当前位置: 仪器信息网 > 行业主题 > >

动态水分吸附仪工作原理

仪器信息网动态水分吸附仪工作原理专题为您提供2024年最新动态水分吸附仪工作原理价格报价、厂家品牌的相关信息, 包括动态水分吸附仪工作原理参数、型号等,不管是国产,还是进口品牌的动态水分吸附仪工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合动态水分吸附仪工作原理相关的耗材配件、试剂标物,还有动态水分吸附仪工作原理相关的最新资讯、资料,以及动态水分吸附仪工作原理相关的解决方案。

动态水分吸附仪工作原理相关的论坛

  • 关于动态水分吸附仪预测带包装物品保质期的应用

    动态水分吸附法是一种非常适合分析材料水分吸附性能和记录水分吸附等温线的检测方法,适用于粉末,颗粒,碎片、片剂或块状固体。吸附仪常用来进行新材料的稳定性测试,这种长时间的测试可能需要几天、几周甚至是几个月,能够为评估环境温湿度对产品保质期产生的影响提供非常有价值的数据。 更进一步来说,分析研究在某一温湿度条件下有多少水分能够透过包装渗透到内部被材料本身吸附非常重要,被吸附的水分从外界环境中迁移到包装内部是影响带包装物体保质期的主要原因。 采用动态水分吸附仪来检测带包装药品或食品的水蒸气吸附性能,对于产品防潮性的检测和保质期的预测有着重要的指导意义。

  • 关于动态水分吸附仪在包装材料渗透率方面的应用

    渗透率是薄膜类材料的重要特性,精确测量薄膜、纸张等的水分子渗透率对于评估其作为包装材料在不同水蒸汽分压环境下隔绝水分的功能有着重要的意义。采用动态水分吸附仪法检测渗透率的具体方法如下:将薄膜(纸张)覆盖在样品盘上,将盘内放置干燥剂、饱和食盐水溶液或水来制造一个与环境不同的水蒸汽分压,从而使水分子透过薄膜(纸张),迁移到达另一边。这种水分子的迁移可以通过称量样品盘的重量来检测。 这种方法比NIR检测法耗时长,但是结果非常准确,可以得到薄膜(纸张)材料的精确渗透率。德国Proumid公司的动态水分吸附仪包括一个高灵敏度的天平和能够调节温湿度,气流循环的密闭空间。为渗透率的检测提供最理想的环境。 仪器有六个样品盘,可以同时测量5个薄膜(纸张)样品的渗透率,大大节省了试验时间。

  • 动态水分吸附仪在晶体潮解性质研究中的应用

    近期读到一篇关于晶体潮解动力学的研究论文,采用动态水分吸附仪对于潮解点的判定和潮解动力学的研究分析非常深入。最近对这一课题很感兴趣,希望做类似研究的各位多多讨论。文章摘要如下:晶体材料及其混合物的潮解动力学传热模型Heat transport model for the deliquescence kinetics of crystalline ingredients and mixturesNa Li a, Lynne S. Taylor b, Lisa J. Mauer a, *a Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, United Statesb Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, United States关键词:吸附速率,晶体材料,潮解,传热Key words: Sorption rate, crystalline ingredients, deliquescence, heat transport 摘要:当环境的相对湿度超过潮解点RH0时,易潮解的晶体发生一级溶解过程。对于压片易潮解材料,潮解的速率随着RH超出RH0差值的增加而加速;但是,迄今还没有关于晶体食物材料粉末的潮解动力学模型被发表。本文采用一种多样品重量法水分吸附仪SPSx测定了常见的粉末食品材料(如柠檬酸、氯化钠、蔗糖、果糖、山梨糖醇和木糖醇)及其混合物的水分吸附速率。水蒸气的吸附速率与样品的直径、温度和组成有关。实验证明样品压片的潮解传热模型能够成功的应用于粉末材料和其混合物,其实验结果进一步的论证了潮解的理论基础,为在可控的恒湿箱内预测潮解过程中的水分吸附速率提供了有力的工具。Abstract:Deliquescent crystalline solids undergo the first order dissolution process of deliquescence when the environmental relative humidity (RH) exceeds the deliquescence point (RH0). The rate at which deliquescence occurs increases as the RH increases above the RH0 in compressed disks of select deliquescent ingredients; however, a kinetic model for the deliquescence of powdered crystalline food ingredients and blends thereof has not been published. The water vapor sorption rates of commonly used powder food ingredients (citric acid, sodium chloride, sucrose, fructose, sorbitol, and xylitol) and blends were determined using a multi-sample gravimetric moisture sorption analyzer. The water vapor sorption rate was dependent on sample radius, temperature, and sample composition. The heat transport model for the deliquescence of compressed disks was successfully extended to the powder ingredients and blends. Such results enable further understanding of fundamental theories of deliquescence and provide a useful tool in the prediction of water vapor uptake rate during deliquescence in controlled RH chambers.

