当前位置: 仪器信息网 > 行业主题 > >

单管发光检测仪检测原理

仪器信息网单管发光检测仪检测原理专题为您提供2024年最新单管发光检测仪检测原理价格报价、厂家品牌的相关信息, 包括单管发光检测仪检测原理参数、型号等,不管是国产,还是进口品牌的单管发光检测仪检测原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合单管发光检测仪检测原理相关的耗材配件、试剂标物,还有单管发光检测仪检测原理相关的最新资讯、资料,以及单管发光检测仪检测原理相关的解决方案。

单管发光检测仪检测原理相关的资讯

  • 从细胞到光信号:ATP微生物检测仪的工作原理解析
    ATP微生物检测仪作为一种可靠的检测工具,以生物化学反应将微生物的存在转化为可测量的光信号为检测原理,不仅实现了对微生物数量的快速检测,也为各种应用领域提供了关键的卫生状况评估。了解更多ATP微生物检测仪产品详情→https://www.instrument.com.cn/show/C541815.htmlATP的基本概念三磷酸腺苷(ATP)是一种在所有活细胞中广泛存在的能量转移分子。它在细胞的能量代谢过程中起着核心作用,每个活细胞都包含恒定量的ATP。因此,ATP的存在可以作为生物活性的指标,反映样品中微生物的数量和活动状况。ATP的检测对于评估细菌、真菌以及其他微生物的存在和数量具有重要意义。检测过程的第一步:ATP的释放ATP微生物检测仪的工作始于样品中的ATP释放。检测过程中,首先使用ATP拭子从样品中提取ATP。ATP拭子含有特殊试剂,这些试剂能够裂解细胞膜,从而释放细胞内的ATP。这一过程是确保所有可测量的ATP都从细胞中释放出来的重要步骤,为后续的荧光检测提供了充足的ATP源。荧光反应的核心:荧光素酶—荧光素体系释放出的ATP与拭子中含有的荧光素酶和荧光素发生反应,形成荧光反应。荧光素酶是一种催化剂,它能够将ATP转化为荧光素,通过与荧光素的反应产生光信号。这一反应基于萤火虫发光的原理,其中荧光素酶催化荧光素与ATP结合,生成光信号。这一过程的核心是荧光素酶的催化作用,它使得ATP的存在能够通过发光现象被检测到。光信号的测量与结果分析产生的光信号通过荧光照度计进行测量。荧光照度计能够准确地捕捉到反应产生的光信号强度,并将其转化为数字信号。光信号的强度与样品中ATP的浓度成正比,因此,可以通过测量光信号强度来推断样品中微生物的数量。较强的光信号通常意味着较高的ATP含量,从而反映出样品中微生物的较多存在。应用与优势ATP微生物检测仪因其快速、准确的检测能力,被广泛应用于食品安全、医疗卫生、制药和环境监测等领域。其能够实时、可靠地评估样品中的卫生状况,确保环境和产品的质量。相较于传统微生物检测方法,ATP检测法提供了更为便捷和即时的结果,帮助我们迅速做出响应和决策。结论ATP微生物检测仪通过将细胞中的ATP转化为光信号,提供了一种可靠的微生物检测方法。其工作原理涵盖了从ATP的释放、荧光反应的核心到光信号测量,为微生物检测提供了科学、准确的解决方案。这一技术的应用更大地提升了卫生监测的效率,确保了各种行业的安全与质量。
  • 化学发光探针检测技术速查病原菌
    吉林检验检疫局建立的金标法检测单核细胞增生性李斯特氏菌技术作为当今检测病原体和诊断疾病方面最为敏感的免疫学技术之一,不仅操作简便、快速、特异,更为重要的是适用于广大基层食品监管部门的现场检测和诊断,这些特点都是其他免疫学方法所无法比拟的。   该技术不仅具有巨大的发展潜力,而且还具有广阔的市场和应用前景,如可适用于医疗卫生行业,出入境食品口岸抽查和鉴定、流通领域卫生监督和工商行政部门和质监部门的食品企业监管等,甚至可以走进餐馆、家庭进行简易的食品自控和检测等。   由吉林出入境检验检疫局承担的国家质检总局科研课题《应用化学发光探针及免疫金标法检测食品中多种致病菌的研究》在2011年获得了国家质检总局“科技兴检”三等奖。该课题建立的化学发光探针检测技术能够快速检测食品中常见的四种病原菌:空肠弯曲菌、单核细胞增生性李斯特氏菌、大肠杆菌O157和金黄色葡萄球菌。其中对单核细胞增生性李斯特氏菌还建立了应用免疫胶体金试纸条的快速检测方法。   急需速测技术   我国的食品生产加工企业数量多,规模小,较分散,而且为数较多企业过分追求利润法律意识淡薄,社会责任心不强导致其产品质量良莠不齐。   据报道,我国45万个食品生产企业中,员工人数10人以下的食品生产加工小作坊就有35万家,约占80%,因而导致食品安全事故时有发生,给社会和消费者的健康造成了巨大危害。   而目前的食品卫生监管的检测手段主要依据国家标准或行业标准规定方法进行,虽然这些方法准确可靠,但这些方法一般都需要建设专门的微生物检测实验室,配备专业的检测技术人员,需要较长的检测周期,由此造成的检测成本过高,缺乏时效性等问题,使一些突发的食品安全事件不能迅速得以解决。因此发展和建立一种快速、简便、灵敏准确的检测技术,作为标准检测方法的初筛技术,是解决上述问题的有效手段之一。   食品检验新兵   化学发光探针技术的原理是互补的核酸单链会特异性识别并结合成稳定的双链复合物。这一检测系统利用一个标记有化学发光物的单链DNA探针,可以特异性的识别和结合目标微生物的核糖体RNA。微生物中的核糖体RNA释放出来后,化学发光标记的DNA探针就与之结合形成稳定的DNA-RNA杂合体。标记的DNA-RNA杂合体会与非杂交探针分离,并在化学发光检测仪中进行测量。样本的检测结果通过计算与阴性对照进行比较得出结果。利用化学发光剂标记和检测核酸使得许多非放射性标记检测的灵敏度达到甚至超过了同位素标记测定。   在众多的化学发光体系中,应用最多的化学发光体主要有三类:增强鲁米诺发光体系、吖啶类化合物发光体系和碱性磷酸酶催化的1,2-二氧环己烷发光体系。吉林检验检疫局建立的化学发光技术使用吖啶酯标记核酸探针。   利用化学发光杂交保护分析的原理检测空肠弯曲菌、单核细胞增生性李斯特氏菌、大肠杆菌O157和金黄色葡萄球菌4种致病菌特异性RNA序列,这种方法无需物理分离,利用吖啶酯标记DNA探针,通过核酸杂交保护分析法,即应用人工合成的靶DNA保守区的寡核苷酸,在合成时引入一个烷氨基的手臂,经活化后接上吖啶酯,制成化学发光探针。   杂交后无需分离步骤,而是利用差分水解来鉴别,即加入碱性溶液,游离的发光探针遇碱水解失去发光特性,而与特异性目的片段结合的探针形成DNA-RNA杂交体,由于吖啶酯是平面结构很容易进入双螺旋的内部而获得杂交保护,水解速度缓慢(半衰期达10分钟以上),仍有发光性能,可以在发光仪上显示化学发光信号,从而实现对病原菌的检测。   应用前景广阔   该项目利用胶体金技术研制了胶体金检测试纸条,用于单核细胞增生性李斯特氏菌的快速检测,该检测试纸条的灵敏度高,具有很强的特异性,不同批次生产的免疫胶体金具有良好的检测重现性,稳定性好,操作简单,检测时间只需10至20min即可报告结果,胶体金法无污染,不会危害操作者以及环境。胶体金抗体复合物在冻干状态下室温储存相当稳定,有效期长 此外胶体金技术还具有检测迅速、灵敏、不需要复杂仪器设备、产品永不褪色等优点,适合于食品中单核细胞增生性李斯特氏菌的初筛检验。   吉林检验检疫局建立的基因探针化学发光检测方法可在30分钟内快速确定病原体,并可直接于固体或液体培养基上鉴定目标微生物。该方法可直接应用于国外生产的LEADER 50i检测仪上,仪器自动注入检测试剂,立刻测量标记物所产生化学反应的化学发光强度,并自动计算结果及打印报告,该检测方法敏感性高,特异性强,检测成本低,操作简便、快速,对我国食品安全快速检测和监控工作具有重要意义,具有广泛的推广前景。 胶体金快速检测试纸
  • 解读核辐射检测仪原理,是否“智商税”?
    8月24日,日本政府不顾国内外反对,福岛第一核电站启动核污染水排海,并计划排放30年。该消息发布后,引起我国出现盲目“抢盐”的恐慌现象,并导致核辐射检测仪在线上平台火爆销售,甚至被抢购一空。许多专家表示,我们无需过度恐慌,理性关注即可,也有人支持购置核辐射检测仪来保证身体安全,那么作为大众居民,我们是否必要购置核辐射检测仪?其原理是什么?核辐射检测仪到底是不是“智商税”?且听本网来揭秘。核辐射检测仪的原理核辐射检测仪是通过探测放射性物质的衰变过程来进行工作的。放射性物质会不断地释放出α粒子、β粒子、γ射线等辐射,这些辐射会与检测器中的物质相互作用,产生电离效应。在这个过程中,检测器中的物质会失去一部分电荷,导致检测器中的电荷量发生变化,从而产生电信号。核辐射检测仪通常采用闪烁晶体作为探测器,闪烁晶体是一种能够吸收射线并转化为可见光的物质。当放射性物质释放出的射线进入闪烁晶体时,晶体中的原子或分子会吸收这些射线,并把它们转化为可见光。这个过程被称为光致发光。然后,光被收集到光电倍增管中,并转化为电信号。这些电信号会被放大和整形,以便后续的信号处理和测量。除了闪烁晶体,核辐射检测仪还可以使用其他类型的探测器,如半导体探测器、液体闪烁计数器等。半导体探测器的工作原理与闪烁晶体类似,都是基于放射性物质的衰变过程,通过探测器中的物质与辐射相互作用产生电离效应,从而检测辐射的强度和类型。而液体闪烁计数器则是一种将闪烁剂和光电倍增管结合在一起的探测器,它能够测量β粒子和γ射线。总之,核辐射检测仪是基于放射性物质的衰变过程进行工作的,通过探测器中的物质与辐射相互作用产生电离效应,从而检测辐射的强度和类型。闪烁晶体和光电倍增管是核辐射检测仪中非常重要的部件,其性能直接影响核辐射检测的准确性和稳定性。随着科学技术的发展,核辐射检测仪的材料和性能将不断得到改进和完善,为保障人类安全和环境健康做出更加重要的贡献。核辐射检测仪的应用场景辐射检测仪的应用场景广泛,主要包括以下场景:1.核物理实验室、科研单位放射性实验室等会产生放射性物质的单位,主要用于日常放射性物质剂量检测,以便及时处理。2.用于海关和边境巡逻等,防止犯罪分子取放射性材料及放射性物质袭击的应急响应。3.环保部门、钢铁石材检测、矿山或金属检测公司等,用于监测放射源。4.医疗、工业等领域的X射线仪器的X射线辐射强度。5.其他检测放射性物质需要。综上所述,辐射检测仪的应用场景非常广泛,应用于各大领域。我们需要购买核辐射检测仪吗?最近的央视报道中,华南理工大学环境与能源学院教授张永清表示:“普通百姓购买放射性检测仪必要性不强。因为放射性测量过程中,只有一个仪器还是不够的,还要有相应适合的方法,不同的核素有不同的方法来进行测量,而且不同的样品有不同的前处理方法。如果说一般普通老百姓只是买一个仪器来测,他们还不具备专业的方法。”市面上价格较低的核辐射检测仪往往精度低,难以真正检测出放射性物质,而较为专业的核辐射检测仪价格昂贵,且需要专业知识和技能才能正确使用和维护才能合理使用。其次,普通人在日常生活中接触到的辐射量通常是非常低的,不需要过于担心辐射对健康的影响。而且,即使周围存在一些放射性物质,核辐射检测仪也并不能保证绝对的安全。因此,建议普通人不要盲目购买核辐射检测仪,更不需要过度恐慌,如果确实需要检测辐射水平,可以寻求专业的检测机构或者政府部门进行检测。
  • 流式荧光技术检测与化学发光技术检测那些事儿
    大家好,我是流式荧光崔工,一个旨在链接与流式荧光相关的朋友,一起赚钱、一起学习、一起工作、一起生活的靓仔。——流式荧光崔工前段时间,有很多新关注崔工公众号的朋友问崔工一个问题,什么是流式荧光检测技术?它的原理是什么?传统的化学发光检测技术又有什么?问崔工这个问题的朋友应该是刚进入到这个行业,还不是很了解这个行业。今天就跟大家聊聊,供大家参考。— 1 —什么是流式荧光检测技术?从百度百科了解到,流式荧光,又称悬浮阵列、液相芯片等,是近20多年逐渐发展起来的多指标联合诊断技术。该技术以荧光编码微球为核心,集流式原理、激光分析、高速数字信号处理等多种技术于一体,多指标并行分析,最多可一管同时准确定量检测2-500种不同的生物分子。具有高通量、高灵敏度、并行检测等特点。可用于免疫分析、核酸研究、酶学分析、受体、配体识别分析等多方面、多领域的研究。流式荧光检测技术的原理是什么?将荧光标记后的单细胞(或颗粒)悬液进入吸样管,进而随鞘液进入流动室。进入流动室之前的管道变细,迫使鞘液从四周、样本在中心进入流动室,在外加压力的作用下由下向上(或由上向下)直线流动。鞘液充满流动室将样品裹挟,当二者通过流动室喷嘴流出时,压力迫使鞘液包裹的液滴包含单一细胞或颗粒垂直通过检测区。在检测区与液滴垂直的位置设置激光,在与激光垂直的位置设置探测器(透镜等),液流、激光、探测器互相垂直并聚焦于一点实现流体动力聚焦。荧光标记的细胞或颗粒在激光激发下发出散射光和荧光的发射波,散射光和发射光被检测器获取,再经一系列滤光片、光栅处理去除干扰并将光信号经光电转换和放大后输入计算机,并由软件分析处理。而细胞分选则是对荧光标记的目的分子分别加载正或负电荷,当其在随液滴滴落的过程中受到外加高压电场的作用发生偏转而落入接收容器,从而获得目的细胞群。流式荧光检测技术有什么技术特点?1、高通量:将许多种不同荧光编码的微球放在同一反应体系内,一次可同时检测2-500种生理病理指标,这与传统方法的逐个检测相比是质的飞跃。2、高敏感性:流式荧光技术最高的检测下限可达0.01 pg/ml,常规的酶联免疫吸附试验(ELISA)仅为μg级,比后者检测的灵敏度提高10—100倍。3、线性范围宽:检测的线性范围比常规的ELISA方法高10倍以上,可达3-5个数量级。检测浓度范围为pg-μg级。4、反应快速:因流式荧光技术的杂交或免疫反应在悬浮的液相中进行,反应所需的时间短(从2 h缩短到20—40 min),杂交后常不用清洗,即可直接读数,所以检测效率高于固相杂交。5、重复性好:杂交发生在准均相液体环境中,其结果稳定,重复性非常好。检测时,抽取其中的100颗微球读数,最终的数据取其均值或中位值,这样可将误差减到最小。6、利于探针和被检测物的充分反应:由于液相环境更有利于保持蛋白质的天然构象,所以也更有利于探针和被检测物的反应。7、操作简便:流式荧光技术平台的整个反应过程只涉及加样和孵育,最后上机读数,操作步骤少,简单易用。— 2 —什么是化学发光检测技术?这里既然是跟流式荧光检测相比较的,那这里的化学发光检测技术指的是化学发光免疫分析技术。化学发光免疫分析:是将发光分析和免疫反应相结合而建立起来的一种新的检测微量抗原或抗体的新型标记免疫分析技术。