当前位置: 仪器信息网 > 行业主题 > >

光合荧光仪荧光技术原理

仪器信息网光合荧光仪荧光技术原理专题为您提供2024年最新光合荧光仪荧光技术原理价格报价、厂家品牌的相关信息, 包括光合荧光仪荧光技术原理参数、型号等,不管是国产,还是进口品牌的光合荧光仪荧光技术原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光合荧光仪荧光技术原理相关的耗材配件、试剂标物,还有光合荧光仪荧光技术原理相关的最新资讯、资料,以及光合荧光仪荧光技术原理相关的解决方案。

光合荧光仪荧光技术原理相关的仪器

  • 探险者EXPLORER便携式X荧光光谱仪是天瑞仪器结合10年便携式研发经验,集中了光电子、微电子、半导体和计算机等多项技术,研制出具有自主知识产权的,全新一代便携式XRF产品。EXPLORER500便携式X荧光合金分析仪是使用全新大屏高分辨率液品显示屏及新型数字多道数据处理器的便携式合金分析仪。超低的检出限使便携式分析仪的性能媲美台式机 仪器体积小,重量轻,可随身携带进行测量,适用于各类型合金样品的分析。合金行业应用贵金属合金 锅炉压力容器钢铁冶炼 航天工业废旧金属回收 船舶制造机械制造与加工考古拥有500多种牌号的智能合金库EXPLORER5000可准确检测各种贵金属合金、高低合金钢、不锈钢、工具钢、铬/钼钢、镍合金、钴合金、镍/钴耐热合金、钛合金、铜合金、青铜、锌合金、钨合金等,无损检测,1秒钟即可知晓材料的成分及合金牌号。还可对铝、镁轻合金牌号进行快速鉴定,并可对材料进行可靠性鉴别(PMI)和确认,精确掌控材料品质。现场快速、准确地分析镀层厚度与含量EXPLORER5000是使用全新大屏高分辨率液品显示器及新型数字多道数据处理器的便携式元素分析仪。EXPLORER5000可对大面积镀层产品进行膜厚分析,仪器不仅体积小、重量轻,可随身携带进行测量 而且性能卓越,堪比台式机。材料可靠性鉴别在合金材料生产、机械设备加工制造过程中,对于材料的识与元素检测是不可分割的EXPLORER 5000专业无损检测能有效防止原材料混料,杜绝不必要的损失。工业生产过程中的品质控制EXPLORER 5000 专业无损检测可用于钢铁治炼、锅炉等高温高压行业生产过程中的品质控制与管理,确保材料品质 船舶制造、航空航天等高技术行业中合金成分的识别从而保障产品质量与安全 电力电站等有关国计民生行业中,鉴定设备零部件是否达标,保证设备安全。废旧金属回收与再利用针对废旧金属回收与利用行业,EXPLORER 5O0O 可以对大量金属废料进行现场检测和快速分类。可用于仓库积压钢材回收 废品收购站金属分类 车削切屑或刨屑碎片等各个废旧金属回收利用环节。是废旧金属回收再利用行业中进行金属识别钢材识别的有力武器。六大性能优势更便捷的操作重量轻,体积小,人体工程学把手设计,配有专用仪器套,更易抓握,野外使用更方便。270“可旋转5寸高清屏,支持多点操控,任何光线下都能清晰显示。密封式一体设计,具备防水防尘功能,可在恶劣环境下连续使用。无需制备样品,可直接对待测物表面进行测定。仪器既可手持进行快速测试,也能使用测试座对样品进行较长时间的精细测试。更卓越的性能无损快速检测,对准即测,一秒可报结果和合金牌号。性能堪比台式机,检测效果又快又准。同时检测钛、钒、铬、锰、铁、钴、镍、铜、锌、镓、锗、锆、铌、钼、钌、铑、钯、银、铟、锡、锑、铪、钽、钨、铼、铂、金、铅、铋、镁、铝、硅、磷、硫元素,并且可以根据客户需求进行定制再增加元素。超近光路设计,仪器无需充氦气,可检测从Mg开始的轻元素,完全可以满足特定用户的需求。多国标准牌号库供客户选择,500多种牌号集成,满足牌号识别需求。更强劲的电力选配超大27000mAh锂电池,续航工作时间可达三天。并配备交流和车载充电器,保证电力供应。内置记忆电池,换电池不断电。更高端的配置微型光管、SDD探测器、微型数字信号多道处理器及智能分析模块四大核心技术的引入,使其具有台式相近的测试精度。采用超高主频及大内存,超大存储空间,可海量存储数据。全新自主研发的数字多道技术,保证每秒有效采谱计数可达500kcps准直滤波系统,其组合达到极限12组,满足客户的不同条件下的检测需求。800万高清晰摄像头,随时观察样品测试位置,使测量更加精准。更安全的防护智能三色预警系统:LED三色长灯带设计,360度无死角显示。通电开机时绿灯亮,测试红灯闪烁,设备故障黄色灯闪烁,仪器状态,一目了然。三重安全防护功能:a:自动感应,没有样品时仪器不工作,无射线泄漏。b:采用加厚防护测试壁,有效防止散射。c:配送防护安全罩,防周边轻基体散射。安全联动锁装置,当软件无法控制关闭,轻轻一按,第一时间保护您的安全,守护最后关卡。更智能的软件EXPLORER5000便携式X荧光合金分析仪配有专门针对合金行业的专业应用软件,具有智能化、高灵敏度、测试时间短、操作简易等特点。全新的智能软件,一键智能操作,采用双模设计(用户模式和专家模式)。用户模式一键识别样品材质测试 专家模式可进行增加元素,增加特定曲线等深入分析操作。内置强度校正方法,校正几何状态不同和结构密度不均匀的样品造成的偏差。
    留言咨询
  • 天瑞仪器公司是全球专业生产高性能X荧光光谱仪(XRF)的公司。2011年推出的高性能、台式X荧光合金分析仪EDX3600H,融汇合金分析技术,配备智能真空系统,利用低能光管配合真空测试,可以有效的降低干扰,提高轻元素分辨率,大大提高合金中微量的Al、Si、P等轻元素的检测效果。EDX3600H合金光谱仪是天瑞仪器公司为合金测试专门开发的仪器类型。具有测试精度高、测试速度快、测试简单等特点。同时具有合金测试、合金号分析、有害元素分析,土壤分析仪、贵金属分析等功能。检测样品包括从钠至铀的所有合金、金属加工件、矿物、矿渣、岩石等,形态为固体、液体、粉末等。性能特点:超薄窗X光管针对合金的测试而开发的专用配件FAST-SDD探测器,良好的能量线性、能量分辨率和能谱特性,较高的峰背比低能X射线激发待测元素,对Pb、S等微含量元素激发效果好智能抽真空系统,屏蔽空气的影响,大幅扩展测试的范围自动稳谱装置保证了仪器工作的一致性;高信噪比的电子线路单元针对不同样品自动切换准直器和滤光片,免去手工操作带来的繁琐多参数线性回归方法,使元素间的吸收、增强效应得到明显的抑制;内置高清晰摄像头液晶屏显示让仪器的重要参数(管压、管流、真空度)一目了然标准配置:合金测试超薄窗X光管FAST-SDD探测器光路增强系统高信噪比电子线路单元内置高清晰摄像头自动切换型准直器和滤光片自动稳谱装置三重安全保护模式相互独立的基体效应校正模型多变量非线性回归程序整体钢架结构,力度可靠的保证90mm×70mm的液晶屏外形尺寸:660mm×510mm×350mm样品腔体积:Φ320mm×100mm重量:65Kg技术指标:测量元素范围:从钠(Na)到铀(U)元素含量分析范围: ppm—99.99%(不同元素,分析范围不同)同时分析元素:一次性可测几十种元素测量时间:60秒-200秒能量分辨率为:125eV应用领域:检测以铜合金、铁合金、镍合金为主的任何合金类产品
    留言咨询
  • YZQ-201C藻类荧光-光合仪 YZQ-201C藻类荧光-光合仪,是在201A藻类光合仪基础上增加了藻类荧光测量的新款仪器。该仪器能够监测光合放氧和呼吸耗氧,又可以测量藻类OJIP荧光动力学曲线,从而得到最大光化学效率。首先仪器特色是恒温控制、光谱可以调节、光强可以调节,控温精度达到±0.1℃。光谱分为暖白、R、G、B四种光谱可选,也可以多光谱定制。搭载荧光氧传感器(光学测量原理)测量微动态氧变化,自带搅拌功能使得测量更加稳定。实验设计可以是相同温度,不同光强,还可以是不同温度,同一光强对比测量均可实现。在恒温恒光环境下可连续监测藻类、根系、微生物、叶绿体等样本的微动态氧的变化,从而计算光合速率变化的状况。其次是将藻液收集到荧光测量室内进行荧光指标测量,藻反应杯包括藻液收集装置和藻液暗适应装置,收集和暗适应完毕即可将荧光传感器插入荧光测量室内进行荧光测量。 功能与特点(1)主机集成了荧光测量功能和光合放氧(呼吸耗氧)测量功能。(2)荧光氧电极(光学原理)的优势在于反应速度快,稳定性好,重复性好;对比极谱(CLARK)氧电极(电化学原理),不需要每次测量前要标定,不需要更换溶氧膜,不需要更换电解液,不需要打磨电极,不需要活化复新电极。(3)恒定温度、不同光强下样本光合速率的变化测量。不同温度梯度下的同一样本光合速率的变化测量(4)自带搅拌使得测量数据更稳定。(5)自带控制软件可进行实时控制。(6)自带智能藻液收集装置和荧光暗适应测量室。应用(1)藻类光合生理生态的研究(2)微生物、根、花粉等呼吸速率的研究(3)叶绿体等高等植物光合速率的研究
    留言咨询
  • YZQ-100C 荧光-光合仪一 概述YZQ-100C 荧光-光合仪,是我公司“自主研发”光合系列产品之一。仪器设计新亮点在于集成了控温、控光自动开合叶室和荧光叶室于一身,可完成控温、控光、动态日变化光合速率、控温快速荧光动力学曲线测量等指标测量。既是一台光合仪又是一台荧光仪,佩戴超便携暗适应夹可在野外进行快速大量样本的荧光动力学测量。仪器升级为双分析器,参考和样本同时采样,大大缩短了光合测量时长。国产超便携,重量仅有3KG,体积只有45CM*12CM*8CM,并搭载高能锂电池,控温模式下可连续工作2小时,控光模式可连续工作10小时以上,非控光模式可以工作20小时以上。16G大容量存储,可以存储1个月以上连续监测数据。仪器便携、数据稳定、操作简单、性价比高,是一款科研级别的植物生理生态研究利器。二 功能与特点1、★光合三种测量模式:日变化动态光合测量,控光光合测量、控温光合测量。2、★步进电机控制自动开合叶室来完成自然模式日变化动态光合测量曲线。3、★自带植物光谱控光光源,精准控光程序,可做光—光合响应曲线,光源有阶跃变化光源和模拟自然变化光源,阶跃变化光源可以设定时间段来进行测量。4、★自带控温叶室,精准控温程序,可做温度—光合响应曲线。5、★温度胁迫下荧光参数测量:最大光化学效率、O-J-I-P荧光动力学曲线等40多个参数。6、自动计算结果,自动存储,SD卡16G存储,二氧化碳浓度、相对湿度、光合有效辐射、温度、光合蒸腾等数据均以EXCEL格式数据输出。7、可测定光合速率、蒸腾速率、水分利用效率、气孔导度和细胞间二氧化碳浓度等五项指标。8、暗适应下完成荧光动力学曲线等荧光参数测量后即刻光适应下完成光合等参数测量。
    留言咨询
  • LI-6800是美国LI-COR公司研发的新一代便携式光合荧光测量系统,原位、准确、高速测量气体交换和叶绿素荧光过程,是植物光合生理研究的强大工具。LI-6800是目前全球先进的兼具光合气体交换、脉冲调制式叶绿素荧光、快速叶绿素荧光诱导动力学曲线、土壤呼吸的多功能测量仪器。光合仪技术亮点IRGA分析仪紧邻样品室系统整体测量性能卓越,测量稳定性强45 秒完成一个气体交换参数测量Rapid A-Ci Response(RACiR &trade )测量方法,快速测量CO2 响应曲线250kHz 的荧光信号采集频率,轻松测量OJIP 曲线多相闪光技术Multiphase Flash TM 和16000μmol/m2/s 的饱和闪光强度确保准确测定光下最大荧光值Fm′气体交换和叶绿素荧光的同步测量智能计算叶面积BP(Background Program)自定义测量过程,灵活设置测量环境,模拟各种过程Auto Control功能,便于实现“波动光”、温度骤变等实验条件的测量超强的环境控制能力 准确极速CO2变化控制在苏打管和CO2小钢瓶作用下,测量室CO2可设定0~>2000 μmol/mol,可控精度低至1μmol/mol。LI-COR的Rapid A-Ci Response(RACiR &trade )测量方法1,5分钟完成CO2响应曲线2测量。 自定义气体环境控制用户配气进气口,可以改变测量室气体环境,例如用低O2气体。 H2O控制使用加湿剂和干燥剂,可控制测量室H2O在0~90% RH 超高流速可调流速范围0 到2000cc/min,高流速不仅方便测量更大的样品,也是降低样品室相对湿度RH 的关键。一些需要控制低相对湿度RH、高饱和水气压亏缺VPD 的实验,必须依赖高流速。 超高流速可调流速范围0 到2000cc/min,高流速不仅方便测量更大的样品,也是降低样品室相对湿度RH 的关键。一些需要控制低相对湿度RH、高饱和水气压亏缺VPD 的实验,必须依赖高流速。 光照控制3种光源可选,大面积光照均质性好。6800-01A荧光光源,总光强0-3000 μmol m-2s-1@ 25℃;饱和闪光输出范围:0-16000 μmol m-2s-1@ 25℃6800-02红蓝光源:总输出范围:0~2000 μmol m-2s-1@ 25℃6800-03红绿蓝白大光源:总光强:0-3000 μmol m-2s-1@ 25℃ 控制边界层导度高速混合风扇(16000r/min)实现边界层导度控制。 温度控制控温模块能够在环境温度±10℃范围内准确控制叶片温度,分辨率<0.1℃。还可根据实验需要跟踪控温,亦或程序化升温或降温。 分析器头部和叶室紧密相连,无时滞效应 高精度流速计,确保光合气体交换数据测量准确良好的使用体验可选叶室 荧光叶室 6800-01A 红绿蓝白4色大光源 6800-03 3×3cm红蓝光源 6800-02 藻类和水生生物测量室 6800-18 3×3cm透明叶室 6800-12A 大叶叶室 6800-13 小植物叶室 6800-17 苔藓叶室 6800-24 土壤碳水通量测量室 6800-09 自制叶室适配器 6800-19 昆虫呼吸室 6800-89 可选套装LI-6800F光合-荧光全自动测量系统LI-6800P光合作用全自动测量系统LI-6800S光合作用全自动测量系统( 无光源)可选配件背带 三脚架 三脚架云台 单脚架气路取样配件 外源CO2 气路连接配件技术参数CO2 气体分析器类型:绝对开路式非色散红外气体分析器最佳量程: 0 – 3100 μmol mol -1精度(信号噪音) :RMS≤0.1 μmol mol-1@4s平均信号@ 400 μmol mol -1准确度 :<读数的1%@≥200 μmol mol-1;±2 μmol mol-1@0~200 μmol mol -1方位敏感度: ≤±1 μmol mol-1@任意方位@400 μmol mol -1H2O 气体分析器类型:绝对开路式非色散红外气体分析器量程: 0 – 75 mmol mol-1精度(信号噪音):RMS≤0.01 mmol mol-1@4s平均信号@ 10 mmol mol -1准确度: <读数的1.5%@>5 mmol mol-1;±0.08 mmol mol-1@0~5 mmol mol -1 at 5 mmol mol-1温度工作温度范围: 0 – 50 °C储存温度范围: -20 – 60 °C温度控制范围:叶片温度: ±10 °C from ambient Setpoint Resolution: 0.1 °C空气温度和温度控制模块 :类型: 热敏电阻量程:-10 – 60 °C准确度: ±0.15 °C叶温传感器 :类型: E型叶温热电偶量程: -10 – 60 °C准确度:±0.5℃;±0.2℃冷端参比;±0.3℃热电偶@±10℃冷端温度范围内通讯RJ-45 以太网;TCP/IP: 1头部连接: 2辅助连接: 2气流流速控制整体流速: 680 – 1700 µ mol s-1 at SATP1叶室流速: 0 – 1400 µ mol s-1 at SATP压强主机压强传感器 :工作范围:50 – 110 kPa准确度: ±0.4 kPa分辨率: 1.5 Pa 信号噪音:≤0.004 kPa@4 s平均信号叶室压强传感器 :量程范围: -2 – 2 kPa分辨率: 1 Pa信号噪音:1 Pa@4 s平均信号设置点分辨率:1.0 Pa控制范围: 0 –0.1 kPa (与流经叶室的流速相关)电池重量: 0.435 kg容量: 6800 mAh类型:锂离子电池储存: -20 – 60 °C ≤80% RHCO2 控制CO2 控制范围: 0 – 2000 µ mol mol-1 (具体数值视总体流速大小而定)CO2 Cartridge Type:8 gram气体来源:8 g CO2钢瓶;带可选适配器的外接气瓶CO2 吸收剂:苏打H2O 控制H2O 控制范围:0 – 90% RH (noncondensing)加湿药品:有离子交换膜隔离的纯水干燥剂: Silica Gel (BASF Sorbead® Orange CHAMELEON® )光强测量叶室和光源光合有效辐射(PAR)传感器 :量程: 0 – 3000 µ mol m-2 s-1分辨率: 1 µ mol m-2 s-1准确度: 读数±5%,NIST可追溯外置 LI-190R 光合有效辐射(PAR)传感器 :检测质: 硅光电二极管灵敏度: 5 – 10 µ A 每 1000 µ mol m-2s-1准确度:读数±5%,NIST可追溯主机处理器:ARM® CortexTM A9四核,1GHz存储卡:2G RAM;8 GB闪存显示屏: TFT LCD可触摸屏 分辨率: 1024 x 600 尺寸: 对角线长26 cm大小: 18.5 x 27.5 x 21 cm (D x W x H)重量: 6.1 kg供电:12~18 VDC或24 VDC分析器头尺寸:37×11.5×21.6 cm(L×W×H)(连接3×3透明叶室)重量: 2.15 kg (不含叶室)显示屏像素: 128 x 128 像素显示屏尺寸: 对角线长度3.15 cm传感器输入叶温热电偶×2 LI-190R×1传感器头部光源连接器: 1LI-6800 光合仪/荧光测量系统