  • 【分享】有关大孔树脂动态吸附的问题

    弱问:大孔树脂动态吸附相关问题1.不同浓度洗脱剂对大孔树脂解吸附的影响实验是如何操作的?2.如:是否是用不同浓度如10%、20%、30%的洗脱剂分别冲洗同一根大孔树脂柱中的吸附物质,还是分别用10%、20%、30%的洗脱剂冲洗装有相同吸附物质的大孔树脂的三根柱子?

  • 模芯干燥机吸附再生原理

    模芯干燥机是一种新型吸附式干燥机,模芯干燥机采用最新模芯吸附技术,将原有大型吸附罐体设计成新型积木式集成化结构,极大增加了吸附剂的吸附效率,干燥效果大大提升。吸附阶段 湿压缩空气自入口进入进气缓冲腔,自下而上均匀通过各模芯吸附腔体;腔内分子筛利用自身毛细作用吸取压缩空气中的水分,达到干燥效果。再生阶段无热再生 再生干空气经再生气流调节阀进入再生组出气缓冲腔,干气体在再生组模芯吸附腔内膨胀减至大气压后,自上而下对再生组分子筛进行吹扫,吸附剂体内水分与吸附剂分离,解析于干空气中,同再生气体一起自消音器排出。微热再生 再生干空气在出气缓冲腔内加热后,进入再生模芯吸附腔内,吸附剂内水分在高温环境在加速解析速度,大大降低了再生吹扫气量。

  • 容易吸附水分的样品怎么做DSC热分析?

    对于容易吸附空气中水分的样品怎么做DSC?这种吸附水分现象多会在亲水性纤维类、多孔类材料上发生,比如多糖类、蛋白质类材料,以及活性炭等。通常在空气中它们会吸附自身重量1-10%的水分,即使在烘箱内烘干,但是测试前称量时也会很快吸附少量水分,造成测试曲线上出现明显水分挥发的吸热峰,因此掩盖掉100度以下的其它热转变现象。各位怎么处理这个问题?

  • 【实战宝典】动态顶空技术的工作原理是什么,应用于哪些领域?

    [font=宋体]链接:[/font]https://bbs.instrument.com.cn/topic/7883145[font=宋体]问题描述:[/font][font=宋体]动态顶空技术的工作原理是什么,应用于哪些领域?[/font][font=宋体]解答:[/font][font=宋体]动态顶空是相对于静态顶空而言的,是用惰性气体对密封在样品瓶中的固态或液态样品进行吹扫,使基质中的挥发性有机物随气流进入到仪器内部管路,经由捕集阱时被捕集阱吸附,然后迅速加热捕集阱,挥发性有机物随之解吸下来,被气体气流带入到[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]进行分离,因此,动态顶空又称为吹扫捕集技术。[/font][font=宋体]吹扫捕集技术在环境分析中应用很成熟,包括地下水、生活饮用水、海水、生活污水和工业废水、土壤和沉积物、固体废物中的挥发性有机物的检测。除了在环境分析领域,吹扫捕集技术还在食品、药品、医疗用品、轻工业、血液和尿样及有机金属化合物形态分析方面的应用颇为广泛。[/font]以上内容来自仪器信息网《样品前处理实战宝典》

  • 【我们不一YOUNG】动态顶空(DHS)的原理是什么?

