鱼的肌红蛋白进行结晶后,他终于成功地培育出从抹香鲸肉中提取的肌红蛋白的美丽晶体。 鲸鱼肌肉细胞内部的含氧肌红蛋白(红色)以及肌动蛋白和肌球蛋白纤维(黄色和棕色)。大量的蛋白质结构现在已经被确定,这是一个曾经无法想象的成就--为生命的生物化学提供了关键的见解,也为新型药物设计和其他发明提供了素材。与此同时,肯德鲁的同事马克斯• 佩鲁兹开发了一种向蛋白质分子添加"重"原子的技术。这些重原子并不会改变蛋白质的结构,但它们为比较不同角度的X射线照片提供了一个参考框架。经过多年的工作,肯德鲁仍然不知道肌红蛋白中每一个原子的精确位置,但他拥有了足够的信息,使得他可以制作一个蛋白质的三维模型。 这个模型并不像DNA的双螺旋那样漂亮;它看起来更像一根扭曲的香肠。马克斯• 佩鲁兹(左)与约翰• 肯德鲁(右),因发现血红蛋白分子结构获1962年诺贝尔化学奖肯德鲁和他的肌红蛋白3D模型就在这个时候,理查德• 亨德森加入了这个小组。直到今天,亨德森仍然在剑桥从事蛋白质结构解析的工作,并以开拓新技术而闻名,我们稍后将听到这些技术。但那时他刚刚毕业,正在寻找一个博士生职位。他还记得从爱丁堡到剑桥参观实验室的情景:理查德• 亨德森(右)冷冻电镜三位开创者之一于2017年获诺贝尔化学奖理查德• 亨德森: "他们有一个开放日,也就是星期六上午,他们周末居然也在工作!而在我去过的其他实验室,科学家都回家了,积极性也不够高。所以我当时就想:“哦,这是个非常好的实验室”。亨德森加入了这个勤奋的剑桥团队。这项工作虽令人激动,但进展极慢。理查德• 亨德森: "在1959年,他们以非常高的分辨率得到了肌红蛋白的结构,1960年这项研究成果发表,之后的五年没有任何其他结构被发表,直到伦敦的皇家研究所发表了溶菌酶。然后在那之后,又过了三年才有了第三个结构。"难以相信科学家们花了这么久的时间,为什么进展如此缓慢?一开始,X射线晶体学家研究的小分子包含不到50个原子,例如苯和糖环。相比之下,肌红蛋白,一种相对较小的蛋白质,包含了超过1000个原子。为了弄清这么多原子的位置,科学家不得不拍摄数百张X光照片,测量每张照片中每个光点的强度,并进行繁琐的计算。这是一个对数据处理的巨大挑战。理查德• 亨德森:"在我的博士论文中,我拍摄了大约300张这样的照片,一开始我必须亲自测量它们:我得把胶片放在胶片扫描仪里,一束光沿着一排斑点移动,然后每隔三分钟,就能得到一张印有痕迹的纸,上面可能有40个斑点。这时我需要用尺子在纸上测量斑点被衍射的强度,然后再把这个数字打到电脑纸上。而这仅仅是一排斑点的工作量。"这是非常耗费时间的。研究人员逐渐渴望如何将这一过程的一部分自动化。他们发明了自动的X射线探测器和仪器,以加快斑点的测量。约翰• 肯德鲁意识到,解析一个结构所需的计算可以由计算机来完成。幸运的是,剑桥大学数学实验室刚刚建成了第一批具有存储程序的电子计算机。它们被称为EDSAC,肯德鲁便学习了如何为它们编程。随着更强大的计算机的出现,X射线晶体学家们开始使用借助计算进行结构解析。亨德森回忆说,在20世纪60年代,他们前往伦敦,使用帝国学院的IBM 7090。剑桥大学的团队每天可以使用这台计算机1个小时。最早的两台IBM7090之一理查德• 亨德森 :"于是,每天下午4点,一辆出租车就来了,带着一批研究人员和一箱箱打包好的电脑卡,送到剑桥的火车站。她们上了去伦敦的火车,上了地铁,在南肯辛顿站和帝国学院之间的隧道里带着所有这些沉重的盒子走上大约有一公里。然后从晚上7点到8点,剑桥大学的MRC程序在计算机上运行,操作程序的人大多数是被招募的年轻女性,在当时被我们称为 "计算机女孩",她们现在都是大师了。在当时,她们做的极其完美:数据会被打印好并带回来。第二天早上9点,每个研究员都会检视他们前一天的数据,并为下午4点的寄送工作做好准备"。罗莎琳• 富兰克林“DNA之母”世界公认的名誉诺奖得主难怪这是个缓慢的工作! 女士们不仅要携带着成箱的数据穿越伦敦,她们还要抽出时间去做X射线晶体学解析。在伦敦国王学院,罗莎琳• 富兰克林制作了DNA的X射线衍射图案。她的照片使沃森和克里克能够制作他们著名的模型。 在牛津,多萝西• 霍奇金解决了青霉素的结构,后来又研究了其他重要的医学分子,包括维生素B12和胰岛素。她于1964年获得了诺贝尔奖,该领域的另一个诺贝尔奖!多萝西• 霍奇金因解析青霉素、维生素B12等结构获1964年诺贝尔化学奖随着更多计算机的出现和计算能力的提高,更多的结构被解决了。计算机的持续进步是另一个主题,我们将回到这里。对结构生物学这一新领域的兴奋之情日渐高昂。一些科学家认为,最终他们甚至不需要X射线晶体学便能弄清蛋白质的结构。"人们甚至希望有一天可以完全从氨基酸序列中推断出构象。"那是在1965年在《生物化学年鉴》上被提出的。 当时的想法是,如果你知道展开的蛋白质链中的氨基酸序列,那么通过遵循原子和分子如何相互作用的简单规则,你可以算出蛋白质链将如何折叠起来。DOI: 10.1146/annurev.bi.34.070165.001335化学家克里斯蒂安• 安芬森在1972年的诺贝尔奖演讲中重复了这一主张。"我们对序列和三维结构之间相关性的大量数据积累,加上多肽链折叠的能量学理论的日益成熟,预测蛋白质构象的想法越来越现实了。"这是一个有吸引力的想法。 