当前位置: 仪器信息网 > 行业主题 > >

凝胶分子大小积分的原理

仪器信息网凝胶分子大小积分的原理专题为您提供2024年最新凝胶分子大小积分的原理价格报价、厂家品牌的相关信息, 包括凝胶分子大小积分的原理参数、型号等,不管是国产,还是进口品牌的凝胶分子大小积分的原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合凝胶分子大小积分的原理相关的耗材配件、试剂标物,还有凝胶分子大小积分的原理相关的最新资讯、资料,以及凝胶分子大小积分的原理相关的解决方案。

凝胶分子大小积分的原理相关的论坛

  • 【金秋计划】+凝胶色谱仪原理

    凝胶色谱仪的原理?是基于分子筛原理,利用不同分子量的物质在凝胶孔隙中的渗透速度不同来实现分离。具体来说,当样品进入凝胶色谱柱时,较大的分子(体积大于凝胶孔隙)会被排除在粒子的小孔之外,只能从粒子间的间隙通过,速率较快;而较小的分子可以进入粒子中的小孔,通过的速率要慢得多;中等体积的分子可以渗入较大的孔隙中,但受到较小孔隙的排阻,介乎上述两种情况之间。 凝胶色谱仪的工作机制可以进一步解释为:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出,而小分子则会在色谱柱中滞留更长时间,最后流出。这种分离机制使得凝胶色谱仪能够根据分子量差异对各组分进行分离。 此外,凝胶色谱仪的检测系统包括通用型检测器、示差折光仪检测器、紫外吸收检测器、粘度检测器等多种检测器,适用于所有高聚物和有机化合物的检测。 凝胶色谱仪的应用包括水性和油性高分子聚合物的分子量大小及分子量分布检测,以及糖类、醇、脂肪酸、脂类的定性定量分析。

  • 【求助】凝胶色谱法分离蛋白质原理?

    我们学习分离血红蛋白时,书上提到凝胶色谱法分离蛋白质原理是蛋白质分子量大小不同导致有些蛋白质能进入凝胶颗粒,另一些不能,所以迁移速度不同,将分子量不同的蛋白质分离。既然这样,那为什么不是因为蛋白质分子大小不同呢? [b]问题补充:[/b]关键在于为什么是根据蛋白质分子量大小而不是蛋白质分子大小(所占空间)分离呢 小分子蛋白可以在小孔内穿过 从而增加了分离时所走的路程 最后被分离。大分子蛋白主要是通过凝胶颗粒之间的空隙通过 因此路线相对较短最先被分离。 只是做题时这一题选分子量而不选分子大小

  • 凝胶色谱柱埃值与分子体积间关系

    请问各位老师能否提供些关于凝胶色谱柱埃值(凝胶孔径)与分子测定体积之间关系的资料呢。或者说如何通过色谱柱埃值来知道要分离物质分子量多少?或者通过分子量来确定所需色谱柱埃值。谢谢。

  • 【分享】凝胶层析法测定蛋白质分子量

    一、实验目的1. 了解凝胶层析的原理及其应用。2. 通过测定蛋白质分子量的训练,初步掌握凝胶层析技术。二、实验原理凝胶层析又称排阻层析,凝胶过滤,渗透层析或分子筛层析等。它广泛地应用于分离、提纯、浓缩生物大分子及脱盐、去热源等,而测定蛋白质的分子量也是它的重要应用之一。凝胶是一种具有立体网状结构且呈多孔的不溶性珠状颗粒物质。用它来分离物质,主要是根据多孔凝胶对不同半径的蛋白质分子(近于球形)具有不同的排阻效应实现的。亦即它是根据分子大小这一物理性质进行分离纯化的。分离原理参见“理论部分的凝胶层析一节”。对于某种型号的凝胶,一些大分子不能进入凝胶颗粒内部而完全被排阻在外,只能沿着颗粒间的缝隙流出柱外;而一些小分子不被排阻,可自由扩散,渗透进入凝胶内部的筛孔,尔后又被流出的洗脱液带走。分子越小,进入凝胶内部越深,所走的路程越多,故小分子最后流出柱外,而大分子先从柱中流出。一些中等大小的分子介于大分子与小分子之间,只能进入一部分凝胶较大的孔隙,亦即部分排阻,因此这些分子从柱中流出的顺序也介于大、小分子之间。这样样品经过凝胶层析后,分子便按照从大到小的顺序依次流出,达到分离的目的。凝胶层析分离原理示意动画。对于任何一种被分离的化合物在凝胶层析柱中被排阻的范围均在0~100%之间,其被排阻的程度可以用有效分配系数Kav(分离化合物在内水和外水体积中的比例关系)表示,Kav值的大小和凝胶柱床的总体积(Vt)、外水体积(V0)以及分离物本身的洗脱体积(Ve)有关:Kav = (Ve-V0)/(Vt-V0) ----------- (1)在限定的层析条件下,Vt和V0都是恒定值,而Ve是随着分离物分子量的变化而改变。分子量大,Ve值小,Kav值也小。反之,分子量小Ve值大,Kav值大。有关凝胶层析柱中凝胶自身(基质)体积(Vg)、外水体积(V0)、内水体积(Vi)及柱床总体积(Vt)的参见示意图。凝胶层析柱中的几种层析峰。有效分配系数Kav是判断分离效果的一个重要参数,同时也是测定蛋白质分子量的一个依据。在相同层析条件下,被分离物质Kav值差异越大,分离效果越好。反之,分离效果差或根本不能分开。在实际的实验中,我们可以实测出Vt、V0及Ve的值,从而计算出Kav的大小。对于某一特定型号的凝胶,在一定的分子量范围内,Kav与logMw (Mw表示物质的分子量) 成线性关系:Kav =-b logMw + C --------- (2)其中 b,C为常数。同样可以得到:Ve =-b'logMw + C' --------- (3)其中 b', C'为常数。即 Ve 与 logMw 也成线性关系。我们可以通过在一凝胶柱上分离多种已知分子量的蛋白质后,并根据上述的线性关系绘出标准曲线,然后用同一凝胶柱测出其它未知蛋白的分子量。三、器材与试剂(一)器材1. 玻璃层析柱((20mm×60cm)2. 恒流泵(或下口恒压贮液瓶)3. 自动部分收集器4. 紫外分光光度计5. 100ml试剂瓶6. 1000ml量筒7. 250ml烧杯8. 50ml、100ml烧杯9. 10ml(或5ml)刻度试管(二)试剂1. 标准蛋白(1)牛血清白蛋白:Mw=67,000(上海生化所)(2)鸡卵清清蛋白:Mw=45,000(美国SIGMA公司)(3)胰凝乳蛋白酶原A:Mw=24,000(美国SIGMA公司)(4)溶菌酶:Mw =14,3002. 未知蛋白质样品:由实验室准备3. 0.025M KCl-0.1M HAC(乙酸)(洗脱液1000ml)4. 蓝色葡聚糖-2000

  • 凝胶色谱法GPC工作原理

    凝胶色谱法GPC[b]分析原理:[/b]样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出[b]谱图的表示方法:[/b]柱后流出物浓度随保留值的变化[b]提供的信息:[/b]高聚物的平均分子量及其分布根据所用凝胶的性质,可以分为使用水溶液的凝胶过滤色谱法(GFC)和使用有机溶剂的凝胶渗透色谱法(GPC)。

  • 凝胶色谱技术原理及应用

    关键词:中检所网站 中检所标准品 中检所对照品 药检所标准品 药检所对照品 中检所标准物 质药检所标准物质摘要:凝胶色谱技术是六十年代初发展起来的一种快速而又简单的分离分技术,由于设备简单、操作方便,不需要有机溶剂,对高分子物质有很高的分离效果。目前已经被生物化学、分子生物学、生物工程学、分子免疫学以及医学等有关领域广泛采用,不但应用于科学实验研究,而且已经大规模地用于工业生产。   一、基本理论  (一)分子筛效益  一个含有各种分子的样品溶液缓慢地流经凝胶色谱柱时,各分子在柱内同时进行着两种不同的运动:垂直向下的移动和无定向的扩散运动。大分子物质由于直径较大,不易进入凝胶颗粒的微孔,而只能分布颗粒之间,所以在洗脱时向下移动的速度较快。小分子物质除了可在凝胶颗粒间隙中扩散外,还可以进入凝胶颗粒的微孔中,即进入凝胶相内,在向下移动的过程中,从一个凝胶内扩散到颗粒间隙后再进入另一凝胶颗粒,如此不断地进入和扩散,小分子物质的下移速度落后于大分子物质,从而使样品中分子大的先流出色谱柱,中等分子的后流出,分子最小的最后流出,这种现象叫分子筛效应。具有多孔的凝胶就是分子筛。各种分子筛的孔隙大小分布有一定范围,有最大极限和最小极限。分子直径比凝胶最大孔隙直径大的,就会全部被排阻在凝胶颗粒之外,这种情况叫全排阻。两种全排阻的分子即使大小不同,也不能有分离效果。直径比凝胶最小孔直径小的分子能进入凝胶的全部孔隙。如果两种分子都能全部进入凝胶孔隙,即使它们的大小有差别,也不会有好的分离效果。因此,一定的分子筛有它一定的使用范围。综上所述,在凝胶色谱中会有三种情况,一是分子很小,能进入分子筛全部的内孔隙;二是分子很大,完全不能进入凝胶的任何内孔隙;三是分子大小适中,能进入凝胶的内孔隙中孔径大小相应的部分。大、中、小三类分子彼此间较易分开,但每种凝胶分离范围之外的分子,在不改变凝胶种类的情况下是很难分离的。对于分子大小不同,但同属于凝胶分离范围内各种分子,在凝胶床中的分布情况是不同的:分子较大的只能进入孔径较大的那一部分凝胶孔隙内,而分子的可进入较多的凝胶颗粒内,这样分子较大的在凝胶床内移动距离较短,分子较小的移动距离较长。于是分子较大的先通过凝胶床而分子较小的后通过凝胶床,这样就利用分子筛可将分子量不同的物质分离。另外,凝胶本身具有三维网状结构,大的分子在通过这种网状结构上的孔隙时阻力较大,小分子通过时阻力较小。分子量大小不同的多种成份在通过凝胶床时,按照分子量大小“排队,凝胶表现分子筛效应。  (二)色谱柱的重要参数  ⑴柱体积:柱体积是指凝胶装柱后,从柱的底板到凝胶沉积表面的体积。在色谱柱中充满凝胶的部分称为凝胶床,因引柱体积又称“床”体积,常用Vt 表示。  ⑵外水体积:色谱柱内凝胶颗粒间隙,这部分体积称外水体积,亦称间隙体积,常用Vo表示。  ⑶内水体积:因为凝胶为三维网状结构,颗粒内部仍有空间,液体可进入颗粒内部,这就分间隙的总和为内水体积,又称定相体积,常用Vi表示。 不包括固体支持物的体积(Vg)。  ⑷峰洗脱体积:是指被分离物质通过凝胶柱所需洗脱液有体积,常用Ve 表示。当使用样品的体积很少时,(与洗脱体积比较可以忽略不计),在洗脱图中,从加样到峰顶位置所用洗脱液体积为Ve。 当样品体积与洗脱体积比较不能忽略时,洗脱体积计算可以从样品体积的一半到峰顶位置。当样品很大时,洗脱体积计算可以从应用样品开始到洗脱峰升高的弯曲点(或半高处)。  二、凝胶的种类及性质  (一)交联葡聚糖凝胶(Sephadex)  ⑴Sephadex G交联葡聚糖的商品名为Sephndex,不同规格型号的葡聚糖用英文字母G表示,G后面的阿拉伯数为凝胶得水值的10倍。例如,G-25为每克凝胶膨胀时吸水2.5克,同样G-200克每克千胶吸水20克。交联葡聚糖凝胶的种类有G-10,G-15,G-25,G-50,G-75,G-100,G- 150,和G-200。因此,“G”反映,凝胶的交联程度,膨胀程度及分部范围。  ⑵Sephadex LH-20,是─Sephadex G-25的羧丙基衍生物, 能溶于水及亲脂溶剂,用于分离不溶于水的物质。  (二)琼脂糖凝胶:  商品名很多,常见的有,Sepharose(瑞典,pharmacia ),Bio-Gel-A(美国Bio-Rad)等。琼脂糖凝胶是依靠糖链之间的次级链如氢键来维持网状结构,网状结构的疏密依靠琼脂糖的浓度。一般情况下,它的结构是稳定的,可以在许多条件下使用(如水,pH4-9范围内的盐溶液)。琼脂糖凝胶在40℃以上开始融化,也不能高压消毒,可用化学灭菌活处理。  (三)聚丙烯酰胺凝胶:  是一种人工合成凝胶,是以丙烯酰胺为单位, 由甲叉双丙烯酰胺交联成的,经干燥粉碎或加工成形制成粒状,控制交联剂的用量可制成各种型号的凝胶。交联剂越多,孔隙越小。聚丙烯酰胺凝胶的商品为生物胶-P (Bio-Gel P),由美国Bio-Rod厂生产,型号很多,从P-2至P-300共10种,P 后面的数字再乘1000就相当于该凝胶的排阻限度。  (四)聚苯乙烯凝胶商品为Styrogel , 具有大网孔结构, 可用于分离分子量1600到40,000,000的生物大分子,适用于有机多聚物,分子量测定和脂溶性天然物的分级,凝胶机械强度好,洗脱剂可用甲基亚砜。  三、实验技术  (一)层析柱 层析柱是凝胶层析技术中的主体,一般用玻璃管或有机玻璃管。层析柱的直径大小不影响分离度,样品用量大,可加大柱的直径,一般制备用凝胶柱,直径大于2厘米,但在加样时应将样品均匀分布于凝胶柱床面上。此外, 直径加大,洗脱液体体积增大,样品稀释度大。分离度取决于柱高,为分离不同组分,凝胶柱床必须有适宜的高度,分离度与柱高的平方根相关,但由于软凝胶柱过高挤压变形阻塞,一般不超过1米。分族分离时用短柱,一般凝胶柱长20-30厘米,柱高与直径的比较5:1─10:1,凝胶床体积为样品溶液体积的 4-10倍。 分级分离时柱高与直径之线为20:1─100:1,常用凝胶柱有50×25厘米,10×25厘米。层析柱滤板下的死体积应尽可能的小,如果支掌滤板下的死体积大,被分离组分之间重新混合的可能性就大,其结果是影响洗脱峰形,出现拖尾出象,降低分辩力。在精确分离时,死体积不能超过总床体积的1/1000。  (二)凝胶的选择 根据所需凝胶体积,估计所需干胶的量。 一般葡聚糖凝胶吸水后的凝胶体积约为其吸水量的2倍,例如Sephadex G-20的吸水量为20,1 克Sephadex G─200吸水后形成的凝胶体积约40ml。凝胶的粒度也可影响层析分离效果。粒度细胞分离效果好,但阻力大,流速慢。一般实验室分离蛋白质采用 100-200号筛目的的Sephadex G-200效果好, 脱盐用Sephadex G-25、G-50,用粗粒,短柱,流速快。  (三)凝胶的制备 商品凝胶是干燥的颗粒使用前需直接在欲使用的洗脱液中膨胀。为了加速膨胀,可用加热法,即在沸水浴中将湿凝胶逐渐升温至近沸,这样可大大中速膨胀,通常在 1-2小时内即可完成。特别是在使用软胶时, 自然膨胀需24小时至数天,而用加热法在几小时内就可完成。这种方法不但节约时间,而且还可消毒,除去凝胶中污染的细菌和排除胶内的空气。  (四)样品溶液的处理 样品溶液如有沉淀应过滤或离心除去,如含脂类可高速离心或通过Sephadex G-15短柱除去。样品的粘度不可大,含蛋白为超过4%,粘度高影响分离效果。上柱样品液的体积根据凝胶床体积的分离要求确定。分离蛋白质样品的体积为凝胶床的1-4%(一般约0.5-2ml),进行分族分离时样品液可为凝胶床的10%,在蛋白质溶液除盐时,样品可达凝胶床的20-30%。 分级分离样品体积要小,使样品层尽可能窄,洗脱出的峰形较好。  (五)防止微生物的污染 交联葡