    [align=center][font=DengXian]动态顶空[/font](DHS)[font=DengXian]的原理是什么?[/font][/align][font=DengXian]对比静态顶空[/font](Static Headspace)[font=DengXian]:[/font][font=DengXian]样品放入顶空瓶,根据化合物的分配系数[/font],[font=DengXian]一段时间后在顶空和样品中达到平衡,用顶空针抽取样品上方的气体组成,进样到[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中。[/font][font=DengXian]特点:仪器简单,适合高浓度化合物,适合易挥发化合物[/font]VVOC-VOC[font=DengXian],所能抽出的气体体积有限,检出限高[/font][font=DengXian],不宜分析含水量高的样品。[/font][font=DengXian]而动态顶空[/font](Dynamic Headspace)[font=DengXian]:[/font][font=DengXian]样品体积不变,[/font][font=DengXian]但上方不断有气体通过,通过的气体带出有机挥发物,[/font][font=DengXian]然后被不同形式捕集[/font][font=DengXian](如冷阱,固体吸附剂,溶剂吸附)并分析。[/font][font=DengXian]特点:。气态处于非平衡态,顶空气态体积可以无限大,不断导入的气体可以不断带出样品内有机挥发物质,直至耗尽,检出限低,需要被捕集[/font],[font=DengXian]同时有机挥发物被浓缩,并且可通过不亲水的固体吸附剂去除水分。[/font]DHS[font=DengXian]和[/font]SPME[font=DengXian]及[/font]HS[font=DengXian]分析结果比较(咖啡粉),可以看出[/font]DHS[font=DengXian]得到的化合物更全面更丰富。[/font]

  • 【讨论】泡塑吸附金的原理

    关于泡塑吸附金的方法其实也是一个很成熟的方法,但他的吸附原理是什么呢?查过相关文献也没有报导是不是一般的贵金属都可以用泡塑来吸附,这样就可以做贵金属的系统分析了,请问有没有同志做过相关的方法实验。

  • 【讨论】气体吸附法的测试原理

    气体吸附法是测量材料比表面积和孔径分布的常用方法。其原理是依据气体在固体表面的吸附特征,在一定的压力下,被测样品表面在超低温下对气体分子可逆物理吸附作用,通过测定出一定压力下的平衡吸附量,利用理论模型求出被测样品的比表面积和孔径分布等与物理吸附有关的物理量。其中氮气低温吸附法是测量材料比表面积和孔径分布比较成熟而且广泛采用的方法。在液氮温度下,氮气在固体表面的吸附量取决于氮气的相对来说压力表(P/P0),P为氮气压力表,P0为液氮温度下氮气的饱和蒸气压,当P/P[0在0.05-0.35范围内时,吸附量与相对压力P/P0符合BET方程,这是氮吸附法测定比表面积的依据;当P/P0符合BET方程,这是氮吸附法测定比表面积的依据,当P/P0≥0.4时,由于产生毛细凝聚现象,氮气开始在微孔中凝聚,通过实验和理论分析,可以测定孔容-孔径分布(孔容随孔径的变化率)。 比表面积是多孔材料、超细粉体材料和催化剂的最重要物性之一。有两种常用的表示方法:一种是单位质量的固体所具有的表面积(m2/g),表示为 Sg=S/m 另一种方法是单位固体具有的表面积(m2/m3),表示为Sv=S/V式中:m-被测样品质量(g); V-被测样品体积(m2). 一般多用第一种方法来表示比表面积,计算比表面积的一般BET公式。假设Vd为吸附量(体积),Vm为单分子层的饱和吸附量,P/P0为N2的相对压力,C为第一层吸附热与凝聚热有关常数,P0为饱和蒸气压,W为样品质量,则BET公式为P/Vd(P0-P)=1/VmC+(C-1)/P/P0式中,P/P0一般选择相对压力在0.05-0.35范围内,仪器可以测得dV值。如果只需要的比表面积,就可以只选P/P0=0.05-0.35之间5点进行测量就可以了,也就是通常所说的五点法确定比表面积。

  • 【第三届原创参赛】土壤吸附试验

    本文为作者tianyamzn原创,若需转载请直接先与本人取得联系,经双方协商并签定遵守相关协议后才可转载。未经本站作者授权自行转载的,属侵权违法行为。 一、吸附试验的基本原理进行吸附研究用以判定施入土壤的营养元素是否与土壤发生反应,使施入的营养元素无效化。吸附研究方法是加入不同量的营养元素于土壤中,经一段时间后,浸提土样,测定土样中某种有效性元素的含量是否比原始土样增多。这一方法的原理是:向土壤中加入过量的各种元素的溶液,产生几个小时厌气条件,然后随着土壤的风干,通气条件控制了该体系,这一水分从完全饱和到风干过程,使各种元素和土壤做出反应,这一过程可在短时间内模拟在田间条件下施入的营养元素与土壤之间的反应过程。吸附研究仅适用于某些植物所必须的营养元素。二、吸附试验的测定过程根据吸附试验的基本原理,具体的测定的过程包括土壤样品的准备、营养液的制备、反应和营养元素测定几个步骤。

  • 【求助】动态顶空、吹扫捕集的原理,有什么区别?