化学发光检测技术的类型及原理化学发光检测技术的类型分为直接化学发光免疫分析,化学发光酶免疫分析和电化学发光免疫分析。直接化学发光免疫分析用吖啶酯直接标记抗体(抗原),与待测标本中相应的抗 原(抗体)发生免疫反应后,形成固相包被抗体-待测抗原吖啶酯标记抗体复合物,这时只需加入氧化剂(H2O2)和 NaOH使成碱性环境,吖啶酯在不需要催化剂的情况下分解、 发光 。由集光器和光电倍增管接收、记录单位时间内所产生 的光子能,这部分光的积分与待测抗原的量成正比,可从标准曲线上计算出待测抗原的含量。化学发光酶免疫分析酶免疫分析(chemiluminescence enzyme immunoassay,CLEIA)是用参与催化某一化学发光反应的酶 如辣根过氧化物酶(HRP)或碱性磷酸酶(ALP)来标记抗原或抗体,在与待测标本中相应的抗原(抗体)发生免疫反应后,形成 固相包被抗体-待测抗原-酶标记抗体复合物;经洗涤后,加入底物(发光剂),酶催化和分解底物发光,由光量子阅读系统接收,光电倍增管将光信号转变为电信号并加以放大,再把它们传送至计算机数据处理系统,计算出测定物的浓度。电化学发光免疫分析电化学发光免疫分析 (electrochemiluminescence immunoassay, ECLIA)是以电化学发光剂三联吡啶钌标记抗体(抗原),以三丙胺(TPA)为电子供体,在电场中因电子转移而发生特异性化学发光反应,它包括电化学和化学发光两个过程。化学发光免疫分析技术的优势是什么?1、灵敏度高:灵敏度高是化学发光免疫分析关键的优越性。化学发光免疫分析能够检出放射性免疫分析和酶联免疫分析等方法无法检出的物质,对疾病的早期诊断具有十分重要的意义。2、宽的线性动力学范围:发光强度在4-6个量级之间,与测定物质浓度间呈线性关系。这与显色酶联免疫分析吸光度(OD 值)2.0 的范围相比,优势明显。虽然同位素放射免疫也有较宽的线性动力学范围,但是放射性限制其应用。3、光信号持续时间长:化学发光免疫分析的光信号持续时间可达数小时甚至一天,简化了实验操作及测量。4、分析方法简便快速:绝大多数分析测定仅需加入一种试剂(或符合制剂)的一步模式。5、结果稳定、误差小:样本本身发光,不需要额外光源,避免了外来因素的干扰(光源稳定性、光散射、光波选择器),分析结果稳定可靠。6、安全性好及使用期长:到目前为止还未发现化学发光免疫分析试剂的危害性;另外这些试剂稳定,保存期可达一年之久。以上是对什么是流式荧光技术检测与化学发光技术检测基本原理做了一个说明,供大家参考。【行业征稿】若您有生命科学、医药、临床等行业相关研究、技术、应用、管理经验等愿意以约稿形式共享,欢迎自荐或引荐投稿联系人:刘编辑word图文投稿邮箱:liuld @instrument.com.cn微信:JaysonXY(备注来意:投稿)(本文编辑:刘立东 点击查看KOL主页)
  • 国瑞力恒发布国瑞力恒 土壤VOCs检测仪 PID光离子化检测原理新品
    GR-3012C型手持式VOCs检测仪产品概述 土壤VOCs检测仪 PID光离子化检测原理GR-3012C型手持式VOCs检测仪(以下简称检测仪)是我公司研发的一款PID光离子化检查原理快速测量总挥发性有机物浓度的手持式仪器。本仪器主要用于现场检测环境空气,应急(泄漏)事故监测、职业卫生场所、石化企业安全检测以及储罐、管道、阀门泄漏检测等的总挥发性有机物浓度,根据不同的需求可选配不同量程的传感器。适用范围土壤VOCs检测仪 PID光离子化检测原理适用于环境空气,应急(泄漏)事故监测、职业卫生场所、石化企业安全检测以及储罐、管道、阀门泄漏检测等的总挥发性有机物浓度。配备专门的土壤打孔器和取样管可实现对土壤挥发在空气中的有机挥发性气体进行快速检测。依据标准土壤VOCs检测仪 PID光离子化检测原理HJ 1019—2019 《地块土壤和地下水中挥发性有机物采样技术》GB 12358-2006 《作业场所环境气体检测报警仪通用技术要求》GB 37822-2019 《挥发性有机物无组织排放控制标准》GB 20950-2007 《储油库大气污染物排放标准》技术特点土壤VOCs检测仪 PID光离子化检测原理1. 可选择不同量程的传感器,分辨率可达1PPB,测量量程可达10000PPM;2. 内置上百种VOCs气体的校正系数,测量数据更准确;3. 高灵敏度、高稳定性、响应迅速;4. 传感器气室外置,更换传感器方便; 5. 采用进口采样泵,负载能力强,使用寿命长; 6. 电子流量计、闭环流量控制,流量不受管道负压影响,测量数据更稳定;7. 内置高能锂电池,一次充电可连续工作8小时;8. 便携式,体积小、重量轻;9. 配备蓝牙打印功能,打印项目可自由选择; 10. 报警功能,上、下限报警值可任意设定。11. 测量数据包括平均值、峰值、TWA值、STEL值等多种浓度信息技术指标 表1技术指标主要参数参数范围分辨率准确度采样流量0.7L/min0.01L/min优于±5%VOCs传感器10000PPM1ppb负载流量 20kPa 工作温度(-20~+60)℃数据存储能力1000组电池工作时间大于8小时仪器噪声60dB(A)整机重量约0.9kg外型尺寸(长×宽×高)200×100×50功耗5W创新点:传感器量程精度做了很大的变化,10000ppm分辨率可达到1ppb国瑞力恒 土壤VOCs检测仪 PID光离子化检测原理
  • PerkinElmer推出全新发光 EnSpire(TM) 多标记微孔板检测仪
    新平台提高了检测灵敏度,克服微孔板中细胞数量过少的限制,强大的检测性能提高了研究效率   芝加哥,2009 年 10 月 19 日(美国商业新闻)- 专注于提高人类健康及其生存环境安全的全球领先公司 PerkinElmer, Inc.,今天在 2009 神经科学学会年会上宣布推出最新增强型EnSpire(TM) 多标记微孔板检测仪平台 - EUR EnSpire,它具有超灵敏度发光检测功能。此项新检测功能为科研人员(包括在癌症和神经药理学领域从事原代细胞或干细胞研究的科研人员)提供了增强的功能,以提高检测性能和灵敏度。   EnSpire 平台是一个可灵活配置的微孔板检测器,提供高性能检测功能和方便易用的软件。该平台经济实用,可适合在各种规模的实验室中进行研究。扩展的模块新增了超灵敏化学发光检测、温度控制及适用于 96 孔和 384 孔微孔板的荧光强度 (FI) 底部检测等多种功能。对于细胞样品数量有限的科研人员来说,增强的检测信号可以提高检测性能和精度。   PerkinElmer 生物研发业务自动化和检测解决方案副总裁兼总经理 Nance Hall 说,“在一些细胞稀缺、研究资源有限的领域,EnSpire 的发光灵敏度可以应对细胞不足和细胞转染率低等限制线性动态检测范围和检测窗优化的因素,强大的检测性能可以轻松面对最新的应用检测技术的挑战。EnSpire 平台目前具有化学发光检测功能,能够帮助化学发光研究领域(尤其是细胞增殖、细胞毒性和报告基因检测领域)的科研人员,提高检测灵敏度。”   为满足客户需求,EnSpire 平台可以提供以下关键检测技术:   * Quad 光栅   - 荧光强度 (FI)   - 吸光度 (Abs)   * Alpha 技术   * 超灵敏化学发光   * 温度控制与底部检测荧光强度   关于 PerkinElmer, Inc.   PerkinElmer, Inc. 是一家专注于提高人类及环境的健康和安全的全球领先公司。据报道,该公司 2008 年收入约为 20 亿美元,拥有 8,400 名员工,为超过 150 个国家/地区的客户提供服务,同时该公司也是标准普尔 500 指数的成员。有关其它信息,请访问 www.perkinelmer.com.cn 或致电 1-877-PKI-NYSE。   媒体联络   PerkinElmer, Inc. Kim McCrossen 联络电话︰+781-663-5871 版权所有 美国商业新闻 2009
  • BLT小课堂|水母发光蛋白检测法在细胞钙离子含量测定中的应用
    Ca2+作为普遍的第二信使在细胞信号转导过程中起着非常重要的作用,是单个细胞生存和死亡的信号。它参与了神经传导、血液凝固、肌肉收缩、心脏收缩、大脑功能、酶功能以及内分泌腺的激素分泌等各种生理机能。而人们对Ca2+在信号转导中作用的认识,则很大程度上取决于Ca2+测定技术。目前常用的Ca2+检测方法主要有:Ca2+选择性微电极测定法、同位素示踪法、核磁共振法和水母发光蛋白检测法等。01Ca2+选择性微电极测定法:Ca2+选择性微电极一种电化学敏感器。利用内充液和组织或细胞之间产生电位差,理想情况下,该电位差是Ca2+对数的线性函数,遵循Nernst方程。优点:直接、敏感地测定组织或细胞内的Ca2+,不需使用指示剂,不影响结合钙和游离钙的平衡。缺点:反应速度慢而无法测定Ca2+的快速变化,而且穿刺损伤细胞可引起渗漏,且不适用于太小的细胞。02同位素示踪法:用放射性核素45Ca2+对Ca2+进行示踪,可测量出通过细胞膜转运到细胞内Ca2+增加的速度及浓度的大小,揭示Ca2+泵的作用,目前主要用于测定跨膜Ca2+的流动。优点:测量方法简单易行,比普通化学分析法的灵敏度高。确定放射性示踪剂在组织器官内的定量分布,可以达到细胞、亚细胞乃至分子水平。缺点:静态效果差,需要特定的同位素测定仪,并且要注意示踪剂的同位素效应和放射效应问题。03核磁共振法:是一种新的、非光学技术的Ca2+检测方法。由于正常生物体内氟含量很少,为了得到足够的响应,在检测时需要使用含氟指示剂。该指示剂经过化学修饰后进入细胞,进而被水解成游离状态,然后与Ca2+结合,根据获得的波谱图计算出Ca2+的浓度。优点:具有非破坏性和无损伤性,能够在接近生物样本生理状态下连续动态地进行检测,准确反应Ca2+浓度。缺点:需要核磁共振仪,成本较高。04荧光探针法:目前常用的Ca2+荧光探针有Fluo-3、Fluo-4、Fluo-8等。这类探针本身无法进入细胞,但它的亲脂性衍生物却可以透过细胞膜进入细胞。一旦进入细胞,这类亲脂性衍生物的亲脂性封闭基团在细胞非特异性酯酶的作用下被分裂除去,在细胞内便会形成一种带负电荷的荧光染料。与胞内Ca2+结合时,其荧光强度显著增加。优点:指示剂易导入细胞,空间分辨率高,反应速度快,而且可同时检测多重离子。缺点:需要有荧光显微镜或激光共聚焦显微镜,成本较高。05水母发光蛋白检测法:最近十几年来,水母发光蛋白(Aequorin)很受人们的关注。水母发光蛋白由189个氨基酸组成,具有3个Ca2+结合的EFhand结构,所以水母发光蛋白可作为检测Ca2+的新型探针。优点:Ca2+/水母蛋白复合物能检测~0.1μm到>100μm范围内的钙离子浓度,且复合物不会从细胞内泄露出来,可检测几小时至数十天内Ca2+浓度的变化。比荧光探针法的背景低,样本本身不会发生自荧光。腔肠素的性质腔肠素(Coelenterazine)作为海洋动物体内贮存光能的分子,它广泛存在于海洋生物体内,比如海肾、海蜇、水螅等。腔肠素是天然荧光素中最普遍的,它可作为很多荧光素酶的底物。目前研究得最透彻的以腔肠素为底物的荧光素酶来源于海肾(Renilla),即海肾荧光素酶(Renilla reniformis,简称Rluc)。腔肠素的工作原理腔肠荧光素是一个分子量约400 Da 的疏水基团,它可以自由穿越细胞膜。在一个以荧光素/荧光素酶为基础的系统中,腔肠素作为以水母发光蛋白为代表的海洋发光蛋白的辅助因子,与水母发光蛋白进行稳定的结合,引起脱辅基水母发光蛋白和腔肠荧光素之间的共价键破裂,腔肠荧光素(Coelenterazine)被氧化脱羧,形成腔肠酰胺(Coelenteramide),释放出CO2,同时发出波长为469nm的蓝色生物荧光,该荧光可用博鹭腾高灵敏度管式/板式发光检测仪进行测定。图1.腔肠素/水母发光蛋白检测Ca2+机制水母发光蛋白一旦和Ca2+反应即丧失发光功能,因此当一部分水母发光蛋白与Ca2+反应时,被消耗水母发光蛋白的发光强度能反映出Ca2+浓度变化,而且被消耗的水母发光蛋白的发光强度与Ca2+浓度之间存在线形关系。如同萤火虫荧光素酶,海肾荧光素酶的活性也不需要翻译后修饰,一旦翻译完成即可行使遗传报告基因的功能。但是与萤火虫荧光素酶又有差异,即腔肠素/荧光素酶系统不需要三磷酸腺苷(ATP),因此更利于生物荧光的研究。技术小结由于Ca2+在生命活动的各种生理生化反应、疾病的发生和发展中都扮演着极其重要的角色,而游离的Ca2+浓度变化又与细胞的功能、信号转导乃至细胞的凋亡有密不可分的联系,因此,研究如何检测细胞内游离Ca2+浓度显得尤为重要。Ca2+选择性微电极测定法不需要使用指示剂,但是穿刺过程会损伤细胞,进而引起渗漏。同位素示踪法简单,但是静态效果差,还需要注意同位素效应和放射效应问题。核磁共振法和荧光探针法都需要特定的仪器,成本较高。水母发光蛋白检测法不需要激发光源,因而消除了细胞自发荧光的干扰,背景荧光远低于使用钙离子指示剂的荧光。另外腔肠素具有疏水性,易于通过细胞膜,适于全细胞的研究。 腔肠素/水母发光蛋白的生物荧光反应对Ca2+浓度的变化非常敏感,但是这种发光相对较弱,因此需要使用高灵敏度的发光检测仪进行检测。
  • 新品推荐:化学发光原理与计算机技术相结合仪器---A2070N化学发光定氮仪
    石油产品检测仪器有着30多年的发展历史。伴随着石油和石化工业的发展,石油产品检测仪器走过了从无行业标准到统一标准 从手动到自动的发展历程。石油产品检测仪形成了很多门类:闪点检测仪、倾点检测仪、凝点检测仪、石油分析仪、水分测定仪、光谱分析仪等等。氮测定仪更是石油产品检测中比较小众的存在。A2070N氮测定仪 (化学发光定氮仪)A2070N 氮测定仪是根据化学发光原理与计算机技术相结合研发的新一代精密分析仪器。适用于测定石脑油,馏分油,发动机燃料和其他石油产品。应用于测定石脑油,馏分油,发动机燃料和其他石油产品。适用标准:SH/T 0657、ASTM D46291、系统采用化学发光法测定总氮含量。2、提高了抗杂质干扰的能力,避免了电量法对滴定池的繁琐操作和因此带来的不稳定因素,使得仪器的灵敏度大为提高。3、系统关键部位采用**器件,使得整机性能有了可靠的保证。4、软件直观易学,标准曲线和结果自动保存,永远不会丢失数据。样品种类 液体、固体和气体测定方法 化学发光法样品进样量 固体样品:1-20mg 液体样品:5-20μL 气体样品:1-5mL测量范围 0.1-5000mg/L测量精度 化学发光定氮仪 进样量(μL) RSD(%) 0.1 20 25 5 10 10 50 10 5 100 10 3 5000 10 3控温范围 室温~1300℃控温精度 ±1℃气源要求 高纯氩气:纯度99.995%以上 高纯氧气:纯度99.99%以上工作电源 AC220V±10% 50Hz功 率 1500 W外形尺寸 主机:305(W)×460(D)×440(H)mm 温控:550(W)×460(D)×440(H)mm重  量 主机:20kg 温控:40kg