  • 【学习】我们一起来认识、学习凝胶色谱

    【学习】我们一起来认识、学习凝胶色谱

    凝胶色谱技术是六十年代初发展起来的一种快速而又简单的分离分析技术,由于设备简单、操作方便,不需要有机溶剂,对高分子物质有很高的分离效果。凝胶色谱法又称分子排阻色谱法。凝胶色谱主要用于高聚物的相对分子质量分级分析以及相对分子质量分布测试。目前已经被生物化学、分子生物学、生物工程学、分子免疫学以及医学等有关领域广泛采用,不但应用于科学实验研究,而且已经大规模地用于工业生产。[B]凝胶色谱-分类[/B]根据分离的对象是水溶性的化合物还是有机溶剂可溶物,凝胶色谱又可分为凝胶过滤色谱(GFC)和凝胶渗透色谱(GPC)。凝胶过滤色谱一般用于分离水溶性的大分子, [img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903190825_139314_1608025_3.jpg[/img]凝胶过滤色谱柱 如多糖类化合物。凝胶的代表是葡萄糖系列,洗脱溶剂主要是水。凝胶渗透色谱法主要用于有机溶剂中可溶的高聚物 (聚苯乙烯、聚氯已烯、聚乙烯、聚甲基丙烯酸甲酯等) 相对分子质量分布分析及分离,常用的凝胶为交联聚苯乙烯凝胶,洗脱溶剂为四氢呋喃等有机溶剂。凝胶色谱不但可以用于分离测定高聚物的相对分子质量和相对分子质量分布,同时根据所用凝胶填料不同,可分离油溶性和水溶性物质,分离相对分子质量的范围从几百万到100以下。近年来,凝胶色谱也广泛用于分离小分子化合物。化学结构不同但相对分子质量相近的物质,不可能通过凝胶色谱法达到完全的分离纯化的目的。[B]凝胶色谱-分子筛效益[/B]一个含有各种分子的样品溶液缓慢地流经凝胶色谱柱时,各分子在柱内同时进行着两种不同的运动:垂直向下的移动和无定向的扩散运动。大分子物质由于直径较大,不易进入凝胶颗粒的微孔,而只能分布颗粒之间,所以在洗脱时向下移动的速度较快。小分子物质除了可在凝胶颗粒间隙中扩散外,还可以进入凝胶颗粒的微孔中,即进入凝胶相内,在向下移动的过程中,从一个凝胶内扩散到颗粒间隙后再进入另一凝胶颗粒,如此不断地进入和扩散,小分子物质的下移速度落后于大分子物质,从而使样品中分子大的先流出色谱柱,中等分子的后流出,分子最小的最后流出,这种现象叫分子筛效应。具有多孔的凝胶就是分子筛。各种分子筛的孔隙大小分布有一定范围,有最大极限和最小极限。分子直径比凝胶最大孔隙直径大的,就会全部被排阻在凝胶颗粒之外,这种情况叫全排阻。两种全排阻的分子即使大小不同,也不能有分离效果。直径比凝胶最小孔直径小的分子能进入凝胶的全部孔隙。如果两种分子都能全部进入凝胶孔隙,即使它们的大小有差别,也不会有好的分离效果。因此,一定的分子筛有它一定的使用范围。 [img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903190826_139315_1608025_3.jpg[/img]凝胶色谱法原理 在凝胶色谱中会有三种情况,一是分子很小,能进入分子筛全部的内孔隙;二是分子很大,完全不能进入凝胶的任何内孔隙;三是分子大小适中,能进入凝胶的内孔隙中孔径大小相应的部分。大、中、小三类分子彼此间较易分开,但每种凝胶分离范围之外的分子,在不改变凝胶种类的情况下是很难分离的。对于分子大小不同,但同属于凝胶分离范围内各种分子,在凝胶床中的分布情况是不同的:分子较大的只能进入孔径较大的那一部分凝胶孔隙内,而分子较小的可进入较多的凝胶颗粒内,这样分子较大的在凝胶床内移动距离较短,分子较小的移动距离较长。于是分子较大的先通过凝胶床而分子较小的后通过凝胶床,这样就利用分子筛可将分子量不同的物质分离。另外,凝胶本身具有三维网状结构,大的分子在通过这种网状结构上的孔隙时阻力较大,小分子通过时阻力较小。分子量大小不同的多种成份在通过凝胶床时,按照分子量大小排队,凝胶表现分子筛效应。

  • 【原创】凝胶色谱的应用

    [b]凝胶色谱的应用[/b]:1、[b]分子量的测定[/b]根据凝胶色谱的原理,样品物质在凝胶色谱柱中的洗脱性质与该物质的分子大小有关。因此选用不同的凝胶色谱柱后,能方便地测定物质的分子量。用此法测定分子量时,可以在各种PH值、离子强度和温度条件下进行。所测定的物质可以是天然状态,也可以是变性后的。实际应用中,可先选用一系列已知分子量的标准样品在同一色谱条件下进行色谱分离分析,并以保留体积(或保留时间)对分子量的对数作图,在一定分子量范围内得到一直线(标准曲线),而后根据待测定物在同一条件下的保留体积(或保留时间),从标准曲线上查得/计算出其分子量。目前用本法测定分子量的应用范围非常广泛。[u]高分子物质的分子量及其分布的测定[/u]:特别是近年来,随着各种高分子材料的问世,人们对高分子科学的不断探索,高聚物的分子量及其分布的测定显得尤为重要,成为科研和生产中不可缺少的测试项目之一。例如:常见的聚苯乙烯塑料制品,其分子量为十几万,如果聚苯乙烯的分子量低至几千,就不能成型;相反,当分子量大到几百万,甚至几千万,它又难以加工,失去了实用意义。科研和生产上通过控制高聚物的分子量及其分布宽度指数D(D=Mw/Mn)、分子量微分分布曲线、分子量积分分布曲线来生产出性能最佳的高聚物产品。同样,除了快速测定分子量及其分布以外,凝胶渗透色谱还广泛被用于研究高聚物的支化度,共聚物的组成分布及高聚物中微量添加剂的分析等方面。如果配以在线的绝对分子量检测器(如:LALLS、Multi-Angle LS、Dual-Angle LS等),凝胶渗透色谱可以测定高聚物的绝对分子量。[u]蛋白质分子量的测定[/u]:现代蛋白质药物的研究中,凝胶色谱法测定分子量是蛋白质分子量的快速测定方法之一。一般选用标准分子量蛋白质(如:铁蛋白、醛缩酶、牛血清白蛋白、卵清蛋白、胃蛋白酶、核糖核酸酶,这就是一组分子量从300KD到14KD的标准品)。

  • 请教各位大侠凝胶色谱中流动相加盐的目的和原理

    本人凝胶色谱新手,在做一个项目,需要用凝胶色谱。美国药典论坛上已有方法,重复了人家方法发现有些地方不对,撇开这些不谈,先说说我的疑问吧!1 美国药典上的流动相加了0.1M的硝酸钾,我试了一针加的,一针不加的,发现不加盐峰会前沿,加盐的峰很对称,请问在凝胶色谱里加盐的目的除了改善峰形还有什么作用吗?我更好奇的是盐是通过什么原理来改善峰形的?2 还有一个很奇怪的现象,我的样品和两个杂质出峰时间重叠,即专属性不合格,这三种物质虽然都是钠盐,但大家请注意样品的分子量范围是1000-2000,而两个杂质的分子量一个是100多,一个是300多,就是说在分离原理为分子排阻的凝胶色谱里,分子量1000多的和100,300的一起出峰,改变流动相(换过纯水,也试过加大有机相比例)变化并不明显,这是为什么呢?难道现在的凝胶色谱已经不是单纯的分子排阻原理了,还是说样品的出峰时间除了和分子量有关,还和他们的水溶性有关?这两个问题快把我折磨疯了,请高手解答!

  • 【分享】分子筛凝胶层析法的工作原理

    【分享】分子筛凝胶层析法的工作原理

    在一定的温度下,同一化学物质在不相混溶的两种介匝间分布达平街时.该物质在这两种介质中的浓度比是一常数.称分配系数。不同化学物质的分配系数不同。层析法即利用混合物中各组分的分配系数不同而崖其分离的方法。其两种介质,一为固定不动,称固定相,另一为可相对流动,称流动相。 层析法已广泛应用在生物化学领域中,无论是少量分析还是大量制备,都能体现出它的高效性,简便性等特点。在实脸室中的常用层析法有:凝胶过滤,纸层析.薄层层析,离子交换层析,亲和层析,高效液相层析等。 以下介绍几种常用的层析法凝胶过滤 凝胶过滤的别名很多,如凝皎扩散层析,分子筛层析,排阻层析等。这种技术具有操作简便,回收率高(近100%),条件缓和等特点,但它的分离操作速度较慢。该法常用于蛋白质,多糖,核酸的分离纯化。 凝胶过滤的分离过程是在装有多孔物质填料的柱中进行的。柱的总体积为VA,它包括填料的骨架体积VGM。,填料的孔体积Vi(内水体积)及填料颗粒间的体积VO(外水体积)。分布在填料的孔中的溶剂是固定相,分布的填料颗粒间的溶剂是流动相。填料颗粒含有许多不同大小的孔.如果待分离的物质分子大小合适,则可以不同程度地向孔中扩散,大分子物质只能占有较少的大孔,小分子则能占有大孔及另外一些小孔。所以当不同分子量物质的混合物流经凝胶柱时,较小的分子在柱中停留的时间比大分于停留的时间长,于是混合物中各组分即按分于大小分开,最先流出的是最大的分子。示意图如下所示,http://ng1.17img.cn/bbsfiles/images/2010/10/201010171831_251966_1638724_3.jpg用于生物材料分离的凝胶主要有交联葡聚糖凝胶(商品名为Sephadex),聚丙烯酰胺凝胶(商品名为Bio—Gel),琼脂糖凝胶(商品名Sepharose)等。如常用的交联葡聚糖是将葡聚糖(Dextran)悬浮于有机溶剂,加入交联剂表氯醇交联聚合而成多糖链的三维结构,这种聚合物为白色珠状微粒,是多孔性网状结构,凝胶的孔径大小与交联剂的量有关,交联剂多则交联度大,网状结构紧密,孔径小,反之交联剂少则孔径大。 将含有三种不同分子量物质的混合样品用某种规格的凝胶柱进行分离。首先将样品小心自柱顶端加入,洗脱,以分步收集器收集洗脱液,测定每管物质浓度,然后以洗脱体积为横坐标,各物质浓度为纵坐标即得如下的洗脱曲线:由图可见最先流出的物质是,A,它的分子量最大,大于该种凝胶的排阻限(A物质分子的直径大于凝胶的孔径),完全不能进入颗粒内部,只能从颗粒间隙流过,称“全排阻”。其流经体积最小,与外水体积VO相等。最后流出的物质是C,它的分子量最小,小于该种凝胶的渗入限,其分子可以自由进出凝胶颗粒,这叫“全渗入”。流经体积是外水体积VO与内水体积Vi的和。而物质B的分子量介于排阻限与渗入限之间,其分子能够部分地进入凝胶颗粒之中,不能全部地不受限制的通过,这叫做“部分排阻”或“部分渗入”。它的流经体积Ve是全部外水体积加上内水体积的一部分,即 Ve=VO+KdVi式中Kd称作“排阻系数”或“分配系数”。它反映了物质分子进入凝胶颗粒的程度。Kd=(Ve-VO)/Vi当Kd=1时,Ve=VO+Vi为全渗入。当Kd=0时,Ve=VO为全排阻。当0t,则说明该物质分子与凝胶有吸附作用。这三种物质的分离过程可见示意图如下:http://ng1.17img.cn/bbsfiles/images/2010/10/201010171832_251967_1638724_3.jpgVi也可通过计算求出:Vi=aWra=凝胶千重Wi=每克干凝胶吸水毫升数Vt=Vo+Vi+VgVg=凝胶骨架体积Vt=可通过测定层析柱内径及高度计算得出:Vt=1/4D2h下表为交联葡聚糖凝胶的种类和规格:http://ng1.17img.cn/bbsfiles/images/2010/10/201010171832_251968_1638724_3.jpg