    各位老师,最近我们需要购买一台吹扫捕集仪,但据了解 吹扫捕集只适合用于环境监测做水样。我们主要想用来做油脂风味成分的收集吸附的。我知道吹扫捕集是动态顶空的一种,但市场上好像也有动态顶空仪卖,这两个到底有什么区别,原理是什么?[em09501]

  • 【实战宝典】吹扫捕集仪的工作原理是什么?

    【实战宝典】吹扫捕集仪的工作原理是什么?

    问题描述:吹扫捕集仪的工作原理是什么?解答:[font=宋体]吹扫[/font]-[font=宋体]捕集([/font]Purge& Trap[font=宋体])进样技术属于动态顶空技术,而动态顶空是相对于静态顶空而言的,动态顶空不是分析处于平衡状态的顶空样品,而是用流动的气体将样品中的挥发性成分[/font]“[font=宋体]吹扫[/font]”[font=宋体]出来,再用一个捕集器将吹扫出来的物质吸附下来,然后经热解吸将样品送入[/font]GC[font=宋体]进行分析。[/font][font=宋体]在绝大部分吹扫[/font]-[font=宋体]捕集应用中都采用氦气作为吹扫气[/font],[font=宋体]将其同通入样品溶液鼓泡。在持续的气流吹扫下[/font],[font=宋体]样品中的挥发性组分随氦气逸出,并通过一个装有吸附剂的捕集装置进行浓缩。在一定的吹扫时间之后,待测组分全部或定量地进入捕集器。此时,关闭吹扫气,由切换阀将捕集器接入[/font]GC[font=宋体]的载气气路,同时快速加热捕集管使捕集的样品组分解吸后随载气进入[/font]GC[font=宋体]分离分析。所以,吹扫[/font]-[font=宋体]捕集的原理简单概括就是:动态顶空萃取[/font]→[font=宋体]吸附捕集[/font]→[font=宋体]热解吸[/font]→GC[font=宋体]分析。[/font][font=宋体]图[/font]9-10[font=宋体]是吹扫[/font]-[font=宋体]捕集进样装置流路图,其中左边为样品吹扫,右边为样品解析:[/font][img=,553,311]https://ng1.17img.cn/bbsfiles/images/2022/07/202207121254107120_3944_3389662_3.jpg!w690x342.jpg[/img][font=宋体]图[/font][font='Times New Roman','serif']9-10 [/font][font=宋体]样品吹扫[/font][font='Times New Roman','serif']-[/font][font=宋体]样品解析气体流路图[/font]以上内容来自仪器信息网《样品前处理实战宝典》