如果可以用蛋白质折叠的规则对计算机进行编程,并输入氨基酸序列,那么结构可能在几天而不是几年内得到解决,为昂贵和耗时的实验方法提供一个替代方案。克里斯蒂安• 安芬森因对核糖核酸酶的研究获1972年诺贝尔化学奖但现在还不行。为了实现这样的目标,生物学家首先必须通过使用和改进X射线晶体学来解决更多蛋白质的结构。并通过发明新的方法来观察蛋白质。而这项工作将产生更多的诺贝尔奖。在1999年的最后几周,生物化学家罗杰• 科恩伯格终于抵达了他十多年工作的顶点:他在斯坦福同步辐射实验室成功解析出他一直在研究的蛋白质的结构。罗杰• 科恩伯格因对真核转录的分子基础所作的研究获得2006年诺贝尔化学奖罗杰• 科恩伯格: "一开始的时候,我们远远不清楚是否可以做到。当然,这是让我们从也许永远不会成功的恐惧中解脱出来的原因,也是对最终结果感到振奋的原因。"科恩伯格和他的团队已经解决了RNA聚合酶的结构。 这是一个巨大的成就,并且得到了另一个诺贝尔奖的认可。罗杰• 科恩伯格: "在我们解析这个结构的时候还是20年前,但迄今为止,这依然是通过X射线衍射法研究的最大和最具挑战性的结构。"RNA聚合酶可以说是生物学中最重要的蛋白质。 这是一个挑战,因为它不是一个单一的蛋白质。该团队研究了来自酵母的RNA聚合酶,它实际上是由12种蛋白质组成的。更重要的是,它是一个有活动部件的分子机器。罗杰• 科恩伯格:"RNA聚合酶实际上是在读取遗传信息。因此,它负责决定哪些信息将被储存在基因组的DNA中,以指导每个生物的活动能力。简单如病毒,或复杂如人类,没有生物体不依赖RNA聚合酶而生存。"为了解决RNA聚合酶的结构,科恩伯格和他的团队花了数年时间,为他们的蛋白质寻找合适的晶体和 "重 "原子。但这还不够。他们还需要更强烈的X射线束。罗杰• 科恩伯格: "X射线衍射的方法依赖于结构中各个原子的X射线光子散射--原子数量越多,为此必须记录的散射光子数量就越大。 如果光束强度太低,光子的数量就太少了,获得的信息也会因此不足。使用强度较高的光束,可以检测和记录更多的原子"。这一难题的解决方案便是同步加速器。同步加速器是一种粒子加速器,它以极高的速度推动电子束,这些高速电子发出的X射线比传统的X射线要亮几百万倍。它本质上是伦琴发现X射线时使用的克鲁克司管的一个升级版本。来自同步加速器的高强度X射线和不断提高的计算机能力相结合,使得像科恩伯格这样的科学家能够解决更复杂的蛋白质结构。2007年至2019年,当我在《自然》杂志工作时,我们经常对结构生物学论文的数量开玩笑:似乎每周都有一个新的、重要的蛋白质结构发表。但这是有限制的。X射线晶体学仍然很耗时,尽管不像早期那样耗时。 而且一些类型的蛋白质被证明很难或不可能结晶。冷冻电镜时代在世纪之交,一种新的技术进入了人们的视野。或者说,一种新的技术让科学家们对蛋白质有了新的认识。 该技术不使用X射线,而使用电子束。 这就是所谓的冷冻电镜。称之为冷冻,是因为蛋白质样品会被冻结。理查德• 亨德森是最早使用该技术的人之一。ThermoFisher Krios G4 冷冻透射电镜理查德• 亨德森: "当你照射任何东西时,无论是用X射线还是电子,除了得到一个美丽的图像外,分子实际上在被破坏,在一定的曝光后,分子已经失去了它的结构,所以在不得不因照射次数太多而停止之前,能得到的信息量是有限的,因为样品已经失活了。而事实证明,对于同样数量的有用信息,电子所造成的损害要比X射线小一千倍。"对于冷冻电镜,蛋白质不需要是一个晶体。相反,它被从细胞中分离出来,然后冷冻到液氮温度或以下。 冷冻有助于保护蛋白质免受辐射损害。亨德森将该技术应用于嵌入细胞膜的蛋白质。事实证明,这些大型蛋白质复合物极难通过X射线晶体学进行研究。 冷冻电镜变得非常流行。 在2000年代,科学家们谈到了一场 "冷冻电镜革命",许多人从X射线晶体学转向了这种新的、更快的技术。2017年,理查德-亨德森被授予诺贝尔奖。与X射线晶体学一样,随着计算能力的提高,冷冻电镜成为一个更强大的工具,使更多的数据能够更快地被分析出来。罗杰• 科恩伯格:"我们不能低估计算能力的非凡进步所做出的贡献。从这个角度来看,就RNA聚合酶而言,当我们在1999年底记录RNA聚合酶的X射线衍射以解决其结构时,需要在制造商提供给我们的特制计算机上进行一个多月的计算。今天,同样的计算可以在几分钟内在一台笔记本电脑上完成"。计算机一直是X射线晶体学和冷冻电镜成功的关键。 现在我们是否可以完全摒弃这些实验技术,而仅仅使用计算能力来预测蛋白质的结构?还记得克里斯蒂安• 安芬森在其诺贝尔演讲中提出的挑战吗?"...使预测蛋白质构象的想法更加现实。"AlphaFold的盛大登场为了预测一串氨基酸将如何折叠起来,科学家们使用了一个叫做"自由能"的概念。自由能使蛋白质不稳定。我们的想法是,氨基酸将以这样一种方式折叠起来,以使自由能最小化。理查德• 亨德森: "你可以通过能量最小化来做结构,最多可达60或70个氨基酸。所以美国西雅图的大卫• 贝克小组在这方面做得特别好。但是一旦你想尝试1000个氨基酸左右的蛋白质,答案就会迅速变得遥不可及。"因此,这项技术对于弄清一个蛋白质的一小部分,也许是一个重要的侧链,是有效的。但是对于有数百或数千个氨基酸的整个蛋白质,科学家们采用了不同的方法。