  • [资料]凝胶色谱技术

    [分享]凝胶色谱技术凝胶色谱技术是六十年代初发展起来的一种快速而又简单的分离分技术,由于设备简单、操作方便,不需要有机溶剂,对高分子物质有很高的分离效果。目前已经被生物化学、分子生物学、生物工程学、分子免疫学以及医学等有关领域广泛采用,不但应用于科学实验研究,而且已经大规模地用于工业生产。一、基本理论(一)分子筛效益  一个含有各种分子的样品溶液缓慢地流经凝胶色谱柱时,各分子在柱内同时进行着两种不同的运动:垂直向下的移动和无定向的扩散运动。大分子物质由于直径较大,不易进入凝胶颗粒的微孔,而只能分布颗粒之间,所以在洗脱时向下移动的速度较快。小分子物质除了可在凝胶颗粒间隙中扩散外,还可以进入凝胶颗粒的微孔中,即进入凝胶相内,在向下移动的过程中,从一个凝胶内扩散到颗粒间隙后再进入另一凝胶颗粒,如此不断地进入和扩散,小分子物质的下移速度落后于大分子物质,从而使样品中分子大的先流出色谱柱,中等分子的后流出,分子最小的最后流出,这种现象叫分子筛效应。具有多孔的凝胶就是分子筛。各种分子筛的孔隙大小分布有一定范围,有最大极限和最小极限。分子直径比凝胶最大孔隙直径大的,就会全部被排阻在凝胶颗粒之外,这种情况叫全排阻。两种全排阻的分子即使大小不同,也不能有分离效果。直径比凝胶最小孔直径小的分子能进入凝胶的全部孔隙。如果两种分子都能全部进入凝胶孔隙,即使它们的大小有差别,也不会有好的分离效果。因此,一定的分子筛有它一定的使用范围。综上所述,在凝胶色谱中会有三种情况,一是分子很小,能进入分子筛全部的内孔隙;二是分子很大,完全不能进入凝胶的任何内孔隙;三是分子大小适中,能进入凝胶的内孔隙中孔径大小相应的部分。大、中、小三类分子彼此间较易分开,但每种凝胶分离范围之外的分子,在不改变凝胶种类的情况下是很难分离的。对于分子大小不同,但同属于凝胶分离范围内各种分子,在凝胶床中的分布情况是不同的:分子较大的只能进入孔径较大的那一部分凝胶孔隙内,而分子的可进入较多的凝胶颗粒内,这样分子较大的在凝胶床内移动距离较短,分子较小的移动距离较长。于是分子较大的先通过凝胶床而分子较小的后通过凝胶床,这样就利用分子筛可将分子量不同的物质分离。另外,凝胶本身具有三维网状结构,大的分子在通过这种网状结构上的孔隙时阻力较大,小分子通过时阻力较小。分子量大小不同的多种成份在通过凝胶床时,按照分子量大小“排队,凝胶表现分子筛效应。(二)色谱柱的重要参数⑴柱体积:柱体积是指凝胶装柱后,从柱的底板到凝胶沉积表面的体积。在色谱柱中充满凝胶的部分称为凝胶床,因引柱体积又称“床”体积,常用Vt 表示。⑵外水体积:色谱柱内凝胶颗粒间隙,这部分体积称外水体积,亦称间隙体积,常用Vo表示。⑶内水体积:因为凝胶为三维网状结构,颗粒内部仍有空间,液体可进入颗粒内部,这就分间隙的总和为内水体积,又称定相体积,常用Vi表示。 不包括固体支持物的体积(Vg)。⑷峰洗脱体积:是指被分离物质通过凝胶柱所需洗脱液有体积,常用Ve 表示。当使用样品的体积很少时,(与洗脱体积比较可以忽略不计),在洗脱图中,从加样到峰顶位置所用洗脱液体积为Ve。 当样品体积与洗脱体积比较不能忽略时,洗脱体积计算可以从样品体积的一半到峰顶位置。当样品很大时,洗脱体积计算可以从应用样品开始到洗脱峰升高的弯曲点(或半高处)。 二、凝胶的种类及性质 (一)交联葡聚糖凝胶(Sephadex)⑴Sephadex G交联葡聚糖的商品名为Sephndex,不同规格型号的葡聚糖用英文字母G表示,G后面的阿拉伯数为凝胶得水值的10倍。例如,G-25为每克凝胶膨胀时吸水2.5克,同样G-200克每克千胶吸水20克。交联葡聚糖凝胶的种类有G-10,G-15,G-25,G-50,G-75,G-100,G-150,和G-200。因此,“G”反映,凝胶的交联程度,膨胀程度及分部范围。⑵Sephadex LH-20,是─Sephadex G-25的羧丙基衍生物, 能溶于水及亲脂溶剂,用于分离不溶于水的物质。(二)琼脂糖凝胶:  商品名很多,常见的有,Sepharose(瑞典,pharmacia ),Bio-Gel-A(美国Bio-Rad)等。琼脂糖凝胶是依*糖链之间的次级链如氢键来维持网状结构,网状结构的疏密依*琼脂糖的浓度。一般情况下,它的结构是稳定的,可以在许多条件下使用(如水,pH4-9范围内的盐溶液)。琼脂糖凝胶在40℃以上开始融化,也不能高压消毒,可用化学灭菌活处理。(三)聚丙烯酰胺凝胶:  是一种人工合成凝胶,是以丙烯酰胺为单位, 由甲*双丙烯酰胺交联成的,经干燥粉碎或加工成形制成粒状,控制交联剂的用量可制成各种型号的凝胶。交联剂越多,孔隙越小。聚丙烯酰胺凝胶的商品为生物胶-P (Bio-Gel P),由美国Bio-Rod厂生产,型号很多,从P-2至P-300共10种,P 后面的数字再乘1000就相当于该凝胶的排阻限度。(四)聚苯乙烯凝胶商品为Styrogel , 具有大网孔结构, 可用于分离分子量1600到40,000,000的生物大分子,适用于有机多聚物,分子量测定和脂溶性天然物的分级,凝胶机械强度好,洗脱剂可用甲基亚砜。三、实验技术(一)层析柱 层析柱是凝胶层析技术中的主体,一般用玻璃管或有机玻璃管。层析柱的直径大小不影响分离度,样品用量大,可加大柱的直径,一般制备用凝胶柱,直径大于2厘米,但在加样时应将样品均匀分布于凝胶柱床面上。此外, 直径加大,洗脱液体体积增大,样品稀释度大。分离度取决于柱高,为分离不同组分,凝胶柱床必须有适宜的高度,分离度与柱高的平方根相关,但由于软凝胶柱过高挤压变形阻塞,一般不超过1米。分族分离时用短柱,一般凝胶柱长20-30厘米,柱高与直径的比较5:1─10:1,凝胶床体积为样品溶液体积的4-10倍。 分级分离时柱高与直径之线为20:1─100:1,常用凝胶柱有50×25厘米,10×25厘米。层析柱滤板下的死体积应尽可能的小,如果支掌滤板下的死体积大,被分离组分之间重新混合的可能性就大,其结果是影响洗脱峰形,出现拖尾出象,降低分辩力。在精确分离时,死体积不能超过总床体积的1/1000。(二)凝胶的选择 根据所需凝胶体积,估计所需干胶的量。 一般葡聚糖凝胶吸水后的凝胶体积约为其吸水量的2倍,例如Sephadex G-20的吸水量为20,1 克Sephadex G─200吸水后形成的凝胶体积约40ml。凝胶的粒度也可影响层析分离效果。粒度细胞分离效果好,但阻力大,流速慢。一般实验室分离蛋白质采用100-200号筛目的的Sephadex G-200效果好, 脱盐用Sephadex G-25、G-50,用粗粒,短柱,流速快。(三)凝胶的制备 商品凝胶是干燥的颗粒使用前需直接在欲使用的洗脱液中膨胀。为了加速膨胀,可用加热法,即在沸水浴中将湿凝胶逐渐升温至近沸,这样可大大中速膨胀,通常在1-2小时内即可完成。特别是在使用软胶时, 自然膨胀需24小时至数天,而用加热法在几小时内就可完成。这种方法不但节约时间,而且还可消毒,除去凝胶中污染的细菌和排除胶内的空气。(四)样品溶液的处理 样品溶液如有沉淀应过滤或离心除去,如含脂类可高速离心或通过Sephadex G-15短柱除去。样品的粘度不可大,含蛋白为超过4%,粘度高影响分离效果。上柱样品液的体积根据凝胶床体积的分离要求确定。分离蛋白质样品的体积为凝胶床的1-4%(一般约0.5-2ml),进行分族分离时样品液可为凝胶床的10%,在蛋白质溶液除盐时,样品可达凝胶床的20-30%。 分级分离样品体积要小,使样品层尽可能窄,洗脱出的峰形较好。(五)防止微生物的污染 交联葡聚糖和琼脂糖都是多糖类物质,防止微生物的生长,在凝胶层析中十分重要,常用的抑菌剂有:⑴叠氨钠(NaN3)在凝胶层析中只要用0.02%叠氮钠已足够防止微生物的生长,叠氮钠易溶一水,在20℃时约为40%;它不与蛋白质或碳水化合物相互作用,因此叠氮钠不影响抗体活力;不会改变蛋白质和碳水化合物的层析我特性。叠氮钠可干扰荧光标记蛋白质。⑵可乐酮[Cl3C-C(OH)(CH3)2]在凝胶层析中使用浓度为0.01-0.02%。在微酸性溶液中它的杀菌效果最佳,在强碱性溶液中或温度高于60℃时易引起分解而失效。⑶乙基汞代巯基水杨酸钠 在凝胶层析中作为抑菌剂使用浓度为0.05-0. 01%。在微酸性溶液中最为有效。重金属离子可使乙基代巯基的物质结合,因而包含疏基的蛋白质可在不同程度上降低它的抑菌效果。⑷苯基汞代盐 在凝胶层析中使用浓度为0.001-0.01%。在微碱性溶液中抑效果最佳,长时间放置时可与卤素、硝酸根离子作用而产生沉淀;还原剂可引起此化合物分解;含疏基的物质亦可降低或抑制它的抑菌作用。

  • 【资料】凝胶色谱法的基本理论

    凝胶色谱法的基本理论简介:凝胶色谱技术是六十年代初发展起来的一种快速而又简单的分离分技术,由于设备简单、操作方便,不需要有机溶剂,对高分子物质有很高的分离效果。内容: 目前已经被生物化学、分子生物学、生物工程学、分子免疫学以及医学等有关领域广泛采用,不但应用于科学实验研究,而且已经大规模地用于工业生产。基本理论(一) 分子筛效益  一个含有各种分子的样品溶液缓慢地流经凝胶色谱柱时,各分子在柱内同时进行着两种不同的运动:垂直向下的移动和无定向的扩散运动。大分子物质由于直径较大,不易进入凝胶颗粒的微孔,而只能分布颗粒之间,所以在洗脱时向下移动的速度较快。小分子物质除了可在凝胶颗粒间隙中扩散外,还可以进入凝胶颗粒的微孔中,即进入凝胶相内,在向下移动的过程中,从一个凝胶内扩散到颗粒间隙后再进入另一凝胶颗粒,如此不断地进入和扩散,小分子物质的下移速度落后于大分子物质,从而使样品中分子大的先流出色谱柱,中等分子的后流出,分子最小的最后流出,这种现象叫分子筛效应。 具有多孔的凝胶就是分子筛。各种分子筛的孔隙大小分布有一定范围,有最大极限和最小极限。分子直径比凝胶最大孔隙直径大的,就会全部被排阻在凝胶颗粒之外,这种情况叫全排阻。两种全排阻的分子即使大小不同,也不能有分离效果。直径比凝胶最小孔直径小的分子能进入凝胶的全部孔隙。如果两种分子都能全部进入凝胶孔隙,即使它们的大小有差别,也不会有好的分离效果。因此,一定的分子筛有它一定的使用范围。综上所述,在凝胶色谱中会有三种情况,一是分子很小,能进入分子筛全部的内孔隙;二是分子很大,完全不能进入凝胶的任何内孔隙;三是分子大小适中,能进入凝胶的内孔隙中孔径大小相应的部分。大、中、小三类分子彼此间较易分开,但每种凝胶分离范围之外的分子,在不改变凝胶种类的情况下是很难分离的。 对于分子大小不同,但同属于凝胶分离范围内各种分子,在凝胶床中的分布情况是不同的:分子较大的只能进入孔径较大的那一部分凝胶孔隙内,而分子的可进入较多的凝胶颗粒内,这样分子较大的在凝胶床内移动距离较短,分子较小的移动距离较长。于是分子较大的先通过凝胶床而分子较小的后通过凝胶床,这样就利用分子筛可将分子量不同的物质分离。另外,凝胶本身具有三维网状结构,大的分子在通过这种网状结构上的孔隙时阻力较大,小分子通过时阻力较小。分子量大小不同的多种成份在通过凝胶床时,按照分子量大小“排队,凝胶表现分子筛效应。(二) 色谱柱的重要参数⑴柱体积:柱体积是指凝胶装柱后,从柱的底板到凝胶沉积表面的体积。在色谱柱中充满凝胶的部分称为凝胶床,因引柱体积又称“床”体积,常用Vt 表示。⑵外水体积:色谱柱内凝胶颗粒间隙,这部分体积称外水体积,亦称间隙体积,常用Vo表示。⑶内水体积:因为凝胶为三维网状结构,颗粒内部仍有空间,液体可进入颗粒内部,这就分间隙的总和为内水体积,又称定相体积,常用Vi表示。 不包括固体支持物的体积(Vg)。⑷峰洗脱体积:是指被分离物质通过凝胶柱所需洗脱液有体积,常用Ve 表示。当使用样品的体积很少时,(与洗脱体积比较可以忽略不计),在洗脱图中,从加样到峰顶位置所用洗脱液体积为Ve。 当样品体积与洗脱体积比较不能忽略时,洗脱体积计算可以从样品体积的一半到峰顶位置。当样品很大时,洗脱体积计算可以从应用样品开始到洗脱峰升高的弯曲点(或半高处)。

  • [资料]凝胶色谱仪对高分子材料的分析的应用

    高分子工业材料及生物高分子分析是近年来新兴的课题。凝胶色谱是分离分析高分子组成及鉴定其性能的最好方法。高分子材料中填充各种助剂、乳化剂、分散剂等物的分离,色谱技术也独具特点。   ①控制高分子产品质量 在生产工艺中,可利用凝胶色谱测定聚合物小分子杂质。如用凝胶色谱测定环氧树脂中未聚合的双酚A,用C18柱分离小分子环氧化合物,小分子聚苯乙烯或不能成膜的聚脂等,用以鉴定聚合物的质量。  ②测定聚合物的分子量分布宽度 分子量大小和分子量分布宽度是衡量聚合物质量的一种重要指标,用凝胶色谱可以测定。  ③高温凝胶色谱测聚合物的老化、降解现象及分级。如测定聚乙烯分子量应为四万左右,通过分析可将分子量1000以下的聚乙烯蜡分开。还可用来观察高密度聚乙烯的氧化过程,观察聚苯乙烯、环氧树脂、聚磺酸脂、尼龙及聚醚聚砜等的降解情况。  ④测定高分子材料的适用性 日常食品的高分子材料包装的很多,如果测定食品中有高分子材料,则说明这种高分子材料不适于做食品和包装。

  • 一个图让你看懂凝胶色谱的原理!

    一个图让你看懂凝胶色谱的原理!

    凝胶色谱是根据多孔凝胶对不同大小分子的排助效应进行分离。 样品在多孔凝胶柱中随着流动相的移动,待分离的组分沿凝胶颗粒间的孔隙移动,大分子移动路径较短,先流出色谱柱,小分子由于扩散进入凝胶颗粒内部,迁移路径长,后流出色谱柱,实现分离。看下面一个图,就能懂得凝胶色谱的原理:http://ng1.17img.cn/bbsfiles/images/2015/05/201505041629_544714_2984502_3.png 小伙伴儿们,你看懂了吗?

  • 【分享】凝胶层析的知识(基本原理,凝胶类型与选择,凝胶的处理)

    基本原理凝膠過濾法(gel filtration)也稱為排阻層析(exclusion chromatography)、凝膠層析(gel chromatography)或分子篩層析(molecular sieve chromatofraphy),它是在1960年後發展出來的技術。凝膠是由膠體溶液凝結而成的固體物質,內部具有網狀篩孔,利用球狀凝膠內的篩孔,使分子流過填充凝膠的管柱時,大分子無法進入凝膠篩孔,而只流經凝膠及管柱間的孔隙,很快就可以流出管柱,較小的分子因為進入凝膠內的篩孔,故在管柱內的停留時間較長,由此區分大小不同的分子,亦可與已知大小的分子作比較而定出一分子的分子量。一般狀況下,凝膠不會吸附成份,所有欲分離物質都會被洗出,這是凝膠層析法與其它層析法不同的地方。目前常用的凝膠包括3個主要類型:1. PolydextranPolydextran的商品名稱是Sephadex,它幾乎不溶於溶劑中,親水性強,能迅速在水和電解質溶液中膨脹,在鹼性的環境中十分穩定,所以可以用鹼去除凝膠上的污染物。Sephadex依其吸水量有不同型號,如 G-25、G-75、G-100或是G-200,G 後面的數字為凝膠吸水量再乘以10,以G-25為例,表示1克乾燥的G-25凝膠可以吸水2.5 ml 。2. PolyacrylamidePolyacrylamide是一種合成凝膠,商品名Bio-Gel P,乾粉顆粒狀,在溶劑中自動溶成膠體,依膠的分離範圍不同,分成Bio-Gel P-2至Bio-Gel P-300,P後面的數字乘以1000為最大過濾限度。Polyacrylamide的化學性質不活潑,但它在極端的pH 下會被水解,水解後產生的COOH-具有離子交換的性質,因此pH 值應盡量控制在2-10之間。3. Agarose商品名Separose,屬於天然凝膠,依凝膠中乾膠的百分含量,分為Sepharose 2B,4B和6B。Agarose gel 是一種大孔凝膠,主要用於像核酸或病毒這些分子量400,000以上的物質,因其顆粒軟,在分離過程有時會阻塞管柱,造成流速減慢,又因其在攝氏50度以上會融化,故需於較低溫的環境中進行層析。Agarose 做成beads後不能再脫水乾燥,所以要在溼態中保存。凝膠和管柱的選擇凝膠的材質需為化學惰性,與分離物不能產生變性(denature)或是其它化學反應,最好具有能長期反覆使用的穩定性,並可以在較大的pH和溫度範圍內使用。由於凝膠上的離子交換基團會吸附帶電荷的物質,產生離子交換的效果,所以凝膠上最好不具有離子交換的基團。此外,凝膠要有一定的機械強度,在層析過程中才不會變形,增加機械強度也可使層析在較高壓力的環境進行,縮短分離時間。凝膠顆粒的粗細與分離效果有直接關係,顆粒細的分離效果好,但流速慢而費時,因此要依據實際的需要來選擇。對於分子量較小的物質,一般採用polydextran或polyacrylamide材質的凝膠,大分子物質則使用agarose。以Sephadex為例,Sephadex G-50可用於區分分子量1,500~30,000之分子,而Sephadex G-75 凝膠可區分分子量3,000~70,000之分子,所以若要分離分子量10,000及20,000之分子,兩種都適用。如果要分離的分子大小相差很多,則可選用柱高:直徑=5:1~15:1的管柱,且管柱體積要大於4~15倍的樣品體積;如果要分離的物質之間分子量差異不大,則要選用柱高:直徑=20:1~100:1的管柱,且管柱體積要大於25~100倍的樣品體積。凝膠的處理 商品凝膠一般是乾燥的顆粒,使用前要先泡在欲使用的沖洗液中,使它充份膨脹,否則有引起凝膠柱破裂的危險。熱脹法是常用的前處理法,即把浸於沖洗液中的凝膠加熱,讓它膨脹並除去氣泡,溫度夠高的話(加溫至近沸騰)也可消毒殺菌。凝膠處理過程不能劇烈攪拌,如此易使顆粒破裂,影響流速。將凝膠裝入管柱的方法有很多種,實驗室常用的方法是先在柱中加入約1/3 體積的沖洗液,邊輕輕攪伴邊將凝膠懸浮液倒入其中,等到底部沉積約1~2公分的凝膠後,打開下方出口讓水流出,上面不斷加入懸浮液,等到沉積到離頂部約3~5公分處停止,讓3~5倍柱床體積的緩衝液流過層析柱。若用polydextran的凝膠,可放入有顏色的蛋白質(如cytochrome c)流過管柱,看看色帶是否均勻下降,不均勻或出現氣泡,凝膠均需倒出重新填裝。衝洗緩衝液僅需留高於柱床2 公分左右,多餘的可用滴管吸去,再將出口打開使衝洗液流到距表面1~2公釐,關閉出口,用滴管緩緩加入樣品再打開出口,樣品完全滲入凝膠內後,加入約4公分衝洗液,出口處接上收集瓶開始層析。由於polydextran 和agarose都屬於多醣類,一旦微生物生長過多,分泌的酶會水解凝膠使其性質改變,為了防止這種情況發生,凝膠最好採用真空或低溫保存,但溫度不能過低使凝膠凍結。加入抑菌劑(chlohexidine, chlorbutol, phenylmercuric salts, NaOH等)也是常用的方法。長時間不用的凝膠可用乾燥保存法,也就是把使用過的凝膠用水除去碎顆粒和雜質,再用不同濃度的酒精,由70%、90%到95%逐步脫水,在攝氏60~80度下烘乾,不能加熱的Sepharose則用乙醚洗滌乾燥。