  • 【原创大赛】官人代发:物理吸附实验中样品脱气条件的选择

    【原创大赛】官人代发:物理吸附实验中样品脱气条件的选择

    [b]作者:[/b]丁延伟,[color=#2d374b]中国科学技术大学理化科学实验中心副主任。[/color]在上一篇文章中介绍了《物理吸附实验中样品用量的选择》,按照物理吸附实验程序,在确定了样品用量之后,接下来要对样品进行脱气处理。脱气条件的选择与样品量均十分重要,是取得理想的实验结果的前提。在本文中,将对吸附实验中的脱气条件的选择进行阐述。脱气的目的是最大程度地去除表面吸附的溶剂和从环境中吸附的水蒸气等其他分子。如果表面吸附的这些物种不能有效去除,在进行吸附实验时势必会影响最终的吸附等温线的吸附量数值,由此导致所得到的比表面积、孔容积等参数的数值变小。因此,只有选择合理的脱气条件,有效地脱除样品表面吸附的溶剂、水蒸气等分子,才可以得到理想的实验结果。常用的脱气方式分动态脱气和真空脱气两种。其中,动态脱气是在一定的温度下,使加入到样品管中的样品上方流通一定流速的气体(通常为氦气或者氮气),流动的气氛将加热时表面吸附的溶剂、水分子等带离样品管,从而达到脱气的目的。而真空脱气则是在一定的温度下,将装有样品的样品管连接在仪器的脱气装置的真空,通过负压将表面吸附的溶剂、水分子等带离样品管。显然,真空脱气方式的脱气效果要优于动态脱气方式。实际上,大多数的物理吸附实验采用在一定的温度(通常高于室温)下抽真空的方法。在选择脱气条件时,通常需要设定合适的脱气温度和等温时间。一般来说,脱气温度越高,表面吸附的溶剂、水分子等的脱除效果越好。设定合适的脱气时间可以使这些分子有足够的时间被脱除。通常,在较高的脱气温度下所需的脱气时间可以适当缩短。在实际设定脱气条件时,与脱气时间相比,合适的脱气温度显得更加重要。如果脱气温度设定过高,通常会引起样品发生熔融、分解、表面结构变化、孔塌缩,由此得到的结果并非测试样品的实验结果。图1为在较高的脱气温度下得到的异常等温线。由图可见,即使样品中含有大量的孔结构,过高的脱气温度引起了孔的塌缩,从而导致吸附能力减弱,无法得到正常的等温线。 [align=center] [img=,436,374]https://ng1.17img.cn/bbsfiles/images/2019/10/201910241425496214_771_3224499_3.jpg!w436x374.jpg[/img] [/align][align=center]图1[/align]另一方面,在过低的脱气温度下,即使采用过长的等温时间(如12小时或24小时)也无法有效地脱除表面吸附的溶剂、水等分子。这些分子的存在会挤占表面的吸附位或者堵塞孔道,导致比表面积和孔容积下降。通常用热分析技术中的热重法(TG)和差示扫描量热法(DSC)来选择合适的脱气温度。理想的脱气温度应在熔点和分解温度之前。如果材料中含有结晶水,实验时如果不考虑结晶水存在时的结构状态,则脱气温度应在结晶水的分解温度之上。以下举例说明。例1 图1中的绿色曲线为含有结晶水的草酸钙样品的热重曲线,121℃开始的第一个失重台阶对应于结晶水的失去过程,389℃开始的第二个失重台阶对应于草酸钙分子结构中的CO的失去过程。(1)如果需要测量不含结晶水的草酸钙的物理吸附实验并由此得到比表面积孔容积等信息,则脱气温度应设置在300-350℃范围内。(2)如果需要测量含有结晶水的草酸钙样品的物理吸附实验并由此得到比表面积孔容积等信息,则脱气温度不得高于120℃。[b]需要特别指出,由于热重实验是在常压下的动态气氛下以恒定的加热速率条件下得到的,而吸附实验的真空脱气是在很定温度下的真空环境下进行的,设定的脱气温度应低于热重曲线的开始温度20-50℃,以免样品在脱气过程中发生分解。如果采用动态气体吹扫法进行脱气,则温度可以适当提高。由于脱气在等温下进行,所设定的脱气温度也应低于热重的开始分解温度5-10℃。[/b]例如,对于以上第(1)种情形的脱气温度可以设在80-100℃范围中的一个温度,对于以上第(1)种情形的脱气温度可以设在320-350℃中的一个温度。设置的温度越低,则脱气时间可以适当延长。常用的脱气时间为60-600分钟不等。另外,样品中孔的含量越多,脱气时间也应越长。[align=center][img=,560,270]https://ng1.17img.cn/bbsfiles/images/2019/10/201910241425579422_175_3224499_3.jpg!w560x270.jpg[/img][/align][align=center]图2 含有结晶水的草酸钙的TG曲线[/align]例2 为一种有机物的DSC曲线,由图可见样品自130℃开始逐渐发生熔融,如果需要对这种样品进行物理吸附实验,则脱气温度可以设置在80-110℃。如果温度设置过高,则易引起样品中孔结构的塌缩。[align=center][img=,560,271]https://ng1.17img.cn/bbsfiles/images/2019/10/201910241426055932_7531_3224499_3.jpg!w560x271.jpg[/img][/align][align=center]图3 一种有机物的DSC曲线[/align]综合以上两个实例,在设置脱气温度时应综合TG和DSC曲线来确定合理的脱气温度,对于熔点较高(高于400℃)或者不存在熔点的样品而言,只通过TG实验就足够了。另外,如果样品在加热过程存在不可逆相变,由于不同的结构形式的吸附能力也有差异,则脱气温度也应低于该温度。需要特别指出,[b]如果样品已经经过高温(高于400℃)热处理过程,由于脱气装置的最高工作温度在400-450℃范围,则可以直接将脱气温度设定在300-400℃[/b]。[b][color=black]如果样品中含有大量的微孔,在样品可以承受的最高温度下脱气时还应大幅度延长脱气时间,以使微孔中的吸附水、溶剂等分子彻底脱除。[/color][/b][color=black]如果样品中含有在合成或处理过程中引入的一些稳定性很好的无机盐如钠盐、钾盐等,这些化合物会堵塞表面的缺陷或孔,影响测量结果。如果不希望样品受这些无机化合物的影响,则应对样品进行再次处理。对于一些再合成或处理过程中有意在样品中负载的一些活性组分如铂、金等,则无需在处理时将这些活性组分进行置换。[/color]