    留言咨询
  • LI-6800新一代光合-荧光全自动测量系统可配置多种叶室,能满足各种形状及大小叶片的测量需求;如果测量样品特殊,方便的自制叶室适配器可将您的定制叶室直接和LI-6800分析器相连;昆虫呼吸室可实现对昆虫及小型动物呼吸的测量。LI-6800光合仪光源和叶室:荧光叶室 6800-01A3×3cm红蓝光源 6800-02红绿蓝白4色大光源 6800-03土壤碳水通量测量室 6800-093×3cm透明叶室 6800-12A大叶叶室 6800-13小植物叶室 6800-17悬浮藻类测量室 6800-18自制叶室适配器 6800-19苔藓叶室 6800-24昆虫呼吸室 6800-89荧光叶室(6800-01A)荧光叶室6800-01A 由光源和叶室组成,是一款同时兼具脉冲调制式和连续激发式荧光测量的叶室,可同步测量同一叶片位置的叶绿素荧光和气体交换。可测量6cm2的叶片,或搭配小叶适配器测量2cm2的叶片。光源包括脉冲调制式PAM荧光计,其在叶片表面提供了高度匀质的光场,饱和闪光强度高达16,000 μmol m-2s-1(LI-6800提供的饱和闪光强度是目前市面上其他任何荧光测定仪所无法比拟的,它尽可能实现Fm' 的精准测量。而Fm' 是计算一系列荧光参数如ΦPSII、NPQ等的基础)。可实测暗适应下参数Fo,Fm和光适应下参数Fs,Fm',Fo',并可自动计算潜在最大光化学量子效率Fv/Fm以及电子传递速率ETR等多项荧光参数。更进一步,6800-01A荧光叶室可以测量荧光诱导动力学曲线OJIP。调制光软件控制调制频率1 Hz~250 kHz测量光波峰波长625 nm红色作用光和饱和闪光波峰波长625 nm蓝色作用光波峰波长475 nm远红光波峰波长735 nm作用光输出范围 总光强:0-3000 μmol m-2s-1@ 25℃蓝光:0-1000 μmol m-2s-1@ 25℃红光:0-2000 μmol m-2s-1@ 25℃饱和闪光输出范围:0-16000 μmol m-2s-1@ 25℃远红光输出范围:0-20 μmol m-2s-1@ 25℃荧光信号温度依赖性每℃漂移-0.25%耗电量<18 W @ 25℃ 3000 μmol m-2s-1 作用光下<60 W @ 25℃ 16,000 μmol m-2s-1 饱和闪光下测量面积6 cm2,2 cm2圆形尺寸16.6×11.5×13.6 cm(L×W×H)重量0.86 kg 荧光叶室的红、蓝及远红光LED的典型光谱输出 返回顶部红绿蓝白4色大光源(6800-03)红绿蓝白4色光源6800-03可提供红光,绿光,蓝光和白光(强度分别可达2400,1000,2000和1500 μmolm-2 s-1)任意比例混合的光照。光源光场具有高度匀质性。内置光量子传感器测量叶片上方PAR值,能实现叶室内光强的实时测量。大光源可配合6800-13大叶叶室、6800-17小植物叶室和6800-24苔藓叶室一起使用。总输出范围0~2500 μmol m-2s-1@ 25℃蓝光输出范围2000 μmol m-2s-1@ 25℃绿光输出范围1000 μmol m-2s-1@ 25℃红光输出范围2400 μmol m-2s-1@ 25℃白光输出范围1500 μmol m-2s-1@ 25℃蓝光波峰波长453 nm绿光波峰波长523 nm红光波峰波长660 nm白光色温4000K耗电量总光强2000 μmol m-2s-1时,且红、绿、蓝、白光等分情况下,耗电量15W工作温度范围0~50℃工作相对湿度范围0~85%大小11.7×11×13 cm(L×W×H)重量0.54 kg 6cm×6cm红绿蓝白大光源LED的典型光谱输出返回顶部3×3cm红蓝光源(6800-02)红蓝光源6800-02是一个3x3cm规格的光源。直接安装在3x3厘米的透明叶室上部,可提供0-2,000 μmolm-2 s-1强度的光照,光源的红光(0 ~ 1600 μmolm-2 s-1)和蓝光(0 ~ 400 μmolm-2 s-1)可单独调控。先进的反光镜设计和精密的LED布控,使得光源在叶片上的光场具有高匀质性。内置光量子传感器测量LED的光强,为控制叶室光照提供实时反馈。总输出范围0~2000 μmol m-2s-1@ 25℃蓝光输出范围0~400 μmol m-2s-1@ 25℃红光输出范围0~1600 μmol m-2s-1@ 25℃红光波峰波长660 nm蓝光波峰波长453 nm耗电量5 W @ 2000 μmol m-2s-1工作温度范围0~50℃大小6.6×5.9×5.8 cm(L×W×H)重量0.21 kg 3cm×3cm光源LED的典型光谱输出返回顶部3×3cm透明叶室(6800-12A)标准3×3 cm透明叶室(6800-12A)具有耐用、透明的顶部,用于测量环境光照下植物的净光合速率和蒸腾速率,并可与3×3cm光源(6800-02)直接连接使用。搭配3×3 cm, 2×3 cm 和1×3 cm适配器,可实现不用修改叶面积值,直接测量不同宽窄的叶片。叶片温度由叶室底部的叶温热电偶测量,磷砷化镓(GaAsP)光量子传感器测量叶室内部光合有效辐射(PAR)。带有特殊涂层的叶室内壁对H2O的吸附作用极小。叶室垫圈弹性好,可密封不规则形状的叶片。测量孔面积9 cm2(3cm×3cm),6 cm2(2cm×3cm),3 cm2(1cm×3cm)大小15.4× 11.5× 5.9 cm(L×W×H)重量0.3 kg返回顶部 大叶叶室(6800-13)大叶叶室 6800-13 具有36 cm2的测量面积,适合测量能覆盖叶室大部分或全部的大叶片及针叶。这样的大叶室测量不同形状、尺寸的叶片更为灵活,且信噪比更高,尤其适合测量低通量气体交换的样品,例如低光合速率或者暗呼吸速率等。LI-6800远超其他光合仪的超大流量,也使得测量这样大的叶面积成为可能。大叶叶室 6800-13 配有耐用的透明顶部,用于测量环境光照下CO2和H2O通量。可选用6800-03大光源,直接控制叶室光照,随意组合红、绿、蓝、白各色光的比例。6×6cm大面积叶室的另一个特点是配置了2个高精度热电偶,用于获取更准确的温度数据。大叶叶室 6800-13最大叶面积36 cm2大小16.8×11.5×5.9 cm(L×W×H)重量0.35 kg6800-13 大叶叶室配针叶小枝测量块最大叶面积36 cm2叶室内高度6.7cm叶室外尺寸16.8×11.5×7.2cm(L×W×H)体积420.8cm3返回顶部 小植物叶室(6800-17)小植物叶室(6800-17)能够测量整株拟南芥及其他小型植物,如生长在65mm(2.5英寸)或38mm(1.5英寸)的锥形器中的低矮草皮。顶部是透明的PropafilmTM材质的膜,可在环境光下进行测量。小植物叶室6800-17可与大光源(6800-03)兼容,可在红、绿、蓝和白光的任何组合下进行测量。叶室容积193.2 cm3(内部容积)叶室内尺寸直径7 cm;深度4.46 cm叶室外尺寸8.4 × 12.7 × 6.47 cm(W×L×H)重量0.60 kg返回顶部悬浮藻类测量室(6800-18)悬浮藻类测量室6800-18 是LI-6800高级光合-荧光测量系统的新一款测量室,专为测量藻类悬浮液等样品的稳态碳同化及叶绿素荧光而设计。6800-18使得LI-6800测量样品的范围进一步扩大测量微藻等样品的光合作用相关参数,包括:净光合速率A、实际光化学量子效率ΦPSII、非光化学淬灭NPQ、光系统II反应中心受体侧关闭程度1-qL等探索藻类悬浮液、珊瑚、苔藓、地衣等任何小型水生生物的生理活动CO2气体分析仪工作原理:非色散红外分析仪(NDIR)精确度:400 μmol/mol时,RMS≤0.1μmol/mol@4s平均信号测量范围: 0 – 3100 µ mol/molCO2控制范围:0-2,000 µ mol/mol可通过用户配气进气口接入其它气体。荧光仪(6800-01A)红蓝作用光输出:0 – 3000 µ mol m-2 s-1远红光输出:0 – 20 µ mol m-2 s-1饱和闪光强度:0 – 16,000 µ mol m-2 s-1红色作用光波峰波长:625 nm蓝色作用光波峰波长:475 nm远红光波峰波长:735 nm温度工作温度:0~50℃(无太阳直射,不结冰)保存温度:-20~60℃,测量室保持清洁干燥温度控制:自备水浴,#10-32螺纹连接至测量室操作液体环境温度:结冰点至50℃盐度:0 – 35 % 返回顶部 苔藓叶室(6800-24)苔藓叶室(6800-24)用于测量藓类植物,如金鱼藻、苔类和地衣的CO2和H2O的气体交换。 测量时,将这些藻类或苔藓置于苔藓叶室的浅盘内,叶室具有透明清晰的PropafilmTM顶部,可在环境光照条件下进行测量。苔藓叶室可与大光源兼容,在红,绿,蓝和白光的任何组合光强下进行测量。苔藓叶室6800-24叶室容积193.2 cm3(内部容积)叶室内尺寸直径7 cm;深度4.45cm叶室外尺寸8.4 × 12.7 × 6.47 cm(W×L×H)重量0.60 kg 返回顶部自制叶室适配器(6800-19)自制叶室适配器(6800-19)可将您的自制叶室连接到LI-6800的分析器和主机,满足您定制化的实验需求。自制叶室适配器套件包括适配器等硬件以及管路接头,以及一张适配器图纸用于确定自制叶室开孔的位置和尺寸。自制叶室适配器6800-19叶室容积34.2 cm3(内部容积)尺寸1.25 × 7.67× 5.85 cm (L × W × H) 返回顶部 昆虫呼吸室(6800-89)昆虫呼吸室(6800-89)用于测量昆虫及其他小型动物或水果的呼吸。气流经过昆虫呼吸室,LI-6800根据参比室和样品室的差分浓度来计算样品的呼吸速率。此处呼吸速率是基于被测样品的质量来计算的呼吸速率。昆虫呼吸室套件内包括了6800-19自制叶室适配器。昆虫呼吸室 6800-89叶室容积 49.9 cm3(不包含连接管)叶室外尺寸长11.25 cm;直径3 cm重量0.07 kg返回顶部 土壤碳水通量测量室(6800-09)土壤碳水通量测量室(6800-09)可测量地表CO2以及H2O释放速度。测量室内径20cm,采用LI-COR研发的先进技术,是地表气体释放速度测量的全球标准。6800-09测量速度快,可用于研究地表气体释放速度的空间变异。数据可直接输入SoilFlux ProTM软件,用于后续分析,包括数据查看、成图、编辑以及重计算。6800-09还包括一个用于测量土壤水分含量和温度的传感器。土壤碳水通量测量室 6800-09系统体积 4244.1 cm3IRGA体积 57 cm3采样面积317.8 cm2(49.3 in2)热敏电阻型气温传感器量程,-20℃到45℃;准确度:±0.5℃@ 0~70℃重量4.06kg返回顶部
    留言咨询
  • Yaxin-1105 便携式光合荧光仪 Yaxin-1105 便携式光合荧光仪是基于公司十余年研发制造的经验,对已有产品性能全面升级和工艺改造后的结晶。它可以实现从物质和能量两个角度同时对植物叶片的光合作用现象进行观测和研究。 该产品除具有基本的光合测定项目 Pn,E,Ci,CO2int,Fo,Fp(Fm)外,还增加了光合曲线,OJIP 曲线等功能 Yaxin-1105 可以更加广泛地应用于农林新品种选育、栽培措施的探讨、生态环境的调研、环境污染的治理、藻类品种的开发和利用一 、仪器功能1.测量功能气体 CO2 浓度、湿度、温度、流量、叶温、PAR(光强)、气压Fo,Fj,Fi,Fp 等叶绿素荧光强度2.计算功能光合速率、蒸腾速率、气孔导度、胞间 CO2 浓度Fv, Fv/Fm,Vj,Mo,PIABS,Area,tFm等荧光相关参数3.控制功能流量的自动控制光合光强的自动控制测量时间的控制开路和闭路方式的选择手/自动测量模式的选择光化光强的控制4. 图形功能光合曲线(光合~光强曲线)快速荧光动力学曲线(OJIP 曲线)5.界面功能参数、测量计算值、系统信息实时显示中英文语言选择6.软件功能嵌入式闪存芯片32G SD卡,USB2.0传输接口自行固件升级上位机软件免安装7.供电功能内置可充锂电人工光源独立供电模块,有效延长工作时间8.模块功能光合模块荧光模块光合+光源模块二 、技术参数1. CO2传感器类别:非扩散红外分析器范围:0~1500,0~3000ppm 可选 分辨率:0.1ppm精度:在 CO2 常量时,平均噪声≤0.4ppm,zui大0.8ppm响应时间:15 秒 2. 光量子传感器 类别:带有修正滤光片的硅光电池 范围:0~2500μmolE/m2s光谱:400~700nm,可见光范围 分辩率:1μmolE/m2s误差:±5%3. 叶温传感器类别:T型热电偶 范围:0~50℃ 分辨率:0.1℃误差:±0.3℃4. 气温传感器 类别:热敏电阻 范围:0~50℃ 分辨率:0.1℃误差:±0.3℃5. 流量计 类别:微型电子流量计 范围:0.3~1.0L/min 分辨率:0.01L/min误差:5% 6. 湿度传感器类别:Sensirion 数字式 范围:0~100%RH分辨率:0.1% 误差:±1.8%RH7. 主 机 显示器:320×240 图形点阵液晶存储:32G SD 卡 + 内置flash 芯片 传输:USB2.0电源:7.4V 10AH 可充锂电,续航能力 7~9 小时 尺寸:28.0×24.5×16.0cm重量:主机 5.0 kg其他:支持固件升级8. 荧光探头 型号:YX 手持型光源类型:LED 蓝光:470nm 光强范围:0~3500 μmolE/m2s测量时间:1~10 秒可调 zui快采样速度:5μs 一次 重 量:约200g 体积:2.5×9×5cm9. 光控模块 型号:YX-LA 型类型:LED 红+蓝光 光谱:630nm+470nm类型:由 98个高光强 LED 组成,红色 92 个,蓝色 6 个范围:0~3500μmolE/m2s 发光面积:3.0×7.5cm灯头体积:10×3.5×5.5 cm 电源体积:12×8×4cm电源:7.2V10Ah 可充锂电光强控制,由软件设定,自动控制10.叶室(可任选一款) Ⅰ型:(25×25mm) Ⅱ型:(55×20mm) Ⅲ型:(65×10mm)YXLC-4(85×45mm)苔藓叶室 YXLC-5 (130×90mm)簇状叶室 11.工作环境 温度:0~50℃湿度:0~90%RH不结露
    留言咨询