  • 【资料】凝胶色谱法简介

    凝胶色谱法简介 凝胶色谱技术是六十年代初发展起来的一种快速而又简单的分离分技术,由于设备简单、操作方便,不需要有机溶剂,对高分子物质有很高的分离效果。目前已经被生物化学、分子生物学、生物工程学、分子免疫学以及医学等有关领域广泛采用,不但应用于科学实验研究,而且已经大规模地用于工业生产。 一、基本理论 (一) 分子筛效益 一个含有各种分子的样品溶液缓慢地流经凝胶色谱柱时,各分子在柱内同时进行着两种不同的运动:垂直向下的移动和无定向的扩散运动。大分子物质由于直径较大,不易进入凝胶颗粒的微孔,而只能分布颗粒之间,所以在洗脱时向下移动的速度较快。小分子物质除了可在凝胶颗粒间隙中扩散外,还可以进入凝胶颗粒的微孔中,即进入凝胶相内,在向下移动的过程中,从一个凝胶内扩散到颗粒间隙后再进入另一凝胶颗粒,如此不断地进入和扩散,小分子物质的下移速度落后于大分子物质,从而使样品中分子大的先流出色谱柱,中等分子的后流出,分子最小的最后流出,这种现象叫分子筛效应。具有多孔的凝胶就是分子筛。各种分子筛的孔隙大小分布有一定范围,有最大极限和最小极限。分子直径比凝胶最大孔隙直径大的,就会全部被排阻在凝胶颗粒之外,这种情况叫全排阻。两种全排阻的分子即使大小不同,也不能有分离效果。直径比凝胶最小孔直径小的分子能进入凝胶的全部孔隙。如果两种分子都能全部进入凝胶孔隙,即使它们的大小有差别,也不会有好的分离效果。因此,一定的分子筛有它一定的使用范围。综上所述,在凝胶色谱中会有三种情况,一是分子很小,能进入分子筛全部的内孔隙;二是分子很大,完全不能进入凝胶的任何内孔隙;三是分子大小适中,能进入凝胶的内孔隙中孔径大小相应的部分。大、中、小三类分子彼此间较易分开,但每种凝胶分离范围之外的分子,在不改变凝胶种类的情况下是很难分离的。对于分子大小不同,但同属于凝胶分离范围内各种分子,在凝胶床中的分布情况是不同的:分子较大的只能进入孔径较大的那一部分凝胶孔隙内,而分子的可进入较多的凝胶颗粒内,这样分子较大的在凝胶床内移动距离较短,分子较小的移动距离较长。于是分子较大的先通过凝胶床而分子较小的后通过凝胶床,这样就利用分子筛可将分子量不同的物质分离。另外,凝胶本身具有三维网状结构,大的分子在通过这种网状结构上的孔隙时阻力较大,小分子通过时阻力较小。分子量大小不同的多种成份在通过凝胶床时,按照分子量大小“排队,凝胶表现分子筛效应。 二)色谱柱的重要参数 ⑴柱体积:柱体积是指凝胶装柱后,从柱的底板到凝胶沉积表面的体积。在色谱柱中充满凝胶的部分称为凝胶床,因引柱体积又称“床”体积,常用Vt 表示。 ⑵外水体积:色谱柱内凝胶颗粒间隙,这部分体积称外水体积,亦称间隙体积,常用Vo表示。 ⑶内水体积:因为凝胶为三维网状结构,颗粒内部仍有空间,液体可进入颗粒内部,这就分间隙的总和为内水体积,又称定相体积,常用Vi表示。 不包括固体支持物的体积(Vg)。 ⑷峰洗脱体积:是指被分离物质通过凝胶柱所需洗脱液有体积,常用Ve 表示。当使用样品的体积很少时,(与洗脱体积比较可以忽略不计),在洗脱图中,从加样到峰顶位置所用洗脱液体积为Ve。 当样品体积与洗脱体积比较不能忽略时,洗脱体积计算可以从样品体积的一半到峰顶位置。当样品很大时,洗脱体积计算可以从应用样品开始到洗脱峰升高的弯曲点(或半高处)。 二、凝胶的种类及性质 (一) 交联葡聚糖凝胶 ⑴Sephadex G交联葡聚糖的商品名为Sephndex,不同规格型号的葡聚糖用英文字母G表示,G后面的阿拉伯数为凝胶得水值的10倍。例如,G-25为每克凝胶膨胀时吸水2.5克,同样G-200克每克千胶吸水20克。交联葡聚糖凝胶的种类有G-10,G-15,G-25,G-50,G-75,G-100,G-150,和G-200。因此,“G”反映,凝胶的交联程度,膨胀程度及分部范围。 ⑵Sephadex LH-20,是─Sephadex G-25的羧丙基衍生物, 能溶于水及亲脂溶剂,用于分离不溶于水的物质。 (二) 琼脂糖凝胶: 商品名很多,常见的有,Sepharose(瑞典,pharmacia ),Bio-Gel-A(美国Bio-Rad)等。琼脂糖凝胶是依靠糖链之间的次级链如氢键来维持网状结构,网状结构的疏密依靠琼脂糖的浓度。一般情况下,它的结构是稳定的,可以在许多条件下使用(如水,pH4-9范围内的盐溶液)。琼脂糖凝胶在40℃以上开始融化,也不能高压消毒,可用化学灭菌活处理。 (三)聚丙烯酰胺凝胶:是一种人工合成凝胶,是以丙烯酰胺为单位, 由甲叉双丙烯酰胺交联成的,经干燥粉碎或加工成形制成粒状,控制交联剂的用量可制成各种型号的凝胶。交联剂越多,孔隙越小。聚丙烯酰胺凝胶的商品为生物胶-P (Bio-Gel P),由美国Bio-Rod厂生产,型号很多,从P-2至P-300共10种,P 后面的数字再乘1000就相当于该凝胶的排阻限度。 (四)聚苯乙烯凝胶商品为Styrogel , 具有大网孔结构, 可用于分离分子量1600到40,000,000的生物大分子,适用于有机多聚物,分子量测定和脂溶性天然物的分级,凝胶机械强度好,洗脱剂可用甲基亚砜。 三、实验技术 (一)层析柱 层析柱是凝胶层析技术中的主体,一般用玻璃管或有机玻璃管。层析柱的直径大小不影响分离度,样品用量大,可加大柱的直径,一般制备用凝胶柱,直径大于2厘米,但在加样时应将样品均匀分布于凝胶柱床面上。此外, 直径加大,洗脱液体体积增大,样品稀释度大。分离度取决于柱高,为分离不同组分,凝胶柱床必须有适宜的高度,分离度与柱高的平方根相关,但由于软凝胶柱过高挤压变形阻塞,一般不超过1米。分族分离时用短柱,一般凝胶柱长20-30厘米,柱高与直径的比较5:1─10:1,凝胶床体积为样品溶液体积的4-10倍。 分级分离时柱高与直径之线为20:1─100:1,常用凝胶柱有50×25厘米,10×25厘米。层析柱滤板下的死体积应尽可能的小,如果支掌滤板下的死体积大,被分离组分之间重新混合的可能性就大,其结果是影响洗脱峰形,出现拖尾出象,降低分辩力。在精确分离时,死体积不能超过总床体积的1/1000。 (二)凝胶的选择 根据所需凝胶体积,估计所需干胶的量。 一般葡聚糖凝胶吸水后的凝胶体积约为其吸水量的2倍,例如Sephadex G-20的吸水量为20,1 克Sephadex G─200吸水后形成的凝胶体积约40ml。凝胶的粒度也可影响层析分离效果。粒度细胞分离效果好,但阻力大,流速慢。一般实验室分离蛋白质采用100-200号筛目的的Sephadex G-200效果好, 脱盐用Sephadex G-25、G-50,用粗粒,短柱,流速快。 (三)凝胶的制备 商品凝胶是干燥的颗粒使用前需直接在欲使用的洗脱液中膨胀。为了加速膨胀,可用加热法,即在沸水浴中将湿凝胶逐渐升温至近沸,这样可大大中速膨胀,通常在1-2小时内即可完成。特别是在使用软胶时, 自然膨胀需24小时至数天,而用加热法在几小时内就可完成。这种方法不但节约时间,而且还可消毒,除去凝胶中污染的细菌和排除胶内的空气。 (四)样品溶液的处理 样品溶液如有沉淀应过滤或离心除去,如含脂类可高速离心或通过Sephadex G-15短柱除去。样品的粘度不可大,含蛋白为超过4%,粘度高影响分离效果。上柱样品液的体积根据凝胶床体积的分离要求确定。分离蛋白质样品的体积为凝胶床的1-4%(一般约0.5-2ml),进行分族分离时样品液可为凝胶床的10%,在蛋白质溶液除盐时,样品可达凝胶床的20-30%。 分级分离样品体积要小,使样品层尽可能窄,洗脱出的峰形较好。 (五)防止微生物的污染 交联葡聚糖和琼脂糖都是多糖类物质,防止微生物的生长,在凝胶层析中十分重要,常用的抑菌剂有: ⑴叠氨钠(NaN3)在凝胶层析中只要用0.02%叠氮钠已足够防止微生物的生长,叠氮钠易溶一水,在20℃时约为40%;它不与蛋白质或碳水化合物相互作用,因此叠氮钠不影响抗体活力;不会改变蛋白质和碳水化合物的层析我特性。叠氮钠可干扰荧光标记蛋白质。⑵可乐酮[Cl3C-C(OH)(CH3)2]在凝胶层析中使用浓度为0.01-0.02%。在微酸性溶液中它的杀菌效果最佳,在强碱性溶液中或温度高于60℃时易引起分解而失效。⑶乙基汞代巯基水杨酸钠 在凝胶层析中作为抑菌剂使用浓度为0.05-0. 01%。在微酸性溶液中最为有效。重金属离子可使乙基代巯基的物质结合,因而包含疏基的蛋白质可在不同程度上降低它的抑菌效果。⑷苯基汞代盐 在凝胶层析中使用浓度为0.001-0.01%。在微碱性溶液中抑效果最佳,长时间放置时可与卤素、硝酸根离子作用而产生沉淀;还原剂可引起此化合物分解;含疏基的物质亦可降低或抑制它的抑菌作用。 百特纯大分子(武汉)科技提供葡聚糖GPC标样

  • [资料]凝胶色谱技术

    凝胶色谱技术 凝胶色谱法  凝胶色谱技术是六十年代初发展起来的一种快速而又简单的分离分技术,由于设备简单、操作方便,不需要有机溶剂,对高分子物质有很高的分离效果。目前已经被生物化学、分子生物学、生物工程学、分子免疫学以及医学等有关领域广泛采用,不但应用于科学实验研究,而且已经大规模地用于工业生产。一、基本理论(一)分子筛效益  一个含有各种分子的样品溶液缓慢地流经凝胶色谱柱时,各分子在柱内同时进行着两种不同的运动:垂直向下的移动和无定向的扩散运动。大分子物质由于直径较大,不易进入凝胶颗粒的微孔,而只能分布颗粒之间,所以在洗脱时向下移动的速度较快。小分子物质除了可在凝胶颗粒间隙中扩散外,还可以进入凝胶颗粒的微孔中,即进入凝胶相内,在向下移动的过程中,从一个凝胶内扩散到颗粒间隙后再进入另一凝胶颗粒,如此不断地进入和扩散,小分子物质的下移速度落后于大分子物质,从而使样品中分子大的先流出色谱柱,中等分子的后流出,分子最小的最后流出,这种现象叫分子筛效应。具有多孔的凝胶就是分子筛。各种分子筛的孔隙大小分布有一定范围,有最大极限和最小极限。分子直径比凝胶最大孔隙直径大的,就会全部被排阻在凝胶颗粒之外,这种情况叫全排阻。两种全排阻的分子即使大小不同,也不能有分离效果。直径比凝胶最小孔直径小的分子能进入凝胶的全部孔隙。如果两种分子都能全部进入凝胶孔隙,即使它们的大小有差别,也不会有好的分离效果。因此,一定的分子筛有它一定的使用范围。综上所述,在凝胶色谱中会有三种情况,一是分子很小,能进入分子筛全部的内孔隙;二是分子很大,完全不能进入凝胶的任何内孔隙;三是分子大小适中,能进入凝胶的内孔隙中孔径大小相应的部分。大、中、小三类分子彼此间较易分开,但每种凝胶分离范围之外的分子,在不改变凝胶种类的情况下是很难分离的。对于分子大小不同,但同属于凝胶分离范围内各种分子,在凝胶床中的分布情况是不同的:分子较大的只能进入孔径较大的那一部分凝胶孔隙内,而分子的可进入较多的凝胶颗粒内,这样分子较大的在凝胶床内移动距离较短,分子较小的移动距离较长。于是分子较大的先通过凝胶床而分子较小的后通过凝胶床,这样就利用分子筛可将分子量不同的物质分离。另外,凝胶本身具有三维网状结构,大的分子在通过这种网状结构上的孔隙时阻力较大,小分子通过时阻力较小。分子量大小不同的多种成份在通过凝胶床时,按照分子量大小“排队,凝胶表现分子筛效应。(二)色谱柱的重要参数⑴柱体积:柱体积是指凝胶装柱后,从柱的底板到凝胶沉积表面的体积。在色谱柱中充满凝胶的部分称为凝胶床,因引柱体积又称“床”体积,常用Vt 表示。⑵外水体积:色谱柱内凝胶颗粒间隙,这部分体积称外水体积,亦称间隙体积,常用Vo表示。⑶内水体积:因为凝胶为三维网状结构,颗粒内部仍有空间,液体可进入颗粒内部,这就分间隙的总和为内水体积,又称定相体积,常用Vi表示。 不包括固体支持物的体积(Vg)。⑷峰洗脱体积:是指被分离物质通过凝胶柱所需洗脱液有体积,常用Ve 表示。当使用样品的体积很少时,(与洗脱体积比较可以忽略不计),在洗脱图中,从加样到峰顶位置所用洗脱液体积为Ve。 当样品体积与洗脱体积比较不能忽略时,洗脱体积计算可以从样品体积的一半到峰顶位置。当样品很大时,洗脱体积计算可以从应用样品开始到洗脱峰升高的弯曲点(或半高处)。 二、凝胶的种类及性质 (一)交联葡聚糖凝胶(Sephadex)⑴Sephadex G交联葡聚糖的商品名为Sephndex,不同规格型号的葡聚糖用英文字母G表示,G后面的阿拉伯数为凝胶得水值的10倍。例如,G-25为每克凝胶膨胀时吸水2.5克,同样G-200克每克千胶吸水20克。交联葡聚糖凝胶的种类有G-10,G-15,G-25,G-50,G-75,G-100,G-150,和G-200。因此,“G”反映,凝胶的交联程度,膨胀程度及分部范围。⑵Sephadex LH-20,是─Sephadex G-25的羧丙基衍生物, 能溶于水及亲脂溶剂,用于分离不溶于水的物质。(二)琼脂糖凝胶:  商品名很多,常见的有,Sepharose(瑞典,pharmacia ),Bio-Gel-A(美国Bio-Rad)等。琼脂糖凝胶是依靠糖链之间的次级链如氢键来维持网状结构,网状结构的疏密依靠琼脂糖的浓度。一般情况下,它的结构是稳定的,可以在许多条件下使用(如水,pH4-9范围内的盐溶液)。琼脂糖凝胶在40℃以上开始融化,也不能高压消毒,可用化学灭菌活处理。(三)聚丙烯酰胺凝胶:  是一种人工合成凝胶,是以丙烯酰胺为单位, 由甲叉双丙烯酰胺交联成的,经干燥粉碎或加工成形制成粒状,控制交联剂的用量可制成各种型号的凝胶。交联剂越多,孔隙越小。聚丙烯酰胺凝胶的商品为生物胶-P (Bio-Gel P),由美国Bio-Rod厂生产,型号很多,从P-2至P-300共10种,P 后面的数字再乘1000就相当于该凝胶的排阻限度。(四)聚苯乙烯凝胶商品为Styrogel , 具有大网孔结构, 可用于分离分子量1600到40,000,000的生物大分子,适用于有机多聚物,分子量测定和脂溶性天然物的分级,凝胶机械强度好,洗脱剂可用甲基亚砜。三、实验技术(一)层析柱 层析柱是凝胶层析技术中的主体,一般用玻璃管或有机玻璃管。层析柱的直径大小不影响分离度,样品用量大,可加大柱的直径,一般制备用凝胶柱,直径大于2厘米,但在加样时应将样品均匀分布于凝胶柱床面上。此外, 直径加大,洗脱液体体积增大,样品稀释度大。分离度取决于柱高,为分离不同组分,凝胶柱床必须有适宜的高度,分离度与柱高的平方根相关,但由于软凝胶柱过高挤压变形阻塞,一般不超过1米。分族分离时用短柱,一般凝胶柱长20-30厘米,柱高与直径的比较5:1─10:1,凝胶床体积为样品溶液体积的4-10倍。 分级分离时柱高与直径之线为20:1─100:1,常用凝胶柱有50×25厘米,10×25厘米。层析柱滤板下的死体积应尽可能的小,如果支掌滤板下的死体积大,被分离组分之间重新混合的可能性就大,其结果是影响洗脱峰形,出现拖尾出象,降低分辩力。在精确分离时,死体积不能超过总床体积的1/1000。(二)凝胶的选择 根据所需凝胶体积,估计所需干胶的量。 一般葡聚糖凝胶吸水后的凝胶体积约为其吸水量的2倍,例如Sephadex G-20的吸水量为20,1 克Sephadex G─200吸水后形成的凝胶体积约40ml。凝胶的粒度也可影响层析分离效果。粒度细胞分离效果好,但阻力大,流速慢。一般实验室分离蛋白质采用100-200号筛目的的Sephadex G-200效果好, 脱盐用Sephadex G-25、G-50,用粗粒,短柱,流速快。(三)凝胶的制备 商品凝胶是干燥的颗粒使用前需直接在欲使用的洗脱液中膨胀。为了加速膨胀,可用加热法,即在沸水浴中将湿凝胶逐渐升温至近沸,这样可大大中速膨胀,通常在1-2小时内即可完成。特别是在使用软胶时, 自然膨胀需24小时至数天,而用加热法在几小时内就可完成。这种方法不但节约时间,而且还可消毒,除去凝胶中污染的细菌和排除胶内的空气。(四)样品溶液的处理 样品溶液如有沉淀应过滤或离心除去,如含脂类可高速离心或通过Sephadex G-15短柱除去。样品的粘度不可大,含蛋白为超过4%,粘度高影响分离效果。上柱样品液的体积根据凝胶床体积的分离要求确定。分离蛋白质样品的体积为凝胶床的1-4%(一般约0.5-2ml),进行分族分离时样品液可为凝胶床的10%,在蛋白质溶液除盐时,样品可达凝胶床的20-30%。 分级分离样品体积要小,使样品层尽可能窄,洗脱出的峰形较好。(五)防止微生物的污染 交联葡聚糖和琼脂糖都是多糖类物质,防止微生物的生长,在凝胶层析中十分重要,常用的抑菌剂有:⑴叠氨钠(NaN3)在凝胶层析中只要用0.02%叠氮钠已足够防止微生物的生长,叠氮钠易溶一水,在20℃时约为40%;它不与蛋白质或碳水化合物相互作用,因此叠氮钠不影响抗体活力;不会改变蛋白质和碳水化合物的层析我特性。叠氮钠可干扰荧光标记蛋白质。⑵可乐酮[Cl3C-C(OH)(CH3)2]在凝胶层析中使用浓度为0.01-0.02%。在微酸性溶液中它的杀菌效果最佳,在强碱性溶液中或温度高于60℃时易引起分解而失效。⑶乙基汞代巯基水杨酸钠 在凝胶层析中作为抑菌剂使用浓度为0.05-0. 01%。在微酸性溶液中最为有效。重金属离子可使乙基代巯基的物质结合,因而包含疏基的蛋白质可在不同程度上降低它的抑菌效果。⑷苯基汞代盐 在凝胶层析中使用浓度为0.001-0.01%。在微碱性溶液中抑效果最佳,长时间放置时可与卤素、硝酸根离子作用而产生沉淀;还原剂可引起此化合物分解;含疏基的物质亦可降低或抑制它的抑菌作用。