他们并不是要求计算机从第一原理中找出结构,而是利用已知的蛋白质结构数据库训练一种算法。 这就是谷歌的人工智能实验室最近所做的,他们的蛋白质预测算法AlphaFold在2020年的一次比赛中超过了所有其他的算法。罗杰• 科恩伯格:"AlphaFold的基础确实来自于蛋白质结晶学的悠久历史和它的巨大成功,以及已经解析并存入蛋白质数据库的巨量的结构。AlphaFold的不同之处可能在于,其公司背景下大量的人工智能专家,这远远超出了任何个人学术研究者所能做到的,他们所拥有的计算能力,来自于分布在全球各地的顶级计算中心。从某种程度上说,他们除了将他们所拥有的资源用于解决一个经过充分研究的、现在看来已经解决的问题之外,也没做太多贡献嘛。科恩伯格当然认识到像AlphaFold这样的蛋白质预测程序在预测非常多的蛋白质结构方面的潜力,包括那些以前没有被解决的蛋白质。罗杰• 科恩伯格: "而如果预测的数量足够多,那么AlphaFold对生命科学,尤其是生物学的影响是深远的。"
  • 张福根专栏|激光粒度仪应用导论之原理篇
    p style=" text-indent: 2em " strong 编者按: /strong 如今激光粒度的应用越来越广泛,技术和市场屡有更迭,潮起潮落,物换星移,该如何全方位掌握激光粒度仪的技术和应用发展,如何更好地让激光粒度仪成为我们科研、检测工作中的好战友呢?仪器信息网有幸邀请在中国颗粒学会前理事长,真理光学首席科学家,从事激光粒度仪的研究和开发工作近30年的张福根博士亲自执笔开设专栏,以渊博而丰厚的系列文章,带读者走进激光粒度仪的今时今日。 /p p style=" text-indent: 2em text-align: center " strong 激光粒度仪应用导论之原理篇 /strong /p p style=" text-indent: 2em " 当前,激光粒度仪在颗粒表征中的应用已经非常广泛。测量对象涵盖三种形态的颗粒体系:固体粉末、悬浮液(包括固液、气液和液液等各类二相流体)以及液体雾滴。应用领域则包含了学术研究机构,技术开发部门和生产监控部门。第一台商品化仪器诞生至今已经50年,作者从事该方向的研究和开发也将近30年。尽管如此,由于被测对象——颗粒体系比较抽象,加上激光粒度仪从原理到技术都比较复杂,且自身还存在一些有待完善的问题,作者在为用户服务的过程中,感觉到对激光粒度仪的科学和技术问题作一个既通俗但又不失专业性的介绍,能够帮助读者更好地了解、选择和使用该产品。本系列文章的定位是通俗性的。但为了让部分希望对该技术有深入了解的读者获得更多、更深的有关知识,作者在本文的适当位置增加了“进阶知识”。只想通俗了解激光粒度仪的读者,可以略过这些内容。 /p p style=" text-indent: 2em " 首先应当声明,这里所讲的激光粒度仪是指基于静态光散射原理的粒度测试设备。当前还有一种也是基于光散射原理的粒度仪,并且也是以激光为照明光源,但是称为动态光散射(Dynamic light scattering,简称DLS)粒度仪。前者是根据不同大小的颗粒产生的散射光的空间分布(认为这一分布不随时间变化)来计算颗粒大小,而后者是在一个固定的散射角上测量散射光随时间的变化规律来分析颗粒大小;前者适用于大约0.1微米以粗至数千微米颗粒的测量,而后者适用于1微米以细至1纳米(千分之一微米)颗粒的测量。激光粒度仪在英文中又称为基于激光衍射方法(Laser diffraction method)的粒度分析技术。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 176, 240) " 【进阶知识1】严格地说,把激光粒度仪的原理说成是“衍射方法”是不准确,甚至带有误导性的。从物理上说,光的衍射和散射是有所区别的。“光的衍射”学说源自光的波动性已经被实验所证实,但是还没从理论上认识到光是一种电磁波这一时期,大约是19世纪上半叶。在更早的时候,人们认为光的行进路线是直线,就像一个不受外力作用的粒子作匀速直线运动那样。这一说法历史上被称为“光的粒子说”。后来人们发现光具有波动形。那个时候人们所知道的波只有水波,所以“衍”字是带水的。“光的衍射”描述的是光波在传播过程中遇到障碍物时,会改变原来的传播方向绕到障碍物后面的现象,故衍射又称做“绕射”。描述衍射现象的理论称为衍射理论。衍射理论在远场(即在远离障碍物的位置观察衍射)的近似表达称为“夫朗和费衍射(Fraunhofer diffraction)”。衍射理论不考虑光场与物质(障碍物)之间的相互作用,只是对这一现象的维像描述,所以是一种近似理论。它只适用于障碍物(“颗粒”就是一种障碍物)远大于光的波长(激光粒度仪所用的光源大多是红光,波长范围0.6至0.7微米),并且散射角的测量范围小于5° 的情形。 /span /p p style=" text-indent: 2em " 麦克斯韦(Maxwell)在19世纪70年代提出电磁波理论后,发现光也是一种电磁波。光的衍射现象本质上是电磁场和障碍物的相互作用引起的。衍射理论是电磁波理论的近似表达。严谨的电磁波理论认为,光在行进中遇到障碍物,与之相互作用而改变了原来的行进方向。一般把这种现象称作光的散射。