  • LI-6800是美国LI-COR公司研发的新一代便携式光合荧光测量系统,原位、准确、高速测量气体交换和叶绿素荧光过程,是植物光合生理研究的强大工具。LI-6800是目前全球先进的兼具光合气体交换、脉冲调制式叶绿素荧光、快速叶绿素荧光诱导动力学曲线、土壤呼吸的多功能测量仪器。技术亮点l IRGA分析仪紧邻样品室l 系统整体测量性能卓越,测量稳定性强l 45 秒完成一个气体交换参数测量l Rapid A-Ci Response(RACiR &trade )测量方法,快速测量CO2 响应曲线l 250kHz 的荧光信号采集频率,轻松测量OJIP 曲线l 多相闪光技术Multiphase Flash TM 和16000μmol/m2/s 的饱和闪光强度确保准确测定光下最大荧光值Fm′l 气体交换和叶绿素荧光的同步测量l 智能计算叶面积l BP(Background Program)自定义测量过程,灵活设置测量环境,模拟各种过程l Auto Control功能,便于实现“波动光”、温度骤变等实验条件的测量超强的环境控制能力准确极速CO2变化控制在苏打管和CO2小钢瓶作用下,测量室CO2可设定0~>2000 μmol/mol,可控精度低至1μmol/mol。LI-COR的Rapid A-Ci Response(RACiR &trade )测量方法1,5分钟完成CO2响应曲线2测量。 自定义气体环境控制用户配气进气口,可以改变测量室气体环境,例如用低O2气体。 H2O控制使用加湿剂和干燥剂,可控制测量室H2O在0~90% RH 超高流速可调流速范围0 到2000cc/min,高流速不仅方便测量更大的样品,也是降低样品室相对湿度RH 的关键。一些需要控制低相对湿度RH、高饱和水气压亏缺VPD 的实验,必须依赖高流速。 光照控制3种光源可选,大面积光照均质性好。6800-01A荧光光源,总光强0-3000 μmol m-2s-1@ 25℃;饱和闪光输出范围:0-16000 μmol m-2s-1@ 25℃6800-02红蓝光源:总输出范围:0~2000 μmol m-2s-1@ 25℃6800-03红绿蓝白大光源:总光强:0-3000 μmol m-2s-1@ 25℃ 叶室增压控制增压范围:0~200 Pa样品室漏气会引发数据波动。LI-6800 样品室适当加压,样品室内部气压比外部略高(可达200Pa)。确保测量过程中,样品室内部的气体浓度免受外部空气影响。 控制边界层导度高速混合风扇(16000r/min)实现边界层导度控制。 温度控制控温模块能够在环境温度±10℃范围内准确控制叶片温度,分辨率<0.1℃。还可根据实验需要跟踪控温,亦或程序化升温或降温。 分析器头部和叶室紧密相连,无时滞效应 高精度流速计,确保光合气体交换数据测量准确良好的使用体验点击了解更多:20余项自检,一键轻松完成多种多样的光源和叶室荧光叶室 6800-01A3×3cm红蓝光源 6800-02红绿蓝白4色大光源 6800-033×3cm透明叶室 6800-12A土壤碳水通量测量室 6800-09大叶叶室 6800-13小植物叶室 6800-17自制叶室适配器 6800-19苔藓叶室 6800-24昆虫呼吸室 6800-89可选套装LI-6800F光合-荧光全自动测量系统LI-6800P光合作用全自动测量系统LI-6800S光合作用全自动测量系统( 无光源)可选配件背带 三脚架 三脚架云台 单脚架气路取样配件 外源CO2 气路连接配件相关产品6800-18 水生测量室LI-600荧光-气孔测量仪产地与厂家:美国LI-COR公司
    留言咨询
  • FluorCam便携式光合测量-荧光成像系统将气体交换测定功能和叶绿素荧光成像功能有机结合:既能够测定植物的光合速率、蒸腾速率、气孔导度等光合作用参数,全面衡量植物光合作用的强度和能力;又能够对植物的叶绿素荧光参数进行二维成像,反映光合作用过程中光系统对光能的吸收、传递、耗散、分配及光合特性的空间异质性。FluorCam便携式光合测量-荧光成像系统能够全面测定光合作用的过程(包括原初反应、电子传递、碳同化等阶段),充分了解光合作用的物质转化和能量交换,从而对光合作用进行完整评估和直观呈现。 应用领域植物光合生理研究、植物胁迫逆境研究、优质作物品种筛选、植物固碳研究、全球气候变化研究技术特点强强结合:全球首台野外便携式光合仪(1983年)和全球首部商用叶绿素荧光成像仪(1996年)均出在生产厂家。FluorCam便携式光合测量-荧光成像系统是数十年研发积累和技术经验的结晶——成熟耐用,值得信赖。 功能强大:荧光成像功能能够借助内置程序,自动测量Fv/Fm、NPQ、ΦPSII、qP、qN、Rfd、ETR等叶绿素荧光参数及对每个参数进行二维成像;光合仪能够自动测定同化速率(A)、蒸腾速率(E)、胞间CO2(Ci)、气孔导度(Gs)、叶片温度、光合有效辐射,运行光响应程序和CO2响应程序。配置灵活:可选配GFP荧光成像功能,用于转基因作物筛选和对植物个体水平的基因表达进行定位和分析。可选配OJIP快速荧光曲线测量模块,快速获取反映植物光能吸收、传递、转化、耗散及光合电子传递状况的26个JIP-test参数。可选配植物光谱及植被指数测量模块,轻松获取植物反射光谱曲线并直接获取NDVI、PRI等数十个反映植物色素含量、光能利用效率、健康状态的生理参数。可选配植物多酚-叶绿素测量模块,对色素含量进行测定,包括Chl叶绿素指数、Flav类黄酮指数、NBl氮平衡指数(Chl/Flav 比值)、Anth 花青素指数。 多使用场景:系统便携性强,非常适合长时间野外调查和大田试验,也可用于实验室、温室等可控环境下的基础研究,是植物学、农学研究的必备仪器。 技术参数1. 光合测量部分1.1 CO2测量范围:0-3000ppm1.2 CO2测量分辨率:1ppm1.3 CO2采用红外分析,差分开路测量系统,自动置零,自动气压和温度补偿1.4 H2O测量范围:0-75 mbar 1.5 H2O测量分辨率:0.1mbar1.6 PAR测量范围:0-3000 μmol m-2 s-1,余弦校正1.7 叶室温度:-5 - 50℃ 精度:±0.2℃1.8 叶片温度:-5 - 50℃ 1.9 空气泵流速:100 - 500ml / min1.10 CO2控制:由内部CO2供应系统提供,最高达2000ppm1.11 H2O控制:可高于或低于环境条件1.12 温度控制:由微型peltier元件控制,环境温度-10℃到+15℃,所有叶室自动调节1.13 PAR控制:RGB光源最大2400μmol m-2 s-1,LED白色光源最大2500μmol m-2 s-11.14 可选配多种带有光源的可控温叶室、叶夹1.15 显示:彩色WQVGA LCD触摸屏,480 x 272像素,尺寸95 x 53.9 mm,对角线长109mm1.16 数据存储:SD卡,最大兼容32G容量1.17 数据输出:Mini-B型USB接口,RS232九针D型接口,最大230400波特率PC通讯1.18 供电系统:内置12V 7.5AH锂离子电池,可持续工作至16小时,智能充电器1.19 尺寸:主机230×110×170mm,测量手柄300×80×75mm1.20 重量:主机4.1Kg,测量手柄0.8Kg1.21 操作环境:5到45℃2. 荧光成像部分2.1 测量参数:Fo, Fo’, Fs, Fm, Fm’, Fp, FtDn, FtLn, Fv, Fv'/ Fm',Fv/ Fm ,Fv',Ft,ΦPSII, NPQ_Dn, NPQ_Ln, Qp_Dn, Qp_Ln, qN, qP,QY, QY_Ln, Rfd, ETR等50多个叶绿素荧光参数,每个参数均可显示2维荧光彩色图像2.2 具备完备的自动测量程序(protocol),可自由对自动测量程序进行编辑Fv/Fm:测量参数包括Fo,Fm,Fv,QY等Kautsky诱导效应:Fo,Fp,Fv,Ft_Lss,QY,Rfd等荧光参数荧光淬灭分析:Fo,Fm,Fp,Fs,Fv,QY,ΦII,NPQ,Qp,Rfd,qL等50多个参数光响应曲线LC:Fo,Fm,QY,QY_Ln,ETR等荧光参数2.3 高分辨率TOMI-2 CCD传感器最高图像分辨率:1360×1024像素时间分辨率:在最高图像分辨率下可达每秒20帧A/D 转换分辨率:16位(65536灰度色阶)像元尺寸:6.45µ m×6.45µ m运行模式:1)动态视频模式,用于叶绿素荧光参数测量;2)快照模式,用于GFP等荧光蛋白和荧光染料测量通讯模式:千兆以太网2.4 高分辨率TOMI-2 CCD传感器(选配)2.5 成像面积:35mm×46 mm2.6 光源板:4块超亮LED光源板,每个光源板由5×5 LEDs阵列,尺寸4×4 cm2.7 测量光:620nm红光,持续时间10µ s–100µ s可调2.8 饱和光:标配白光,可选蓝光(455nm)或红光(620nm)白光:最高 3900 µ mol(photons)/m² .s 蓝光:最高 4900 µ mol(photons)/m² .s红光:最高 3800 µ mol(photons)/m² .s2.9 光化学光:标配白光,可选蓝光(455nm)或红光(620nm)白光:0–1000 µ mol(photons)/m² .s 蓝光:0–1400 µ mol(photons)/m² .s红光:0–800 µ mol(photons)/m² .s2.10 远红光:735nm,用于测量Fo’,4颗高能LED2.11 FluorCam叶绿素荧光成像分析软件功能:具Live(实况测试)、Protocols(实验程序选择定制)、Pre–processing(成像预处理)、Result(成像分析结果)等功能菜单2.12 客户定制实验程序协议(protocols):可设定时间(如测量光持续时间、光化学光持续时间、测量时间等)、光强(如不同光质光化学光强度、饱和光闪强度、调制测量光等),具备专用实验程序语言和脚本,用户也可利用Protocol菜单中的向导程序模版自由创建新的实验程序2.13 自动测量分析功能:选配,可设置一个实验程序(Protocol)自动无人值守循环成像测量,重复次数及间隔时间客户自定义,成像测量数据自动按时间日期存入计算机(带时间戳)2.14 成像预处理:程序软件可自动识别多个植物样品或多个区域,也可手动选择区域(Region of interest,ROI)。手动选区的形状可以是方形、圆形、任意多边形或扇形。软件可自动测量分析每个样品和选定区域的荧光动力学曲线及相应参数,样品或区域数量不受限制(1000)2.15 输出结果:高时间解析度荧光动态图、荧光动态变化视频、荧光参数Excel文件、直方图、不同参数成像图、不同ROI的荧光参数列表等 2.16 给光制度:静态或动态(窦式)2.17 CCD检测范围:400–1000nm 2.18 光谱响应:540nm处量子效率最高(70 %),400nm和650nm处转降50%2.19 读出噪音:低于12eRMS,典型10e2.20 满阱容量:大于70,000 e (unbinned) 2.21 Bios:固件可升级2.22 通讯方式:千兆以太网2.23 主机重量:1.8 kg 2.24 主机尺寸:21.5 cm×13.5 cm×13.5 cm2.25 叶夹:用于夹持测量叶片并进行暗适应2.26 支架系统:1)室内支架,可调整测量高度和角度,用于实验室内测量;2)三角支架(选配),防水防锈材料设计,满足测量稳定性,高度角度可调,最高测量高度1.5m,用于野外测量2.27 供电方式:1)90–240 V交流电,配有专用防电涌稳压电源;2)专用野外电池包(选配),一次充电可支持10小时以上不间断测量2.28 最大功率:200 W 应用案例1. 捷克帕拉茨基大学的研究人员使用FluorCam便携式光合测量-荧光成像系统测定了热激预处理前后感染白粉病的番茄的气体交换参数及叶绿素荧光参数(成像),发现热激处理不会显著影响中等抗性基因型番茄的白粉病抗性和光合响应,但会增加易感基因型的易感性(Prokopová et al., 2010)。 2. 葡萄牙阿威罗大学的科研人员研究发现松树对脂溃疡病菌感染在时间序列上的生理响应依赖于宿主的易感水平,而脱落酸的分解代谢在此过程中发挥着重要的作用(Amaral et al., 2021)。FluorCam便携式光合测量-荧光成像系统则被用来测定易感品种和抗性品种在感染过程中的光合表现。 3. 日本日本鹿儿岛大学农学院的科研人员使用FluorCam便携式光合测量-荧光成像系统研究了温度光照对百香果“夏日皇后”和“红星”光合特性的影响。发现两个品种的百香果在高温下的光合特性存在差异:“夏日皇后”在高温下受到了严重的伤害,而“红星”在高温下保持其蒸腾和NPQ值从而降低了高温胁迫的影响(Shimada et al., 2017)。 国内安装案例 参考文献1.Amaral, J., Correia, B., Escandón, M., Jesus, C., Serô dio, J., Valledor, L., Hancock, R.D., Dinis, L.-T., Gomez-Cadenas, A., Alves, A., et al. (2021). Temporal physiological response of pine to Fusarium circinatum infection is dependent on host susceptibility level: the role of ABA catabolism. Tree Physiology 41, 801–816. 2.Oliveira, D.C., Moreira, A.S.F.P., Isaias, R.M.S., Martini, V., and Rezende, U.C. (2017). Sink Status and Photosynthetic Rate of the Leaflet Galls Induced by Bystracoccus mataybae (Eriococcidae) on Matayba guianensis (Sapindaceae). Front. Plant Sci. 8, 1249. 3.Oliveira, T.M., Yahmed, J.B., Dutra, J., Maserti, B.E., Talon, M., Navarro, L., Ollitraut, P., da S. Gesteira, A., and Morillon, R. (2017). Better tolerance to water deficit in doubled diploid ‘Carrizo citrange’ compared to diploid seedlings is associated with more limited water consumption. Acta Physiol Plant 39, 1–13. 4.Porcar-Castell, A., Tyystjä rvi, E., Atherton, J., van der Tol, C., Flexas, J., Pfündel, E.E., Moreno, J., Frankenberg, C., and Berry, J.A. (2014). Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. Journal of Experimental Botany 65, 4065–4095. 5.Prokopová, J., Mieslerová, B., Hlavá&ccaron ková, V., Hlavinka, J., Lebeda, A., Nau&scaron , J., and &Scaron pundová, M. (2010). Changes in photosynthesis of Lycopersicon spp. plants induced by tomato powdery mildew infection in combination with heat shock pre-treatment. Physiological and Molecular Plant Pathology 74, 205–213. 6.Shimada, A., Kubo, T., Tominaga, S., and Yamamoto, M. (2017). Effect of Temperature on Photosynthesis Characteristics in the Passion Fruits ‘Summer Queen’ and ‘Ruby Star.’ The Hortic J 86, 194–199.