  • 水质综合毒性测定仪-一款便携式发光菌毒性检测仪器2024实时更新
    型号推荐:水质综合毒性测定仪-一款便携式发光菌毒性检测仪器2024实时更新,水质综合毒性测定仪,作为现代水质监测技术的重要组成部分,以其独特的检测方式和广泛的应用领域,为水质分析提供了强有力的支持。本文将从四个方面阐述其对水质分析的帮助。 一、快速准确检测多种污染物 水质综合毒性测定仪能够快速、准确地检测水样中的多种污染物,包括重金属、有机污染物等。通过发光细菌法的应用,该仪器能够实时反映水样中的毒性水平,为水质分析提供及时、可靠的数据支持。 二、评估水质对水生生物的影响 除了检测污染物外,水质综合毒性测定仪还能评估水质对水生生物的影响。通过模拟水生生物在自然环境中的反应,该仪器能够预测水质变化对水生生物种群结构和生态平衡的影响,为水质管理和生态保护提供科学依据。 三、辅助决策与预警 水质综合毒性测定仪的检测结果能够为管理部门提供决策支持。当水质出现异常时,该仪器能够迅速发出预警信号,提醒相关部门及时采取措施,防止水质进一步恶化。同时,通过长期监测和数据分析,该仪器还能为水质改善方案的制定提供重要参考。 四、促进水资源可持续利用 水质综合毒性测定仪的应用有助于实现水资源的可持续利用。通过科学评估水质状况,该仪器能够指导水资源的合理开发和利用,减少污染排放,保护水资源生态环境。同时,它还能为公众提供水质信息,提高公众对水资源保护的意识。 五、仪器特点 1、符合国家标准(GB/T154411995)及国际标准(ISO11348-3); 2、对超过近3000种以上毒性化合物敏感的生物早期预警系统; 3、样品制备后15分钟内得到结果,快速、可靠、可再现; 4、检测结果和其他传统毒性分析方法高度相关,可应用于应急水体污染检测,帮助用户实时监控排水是否符合当地法规和排放标准; 5、Android智能操作系统,更智能,更具人性化; 6、具有自主研发的生物毒性暗室自动升降检测装置,解决行业内开盖测试受强光影响的难题;同样的菌量,用我们仪器可以节省5倍的耗材成本; 7、便携性PVC工程箱设计,可外出携带现场检测; 8、7英寸超大显示触控屏幕,省去按键繁琐操作,更方便; 9、使用硅光电倍增管,大幅提升检测灵敏度; 10、具有RJ45、WIFI、4G和蓝牙连接传输功能,可实现无线传输至相关监控、监管平台,实现数据的实时性,更符合监管部门的场景需求; 11、仪器内置6000mAH锂电池组,在外部断电或无供电情况下,可支撑连续工作8个小时以上; 12、一条曲线可做20个曲线浓度点,可随意选择曲线点是否参与整条曲线计算,无需手动记录,保证曲线值更精准;(曲线浓度点可定制增加) 综上所述,水质综合毒性测定仪在水质分析中发挥着重要作用。它不仅能够快速准确检测多种污染物,评估水质对水生生物的影响,还能为管理部门提供决策支持和预警服务,促进水资源的可持续利用。随着技术的不断进步和应用领域的不断拓展,相信水质综合毒性测定仪将在未来发挥更加重要的作用。
  • 863计划生物和医药技术领域“开放式全自动管式化学发光免疫检测系统的研制”项目取得重要进展
    全自动管式化学发光免疫检测技术以其精确、全自动的突出特性日益成为各大医院检验科开展免疫诊断的首选。近年来,罗氏等跨国公司采取仪器、试剂捆绑配套的策略逐步压缩国内产品市场份额,占据了国内各类大型医院90%以上的免疫诊断市场。为此,&ldquo 十二五&rdquo 863计划生物和医药技术领域设立&ldquo 开放式全自动管式化学发光免疫检测系统的研制&rdquo 项目,由厦门大学等十家单位联合进行国产全自动管式化学发光免疫检测仪以及配套试剂的研制。   近来,该项目取得重要进展,自主研发的开放式全自动管式化学发光免疫分析仪(Caris200)在检测通量(200测试/小时)、试剂位(50个)以及测试精度等主要性能参数均接近或达到国际先进产品水平,并于2014年6月19日获得国家医疗器械注册证书(国食药监准字2014第3401035号)。此外,在项目组建立的分析平台上基础上,同时开展了90多种配套免疫诊断试剂的研制,品类覆盖了当前我国临床免疫检测需求的90%以上。该项目的顺利实施,为临床提供了质优价廉的免疫诊断试剂,将提高医疗检验的整体水平,有效打破进口试剂和仪器在中国市场的垄断地位。
  • 新品上市:月旭科技低温型蒸发光散射检测器
    待测样品物质没有生色基团,无法用紫外-可见光检测器检测该怎么办?别担心,这期小编给大家带来了月旭科技的低温型蒸发光散射检测器,无论物质是否具有生色基团都逃不过他的“眼睛”。下面就由小编给大家介绍一下月旭科技新推出的低温型蒸发光散射检测器吧!蒸发光散射检测器检测原理 仪器优点高灵敏度,优化了对非挥发性、热不稳定和半挥发性化合物的敏感性;专用的高效液相色谱雾化器和创新的流通池设计,使谱带展宽最小化;容易拆卸和安装的雾化器,流量范围涵盖200μl /min~2ml/min;通过自动增益调整,检测器可以自动调整增益设置;完全远程控制,气体、加热器、光电二极管、光源均可在分析结束之后自动关闭;可以为符合GLP和验证程序提供了完整的SOP方案;仪器寿命长,具备很高的可靠性和稳定性;低温蒸发,避免温度过高化合物分解导致的检测不准。Welch ELSD-5450可用工作站列表应用案例同步测定银杏中萜烯内酯和类黄酮:采用HPLC/ELSD法对四种萜烯内酯和三种黄酮类化合物进行了色谱分析。1 -银杏内酯,2 -银杏内酯C, 3 -银杏内酯A,4 -银杏内酯B,5 -槲皮素,6 -异鼠李皮素,7 -山奈酚
  • 真空衰减法无损密封检测仪的原理
    真空衰减法无损密封检测仪的原理在现代包装工业中,密封完整性是确保产品质量和安全性的关键因素之一。真空衰减法无损密封检测仪作为一种先进的检测技术,以其高效、精确和无损的特点,广泛应用于制药、食品、化妆品等行业的密封性测试。本文将深入探讨真空衰减法的原理、技术优势以及在不同领域的应用情况。真空衰减法的原理真空衰减法无损密封检测仪的核心原理在于利用压力差来检测包装容器的密封性。其操作流程如下:测试腔体准备:将待测容器置于专门的测试腔体中。真空抽吸:对测试腔体进行抽真空处理,形成容器内外的压差。气体泄漏:由于压差作用,容器内部的气体通过潜在的漏孔泄漏到测试腔体内。压力监测:主机压力传感器实时监测测试腔体的压力变化。数据比较:将监测到的压力变化值与预设的参考值进行比较,以判断容器的密封性是否达标。技术优势无损检测:与传统的破坏性测试方法相比,真空衰减法能够在不破坏产品的情况下完成密封性检测。高精度:采用高精度的CCIT测试技术,能够检测到微小的泄漏孔径和泄漏流量。符合标准:满足ASTM测试方法和FDA标准,确保检测结果的权威性和准确性。适用范围广:适用于多种包装容器,包括西林瓶、安瓿瓶、输液瓶等,覆盖大容量和小容量注射液以及冻干产品的密封完整性验证。应用领域制药行业:在制药领域,真空衰减法无损密封检测仪被用于确保药品包装的密封性,防止微生物污染和药物变质。第三方检测机构:作为独立的检测机构,使用该技术为客户提供客观、准确的密封性测试服务。药检机构:药检机构利用该技术进行药品质量监管,保障公众用药安全。结论真空衰减法无损密封检测仪以其高效、精确、无损的特点,为包装密封性检测提供了一种理想的解决方案。本文旨在提供一个关于真空衰减法无损密封检测仪的全面介绍,包括其工作原理、技术优势以及在不同行业中的广泛应用。希望能够帮助读者更好地理解这一技术,并认识到其在现代工业中的重要性。
  • 789万!山西医科大学第一医院分子医学中心高质量发展购置电致化学发光检测仪器等设备采购项目
    一、项目基本情况(一)项目编号:ZZCF-2024035(二)项目名称:山西医科大学第一医院分子医学中心高质量发展购置电致化学发光检测仪器等设备采购(三)采购方式:公开招标(四)预算金额:789.2万元(五)招标控制价:782.9万元(六)采购需求:1.本次招标共4包,所投包内项目必须完全响应招标文件所列示内容。(具体采购内容、商务、技术服务要求等详见招标文件)单位:万元包号货物名称数量预算金额(单价)招标控制价(单价)招标控制价(总价)备注第一包近红外全光谱多模态活体成像系统1220220220合计220第二包近红外二区窗口荧光成像系统1100100100合计100第三包电致化学发光检测仪1181818多通道恒电位仪2448扫描电化学显微镜1262626高效液相色谱仪2202040核心产品微流控配套设备(匀胶机*1,烤胶机*1,注射泵*1,普通注射泵*1)1777细胞间设备(C02培养箱*4,超净工作台*4,高速冷冻离心机*2,自动细胞计数器*2,液氨罐*4,加热制冷型恒温金属浴*4,细胞摇床*4,真空吸液系统*4)1606060实验室系列离心机(低速离心机*1、高速离心机*1)(配套转子和套筒3套以上)3101030合计189第四包荧光光谱仪26563126核心产品进口产品纳米粒度仪1454545进口产品紫外-可见分光光度计12018.918.9进口产品纳米颗粒跟踪分析仪185.28484进口产品合计273.9注:上述表格中未特别标注为“进口产品”字样的,均必须采购国产产品。所采购的货物、服务必须符合国家的强制性标准。2.招标范围:包括货物的供应、运输、安装、调试、培训和售后服务等。具体报价范围、采购范围及所应达到的具体要求,以招标文件中商务、技术和服务的相应规定为准。3.采购需求:详见招标文件第四部分商务、技术要求。(七)供货时间:第一包:近红外全光谱多模态活体成像系统:合同签订后4个月内;第二包:近红外二区窗口荧光成像系统:合同签订后6个月内;第三包:1、电致化学发光检测仪:合同签订后30天内;2、多通道恒电位仪:合同签订后30天内;3、扫描电化学显微镜:合同签订后30天内;4、高效液相色谱仪:合同签订后90天内;5、微流控配套设备(匀胶机*1,烤胶机*1,注射泵*1,普通注射泵*1):合同签订后30天内;6、细胞间设备(C02培养箱*4,超净工作台*4,高速冷冻离心机*2,自动细胞计数器*2,液氨罐*4,加热制冷型恒温金属浴*4,细胞摇床*4,真空吸液系统*4):合同签订后30天内;7、实验室系列离心机(低速离心机*1、高速离心机*1)(配套转子和套筒3套以上):合同签订后30天内;第四包:1、荧光光谱仪:合同签订后45天内;2、纳米粒度仪:合同签订后40天内;3、紫外-可见分光光度计:合同签订后45天内;4、纳米颗粒跟踪分析仪:合同签订后3个月内;(八)质保要求:第一包:近红外全光谱多模态活体成像系统:设备整机质保 3 年,并且每年保养和巡检 2 次。第二包:近红外二区窗口荧光成像系统:设备整机质保 3 年,并且每年保养和巡检 2 次。第三包:1、电致化学发光检测仪: 设备整机质保3 年,并且每年保养和巡检 2 次2、多通道恒电位仪:设备整机质保3年。3、扫描电化学显微镜:设备整机质保3年。4、国产高效液相色谱仪:设备整机质保3年,并且每年保养和巡检5次。5、微流控配套设备(匀胶机*1,烤胶机*1,注射泵*1,普通注射泵*1):设备整机质保 3 年,并且每年保养和巡检 2 次。6、细胞间设备(CO2培养箱*4,超净工作台*4,高速冷冻离心机*2,自动细胞计数器*2,液氮罐*4,加热制冷型恒温金属浴*4,细胞摇床*4,真空吸液系统*4):设备整机质保5年,并且每年保养和巡检至少2次。7、实验室系列离心机(低速离心机*1、高速离心机*1)(配套转子和套筒3套以上):设备整机质保 3 年,并且每年保养和巡检 4 次。第四包:1、荧光光谱仪:设备整机质保 3 年,并且每年保养和巡检 2 次。2、纳米粒度仪:设备整机质保 3 年,并且每年保养和巡检 1 次。3、紫外-可见分光光度计:设备整机质保 3 年,并且每年保养和巡检 1 次。4、纳米颗粒跟踪分析仪:设备整机质保 3 年,并且每年保养和巡检 1 次。(九)本项目不接受联合体投标。二、获取招标文件1.获取时间:2024年05月06日http://www.ccgp-shanxi.gov.cn)关注澄清公告、变更公告、终止公告等有关公告,此类公告不再书面进行通知。各市场参与主体因自身原因未关注到此公告并造成损失的,责任自负。三、对本次招标提出询问,请按以下方式联系1.采购人信息名 称:山西医科大学第一医院
  • atp手持式荧光检测仪-风途产品上新-ATP生物荧光检测仪