用电磁波理论能够描述任意大小的物体对光的散射,并且散射光的方向也是任意的。不论是早期还是现在,用激光粒度仪测量颗粒大小时,都假设颗粒是圆球形的。如果再假设颗粒是均匀、各向同性的,那么就能用严格的电磁波理论推导出散射光场的严格解析解(称为“米氏(Mie)散射理论”)。 /p p style=" text-indent: 2em " 现在市面上的激光粒度仪绝大多数都采用Mie散射理论作为物理基础,因此把现在的激光粒度仪所用的物理原理说成是衍射方法是不准确的,甚至会被误认为是早期的建立在衍射理论基础上的仪器。 /p p style=" text-indent: 2em " 世界上第一台商品化激光粒度仪是1968年设计出来的。尽管当时Mie理论已经被提出,但是受限于当时计算机的计算能力,还难以用它快速计算各种粒径颗粒的散射光场的数值。所以当时的激光粒度仪都是用Fraunhofer衍射理论计算散射光场,这也是这种原理被说成激光衍射法的缘由。这种称呼一直延用到现在。不过现在国际上用“光散射方法”这个词的已经逐渐多了起来。 /p p style=" text-indent: 0em text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/d07b19f0-4c57-4748-9d53-229c65c56d4e.jpg" title=" 图1:颗粒光散射示意图.jpg" / /p p br/ /p p style=" text-indent: 0em text-align: center " 颗粒光散射示意图 /p p style=" text-indent: 2em " 激光粒度仪是基于这样一种现象:当一束单色的平行光(激光束)照射到一个微小的球形颗粒上时,会产生一个光斑。这个光斑是由一个位于中心的亮斑和围绕亮斑的一系列同心亮环组成的。这样的光斑被称为“爱里斑(Airy disk)”,而中心亮斑的尺寸是用亮斑的中心到第一个暗环(最暗点)的距离计算的,又称为爱里斑的半径。爱里斑的大小和光强度的分布随着颗粒尺寸的变化而变化。一种传统并被业界公认的说法是:颗粒越小,爱里斑越大。因此我们可以根据爱里斑的光强分布确定颗粒的尺寸。当然,在实际操作中,往往有成千上万个颗粒同时处在照明光束中。这时我们测到的散射光场是众多颗粒的散射光相干叠加的结果。 /p p style=" text-indent: 2em " strong & nbsp 编者结: /strong 明了内功心法,下一步自然会渴望于掌握武功招式。本文深入浅出地介绍激光粒度仪的原理,激光粒度仪的结构自然是读者们亟待汲取的“武功招式”。欲得真经,敬请期待张福根博士系列专栏——激光粒度仪应用导论之结构篇。 /p p style=" text-indent: 0em text-align: right " (作者:张福根) /p
  • 热失重分析仪:工作原理、设备构成及实验流程
    热失重分析仪是一种重要的材料表征工具,它能够提供有关材料性质的重要信息,如热稳定性、分解行为和反应动力学等。本文将介绍热失重分析仪的工作原理、设备构成、实验流程以及数据分析等方面的内容。上海和晟 HS-TGA-101 热失重分析仪热失重分析仪主要利用样品在加热过程中质量的损失来分析其热性质。仪器通过高精度的称量装置,实时监测样品在加热过程中的质量变化,并将质量信号转化为电信号。这些电信号进一步被数据采集装置转化为可分析的数据,从而得到样品的热失重曲线。热失重分析仪的主要组成部分包括称量装置、加热装置和数据采集装置。称量装置负责样品的质量测量,要求具有极高的精度和稳定性;加热装置则为样品提供加热环境,要求具备可调的加热速率和温度范围;数据采集装置则负责将质量信号转化为电信号,并进行进一步的数据处理和输出。实验流程一般包括以下几个步骤:首先,将样品放置在称量装置中并设置加热装置参数;然后开始加热,同时数据采集装置开始工作;在加热过程中,持续观察并记录样品的质量变化;最后,通过数据处理软件对数据进行处理和分析。在实验过程中,需要注意安全事项。首先,要确保实验室内有良好的通风系统,避免长时间处于高温环境下;其次,要随时观察样品的状态变化,避免发生意外情况;最后,在实验结束后,要对设备进行及时清洗和维护,确保设备的正常运行。数据分析是热失重分析仪的重要环节。通过对热失重曲线的分析,可以得出样品的热稳定性、分解行为和反应动力学等方面的信息。通过对这些数据的处理和分析,可以得出样品在不同条件下的性能表现,为材料的优化设计和改性提供理论支持。综上所述,热失重分析仪是一种重要的材料表征工具,它可以提供有关材料性质的重要信息。通过了解热失重分析仪的工作原理、设备构成、实验流程以及数据分析等方面的内容,我们可以更好地理解和应用这一技术。热失重分析仪在材料科学、化学、生物学等领域具有广泛的应用价值,对于科研工作者来说具有重要的意义。
  • 简支梁冲击试验机:工作原理、组成部分及试验步骤