    留言咨询
  • GFS-3000&mdash &mdash 光合作用研究的高端设备德国WALZ公司是全球高端光合作用仪制造商之一,从1972年开始制造气体交换测量系统,先后生产过CMS-400、CQP-130、HCM-1000等光合仪,并在国际上得到广泛应用。在总结30余年设计制造经验的基础上,结合最新的技术进展,WALZ公司于2004年隆重推出了一款功能更加强大、设计更加人性化的便携式光合-荧光测量系统&mdash &mdash GFS-3000。GFS-3000解决了近10年来光合领域在实际测量过程中(特别是野外测量时)遇到的许多技术问题,设计非常人性化。您在使用中会感觉到,在操作的任何一个过程中,GFS-3000都是站在用户的角度切身为您考虑的。GFS-3000的一个特点是允许多种模式同步测量气体交换和叶绿素荧光,解决单一技术无法解释的机理性问题。GFS-3000既可以在人工光下同步测量气体交换和叶绿素荧光,又可以在完全不遮荫的自然光下同步测量气体交换和叶绿素荧光(独家技术!),甚至还可以同步测量气体交换和叶绿素荧光成像(独家技术)!!!1. 特点1.1 H2O、CO2、温度与光照的精确控制与测量1)高精度4通道绝对开路式非扩散红外气体分析器(CO2和H2O各2个通道)2)出色的温度控制范围:从+50℃到低于环境温度10℃(同类产品中控温范围最大)3)出色的温度控制模式:控制叶室跟踪环境温度;设置恒定叶室温度(叶片温度可变);设置恒定叶片温度(叶室温度可变)4)干、湿双重H2O控制系统(全球唯一),完全满足从西北干旱区到华南潮湿区的光合作用研究需要(0-75 000 ppm)5)整合式CO2控制系统6)CO2小钢瓶气密性极佳,一次未用完可完全密闭待后续使用(同类产品的CO2小钢瓶打开后1天内气体就会漏完),大大节省耗材费用7)出色的红蓝LED光源控制系统8)外置滤器,方便更换(用户不会再因为将仪器寄回厂家更换滤器而耽误实验了)9)外置流量仪(同类产品都放在主机内部),方便检查夹住叶片后叶室是否密封(如果叶室不密封,则所有测量的光合参数都是错误的!)1.2 出色的叶室设计1)多种叶室可选,样品面积即使低至0.5 cm2也可得到满意的结果2)更换叶室时只需更换配件,大大节省了野外更换叶室所需时间(同类产品多为整体更换,花费大量时间)3)支持用户自定义叶室(最大可达1 L)4)3个PAR探头,分别跟踪记录环境PAR、叶室内叶片正面PAR和叶片背面PAR(叶室内叶片背面PAR探头是第一次出现,大大降低了只根据叶片正面PAR计算光合产量引起的误差)5)叶室双路通风系统,保证叶室上、下部气体迅速混匀1.3 三种模式同步测量气体交换和叶绿素荧光1)可与荧光附件连用,可与MINI-PAM、IMAGING-PAM连用2)在人工光(仪器提供的可控光)下同步测量气体交换和叶绿素荧光3)在自然光下(完全不遮荫)同步测量气体交换和叶绿素荧光(独家技术)4)同步测量气体交换和全叶片荧光成像(独家技术)1.4 方便的操作与数据处理1)大屏幕触摸式显示器,带背景光,可在所有环境下清楚显示2)简单易学的编程功能,可在电脑上模拟操作3)USB 2.0电脑接口,可与所有笔记本电脑连接(抛弃了RS 232接口,因为市面上95%以上的笔记本电脑不带RS 232接口)2. 测量参数2.1 气体交换参数:参比室和样品室的CO2绝对值(CO2abs,CO2sam),参比室和样品室的H2O绝对值(H2Oabs,H2Osam),流速(gas flow),环境气压(Pamb),叶室温度(Tcuv),叶片温度(Tleaf),环境温度(Tamb),环境PAR(PARamb),叶室内叶片正面PAR(PARtop),叶室内叶片背面PAR(PARbot),叶室相对湿度(rh),蒸腾速率(E),水气压饱和亏(VPD),叶片气孔导度(GH2O),净光合速率(A),胞间CO2浓度(Ci),环境CO2浓度(Ca)等。2.2 叶绿素荧光参数:与选择的荧光附件或荧光仪的型号有关,见3.1-3.3节。3. 同步测量气体交换和荧光的三种模式3.1 模式一:与荧光附件3055-FL连用(类型:GFS-3000/FL),在人工光(仪器提供的可控光)下同步测量气体交换和叶绿素荧光。3.2 模式二:与荧光附件3050-F连用(类型:GFS-3000/F),或与超便携式调制荧光仪MINI-PAM连用(类型:GFS-3000/M),在自然光下(完全不遮荫)同步测量气体交换和叶绿素荧光。与调制荧光成像系统IMAGING-PAM(MINI-探头)连用(类型:GFS-3000/IM),同步测量气体交换和全叶片荧光成像IMAGING-PAM可单独使用,测量上述参数的全叶片荧光成像。还可选配IMAGING-PAM的GFP成像探头。4. 基本配置比较测量的荧光参数:Fo, Fm, Fm' , F, Fo' , Fv/Fm , &Delta F/Fm' =Y(II), qP, qL, qN, NPQ, Y(NPQ), Y(NO), rETR等荧光附件3050-F MINI-PAM利用微光纤可与GFS-3000连用连接微光纤后,仍可与红蓝光源连用在人工光下同步测量气体交换与叶绿素荧光测量的荧光参数:3050-F:Fo, Fm, Fm' , F, Fv/Fm , &Delta F/Fm' =Y(II), qP, qL, qN, NPQ, Y(NPQ), Y(NO), rETR等MINI-PAM:Fo, Fm, Fm' , F, Fv/Fm , &Delta F/Fm' , qP, qN, NPQ, rETR等MINI-PAM可单独使用,单独使用时还可测量PAR、叶温和快速光曲线(RLC)等。3.3 模式三:GFS-3000与IMAGING-PAM的MINI-探头连用荧光成像 测量的荧光参数:Fo, Fm, Fm' , F, Fv/Fm , &Delta F/Fm' =Y(II), qP, qL, qN, NPQ, Y(NPQ), Y(NO), rETR, PAR Abs(叶片吸光系数)等的荧光成像。配置GFS-3000/P单纯的气体交换测量系统,不能测量荧光GFS-3000/FL可在人工光下同步测量气体交换和荧光GFS-3000/F可在自然光下同步测量气体交换和荧光GFS-3000/M可在自然光下同步测量气体交换和荧光,两台仪器可分开使用GFS-3000/IM同步测量气体交换和荧光成像,两台仪器可分开使用气体交换系统 主机3000-C(包括CO2注入系统)●●●●●锂电池3025-A●●●●●锂电池充电器LC-02●●●●●交流电适配器3020-N●●●●●叶室 标准叶室3010-S●●●●●叶室配件○○○○○柱状叶室○○○○○针叶/簇叶叶室○○○○○拟南芥植株叶室○○○○○红蓝光源 红蓝LED光源3040-L● ●●●调制荧光系统 荧光附件3055-FL ● 荧光附件3050-F ● 荧光仪MINI-PAM ● 荧光仪IMAGING-PAM ● ● 包含○ 可选WALZ 隆重推出光合仪O2传感器经过WALZ工程师的不懈努力,泽泉科技为广大用户带来了首创的GFS-3000附件&mdash &mdash O2传感器,通过装配在GFS-3000上,可以通过控制条件来监测氧气变化环境下植物的光合荧光同步变化情况。另外该传感器可单独使用。 光呼吸(Photorespiration)是所有进行光合作用的细胞(该处&ldquo 细胞&rdquo 包括原核生物和真核生物,但并非所有这些细胞都能运行完整的光呼吸)在光照和高氧低二氧化碳情况下发生的一个生化过程。它是光合作用一个损耗能量的副反应,过程中氧气被消耗,并且会生成二氧化碳。如果光呼吸发生在进行光合作用的生物中,那么光呼吸会抵消约30%的光合作用。因此降低光呼吸被认为是提高光合作用效能的途径之一。 气体交换技术测量光合速率由于自身技术原因无法排除光呼吸的干扰。为了更准确地反映光合速率,可以通过降低氧气浓度,抑制光呼吸来实现。为此,我们提供了氧气传感器,结合控制实验,来监测外界进入仪器气路的氧气情况,以减少光呼吸对光合的影响。单独使用该传感器时,具有更广泛的应用范围。部分文献1. Zarco-Tejada PJ, Berni JAJ, Suá rez L, Sepulcre-Cantó G, Morales F, Miller JR: Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection Remote Sensing of Environment 2009, 113(6):15.2. Tian Z-Q, Zheng B-H, Liu M-Z, Zhang Z-Y: Phragmites australis and Typha orientalis in removal of pollutant in Taihu Lake, China Journal of Environmental Sciences 2009, 21(4):440-446.3. Su H, Li Y-G, Lan Z-J, Xu H, Liu W, Wang B-X, Biswis DK, Jiang G-M: Leaf-level plasticity of Salix gordejevii in fixed dunes compared with lowlands in Hunshandake Sandland, North China. Journal of Plant Research 2009:in press.4. Pascual I, Azcona I, Morales F, Aguirreolea J, Sá nchez-Dí az M: Growth, yield and physiology of Verticillium-inoculated pepper plants treated with ATAD and composted sewage sludge Plant and Soil 2009, 319(1-2):291-306.5. Dai Y-J, Shen Z-G, Liu Y, Wang L-L, Hannaway D, Lu H-F: Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg Environmental and Experimental Botany 2009, 65(2-3):177-182.6. Stoll M, Schultz HR, Baecker G, Berkelmann-Loehnertz B: Early pathogen detection under different water status and the assessment of spray application in vineyards through the use of thermal imagery Precision Agriculture 2008, 9(6):407-417.7. Ranf S, Wü nnenberg P, Lee J, Becker D, Dunkel M, Hedrich R, Scheel D, Dietrich P: Loss of the vacuolar cation channel, AtTPC1, does not impair Ca2+ signals induced by abiotic and biotic stresses. The Plant Journal 2008, 53(2):287-299.8. Kocal N, Sonnewald U, Sonnewald S: Cell wall-bound invertase limits sucrose export and is involved in symptom development and inhibition of photosynthesis during compatible interaction between tomato and Xanthomonas campestris pv. vesicatoria. 2008:in press.9. Horst RJ, Engelsdorf T, Sonnewald U, Voll LM: Infection of maize leaves with Ustilago maydis prevents establishment of C4 photosynthesis. Journal of Plant Physiology 2008, 165(1):19-28.10. Escher P, Peuke AD, Bannister P, Fink S, Hartung W, Jiang F, Rennenberg H: Transpiration, CO2 assimilation, WUE, and stomatal aperture in leaves of Viscum album (L.): Effect of abscisic acid (ABA) in the xylem sap of its host (Populus x euamericana) Plant Physiology and Biochemistry 2008, 46(1):64-70.11. Dai Y-J, Shao M-M, Hannaway D, Wang L-L, Liang J-P, Hua L, Lu H-F: Effect of Thrips tabaci on anatomical features, photosynthetic characteristics and chlorophyll fluorescence of Hypericum sampsonii leaves. Crop Science 2008, 28(4):327-332.12. BOKHORST S, BJERKE JW, BOWLES FW, MELILLO J, CALLAGHAN TV, PHOENIX GK: Impacts of extreme winter warming in the sub-Arctic: growing season responses of dwarf shrub heathland. Global Change Biology 2008, 14(11):2603-2612.13. Bjerke JW: Ice encapsulation protects rather than disturbs the freezing lichen. Plant Biology 2008, 11(2):227-235.14. Biswas DK, Xu H, Li YG, Sun JZ, Wang XZ, Han XG, Jiang GM: Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past 60 years. Global Change Biology 2008, 14(1):46-59.15. 徐飞, 郭卫华, 王玉芳, 王炜, 杜宁, 王仁卿: 济南市校园6个绿化树种光合荧光特征比较初探. 山东大学学报 2007, 42(5):1-9.16. 徐飞, 郭卫华, 王炜, 徐伟红, 王玉芳, 王仁卿: 黄河三角洲柽柳与芦苇光合特性比较. 山东林业科技 2007(6):29-33.17. Xu H, Biswas DK, Li W-D, Chen S-B, Zhang L, Jiang G-M, Li Y-G: Photosynthesis and yield responses of ozone-polluted winter wheat to drought Photosynthetica 2007, 45(4):582-588.18. Xu F, Guo W-H, Wang Y-F, Wang W, Du N, Wang R-Q: Photosynthetic fluorescence characteristics of six greening tree species on university campuses in the city of Jinan. Acta Chimica Sinica 2007, 42(5):86-94.19. Behnke K, Ehlting B, Teuber M, Bauerfeind M, Louis S, Hansch R, Polle A, Bohlmann J, Schnitzler J-P: Transgenic, non-isoprene emitting poplars don' t like it hot. Plant Journal 2007:in press.20. Barnard RL, Salmon Y, Kodama N, Sorgel K, Holst J, Rennenberg H, Gessler A, Buchmann N: Evaporative enrichment and time lags between ?18O of leaf water and organic pools in a pine stand. Plant Cell and Environment 2007, 30:539-550.
