当前位置: 仪器信息网 > 行业主题 > >

不分流衬管装石英棉标准

仪器信息网不分流衬管装石英棉标准专题为您提供2024年最新不分流衬管装石英棉标准价格报价、厂家品牌的相关信息, 包括不分流衬管装石英棉标准参数、型号等,不管是国产,还是进口品牌的不分流衬管装石英棉标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合不分流衬管装石英棉标准相关的耗材配件、试剂标物,还有不分流衬管装石英棉标准相关的最新资讯、资料,以及不分流衬管装石英棉标准相关的解决方案。

不分流衬管装石英棉标准相关的方案

  • 使用Agilent 超高惰性色谱柱和超高惰性衬管分析枸杞中的极性有机磷农药
    仪器: THERMO TSQ QUANTUM GC进样器: AS3000 自动进样器进样,1.0uL 脉冲不分流进样,250 ℃ ,脉冲压力173KPa 1.5min 后转为恒流衬管: 安捷伦CrossLab 超高惰性衬管 ( 部件号: 8002-0154)样品: 供试枸杞为宁杞1 号,相关标准品为农业部环保所提供载气: 氦气 1.2mL/min,恒流模式色谱柱: Agilent J&W DB-5ms Ultra Inert 30m× 0.25mm× 0.25μ m( 部件号: 122-5532UI)柱温: 60 ℃,保持1 分钟,后以 25 ℃ /min 升至160 ℃, 然后以10℃ /min 升至1280℃,保持7 分钟检测器: MSD, EI 源、扫描方式SRM(EZ method)、离子源温度230℃、灯丝电流30μ A、进样5min 后打开灯丝、扫描时间5-24min、碰撞气压力1.5mTorr
  • 希言仪器:使用Agilent 超高惰性色谱柱和超高惰性衬管分析枸杞中的甲胺磷
    仪器: THERMO TSQ QUANTUM GC进样器: AS3000 自动进样器进样,1.0uL 脉冲不分流进样,250 ℃ ,脉冲压力173KPa 1.5min 后转为恒流衬管: 安捷伦CrossLab 超高惰性衬管 ( 部件号: 8002-0154)样品: 供试枸杞为宁杞1 号,相关标准品为农业部环保所提供载气: 氦气 1.2mL/min,恒流模式色谱柱: Agilent J&W DB-5ms Ultra Inert 30m× 0.25mm× 0.25μ m( 部件号: 122-5532UI)柱温: 60 ℃,保持1 分钟,后以 25 ℃ /min 升至160 ℃, 然后以10℃ /min 升至1280℃,保持7 分钟检测器: MSD, EI 源、扫描方式SRM(EZ method)、离子源温度230℃、灯丝电流30μ A、进样5min 后打开灯丝、扫描时间5-24min、碰撞气压力1.5mTorr
  • 希言仪器:使用Agilent 超高惰性色谱柱和超高惰性衬管分析枸杞中的乐果
    仪器: THERMO TSQ QUANTUM GC进样器: AS3000 自动进样器进样,1.0uL 脉冲不分流进样,250 ℃ ,脉冲压力173KPa 1.5min 后转为恒流衬管: 安捷伦CrossLab 超高惰性衬管 ( 部件号: 8002-0154)样品: 供试枸杞为宁杞1 号,相关标准品为农业部环保所提供载气: 氦气 1.2mL/min,恒流模式色谱柱: Agilent J&W DB-5ms Ultra Inert 30m× 0.25mm× 0.25μ m( 部件号: 122-5532UI)柱温: 60 ℃,保持1 分钟,后以 25 ℃ /min 升至160 ℃, 然后以10℃ /min 升至1280℃,保持7 分钟检测器: MSD, EI 源、扫描方式SRM(EZ method)、离子源温度230℃、灯丝电流30μ A、进样5min 后打开灯丝、扫描时间5-24min、碰撞气压力1.5mTorr
  • 气相色谱/质谱联用系统使用砂芯衬管与玻璃毛衬管分析半挥发性有机化合物的性能比较
    气质联用系统 (GC/MS) 常用于分析环境基质中的半挥发性有机化合物。选择合适的衬管进行分析(如含有非挥发性化合物的环境基质)可实现更长的使用寿命,缩短维护 GC/MS 系统导致的停机时间。填充有玻璃毛的衬管和烧结砂芯衬管常用于环境分析。本研究表明,安捷伦超高惰性不分流底部砂芯衬管比不分流玻璃毛衬管更适合分析复杂基质,因为烧结砂芯能够更有效地阻挡基质。
  • 石英棉真假和优劣的鉴别
    石英棉,俗称高温棉,是由高纯二氧化硅熔融制成的纤维,具有耐高温、耐腐蚀的特性,主要用做高温反应器中填料,具有分隔物料,填充空间,阻挡和过滤粉尘杂质的作用,广泛用于元素分析、气相色谱等精密分析仪器。  我公司有自己的定点生产厂家, 经销石英棉已有近10年的历史, 有多种规格的石英棉制品,严格监控产品质量, 明确标注质量指标,供应国内客户以及国外仪器公司和经销商,并且根据客户不同的用途,推荐相应的产品,使大家得到最高性价比的产品。
  • 石英反应管的使用与维护
    石英玻璃以其耐高温和化学性质稳定的特性被广泛用作分析仪器的反应器,元素仪常规样品测定使用的氧化管、还原管、热解管、灰分管等,基本上都是石英玻璃制品。石英反应管的使用寿命,主要在于其材料品质,其次正确的使用与维护也很重要,本文就石英反应器的使用和维护提出一些意见和建议。
  • 使用火焰离子化检测器的气相色谱法测定生物柴油中甘油和甘油酯以比较程序——升温的分流/不分流进样口与冷柱头进样口的性能
    欧盟标准 EN 14105:2011-07 是利用气相色谱定量分析生物柴油中的游离甘油、残留甘油单酯、甘油二酯及甘油三酯杂质的标准方法1。该方法规定使用“柱头进样器或同类装置”作为样品引入装置。冷柱头 (COC) 进样口似乎是一个理想选择,尤其是在甘油三酯分析中,该装置具有较高的定量准确度和精度,而且质量歧视效应极低。然而,对于这类应用,COC 存在一些缺陷。由于制备好的样品中生物柴油浓度相当高,它妨碍了甘油等早洗脱化合物的溶剂聚焦,由此导致谱带展宽以及相对于外部校准标样的保留时间位移。更棘手的问题在于使用金属保留间隙柱时,方法的耐用性较差。向保留间隙柱反复进样会导致方法控制指标在数次进样之后就不再满足要求。作为一种替代方法,本研究考察了程序升温分流/不分流 (TPSS) 进样口与 COC的性能等效性。结果表明,TPSS 在浓度测定中的性能与 COC 进样口几乎没有差别。此外,TPSS 不会出现性能控制失败的情况,而且能为早洗脱峰提供溶剂聚焦,因此耐用性远优于 COC 进样口。
  • 赛默飞GC-FPD 结合大体积不分流进样技术测定烟草中的有机磷农残