    简支梁冲击试验机是一种广泛应用于材料科学、机械工程、交通运输等领域的重要实验设备。它主要用于测定材料的冲击韧性、抗疲劳性能和断裂韧性等指标,对于材料性能的准确评估和产品安全性的预测具有重要意义。简支梁冲击试验机的工作原理基于冲击试验方法。在冲击试验中,试样受到瞬时冲击载荷的作用,然后观察试样的变形和断裂情况。简支梁冲击试验机通过给试样施加冲击载荷,并通过高精度传感器测量试样的变形量和断裂能等参数,从而实现对材料性能的评价。上海和晟 HS-XCJD-5J 数显简支梁冲击试验机简支梁冲击试验机主要由以下几个部分组成:冲击装置:该装置包括一个可以瞬间释放能量的冲击源。试样夹持器:该装置用于固定试样,保证试样在冲击过程中不发生移动。传感器:该装置用于测量试样的变形量和冲击能。数据采集和处理系统:该系统用于采集和处理试验数据,并输出结果。在进行简支梁冲击试验时,需要按照以下步骤操作:将待测试样放置在试样夹持器中,并调整夹持器的位置和角度,确保试样在冲击过程中不会发生移动。根据试验要求设置冲击源的能量,并启动冲击装置。在冲击过程中,传感器会记录试样的变形量和冲击能,并将数据传输到数据采集和处理系统中。数据采集和处理系统对数据进行处理和分析,并输出试验结果。通过对试验结果的分析,可以得出材料的冲击韧性、抗疲劳性能和断裂韧性等指标。这些指标对于评估材料的性能和产品安全性具有重要意义。例如,在汽车制造中,材料的这些性能指标直接关系到汽车的安全性和可靠性。因此,简支梁冲击试验机在汽车制造领域的应用尤为重要。总之,简支梁冲击试验机是一种重要的实验设备,它能够实现对材料性能的准确评估和产品安全性的预测。在材料科学、机械工程、交通运输等领域得到广泛应用。然而,在使用简支梁冲击试验机时需要注意一些问题,如试样的制备和安装、设备的维护和保养等。只有正确操作和使用简支梁冲击试验机,才能获得准确的试验结果,从而为材料的性能评估和产品安全性的预测提供有力支持。
  • “几家欢乐几家愁”-论TESCAN发布独创版的透射电镜TENSOR
    “千呼万唤始出来”,TESCAN2022年11月8号“犹抱琵琶半遮面”,但业界已经感受到“高手出招”的犀利,在“剑锋”下“瑟瑟发抖”。“Vratislav Koštál, Chief Product Officer at TESCAN: “We’ve listened to our customers and delivered what they’ve asked for – a more accessible TEM solution that is high-performing and productive for mainstream use.” 所以,TENSOR的推出是源自对客户需求的调研、定位和转化,是一款在常规应用上“平易近人”的,但又是“身怀绝技”的,态度上“吃苦耐劳”的“主流”机型。1990年,即使是在Tesla公司倒闭、科学仪器研究所减员的情况下,捷克Brno的电子显微镜时代也并未就此结束;相反,市面上却出现了三家新的电镜公司,公司的员工都来自Tesla和捷克科学仪器研究所。TESCAN接管了Tesla的扫描电镜部门;并很快的,从最初的六个人发展到近百倍的规模;另一支约20余人,也成立了一家公司叫Delmi,并开始生产型号叫Morgagni的常规透射电镜;随后,Delmi被飞利浦电子光学部收购,后又被FEI公司收购,直到2016年被赛默飞收购,一路风尘才最终尘埃落定;1990年同年,Kolarik及其同事成立了Delong Instruments公司,他们制造的是加速电压为5kV的小型透射电镜;2014年后,Delong开始制造加速电压为25kV的小型透射电镜,并供货给很多公司和机构。从2000年在Brno举办的EUREM,到2014年在捷克布拉格举办的ICEM,与会代表都曾发言说:世界上大约30%的电镜在捷克Brno生产;Brno因此也获得了“电镜谷”的称号。“For crystallographers, the TENSOR STEM helps to determine the crystallographic structure of small, sub-micron natural or synthetic particles that are too small to be characterised using micro-XRD techniques.” 时间过了超过半个世纪了,TESCAN的TENSOR一如既往,充分尊重了透射电镜利用电子选择性微区衍射对晶体结构的强大分析能力,又能够接力XRD的通量优势完成更小分工的显微分析,贯彻了TESCAN对实验室显微成像和分析workflow的深刻理解。“Applications within the semiconductor lab include multimodal nano-characterisation of thin films for R&D and failure analysis of logic, memory, and storage devices and advanced packaging.” 半导体实验室仍是“众矢之的”,TENSOR显然没有“甘居人下”-光刻显影量测、逻辑闪存芯片、存储设备、以及先进封装的缺陷检测,一个不落,解决“多模态纳米级别表征”的需求清晰明了。