    留言咨询
  • Heinz Walz便携式光合荧光测量系统主要产品:1. 光合荧光测量2. 传感器 Heinz Walz便携式光合荧光测量系统产品型号:l ULM-500Heinz Walz便携式光合荧光测量系统产品特点:具有数据存储容量的数据记录器多个传感器可以并行读取PAM 设备的 PAR 校准低功耗、长续航Heinz Walz便携式光合荧光测量系统产品应用:Heinz Walz便携式光合荧光测量系统光测量ULM-500 的主要用途是光测量。ULM-500 有两个用于带 BNC 插头的光传感器的连接器。通常,PAR 传感器和总辐射表与 ULM-500 相连。PAR 传感器测量光合作用相关波长范围内的量子通量(单位,μmol m -2 s -1),即 400 和 700 nm 之间。日射强度计主要在较宽的光谱范围内检测辐射功率(单位,W m -2),以便可以测量到达地球表面的太阳辐射。当测量辐射功率时,短波长(例如蓝色)光子通量比具有长波长(例如红色)的相同光子通量产生更的信号,这是因为前者的通量比后者携带更多的能量。然而,蓝色光子比红色光子的能量更,不能用于光合作用,因此由 PAR 传感器测量的光子通量对于光合作用研究很重要。我们提供三种不同的 PAR 传感器,适合与 ULM-500 结合使用。请单击此处查找有关传感器的更多信息。Heinz Walz便携式光合荧光测量系统动态范围ULM-500 有 5 个灵敏度范围,具有自动切换功能。因此,它具有达 99 999 μmol m -2 s -1的动态范围,并且可以检测低至 0.1 μmol m -2 s -1的信号——即使是我们提供的小传感器。量程切换可以设置为自动以方便测量,也可以设置为手动以实现时间分辨率。Heinz Walz便携式光合荧光测量系统频道号 ULM-500 的 1 已针对时间分辨率进行了优化。在图表模式下,显示 1.2 秒(或 2.4 秒)的时间过程,其中包含 120 个数据点(大 100 Hz)。Heinz Walz便携式光合荧光测量系统指示小值、大值和平均值。使用触发图表功能,可以解析从暗变为数千μmol m -2 s -1的饱和光脉冲。这对于标准测光表通常是不可能的。ULM-500 可以连接到软件 WinControl-3 以连续记录光斑。Heinz Walz便携式光合荧光测量系统连接器ULM-500 有两个用于光或 PAR 传感器的 BNC 连接器。此外,它还有一个用于监控 Leaf-Clip JUNIOR-B(第 1 代,模拟版本)的连接器,也可用于通过附加适配器(与 2035-B 不兼容)连接 Leaf-Clip 2030-B。Heinz Walz便携式光合荧光测量系统使用叶夹不可以测量 PAR,还可以测量、记录和显示叶温。
    留言咨询
  • 1 引言多数研究者均采用文献中的吸收值来计算J(电子传递速率,通常称之为 ETR),该值在叶肉导度(gm )、羧化部位 CO2浓度(CC )、以及其他参数的计算中十分重要。若使用上面的方法(文献中的平均值),测量误差可能达到16.7%。而且对于许多植物胁迫来讲,同时测量叶绿素荧光参数和气体交换参数是必须的。现在研究者通常都会选择光合荧光连用的设备,直接测量计算叶肉导度(gm )、羧化部位CO2浓度(CC )、以及其他参数。更重要的是,联合使用对C3植物的冻害胁迫,高温胁迫以及干旱胁迫检测十分有帮助。基于此,我们推出了iFL光合荧光复合测量系统,提供更简单的测量方案,更可靠的测量结果。 2.1 目标系统的设计基于如下目的:首个提供白光光源,允许叶绿体迁移测量,可导致多大30%的光化学淬灭;首个提供叶片吸收测量,提供更可靠的J的测量,叶片吸收在健康叶片中的范围为0.7~0.9,并随光强不同而变化;首个提供每次自动“匹配测量”,并具备每次IRGA自动调零;首个提供低于和高于外界环境湿度的控制,湿度和流速可控制在固定值;首个提供无人值守自动操作功能,按下按键后等待测量完成后返回;首个提供自动后处理功能,可对Laisk protocol、Kok protocol、the Yin protocol及Flexas chamber leakage protocol进行自动后处理。首个提供gm、Cc、Rd、Γ*、VcMAX和JMAX直接读出功能;根据Loriaux 2013对Y(II)和J的FM纠正(多次饱和光闪);8-16 小时的电池使用时间;红外传感器对整个叶片区域进行叶温测量,对叶室温度进行更可靠的测量;2.2 系统组成及技术指标2.2.1 系统由如下部分组成:系统成功将叶绿素荧光仪及光合仪集成在一起,实现一个仪器,两种功能,并且充分考虑了野外实验的便携性及操作性。同时提供多种附件和额外功能,实现可靠、精确的测量。 2.2.2 技术指标: ΦPSII或Y(II):光系统II的光量子产额J:电子传递速率PAR:光合有效辐射α:使用RGB传感器在叶上和叶下测量的PAR光谱的叶片吸收,并对透射光进行校正。叶室温度:-5℃ ~ +50℃,精度±0.2℃叶片温度:覆盖70%叶片区域,-5℃ ~ +50℃,精度±0.2℃gm:叶肉导度Cc:羧化部位CO2浓度Γ*:无日呼吸的CO2补偿点Rd:光下呼吸Γ*、Rd及其他参数或常数可手动输入FV、FM、FV/FM:可变荧光、最大荧光值、PSII的最大光化学效率FO、FV/FO:最小荧光值,最大荧光值,其比值对某些胁迫敏感FM’: 光化光下最大荧光值Fs或F:稳定光照条件下的荧光值RLC:快速光曲线rETRMAX:最大电子传递速率α:低PAR下ETR对PAR的斜率Ik = rETRMAX/αHendrickson Quenching with NPQY(NPQ), Y(NO), Y(II), NPQ, Fv/FmKramer Quenchingq , Y(NPQ), Y(NO), Y(II), Fv/FmPuddle model parametersNPQ, q , q , Y(II), Fv/Fm光曲线、A/Q光响应曲线、A/Ci曲线、A/Cc曲线饱和脉冲:具有690nm短波通滤光片的白色LED光源,7500μmol调制光:具有690nm短波通滤光片的660nmLED光化光:白色LED,2000μmol远红光:高于740nmPAR:0~3000μmol检测器&滤波器:PIN 光电二极管 取样速率:根据测量协议10 ~10,000自动切换测量持续时间:20s ~ 4000h可调存储:2GB闪存数据输出:USB,SD/MMC 2GB存储卡视频输出:HDMI用户界面:彩色触摸屏电池寿命:8~16 hCO2: 0~3000μmols, 分辨率1μmolH2O:0-75.5 mmols,分辨率1mmol流速:100~500ml/min环境控制CO2浓度:2000μmols环境控制H2O浓度:高于或低于外界条件环境控制温度:高于或低于外界14℃环境控制PAR:~2000μmols操作温度:5℃~45℃尺寸:主机230mm x 120mm x 220mm,叶室300mm x 100mm x 80mm重量:4.48kg 3 数据处理iFL光合荧光复合测量系统的数据可直接导出为CSV格式,可直接进行数据分析和作图等操作,也可导入其他数据分析软件。此外,iFL本身具有强大的数据处理功能,其内置软件可使用多种协议对数据进行后期处理。当测量gm、Cc、Rd、及Γ*时,叶室内气体的泄漏以及暗呼吸的扩散的测量十分重要,Flexas chamber leakage protocol 使研究者能够测量叶室气体的泄漏,对于已测量物种,测量结果可直接应用于其他测量和协议。Rd和Γ*的测定用于计算gm、Cc,虽然有很多测量方法,Laisk protocol是使用最广泛的,上图中是一个自动测量的Laisk protocol,其参数可调。红色曲线和它接近的白色水平线反应了多个A/Ci曲线接近的重合点。一个算法计算最近的重合点并且以白色圆圈显示。它同样具备von Caemmerer校正功能。Kok protocol协议用于Rd测定。它最初用于C4植物,但也可以用于C3植物。Laisk protocol 被认为对C3植物更具有权威性。该协议使用最小二乘法线性回归分析算法 进行作图并在屏幕显示。Yin Protocol是最近出现并用于叶绿素荧光及气体交换联合测量中对Rd进行测定。它具有在高光强和高CO2浓度下使用的优势,在上述环境中,该协议测量误差更小。产地:美国、英国
    留言咨询
  • LCSD-iFL便携式光合-荧光复合测量系统 植物光合速率和叶绿素荧光在植物光合生理研究中两者缺一不可,对于衡量植物生长状况、不同胁迫处理对植物光系统的影响、评价生态系统碳收支与全球气候变化的相互关系、植物光系统对全球变化响应有着不可替代的作用。但是这些参数会因为不同测量时间、植物不同部位叶片生理状态的变化而产生很大的差异,进而影响最终的分析结果。光合与荧光测量联用系统则可以在进行光合测量的同时,获得植物相同部位的叶绿素荧光参数,从而获得精确的同步数据。LCSD-iFL便携式光合-荧光复合测量系统将传统光合仪和叶绿素荧光仪有机地结合到一起。它既保证了野外操作的便携性,又能实现两者的全部功能,使得研究者可以更加便捷地在野外同步获取同一叶片在相同部位、相同时间的光合参数和叶绿素荧光参数。这样确保了数据的精确性,又大大减少了实验人员的工作量。同时,LCSD-iFL便携式光合-荧光复合测量系统又在传统光合仪基础上增加了测量gm叶肉细胞CO2导度等9项光合参数。这些参数都是由最新的光合研究成果提出的。目前市场上其他光合仪都不具备直接测量和计算这些参数的能力。 应用领域 植物光合生理研究植物抗胁迫研究碳源碳汇研究植物对全球气候变化的相应及其机理作物新品种筛选 技术特点 第一次在光合仪中实现了以下光合参数的直接测量与计算。相对于其他传统的光合参数,这些参数(尤其是gm叶肉细胞CO2导度)都是近年来随着光合作用研究深入而逐渐受到重视的新参数(Flexas J, 2008;史作民,2010),能够让科研工作者立于光合研究的最前沿:gm:叶肉细胞CO2导度,用于衡量CO2向叶肉细胞内扩撒的导度,最新的研究成果认为这是植物光合能力的第三个决定因素(其余两个是光化学能力和气孔导度)Γ*:CO2补偿点Rd:光下的CO2释放 Cc:叶绿体羧化部位的CO2浓度A/Cc curve:光合速率/叶绿体羧化部位的CO2浓度曲线J:电子传递速率叶片吸光率叶片透过率叶室渗出量在一台仪器上实现了传统光合仪和叶绿素荧光仪的全部功能,可同时测量光合和荧光,也可以单独测量光合或者测量荧光便携式设计,体积轻小,全重仅4.5Kg人体工程学设计,配备舒适型肩带,携带操作非常简便,可一人单独操作可在恶劣环境下使用,使用内置电池,采用低能耗技术,野外持续工作时间可达8小时以上全部功能都能通过彩色触摸屏进行操作数据存储量大,包括2G内存和即插即拔的SD卡,确保数据的双保险 技术指标 1. 光合测量 可测光合参数:光合速率A、蒸腾速率E、胞间CO2浓度Ci、气孔导度gs、CO2补偿点Γ*、光下的CO2释放Rd、叶片吸光率、叶片透过率、叶室渗出量、叶肉细胞CO2导度gm、叶绿体羧化部分的CO2浓度Cc、光合速率/叶绿体羧化部位的CO2浓度曲线A/Cc curve、电子传递速率J、叶片温度Tl、叶室温度Tch、叶室内光合有效辐射、叶室外光合有效辐射、气压p等,可进行光响应曲线和CO2响应曲线测量。CO2测量范围:0-3000ppmCO2测量分辨率:1ppmCO2采用红外分析,差分开路测量系统,自动置零,自动气压和温度补偿H2O测量范围:0-75 mbar,双激光平衡快速响应传感器H2O测量分辨率:0.1mbarPAR测量范围:双硅光电池PAR传感器,外部为0-3000μmol m-2 s-1;内部为0-7500μmol m-2 s-1叶室温度:红外传感器,-5 - 50℃ 精度:±0.2℃叶片温度:高精度热敏电阻传感器,-5 - 50℃空气泵流量:100 - 500ml / minCO2控制:由内部CO2供应系统提供,最高达2000ppmH2O控制:可高于或低于环境条件温度控制:由微型peltier元件控制,可高于或低于环境14℃PAR控制:0-7500μmol m-2 s-1预热时间:20℃下5分钟 2. 叶绿素荧光测量 叶绿素荧光测量程序:Fv/Fm,量子产额Yield Y (II),荧光淬灭测量(包括Kramer Lake、Kughammer简化Lake和Puddle三种模型),OJIP快速荧光曲线叶绿素荧光测量参数:F0,Fm,F,F0’(F0d),Fm’,Ft,Fv/Fm,Y(△F/Fm’),qL,qP,qN,NPQ,Y(NPQ),Y(NO),qE,qT,qI,Basic OJIP (O,J,I,P,T,Area),ETR叶绿素荧光激发光源1.饱和脉冲:白光LED+690nm滤光片,0-7500μmol m-2 s-1 2.调制光:红光660nm LED+690nm短通型滤光片 3.光化光:白光LED,0-2000μmol m-2 s-1 4.远红光:740nm LED 配备蓝/红/绿吸收率传感器检测方法:脉冲调制式可自动调节脉冲光强可自动进行多光闪Fm’校正检测器:带700-750nm滤光片的PIN光电二极管采样频率:每秒10-10000次测试时长:20秒-4000小时可调3. 存储及其他 数据存储:2G内存,可存数千组数据和图像;即插即拔SD卡数据输出:SD卡,USB和HDMI操作界面:彩色图形化触控屏,14.5cm×8.5cm供电系统:内置12V 7AH蓄电池,可持续工作8小时尺寸:主机31×11×17cm,测量手柄30×8×8cm重量:主机4.5Kg操作环境:5到45℃ 产地:英国
    留言咨询
  • FluorCam便携式光合联用叶绿素荧光成像系统植物的光合速率、蒸腾速率、气孔导度等光合作用参数可以全面衡量植物光合作用的强度和能力;而叶绿素荧光不仅能反映光能吸收、激发能传递和光化学反应等光合作用的原初反应过程,而且与电子传递、质子梯度的建立及ATP合成和CO2固定等过程有关。对两者的结合测量在植物光合生理研究中缺一不可。FluorCam便携式光合联用型叶绿素荧光成像系统可以与目前国际上主流的各种光合仪如LCpro、LiCor6400等组成联用系统,在测量光合的同时测定植物的荧光,也可以在实验室或野外独立工作。 功能特点: 可以被安装在LCpro–SD、LiCor6400等光合仪的叶室上进行荧光和光合的同步测量,也可独立工作 便携性强,实验室、野外均可使用 可自己编辑测量实验程序(protocol) 既可进行持续光化学光成像测量,又可进行PAM成像测量 可选配手持式叶绿素快速荧光动力学测量模块 可选配平板型工控机 技术参数: 高灵敏度CCD镜头,时间分辨率可达每秒50帧,512×512像素 可测荧光参数:F0,Fm,Fv,F0’,Fm’,Fv’,QY(II),NPQ,ΦPSII,Fv/Fm,Fv’/Fm’,Rfd,qN,qP,ETR等50多项参数 4块超亮LED光源板,均一照明面积2.5×2.5 cm 测量光:620nm红光,持续时间10μs–100μs可调 光化学光、饱和光闪:白光、蓝光、红光三选一,也可选配红光+蓝光,标配白光 远红光:IR735nm 给光制度:静态或者动态模式 自定义实验程序:多样化的时间顺序,专门的程序语言和脚本 FluorCam软件包括下列实验测量程序(protocols):Fv/Fm、Kautsky诱导效应、荧光淬灭分析、光响应曲线等,可任意调整测量时间、光化学光持续时间、测量间隔、光强等参数 FluorCam软件具图像处理、选区ROI、测量分析等功能,可输出成像视频、图表、直方图等 供电方式:交流供电、电池供电(野外使用) 平板型工控机(可选):用于野外长时间测量 手持式叶绿素快速荧光动力学测量模块(可选):可测量OJIP曲线及相关的二十多项参数 CCD检测器带宽:400–1000 nm 像素尺寸:8.2 μm×8.4 μm 通讯方式:USB 2.0 重量:1.8 kg产地:捷克
    留言咨询