  • 模块化吸附式干燥机—压缩空气干燥设备

    模块化吸附式干燥机—压缩空气干燥设备

    压缩空气系统:压缩空气中有很多污染物,包括水、油、固体颗粒等。因此,需要在应用前净化压缩空气,将这些污染物排除掉。NANO吸附式干燥器可以满足含水量1-3级,油和固体颗粒等污染物也可以通过合理的过滤设备去除(可以联系我们)。压缩空气的干燥程度可以用压力露点来表示,露点:简单来说就是压缩空气含水量饱和时的温度,如果气体的温度低于饱和温度,就会有液态的水析出。  压缩空气模块化吸附式干燥器干燥后的压缩空气露点可以达到:-70度、-40度、-20度,分别达到ISO8573.1湿度的1/2/3级。当压缩空气的露点低于-40度的时候,气体就已经是非常干燥了,有很多因素会造成吸附剂不良,干燥器如果不能正常工作,很容易造成气体露点问题。  NANO压缩空气吸附式干燥器变压吸附原理:采用两筒切换工作,当A塔吸附干燥时,B塔利用从A塔来的小部分干燥空气在稍稍大雨大气压力的情况下反向流过吸附剂,带走吸附在吸附剂表面的水分。当A塔吸附剂趋向饱和时,A塔和B塔经均压而后切换,A塔减压再生,B塔干燥压缩空气。这样反复,实现压缩空气的连续不间断干燥。  模块化吸附式干燥器设计简约,相对于传统的双塔吸干机具有更小的体积,更轻的重量,更便于安装和搬运,几乎不需要特殊的搬运工具,不需要特殊的安装位置。[img=压缩空气模块化吸附式干燥机,500,350]https://ng1.17img.cn/bbsfiles/images/2020/05/202005091414372379_5760_3251553_3.jpg!w500x350.jpg[/img][img=压缩空气模块化吸附式干燥机,500,350]https://ng1.17img.cn/bbsfiles/images/2020/05/202005091414372379_5760_3251553_3.jpg!w500x350.jpg[/img]

  • 酶联免疫吸附法检测黄曲霉毒素b1的原理

    B 1 的酶联免疫吸附测定原理:利用固定相酶联免疫吸附原理,将 AFB 1 特异性抗体包被于聚苯乙烯量反应板的孔穴中,再加入样品提取液(未知抗原)及酶标 AFB 1 抗原(已知抗原),使两者与抗体之间进行免疫竞争反应,然后加酶底物显色,颜色的深浅取决于抗体和酶标 AFB 1 抗原结合的量 , 即样品中 AFB 1 多,则被抗体结合酶标 AFB 1 抗原少,颜色浅,反之则深,用目测法或仪器法与 AFB 1 标样比较判断样品中AFB 1 的含量。最低检测浓度为0 。 01ug/kg 。

  • 请教有关吸附仪的问题

    我看了一些有关吸附仪的文章,但原理都是介绍重量法的吸附仪,有没有人懂体积法测试的吸附仪,能给介绍一下吗?最好是推荐基本这方面的好书/:p /:d

  • 重量法蒸汽吸附仪 简介

    重量法蒸汽吸附仪 产品简介重量法动态蒸汽吸附仪DVS系列在测量水和有机蒸汽在粉体表面吸附方面处于世界领先地位,它通过在一定相对湿度下气体通过样品后重量的变化来测定蒸汽吸附,比传统的干燥法测量更快,更节省时间。由于其独特的优势,DVS系列产品世界各地的实验室有广泛的应用,可用于研发部门以及质控部门确定产品结构、产品稳定性、吸湿性、包装和产品开发中固体材料存在的问题。结合了微天平、气体流动和蒸汽的测量技术的优势使用干燥的载气,通常为氮气,可以选择任何两个蒸汽源中的一个质量流量控制和独特的水和有机蒸汽浓度实时监控结合可以精确控制饱和干燥载气流量的比例整个体系的温度可以由选择,并且在闭合环条件下可以精确控制,以保证吸附质的蒸汽压恒定具有极其高的灵敏度和精确度,仅需少量的样品(通常1-30mg),因而可快速达到平衡全自动惰气吹扫装置和有机泄露检测器可在发生有机蒸气泄漏时关闭联锁装置,保证安全 DVS Advantage软件可程序控制仪器,用户界面友好,满足数据完整性和安全性的最高标准待测样品置于微量天平上,已知浓度的蒸汽通过样品,记录式微天平可以测量由蒸汽吸附或脱附引起的质量变化。这种动态流动环境易于快速研究吸附/脱附过程。如果进一步实验选择需要,样品可以首先预热,这样可以加速体相吸附或者无机氧化物干燥过程的分析循环时间。加热过程可独立进行或通过软件来控制升温速率。