  • [资料]凝胶色谱技术

    凝胶色谱技术是六十年代初发展起来的一种快速而又简单的分离分技术,由于设备简单、操作方便,不需要有机溶剂,对高分子物质有很高的分离效果。目前已经被生物化学、分子生物学、生物工程学、分子免疫学以及医学等有关领域广泛采用,不但应用于科学实验研究,而且已经大规模地用于工业生产。一、基本理论(一)分子筛效益  一个含有各种分子的样品溶液缓慢地流经凝胶色谱柱时,各分子在柱内同时进行着两种不同的运动:垂直向下的移动和无定向的扩散运动。大分子物质由于直径较大,不易进入凝胶颗粒的微孔,而只能分布颗粒之间,所以在洗脱时向下移动的速度较快。小分子物质除了可在凝胶颗粒间隙中扩散外,还可以进入凝胶颗粒的微孔中,即进入凝胶相内,在向下移动的过程中,从一个凝胶内扩散到颗粒间隙后再进入另一凝胶颗粒,如此不断地进入和扩散,小分子物质的下移速度落后于大分子物质,从而使样品中分子大的先流出色谱柱,中等分子的后流出,分子最小的最后流出,这种现象叫分子筛效应。具有多孔的凝胶就是分子筛。各种分子筛的孔隙大小分布有一定范围,有最大极限和最小极限。分子直径比凝胶最大孔隙直径大的,就会全部被排阻在凝胶颗粒之外,这种情况叫全排阻。两种全排阻的分子即使大小不同,也不能有分离效果。直径比凝胶最小孔直径小的分子能进入凝胶的全部孔隙。如果两种分子都能全部进入凝胶孔隙,即使它们的大小有差别,也不会有好的分离效果。因此,一定的分子筛有它一定的使用范围。综上所述,在凝胶色谱中会有三种情况,一是分子很小,能进入分子筛全部的内孔隙;二是分子很大,完全不能进入凝胶的任何内孔隙;三是分子大小适中,能进入凝胶的内孔隙中孔径大小相应的部分。大、中、小三类分子彼此间较易分开,但每种凝胶分离范围之外的分子,在不改变凝胶种类的情况下是很难分离的。对于分子大小不同,但同属于凝胶分离范围内各种分子,在凝胶床中的分布情况是不同的:分子较大的只能进入孔径较大的那一部分凝胶孔隙内,而分子的可进入较多的凝胶颗粒内,这样分子较大的在凝胶床内移动距离较短,分子较小的移动距离较长。于是分子较大的先通过凝胶床而分子较小的后通过凝胶床,这样就利用分子筛可将分子量不同的物质分离。另外,凝胶本身具有三维网状结构,大的分子在通过这种网状结构上的孔隙时阻力较大,小分子通过时阻力较小。分子量大小不同的多种成份在通过凝胶床时,按照分子量大小“排队,凝胶表现分子筛效应。(二)色谱柱的重要参数⑴柱体积:柱体积是指凝胶装柱后,从柱的底板到凝胶沉积表面的体积。在色谱柱中充满凝胶的部分称为凝胶床,因引柱体积又称“床”体积,常用Vt 表示。⑵外水体积:色谱柱内凝胶颗粒间隙,这部分体积称外水体积,亦称间隙体积,常用Vo表示。⑶内水体积:因为凝胶为三维网状结构,颗粒内部仍有空间,液体可进入颗粒内部,这就分间隙的总和为内水体积,又称定相体积,常用Vi表示。 不包括固体支持物的体积(Vg)。⑷峰洗脱体积:是指被分离物质通过凝胶柱所需洗脱液有体积,常用Ve 表示。当使用样品的体积很少时,(与洗脱体积比较可以忽略不计),在洗脱图中,从加样到峰顶位置所用洗脱液体积为Ve。 当样品体积与洗脱体积比较不能忽略时,洗脱体积计算可以从样品体积的一半到峰顶位置。当样品很大时,洗脱体积计算可以从应用样品开始到洗脱峰升高的弯曲点(或半高处)。 二、凝胶的种类及性质 (一)交联葡聚糖凝胶(Sephadex)⑴Sephadex G交联葡聚糖的商品名为Sephndex,不同规格型号的葡聚糖用英文字母G表示,G后面的阿拉伯数为凝胶得水值的10倍。例如,G-25为每克凝胶膨胀时吸水2.5克,同样G-200克每克千胶吸水20克。交联葡聚糖凝胶的种类有G-10,G-15,G-25,G-50,G-75,G-100,G-150,和G-200。因此,“G”反映,凝胶的交联程度,膨胀程度及分部范围。⑵Sephadex LH-20,是─Sephadex G-25的羧丙基衍生物, 能溶于水及亲脂溶剂,用于分离不溶于水的物质。(二)琼脂糖凝胶:  商品名很多,常见的有,Sepharose(瑞典,pharmacia ),Bio-Gel-A(美国Bio-Rad)等。琼脂糖凝胶是依靠糖链之间的次级链如氢键来维持网状结构,网状结构的疏密依靠琼脂糖的浓度。一般情况下,它的结构是稳定的,可以在许多条件下使用(如水,pH4-9范围内的盐溶液)。琼脂糖凝胶在40℃以上开始融化,也不能高压消毒,可用化学灭菌活处理。(三)聚丙烯酰胺凝胶:  是一种人工合成凝胶,是以丙烯酰胺为单位, 由甲叉双丙烯酰胺交联成的,经干燥粉碎或加工成形制成粒状,控制交联剂的用量可制成各种型号的凝胶。交联剂越多,孔隙越小。聚丙烯酰胺凝胶的商品为生物胶-P (Bio-Gel P),由美国Bio-Rod厂生产,型号很多,从P-2至P-300共10种,P 后面的数字再乘1000就相当于该凝胶的排阻限度。(四)聚苯乙烯凝胶商品为Styrogel , 具有大网孔结构, 可用于分离分子量1600到40,000,000的生物大分子,适用于有机多聚物,分子量测定和脂溶性天然物的分级,凝胶机械强度好,洗脱剂可用甲基亚砜。三、实验技术(一)层析柱 层析柱是凝胶层析技术中的主体,一般用玻璃管或有机玻璃管。层析柱的直径大小不影响分离度,样品用量大,可加大柱的直径,一般制备用凝胶柱,直径大于2厘米,但在加样时应将样品均匀分布于凝胶柱床面上。此外, 直径加大,洗脱液体体积增大,样品稀释度大。分离度取决于柱高,为分离不同组分,凝胶柱床必须有适宜的高度,分离度与柱高的平方根相关,但由于软凝胶柱过高挤压变形阻塞,一般不超过1米。分族分离时用短柱,一般凝胶柱长20-30厘米,柱高与直径的比较5:1─10:1,凝胶床体积为样品溶液体积的4-10倍。 分级分离时柱高与直径之线为20:1─100:1,常用凝胶柱有50×25厘米,10×25厘米。层析柱滤板下的死体积应尽可能的小,如果支掌滤板下的死体积大,被分离组分之间重新混合的可能性就大,其结果是影响洗脱峰形,出现拖尾出象,降低分辩力。在精确分离时,死体积不能超过总床体积的1/1000。(二)凝胶的选择 根据所需凝胶体积,估计所需干胶的量。 一般葡聚糖凝胶吸水后的凝胶体积约为其吸水量的2倍,例如Sephadex G-20的吸水量为20,1 克Sephadex G─200吸水后形成的凝胶体积约40ml。凝胶的粒度也可影响层析分离效果。粒度细胞分离效果好,但阻力大,流速慢。一般实验室分离蛋白质采用100-200号筛目的的Sephadex G-200效果好, 脱盐用Sephadex G-25、G-50,用粗粒,短柱,流速快。(三)凝胶的制备 商品凝胶是干燥的颗粒使用前需直接在欲使用的洗脱液中膨胀。为了加速膨胀,可用加热法,即在沸水浴中将湿凝胶逐渐升温至近沸,这样可大大中速膨胀,通常在1-2小时内即可完成。特别是在使用软胶时, 自然膨胀需24小时至数天,而用加热法在几小时内就可完成。这种方法不但节约时间,而且还可消毒,除去凝胶中污染的细菌和排除胶内的空气。(四)样品溶液的处理 样品溶液如有沉淀应过滤或离心除去,如含脂类可高速离心或通过Sephadex G-15短柱除去。样品的粘度不可大,含蛋白为超过4%,粘度高影响分离效果。上柱样品液的体积根据凝胶床体积的分离要求确定。分离蛋白质样品的体积为凝胶床的1-4%(一般约0.5-2ml),进行分族分离时样品液可为凝胶床的10%,在蛋白质溶液除盐时,样品可达凝胶床的20-30%。 分级分离样品体积要小,使样品层尽可能窄,洗脱出的峰形较好。(五)防止微生物的污染 交联葡聚糖和琼脂糖都是多糖类物质,防止微生物的生长,在凝胶层析中十分重要,常用的抑菌剂有:⑴叠氨钠(NaN3)在凝胶层析中只要用0.02%叠氮钠已足够防止微生物的生长,叠氮钠易溶一水,在20℃时约为40%;它不与蛋白质或碳水化合物相互作用,因此叠氮钠不影响抗体活力;不会改变蛋白质和碳水化合物的层析我特性。叠氮钠可干扰荧光标记蛋白质。⑵可乐酮[Cl3C-C(OH)(CH3)2]在凝胶层析中使用浓度为0.01-0.02%。在微酸性溶液中它的杀菌效果最佳,在强碱性溶液中或温度高于60℃时易引起分解而失效。⑶乙基汞代巯基水杨酸钠 在凝胶层析中作为抑菌剂使用浓度为0.05-0. 01%。在微酸性溶液中最为有效。重金属离子可使乙基代巯基的物质结合,因而包含疏基的蛋白质可在不同程度上降低它的抑菌效果。⑷苯基汞代盐 在凝胶层析中使用浓度为0.001-0.01%。在微碱性溶液中抑效果最佳,长时间放置时可与卤素、硝酸根离子作用而产生沉淀;还原剂可引起此化合物分解;含疏基的物质亦可降低或抑制它的抑菌作用。