  • CIRAS-4便携式光合作用测定系统(含荧光模块)用途:CIRAS-4便携式光合作用测定系统采用开放式气路系统原理设计,可以在开放和密闭气路之间转换,用来测量植物的光合作用。7英寸半透半反射式液晶显示屏(视角优化30°)并配备强大的操作软件,菜单式软件设计,使系统的安装、操作、记录及数据管理变的更加简单,直观。应用于环境空气监测、植物生理生态、环境毒理学、火山学、土壤CO2逃逸、植物群落冠层同化、空气-海洋CO2交换(P CO2)、生物补救、动物/昆虫呼吸、果品储存环境监测、大棚和温室环境的监测,以及发酵和食品加工等研究中。技术参数:主机分析仪内置四个独立的高精度非分散的红外线CO2/H2O分析仪,分别测定参比和分析气路中CO2和H2O气浓度,分析仪可用于开放式或密闭式测定。CO2测定范围0-10000μmol mol-1CO2测量精度400μmol mol-1时为0.1μmol mol-1CO2控制范围0-2000μmol mol-1H2O测定范围0-75mbH2O测定精度10mb时为0.01mbH2O控制范围0-露点压力范围65-115kPa稳定性自动调零和差分平衡校准功能可以有效消除因环境及其他原因造成仪器零点漂移空气采样内置取样泵决定参比气和分析气的流量,可以在50-100 cc min-1内设定。叶室供气叶室供气可在0-500cc min-1范围内设定辅助端口一个外接设备接口数据更新速率1.6s数据输出有一个USB数据传输接口和两个USB外接设备接口(如鼠标、U盘等)数据存储无限存储仪器显示10.2” VGA(7.0寸)半透射式的材质LCD屏液晶显示器。用户输入27键电源内置锂电池,可以使用8小时操作环境0-50℃外壳超轻耐磨聚亚安酯铝型材尺寸27.5 cm (W) x 14.5cm (D) x 24cm (H)重量主机重量小于5.0Kg主机其他功能主机可单独作为高精度环境气体监测仪,监测指定区域内的CO2浓度波动情况主机可以直接连接群体同化室、土壤呼吸室等探头,测定对应参数PLC 3叶室叶室结构铝合金叶室手柄;红外过滤玻璃的叶室窗口;不锈钢泵轮LCD显示叶室手柄上2行×16字符LCD显示器,显示测定的数据按键两个键分别用来记录和调节LCD视窗尺寸18mm直径/面积2.5cm2;25×18mm/面积4.5 cm2;25×7mm/面积1.75cm2自动控温极佳的叶室温度控制,可以在大气温度上下10℃,向上15℃范围内控制控温范围5-45℃气温探头热敏电阻,测定精度±0.5℃叶温探头辐射探头非接触测定,测定精度±0.5℃内置PAR探头(2个)测定范围0-3000μmol m-2 s-1,积分400-700nm的光,分辨率为1μmol m-2 s-1外置PAR探头测定范围0-3000μmol m-2 s-1,积分400-700nm的光,分辨率为1μmol m-2 s-1尺寸32 cm (L) x 4 cm (W)重量0.75kg拓展应用叶室可与英国Hansatech生产的脉冲调制式荧光仪联用,实现更多拓展应用功能LED光源四色光源红绿蓝白四色光源,可以根据实验需要,将四种颜色的光按照任意比例混合,制作出所需的复合光,复合光自动控光范围大于0-2500μmol m-2 s-1任意单色光控光范围0-2500μmol m-2 s-1红光波峰625nm+/-5nm,半峰宽15nm蓝光波峰475nm+/-10nm, 半峰宽28nm绿光波峰528nm+/-8nm,半峰宽40nm白光波长425-650nmCFM 3叶绿素荧光模块工作原理在完全控制环境条件(CO2、湿度、温度、光强、光质)下的荧光测定,荧光模块可单独工作,也可与光合同时测定叶绿素荧光参数Fo、Fm、Fv、Fv/Fm、Fs、Fo’、Fm’、 Fv ’、J(ETR)、Fv’/Fm’、qP、qNP、qL、ΦNO、ΦNPQ-K、ΦfD、ΦNPQ-G、φPSII-SP、φPSII-MP,φPSII-Fo’(光系统II荧光参数计算均基于Lake模型和Puddle模型)、NPQ(Kramer)NPQ(Genty)及各类荧光相关曲线,并且可以按照用户要求独立编写程序,测定相应参数或曲线。调制光LED红光光源(波长为630nm+/-5nm),软件控制光照强度,频率4档可调光化光红色、蓝色、白色、绿色四色LED光源,波长分别为625nm+/-5nm、475nm+/-10nm、425-650nm、528nm+/-8nm,软件控制光照强度,各色LED光源的光合有效辐射的控制范围均为0-3000μmol m-2s-1饱和脉冲光分为单相脉冲和多相脉冲两种模式,可根据用户需要选择红、蓝、绿、白任意一种颜色的单色光或四种颜色光按照任意比例混合的复合光,软件控制光强,光强控制范围: 0-10000μmol m-2s-1远红光(2个)远红光LED光源,波长为740nm,软件控制光强检测器带有>700nm滤光片的PIN光电二极管检测模式快速峰值追踪测量面积1.75 /2.5 /4.5cm2三种供选产地:美国
    留言咨询
  • LI-6800新一代光合-荧光全自动测量系统可配置多种叶室,能满足各种形状及大小叶片的测量需求;如果测量样品特殊,方便的自制叶室适配器可将您的定制叶室直接和LI-6800分析器相连;昆虫呼吸室可实现对昆虫及小型动物呼吸的测量。LI-6800光合仪光源和叶室:荧光叶室(6800-01A)荧光叶室6800-01A 由光源和叶室组成,是一款同时兼具脉冲调制式和连续激发式荧光测量的叶室,可同步测量同一叶片位置的叶绿素荧光和气体交换。可测量6cm2的叶片,或搭配小叶适配器测量2cm2的叶片。光源包括脉冲调制式PAM荧光计,其在叶片表面提供了高度匀质的光场,饱和闪光强度高达16,000 μmol m-2s-1(LI-6800提供的饱和闪光强度是目前市面上其他任何荧光测定仪所无法比拟的,它尽可能实现Fm' 的精准测量。而Fm' 是计算一系列荧光参数如ΦPSII、NPQ等的基础)。可实测暗适应下参数Fo,Fm和光适应下参数Fs,Fm',Fo',并可自动计算潜在最大光化学量子效率Fv/Fm以及电子传递速率ETR等多项荧光参数。更进一步,6800-01A荧光叶室可以测量荧光诱导动力学曲线OJIP。调制光软件控制调制频率1 Hz~250 kHz测量光波峰波长625 nm红色作用光和饱和闪光波峰波长625 nm蓝色作用光波峰波长475 nm远红光波峰波长735 nm作用光输出范围 总光强:0-3000 μmol m-2s-1@ 25℃蓝光:0-1000 μmol m-2s-1@ 25℃红光:0-2000 μmol m-2s-1@ 25℃饱和闪光输出范围:0-16000 μmol m-2s-1@ 25℃远红光输出范围:0-20 μmol m-2s-1@ 25℃荧光信号温度依赖性每℃漂移-0.25%耗电量<18 W @ 25℃ 3000 μmol m-2s-1 作用光下<60 W @ 25℃ 16,000 μmol m-2s-1 饱和闪光下测量面积6 cm2,2 cm2圆形尺寸16.6×11.5×13.6 cm(L×W×H)重量0.86 kg 荧光叶室的红、蓝及远红光LED的典型光谱输出 红绿蓝白4色大光源(6800-03)红绿蓝白4色光源6800-03可提供红光,绿光,蓝光和白光(强度分别可达2400,1000,2000和1500 μmol m-2 s-1)任意比例混合的光照。光源光场具有高度匀质性。内置光量子传感器测量叶片上方PAR值,能实现叶室内光强的实时测量。大光源可配合6800-13大叶叶室、6800-17小植物叶室和6800-24苔藓叶室一起使用。 总输出范围0~2500 μmol m-2s-1@ 25℃蓝光输出范围2000 μmol m-2s-1@ 25℃绿光输出范围1000 μmol m-2s-1@ 25℃红光输出范围2400 μmol m-2s-1@ 25℃白光输出范围1500 μmol m-2s-1@ 25℃蓝光波峰波长453 nm绿光波峰波长523 nm红光波峰波长660 nm白光色温4000K耗电量总光强2000 μmol m-2s-1时,且红、绿、蓝、白光等分情况下,耗电量15W工作温度范围0~50℃工作相对湿度范围0~85%大小11.7×11×13 cm(L×W×H)重量0.54 kg 6cm×6cm红绿蓝白大光源LED的典型光谱输出3×3cm红蓝光源(6800-02)红蓝光源6800-02是一个3x3cm规格的光源。直接安装在3x3厘米的透明叶室上部,可提供0-2,000 μmolm-2 s-1强度的光照,光源的红光(0 ~ 1600 μmolm-2 s-1)和蓝光(0 ~ 400 μmolm-2 s-1)可单独调控。先进的反光镜设计和精密的LED布控,使得光源在叶片上的光场具有高匀质性。内置光量子传感器测量LED的光强,为控制叶室光照提供实时反馈。总输出范围0~2000 μmol m-2s-1@ 25℃蓝光输出范围0~400 μmol m-2s-1@ 25℃红光输出范围0~1600 μmol m-2s-1@ 25℃红光波峰波长660 nm蓝光波峰波长453 nm耗电量5 W @ 2000 μmol m-2s-1工作温度范围0~50℃大小6.6×5.9×5.8 cm(L×W×H)重量0.21 kg 3cm×3cm光源LED的典型光谱输出3×3cm透明叶室(6800-12A)标准3×3 cm透明叶室(6800-12A)具有耐用、透明的顶部,用于测量环境光照下植物的净光合速率和蒸腾速率,并可与3×3cm光源(6800-02)直接连接使用。搭配3×3 cm, 2×3 cm 和1×3 cm适配器,可实现不用修改叶面积值,直接测量不同宽窄的叶片。叶片温度由叶室底部的叶温热电偶测量,磷砷化镓(GaAsP)光量子传感器测量叶室内部光合有效辐射(PAR)。带有特殊涂层的叶室内壁对H2O的吸附作用极小。叶室垫圈弹性好,可密封不规则形状的叶片。测量孔面积9 cm2(3cm×3cm),6 cm2(2cm×3cm),3 cm2(1cm×3cm)大小15.4× 11.5× 5.9 cm(L×W×H)重量0.3 kg 大叶叶室(6800-13)大叶叶室 6800-13 具有36 cm2的测量面积,适合测量能覆盖叶室大部分或全部的大叶片及针叶。这样的大叶室测量不同形状、尺寸的叶片更为灵活,且信噪比更高,尤其适合测量低通量气体交换的样品,例如低光合速率或者暗呼吸速率等。LI-6800远超其他光合仪的超大流量,也使得测量这样大的叶面积成为可能。大叶叶室 6800-13 配有耐用的透明顶部,用于测量环境光照下CO2和H2O通量。可选用6800-03大光源,直接控制叶室光照,随意组合红、绿、蓝、白各色光的比例。6×6cm大面积叶室的另一个特点是配置了2个高精度热电偶,用于获取更准确的温度数据。大叶叶室 6800-13最大叶面积36 cm2大小16.8×11.5×5.9 cm(L×W×H)重量0.35 kg6800-13 大叶叶室配针叶小枝测量块最大叶面积36 cm2叶室内高度6.7cm叶室外尺寸16.8×11.5×7.2cm(L×W×H)体积420.8cm3 小植物叶室(6800-17)小植物叶室(6800-17)能够测量整株拟南芥及其他小型植物,如生长在65mm(2.5英寸)或38mm(1.5英寸)的锥形器中的低矮草皮。顶部是透明的PropafilmTM材质的膜,可在环境光下进行测量。小植物叶室6800-17可与大光源(6800-03)兼容,可在红、绿、蓝和白光的任何组合下进行测量。叶室容积193.2 cm3(内部容积)叶室内尺寸直径7 cm;深度4.46 cm叶室外尺寸8.4 × 12.7 × 6.47 cm(W×L×H)重量0.60 kg藻类和水生生物测量室(6800-18)藻类和水生生物测量室6800-18 是LI-6800高级光合-荧光测量系统的新一款测量室,专为测量藻类悬浮液等样品的稳态碳同化及叶绿素荧光而设计。6800-18使得LI-6800测量样品的范围进一步扩大测量微藻等样品的光合作用相关参数,包括:净光合速率A、实际光化学量子效率ΦPSII、非光化学淬灭NPQ、光系统II反应中心受体侧关闭程度1-qL等探索藻类悬浮液、珊瑚、苔藓、地衣等任何小型水生生物的生理活动 CO2气体分析仪工作原理:非色散红外分析仪(NDIR)精确度:400 μmol/mol时,RMS≤0.1μmol/mol@4s平均信号测量范围: 0 – 3100 µ mol/molCO2控制范围:0-2,000 µ mol/mol可通过用户配气进气口接入其它气体。荧光仪(6800-01A)红蓝作用光输出:0 – 3000 µ mol m-2 s-1远红光输出:0 – 20 µ mol m-2 s-1饱和闪光强度:0 – 16,000 µ mol m-2 s-1红色作用光波峰波长:625 nm蓝色作用光波峰波长:475 nm远红光波峰波长:735 nm温度工作温度:0~50℃(无太阳直射,不结冰)保存温度:-20~60℃,测量室保持清洁干燥温度控制:自备水浴,#10-32螺纹连接至测量室操作液体环境温度:结冰点至50℃盐度:0 – 35 % 苔藓叶室(6800-24)苔藓叶室(6800-24)用于测量藓类植物,如金鱼藻、苔类和地衣的CO2和H2O的气体交换。 测量时,将这些藻类或苔藓置于苔藓叶室的浅盘内,叶室具有透明清晰的PropafilmTM顶部,可在环境光照条件下进行测量。苔藓叶室可与大光源兼容,在红,绿,蓝和白光的任何组合光强下进行测量。苔藓叶室6800-24叶室容积193.2 cm3(内部容积)叶室内尺寸直径7 cm;深度4.45cm叶室外尺寸8.4 × 12.7 × 6.47 cm(W×L×H)重量0.60 kg 自制叶室适配器(6800-19)自制叶室适配器(6800-19)可将您的自制叶室连接到LI-6800的分析器和主机,满足您定制化的实验需求。自制叶室适配器套件包括适配器等硬件以及管路接头,以及一张适配器图纸用于确定自制叶室开孔的位置和尺寸。自制叶室适配器6800-19叶室容积34.2 cm3(内部容积)尺寸1.25 × 7.67× 5.85 cm (L × W × H) 昆虫呼吸室(6800-89)昆虫呼吸室(6800-89)用于测量昆虫及其他小型动物或水果的呼吸。气流经过昆虫呼吸室,LI-6800根据参比室和样品室的差分浓度来计算样品的呼吸速率。此处呼吸速率是基于被测样品的质量来计算的呼吸速率。昆虫呼吸室套件内包括了6800-19自制叶室适配器。昆虫呼吸室 6800-89叶室容积 49.9 cm3(不包含连接管)叶室外尺寸长11.25 cm;直径3 cm重量0.07 kg 土壤碳水通量测量室(6800-09)土壤碳水通量测量室(6800-09)可测量地表CO2以及H2O释放速度。测量室内径20cm,采用LI-COR研发的先进技术,是地表气体释放速度测量的全球标准。6800-09测量速度快,可用于研究地表气体释放速度的空间变异。数据可直接输入SoilFlux ProTM软件,用于后续分析,包括数据查看、成图、编辑以及重计算。6800-09还包括一个用于测量土壤水分含量和温度的传感器。土壤碳水通量测量室 6800-09系统体积 4244.1 cm3IRGA体积 57 cm3采样面积317.8 cm2(49.3 in2)热敏电阻型气温传感器量程,-20℃到45℃;准确度:±0.5℃@ 0~70℃重量4.06kg LI-6800 高级光合荧光测量系统 多种叶室
    留言咨询
  • 仪器介绍JTS-150是法国Bio-Logic公司推出的一款研究型,多功能叶绿素荧光/吸收光合仪。它可通过检测有机体光合作用过程中荧光及吸光度信号的变化来研究光合作用中的电子迁移。光化灯,检测灯均可外接,更换,时间分辨率可达10微秒。 主要应用1. 非光化学淬灭(NPQ);2. 光化学量子效率(ФPSII);3. 荧光诱导动力学曲线(OJIP);4. 类胡萝卜素带移;5. 细胞色素的氧化还原,包括Cyt b,Cyt f以及Cyt b6f;6. P700氧化还原:循环及线性电子流。 技术参数1. 激发光与检测光:根据不同的测试要求可选用不同配置的光源,光强均可调;2. 检测器:Si PIN光电二极管,检测波长范围从320到1120nm;3. 灵敏度: OD范围从0到2的样品灵敏度达10-5 OD ;4. 时间分辨率: 从10 µ s到几分钟; 主要特点1. 可轻松在荧光模式和吸收模式之间互换;2. 光化以及检测光源,波长配置齐全;3. 外接/可更换的LED (激发光和检测光);4. 样品支架可互换,适用于叶子以及悬浮液,两种光程可供选择;5. 可选配激光或氙闪光灯。套件1. Cytochrome eukaryote 套件2. P700 ,705/740nm 套件3. P700 ,810/870nm 套件4. Bacteria 套件5. Cytochrome bacteria 套件