  • 【原创大赛】二元溶液吸附方程验证汇集

    【原创大赛】二元溶液吸附方程验证汇集

    请阅览附件……………………为了方便大家查看,帮楼主贴出内容………………………… 二元溶液吸附方程验证汇集 Daichaozheng通常认为在溶液中的吸附是多层吸附的,但是多层吸附与van der Waals作用能与分子间有效距离六次方成反比这一原理是矛盾的。原因是吸附剂表面生成的van der Waals作用能其力度不足以克服“第二层分子”的热运动。因此溶液吸附不会是多层吸附。运用统计力学方法,在均一位势模型和理想势阱点阵模型基础上,考虑分子之间van der Waals作用能和溶液吸附过程的顶替效应可以推导出二元溶液单分子层吸附方程为:http://ng1.17img.cn/bbsfiles/images/2012/08/201208091006_382640_2961690_3.jpg在第三届科学仪器网络原创大赛 “二元溶液体系吸附方程的验证”一文中,作者计算了苯胺、苯酚、环己醇、正丁醇、正己酸、正戊醇、正戊酸在六种炭吸附剂上的吸附数据。四十二组数据计算值与实验值的均方差在0.008-0.047之间。为了更充分的考察公式(1)、(2)的适应性,作者采用了更多的文献数据进一步进行验证。今汇集如下。在18℃的恒温条件下,用骨炭从水溶液中吸附醋酸。在不同的醋酸平衡浓度下,每公斤骨炭中吸附醋酸量 与溶液中醋酸的摩尔浓度 的关系如表1所示:http://ng1.17img.cn/bbsfiles/images/2012/08/201208091007_382642_2961690_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/08/201208091007_382643_2961690_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/08/201208091007_382644_2961690_3.jpg从公式(5)可以看到,溶液浓度的改变引起分子间环境的变化,从而导致分子之间势能场的变化,最终影响吸附过程的焓变。公式(5)表示的是一摩尔吸附值从溶液态进入吸附态这一过程的焓变的量,这也是吸附剂表面吸附吸附质时van der Waals作用能所作的净功。物理吸附是一个可逆的动态平衡过程,平衡时物质在吸附剂表面的化学位与在溶液中的化学位相等。从道理上讲,只有吸附的作用能大于分子的动能才能形成稳定的吸附层。由公式(5)可以看出,随着溶质浓度的改变,血炭从水溶液中吸附正丁醇van der Waals作用能作的净功在4.1868*984J/mol到4.1868*1258.6J/mol之间。根据理论,分子的平均动能为http://ng1.17img.cn/bbsfiles/images/2012/08/201208091010_382646_2961690_3.jpgJ/mol,在室温情况下(300K)分子的平均动能大约为4.1868*450 J/mol。这个数值小于吸附过程的焓变。如果设想吸附是单层的,这个吸附过程是可以进行的;作一个粗放的估计如果形成多层吸附,根据van der Waals作用能公式,第二层与吸附剂表面有效距离增加一倍,吸附过程焓变只能及第一层的1/64,也就大约是在4.1868*11J/mol 到4.1868*20 J/mol之间。这个数值远小于分子的平均动能为http://ng1.17img.cn/bbsfiles/images/2012/08/201208091009_382645_2961690_3.jpg J/mol(4.1868*450j/mol)。因此吸附剂的表面依靠van der Waals作用能是不能够约束住溶质分子形成第二吸附层的。至于第三层、第四层则更不可能了。http://ng1.17img.cn/bbsfiles/images/2012/08/201208091011_382648_2961690_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/08/201208091011_382649_2961690_3.jpg硅胶可以从水溶液中吸附碱金属离子,表3则列出了硅胶自水溶液中吸附无机碱计算值与实验值的比较。计算采用的公式为:http://ng1.17img.cn/bbsfiles/images/2012/08/201208091012_382650_2961690_3.jpg从计算结果可见,对于不同的碱金属离子有不同的A,B 值,但是不管是Li+、Na+ 、 K+还是NH4+,每吸附一个碱金属离子就要从硅胶表面顶替下来七个水分子。 带电荷的离子型化合物,由于电荷同性相排斥的原理,形成多层吸附则更不可能了。http://ng1.17img.cn/bbsfiles/images/2012/08/201208091013_382651_2961690_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/08/201208091026_382653_2961690_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/08/201208091026_382654_2961690_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/08/201208101148_382997_1688674_3.jpg 图6 一氧化碳在木炭上吸附量计算值与实验值的比较http://ng1.17img.cn/bbsfiles/images/2012/08/201208091027_382656_2961690_3.jpg计算的数值。 图6表示一氧化碳在木炭上吸附量计算值与实验值的比较。由图可见二元溶液单分子层吸附方程(1)在 p=0 的情况下也可以很好地描述气体的吸附过程。 结论:通过对van der Waals作用能的分析,解释了在溶液吸附只能形成单分子层吸附的原因。在过去推导的溶液吸附方程的基础上,拟合了多组吸附质、吸附剂的实验数据,得到良好结果。证明了溶液单分子吸附理论成立。所推导的溶液吸附公式成立。 参考文献 戴朝政,卢佩章,色谱 ,1994年第3期 戴朝政,第三届科学仪器网络原创大赛,二元溶液体系吸附方程的验证 赛冷LG,兰吉PW,加布里桑CD著,傅献彩等译。物理化学习题集,北京:人民教育出版社,1959:299。 严继民,张启元,高敬综。吸附与凝聚固体的表面与孔。北京:科学出版社。1986:93 段世铎,谭逸玲。界面化学。北京:高等教育出版社,1990:107 顾惕人编,傅鹰选集。北京:冶金工业出版社,1990:41