    FT-ATPatp手持式荧光检测仪-风途产品上新-ATP生物荧光检测仪FT-ATPatp手持式荧光检测仪-风途产品上新-ATP生物荧光检测仪:该设备为全新升级产品,大屏幕触摸显示屏,代替传统按键。操作采用生物化学反应方法检测ATP含量,ATP荧光检测仪基于萤火虫发光原理,利用“荧光素酶—荧光素体系”快速检测三磷酸腺苷(ATP)。ATP拭子含有可以裂解细胞膜的试剂,能将细胞内ATP释放出来,与试剂中含有的特异性酶发生反应,产生光,再用荧光照度计检测发光值,微生物的数量与发光值成正比,由于所有生物活细胞中含有恒量的ATP,所以ATP含量可以清晰地表明样品中微生物与其他生物残余的多少,用于判断卫生状况。  仪器特性:  实用性 —— 可根据环境检测需求设定上下限值,做到数据快速评估预警,表面洁净度快速筛查。  灵敏度高 —— 10-15~10-18 mol  速度快 —— 常规培养法18-24h以上,而ATP只需要十几秒钟 .  可行性 —— 微生物数量与微生物体内所含ATP有明确的相关性。 通过检测ATP含量,可间接得出反应中微生物数量  可操作性 —— 传统培养方法需要在实验室由经过培训的技术人员进行操作;而ATP快速洁净度检测操作非常简便,只需简单的培训即可由一般工作人员进行现场操作。  体验更好 —— 试子套管采用插拔式灵活设计,可定期清洗长期使用,延长仪器寿命。  主要参数:  1、显示屏:3.5英寸高精度图形触摸屏  2、处理器:32位高速数据处理芯片  3、检测精度:1×10-18mol  4、检测范围:0 to 9999 RLUs  5、检测时间:15秒  6、检测干扰:±5﹪或±5 RLUs  7、操作温度范围:5℃到40℃  8、操作湿度范围:20—85﹪  9、ATP回收率:90-110%  10、检出模式:RLU、大肠菌群筛查  11、50个用户ID 设定  12、可设定的结果限值个数:251个  13、自动判断合格与不合格  14、自动统计合格率  15、内置自校光源  16、开机30秒自检  17、配有miniUSB接口,可将结果上传至PC  18、配备 软件驱动U盘代替传统光盘  19、仪器尺寸(W×H×D):188 mm×77mm×37mm  20、使用可充电锂电池免电池更换  21、备用状态(20℃):6个月  22、中文操作手册  23、稳定的液体荧光素酶  24、润湿的一体化采集拭子  风途ATP荧光检测仪用途广泛,可用于: 食品、医药卫生、医药、日化、造纸、工业水处理、国防以及环保、水政、海关出入境检疫及其他执法部门等多种行业 。  随机配置:ATP荧光检测仪(手持)主机、铝合金手提箱、驱动U盘、PC数据线、数据分析软件、中文操作手册
  • 云唐ATP荧光检测仪用于食品微生物细菌检测
    云唐ATP荧光检测仪用于食品微生物细菌检测   该仪器可快速检测各种水质中微生物、细菌含量。设备为全新升级产品,大屏幕触摸显示屏,代替传统按键。操作采用生物化学反应方法检测ATP含量,ATP荧光检测仪基于萤火虫发光原理,利用“荧光素酶—荧光素体系”快速检测三磷酸腺苷(ATP)。ATP拭子含有可以裂解细胞膜的试剂,能将细胞内ATP释放出来,与试剂中含有的特异性酶发生反应,产生光,再用荧光照度计检测发光值,微生物的数量与发光值成正比,由于所有生物活细胞中含有恒量的ATP,所以ATP含量可以清晰地表明样品中微生物与其他生物残余的多少,用于判断卫生状况。 ATP荧光检测仪产品链接https://www.instrument.com.cn/netshow/SH104655/C536336.htm ATP荧光检测仪创新点和产品特性:  仪器特性:  实用性 —— 可根据环境检测需求设定上下限值,做到数据快速评估预警,表面洁净度快速筛查。  灵敏度高 —— 10-15~10-18 mol  速度快 —— 常规培养法18-24h以上,而ATP只需要十几秒钟 .  可行性 —— 微生物数量与微生物体内所含ATP有明确的相关性。 通过检测ATP含量,可间接得出反应中微生物数量  可操作性 —— 传统培养方法需要在实验室由经过培训的技术人员进行操作 而ATP快速洁净度检测操作非常简便,只需简单的培训即可由一般工作人员进行现场操作。  体验更好 —— 试子套管采用插拔式灵活设计,可定期清洗长期使用,延长仪器寿命。  主要参数:  1、显示屏:3.5英寸高精度图形触摸屏  2、处理器:32位高速数据处理芯片  3、检测精度:1×10-18mol  4、大肠菌群:1-106cfu  5、检测范围:0 to 999999 RLUs  6、检测时间:15秒  7、检测干扰:±5﹪或±5 RLUs  8、操作温度范围:5℃到40℃  9、操作湿度范围:20—85﹪  10、ATP回收率:90-110%  11、检出模式:RLU、大肠菌群筛查  12、50个用户ID 设定  13、可任意设定上限值,下限值  14、自动判断合格与不合格  15、自动统计合格率  16、内置自校光源  17、开机30秒自检  18、配有miniUSB接口,可将结果上传至PC  19、配备专用软件驱动U盘代替传统光盘  20、仪器尺寸(W×H×D):188 mm×77mm×37mm  21、使用可充电锂电池免电池更换  22、备用状态(20℃):6个月  23、中文操作手册  24、稳定的液体荧光素酶  25、润湿的一体化采集拭子  云唐ATP荧光检测仪用途广泛,可用于: 食品、医药卫生、医药、日化、造纸、工业水处理、国防以及环保、水政、海关出入境检疫及其他执法部门等多种行业 。  随机配置:ATP荧光检测仪(手持)主机、仪器包、挂绳、PC数据线、数据分析软件、中文操作手册
  • 全集成数字微流控及片上并行化学发光免疫检测新方法
    数字微流控(Digital microfluidics)是一种通过电极阵列,在芯片上利用电信号对微量液体运动进行精准操纵的技术,现今已广泛应用于化学合成、生物分析、疾病诊断等领域。该技术利用了半导体技术及消费电子的设计理念,在手掌大小的微流控芯片上,无需外设的辅助,即可自动实现快速在场体外诊断(POCT)。芯片具有高度兼容性,可用于定量分析多种蛋白质和生物分子。  该技术的原理是通过改变芯片电极的电压来对应地改变其表面的亲疏水性,进而使液滴在相邻电极表面的接触角产生差异,从而使液滴在不同方向存在表面张力的差异,以此操纵液滴产生定向移动、分裂、合并等现象。其中,如何高效、稳定地生成微液滴是数字微流控技术的核心,也是其难点所在。在实际操作中,当芯片间隙与电极的尺寸比值超过某一阈值时,液滴撕裂成为更小的液滴将十分困难。该因素的存在导致当芯片结构和尺寸固定时,可生成液滴的最小体积也被限制。如果能突破这一限制,生成体积更小的液滴,则可以在有限的芯片区域内实现更多检测,提高系统的检测通量。此外,由于产生的液滴进一步缩小,片上样品稀释、磁珠清洗等具体实验的灵活性将显著提高,极大拓宽数字微流控技术在POCT方向的应用潜力。  近日,中国科学院苏州生物医学工程技术研究所研究员马汉彬课题组与长春理工大学等合作,创新性地提出名为“One-to-three”的数字微流控液滴生成新方法。该方法基于液滴对称撕裂可在几何中心位置保持表面张力平衡的原理,将一个大液滴分成三个液滴,包括一个在不改变数字微流控芯片几何尺寸的情况下高效分离出“高纵横比”的小液滴。该液滴撕裂方法超出了介电润湿数字微流控的几何极限。  结合“One-to-three”液滴生成的优势,科研人员整合了磁吸模块、光学检测模块、三轴操控模块、液滴驱动系统等开发出一套具备全自动路径编译、检测数据读取、三轴定外控制的软件。通过对系统不断测试优化,构建了整套全自动数字微流控化学发光免疫分析平台。该高度集成的平台可快速完成高效的磁珠洗涤,实现了在一个芯片上可以同时并行检测5个B型利钠肽样本,整个免疫测定过程仅约需10分钟,完成了从理论突破、功能设计及工程化开发的全流程。该研究成果可应用于人类血清中B型利钠肽的定量快速检测,对心衰的诊断、预后评估、病情监测、指导治疗等方面具有一定价值。  相关研究成果以“One-to-three” droplet generation in digital microfluidics for parallel chemiluminescence immunoassays为题,发表在Lab on a chip上,并被选为内封面论文,收录于2021热点论文集。
  • atp荧光检测仪是检测什么的
    新款ATP荧光检测仪配备USB接口wifi等功能深圳市芬析仪器制造有限公司生产的ATP荧光检测仪是基于萤火虫发光原理,利用“荧光素酶—荧光素体系”研制而成;由于所有生物活细胞中含有恒量的ATP,所以ATP含量可以清晰地表明样品中微生物与其他生物残余的多少,ATP荧光检测仪适用于食品、饮用水中微生物快速检测,餐具洁净度快速检测,食品加工器具、工作台面、餐饮器具等消毒结果快速检测,医疗环境工作平台即时评估。该设备采用生物化学反应方法检测ATP含量。 仪器特点1、小巧轻便2、3.5英寸高清真彩触摸屏3、高灵敏度光度计4、内置自校光源5、可储存20000个检测结果6、配有USB接口7、内置锂电池,可持续工作5小时8、可更换检测舱9、检测方法简便,不需要复杂的前处理 仪器参数1、显示屏:3.5英寸触摸屏2、检测精度:1*10-16mole atp3、检测范围:1-9999RLUs4、重复性:≤±5%5、采样点设定:不低于2000个6、存储功能:不低于20000个检测结果7、结果表述:可根据RLU值采用预置公式计算后显示级别。8、通用国内外一体化采集拭子及分离拭子。 使用步骤说明1、拭子解冻:把拭子从冰箱中取出,放置10-20分钟左右,使其恢复到室温状态;2、棉签取样:拧下拭子下部反应管,用棉签在检测区取样,将棉签与待测表明呈15-30o夹角、“Z”字形涂抹(涂抹区域约为10cm×10cm),涂抹过程中请旋转棉签,以便使棉头与检测样本充分接触,确保更*准的检测结果;3、安装反应管:将步骤2中取下的反应管恢复装配,安装到拭子正确位置(反应管口部端面与蓝色连接件下端面相平);4、注入试剂:将拭子竖直握于手中,用力往下折,使试剂全部注入反应管内;5、混合摇匀:手握拭子上部,左右30o摇匀(5秒钟),使试剂与样本完全反应。6、样本检测:将拭子插入处于待检测界面的ATP仪器实验仓内,闭合仪器上盖,开始检测。新款ATP荧光检测仪配备USB接口wifi等功能
  • 万宇平:全自动化学发光仪在农产品和食品快速检测中的应用和发展
    仪器信息网讯 2012年6月5日,由中国仪器仪表学会分析仪器分会、中国仪器仪表学会农业仪器应用技术分会主办,北京雄鹰国际展览公司承办的2012中国食品与农产品质量安全检测技术应用国际论坛暨展览会(CFAS 2012)在北京国际会议中心隆重开幕。本届论坛特别邀请到了多位食品、农产品监管部门的领导和食品质检领域的著名学者做主题报告。   如下是北京勤邦生物技术有限公司万宇平总经理报告的精彩内容: 北京勤邦生物技术有限公司万宇平总经理 报告题目:全自动化学发光仪在农产品和食品快速检测中的应用和发展   报告伊始,万宇平总经理谈到:“目前,随着全球经济的快速发展,人们对医学检验仪器设备也提出了新的要求,仪器的自动化、智能化、标准化、个性化以及小型便携化等成为了医学设备新的发展方向。目前,雅培的Aeroset全自动化生化分析仪每年可完成150万次检验,每小时可完成2000次检测。目前我国有着全自动化临床检验系统装备的医院还很少,而日本国立大学院70%以上的医院配备了不同规模的自动化系统,这就要求国产仪器需要将快速检测纳入医学领域的重点发展目标”。   关于食品安全与品质现状,万宇平总经理讲到:“目前食品安全突发事件频发,因此食品的快速检测技术符合中国国情,在探索食品安全监控体系的解决之道中意义重大。但是食品安全和快速检测技术也面临着一些问题:食品检测过程中还缺少国家标准;检测设备配套设施不全、准确度不高;还有突发应急事件检测难度大;专业人员水平参差不齐等”。   接着,万宇平总经理谈到:“食品安全检测行业的发展趋势是:检测时间更短、灵敏度更高、仪器微型自动化、检测方法集成化、检测产品国际化和检测方法标准化等”。   随后,万宇平总经理又讲到:“全自动化学发光检测法较其他方法,操作简单、成本较低、灵敏度较高、试剂较稳定。而且,全自动化学发光检测仪在乳品、水产品、畜禽产品、蜂产品、粮食制品、饲料检测等领域有重要应用。另外,目前生产化学发光检测产品的国外厂商主要有贝克曼、罗氏、雅培、日本东曹等;国内的厂商主要有泰格科信、科美、波生、安图等”。
  • Sanotac发布蒸发光散射检测器技术 高性能的ELSD 检测器
    全新的Omnitor低温型蒸发光散射检测器(ELSD检测器)重磅上市!三为科学蒸发光散射检测器技术团队通过独创的卧式结构,全新的光散射光路设计,智能的自动化功能、友好的用户界面和多平台控制,Omnitor蒸发光散射检测器可以为不同层次和需求的用户提供不同的实验体验。 三为科学本次推出全新ELSD900和ELSD6000两个型号蒸发光散射检测器参加慕尼黑分析仪器展览,新产品几个亮点:一、仪器内部温度场合理设计使体积小到26*19*46cm,和液相色谱泵同等宽度;二、定量重复性达到RSD6≤1.5%,最小检测浓度为≤5.0×10-6 g/mL (胆固醇-甲醇溶液)。三、信号稳定、噪音低,信号噪音 三为科学技术总监姜总向我们介绍Omnitor的仪器性能、参数和工程设计等方面已经达到国外品牌蒸发光散射检测器的同等品质,这两款检测器非常适合制药、药物开发、质保/质控、食品质量检测、保健品和精细化学品分析领域中化合物的分析和中草药、天然药物、食品科学领域天然产物活性成分分离纯化过程中的在线检测。这两款检测器可以消除梯度洗脱时溶剂峰的干扰,大大提高药物化合物库筛选效率。 姜总还向我们介绍了品牌蒸发光散射检测器应该具备的技术特点:紧凑的结构——独创的全新光散射光路和卧式仪器结构,并且对仪器内部温度场进行合理设计,仪器结构紧凑合理安全、长寿命——16项仪器自检,多重安全设计,避免流动相进入检测室检测性能优异——定量重复性达到RSD6≤1.5%,基线噪声低至0.01 mV,漂移小方便用户使用——10组方法存储管理(25个参数),多重报警模式,雾化管前置,便于用户观察和清洗智能温控——漂移管辅助快速降温系统可以完成不同方法间的快速切换,喷嘴加热及雾化管角度调整功能为高端用户提供个性化实验参数定制需求灵活的输出——0.3 ~ 30倍的连续增益调整,提供输出自动归零功能,-1000 mV ~ 1000 mV的偏置模拟输出,并且提供数字输出功能控制采集软件——色谱系统软件符合FDA 21CFR Part 11要求,具有审计追踪功能,可以与任何主流HPLC系统联用多重通讯模式——RS232,RS-485,USB,LAN(TCP/HTTP),可编程外部事件接口绿色节能——提供待机模式,检测器低功耗状态,同时节省50%以上氮气消耗,多重方式开启待机模式(内部、远程、定时器) 会议期间,ELSD9000蒸发光散射检测器得到仪器厂家和分析化学专家的充分认可,来自化学、医疗、食品、环境和医药产业的科技研发人员对ELSD9000的产品性能、结构设计、软件功能给予很大的肯定。 作为专业科学仪器生产企业,三为科学致力于制备液相色谱、蛋白纯化系统、色谱通用检测器的研究。对于行业热衷的液相色谱使用通用的检测器,ELSD9000和ELSD6000蒸发光散射检测器为广大分析检测和药物分离纯化领域的科学家提供了液相色谱通用检测器的解决方案和理想的性价比。在致力于优质色谱通用检测器的国产化的道路上,我们任重路远!