值此TENSOR发布之际,笔者也不由得想起和TESCAN同属于捷克电子光学三支之一的Delong Instrument: 世界上最小型的低加速电压透射电镜厂家;小型透射电镜的成功设计和搭建,是捷克电子显微镜发展的成就。早在1951年,建立小型透射电镜的想法,就已经起源于捷克理论和实验电工学研究所;这项工作启动于两年后的1953年的Delong;其目的是利用不需要特殊处理的材料,制造尽可能简单结构的透射电镜;这种电镜对生产的要求不会太高,因此,工程师能够设计出可靠性更高的部件;另一方面,小型设计为用户提供最大化的操作可能性。一小队年轻的Delong工程师在1954年完成了第一个原型机,从图中的横截面图可以看出:台式透射电镜具有相对较高的配置-其照明系统仅由一个使用Steigerwald(1949)设计的“远距聚焦”的电子枪组成;因此,它提供给研究对象相对较窄的电流密度范围和照明角度。从图中的横截面图还可以看出:Delong BS242的成像系统由四个电磁透镜:物镜、中间透镜、衍射透镜和投影透镜组成,这种设计不仅允许了较宽的放大范围,而且可以完成电子束选区衍射;真空系统由位于镜筒后方的旋转油泵和扩散油泵组成,通过空气对流冷却;在扩散泵上方安装了一个简单的阀门系统,只有在更换相机35毫米胶片时,显微镜才会放气;样品的更换通过杆式气闸操作;因此,物镜配有平坦的上极靴,以便于将样品放置在离物镜足够距离的位置上;杆式气闸由两部分组成;样品支架的部件被插入XY工作台,使得样品在垂直于光轴的方向上能够移动;另一部分与第一部分拧在一起时,能在样品杆插入真空中时保护样品;样品杆拧松开之后,样品室就密封了;这个简单的原理被证明很成功,并且多年来一直在使用。杆式气锁的构造也采用了同样的原理,这有助于将样品自动降低到上极靴的孔中;轴向像散由位于真空外部的四个线圈组成的像散器补偿消除;因此,它们很容易在没有任何真空馈通的情况下转动;三透镜投影系统,由插入磁路的机械中心极靴组成;电子光学系统由三个可从外部居中的光阑组成:限制照明面积的光阑、物镜光阑和用于选区衍射的光阑;图像观察室和胶片照相机室,通过车削和铣削制成;显微镜的镜筒安装在一个平台之上,平台两侧配有用于样品位移和聚焦的操作旋钮;为了实现电子加速,Delong设计了60kV的油绝缘高频电源,它的大小正好可以放在平台的镜筒旁边;最初用于激励透镜线圈的蓄能器,很快在1955年被安装在桌下旋转泵上的电子稳定器取代了;显微镜的分辨率最初是25Å,后来甚至达到15Å。“With the launch of TENSOR, TESCAN is the go-to company for turnkey ‘medium-voltage’, Schottky FEG, analytical 4D-STEM solutions,” said Jaroslav Klíma, Chief Executive Officer of TESCAN ORSAY Holding (TOH a.s.). “TESCAN understands the challenges of integrating not only STEM, but 4D-STEM capabilities particularly, onto legacy TEM columns. This extensive knowledge was leveraged into the design, from the ground up, whereby scanning of the electron beam is synchronised with diffraction imaging using a hybrid-pixel direct electron detector, electron beam precession, EDS acquisition, beam blanking, and near real-time analysis and processing of 4D-STEM data.” 超过半个世纪之后的今天,TESCAN这台TENSOR大概率是200kV的热场发射枪,“混合”像素电子直读相机,TESCAN推出的“一体式整合式”的,直接输出贴近“原位”的四维STEM数据的分析平台;这让我们一下子都有“文盲”的感觉。业界朋友推荐了一个网站:https://www.superstem.org/ , 应该能够帮助我们恶补一下什么叫做4D-STEM,还有为什么透射电镜不好好地就叫TEM,而直接叫了STEM。“JK Weiss, TEM Applications R&D Manager and General Manager of TESCAN Tempe, adds, “It is not just the hardware that sets this system apart from every other TEM currently available on the market, but rather, it’s the integration of the hardware and software for a totally revolutionised new user experience that does not require months of Ph.D. or post-doc training or hours of column adjustments between different analysis modes.” TESCAN的这段承诺掷地有声:上手操作都很容易,软硬一体化,革命性的用户体验,有别于市场上任何现有TEM。