    本文采用GC-FPD 结合大体积不分流进样技术,建立高效、灵敏测定烟草中有机磷农残的检测方法。对烟草样品,采用改进的QuEChERS 方法,以去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取,经Carbon-NH2 复合柱净化,不经浓缩直接进样分析。通过实验发现:1)使用大体积不分流进样技术,进样体积为30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近25 倍;2)采用经Carbon-NH2 复合柱净化后的空白烟草提取液配制的有机磷农残系列标样能显著改善各有机磷的峰形以及灵敏度。总体来看,采用GC-FPD 结合大体积不分流进样技术对烟草中有机磷农残检测是一种非常灵敏、高效的检测方法,能够大大减少前处理过程中对样品浓缩的时间耗费,并同时具有较高的检测灵敏度。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的马拉硫磷残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的甲基内吸磷残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的速灭磷残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的对硫磷残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的乐果残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的溴硫磷残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的甲基内吸磷残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的乙拌磷残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的马拉硫磷残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的甲基对硫磷残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的对硫磷残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的有机磷农残
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的有机磷农残
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于CORESTA指导性残留限量要求。同时对烟草样品进行了0.5mg/Kg和1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于120%,其它均在75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • 赛默飞色谱与质谱:GC-FPD 结合大体积不分流进样技术测定烟草中的甲基对硫磷
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于CORESTA指导性残留限量要求。同时对烟草样品进行了0.5mg/Kg和1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于120%,其它均在75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • 赛默飞色谱与质谱:GC-FPD 结合大体积不分流进样技术测定烟草中的速灭磷
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于CORESTA指导性残留限量要求。同时对烟草样品进行了0.5mg/Kg和1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于120%,其它均在75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • 使用QSense石英晶体微天平分析仪检测清洁和消毒产品对新型冠状病毒的去除效率
    QSense石英晶体微天平分析技术可以用来分析清洁和消毒产品在各种条件下对新型冠状病毒SARS-CoV-2涂层表面的作用,也可以表征细胞对细胞形态剂的响应,还可以用来预测细胞毒性等。 实验案例:表面活性剂去除三油酸甘油酯和细菌细胞对表面活性剂和脂多糖的响应。我们还提供各式各样用于建模的硬涂层芯片,包括金属、金属氧化物、玻璃、钢和聚合物等。芯片可以从瑞典百欧林科技有限公司购买。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的甲胺磷残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的速灭磷残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的乐果残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的灭线磷残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的特丁硫磷残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。
  • GC-FPD 结合大体积不分流进样技术测定烟草中的二溴磷残留
    本文采用Thermo Scientific GC-FPD 配合大体积不分流组件,以改进的 QuEChERS 方法(去离子水浸泡、乙酸乙酯丙酮混合溶剂对烟草中的有机磷农残进行提取),经 Carbon-NH2 复合柱净化,不经浓缩直接进样分析。在进样体积为 30ul 时,对各有机磷农残的检测相比传统不分流进样1ul,灵敏度提高了近 25 倍。该方法的操作步骤简单、稳定,无需繁琐、耗时的除溶剂步骤,可以避免挥发性农残的损失;对各有机磷农残的检测限度均低于 CORESTA指导性残留限量要求。同时对烟草样品进行了 0.5mg/Kg和 1.0mg/Kg 两个水平的加标回收试验,14 种有机磷农残除了二溴磷回收率大于 120%,其它均在 75%-110% 之间,能够很好地符合对有机磷农残的日常检测需求。

厂商最新方案

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制