  • 勤邦生物欲推出全自动化学发光仪新品——CFAS 2012食品、农产品检测新技术系列视频采访
    仪器信息网讯 2012年6月5日,由中国仪器仪表学会分析仪器分会、中国仪器仪表学会农业仪器应用技术分会主办,北京雄鹰国际展览公司承办的2012中国食品与农产品质量安全检测技术应用国际论坛暨展览会(CFAS 2012)在北京国际会议中心隆重开幕。本届论坛以“为构建我国食品安全保障体系,进一步推动食品、农产品检测新技术的广泛应用,完善食品与农产品质检体系建设”为主题,特别邀请到了多位食品、农产品监管部门的领导和食品质检领域的著名学者做主题报告,并同期举行展览会,汇聚了70余家国内外科学仪器相关厂商,吸引了600余位来自各界的专家、代表参会。   展会期间,仪器信息网特别制作了“食品、农产品检测新技术系列视频采访”,与会的部分参展仪器厂商分别针对目前食品、农产品检测当中面临的技术、应用与市场需求,介绍了各自所能提供的解决方案。   北京勤邦生物技术有限公司总经理万宇平先生讲到:“在食品安全快速检测方面,我们做了许多工作,主要分为几个方面,一个方面是在现场野外进行快速试剂的检测,这样的技术已经在行业内得到了广泛的应用;另一方面是在实验室里进行快速的检测,但是我们应该从自动化程度、检测的方便性和检测成本等方面来定位快速检测”。   勤邦生物为此也做了一些全自动化的设备,目前我们将推出高通量的化学发光仪。这个仪器预计在今年年底的时候可以顺利推出,它有几个很明显的优势,一是可以节约人力成本;二是可以同时进行多个项目,在以往的检测中,我们只可以一次检测一个或一类污染物,但是这个仪器经过集成处理以后,可以同时检测15种以上的污染物,能够很好地满足用户的需求。另外,在批次检测中,很多检测往往效率比较低,而我们研制的这个全自动化学发光仪每小时可以检测120个样品;三是,化学污染物涉及到许多违禁药物,检测限要求很高,现有的技术又完全依赖国外,而现在我们开发的这个化学发光全自动分析体系也可以达到这样的灵敏度,也就是说,在指标上跟LC-MS/MS质谱这种技术指标是很相当的;最后,该仪器可以应用在食品、动物疫病和临床诊断领域。   北京勤邦生物技术有限公司   勤邦生物汇聚了全国最强大的食品安全专家团队,聘请国内外十余名权威专家为顾问,与中国疾病预防控制中心、中国食品科学技术学会、中国农业科学院、国家食品质量监督检验中心、中国农业大学等国内权威专家交流合作。勤邦生物现有员工388名,包含博士3名,硕士34名,其中教授及高级工程师12名,中级职称技术专家15名。   勤邦生物基于100多种化学物质的单克隆抗体库,研发中心组建了酶联免疫检测技术平台、胶体金快速检测技术平台、化学发光免疫检测技术平台、全自动免疫检测仪器和分子生物学检测技术平台等,已向市场推广100多种快速检测酶免试剂盒和胶体金试纸卡。公司目前拥有国家发明专利76项,实用新型专利46项,外观专利1项,国际PCP专利1项。勤邦生物在上海、广州、武汉、大连等城市建立17个营销办事处,欧盟、美国、日本等国均设立海外销售点。
  • 莱恩德首发|抗生素检测仪的原理、应用和发展趋势
    点击此处可了解更多产品详情:抗生素检测仪 随着抗生素的广泛使用,细菌耐药性的问题日益严重。为了有效控制抗生素的使用,避免耐药性的产生,开发了抗生素检测仪。本文将介绍抗生素检测仪的原理、应用和发展趋势。    一、抗生素检测仪的原理    抗生素检测仪主要基于微生物学原理,通过测量细菌生长抑制率来检测抗生素浓度。该仪器利用微孔板技术,将待测样品中的细菌与特定浓度的抗生素共培养,通过测量细菌生长抑制率,计算出抗生素浓度。该仪器可检测多种抗生素,包括β-内酰胺类、大环内酯类、氨基糖苷类等。    二、抗生素检测仪的应用   抗生素检测仪在临床医学、药理学和微生物学等领域具有广泛的应用价值。在临床医学中,抗生素检测仪可用于监测感染患者的抗生素浓度,指导医生合理用药。在药理学中,抗生素检测仪可用于研究新药和优化现有药物的疗效。在微生物学中,抗生素检测仪可用于检测病原菌对不同抗生素的敏感性,为医生提供针对性的抗生素治疗方案。    三、抗生素检测仪的发展趋势    随着科学技术的不断发展,抗生素检测仪也在不断升级和完善。未来,抗生素检测仪将朝着更快速、更准确、更便携的方向发展。同时,随着大数据和人工智能技术的普及,抗生素检测仪将实现智能化分析和预测,为临床决策提供更加准确的支持。此外,随着新材料和新技术的出现,抗生素检测仪的制造也将更加环保和可持续。    总之,抗生素检测仪在控制抗生素使用、预防细菌耐药性产生方面具有重要作用。未来,随着科学技术的不断进步,抗生素检测仪将会得到更加广泛的应用和发展。莱恩德首发|抗生素检测仪的原理、应用和发展趋势
  • 负氧离子检测仪的工作原理与选择
    空气中负氧离子的含量是空气质量好坏的关键。在自然生态系统中,森林和湿地是产生空气负(氧)离子的重要场所。在空气净化、城市小气候等方面有调节作用,其浓度水平是城市空气质量评价的指标之一。自然界中空气正、负离子是在紫外线宇宙射线、放射性物质、雷电、风暴、瀑布、海浪冲击下产生,既是不断产生,又不断消失,保持某一动态平衡状态。由于负离子的特性,空所中的负离子产生与消失会保持一个平衡,因此判断环境下负离子浓度需要借助专门的空气离子检测仪进行准确测量。负氧离子是带负电荷的单个气体分子和轻离子团的总称,简言之就是带负电荷的氧离子。在自然生态系统中,森林和湿地是产生空气负氧离子的重要场所。其浓度水平是城市空气质量评价的指标之一,有着 “空气维生素”之称。工作原理:空气离子测量仪是测量大气中气体离子的专用仪器,它可以测量空气离子的浓度,分辨离子正负极性,并可依离子迁移率的不同来分辨被测离子的大小。一般采用电容式收集器收集空气离子所携带的电荷,并通过一个微电流计测量这些电荷所形成的电流。测量仪主要包括极化电源、离子收集器、微电流放大器和直流供电电源四部分。首要要了解自己选负离子检测用途,目前有进口的负离子检测仪,国产的负离子检测仪,仿冒的负离子检测仪等等。分为便携的负离子检测仪,在线的负离子检测仪,按原理分又分为平行电极负离子检测仪和圆通电容器负离子检测仪两种。空气负氧离子检测分为 “平极板法测空气负离子” 和”电容法测空气负离子“这两种原理,其中“平极板”原理是比较常用的一种方法,检测快速,经济实惠,用于个人、工厂、实验室等单位。电容法测空气负离子检测仪是一种高性能检测方法,具有防尘、防潮等特点,相对于平极板法测空气负离子更加,特别适合于森林、风景区的使用,是林业局,科研单位测量空气质量的常见仪器。按收集器的结构分,负离子检测仪可以划分为平行板式和Gerdien 冷凝器式/双重圆筒轴式两种类型。1.Ebert式/平行电板式离子检测仪平行电板式离子检测仪是目前低端空气离子检测仪比较常用的一种方法。A跟B是一组平行的且相互绝缘的电极,B极顶端边着一个环形双极电极,空气通过右下角的风扇吸入,空气中的负离击打A/B电极放电,电荷传导到E环形电极形成自放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上比较成熟,造价成本也比较低,但是易受外部环境影响,另外这种结构自身的弱点容易导致电解边缘效应,容易造成气流湍流,造成检测结果偏移较大。2.Gerdien冷凝器式/双重圆筒轴式双重圆筒轴式离子检测仪是目前中高端空气离子检测仪成熟的一种方法。整体结构由3个同心圆筒组成,外围筒身及内轴为电极,空气通过圆筒时,离子撞击筒身跟轴产生放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上已非常成熟,但由于内部复杂的结构及控制,造价成本高昂,这种结构可以有效解决平行电板式结构固有的电解边缘效应,同时圆筒本身的结构及特殊的进气方式可以保持气流通过的平顺性,对离子数量及大小的检测精确性有极大提高。
  • 网友调查显示:蒸发光散射检测器异军突起
    仪器信息网讯 日前,仪器信息网网友公布了其近日在做仪器信息网仪器论坛做的一个关于我国液相色谱仪检测器配置的调查结果(原贴网址:http://bbs.instrument.com.cn/shtml/20130630/4824110/)。   本次调查从2011年11月开始,到2012年5月结束,历时一年半,共在仪器信息网的液相色谱版块收集了157个样本,调查了可紫外检测器、蒸发光散射检测器、二极管阵列检测器、示差折光检测器、荧光检测器、电化学检测器、质谱、核磁共振等八类检测器的分布情况。   从其调查结果显示,配置排名前三的检测器为:紫外检测器(27%)、二极管阵列检测器(22%)、荧光检测器(14%)。   具体结果分析:   1、紫外检测器还是液相色谱的主导,因为它可以检测大部分液相色谱可以检测的化合物。VWD和DAD两项的投票基本一致,只是现在检测器在可变波长与二极管阵列的价格上有很大出入,VWD相对价格便宜,所以仪器配置的比例还是更高。   2、示差折光检测器已经商品化很多年,再加上其独特的检测领域,特别是GPC分析仪器上的配置,所以它还占有很大比例。   3、异军突起的我想应该是蒸发光散射检测器(ELSD)了,它的出现没有多少年,而它的配置居然占到了12%。目前虽然ELSD的很多检测方法没有标准化,但是中国药典在一部已经有很多采用了ELSD检测,而中药的分析,也是药品分析中的重要组成,很多药品企业应该都会考虑它。 另微博网友@野菠萝是祖国花朵不是热带水果认为,因为蒸发光散射检测器是通用性的检测器,可以弥补示差折光检测器的灵敏度、梯度的不足 另外,蒸发光散射检测器的方法可以平移到HPLC-MS,非常适合经费有限才起步的小公司。免得到做质谱的时候,临时开发方法,拖延进度。   4、荧光检测器由于其灵敏度高,而且在液相领域应用也很广,检测机构一般都会配置。   5、而目前有几个检测器,比如电化学检测器、电喷雾检测器等,这些都具有专一行,通用性差,所以基本都是专用液相配置的多。
  • 深大学子使用色谱原理研发出食品安全检测仪
    p   最近在广州举行的第十三届“挑战杯”广东大学生课外学术科技作品竞赛终审决赛上,由深圳大学推荐的“食品安全检测仪”项目获得特等奖,团中央书记处书记傅振邦会见了该项目的研发团队,给予了亲切鼓励。 /p p   食品安全检测仪是由深圳大学的20多名大学生研发出来的,该仪器获得了4项国家专利和1项软件著作权,并已顺利投产。项目领头人张小虎是深圳大学2011级信息工程学院毕业生,目前就读于北京大学深圳研究生院。这个年仅23岁、对新技术有着特殊敏感的大男孩,凭借食品安全检测仪技术创业开办了自己的公司,实现了从技术到应用的转化。 /p p strong 历时两年研发成功 /strong /p p   食品安全检测仪于2011年开始研发,那时张小虎在深圳大学读本科一年级。 /p p   “三鹿奶粉事件,把中国的食品安全问题再一次推向了风口浪尖。短短几年的时间,致病的瘦肉精、毒米、毒面、毒油,为什么问题一再出现?中国的食品安全问题该如何解决?”张小虎说,由于食品中的有毒物质具有多样性和微量性,传统的检测设备不能满足要求,他因此萌发了自主研发一款针对中国食品安全问题的绿色食品安全检测仪器的心思。 /p p   在学校的支持与老师的指导下,张小虎带领深大信息工程学院的20多名大学生开始研发这款化学分析仪器,并一直坚持了两年多的时间。“有一次,有一个不合格的氘灯电源损坏了氘灯,氘灯光源不稳定导致输出的基线数据不稳定。开始我们不知道问题在哪里,因为影响基线稳定的因素很多,我们费了九牛二虎之力才最终定位问题。中途,我们几乎都想放弃了,在老师的鼓励和帮助下,我们还是挺过来了。”张小虎说。 /p p   2013年底,绿色食品安全检测仪研发成功。这个仪器有两个30寸传统电视机叠加起来大小,检测时,食物样品由自动进样器进入设备,被高压泵打入色谱柱,在色谱柱中进行分离,再到达检测器的流通池,经过光电管,用24位高精度AD采集数据,电脑计算出图谱并进行比较分析,实现了一键式全程操作。 /p p   2014年该仪器通过了广东省计量院的测试,并获得了广东省技术监督局颁发的生产许可证,正式投产。 /p p strong 技术上实现多项创新 /strong /p p   这款食品安全检测仪在技术上实现了多项创新,其中用液相色谱原理设计制作更属于国际国内首创。 /p p   张小虎介绍,液相色谱技术由于具有高分辨率、高灵敏度、速度快、色谱柱可反复利用以及流出组分易收集等优点,比传统的基于分光光度法原理的食品安全检测仪灵敏度更高,定性定量分析更准确。“在检测食品中的有毒物质时,我们往往不知道有毒物质是什么,这时我们就要利用大数据的图谱分析方法,通过工作量的图谱在几千张,人工读图要花费很多时间。而我们利用自己编写的MapReduce来处理图谱数据,使用计算机代替人工大量读图。” /p p   食品安全检测仪目前已获得了4项国家专利和1项软件著作权。其中一项专利技术“双流通池系统”,在不降低性能的同时可大幅度降低系统成本。“这种双系统特别适用于那些要检测大量的,相同类型的样品,比如食品的原料检测等。” /p p   项目的开发成功让张小虎有了创业的冲动,他迫切希望能将技术予以应用,从而将技术的价值最大化。在父母的支持下,他与伙伴于2012年12月6日成立了“通用深圳仪器公司”,同时他还被聘请为深圳市分析测试协会委员。 /p p   而这款针对中国食品安全问题的绿色食品安全检测仪器投放市场后也颇受青睐,目前已拥有广州饲料添加剂厂、佛山富维生物饲料有限公司、广州格拉姆生物科技有限公司等几十家饲料和生物制品企业“客户”。 /p p strong 用高科技创业成功概率大 /strong /p p   2014年10月,张小虎被北京大学深圳研究生院录取为研究生,继续着他的学业,他的导师亦非常支持他的项目。而他的企业,从原来的3个人发展到现在的16个人,几乎都是青春勃发的大学生,其中还有一个麻省理工学院的博士。 /p p   “从小到大,我都希望能成为一个通过自己努力实现个人梦想、掌控自己生活的人。小到成功拆装一个玩具、读完一本喜欢的书籍,大到选择自己热爱的专业、做出几项发明专利、创办自己的公司,很幸运的是,我正按照自己的人生规划,如愿地逐步实现自己的人生目标。每当实现一个目标,我都有深深的满足感和成就感。”张小虎说,尤其当自己创办的公司做出了对人们生活质量有所促进的产品的时候,“我感觉自己的成就感不仅来自于实现个人梦想、掌控自己的生活,而更大的来自于自己对于社会的价值和意义。” /p p   对于未来,张小虎充满了信心:“食品安全检测设备的市场很大,全国有大小近百家生产企业,但他们用的技术大都是分光光度法原理或比色试纸原理。这两种方法的检测精度都很低,不能有效检出食品中的微量有毒物质。市场急需新的高灵敏的检测设备,我们基于液相色谱原理的食品安全检测仪会有广阔的市场空间。” 他打算以“直销”和“代理”的模式,继续推广食品安全检测仪。 /p p   作为一个大学生创业成功的“典型”,时常有学弟学妹追问张小虎“成功的秘诀”。他的切身体会是:“大学生创业应该具有非常强的专业知识,用高科技创业成功的概率会大得多。同时,项目开发最重要的是团队开发管理的能力和设计模式。”而创业更让他感受到了责任,也让他有了更高的目标:争取创立食品安全的行业标准,最终为解决中国现有的食品安全问题贡献自己的一分力量。 /p p /p