这又使笔者想起,同属一脉的Delong小型透射电镜的特性,就是结构简单,因此操作简便;一名受过普通技术培训的操作员就能够进行安装和拆卸,维护工程师可以很容易地了解电镜所有部件的功能;很容易地证明物镜光阑对对比度的影响,从而说明亮场和暗场模式下的对比度和成像原理;很容易地通过操作衍射透镜在晶格处证实电子衍射,并用选区光阑让衍射图像对应研究对象的部分光学图像。这种简单的设备就像光学显微镜一样,在简单维护的情况下,也能可靠地工作多年,这无疑是这一派系的TEM的优点。我们熟悉的现代透射电镜设计的初衷是为了达到电子光学的理论分辨率;但如果没有维护,我们很难将这样复杂的设备保持在最佳性能水平。TENSOR这类新生代STEM的出现,许诺将会展示用户如何用最小的努力,可靠地实现有保证的分辨率;在这里,我们又不得不说,超过半个世纪后的今天,TESCAN对电镜极简化使用的情怀犹在。五十年代的Delong也很快发现,TEM领域缺少一个简单的装置,与简化的SEM相对应,在不影响设计原则,即结构简单、操作简单、价格低廉的情况下,将两种设备结合在一起的成为紧要的需求,Delong就是这样成为了STEM的先驱;TENSOR这类新生代扫描透射电镜完美地致敬了捷克电镜这一脉重要的分支。同时我们也不难看出,TENSOR这次的WORKHORSE定位决定了它不会带CEOS或是NION的球差矫正器了,同时上单色器的概率也应该很小;那么会有能量过滤器吗?ZEISS的OMEGA流派,还是GATAN的ENFINA路数?这个可能这次我们也想多了。“TESCAN TENSOR is the next example of innovation by TESCAN, following the company’s launch of the world’s first focused ion beam/scanning electron microscope (FIB/SEM) and Plasma FIB/SEM, time-of-flight secondary ion mass spectrometry (ToF-SIMS) applications on FIB/SEM platforms, Dynamic-CT and Spectral-CT.”回顾TESCAN精准的研发定位,从第一台RISE,到第一台电镜一体化TOF-SIMS,再到第一台pFIB,还有最近的两款显微CT产品,我们不得不再一次佩服TESCAN的BD团队的“行业嗅觉”。随着赛默飞在“冷冻电镜”上赚得“钵满盆满”,已是高端“结构生物学”餐桌上的“必点”菜目;在半导体离线破坏式检测领域,又凭借在pFIB上的“后来居上”,搭档“老骥伏枥”的Metrios,稳居榜首;TENSOR的出现,撕下了赛默飞“沾沾自喜”的遮羞布,似乎让业界清晰地看到了赛默飞的短板-材料分析TEM;TENSOR的出现,又让业界“久旱逢甘雨”。“For materials scientists and semiconductor R&D and FA engineers, the TENSOR 4D-STEM provides multimodal, high contrast, high-resolution 2D & 3D characterisation of functional (engineered) materials at the nanoscale.” 不出所料,材料科学显然是TENSOR的重点照顾对象。“几家欢乐几家愁”,进口电镜五大家中,赛默飞可以暂时“熟视无睹”,“倚老卖老”,假装“不愁”;两家日系的也是家底深厚,“树大根深”,也不像欧美上市公司有业绩压力,可以“不愁”;最后一家ZEISS却是完全“眼不见心不愁”,因为在这家的产品线上,早已“赫然”没有了透射电镜-这个电镜企业的“看家法宝”,电子光学“技术下放”的源头;这家德企有着颇为“瞩目”的TEM根基,加上一路并购“DSM”,“Cambridge Instrument”,“LEO”,最后都改姓“ZEISS”小兰标,不能不说是“根骨清奇”;“Orange Column”的用户仍然对其津津乐道;然而,对Omega能量过滤器的执着,既成就了它对TEM的最高水平的呈现,也直接成了其在2008年全球经济危机中的黯然隐退的导火索;“欲练神功,必先自宫”的极左思维模式,ZEISS不仅将标配了场发射源和能量过滤器的200kV顶配透射电镜“下架”,而且“一不做二不休”,将120kV Libra,以及刚收购一年有余的乌克兰Selmi公司的100kV TEM,整条产线同时“自戕”;拿着如此级别的“家当”,却是如此“败家”,“弃珍宝之如敝履”,可谓令人“瞠目结舌”;西欧的“百年老店”自废武功,东欧的“世家子弟”TESCAN却一心一意,凭着捷克硕果仅存的三支之一的电镜纯正“火种”,从钨灯丝扫描电镜起步,“见龙在田”,一步留下一个脚印,终于祭出了全新一代的TEM,且直接冠名发布为STEM,“亢龙有悔”,完成了Tesla电镜的华丽“回归”,相信下一个发布会是“飞龙在天”,“励志”所有电镜研制团队。