    留言咨询
  • FC 00-C/1010GFP封闭式多光谱植物荧光成像系统是一个高度创新的,世界范围内广泛应用的多光谱动力学荧光成像系统。这个系统高度紧凑且可以实现测量样品的暗适应。它由一个CCD相机,4个固定的LED发光板,高性能PC和兼容软件包组成。仪器可选配一个8位滤波轮实现多波段成像。LED发光板的均一性照明面积为13× 13 cm。适用对象为小植物,离体叶片,海藻稀释物等。系统结构紧凑且易于实现样品的暗适应,功能强大的软件可以控制整个系统,获取数据和处理图像。应用领域植物光合特性和代谢紊乱筛选生物与非生物胁迫检测植物抗胁迫能力或者易感性研究气孔非均一性研究代谢混乱研究长势与产量评估植物&mdash &mdash 微生物交互作用研究植物&mdash &mdash 原生动物交互作用研究基因标记检测转基因表达研究功能特点:实验过程和测量参数荧光诱导过程(Kausky效应)分析叶绿素荧光淬灭过程(NPQ过程)分析PAR吸收系数测定QA再氧化过程分析OJIP曲线测定高达1µ s时间分辨率的快速荧光诱导分析可测量与计算多达50个参数: F0, FM, FV, F0' , FM' , FV' , QY(II),NPQ, &Phi PSII, FV/FM, FV' /FM' , RFd, qN, qP, PAR-吸光系数, 电子传递速率(ETR), 及其它.实验过程和测量参数稳态荧光测定GFP,EGFP、wtGFP、BFP、YFP或者其它荧光蛋白及荧光素荧光诱导过程(Kausky效应)分析叶绿素荧光淬灭过程(NPQ过程)分析PAR吸收系数测定QA再氧化过程分析OJIP曲线测定高达1µ s时间分辨率的快速荧光诱导分析可测量与计算多达50个参数: F0, FM, FV, F0' , FM' , FV' , QY(II),NPQ, &Phi PSII, FV/FM, FV' /FM' , RFd, qN, qP, PAR-吸光系数, 电子传递速率(ETR), 及其它典型样品叶片,整株植物,小树苗,果实,蔬菜,苔藓,地衣,藻青菌,绿藻,各种转基因植物,适用于不同植物样品的支架,培养皿与多孔板蒙版 操作软件与实验结果内置常用测量程序用户可自定义实验程序,界面友好可自动重复测量视野内单个植物或样品的自动识别与标记视野内所有样品数据的动力学分析多图像处理工具条形码读卡器支持,便于批量处理样品数据可导出为excelWindows 2000, XP, Vista,Win7兼容稳态荧光测定荧光蛋白和荧光素家族具有巨大的光谱多样性,它们通常具有不同的激发光谱和释放光谱。封闭式荧光成像系统上安装了完全由软件控制和电动驱动的滤波轮,以及一系列的滤光片组,可以来对GFP,EGFP、wtGFP、BFP、YFP或者其它波段荧光蛋白进行检测和成像。高分辨率相机1392 x 1040 像素 可选 640 x 480 像素或512 x 512 像素;低像素模式适用于快速荧光过程的捕获;高像素模式适用于叶绿素荧光和需要长时间曝光的弱稳态荧光测量或者需要高空间分辨率的情景(显微视野)7位滤波轮多色激发光源wtGFP 主激发峰 395 - 397 nm,发射峰 504 nm. 滤波器建议设置: 激发光420 nm短通,532/28 或 530/25 nm检测.EGFP 主激发峰中心波长488 nm,发射峰 507 - 509 nm. 滤波器建议设置:激发光480 nm短通,532/28 或 530/25 nm检测.BFP 主激发峰 384 nm,发射峰近 448 nm.滤波器建议设置: 激发光400 nm短通,469/35 nm检测. 配置型号指南:标准版1&mdash &mdash 超高速成像版:512 x 512 像素,50幅/秒超快CCD,适用于荧光参数的精细再现标准版2&mdash &mdash 超高分辨率版:1392 x 1040 像素分辨率,适用于高空间分辨率的应用,如气孔动态标准版3&mdash &mdash PAR吸收修正版:可测植物真实F0&rsquo 与PAR吸收系数,用于修正荧光参数和ETR 标准版4&mdash &mdash 功能增强版:超强STF,强度可达120,000 µ mol(photons)/m² .s,可实现100µ s脉冲,用于QA瞬间饱和与再氧化研究;可同时进行荧光蛋白与荧光素成像,包括GFP、wGFP、eGFP、YFP、BFP、CY3, CY5等,用于转基因研究。 1.FC 1000-H便携式叶绿素荧光成像系统 FC 1000-H便携式叶绿素荧光成像系统被设计用来在田间和实验室内对叶片和小植物的荧光参数成像进行动力学解析,典型的研究区域为3.5× 3.5 cm。在所有应用中,系统可以对光化光和饱和光诱导的荧光瞬变过程进行成像,光化光照射的时间和强度可以由用户自定义的程序来决定。软件包中包含了最常用的实验程序和简单实用且功能强大的程序设计语言,熟练的研究人员可以设计自己的闪光序列和测量过程。 FC 1000-H便携式叶绿素荧光成像系统是一个轻巧的便携系统,尤其适用于野外实验。系统可以通过肩背便携包中的密封铅酸电池在野外进行供电,稳固轻巧的三脚架使得野外测量变得简单易行。 2.FC 1000-LC便携式光合联用型叶绿素荧光成像系统FC 1000-LC便携式光合联用型叶绿素荧光成像系统专门设计来与光合仪的气体交换叶室安装在一起使用,是一个高度创新的,世界范围内广泛应用的多广谱动力学荧光成像系统。它具备其他荧光成像系统的所有特征。这个系统高度紧凑,且可以实现测量样品的暗适应。叶绿素荧光测量与成像可以与气体交换测量同步进行,获取更丰富准确的信息。而且精确的样品所处环境控制功能,例如影响光合和蒸腾速率的温度、相对湿度和氧气和CO2的分压,远优于普通叶绿素荧光成像系统。系统可与目前市场上绝大多数厂家的光合仪联用,如Licor,ADC,PPS等。3. FC800-O开放式植物荧光成像系统 FC 800-O开放式荧光成像系统是一款高度模块化的设备,具体配置可以定制。其LED发光板和饱和光源可以任意角度和到样品的距离排列,也可以通过调整CCD的位置来增加精度。标准配置的最大成像面积为13× 13 cm ,通过选择光源的尺寸,可调整最大成像面积为20× 20 cm 。测量参数与技术指标请参考FC-800-C封闭式植物荧光成像系统。4. FC 900-TR开放式植物样带叶绿素荧光扫描成像系统FC 900-TR开放式植物样带叶绿素荧光扫描成像系统高度紧凑,主要由一个扫描控制系统,CCD相机,4个固定的LED发光板,高性能PC和兼容软件包组成。仪器可选配一个8位滤波轮实现多波段成像。测量区域为200× 100 cm。该系统适用于实验室或样地中样带植株的原位快速测量,尤其适用于监测多因子实验中植物对各种处理的响应。测量参数与技术指标请参考FC-800-C封闭式植物荧光成像系统。尤其适用于高通量筛查和监测胁迫梯度对植物影响;适合户外与温室使用;结构坚固耐用,光源与相机位置可移动;无需取下或者移动样品;标准成像尺寸为20× 200 cm,其它尺寸可调整。5. FC 900-R野外移动式植物叶绿素荧光成像系统 FC 900-R野外移动式植物荧光成像系统主要由一个可移动支架,CCD相机,4个固定的LED发光板,高性能PC和兼容软件包组成。仪器可选配一个8位滤波轮实现多波段成像。LED发光板的均一性照明面积为20× 20 cm,适用于野外较大植物(如大豆、小麦)的原位无损测量。成像高度20 到 150 cm可调,可配真彩镜头。测量参数与技术指标请参考FC-800-C封闭式植物荧光成像系统。适用于野外大尺寸扫描测量面积20× 20 cm.移动系统极其坚固稳定可在粗糙地表轻松移动配置样品暗适应箱从 20 to 150 cm高度可调无需样品分离与破坏6. FC 900-A拱形三维立体植物叶绿素荧光扫描成像系统 FC 900-A拱形三维立体植物叶绿素荧光扫描成像系统是一个高度创新的多广谱动力学荧光成像系统。这个系统高度紧凑且可以实现对测量样品的3D成像,它由一个CCD相机,LED发光板,拱形支架,高性能PC和兼容软件包组成。FC 900-A拱形三维立体植物叶绿素荧光扫描成像系统通过自动程序获取样品台上整株植物的3D图像,适用于对植物进行3D空间异质性研究以及荧光蛋白与荧光素等荧光标记在植株上表达的空间异质性。专用于三维荧光成像独特耐用的结构支架光源位置可自动调整可移动的相机使得可以从任意角度测量无需分离与移动样品软件可生成3D图像7. XY-Plane多广谱大型植物叶绿素荧光扫描成像系统XY-Plane多广谱大型植物叶绿素荧光扫描成像系统是一个高度创新的多广谱动力学荧光成像系统。该系统可以实现测量样品的暗适应,它由一个CCD相机,4个固定的LED发光板,高性能PC和兼容软件包组成。仪器可选配一个8位滤波轮实现多波段成像,成像面积为80× 40 cm。适用对象为整株植物,离体叶片,海藻稀释物等。XY-Plane系统用于自动进行大型植物生长室中植物样品的大量筛选,FC 900-XY/8040植物荧光成像系统安装在一个坚固耐用的柜式结构中,所有部件可被安全存放,人性化的设计使得放置样品非常便捷。柜式结构内是一个光源和成像CCD位置可自由移动的自动控制框架。测量面积80× 40 cm.适用于高通量筛选尤其适合大培养盘中样品的多谱段分析适用于生物和非生物胁迫研究和转基因植物筛查光源与相机的高度和位置可调整无需分离与破坏样品8. FC 2000显微叶绿素荧光成像系统1. Micro-FluorCam FC 2000-ST内含: CCD 相机 简单显微镜架 光学组件 控制单元 高性能PC 激发光源 软件包 使用手册.2. Micro-FluorCam FC 2000-EN内含: CCD 相机 带可更换可扩展组件的机械强化显微镜架(Olympus BX40) 机械强化光学组件 控制单元 高性能PC 激发光源 软件包 使用手册.3. Micro-FluorCam FC 2000-MFW内含: 6位滤波轮 CCD相机 带可更换可扩展组件的机械强化显微镜架(Olympus BX40) 机械强化光学组件 控制单元 PC高性能PC 激发光源 软件包 使用手册.4. Micro-FluorCam FC 2000-EFW内含:6位完全软件控制的滤波轮 CCD相机 带可更换可扩展组件的机械强化显微镜架(Olympus BX40) 机械强化光学组件 控制单元 高性能PC 激发光源 软件包 使用手册.Micro-FluorCam FC2000-EFW: 6-位滤波器 (插入式)5. Kinetic Fluorescence Microscope FC 2000-Z 详见FKM多功能荧光动态显微监测系统 产地:欧洲 典型应用:1. CLAIRE M. M. GACHON etc. Single-cell chlorophyll fluorescence kinetic microscopy of Pylaiella littoralis (Phaeophyceae) infected by Chytridium polysiphoniae (Chytridiomycota). Eur. J. Phycol., (2006), 41(4): 395&ndash 403Fig. 2. UV激发荧光(壶菌属感染的褐藻过程)。A、C为亮视野图片;B、D为UV激发荧光情况;A、B为单细胞感染对照;C、D为严重感染对照。 Fig. 1.叶绿素荧光动力学(壶菌属感染的褐藻).A为典型Kautsky诱导曲线(实线)与实测曲线比较;B为亮视野图片;C为 Fm值假彩图片;D为NPQ值假彩图片 请致电索取参考文献列表
    留言咨询
  • atp荧光检测仪品牌原理产品简介: 该仪器可快速检测各种水质中微生物、细菌含量。设备为全新升级产品,大屏幕触摸显示屏,代替传统按键。操作采用生物化学反应方法检测ATP含量,ATP荧光检测仪基于萤火虫发光原理,利用“荧光素酶—荧光素体系”快速检测三磷酸腺苷(ATP)。ATP拭子含有可以裂解细胞膜的试剂,能将细胞内ATP释放出来,与试剂中含有的特异性酶发生反应,产生光,再用荧光照度计检测发光值,微生物的数量与发光值成正比,由于所有生物活细胞中含有恒量的ATP,所以ATP含量可以清晰地表明样品中微生物与其他生物残余的多少,用于判断卫生状况。 atp荧光检测仪品牌原理仪器特性: 实用性——可根据环境检测需求设定上下限值,做到数据快速评估预警,表面洁净度快速筛查。 灵敏度高——10-15~10-18mol 速度快——常规培养法18-24h以上,而ATP只需要十几秒钟. 可行性——微生物数量与微生物体内所含ATP有明确的相关性。通过检测ATP含量,可间接得出反应中微生物数量 可操作性——传统培养方法需要在实验室由经过培训的技术人员进行操作;而ATP快速洁净度检测操作非常简便,只需简单的培训即可由一般工作人员进行现场操作。 体验更好——试子套管采用插拔式灵活设计,可定期清洗长期使用,延长仪器寿命。 主要参数: 1、显示屏:3.5英寸高精度图形触摸屏 2、处理器:32位高速数据处理芯片 3、检测精度:1×10-18mol 4、大肠菌群:1-106cfu 5、检测范围:0to9999RLUs 6、检测时间:15秒 7、检测干扰:±5﹪或±5RLUs 8、操作温度范围:5℃到40℃ 9、操作湿度范围:20—85﹪ 10、ATP回收率:90-110% 11、检出模式:RLU、大肠菌群筛查 12、50个用户ID设定 13、可设定的结果限值个数:251个 14、自动判断合格与不合格 15、自动统计合格率 16、内置自校光源 17、开机30秒自检 18、配有miniUSB接口,可将结果上传至PC 19、配备专用软件驱动U盘代替传统光盘 20、仪器尺寸(W×H×D):188mm×77mm×37mm 21、使用可充电锂电池免电池更换 22、备用状态(20℃):6个月 23、中文操作手册 24、稳定的液体荧光素酶 25、润湿的一体化采集拭子
    留言咨询
  • 天瑞仪器公司是全球专业生产高性能X荧光光谱仪(XRF)的公司。2011年推出的高性能、台式X荧光合金分析仪EDX3600H,融汇合金分析技术,配备智能真空系统,利用低能光管配合真空测试,可以有效的降低干扰,提高轻元素分辨率,大大提高合金中微量的Al、Si、P等轻元素的检测效果。EDX3600H合金光谱仪是天瑞仪器公司为合金测试专门开发的仪器类型。具有测试精度高、测试速度快、测试简单等特点。同时具有合金测试、合金号分析、有害元素分析,土壤分析仪、贵金属分析等功能。检测样品包括从钠至铀的所有合金、金属加工件、矿物、矿渣、岩石等,形态为固体、液体、粉末等。性能特点:超薄窗X光管针对合金的测试而开发的专用配件FAST-SDD探测器,良好的能量线性、能量分辨率和能谱特性,较高的峰背比低能X射线激发待测元素,对Pb、S等微含量元素激发效果好智能抽真空系统,屏蔽空气的影响,大幅扩展测试的范围自动稳谱装置保证了仪器工作的一致性;高信噪比的电子线路单元针对不同样品自动切换准直器和滤光片,免去手工操作带来的繁琐多参数线性回归方法,使元素间的吸收、增强效应得到明显的抑制;内置高清晰摄像头液晶屏显示让仪器的重要参数(管压、管流、真空度)一目了然标准配置:合金测试超薄窗X光管FAST-SDD探测器光路增强系统高信噪比电子线路单元内置高清晰摄像头自动切换型准直器和滤光片自动稳谱装置三重安全保护模式相互独立的基体效应校正模型多变量非线性回归程序整体钢架结构,力度可靠的保证90mm×70mm的液晶屏外形尺寸:660mm×510mm×350mm样品腔体积:Φ320mm×100mm重量:65Kg技术指标:测量元素范围:从钠(Na)到铀(U)元素含量分析范围: ppm—99.99%(不同元素,分析范围不同)同时分析元素:一次性可测几十种元素测量时间:60秒-200秒能量分辨率为:125eV应用领域:检测以铜合金、铁合金、镍合金为主的任何合金类产品
    留言咨询