  • 手持式ATP荧光检测仪技术参数
    ATP及手持式ATP荧光检测仪原理介绍ATP( Adenosine Triphosphate),中文名为腺嘌吟核苷三磷酸,又叫三磷酸腺苷。它普遍遍存在于细菌等微生物细胞内,ATP是微生物新陈代谢的能量物质,ATP生物发光法是利用ATP试剂中若干组分如荧光素荧光素酶等与被测样本反应产生光子,再利用深芬仪器手持式ATP荧光检测仪来捕捉和检测发光值,由于被测样本所含细菌等微生物的数量与所含的ATP值、以及ATP值与发光值之间存在一定的函数关系因此通过检测发光值即能得到被测标本所含细菌等微生物含量。手持式ATP荧光检测仪技术参数:1、检测准确度:1×10-16 mol ATP2、检测精度:1 RLU(相对发光单位)3、检测范围:0~9999 RLU(相对发光单位)4、检测下限:检测微生物总量可达到1.4 CFU/ml5、检测时间:标准量15秒、快速测量10秒,二种模式可选6、准确误差:±5%7、屏幕:3.5英寸彩色触摸屏,内置触摸屏较准程序,可直接对触摸屏进行较准9、历史存储:≥20000个数据记录,记录包括检测时间、检测结果、判断结果、检测上限、检测下限等数据10、数据查询:以记录方式查询11、计算机连接:USB 接口,可实时检测并传输检测结果,历史数据下载等12、手持式ATP荧光检测仪电源:5V,2A13、操作温度范围:5℃到40℃14、操作相对湿度范围:20%~80%,15、存放温度范围:-10℃~40℃16、存放相对湿度范围:20%~90%,17、电池:3000mAh充电锂电池18、仪器尺寸(L×W×H):195mm×75mm×40mm19、手持式ATP荧光检测仪仪器重量:300g以上是手持式ATP荧光检测仪技术参数,如果您想了解更多有关于手持式ATP荧光检测仪操作说明书以及其他问题,请致电深圳市芬析仪器制造有限公司
  • 环境雌激素检测用化学发光免疫分析仪通过验收
    6月21日,计划财务局组织专家对中科院生态环境研究中心承担的“环境雌激素检测用化学发光免疫分析仪的研制”项目进行现场验收。验收专家组认为,该仪器的技术指标均达到或优于任务书规定的要求,该项目完成了任务书规定的各项任务,一致同意通过验收。   该仪器采用自行设计的加样、温育控制、洗涤和光电检测4个模块,是具有自主知识产权的全自动化学发光免疫分析仪,可以实现环境水样中雌二醇的高灵敏度和高精确度分析检测,为开展水体中痕量雌激素分布、含量等研究提供有力工具,还可应用于环境内分泌干扰物分析、农药检测、临床检验、卫生监测、制药工业等许多领域。      “环境雌激素检测用化学发光免疫分析仪的研制”项目现场验收会
  • 获证上市|指真生物流式荧光发光免疫分析仪可实现多种分泌性蛋白多联检
    日程&报名:https://www.instrument.com.cn/webinar/meetings/icfcm2023/指真生物经过多年流式细胞仪研发生产积累,以及自主研发、自主生产的多重磁性荧光编码微球技术积累,突破掌握了全自动流式荧光发光免疫分析技术,并设计开发了领先的重磅新品:HighFlux系列全自动流式荧光发光免疫分析仪。此系列仪器近期在北京市药品监督管理局获批上市。该技术平台融合流式检测技术、激光分析技术、荧光编码微球技术、生物标记技术及数字信号转换技术为一体,在同一反应体系中可对多种指标进行快速、定量检测,从而实现多种分泌性蛋白多联检,满足临床诊断或基础科学研究需求。HighFlux系列全自动流式荧光发光免疫分析仪技术原理基于指真生物自主研发的荧光编码微球系统,通过微球内部两种不同浓度荧光染料的排列组合,形成数十种不同荧光编码微球。将不同种类单克隆抗体偶联至荧光编码微球表面,形成“抗体-荧光编码微球”复合物,再利用“夹心法”或“竞争法”检测样本中对应待测物的浓度,实现多联检。解决的问题与痛点在医院检验科,目前最常用免疫检验技术---化学发光法,但化学发光法也有技术瓶颈---单指标检测。在二甲以上医院,它的检测效率往往无法满足高速增长的临床检测量,让院方非常头疼。要想解决这个矛盾,常规方法一是增加检测仪器,但这对医院场地和科室成本提出了较高的要求;二是增加单机检测效率,如使用联检技术等。指真生物HighFlux系列产品同时解决了这两个问题:1、解决单指标检测,HighFlux实现多联检、高通量HighFlux产品最大检测通量为120样本/h,每管内可实现多指标联检。举例来说,12因子检测可以实现1440测试/h,单位时间大幅度提高了检测通量。2、HighFlux体积小巧,节省实验室空间,提高空间利用率HighFlux产品为桌面机,产品尺寸:70cm(W)×90cm(D)×65cm(H)。1台化学发光仪器空间可以摆放3台HighFlux仪器,极大节省实验室空间。配套检测菜单细胞因子系列产品包含临床上常用的细胞因子检测试剂,主要有IL-1β/IL-2/IL-4/IL-5/IL-6/IL-8/IL-10/IL-12p/IL-17/TNFα等。主要临床应用:辅助疾病诊断、感染早期诊断;评估感染严重程度、细胞因子风暴监测;免疫状态评估、用药检测及预后等。肿瘤标志物覆盖常见的肿瘤标志物检测试剂,包括肺癌测定试剂盒、神经元特异性烯醇化酶(NSE)、癌胚抗原(CEA)、角蛋白19片段(CYFRA21-1)、鳞状细胞癌抗原(SCCA)、胃泌素释放肽前体(ProGRP)。感染评价指标涵盖临床常用的四种感染评价指标,实现一机检测感染。主要检测试剂有SAA/CRP联检试剂(1:200)、C-反应蛋白(CRP)(1:200)、PCT/IL-6联检试剂、降钙素原(PCT)、白介素6(IL-6)。性激素检测八种性激素检测试剂,主要有促卵泡生成素(FSH)、促黄体生成素(LH)、抗缪勒管激素(AMH)、泌乳素(PRL)、β-人绒毛膜促性腺激素(β-HCG)、睾酮(T)、孕酮(P)、雌二醇(E2)。持续开发中......
  • 噻苯达唑化学发光检测新方法开发方案
    噻苯达唑化学发光检测新方法开发方案一、实验目的旨在开发一种利用钴修饰黑磷纳米片(Co@BPNs)激活高铁酸盐(VI)高级氧化过程(AOP)的化学发光(CL)检测平台,以实现对噻苯达唑(TBZ)的高效、灵敏、选择性检测。通过生成高产率的活性氧(ROS),该系统能够有效分解TBZ,并产生强烈的CL信号,从而实现环境样品中TBZ的检测。二、实验使用的仪器设备和耗材试剂1. 仪器设备(1). 超微弱化学发光分析仪:BPCL-2-TGG(2). 透射电子显微镜(3). 荧光光谱仪(4). X射线光电子能谱仪(5). X射线衍射仪(6). 拉曼光谱仪(7). 电子顺磁共振光谱仪(8). 紫外-可见分光光度计(9). 红外光谱仪(10). 核磁共振波谱仪(11). Zeta电位仪(12). 高效液相色谱-飞行时间质谱仪2. 耗材试剂(1). 红磷、碘、锡(2). 氯化钴、乙醇、N-甲基-2-吡咯烷酮(NMP)(3). 硝基四氮唑蓝氯化物(NBT)、1,3-二苯基异苯并呋喃(DPBF)(4). 对苯醌(PBQ)、氢氧化钠(NaOH)、硫脲、L-组氨酸(L-His)、抗坏血酸(AA)。三、实验过程1. Co@BPNs的制备(1). 材料准备:将2 mL NMP试剂和10 mg块状BP研磨成均匀粉末,转移到150 mL圆底烧瓶中。加入5 mg氯化钴和98 mL NMP,超声处理20分钟,形成表面均匀分布的Co-BP块状材料。(2). 氮气通入:向溶液中通入氮气30分钟,以去除氧气。(3). 微波加热反应:加入100 mg NaOH,进行微波加热反应(1小时,140°C,375 W)。(4). 冷却和离心:自然冷却后,离心收集上层悬浮液,进一步离心得到Co@BPNs沉淀,真空干燥后储存。2. 化学发光实验(1). CL反应系统:在石英池中加入800 μL Co@BPNs溶液(0.05 mg/mL)和TBZ溶液(0.01 mg/mL),然后注入200 μL FeO4² ⁻ 溶液(10⁻ ³ mol/L)触发CL反应。(2). 数据记录:记录CL发射,PMT电压为0.8 kV,数据采集间隔为0.01秒,实验温度为20°C。每个数据点重复测量三次。3. 表征和分析(1). 结构表征:通过TEM、HRTEM、XRD、拉曼光谱、EDS、XPS和FT-IR等手段对Co@BPNs的结构和组成进行表征。(2). ROS生成研究:使用EPR和化学探针法研究Co@BPNs-FeO4² ⁻ 体系中ROS的生成。(3). CL响应评估:通过CL强度-时间曲线和线性关系图评估TBZ浓度对CL响应的影响。(4). 抗干扰能力评估:考察不同阳离子、阴离子和农药对CL信号的干扰。四、实验结果与讨论1. Co@BPNs的表征(1). TEM和HRTEM表征:TEM图像显示,Co@BPNs呈层状形态,分布均匀,尺寸约为17 nm(图1A)。HRTEM图像表明,Co@BPNs具有高度晶体结构,晶格间距为0.334和0.256 nm,分别对应于Co氧化物和BP的晶面(图1B)。(2). XRD和拉曼光谱:XRD和拉曼光谱进一步确认了Co@BPNs中钴的存在和分布(图1C, 1D)。(3). XPS和FT-IR分析:XPS和FT-IR分析显示,Co@BPNs表面具有多种氧功能团,这些功能团在CL反应中起重要作用(图1E, 1F, 1G)。图1. (A) Co@BPNs的TEM图像、尺寸分布直方图及钴的分布;(B) Co@BPNs的HRTEM图像;(C) Co@BPNs的XRD图谱;(D) Co@BPNs和未修饰BPNs的拉曼光谱;高分辨率XPS光谱:(E) P 2p峰,(F) Co 2p峰,(G) O 1s峰。2. 化学发光特性(1). CL光谱:Co@BPNs-FeO4² ⁻ 体系在引入TBZ后CL信号显著增强,表明Co@BPNs和FeO4² ⁻ 对CL发光的协同作用(图2A)。(2). 捕获剂实验:不同捕获剂对Co@BPNs-FeO4² ⁻ 和Co@BPNs-TBZ-FeO4² ⁻ 体系CL强度的影响表明,AA、L-His、EthOH、PBQ、硫脲对CL信号有不同程度的抑制作用(图2B)。(3). ROS生成验证:EPR光谱研究显示,Co@BPNs-TBZ-FeO4² ⁻ 体系中生成了大量1O2(图2C)。化学捕获实验表明,DPBF在Co@BPNs-FeO4² ⁻ 体系和Co@BPNs-TBZ-FeO4² ⁻ 体系中吸收光谱变化显著(图2D)。(4). 结构变化研究:1H NMR和FT-IR光谱分析显示,TBZ在加入Co@BPNs前后的结构变化明显(图2E, 2F)。图4. (A) Co@BPNs-TBZ-FeO4² ⁻ 体系的化学发光光谱。 (B) 不同捕获剂(AA、L-His、EthOH、PBQ、硫脲)对Co@BPNs-FeO4² ⁻ 和Co@BPNs-TBZ-FeO4² ⁻ 体系化学发光强度的影响。 (C) Co@BPNs-TBZ-FeO4² ⁻ 体系中1O2生成的EPR光谱研究。 (D) 1O2的化学捕获测定:410 nm处DPBF的紫外吸收光谱以及在Co@BPNs-FeO4² ⁻ 体系和Co@BPNs-TBZ-FeO4² ⁻ 体系中的DPBF吸收光谱。 (E) 加入Co@BPNs前后的TBZ的1H NMR光谱。 (F) 加入Co@BPNs前后的TBZ的FTIR光谱。3. 方法性能评估不同浓度TBZ下Co@BPNs-TBZ-FeO4² ⁻ 体系的CL强度-时间曲线显示,TBZ浓度越高,CL信号越强(图3A)。在1.43 × 10⁻ ³ -1.43 μg/mL范围内,CL强度与TBZ浓度的线性关系良好(图2B)。多种阳离子、阴离子和其他农药对Co@BPNs-TBZ-FeO4² ⁻ 体系的CL响应几乎没有干扰,表明该体系具有良好的选择性和抗干扰能力(图5C)。图3. (A) 不同浓度TBZ下Co@BPNs-TBZ-FeO42&minus 体系的化学发光强度-时间曲线。(B) 在1.43 × 10&minus 3-1.43 μg/mL范围内,化学发光强度与TBZ浓度之间的线性关系。(C) 各种阳离子、阴离子和农药(浓度分别为10&minus 5 M, 10&minus 5 M 和10&minus 4 mg/mL)对Co@BPNs-TBZ-FeO4² ⁻ 体系化学发光强度的响应。五、结论本方案开发的基于Co@BPNs激活高铁酸盐(VI)的化学发光检测方法,可实现噻苯达唑的高效、灵敏、选择性检测。该平台通过生成高产率的活性氧,选择性氧化TBZ,产生强CL信号。实验结果表明,该方法具有良好的抗干扰能力和高检测灵敏度,在环境样品中噻苯达唑的检测中具有广泛应用前景。*因学识有限,难免有所疏漏和谬误,恳请批评指正*资料出处:免责声明:1.本文所有内容仅供行业学习交流,不构成任何建议,无商业用途。2.我们尊重原创和版权,如有疏忽误引用您的版权内容,请及时联系,我们将在第一时间侵删处理!