  • 【转帖】凝胶色谱法简介

    凝胶色谱技术是六十年代初发展起来的一种快速而又简单的分离分技术,由于设备简单、操作方便,不需要有机溶剂,对高分子物质有很高的分离效果。目前已经被生物化学、分子生物学、生物工程学、分子免疫学以及医学等有关领域广泛采用,不但应用于科学实验研究,而且已经大规模地用于工业生产。 一、基本理论 (一) 分子筛效益 一个含有各种分子的样品溶液缓慢地流经凝胶色谱柱时,各分子在柱内同时进行着两种不同的运动:垂直向下的移动和无定向的扩散运动。大分子物质由于直径较大,不易进入凝胶颗粒的微孔,而只能分布颗粒之间,所以在洗脱时向下移动的速度较快。小分子物质除了可在凝胶颗粒间隙中扩散外,还可以进入凝胶颗粒的微孔中,即进入凝胶相内,在向下移动的过程中,从一个凝胶内扩散到颗粒间隙后再进入另一凝胶颗粒,如此不断地进入和扩散,小分子物质的下移速度落后于大分子物质,从而使样品中分子大的先流出色谱柱,中等分子的后流出,分子最小的最后流出,这种现象叫分子筛效应。具有多孔的凝胶就是分子筛。各种分子筛的孔隙大小分布有一定范围,有最大极限和最小极限。分子直径比凝胶最大孔隙直径大的,就会全部被排阻在凝胶颗粒之外,这种情况叫全排阻。两种全排阻的分子即使大小不同,也不能有分离效果。直径比凝胶最小孔直径小的分子能进入凝胶的全部孔隙。如果两种分子都能全部进入凝胶孔隙,即使它们的大小有差别,也不会有好的分离效果。因此,一定的分子筛有它一定的使用范围。综上所述,在凝胶色谱中会有三种情况,一是分子很小,能进入分子筛全部的内孔隙;二是分子很大,完全不能进入凝胶的任何内孔隙;三是分子大小适中,能进入凝胶的内孔隙中孔径大小相应的部分。大、中、小三类分子彼此间较易分开,但每种凝胶分离范围之外的分子,在不改变凝胶种类的情况下是很难分离的。对于分子大小不同,但同属于凝胶分离范围内各种分子,在凝胶床中的分布情况是不同的:分子较大的只能进入孔径较大的那一部分凝胶孔隙内,而分子的可进入较多的凝胶颗粒内,这样分子较大的在凝胶床内移动距离较短,分子较小的移动距离较长。于是分子较大的先通过凝胶床而分子较小的后通过凝胶床,这样就利用分子筛可将分子量不同的物质分离。另外,凝胶本身具有三维网状结构,大的分子在通过这种网状结构上的孔隙时阻力较大,小分子通过时阻力较小。分子量大小不同的多种成份在通过凝胶床时,按照分子量大小“排队,凝胶表现分子筛效应。 二)色谱柱的重要参数 ⑴柱体积:柱体积是指凝胶装柱后,从柱的底板到凝胶沉积表面的体积。在色谱柱中充满凝胶的部分称为凝胶床,因引柱体积又称“床”体积,常用Vt 表示。 ⑵外水体积:色谱柱内凝胶颗粒间隙,这部分体积称外水体积,亦称间隙体积,常用Vo表示。 ⑶内水体积:因为凝胶为三维网状结构,颗粒内部仍有空间,液体可进入颗粒内部,这就分间隙的总和为内水体积,又称定相体积,常用Vi表示。 不包括固体支持物的体积(Vg)。 ⑷峰洗脱体积:是指被分离物质通过凝胶柱所需洗脱液有体积,常用Ve 表示。当使用样品的体积很少时,(与洗脱体积比较可以忽略不计),在洗脱图中,从加样到峰顶位置所用洗脱液体积为Ve。 当样品体积与洗脱体积比较不能忽略时,洗脱体积计算可以从样品体积的一半到峰顶位置。当样品很大时,洗脱体积计算可以从应用样品开始到洗脱峰升高的弯曲点(或半高处)。 二、凝胶的种类及性质 (一) 交联葡聚糖凝胶 ⑴Sephadex G交联葡聚糖的商品名为Sephndex,不同规格型号的葡聚糖用英文字母G表示,G后面的阿拉伯数为凝胶得水值的10倍。例如,G-25为每克凝胶膨胀时吸水2.5克,同样G-200克每克千胶吸水20克。交联葡聚糖凝胶的种类有G-10,G-15,G-25,G-50,G-75,G-100,G-150,和G-200。因此,“G”反映,凝胶的交联程度,膨胀程度及分部范围。 ⑵Sephadex LH-20,是─Sephadex G-25的羧丙基衍生物, 能溶于水及亲脂溶剂,用于分离不溶于水的物质。 (二) 琼脂糖凝胶: 商品名很多,常见的有,Sepharose(瑞典,pharmacia ),Bio-Gel-A(美国Bio-Rad)等。琼脂糖凝胶是依靠糖链之间的次级链如氢键来维持网状结构,网状结构的疏密依靠琼脂糖的浓度。一般情况下,它的结构是稳定的,可以在许多条件下使用(如水,pH4-9范围内的盐溶液)。琼脂糖凝胶在40℃以上开始融化,也不能高压消毒,可用化学灭菌活处理。 (三)聚丙烯酰胺凝胶:是一种人工合成凝胶,是以丙烯酰胺为单位, 由甲叉双丙烯酰胺交联成的,经干燥粉碎或加工成形制成粒状,控制交联剂的用量可制成各种型号的凝胶。交联剂越多,孔隙越小。聚丙烯酰胺凝胶的商品为生物胶-P (Bio-Gel P),由美国Bio-Rod厂生产,型号很多,从P-2至P-300共10种,P 后面的数字再乘1000就相当于该凝胶的排阻限度。 (四)聚苯乙烯凝胶商品为Styrogel , 具有大网孔结构, 可用于分离分子量1600到40,000,000的生物大分子,适用于有机多聚物,分子量测定和脂溶性天然物的分级,凝胶机械强度好,洗脱剂可用甲基亚砜。 三、实验技术 (一)层析柱 层析柱是凝胶层析技术中的主体,一般用玻璃管或有机玻璃管。层析柱的直径大小不影响分离度,样品用量大,可加大柱的直径,一般制备用凝胶柱,直径大于2厘米,但在加样时应将样品均匀分布于凝胶柱床面上。此外, 直径加大,洗脱液体体积增大,样品稀释度大。分离度取决于柱高,为分离不同组分,凝胶柱床必须有适宜的高度,分离度与柱高的平方根相关,但由于软凝胶柱过高挤压变形阻塞,一般不超过1米。分族分离时用短柱,一般凝胶柱长20-30厘米,柱高与直径的比较5:1─10:1,凝胶床体积为样品溶液体积的4-10倍。 分级分离时柱高与直径之线为20:1─100:1,常用凝胶柱有50×25厘米,10×25厘米。层析柱滤板下的死体积应尽可能的小,如果支掌滤板下的死体积大,被分离组分之间重新混合的可能性就大,其结果是影响洗脱峰形,出现拖尾出象,降低分辩力。在精确分离时,死体积不能超过总床体积的1/1000。 (二)凝胶的选择 根据所需凝胶体积,估计所需干胶的量。 一般葡聚糖凝胶吸水后的凝胶体积约为其吸水量的2倍,例如Sephadex G-20的吸水量为20,1 克Sephadex G─200吸水后形成的凝胶体积约40ml。凝胶的粒度也可影响层析分离效果。粒度细胞分离效果好,但阻力大,流速慢。一般实验室分离蛋白质采用100-200号筛目的的Sephadex G-200效果好, 脱盐用Sephadex G-25、G-50,用粗粒,短柱,流速快。 (三)凝胶的制备 商品凝胶是干燥的颗粒使用前需直接在欲使用的洗脱液中膨胀。为了加速膨胀,可用加热法,即在沸水浴中将湿凝胶逐渐升温至近沸,这样可大大中速膨胀,通常在1-2小时内即可完成。特别是在使用软胶时, 自然膨胀需24小时至数天,而用加热法在几小时内就可完成。这种方法不但节约时间,而且还可消毒,除去凝胶中污染的细菌和排除胶内的空气。 (四)样品溶液的处理 样品溶液如有沉淀应过滤或离心除去,如含脂类可高速离心或通过Sephadex G-15短柱除去。样品的粘度不可大,含蛋白为超过4%,粘度高影响分离效果。上柱样品液的体积根据凝胶床体积的分离要求确定。分离蛋白质样品的体积为凝胶床的1-4%(一般约0.5-2ml),进行分族分离时样品液可为凝胶床的10%,在蛋白质溶液除盐时,样品可达凝胶床的20-30%。 分级分离样品体积要小,使样品层尽可能窄,洗脱出的峰形较好。 (五)防止微生物的污染 交联葡聚糖和琼脂糖都是多糖类物质,防止微生物的生长,在凝胶层析中十分重要,常用的抑菌剂有: ⑴叠氨钠(NaN3)在凝胶层析中只要用0.02%叠氮钠已足够防止微生物的生长,叠氮钠易溶一水,在20℃时约为40%;它不与蛋白质或碳水化合物相互作用,因此叠氮钠不影响抗体活力;不会改变蛋白质和碳水化合物的层析我特性。叠氮钠可干扰荧光标记蛋白质。 ⑵可乐酮[Cl3C-C(OH)(CH3)2]在凝胶层析中使用浓度为0.01-0.02%。在微酸性溶液中它的杀菌效果最佳,在强碱性溶液中或温度高于60℃时易引起分解而失效。 ⑶乙基汞代巯基水杨酸钠 在凝胶层析中作为抑菌剂使用浓度为0.05-0. 01%。在微酸性溶液中最为有效。重金属离子可使乙基代巯基的物质结合,因而包含疏基的蛋白质可在不同程度上降低它的抑菌效果。 ⑷苯基汞代盐 在凝胶层析中使用浓度为0.001-0.01%。在微碱性溶液中抑效果最佳,长时间放置时可与卤素、硝酸根离子作用而产生沉淀;还原剂可引起此化合物分解;含疏基的物质亦可降低或抑制它的抑菌作用。

  • 【资料】凝胶成像 知识普及

    凝胶成像定义  凝胶成像即:对DNA或RNA胶  进行切胶、拍照、观察、分析  ,的实验室类仪器,  凝胶成像系统可以应用于分子  量计算,密度扫描,密度定量,  PCR定量等生物工程常规研究。凝胶成像应用范围  总体上来说凝胶成像可应用于:凝胶成像系统可以用于:蛋白质、核酸、多肽、氨基酸、多聚氨基酸等其他生物分子的分离纯化结果作定性分析  (1)分子量定量  对于一般常用的DNA胶片,利用分子量定量功能,通过对胶上DNA Marker条带的已知分子量注释,自动生成拟合曲线,并以它衡量得到未知条带的分子量。通过这种方法所得到的结果较肉眼观察估计要准确很多。  (2)密度定量  一般常用的测定DNA(脱氧核糖核酸)和RNA(核糖核酸)浓度的方法是紫外吸收法,但它只能测定样品中的总核苷酸浓度,而不能区分各个长度片段的浓度。利用凝胶成像系统和软件,先将DNA胶片上某一已知其DNA含量的标准条带进行密度标定以后,可以方便的单击其他未知条带,根据与已知条带的密度做比较,可以得到未知DNA的含量。此方法也适用于对PA GE蛋白胶条带的浓度测定。  (3)密度扫描  在分子生物学和生物工程研究中,最常用到的是对蛋白表达产物占整个菌体蛋白的百分含量的计算。传统的方法是利用专用的密度扫描,但利用生物分析软件结合现在实验室常规配备的扫描仪或者直接用白光照射的凝胶成像就能完成此项工作。  (4)PCR定量  PCR定量主要是指,如果PCR实验扩增出来的条带不是一条,那么可以利用软件计算出各个条带占总体条带的相对百分数。就此功能而言,与密度扫描类似,但实际在原理上并不相同。PCR定量是对选定的几条带进行相对密度定量并计算其占总和的百分数,密度扫描时并对选择区域生成纵向扫描曲线图并积分。

  • 【原创】凝胶色谱中的几个概念

    1、[b]颗粒大小[/b]:是指凝胶颗粒在出售或使用时的直径范围,如Sephadex系列多为干胶,出售时,就有干珠直径,像Sephadex G-25细胶,其干胶直径为20-80μm,而Sephadex G-25超细胶的干胶直径为10-40μm。2、[b]分级分离范围[/b](fractionation range)是指某种凝胶容许被分离物质分子量在多大范围内能得到线形分离。如Sephacryl S-200超细胶的分级分离范围为5E+3~2.5E+5(蛋白质),表明蛋白质分子量在这一范围内的物质,可以在这种凝胶中得到理想分离。分级分离范围与溶质的形状有关,如同样是上述Sephacryl S-200超细胶,如果是多糖类线形分子,其分级分离范围则是1E+3~8E+4(多糖)。3、[b]排阻极限[/b](exclusion limit)又称排阻限,是指不能扩散进入凝胶颗粒内部的最小溶质分子的分子量,即能有效分离物质分子量的最大极限,一种物质分子如果其分子量大于排阻极限,就不能进入凝胶网孔内部,而不能有效地分离。如Sephacryl S-200超细胶的排阻极限是2.5E+5(蛋白质),凡分子量超过2.5E+5的球型分子都不能进入凝胶网孔内部,只能从凝胶颗粒之间的空隙流出柱外。