  • 【实战宝典】全自动热脱附仪的工作原理是什么?

    【实战宝典】全自动热脱附仪的工作原理是什么?

    问题描述:全自动热脱附仪的工作原理是什么?解答:[font=宋体]热脱附仪也叫热解吸仪,是配套固体吸附剂对环境空气、室内空气、车内空气等进行挥发性有机物分类和富集的前处理仪器。[/font][font=宋体]首先选择装填好的吸附剂的吸附管,在一定的温度压力条件下,连续吸入一定体积的待测空气样品,空气中的待测物将被保留在吸附管填料中,采样后通过热解吸仪将吸附管加热,解吸出待测物,该过程称为一次解析,如图[/font]9-9[font=宋体]所示。通过常温吹扫将解吸后的组份捕集到第二根捕集管内,再快速加热捕集管,将待测物质解析,这个过程称为二次解析,随后待测物导入毛细管色谱柱,用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]进行分析。图[/font]9-15[font=宋体]提供了[/font]Markes[font=宋体]公司生产的[/font]TD-100[font=宋体]全自动热脱附仪不同状态下的流路图。[/font][align=center][img=,477,204]https://ng1.17img.cn/bbsfiles/images/2022/07/202207121258446192_5837_3389662_3.jpg!w622x251.jpg[/img][/align][align=center][font=宋体]图[/font]9-14[font=宋体]热脱附管对目标化合物的吸附与解析附[/font][/align][align=center] [/align][img=,554,263]https://ng1.17img.cn/bbsfiles/images/2022/07/202207121258504785_5313_3389662_3.jpg!w690x326.jpg[/img][align=center][font=宋体]图[/font]9-15[font=宋体]热脱附仪在不同状态下的流路图[/font][/align]以上内容来自仪器信息网《样品前处理实战宝典》

  • 【原创】新型动态氮吸附仪部分功能提升透露

    1,氮分压调节速度比原来系统加快10倍,只需10秒就可以完全调节好流量,国内领先~~2,测试压力点多,在0.05到0.98可以任意设置,测试点可以达到100以上,弥补了之前动态仪器测试介孔孔径由于测试点数太少的不足。这是国内的最高水平。3,比表面测试时间缩短1/3。且压力点设置方式多样。测试结果重复精度高4,仪器无需预热,提高了工作效率。5,测试压力点由低点向高点或者由高到低都不受影响,压力点控制误差0.15%。大大提高了P/P0的准确度。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制