  • BPCL微弱发光\化学发光\电化学发光测量的原理及应用
    品牌:BPCL是Biological& Physical Chemiluminescence的缩写,1995年开始对外使用;超微弱发光测量仪,英文Ultra-WeakLuminescence Analyzer。 BPCL超微弱发光测量仪,是生物与化学光子计数器,又俗称为化学发光分析仪,是我国原中科院系统科研人员自主研发的一种可探测超微弱生物发光和化学发光的分析仪器,是我国最早商品化的微弱光测量产品。BPCL倾注了老一辈科研工作者的心血,其研制为发光研究提供了有力的科研工具,推动了我国甚至国际发光研究的发展,目前被众多高校、研究院所使用,产生了具有重大社会和经济效益。 涉及研究方向包括:发光分析检测技术研究(如:流动注射发光分析、毛细管电泳发光分析、生物传感器发光分析、纳米材料发光分析、自由基临床检验)、自由基生物学研究、药物抗氧化剂研究、细胞学超微弱发光研究、肿瘤医学研究、农业种质研究、花卉果实超微弱发光研究及农作物抗逆性研究。 BPCL微弱发光测量仪现有19个型号产品,覆盖近紫外、可见及近红外光谱领域微弱光检测,同时还有光谱扫描、多样品测试、温控等型号产品,以适应不同领域研发需求。由于BPCL独特和先进的光探测技术,利用此仪器可测定10^-15瓦的光强度,测量10^-13瓦的微弱光影可给出1-2万/秒的计数率,这对于生物体、细胞、DNA等生命物质的超微弱发光研究尤为重要。通过独特的接口计数,该仪器可实时获得发光动力学曲线,最快采集速度可达0.1毫秒,可用于快速发光反应的监测。 任何有生命的物质都可以自发的或在外界因素诱导下辐射出一种极其微弱的光子流,这种现象称为生物的超微弱发光(UltraweakPhoton Emission),亦被称为生物系统超弱光子辐射、自发发光等。超微弱发光只有10^-5~ 10 ^-8hυ / s cm ,量子产额(效率)为10^-14~ 10 ^-9,波长范围为180~800nm,从红外到近紫外波段。1.BPCL电化学发光测试原理 电化学发光分析技术(Electrogeneratedchemiluminescence,ECL)。ECL是一种在电极表面由电化学引发的特异性化学发光反应。包括了两个过程。发光底物二价的三联吡啶钌及反应参与物三丙胺在电极表面失去电子而被氧化。氧化的三丙胺失去一个H成为强还原剂,将氧化型的三价钌还原成激发态的二价钌,随即释放光子恢复为基态的发光底物。最好的发光标记物-三联吡啶钌分子量小,结构简单。可以标记于抗原,抗体,核酸等各种分子量,分子结构的物质。从而具有最齐全的检测菜单。三联吡啶钌为水溶性,且高度稳定的小分子物质。保证电化学发光反应的高效和稳定,而且避免了本底噪声干扰。 简单来理解,ECL是在电极上施加一定的电压使电极反应产物之间或电极反应产物与溶液中某组分进行化学反应而产生的一种光辐射,其作为一种新的痕量分析手段越来越引人注目。1.1电化学反应过程 在工作电极上(阳极)加一定的电压能量作用下,二价的三氯联吡啶钌[Ru(bpy)3]2+释放电子发生氧化反应而成为三价的三氯联吡啶钌[Ru(bpy)3]3+,同时,电极表面的TPA也释放电子发生氧化反应而成为阳离子自由基 TPA+,并迅速自发脱去一个质子而形成三丙胺自由基TPA,这样,在反应体系中就存在具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基TPA。1.2化学发光过程 具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基 TPA发生氧化还原反应,结果使三价的三氯联吡啶钌[Ru(bpy)3]3+还原成激发态的二价的三氯联吡啶钌[Ru(bpy)3]2+,其能量来源于三价的三氯联吡啶钌[Ru(bpy)3]3+与三丙胺自由基TPA之间的电势差,激发态[Ru(bpy)3]2+以荧光机制衰变并以释放出一个波长为620nm光子的方式释放能量,而成为基态的[Ru(bpy)3]2+。1.3循环过程 上述化学发光过程后,反应体系中仍存在二价的三氯联吡啶钌[Ru(bpy)3]2+和三丙胺(TPA),使得电极表面的电化学反应和化学发光过程可以继续进行,这样,整个反应过程可以循环进行。 通过上述的循环过程,测定信号不断的放大,从而使检测灵敏度大大提高,所以ECL测定具有高灵敏的特点。上述的电化学发光过程产生的光信号的强度与二价的三氯联吡啶钌[Ru(bpy)3]2+的浓度成线性关系。将二价的三氯联吡啶钌[Ru(bpy)3]2+与免疫反应体系中的一种物质结合,经免疫反应、分离后,检测免疫反应体系中剩余二价的三氯联吡啶钌[Ru(bpy)3]2+经上述过程后所发出的光,即可得知待检物的浓度。1.4电化学发光剂定义:指通过在电极表面进行电化学反应而发出光的物质。特点:反应在电极表面进行发光标记物/化学发光剂:三联吡啶钌Ru(bpy)32+共反应剂/电子供体为:三丙胺(TPA)电化学发光启动条件:直流电场反应产物:三丙胺自由基(TPA*)+620nm的光子最终检测信号:可见光强度反应特点:迅速、可控、循环发光三联吡啶钌“催化”三丙胺发出可见光2.BPCL化学/电化学发光分析领域的应用案例2.1 医学及药学领域 BPCL在临床上,其可直接或与免疫技术结合,通过化学/电化学发光技术,其可用于甲状腺激素、生殖激素、肾上腺/垂体激素、贫血因子、肿瘤标记物、癌细胞等物质的检测;另外,基于活性氧诱导的化学发光现象,其可实现体内及光治疗过程产生的活性氧的检测。2.1.1 Ru@SiO2表面增强电化学发光检测痕量癌胚抗原 癌胚抗原(CEA)被认为是反映人体中各种癌症和肿瘤存在的疾病生物标志物。体液中CEA的灵敏检测利于癌症的临床诊断和治疗评估。 在此,本文提出了一种基于Ru(bpy)32+的局域表面等离子体共振(LSPR)增强电化学发光(ECL)超灵敏测定人血清中CEA的新方法。在这种表面增强ECL(SEECL)传感方案中,Ru(bpy)32+掺杂的SiO2纳米颗粒(Ru@SiO2)并且AuNPs用作LSPR源以增强ECL信号。两种不同种类的CEA特异性适体在Ru@SiO2和AuNP。在CEA存在的情况下Ru@SiO2-将形成AuNPs纳米结构。我们的研究表明Ru@SiO2可以通过AuNP有效地增强。一层Ru@SiO2-AuNPs与不存在AuNP的纳米结构的ECL相比,纳米结构将产生约3倍的ECL增强。通过多层Ru@SiO2-AuNPs纳米架构。在最佳条件下,人血清CEA的检测限为1.52×10^-6ng/mL。 据我们所知,对于ECL传感器,从未报道过具有如此低LOD的CEA测定。2.1.2 基于连接探针的电化学发光适体生物传感器,检测超痕量凝血酶的信号 基于结构切换电化学发光猝灭机制,本文中开发了一种用于检测超痕量凝血酶的新型连接探针上信号电化学发光适体生物传感器。ECL适体生物传感器包括两个主要部分:ECL底物和ECL强度开关。ECL衬底是通过修饰金电极(GE)表面的Au纳米颗粒和钌(II)三联吡啶(Ru(bpy)32+–AuNPs)的络合物制成的,ECL强度开关包含三个根据“结-探针”策略设计的探针。 第一种探针是捕获探针(Cp),其一端用巯基官能化,并通过S–Au键共价连接到Ru(bpy)32+–AuNPs修饰的GE上。 第二个探针是适体探针(Ap),它含有15个碱基的抗凝血酶DNA适体。 第三种是二茂铁标记探针(Fp),其一端用二茂铁标签进行功能化。 文中证明,在没有凝血酶的情况下,Cp、Ap和Fp将杂交形成三元“Y”结结构,并导致Ru(bpy)32+的ECL猝灭。然而,在凝血酶存在的情况下,Ap倾向于形成G-四链体适体-凝血酶复合物,并导致Ru(bpy)32+的ECL的明显恢复,这为凝血酶的检测提供了传感平台。利用这种可重复使用的传感平台,开发了一种简单、快速、选择性的ECL适体生物传感器信号检测凝血酶,检测限为8.0×10^-15M。 本生物传感器的成功是朝着在临床检测中监测超痕量凝血酶的发展迈出的重要一步。2.1.3 Ru(phen)32+掺杂二氧化硅纳米粒子的电化学发光共振能量转移及其在臭氧“开启”检测中的应用 首次报道了灵敏检测臭氧的电化学发光(ECL)方法和利用臭氧进行电化学发光共振能量转移(ECRET)的方法。 它是基于Ru(phen)32+掺杂的二氧化硅纳米颗粒(RuSiNPs)对靛蓝胭脂红的ECRET。在没有臭氧的情况下,RuSiNP的ECL由于RuSiNP对靛蓝胭脂红的ECRET而猝灭。在臭氧存在的情况下,系统的ECL被“打开”,因为臭氧可以氧化靛蓝胭脂红,并中断从RuSiNP到靛蓝胭脂的ECRET。通过这种方式,它通过所提出的基于RuSiNP的ECRET策略提供了臭氧的简单ECL传感,线性范围为0.05-3.0μM,检测限(LOD)为30nM。检测时间不到5分钟。该方法也成功应用于人体血清样品和大气样品中臭氧的分析。2.1.4 用二极管实现数码相机灵敏视觉检测,使无线电极阵列芯片的电化学发光强度提高数千倍 首次报道了无线电化学发光(ECL)电极微阵列芯片和通过在电磁接收器线圈中嵌入二极管来显著提高ECL。新设计的设备由一个芯片和一个发射机组成。该芯片有一个电磁接收线圈、一个迷你二极管和一个金电极阵列。该微型二极管可以将交流电整流为直流电,从而将ECL强度提高18000倍,从而能够使用普通相机或智能手机作为低成本探测器进行灵敏的视觉检测。使用数码相机检测过氧化氢的极限与使用基于光电倍增管(PMT)的检测器的极限相当。与基于PMT的检测器相结合,该设备可以以更高的灵敏度检测鲁米诺,线性范围从10nM到1mM。由于具有高灵敏度、高通量、低成本、高便携性和简单性等优点,它在护理点检测、药物筛选和高通量分析中很有前途。2.1.5 中晶体和仿生催化剂调控肿瘤标志物的比例电化学发光免疫分析 本文以壳聚糖功能化碘化银(CS-AgI)为仿生催化剂,研制了一种基于八面体锐钛矿介晶(OAM)载体的比率电化学发光免疫传感器,用于α胎儿蛋白(AFP)的超灵敏测定。所提出的系统是通过选择鲁米诺和过硫酸钾(K2S2O8)作为有前途的ECL发射单元来实现的,因为它们具有潜在的分辨特性和最大发射波长分辨特性。采用具有高孔隙率、定向亚基排列和大表面积的OAM吸附鲁米诺形成固态ECL,并作为亲和载体首次固定了大量AFP(Ab)抗体。 此外,发现CSAgI具有仿生催化剂活性,可以催化作为鲁米诺和K2S2O8共同助反应剂的过氧化氢的分解,从而放大了双ECL响应。当生物传感器在CSAgI标记的AFP的混合溶液中孵育时(CS-AgI@AFP)和目标AFP,这是由于对CS-AgI@AFP和目标AFP与AbCS-AgI@AFP固定化Ab捕获的蛋白质随AFP浓度的增加而减少,因此,双ECL反应减少。基于两个激发电位下ECL强度的比值,这种提出的比率ECL策略通过竞争性免疫反应实现了对α胎儿蛋白的超灵敏测定,线性检测范围为1fg/ml至20ng/ml,检测限为1fgg/ml2.1.6 一种新型放大电化学发光生物传感器(基于AuNPs@PDA@CuInZnS量子点纳米复合材料),用于p53基因的超灵敏检测 在这项工作中,首次设计了一种基于Au的新型表面等离子体共振(SPR)增强电化学发光(ECL)生物传感模型NPs@polydopamine(PDA)@CuInZnS量子点纳米复合材料。 通过静电力用PDA层涂覆AuNP。CuInZnS量子点结合在Au表面NPs@PDA纳米复合材料。CuInZnS量子点在传感应用中起到了ECL发光体的作用。PDA壳层不仅控制了AuNPs和QDs之间的分离长度以诱导SPR增强的ECL响应,而且限制了电势电荷转移和ECL猝灭效应。结果,纳米复合材料的ECL强度是具有K2S2O8的量子点的两倍。在扩增的ECL传感系统中检测到肿瘤抑制基因p53。 该传感方法的线性响应范围为0.1nmol/L至15nmol/L,检测限为0.03nmol/L。基于该纳米复合材料的DNA生物传感器具有良好的灵敏度、选择性、重现性和稳定性,并应用于加标人血清样品,取得了满意的结果。2.1.7铕多壁碳纳米管作为新型发光体,在凝血酶电化学发光适体传感器中的应 提出了一种新的电化学发光(ECL)适体传感器,用于凝血酶(TB)的测定,该传感器利用核酸外切酶催化的靶循环和杂交链式反应(HCR)来放大信号。捕获探针通过Au-S键固定在Au-GS修饰的电极上。随后,捕获探针和互补凝血酶结合适体(TBA)之间的杂交旨在获得双链DNA(dsDNA)。TB与其适体之间的相互作用导致dsDNA的解离,因为TB对TBA的亲和力高于互补链。在核酸外切酶存在的情况下,适体被选择性地消化,TB可以被释放用于靶循环。通过捕获探针的HCR和两条发夹状DNA链(NH2-DNA1和NH2-DNA1)形成延伸的dsDNA。然后,可以通过NH2封端的DNA链和Eu-MWCNT上的羧基之间的酰胺化反应引入大量的铕多壁碳纳米管(Eu-MWCNTs),导致ECL信号增加。 多种扩增策略,包括分析物回收和HCR的扩增,以及Eu-MWCNTs的高ECL效率,导致宽的线性范围(1.0×10-12-5.0×10-9mol/L)和低的检测限(0.23pmol/L)。将该方法应用于血清样品分析,结果令人满意。2.2 环境领域 采用BPCL已建立了众多灵敏快速检测环境污染物、环境激素、环境干扰物、自由基的发光分析方法。此外有有研究人员将其与臭氧化学发光结合应用于水体COD分析。其突出优点是仪器方法简单、易操作、线性范围宽、灵敏度高。 2.2.1 Fenton体系降解持久性氯化酚产生本征化学发光的机理:醌类和半醌自由基中间体的构效关系研究及其关键作用 在环境友好的高级氧化过程中,所有19种氯酚类持久性有机污染物都可以产生本征化学发光(CL)。然而,结构-活性关系(SAR,即化学结构和CL生成)的潜在机制仍不清楚。在这项研究中,本文中发现,对于所有19种测试的氯酚同系物,CL通常随着氯原子数量的增加而增加;对于氯酚异构体(如6种三氯苯酚),相对于氯酚的-OH基团,CL以间->邻-/对-CL取代基的顺序降低。 进一步的研究表明,在Fenton试剂降解三氯苯酚的过程中,不仅会产生氯化醌中间体,而且更有趣的是,还会产生氯化半醌自由基;其类型和产率由OH-和/或Cl取代基的定向效应、氢键和空间位阻效应决定。 更重要的是,观察到这些醌类中间体的形成与CL的产生之间存在良好的相关性,这可以充分解释上述SAR发现。 这是关于醌和半醌自由基中间体的结构-活性关系研究和关键作用的第一份报告,这可能对未来通过高级氧化工艺修复其他卤代持久性有机污染物的研究具有广泛的化学和环境意义。2.2.2 介质阻挡放电等离子体辅助制备g-C3N4-Mn3O4复合材料,用于高性能催化发光H2S气体传感 提出了一种新的、简单的基于介质阻挡放电(DBD)等离子体的快速制备g-C3N4-Mn3O4复合材料的策略。所获得的g-C3N4-Mn3O4可作为一种优良的H2S气体传感催化发光(CTL)催化剂,具有优异的选择性、高灵敏度、快速稳定的响应。 基于所提出的传感器能够检测到亚ppm水平的H2S,为在各个领域监测H2S提供了一种极好的替代方案。采用SEM、TEM、XPS、XRD、N2吸附-脱附等测试手段对合成的传感材料进行了表征。该复合材料具有较小的颗粒尺寸和较大的比表面积,这可能归因于氧化非平衡等离子体蚀刻。 