  • 【原创】SDS聚丙烯酰胺凝胶电泳原理

    [size=4][b][size=5][font=黑体][/font][/size] [/b][/size][b]SDS聚丙烯酰胺凝胶电泳原理[/b] 采用十二烷基硫酸钠-聚丙稀酰胺凝胶电泳(SDS-PAGE,polyacrylamide gel electrophoresis)方法可对蛋白质的组分进行分离,并可精确测得蛋白质的分子量。常用的方法为SDS-PAGE不连续系统。基本原理:聚丙稀酰胺是由丙稀酰胺(acrylamide)和N,N’-亚甲基双丙稀酰胺(N,N’-methylene bis acrylamide)经共聚合而成。此聚合过程是由四甲基乙二胺(tetramethylethylenediamine,TEMED)和过硫酸胺(ammonium persulfate,AP)激发的。被激活的单体和未被激活的单体开始了多聚链的延伸,正在延伸的多聚链也可以随机地接上双丙稀酰胺,使多聚链交叉互连成为网状立体结构,最终多聚链聚合成凝胶状。[b]丙烯酰胺是一种白色晶体化学物质,是生产聚丙烯酰胺的原料。聚丙烯酰胺主要用于水的净化处理、纸浆的加工及管道的内涂层等。淀粉类食品在高温( 120℃)烹调下容易产生丙烯酰胺。[/b] [b]研究表明,人体可通过消化道、呼吸道、皮肤黏膜等多种途径接触丙烯酰胺,饮水是其中的一条重要接触途径。[/b] [b]丙烯酰胺进入体内又可通过多种途径被人体吸收,其中经消化道吸收最快。进入人体内的丙烯酰胺约90%被代谢,仅少量以原形经尿液排出。丙烯酰胺进入体内后,会在体内与DNA上的鸟嘌呤结合形成加合物,导致遗传物质损伤和基因突变。[/b] [b]对接触丙烯酰胺的职业人群和偶然暴露于丙烯酰胺人群的调查表明,丙烯酰胺具有神经毒性作用,但目前还没有充足的证据表明通过食物摄入丙烯酰胺与人类某种肿瘤的发生有明显关系。[/b][b][/b] [b]丙烯酰胺简介[/b][b]丙烯酰胺是一种有机化合物,别名AM;纯品为白色结晶固体,易溶于水、甲醇、乙醇、丙醇,稍溶于乙酸乙酯、氯仿,微溶于苯,在酸碱环境中可水解成丙烯酸。职业性接触主要见于丙烯酰胺生产和树脂、黏合剂等的合成,在地下建筑、改良土壤、油漆、造纸及服装加工等行业也有接触机会。日常生活中,丙烯酰胺可见于吸烟、经高温加工处理的淀粉食品及饮用水中。[/b][毒性]  丙烯酰胺属中等毒类,对眼睛和皮肤有一定的刺激作用,可经皮肤、呼吸道和消化道吸收,在体内有蓄积作用,主要影响神经系统,急性中毒十分罕见。密切大量接触可出现亚急性中毒,中毒者表现为嗜睡、小脑功能障碍以及感觉运动型多发性周围神经病。长期低浓度接触可引起慢性中毒,中毒者出现头痛、头晕、疲劳、嗜睡、手指刺痛、麻木感,还可伴有两手掌发红、脱屑,手掌、足心多汗,进一步发展可出现四肢无力、肌肉疼痛以及小脑功能障碍等。丙烯酰胺慢性毒性作用最引人关注的是它的致癌性。丙烯酰胺具有致突变作用,可引起哺乳动物体细胞和生殖细胞的基因突变和染色体异常。动物试验研究发现,丙烯酰胺可致大鼠多种器官肿瘤,如乳腺、甲状腺、睾丸、肾上腺、中枢神经、口腔、子宫、脑下垂体肿瘤等。但目前还没有充足的人群流行病学证据表明,食物摄入丙烯酰胺与人类某种肿瘤的发生有明显相关性。国际癌症研究机构(IARC)对其致癌性进行了评价,将丙烯酰胺列为2类致癌物(2A),即人类可能致癌物。其主要依据为,丙烯酰胺在动物和人体均可代谢转化为致癌活性代谢产物环氧丙酰胺。[预防]⒈职业性接触者要通过改革工艺、采取工程技术措施等手段,降低工作场所空气中丙烯酰胺的浓度;同时通过加强个人防护,如戴口罩、手套,穿防护服和鞋等,以防止或减少丙烯酰胺进入体内。⒉日常生活中尽量避免过度烹饪食品,如温度过高或加热时间太长。提倡平衡膳食,减少油炸和高脂肪食品的摄入,多吃水果和蔬菜,不要吸烟。⒊由于煎炸食品是我国居民常吃的食物,国家应加强膳食中丙烯酰胺的监测与控制,开展我国人群丙烯酰胺的暴露评估,并研究探索减少加工食品中丙烯酰胺含量的方法 [b]N.N-亚甲基双丙烯酰胺,别名MBA,双叫N.N-甲叉双丙烯酰胺,次甲基双丙烯酰胺,N.N-甲撑双丙烯酰胺。是一种白色晶体粉末,无味,吸湿性极小。遇高温或强光则自交联,微溶于水、乙醇。[/b][b]丙烯酰胺单体和交联剂N1 N′-亚甲基双丙烯酰胺在催化剂的作用下聚合成含有酰胺基侧链的脂肪族长链。相邻的两个链通过亚甲基桥交联起来就形成三维网状结构的聚丙烯酰胺凝胶。[/b][b]N, N -亚甲基双丙烯酰胺又名甲撑双丙烯酰胺 , 英文缩写名 MBA, 为白色或浅黄色粉末状结晶 , 毒性低 , 对皮肤无刺激 , 无神经毒性 , 溶于水及乙醇、丙酮等有机溶剂。在它的结构中具有两个相同且非常活泼的反应性官能团 , 可作为交联剂 ,能将线性高分子迅速转变为体型高分子 , 制备吸水性聚合物 , 还可与各种离子型单体发生聚合反应 ,使其在石油开采以及医药、水处理等行业具有广泛用途。 [/b][b]产品简介: [/b][b]? TEMED即N,N,N‘,N’-Tetramethylethylenediamine,中文名为N,N,N‘,N’-四甲基二乙胺。分子式为(CH3)2NCH2CH2N(CH3)2, 分子量为116.20。 [/b][b]? 进口分装,用于配制PAGE胶等。TEMED通过催化过硫酸铵形成自由基而加速丙烯酰胺与双丙烯酰胺的聚合。[/b][b]? 加入加速剂TEMED后聚合马上开始,应立即将凝胶混匀,迅速灌胶。[/b][b]保存条件: 4℃保存。 [/b][b]注意事项: [/b][b]?易燃,有腐蚀性,请注意防护。 [/b][b]?为了您的安全和健康,请穿实验服并戴一次性手套操作。[/b][b]过硫酸铵分子式: (NH4)2S2O8 分子量: 228.20[/b][b]性状:过硫酸铵是一种白色、无味晶体,常作强氧化剂使用,也可用作单体聚合引发剂。它几乎不吸潮,由于能达到很高的纯度而具有特别好的稳定性,便于储存。另外,它还具有使用方便、安全等优点。[/b][b]储存及使用注意事项:[/b]  [b]过硫酸铵属于非易燃品,但由于能释放氧而有助燃作用,因此必须在一定条件下储存。首先必须存放在干燥、密闭的容器中,其次应避免阳光直射、热源、潮湿等不利因素。另外,一些杂质如脏物、铁锈、少量金属以及还原剂可能引起过硫酸铵的分解,在存放和使用过程中也必须注意。由于潮湿的过硫酸铵粉末及其水溶液有漂白和轻微的腐蚀作用,因此使用过程中应避免眼睛、皮肤和衣物直接与其接触。[/b][b]过硫酸铵的应用:过硫酸铵提供驱动丙烯酰胺和双丙烯酰胺聚合所必需的自由基。须新鲜配制[/b]。 [b]过硫酸铵是乳胶或丙烯酸单体聚合液、醋酸乙烯、氯乙烯等产品的引发剂,同时也是苯乙烯、丙烯腈、丁二烯等胶体发生共聚作用的引发剂。 [/b][b]过硫酸铵-TEMED(四甲基乙二胺)系统:在Acr 和Bis的溶液中放入这个催化系统后,过硫酸铵[(NH4)2S2O8]产生出游离氧原子使单体成为具有游离基的状态,从而发生聚合作用。聚合的初速度和过硫酸铵浓度的平方根成正比。这种催化系统需要在碱性条件下进行。例如,在pH 8.8条件下7%的丙烯酰胺溶液30分钟就能聚合完毕;在 pH 4.3时聚合很慢,要90分钟才能完成。温度与聚合的快慢成正比。通常在室温下就很快聚合,温度升高聚合更快。如将混合后的凝胶溶液放在近0℃的地方,就能延缓聚合。一般来讲,温度过低,有氧分子或不纯物质存在时都能延缓凝胶的聚合。为了防止溶液中气泡含有氧分子而妨碍聚合,在聚合前须将溶液分别抽气,然后再混合。[/b][b]十二烷基硫酸钠 SDS[/b][b]不连续系统由上层浓缩胶和下层的分离胶组成。浓缩胶(pH6.7,孔径大)主要作用是使样品浓缩,使样品在未进入分离胶前,被浓缩成很窄的条带,从而提高分离效果。分离胶(pH8.9,孔径小)通过分子筛效应和电荷效应,把样品中的各组分按分子量和电荷的大小而分开。 [/b]如果要利用凝胶电泳测定某一蛋白质的分子量就必须将电荷效应去掉或减少到可以忽略不计的程度,使蛋白质泳动率的大小完全取决于分子量。如何去除电荷效应呢?现常用的是十二烷基硫酸钠(SDS)。SDS是一种阴离子去污剂。在电泳体系中加入一定浓度的SDS,SDS以一定的比例和蛋白质分子结合成复合物,使蛋白质分子带负电荷,这种负电荷远远超过了蛋白质分子原有的电荷,从而减低或消除了各种蛋白质分子天然电荷的差异。[b]是阴离子型表面活性剂,它能按一定比例与蛋白质分子结合成带负电荷的复合物,再与PAGE技术结合,则谱带差异更加明显、清晰,并可测定蛋白质分子量。 [/b][b]在有去污剂十二烷基硫酸钠存在下的聚丙烯酰胺凝胶电泳。SDS-PAGE只是按照分子大小分离的,而不是根据分子所带的电荷和大小分离的。[/b][b]SDS带有大量负电荷,当其与蛋白质结合时,所带的负电荷大大超过了蛋白质原有的负电荷,因而消除或掩盖了不同种类蛋白质间原有电荷的差异,使蛋白质均带有相同密度的负电荷,因而可利用Mr差异将各种蛋白质分开。[/b][b]甘氨酸[/b][b]最广泛使用的不连续缓冲系统最早是由Ornstein(1964) 和Davis(1964) 设计的, 样品和浓缩胶中含 Tris-HCl(pH 6.8), 上下槽缓冲液含Tris-甘氨酸(pH 8.3), 分离胶中含Tris-HCl(pH 8.8)。系统中所有组分都含有0.1% 的 SDS(Laemmli, 1970)。样品和浓缩胶中的氯离子形成移动界面的先导边界而甘氨酸分子则组成尾随边界,在移动界面的两边界之间是一电导较低而电位滴度较陡的区域, 它推动样品中的蛋白质前移并在分离胶前沿积聚。此处pH值较高,有利于甘氨酸的离子化,所形成的甘氨酸离子穿过堆集的蛋白质并紧随氯离子之后,沿分离胶泳动。从移动界面中解脱后,SDS-蛋白质复合物成一电位和pH值均匀的区带泳动穿过分离胶,并被筛分而依各自的大小得到分离。[/b][b]浓缩效应:凝胶由两种不同的凝胶层组成。上层为浓缩胶,下层为分离胶。浓缩胶为大孔胶,缓冲液pH6.7,分离胶为小孔胶,缓冲液pH8.9。在上下电泳槽内充以Tris—甘氨酸缓冲液(pH8.3),这样便形成了凝胶孔径和缓冲液pH值的不连续性。在浓缩胶中 HCl几乎全部解离为Cl-,但只有极少部分甘氨酸解离为H2NCH2COO-。蛋白质的等电点一般在pH5左右,在此条件下其解离度在HCl和甘氨酸之间。当电泳系统通电后,这3种离子同向阳极移动。其有效泳动率依次为Cl->蛋白质>H2NCH2COO-,故C1-称为快离子,而H2NCH2COO- 称为慢离子。电泳开始后,快离子在前,在它后面形成离子浓度低的区域即低电导区。电导与电压梯度成反比,所以低电导区有较高的电压梯度。这种高电压梯度使蛋白质和慢离子在快离子后面加速移动。在快离子和慢离子之间形成—个稳定而不断向阳极移动的界面。由于蛋白质的有效移动率恰好介于快慢离子之间,因此蛋白质离子就集聚在快慢离子之间被浓缩成—条狭窄带。这种浓缩效应可使蛋白质浓缩数百倍。 [/b]

  • 毛细管凝胶电泳技术

    毛细管凝胶电泳技术

    毛细管电泳技术(Capillary Electrophoresis, CE)又称高效毛细管电泳(HPCE)或毛细管分离法(CESM),是一类以毛细管为分离通道、以高压直流电场为驱动力,根据样品中各组分之间迁移速度和分配行为上的差异而实现分离的一类液相分离技术,迅速发展于80年代中后期,它实际上包含电泳技术和色谱技术及其交叉内容,是分析科学中继高效液相色谱之后的又一重大进展。http://ng1.17img.cn/bbsfiles/images/2013/08/201308081111_456810_2646159_3.jpg1987年,Cohen发表了毛细管凝胶电泳的工作。当电泳从凝胶板上移到毛细管中以后,发生了奇迹般的变化:分析灵敏度提高到能检测一个碱基的变化,分离效率达百万理论塔板数;分析片段能大能小,小到分辨单个核苷酸的序列,大到分离Mb的DNA;分析时间由原来的以小时计算缩减到以分、秒计算。CE可以说是经典电泳技术与现代微柱分离技术完美结合的产物。 一.毛细管凝胶电泳的原理 不同分子所带电荷性质、多少不同,形状、大小各异。一定电解质及PH的缓冲液或其它溶液内,受电场作用,样本中各组分按一定速度迁移,从而形成电泳。电泳迁移速度(v)可用下式表示:v=uE其中E为电场强度(E=V/L,V为电压,L为毛细管总长度)。u为电泳淌度。毛细管凝胶电泳是将板上的凝胶移到毛细管中作支持物进行的电泳。凝胶具有多孔性,起类似分子筛的作用, 溶质按分子大小逐一分离。凝胶粘度大, 能减少溶质的扩散, 所得峰形尖锐, 能达到CE中最高的柱效。电流通过导体时产生焦耳热。传统平板凝胶电泳的最大局限性在于其无法克服两端高电压带来的焦耳热所产生的负面影响。焦耳热可使筛分介质内部出现温度、粘度及分离速度的不均一,影响迁移、降低效率、使区带变宽。由于这种负面影响与电场强度成正比,所以极大地限制了高电压的引入。也难以提高电泳速度。毛细管电泳使样品在一根极细的柱子中进行分离。细柱可减小电流,使焦耳热的产生减少;同时又增大了散热面积,提高散热效率,大大降低了管中心与管壁间的温差,减少了柱子径向上的各种梯度差,保证了高效分离。因此可以加大电场强度,达到100~200V/cm,全面提高分离质量。在进行分析时将毛细管内充满了凝胶,毛细管两端通高压电,使凝胶内带电分子移到毛细管相反电荷的一端。因为不同分子的大小对电荷比不同,就以不同的速率在管中移动,达到毛细管终点也有快有慢。毛细管电泳即依此探测、分离不同分子。 二.毛细管凝胶电泳的特点 1.所需样品量少、仪器简单、操作简便。2.分析速度快,分离效率高,分辨率高,灵敏度高。3.无需核酸染料,安全无毒。4.无需制胶,省时省力。5.无需照胶,杜绝人工分析结果误差。6.自动出结果,包括片段大小和样品浓度,软件可输出电泳峰图、凝胶电泳图、DNA片段碱基差异分析、相对定量分析。http://ng1.17img.cn/bbsfiles/images/2013/08/201308081111_456811_2646159_3.jpg三.毛细管凝胶电泳的应用1.PCR条件的优化及多重PCR的检测2.高分辨率的检出,相差1-4bp的DNA片段的差异,及相同长度不同序列的差异3.动态检测酶切体系的进程4.评估基因组DNA质量高低5.HLA分型6.STR分析7.质粒的纯度分析8.DNA/DNA杂交9.DNA/蛋白互作

  • 【金秋计划】琼脂糖凝胶电泳技术详细操作步骤和详解

    [size=10px][b]一、琼脂糖凝胶电泳原理[/b] 琼脂糖凝胶电泳是一种重要的分子生物学研究方法,?它利用琼脂糖凝胶的网络结构,?通过电场作用使带电颗粒(?如DNA或RNA)?在凝胶中移动,?根据分子大小和电荷性质的不同实现分离。?这种技术不仅操作简单迅速,?而且具有高分辨率,?因此在基因操作中扮演着关键角色,[font='PingFang SC']其[b]原理主要基于DNA分子的两大特性:电荷效应和分子筛效应。[/b][/font] ?琼脂糖是一种天然的长链状聚合分子,它在沸水中溶解,当温度降至45℃时开始凝固并形成多孔刚性立体网状结构,其孔径的大小取决于琼脂糖的浓度。 [b]分子筛效应[/b]指的是琼脂糖凝胶由琼脂糖分子交联形成的网状结构,其孔径大小与琼脂糖浓度成反比。当DNA分子通过凝胶时,会受到凝胶孔径的阻碍。较小的DNA片段可以通过凝胶孔隙,而较大的DNA片段则会被阻挡,导致迁移速率降低。?? [/size][align=center][size=10px] [/size][/align][size=10px][b]电荷效应[/b]指的是DNA分子在碱性条件下(pH7)会电离,带负电荷。当DNA样品置于电场中时,在外加电场的作用下受到电场力的作用,向正极方向移动。DNA分子的迁移速率与其所带的电荷量成正比,而电荷量又与DNA片段的长度成正比。因此,在相同电场条件下,较长的DNA片段迁移速率较慢,而较短的DNA片段迁移速率较快。不同DNA的分子量大小及构型各不相同,因此它们在电泳中的迁移率也会有所不同,从而可分离出不同的区带。[b]为什么核酸条带显示荧光?[/b]主要便于观察,对核酸进行了染色。溴化乙锭EB是一种扁平状分子,在紫外光照射下能发射荧光。当EB与DNA分子形成EB-DNA复合物后,其发射的荧光强度比游离状态的EB提高10倍以上,且荧光强度与DNA的含量呈正比。 [b]二、?琼脂糖凝胶电泳的详细操作步骤(1%琼脂糖凝胶电泳为例) [font='Times New Roman', 'serif']1.安装制胶模具[/font][font='Times New Roman','serif']:[/font][/b]利用电泳托盘,安装制胶模具,水平放置于试验桌上。 [b][font='Times New Roman', 'serif']2.[/font]制备琼脂糖凝胶:[/b]将琼脂糖粉末溶解于缓冲液中,加热煮沸,冷却后凝固成凝胶。(根据电泳所需要的分辨率准备琼脂糖-电泳缓冲液凝胶溶液)[font='Times New Roman','serif'](1)[/font]称取[font='Times New Roman','serif']1g[/font]琼脂糖,放入盛有[font='Times New Roman','serif']100mL 0.5×TBE[/font]缓冲液的[font='Times New Roman','serif']500mL[/font]三角瓶中,摇匀用天平称量其重量,摇匀。在微波炉中,使琼脂糖完全溶解,放回天平上,加入蒸馏水补齐至初始重量。冷却至不烫手([font='Times New Roman','serif']55℃[/font]左右),加入[font='Times New Roman','serif']100μL[/font][font='Times New Roman','serif']0.5mg/mL EB[/font]溶液(终浓度为[font='Times New Roman','serif']0.5 μg/mL[/font]),或加入[font='Times New Roman','serif']5-10μL[/font][font='Times New Roman','serif']StarGreen DNA Dye(GenStar)[/font],摇匀。 [font='Times New Roman','serif'](2) [/font]将凝胶溶液倒入安装好的制胶模具中,凝胶厚度应在[font='Times New Roman','serif']3-5mm[/font]。 [font='Times New Roman','serif'](3) [/font]选择合适的梳子,梳子的插入深度应使齿的底部和板的表面距离在[font='Times New Roman','serif']0.5[/font]到[font='Times New Roman','serif']1.0mm[/font]。要检查梳子齿下方或之间是否有气泡,在室温下冷却凝固。 [font='Times New Roman','serif'](4) [/font]待凝胶充分凝固后,垂直向上小心拔出梳子,以保证点样孔完好。 [font='Times New Roman','serif'](5)[/font]将凝胶置入电泳槽中,加入[font='Times New Roman','serif']0.5×TBE[/font]缓冲液[font='Times New Roman','serif'],以浸没凝胶约1mm为合适。[/font] [/size] [size=10px][b][font='Times New Roman','serif']3[/font][font='Times New Roman','serif'].[/font]制备DNA样品:[/b]将DNA样品与上样缓冲液混合。[/size] [size=10px]把DNA样品和上样缓冲液混合,利用[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url]把电泳样品加到没入缓冲液中凝胶槽中,在凝胶的两侧样品槽内加入合适的分子量标准品。[/size] [size=10px]上样量的多少根据样品中DNA片断的多少和大小而定,已知浓度的DNA用于估测样品质粒DNA的浓度。 [b][font='Times New Roman','serif']4.[/font]电泳:[/b]将DNA样品加载到凝胶上的样品孔中,在电场的作用下进行电泳。[/size] [size=10px]盖上电泳槽的盖子,正确连结电泳槽上的导线。电泳电压以正负电极的距离的一到五倍为合适(1到5V/cm)。如果电泳线连接正确,那么在进行电泳时可以看到有气泡从电泳槽内电极导线处产生,同时,在几分钟后,可见溴酚蓝条带从负极向正极移动,从上样槽内移入胶体。[/size] [size=10px][b]5.观察:[/b]当核酸样品移动到距离胶板下沿约1cm处时,停止电泳。电泳结束后,利用紫外灯观察DNA片段的迁移情况。当DNA样品在凝胶内移动到合适的距离时,关闭电源,去除电泳导线和电泳槽盖子。在室温下,用电泳缓冲液或水配制的EB溶液(0.5 μg/ml)对凝胶进行染色[b][font=-apple-system, helvetica, sans-serif]。[/font] 三、琼脂糖凝胶电泳的主要应用[/b] [/size] [size=10px][b]1.DNA片段的鉴定:[/b]通过比较DNA片段的迁移距离,与标准品进行对照,可以判断DNA片段的大小。[/size] [size=10px][b]2.DNA片段的分离:[/b]利用不同大小DNA片段的迁移速率差异,可以将DNA片段进行分离。[/size] [size=10px][b]3.DNA的纯化:[/b]通过电泳将目的DNA片段与其他杂质分离,得到纯化的DNA片段。(割胶回收)[/size] [size=10px][b]四、操作技巧和注意事项[/b][/size] [b][font='Times New Roman','serif'][size=10px]1.EB毒性[/size][/font][/b] [size=10px]EB是一种很强的诱变剂。在接触含有EB溶液时,应该全程戴手套和口罩。[/size] [size=10px]电泳中使用的溴化乙锭(EB)为中度毒性、强致癌性物质,务必小心,勿沾染于衣物、皮肤、眼睛、口鼻等。所有操作均只能在专门电泳区域操作,戴一次性手套,并及时更换。[/size] [b][font='Times New Roman','serif'][size=10px]2. 加热熔化琼脂糖[/size][/font][/b] [size=10px]用微波炉加热熔化琼脂糖时,溶液体积不能超过三角瓶容量的1/3,以免煮沸时溶液溢出。同时,琼脂糖必须完全熔化,否则可能导致电泳图像模糊不清。[/size] [b][font='Times New Roman','serif'][size=10px]3.凝胶厚度[/size][/font][/b] [size=10px]凝胶的厚度一般为4-6nm,若太厚可能会影响检测的灵敏度。待凝胶充分凝固后才能拔出梳子,以保证点样孔形状完好,防止漏样。[b][font='Times New Roman','serif']4.上样[/font][/b][/size] [size=10px]上样时,须先除去点样孔中的气泡,并且加样操作需小心谨慎,以免漏样或损坏胶孔。[/size] [b][font='Times New Roman','serif'][size=10px]5.电泳电压[/size][/font][/b] [size=10px]选择适当的电泳运行条件很重要,包括电压和距离。推荐的电压范围是4-6V/cm,电压太低会降低迁移率,电压太高会降低分辨率。[/size]