电镜是一种集成了光、机、真空、电、软、算、系、数项基础和先进学科及技术的综合学科科学,及显微成像和分析类仪器设备,电镜的精度及可靠性来自于对上述学科基础知识的牢固掌握,及对产品化的深刻理解和实行;近五年来,国产电镜百家争鸣,其中不乏拥有多项自主专利的实干厂家;笔者综合评价,国产替代的突破点主要集中在“光”,即电子光学,而在其余多项分支多为直接采购,或堆砌模仿,或生硬整合;国产替代虽然已经在电镜的核心技术-电子光学上突破重围,但其多项配套技术发展的不平衡性,在加上来自于各种材料、各项技术和各类人才的缺口,导致电镜这只需要多块木板才能拼就成功的“木桶”,数块木板长短参差不齐;所有公差的集合,直接导致了国产电镜来自于系统整合集成,积累沉淀在工程产品化的差距;这项差距相比起进口欧美日厂商,尤其巨大。所以,电镜的“重灾区”已经不再是“电子枪和镜筒”,而更多地集中在了精密机械、高真空及超高真空、高速高稳定性电路设计制造,及各个模组子系统之间的有效有机整合。笔者认为,比起进口主流,国产电镜的性能差距具体表现为两方面:一是仪器关键精度的出厂重复性很差,难以控制和把握;电子光学仿真软件完成光路设计之后,电子枪和电子光学镜筒即进入选料及加工阶段,精密加工主要集中在电子透镜特别是物镜的极靴的生产上,然后再进入部件组装、机械调试及电子调试等各阶段;而在这些阶段累计的问题,最终表现为实测电子束分辨率和设计精度之间的差距,单台模组在不同时间段指标性能表现不一致的差距,还有多台电子光学关键模组及整机实测指标之间的差距,等等;二是电镜研制多学科发展,交叉但又不融合;表现为光、机、电子系统联合运行匹配问题频出,并与真空,软件、算法等子系统互为交叉影响,仪器整体使用感受不顺畅,小毛病多,不明问题多,导致机器磨合及解决问题时间比正常运行时间多等等,不能符合科研及产业对普适类工具稳定性表现的要求。相对于半导体产业的电子束量测设备,如CD-SEM,普适型扫描电镜使用了对长期使用、高密度使用整体稳定性要求相对较低的可用标准原材料;就像Delong选择了小型透射电镜的细分赛道那样,如果要达到极限性能,复杂的TEM是关乎材料、技术和生产的非常复杂的装置;如果我们接受比极限分辨率低的指标,要求也会相应减少很多;Delong台式透射电镜的材料成本和生产时间较低,因此卖价也不高;仍以Delong为例,20世纪50年代初,台式透射电镜的构建就证实这条路线是非常成功的;因为,一种结构简单、操作方便、价格低廉的设备满足了许多实验室的基本需求,也并没有让大多数追求极限分辨率显微镜的用户对高端电镜产品失去兴趣。关于国产电镜,还有一个更有趣的方面,使得国产电镜难以在正常赛道上与进口抗衡:就是进口电镜简单廉价的生产成本和低价格。很明显,这是由于欧美日电镜厂商早已消化完毕前期研发的高额投入和成本,而电子光学模组的创新和迭代也相对缓慢,再加上西方完整齐备的电镜产业供应链支撑,种种优势,使得国产电镜步履维艰,任重而道远;相信国家,还有投资界已经听到了国产仪器人的呼声,这也是为什么近五年来国产高端仪器能够蓬勃发展的原因。话说至此,笔者还是相当“清醒”的,我们当前“念念有词”的国产电镜,只限于电子显微镜的“弟弟”-扫描电镜,成像类工具的“大哥”级别的存在,仍然是透射电镜;我们现在之所以能够自我研制扫描电镜了,是相关材料,技术火种和它们的载体-行业人才“因势利导”、“水涨船高”、“水到渠成”的结果;所以,国产透射电镜,包括FIB双束电镜的亮相,会更多的是随着时间的推移能够“浮出水面”的。书归正传,就这次TENSOR的高调发布,完全可以肯定的是:从一路扫描至发布透射的扩张,这次TESCAN的功力提升不是一点点,这是一个质变和飞跃;从做好扫描到向上做好透射,是要看TESCAN在年轻的TESLA时候有没有练过“童子功”的;TESCAN的市场、产品、应用、乃至销售和售后团队都会水涨船高,从“散仙”飞升“晋神”;ZEISS的“自宫”只要“挥刀”就行,TESCAN的“飞升”需要经年累月,甚至“三生三世”的修炼;所以,从整体建制需要基建“配套”的角度看,这次TENSOR的推出也不会是“拔苗助长”式的,TESCAN迈过了“小升初”,“中高考”,现在正在“本硕连读”之阶段,一路走来“精彩”归“精彩”,现在正是“吃劲”的关头;祝TESCAN能够凭借TENSOR,完成“复兴”的起步;更希望TESCAN可以凭借TENSOR,自创新的“赛道”,不仅能够稳居“四绝”之一,更能引领;就像他们的愿景说的那样:“An analytical 4D-STEM that is as easy to use as TESCAN SEMs, with all the efficiency and economic benefits of a results driven Electron Microscope.” 透射电镜能像扫描电镜一样易用,高效,经济,以能出高质量结果为最终导向。愿TESCAN这次“出击”能够站稳脚跟,期待看到他们下一次的惊艳。(完)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制