此外,该合成以Mn2+浸渍的g-C3N4为唯一前驱体,以空气为工作气体,不含溶剂、额外的氧化剂/还原剂或高温,具有结构简单、操作方便、速度快等优点,并且它可以容易地大规模实施,并扩展到制造用于不同目的的各种金属氧化物改性复合材料。2.2.3表面增强电化学发光,用于汞离子痕量的检测 Ru(bpy) 3^2+的电化学发光(ECL)在分析化学中有着广泛的应用。在此,我们提出了一种通过金纳米棒(AuNR)的局域表面等离子体共振(LSPR)来增强Ru(bpy)3^2+的ECL的新方法。 我们的研究表明,通过控制Ru(bpy)3^2+与AuNRs表面之间的距离,可以大大增强ECL强度。我们将这种表面等离子体激元诱导的ECL增强称为表面增强电化学发光(SEECL)。利用这种SEECL现象来制备用于痕量Hg2+检测的生物传感器。SEECL生物传感器是通过在金电极表面自组装AuNRs和富含T的ssDNA探针来制备的。随着Hg2+的存在,ssDNA探针的构象通过形成T-Hg2+-T结构而变为发夹状结构。Ru(bpy)3^2+可以插入发夹结构DNA探针的凹槽中产生ECL发射,AuNR的LSPR可以增强ECL发射。传感器的ECL强度随着Hg2+浓度的增加而增加,并且在水溶液中达到10fMHg2+的检测极限。研究了AuNR不同LSPR峰位对生物传感器灵敏度的影响。 结果表明,Ru(bpy)3^2+的LSPR吸收光谱和ECL发射光谱之间的良好重叠可以实现最佳的ECL信号增强。2.3 农林业领域 BPCL在农业上有着十分广阔的应用价值。植物的超弱发光来自于体内的核酸代谢、呼吸代谢以及各种氧化还原过程,它变化与植物体内的生理生化变化密切相关.边种广泛存在于体内的自发辐射与机体代谢活动、能量转化之间存在着磐然的联系.因此,利用它作为代谢指标的应用研究就很快引起了广泛的重视。 超弱发光可以作为一种反映生命过程及变化的极其灵敏的指标。另一方面,由于植物的超弱发光与环境密切相关,在不同植物、不同的环境条件下超弱发光均有所不同。 BPCL可以探测植物的超弱发光,研究植物的盐碱、抗旱、抗热、抗寒乃至抗病的指标,从而为抗逆性育种提供一种新的灵敏的物理方法。植物的超弱发光能在一定程度上反映植物生活力的大小,所以可用超弱发光鉴定植物或种子的活力.用超弱发光鉴定种子的活力用样品量少又不破坏种子,对于种子量少的珍贵品种极其有益。此外,BPCL还可以用于农蔬作物新鲜度的评价、污染物残留量分析、辐照食品的检测。2.3.1 基于生物延迟发光,评价玉米萌发期抗旱性。(西安理工大学习岗) 玉米种子萌发抗旱性评价是节水农业研究中的难点和热点问题之一,生物延迟发光分析技术的应用有可能解决这一问题。采用生物延迟发光评价方法研究了玉米种子萌发期的抗旱性能力,延迟发光积分强度的升高有不同的抑制作用,胁迫强度越大。以下为玉米萌发过程中的延迟发光积分强度的变化:2.3.2 盐胁迫下绿豆幼苗的超微弱发光(山东理工大学王相友) 对不同 NaCl 浓度胁迫下绿豆种子早期萌发时的超微弱发光变化进行了初步研究。结果表明,随 NaCI 浓度的增加,绿豆胚根的生长速度(根长)减慢,生长受到明显抑制,其超微弱发光的强度显著下降。萌发期间,SOD 活性随着盐浓度的增加而降低,其活性与生物光子强度有极为密切的关系。 这些结果表明生物超微弱发光探测技术有可能成为植物盐胁迫研究的有效工具,对于进一步理解盐胁迫机理有一定的意义。2.3.3 苹果成熟过程中超弱发光强度与果实跃变的关系(山东理工大学王相友) 用1-甲基环丙烯(1-methyicyclopropene,1-MCP)和乙烯利两种化学药剂,测定了红富士苹果果实超弱发光强度的变化及与乙烯释放、呼吸的关系。 结果显示,各处理果实超弱发光强度的变化与呼吸、乙烯释放速率的变化趋势相似,均有明显的高峰出现,且出峰时间一致。乙烯利处理加速了果实软化,使果实超弱发光强度峰直出现时间提前,并加速了果实跃变后超弱发光强度的衰减:1-MCP 处理延缓了果实的衰老,使果实超弱发光强度峰值推迟,并减弱了峰值过后超弱发光强度的衰减。超弱发光强度能反映富士苹果成熟过程中代谢的变化。2.4 材料领域2.4.1 有机改性水滑石量子点纳米复合材料作为新型化学发光共振能量转移探针 在本工作中,通过在有机改性的LDH外表面上以十二烷基苯磺酸钠双层束的形式高度有序和交替地组装痕量CdTe量子点,制备了定向发光量子点(QD)-层状双氢氧化物(LDH)纳米复合材料。 有趣的是,新型QD-LDH纳米复合材料可以显著增强鲁米诺-H2O2体系的化学发光(CL),这归因于H2O2对QD氧化的抑制、辐射衰减率的增加以及对QDs的非辐射弛豫的抑制。 此外,以鲁米诺为能量供体,以固体发光QD-LDH纳米复合材料为能量受体进行信号放大,制备了一种新型的基于流通柱的CL共振能量转移。通过使用鲁米诺-H2O2CL系统测定H2O2来评估该流通柱的适用性。CL强度在0.5至60μM的浓度范围内对H2O2表现出稳定的响应,检测限低至0.3μM。 最后,该方法已成功应用于雪样品中H2O2的检测,结果与标准分光光度法一致。我们的研究结果表明,新型发光量子点-LDH纳米复合材料将用于高通量筛选具有不同尺寸量子点的复杂系统。2.4.2 油膜碳糊电极热电子诱导阴极电化学发光及其在邻苯二酚纳摩尔测定中的应用 首次在油膜覆盖碳糊电极(CPE)上研究了Ru(bpy)32+/S2O82-体系在阴极脉冲极化下的热电子诱导阴极电化学发光。与其他电极相比,CPE具有更低的背景、更好的稳定性和再现性。该方法也适用于邻苯二酚的测定。 在最佳条件下,在2.0*10^-10mol/L~4.0*10^-9 mol/L和4.0*10^-9mol/L~4.0*10^-7 mol/L范围内,观察到猝灭ECL强度(DI)与邻苯二酚浓度对数(logCcatechol)之间的线性相关性,检测限(LOD)为2.0*10^-10mol/L,低于其他报道的方法。 将该方法应用于水库水中邻苯二酚的测定。平均回收率为83.3%–99.0%,相对标准偏差为0.8%–2.2%。2.4.3 等离子体辅助增强Cu/Ni金属纳米粒子的超弱化学发光 采用具有类似Kirkendall效应的简单水溶液法合成了具有稳定荧光和良好水分散性的Cu/Ni纳米颗粒。60±5nm铜镍摩尔比为1:2的Cu/NiNP显著增强了碳酸氢钠(NaHCO3)与过氧化氢(H2O2)在中性介质中氧化反应产生的超微弱化学发光(CL)。时间依赖性CL的增强取决于NP的组成和试剂添加的顺序。 在研究CL发射光谱、电子自旋共振光谱、紫外-可见吸收光谱和荧光光谱的基础上,提出了等离子体辅助金属催化这种金属NP(MNP)增强CL的机理。MNP的表面等离子体可以从化学反应中获得能量,形成活化的MNP(MNP*),与OH自由基偶联产生新的加合物OH-MNP*。OH-MNP*可以加速HCO3-生成发射体中间体(CO2)2*的反应速率,从而提高整个反应的CL。2.5 食品领域 BPCL可以用于食品中的微生物/病原体及其毒素、痕量金属离子、抗生素、氧自由基、含氮、硫、磷物质、抗坏血酸、有机酸以及辐照食品的分析检测。2.5.1 基于光谱阵列的单一催化发光传感器及其在葡萄酒鉴定中的应用 识别复杂混合物,特别是那些成分非常相似的混合物,仍然是化学分析中一个具有挑战性的部分。本文利用MgO纳米材料在封闭反应池(CRC)中构建的单一催化发光(CTL)传感器来识别醋。它可以提供这种类型的高度多组分系统的原型。通过扫描反应期间分布在15个波长的CTL光谱,获得了醋的光谱阵列图案。这些就像他们的指纹。然后通过线性判别分析(LDA)对阵列的CTL信号进行归一化和识别。对九种类型和八个品牌的醋以及另外一系列的人造样品进行了测试;人们发现这项新技术能很好地区分它们。 这种单一传感器在实际应用中表现出了对复杂混合物分析的良好前景,并可能提供一种识别非常相似的复杂分析物的新方法。2.5.2 层状双氢氧化物纳米片胶体诱导化学发光失活对食品中生物胺浓度的影响 通过氢键识别打开/关闭荧光和视觉传感器在文献中已经明确确立。显然没有充分的理由忽视氢键诱导的化学发光失活(CL)。 在本工作中,作为新型CL催化剂和CL共振能量转移受体(CRET),层状双氢氧化物(LDH)纳米片胶体可以显著提高双(2,4,6-三氯苯基)草酸盐(TCPO)-H2O2体系的CL强度。另一方面,生物胺可以选择性地抑制LDH纳米片TCPO–H2O2系统的CL强度,这是由于光致发光LDH纳米片通过O–H…N键取代O–HO键而失活的结果。 此外,组胺被用作食品腐败的常见指标,发现CL强度与组胺浓度在0.1–100uM范围内呈线性关系,组胺(S/N=3)的检测限为3.2nM。所提出的方法已成功应用于追踪变质鱼类和猪肉样品的组胺释放,显示出这些样品中生物胺水平的时间依赖性增加。2.5.3 碳酸盐夹层水滑石增强过氧亚硝酸化学发光,检测抗坏血酸的高选择性 在本研究中,发现Mg-Al碳酸酯层状双氢氧化物(表示为Mg-Al-CO3LDHs)催化过氧硝酸(ONOOH)的化学发光(CL)发射。CL信号的增强是由于过亚硝酸根(ONOO)通过静电吸引在LDHs表面的浓度,这意味着ONOO可以容易有效地与嵌入的碳酸盐相互作用。此外,抗坏血酸可以与ONOO或其分解产物(例如_OH和_NO2)反应,导致Mg-Al-CO3-LDHs催化的ONOOH反应的CL强度降低。 基于这些发现,以Mg-Al-CO3-LDHs催化的ONOOH为新的CL体系,建立了一种灵敏、选择性和快速的CL法测定抗坏血酸。CL强度在5.0至5000nM的范围内与抗坏血酸的浓度成比例。检测限(S/N=3)为0.5nM,9次重复测量0.1mM抗坏血酸的相对标准偏差(RSD)为2.6%。 该方法已成功应用于商业液体果汁中抗坏血酸的测定,回收率为97–107%。这项工作不仅对更好地理解LDHs催化的CL的独特性质具有重要意义,而且在许多领域具有广泛的应用潜力,如发光器件、生物分析和标记探针。2.6 气相催化发光2.6.1 基于纳米ZnS的四氯化碳催化发光气体传感 基于四氯化碳在空气中氧化纳米ZnS表面的催化发光(CTL),提出了一种新的灵敏的气体传感器来测定四氯化碳。详细研究了其发光特性及最佳工艺条件。 在优化的条件下,CTL强度与四氯化碳浓度的线性范围为0.4–114ug/mL,相关系数(R)为0.9986,检测限(S/N=3)为0.2ug/mL。5.9ug/mL四氯化碳的相对标准偏差(R.S.D.)为2.9%(n=5)。 对甲醇、乙醇、苯、丙酮、甲醛、乙醛、二氯甲烷、二甲苯、氨和三氯甲烷等常见异物无反应或反应较弱。在4天的40小时内,传感器的催化活性没有显著变化,通过每小时收集一次CTL强度,R.S.D.小于5%。该方法简便灵敏,具有检测环境和工业中四氯化碳的潜力。2.6.2 珊瑚状Zn掺杂SnO2的一步合成及其对2-丁酮的催化发光传感 将一维纳米级构建块自组装成功能性的二维或三维复杂上部结构具有重要意义。在这项工作中,我们开发了一种简单的水热方法来合成由纳米棒组装的珊瑚状Zn掺杂SnO2分级结构。利用XRD、SEM、TEM、XPS、FTIR和N2吸附-脱附对所得样品的组成和微观结构进行了表征。通过研究在不同反应时间合成的样品,探讨了生长机理。作为催化发光(CTL)气体传感器的传感材料,这种珊瑚状Zn掺杂的SnO2表现出优异的CTL行为(即,与其他15种常见的挥发性有机化合物(VOC)相比,具有高灵敏度、对2-丁酮的优异选择性以及快速响应和回收)。在相同的条件下测试了SnO2样品的三种不同Zn/Sn摩尔比,以证明Zn掺杂浓度对传感性能的影响。在最佳实验条件下,进一步研究了基于1∶10Zn掺杂SnO2传感材料的CTL传感器对2-丁酮的分析特性。气体传感器的线性范围为2.31–92.57ug/mL(R=0.9983),检测限为0.6ug/mL(S/N=3)。2.6.3 缺陷相关催化发光法检测氧化物中的氧空位 氧空位可以控制氧化物的许多不同性质。然而,氧空位的快速简单检测是一个巨大的挑战,因为它们的种类难以捉摸,含量高度稀释。在这项工作中,本文中发现TiO2纳米颗粒表面乙醚氧化反应中的催化发光(CTL)强度与氧空位的含量成正比。氧空位依赖性乙醚CTL是由于氧空位中大量的化学吸附O2可以促进其与化学吸附的乙醚分子的接触反应,从而显著提高CTL强度。因此,乙醚CTL可以用作TiO2纳米颗粒中氧空位的简单探针。通过检测金属离子掺杂的TiO2纳米粒子(Cu、Fe、Co和Cr)和氢处理的TiO2纳米粒子在不同温度下在具有可变氧空位的TiO2表面上的乙醚CTL强度,验证了其可行性。本CTL探针测得的氧空位含量与常规X射线光电子能谱(XPS)技术测得的结果基本一致。与已经开发的方法相比,所开发的CTL探针的优越性能包括快速响应、易于操作、低成本、长期稳定性和简单配置。本文认为氧空位敏感的CTL探针在区分氧化物中的氧空位方面具有很大的潜力。
  • 申贝发布光电光度法甲醛检测仪新品
    MP170甲醛检测仪是一款按照国家标准《GB/T 18204.2 公共卫生场所检验方法 第2部分:化学污染物》中7.4 光电光度法的标准要求设计的一款快速检测设备。甲醛快速检测仪采用试剂药片可以直接检测空气中甲醛的浓度,检测时间短、无需长时间暴露在现场环境中;设备自动识别不同量程范围试剂药片,操作方便,无需专业实验室人员即可对甲醛进行准确快速检测;Micro-USB充电方式,一次充电可以满足超过24小时的连续检测;MP170采用自动背光LCD显示屏,支持多国语言并清晰可见;MP170甲醛快速检测仪可选择蓝牙模块,将数据导出并实时编辑。工业级的外壳设计,保证了产品稳定性和一致性。MP170光电光度法甲醛检测仪应用在室内空气质量、职业卫生健康、建材、公共卫生、环境保护、应急检测、建筑工程竣工验收等领域。主要特点及性能优势试剂光电光度法检测,不受其它化合物的交叉干扰设备开机自检,操作简单方便,无需专业人员显示单位可以选择ppm或mg/m3内置采样泵,对未知环境可以采样检测选择可充电锂电池或碱性电池供电方式可以存储259,200组检测数据MP170规格及仪器指标检测气体 甲醛(HCHO) 检测原理 试剂光电光度法 检测范围 0-0.40ppm 0-1.00ppm 采样方式 泵吸式自动进样 测量时间 1800s( 30分钟)或900S(15分钟)电池运行时间可充电锂电池,支持连续运行超过24小时*,充电时间小于5小时4节五号碱性电池,支持连续运行超过12小时**(20℃典型工作时间) 充电接口 Micro USB 工作温度湿度 -10℃~40℃;0~95%RH(无冷凝) 尺寸 145mm x 75mm x 40mm 重量 260g泵流量 250cc/min 数据存储存储259,200组检测数据 数据下载及通讯USB连接线下载到电脑上直接对数据进行处理蓝牙无线通过申贝Senbe Suite到Android客户端 显示语言中/英+符号 操作模式检测和编程 按键 四个按键 警示方式95dB@30cm、LED闪烁以及色带 显示屏128X128点阵液晶,带自动背光 质保整机质保1年标准配置MP170主机20pcs 试剂药片碱性电池盒合格证快速操作指南(中/英文)选配:锂电池套装(充电适配器、USB线以及锂电池)蓝牙通讯模块创新点:1.国内首家采用光电光度法原理制造的手持式甲醛快速检测仪 2.仪器具有独特的无线通讯技术,使检测人员远离污染源,仍然可以检测,并可以查看结果数据 光电光度法甲醛检测仪
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制