  • 【资料】凝胶渗透色谱(GPC)实用资料(共5讲)

    [B][center]凝胶渗透色谱(GPC/SEC)技术(一) [/center][/B] 一、 凝胶渗透色谱的概述 1. 凝胶渗透色谱的简单回顾凝胶渗透色谱[GPC(Gel Permeation Chromatography)][也称作体积排斥色谱(Size Exclusion Chromatography)]是三十年前才发展起来的一种新型液相色谱,是色谱中较新的分离技术之一。利用多孔性物质按分子体积大小进行分离,在六十年前就已有报道。Mc Bain用人造沸石成功地分离了气体和低分子量的有机化合物,1953年Wheaton和Bauman用离子交换树脂按分子量大小分离了苷、多元醇和其它非离子物质。1959年Porath和Flodin用交联的缩聚葡糖制成凝胶来分离水溶液中不同分子量的样品。而对于有机溶剂体系的凝胶渗透色谱来说,首先需要解决的是制备出适用于有机溶剂的凝胶。二十世纪60年代J.C.Moore在总结了前人经验的基础上,结合大网状结构离子交换树脂制备的经验,将高交联度聚苯乙烯凝胶用作柱填料,同时配以连续式高灵敏度的示差折光仪,制成了快速且自动化的高聚物分子量及分子量分布的测定仪,从而创立了液相色谱中的凝胶渗透色谱技术。2. 凝胶渗透色谱的应用三十多年来,凝胶渗透色谱的理论、实验技术和仪器的性能等方面有了突飞猛进的发展。尤其是随着新型柱填料的诞生、高效填充柱的出现(目前其理论塔板数已超过10000/米)以及计算机的普及,凝胶渗透色谱在工业、农业、医药、卫生、国防、宇航以及日常生活的各个领域得到了广泛的应用。特别是近年来,随着各种高分子材料的问世,人们对高分子科学的不断探索,高聚物的分子量及其分布的测定显得尤为重要,成为科研和生产中不可缺少的测试项目之一。例如:常见的聚苯乙烯塑料制品,其分子量为十几万,如果聚苯乙烯的分子量低至几千,就不能成型;相反,当分子量大到几百万,甚至几千万,它又难以加工,失去了实用意义。科研和生产上通过控制高聚物的分子量及其分布宽度指数D(D=Mw/Mn)、分子量微分分布曲线、分子量积分分布曲线来生产出性能最佳的高聚物产品。另外,除了快速测定分子量及其分布以外,凝胶渗透色谱还广泛用于研究高聚物的支化度,共聚物的组成分布及高聚物中微量添加剂的分析等方面。如果配以在线的绝对分子量检测器(如:LALLS、Multi-Angle LS、Dual-Angle LS等),凝胶渗透色谱可以测定高聚物的绝对分子量。凝胶渗透色谱作为一门新兴的科学,随着各种新型检测器的出现(如UV、FT-IR、LS、Viscometer等),它的应用范围也逐步从生物化学、高分子化学、无机化学等向其它领域渗透,成为化学领域内必不可少的分析手段。

  • 凝胶过滤色谱纯化

    凝胶过滤色谱摘要:本文主要讲解了凝胶过滤色谱法(分子筛)在蛋白纯化实验中的应用,包括纯化原理、实验方案设计、技术操作以及相关案例介绍和问题分析。基本原理凝胶过滤色谱蛋白纯化法,又称为空间排阻色谱,分子筛等。其原理是应用蛋白质分子量或分子形状的差异来分离。当样品从色谱柱的顶端向下运动时,大的蛋白质分子不能进入凝胶颗粒从而被迅速洗脱;而较小的蛋白质分子能够进入凝胶颗粒中,且进入凝胶的蛋白在凝胶中保留时间也不同,分子量越大,流出时间就越早,最终分离分子大小不同的蛋白质。http://www.detaibio.com/assets/image/topics/gel-filtration-chromatography-theory.jpg通常,多数凝胶基质是化学交联的聚合物分子制备的,交联程度决定凝胶颗粒的孔径。常用的色谱基质有:葡聚糖凝胶(Sephadex)、琼脂糖凝胶(Sepharose)、聚丙烯酰氨凝胶(Bio-Gel P)等。高度交联的基质可用来分离蛋白质和其他分子量更小的分子,或是除去低分子量缓冲液成分和盐,而较大孔径的凝胶可用于蛋白质分子之间的分离。选用合适孔径的凝胶很大程度取决于目标蛋白的分子量和杂蛋白的分子量。实验方案设计凝胶介质的选择凝胶介质的选择主要是根据待分离的蛋白和杂蛋白的分子量选择具有相应分离范围的凝胶,同时还需要考虑到分辨率和稳定性的因素。比如,如果是要将目的蛋白和小分子物质分开,可以根据他们分配系数的差异,选用Sephadex G-25和 G-50;对于小肽和低分子量物质的脱盐,则可以选用Sephadex G-10、G-15以及Bio-Gel P-2或P-4;如果是分子量相近的蛋白质,一般选用排阻限度略大于样品中最高分子量物质的凝胶。具体凝胶过滤色谱介质应用如下:常用凝胶过滤色谱介质的分离范围凝胶介质蛋白质的分离范围/103凝胶介质蛋白质的分离范围/103Sephadex G25Sephadex G50Sephadex G100Sephadex G200Sepharose 6BSepharose 4B1~51.5~304~1505~60010~400060~20000Sepharose 2BBio-Gel P-4Bio-Gel P-10Bio-Gel P-60Bio-Gel P-150Bio-Gel P-30070~400000.5~45~1730~7050~150100~400凝胶介质的预处理凝胶在使用前应用水充分溶胀(胶:水=1:10),自然溶胀的耗时较长,可采用加热的方法使溶胀加速,即在沸水浴中将凝胶升温至沸,1~2h即可达到溶胀。在烧杯中将干燥凝胶加水或缓冲液,搅拌,静置,倾去上层混悬液,除去上清液中的凝胶碎块,重复数次,直到上清澄清为止。色谱柱的选择色谱柱的体积和高径比与色谱分离效果密切相关,凝胶柱床的体积、柱长和柱的直径以及柱比的选择必须根据样品的数量,性质和分离目的进行确定。组别分离时,大多采用2~30cm长的色谱柱,柱床体积为样品溶液体积的5倍以上,柱比一般在5~10之间;而分级分离一般需要100cm左右的色谱柱,并要求柱床体积大于样品体积25倍以上,柱比在20~100之间。凝胶柱的填装凝胶色谱柱与其它色谱方法不同,溶质分子与固定相之间没有力的作用,样品组分的分离完全依赖于他们各自的流速差异。装住时关住柱子下口,在柱内加入约1/3柱床体积的水或缓冲液,然后沿着柱子一侧将缓冲液中的凝胶搅拌均匀,缓慢并连续的一次性注入柱内。待凝胶沉积约5厘米左右时,打开柱子下口,控制流速在1ml/min。样品的处理与上样根据样品的类型和纯化分析,需要选择合适的缓冲液,为了达到良好的分析效果,上样量必须保持在较小的体积,一般为柱床体积的1%~5%,蛋白质样品上样前应进行浓缩,使样品浓度不大于4%(样品浓度与分配系数无关),但需要注意的是,较大分子量的物质,溶液粘度会随浓度增加而增大,使分子运动受限,影响流速。上样前,样品要经滤膜过滤或离心,除去可能堵塞色谱柱的杂质。洗脱与收集凝胶过滤色谱的缓冲液用单一缓冲液或含盐缓冲液作为洗脱液即可,主要考虑俩个方面的原因:蛋白的溶解性和稳定性。所用的缓冲液要保证蛋白质样品在其中不会变性或沉淀,PH应选在样品较稳定、溶解性良好的范围之内,同时缓冲液中要含有一定的盐(NaCL),对蛋白质起稳定和保护作用。洗脱过程中始终保持一定的操作压,流速不可过高,保持在0.5~3.0mL/min即可。案列介绍AKTA凝胶过滤色谱分离蛋白质材料色谱介质:Sephacryl S-200,蛋白质分离范围(5~250)×103 色谱柱:XK16/60预装柱色谱设备:AKTA Explorer混合样品:含单克隆抗体,分子量180000;牛血清白蛋白(68000),溶菌酶(14000)NaOH 0.5 mol/LNaCl 200 mmol/LPB 20 mmol/LPH7.0 缓冲液方法凝胶除菌处理超纯水冲洗柱子后,用0.5mol/L NaOH正向冲洗柱,流速3mL/min,冲洗3柱体积平衡NaOH处理完毕后,用超纯水冲洗2柱体积,接着用含200mmol/L NaCl和20mmol/L PB的7.0PH缓冲液冲洗5~10倍柱体积上样平衡完毕后,选择样品泵进行上样,上样流速3mL/min,上样体积为1mL洗脱上样结束后,用平衡缓冲液进行洗脱清洗与保存纯化结束后,用0.5mol/L NaOH反向冲洗2柱体积,冲洗时间30~60min,冲洗结束后,用超纯水正向冲洗5柱体积,再用20%乙醇冲洗3柱体积,然后拆下柱子,俩端封死,低温保存。问题分析和解决方案色谱分离前如何净化样品在色谱分离前,对样品进行离心和过滤,离心能除去大部分块状物,如果离心后样品仍不清澈,可用滤膜过滤。由醋酸纤维薄膜或PVDF材料制成的滤膜能够非特异性的结合少量蛋白。溶液交换不彻底严格控制上样体积,上样体积不超过柱体积30%。若样品溶液体积较多,可以分多次上样,注意每次上样时间间隔,可根据电导色谱峰确定下一次上样时间。分辨率不高1)提高装柱质量,使色谱柱装填匀实; 2)提高柱床高度; 3)控制上样体积,最大上样体积不超过柱床体积5%; 4)控制样品黏度与洗脱溶液黏度保持一致; 5)根据样品特点选择合适的洗脱溶液,调节洗脱溶液的离子强度或亲水性; 6)选择合适的凝胶柱(如何选择请参照上文)色谱峰对称性差1)提高装柱质量,装柱匀实——若柱装的太松,容易引起拖尾,装的太紧,会引起前沿;2)柱较脏,再生色谱柱肩峰出现的原因及解决方法1)柱床松动,重新装柱或反向冲洗柱2)柱筛板堵塞,超声清洗筛板3)柱干裂,重新装柱

  • 【求助】凝胶色谱作样品,十分疑惑!

    我用PSS 作标样,分子量分别为1100,3100,6500,14500,31000。目标样品分子量在4000-6000。因为是多聚糖,我先用紫外检测器作,结果我用Agilent1100 作到4200,与其它两个实验室凝胶色谱仪RI做到的5800有很大出入,十分疑惑,柱子是他Tosoh 的SWXL2000,Buffer:10% ACN+0.2M PBS,另我用的是Agilent的GPC软件,而工程师说只能宽标作,先到外面用其它方法测一个分子量的值再作为宽标再作,而Pss 和我的样品因为不是一个种类所以不能直接作窄标(普适因为没有A值K值没法做)。而研究所一位朋友则认为如果排除疏水键的作用,可以直接用PSS 作为标准作一曲线,再运行样品计算结果。当然最好用葡聚糖作标准,但没有那么小分子量。小弟刚开始做凝胶色谱,向各位凝胶高手求助!本贴对有重大帮助的友人另送分20,没有限制。[img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191650_623898_1609043_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/20084891454_01_1609043_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/20084891511_01_1609043_3.gif[/img]

  • 【资料】熊猫收集--凝胶渗透色谱(GPC/SEC)技术

    一、 凝胶渗透色谱的概述 1. 凝胶渗透色谱的简单回顾凝胶渗透色谱[GPC(Gel Permeation Chromatography)][也称作体积排斥色谱(Size Exclusion Chromatography)]是三十年前才发展起来的一种新型液相色谱,是色谱中较新的分离技术之一。利用多孔性物质按分子体积大小进行分离,在六十年前就已有报道。Mc Bain用人造沸石成功地分离了气体和低分子量的有机化合物,1953年Wheaton和Bauman用离子交换树脂按分子量大小分离了苷、多元醇和其它非离子物质。1959年Porath和Flodin用交联的缩聚葡糖制成凝胶来分离水溶液中不同分子量的样品。而对于有机溶剂体系的凝胶渗透色谱来说,首先需要解决的是制备出适用于有机溶剂的凝胶。二十世纪60年代J.C.Moore在总结了前人经验的基础上,结合大网状结构离子交换树脂制备的经验,将高交联度聚苯乙烯凝胶用作柱填料,同时配以连续式高灵敏度的示差折光仪,制成了快速且自动化的高聚物分子量及分子量分布的测定仪,从而创立了液相色谱中的凝胶渗透色谱技术。2. 凝胶渗透色谱的应用三十多年来,凝胶渗透色谱的理论、实验技术和仪器的性能等方面有了突飞猛进的发展。尤其是随着新型柱填料的诞生、高效填充柱的出现(目前其理论塔板数已超过10000/米)以及计算机的普及,凝胶渗透色谱在工业、农业、医药、卫生、国防、宇航以及日常生活的各个领域得到了广泛的应用。特别是近年来,随着各种高分子材料的问世,人们对高分子科学的不断探索,高聚物的分子量及其分布的测定显得尤为重要,成为科研和生产中不可缺少的测试项目之一。例如:常见的聚苯乙烯塑料制品,其分子量为十几万,如果聚苯乙烯的分子量低至几千,就不能成型;相反,当分子量大到几百万,甚至几千万,它又难以加工,失去了实用意义。科研和生产上通过控制高聚物的分子量及其分布宽度指数D(D=Mw/Mn)、分子量微分分布曲线、分子量积分分布曲线来生产出性能最佳的高聚物产品。另外,除了快速测定分子量及其分布以外,凝胶渗透色谱还广泛用于研究高聚物的支化度,共聚物的组成分布及高聚物中微量添加剂的分析等方面。如果配以在线的绝对分子量检测器(如:LALLS、Multi-Angle LS、Dual-Angle LS等),凝胶渗透色谱可以测定高聚物的绝对分子量。凝胶渗透色谱作为一门新兴的科学,随着各种新型检测器的出现(如UV、FT-IR、LS、Viscometer等),它的应用范围也逐步从生物化学、高分子化学、无机化学等向其它领域渗透,成为化学领域内必不可少的分析手段。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制