  • 仪器可测参数 Yield或F/Fm&rsquo ,ETR,PAR,Tleaf,Fv/Fm,Fo,Fm,Fv,Fms (or Fm&rsquo ),Fs (or F),qL,Y(NPQ),Y(NO),Y(II),NPQ 仪器用途OS1P是一种轻便的便携式调制叶绿素荧光仪,系统使用脉冲调制技术来测量样品在自然光照条件下进行正常的光合作用时所激发的叶绿素荧光,可以在自然光下对样品组织进行无损测量,在光照条件下测量感应期间的Fo、Fm、Fv/Fm、光化学淬灭、非光化学淬灭及电子传输率 (需要PAR协同测量)等参数,从而判断PSII效率。 仪器工作原理根据叶绿素的荧光效应, 使用脉冲调制技术来测量样品在周围光照条件下进行正常的光合作用时所激发的叶绿素荧光。 仪器技术参数u 激发光源:饱和脉冲,0-11000uE ;调制光660nm---690nmLED;活化光:3000uEu 检测模式:脉冲调制法u 检测器和过滤器:带有700 ~ 750 nm带通滤波器的PIN光敏二极管u 采样率: 10-10000点/秒 自动转换(取决于测试相位)u 采样周期:2s &ndash 16hu 数据存储:1G内存,无限存储数据u 数据输出:USB接口、RS232标准接口、SD/MMC数据存储卡u 主机显示屏:彩色触摸屏,也有对应的按键操作u 供电:12V 1.2AH 可充电蓄电池,支持达8小时连续测量u 操作温度:5 - 45℃u 大小:8.3cm× 14cm× 17.8cmu 重量:1.62kg 产地:美国
    留言咨询
  • CytoFlu全自动多通道荧光细胞计数仪全能型选手,多通道荧光设计,满足你的一切需求高通量:一键完成6个样品的全自动聚焦、样品自动进样、MERGE分析计数。大样品采集量:可输出流式数据格式结合流式软件进行类流式分析;支持自定义实验流程编辑保存调用。多荧光通道设计:可自由选择激发光和发射光组合,适应更多荧光材料,无需额外更换荧光模块。符合FDA21 CFR PART11:符合数据管理和控制性能功能如“用户登录”、“多级用户管理”、“电子签名和电子记录”的合规性。规格参数型号CytoFlu全自动多通道荧光细胞计数仪测量浓度范围1x104-1x 107 cells/ml 可测直径范围5-180μm细胞活率0-100%单个样品计数周期<20秒高通量测量6个样品槽重量4.1Kg体积宽125mm高185mm深310mm数据传输USB3.0超高速接口多通道明场、单染、双染、三染、四染等适用荧光染料AO、PI、GFP、FITC、Alex Fluor488、Alexa Fluor546、CY5
    留言咨询
  • CytoFlu全自动多通道荧光细胞计数仪全能型选手,多通道荧光设计,满足你的一切需求高通量:一键完成6个样品的全自动聚焦、样品自动进样、MERGE分析计数。大样品采集量:可输出流式数据格式结合流式软件进行类流式分析;支持自定义实验流程编辑保存调用。多荧光通道设计:可自由选择激发光和发射光组合,适应更多荧光材料,无需额外更换荧光模块。符合FDA21 CFR PART11:符合数据管理和控制性能功能如“用户登录”、“多级用户管理”、“电子签名和电子记录”的合规性。规格参数型号CytoFlu全自动多通道荧光细胞计数仪测量浓度范围1x104-1x 107 cells/ml 可测直径范围5-180μm细胞活率0-100%单个样品计数周期<20秒高通量测量6个样品槽重量4.1Kg体积宽125mm高185mm深310mm数据传输USB3.0超高速接口多通道明场、单染、双染、三染、四染等适用荧光染料AO、PI、GFP、FITC、Alex Fluor488、Alexa Fluor546、CY5
    留言咨询
  • Arthur™ 新型荧光细胞计数仪3通道(明场、绿色荧光和红色荧光)桌面图像分析仪,可供用户使用最先进的光学器件对悬浮细胞进行检测,包括GFP和RFP表达、细胞凋亡、细胞存活率(活细胞、死细胞和总细胞数)和细胞周期和细胞计数测定。根据测定的复杂程度和相机捕获的区域数量,Arthur™ 仅需25μL样品就能在10秒至2分钟内进行典型分析。优点先进的准确性- 获得全面、精准的测定结果- 使用图形数据获取细胞图像和可靠的计数结果- 柱状图并选择细胞大小计数多功能性(灵活性)- 与多种真核细胞相容- 对悬浮细胞进行各种测定(GFP/RFP表达、细胞凋 亡、细胞存活率、细胞周 期和细胞计数)高速细胞计数和分析- 在1分钟内执行3通道数量分析- 仅用25μL样品就能进行典型分析使用方便- 快速设置,操作简单- 无需系统维护- 用户友好的界面与LCD触摸屏分析和应用Arthur™ 具有两个荧光通道(绿色和红色)以及明场通道。您可以进行多类型的检测与分析:- 细胞计数和存活率- GFP和RFP表达- Annexin V凋 亡分析- 细胞周期分析分析和应用技术参数
    留言咨询
  • Arthur™ 新型荧光细胞计数仪3通道(明场、绿色荧光和红色荧光)桌面图像分析仪,可供用户使用最xian先jin进的光学器件对悬浮细胞进行检测,包括GFP和RFP表达、细胞凋亡、细胞存活率(活细胞、死细胞和总细胞数)和细胞周期和细胞计数测定。根据测定的复杂程度和相机捕获的区域数量,Arthur™ 仅需25μL样品就能在10秒至2分钟内进行典型分析。优点:先j进的准确性- 获得全面、精z准的测定结果- 使用图形数据获取细胞图像和可靠的计数结果- 柱状图并选择细胞大小计数多功能性(灵活性)- 与多种真核细胞相容- 对悬浮细胞进行各种测定(GFP/RFP表达、细胞凋 亡、细胞存活率、细胞周 期和细胞计数)高速细胞计数和分析- 在1分钟内执行3通道数量分析- 仅用25μL样品就能进行典型分析使用方便- 快速设置,操作简单- 无需系统维护- 用户友好的界面与LCD触摸屏分析和应用:Arthur™ 具有两个荧光通道(绿色和红色)以及明场通道。您可以进行多类型的检测与分析:- 细胞计数和存活率- GFP和RFP表达- Annexin V凋 亡分析- 细胞周期分析分析和应用技术参数
    留言咨询
  • LUNA-STEM&trade 自动荧光细胞计数仪用于脂肪来源干细胞和基质血管成分细胞计数时,能够为下游实验准确、一致地计数活的有核细胞、死的有核细胞、无核细胞。配备了双重荧光和明场光学,以区分活、死有核细胞和无核细胞。样品用核酸染料染色,以确定单核细胞的浓度和性质。在短短的30秒内,LUNA-STEM&trade 可报告总细胞浓度、有核细胞浓度、无核细胞浓度、细胞活力和平均细胞大小。产品亮点产品亮点说明计数组织来源细胞LUNA-STEM&trade 采用双荧光和明场光学技术,可以区分细胞和碎片快速显示结果在短短的30秒内,LUNA-STEM&trade 从三个通道捕获、合并和分析图像,以产生细胞计数和活力数据有核和无核细胞分析核酸染色确保有核细胞计数为活细胞或死细胞,而无核细胞计数为无核细胞简易的记录PDF报告中完整的图像和数据是自动生成的,可以转移到PC或打印出来作为您的记录产品技术规格样本容量10μL细胞计数时间30-60s(取决于样本条件)细胞浓度范围5 x 10⁴ – 1 x 10⁷ cells/mL(范围)细胞尺寸范围可检测范围:1-90 μm,范围:5-60 μm激发波长470±20 nm发射波长530±25 nm,600nm(LP)光源LED图像分辨率5MPLCD显示800 x 480 像素尺寸 (W×D×H)22 x 21 x 9 cm(8.6 x 8.3 x 3.5 inch)重量1.8kg(4 lb)*不含交流适配器和电源线
    留言咨询
  • mini-FIRe浮游植物荧光仪在实验室和海洋中构建用于测量浮游植物生物量、生理学和光合作用的高级荧光系统1. 研究目的和内容 研究目的 该项目的目的是建造一种小型的台式仪器,称为F荧光I诱导和R驰预(mini-FIRe)系统,用于离散样品分析和连续测量浮游植物在海洋中的丰度和生理状况。与Rutgers团队发明和开发的前代FRRF和FIRe荧光仪不同,新仪器将表现出增强的灵敏度(约10倍),可实时提供更多生理参数。新仪器的极端灵敏度使得它们对于在公海的实地工作有巨大价值。 研究内容 使用可变荧光技术对浮游植物和其他光合作用生物的光合作用活性的评估 - 光合作用生物的生理状态的快速和无损评估依赖于使用快速重复率荧光学 (FRRF) 及其技术后续荧光感应和放松 (FIRE) 技术。这项技术是由Rutgers团队发明和开发的。评估光合作用生物生存能力的基本方法依赖于叶绿素"可变荧光"剖面的测量和分析,叶绿素是光合作用机构特有的特性(Falkowski等人于2005年对此进行了审查)。"可变荧光"技术依赖于叶绿素荧光与光合作用过程效率之间的关系,并提供了一套全面的荧光和光合作用参数的有机体。光学测量是灵敏的,快速的,无损的,可以实时和原位完成。 这种专利方法和已实现的仪器学原理是在同行评审文献中确立的(Falkowski and Kolber 1995 Kolber at al., 1998 Gorbunov et al., 2000, 2001 Gorbunov and Falkowski 2004)。最初是为研究水柱中的浮游植物而开发的,FRR技术提供了前所未有的信息,说明浮游植物群落的运作以及控制海洋初级生产力的环境因素的影响(e.g., Falkowski and Kolber 1995 Falkowski and Raven 2007 Behrenfeld et al., 1996 Coale et al, 2004 Falkowski et al, 2004)。使用台式和潜水式FRR和FIRe荧光仪成为美国和世界上大多数生物海洋学项目不可分割的一部分。 已开发出F荧光I诱导和R驰预(FIRe)技术 ,以测量光合作用生物的一套全面的光合作用和生理特征(Gorbunov and Falkowski 2005)。 FIRe 技术基于对由一系列激发闪光引起的荧光瞬态的记录和分析,这些闪光的强度、持续时间和间隔精确控制(图 1 和 Gorbunov and Falkowski 2005)。 该技术提供了一套全面的参数,这些参数的特点是光合作用采光过程、光系统 II (PSII) 中的光化学以及光合作用电子传输到碳固定。由于这些过程对环境因素特别敏感,FIRe 技术为识别和诊断自然(营养限制、光化学和光刺激、热应力等)和人为应激因素(如污染)提供了基础。图1。FIRe 荧光瞬时的例子。荧光产量的动力学记录为微秒时间分辨率,包括四个阶段:(第一阶段,100 ms)100 ms的强短脉冲(称为单周转闪光,STF)适用于累积饱和PSII,并测量从Fo到Fm(STF)的荧光感应:(第二阶段,500ms)弱调制光用于记录500ms时间尺度上荧光产量的放松动能:(第三阶段,50 ms)50ms 持续时间的强长脉冲(称为多周转闪光,MTF)用于饱和 PSII 和 PQ 库:(第 4 阶段,1 s) 弱调制光用于记录 PQ 库在 1s 的时间尺度内再氧化的动力学。 第 1 阶段的分析提供:最低和最大荧光产量(Fo,Fm);PSII光化学电荷分离的量子效率Fv/Fm(STF);PSII 的功能横截面,σPSII 和连接因子(p)。第 2 阶段为 PSII 接收方的电子传输提供时间常数(即Qa 受体侧再氧化)。第 3 阶段提供 Fm(MTF)和 Fv/Fm(MTF)。第 4 阶段揭示了 PSII 和 PSI 之间的电子传输时间常数(PQ 库的再氧化)。 可变荧光技术的生物物理背景- 在室温下,叶绿素荧光主要产生于PSII。当PSII反应中心处于开放状态(Qa氧化)时,荧光产量极小,Fo。当 Qa 还原(例如,通过暴露在强光下)时,反应中心关闭,荧光产量增加到其最高水平 Fm。为了检测Fo和Fm,FIRe技术记录了由强烈的饱和脉冲光(~100 μs,称为单周转闪光,STF)引起的荧光感应(图1第1阶段)。荧光感应率与PSII的功能吸收横截面成正比,而荧光上升的相对幅度Fv/Fm则由PSII光化学的量子效率来定义。荧光感应的形状由单个光合作用单元之间的激发量转移控制,并由"连接因子"(Kolber et al. 1998)定义。因此,在没有能量转移(p = 0)的情况下,荧光感应呈指数级,当p 增加到 ~0.5 到 0.7 的最大值时,就会变成反曲线。 PSII 受体侧电子传输的动能(即Qa再氧化)是通过 STF 之后的荧光驰预动力学分析(图 1 第 2 阶段)评估的。荧光动力学由几个部分组成,因为Qa再氧化的速度取决于第二个电子受体Q b的状态,Qb作为移动双电子受体工作:Qa- Qb → Qa Qb- (150 - 200 ms) (1)Qa- Qb- → Qa Qb= (600 - 800 ms) (2)Qa- _ → Qa- Qb → Qa Qb- (~ 2000 ms) (3) 反应 (3) 与 Qb 最初脱离 D1 蛋白结合位点时的条件相对应。此外,一小部分电子传输受损的失活反应中心可能有助于驰预动力学中最慢的组件。FIRe 软件使用 3 组件分析处理驰预动力学,以检索电子传输的时间常数(即 Q 氧化 tQa)。 PSII 和 PSI 之间的电子传输的时间常数 tPSII-PSI 是从多周转闪光(MTF,图 1 中的第 3 阶段和第 4 阶段)之后的荧光驰预动力学分析中检索到的。 在大多数生理条件下,这个时间常数是由质体醌(PQ)库再氧化的速度决定的,并且是一个数量级比tQa慢一个数量级。 测量一系列环境光强的FIRe荧光参数,可以重建光合作用电子传输的速率,Pf,作为光强的函数(光合作用与光强曲线)(Kolber and Falkowski, 1993)。Pf 与光照产物和环境光下测量的光化学量子产量成正比(DF' /Fm' )。分析这些光合作用与光强曲线提供了光合作用最大电子传递速率(Pmax)和光饱和系数(Ek)。光合作用与辐射测量使用 FIRe 的光化光源 (ALS) 进行,该光源通过 FIRe 数据采集软件由计算机控制。 研发背景和专业知识 – Rutgers团队的成员在可变荧光技术和方法的研发方面积累了超过 20 年的经验。他们发明并开发了10多项生物物理研究的独特仪器(参见相关专利和同行评审出版物的附录参考清单),包括: ● Pump-and-Probe Fluorometer (Kolber and Falkowski, 1986) ● Pump-and-Probe LIDAR (Gorbunov et al. 1991) ● Fast Repetition Rate (FRR) Fluorometers (Kolber at al. 1993 1998) ● Single-Celled FRR Fluorometer (Gorbunov et al. 1999) ● Diver-operated FRR Fluorometer (Gorbunov et al. 2000) ● Moorable FRR Fluorometer (Gorbunov et al. 2001) ● FIRe System (Gorbunov and Falkowski 2005) ● Diving-FIRe System (Gorbunov 2012) ● Mini-FIRe System (Gorbunov 2013). 2. 仪器介绍 mini-FIRe基于与之前台式FIRe仪器相同的生物物理原理(Gorbunov and Falkowski 2005),但新仪器更紧凑3倍,灵敏度提高10倍。叶绿素浓度的下限低至 ~0.005 mg/m3,这使得mini- FIRe对于在公海进行现场采样非常有价值。 在这里,Rutgers团队提议建造一个mini-FIRe(图2)该仪器将用于离散样品分析(例如,从站点的尼斯金瓶收集的样品)和/或在海洋中持续进行取样。仪器将配备一个流经的样品室,用于连续绘制浮游植物生物量和光合作用特性。以下是mini-FIRe记录的生理参数列表和仪器技术规格mini-FIRe(图2)。该仪器将用于离散样品分析(例如,从站点的尼斯金瓶收集的样品)和/或在海洋中持续进行取样。该仪器将配备一个流经的样品室,用于连续绘制浮游植物生物量和光合作用特性。以下是mini-FIRe记录的生理参数列表和仪器技术规格。图2 mini-FIRe荧光仪,具有增强的灵敏度。测量参数:●暗适应后最小和最大荧光产量(Fo, Fm)●光适应下有效、最小和最大荧光产量(F' , Fo' , Fm' ) *●光系统II、PSII 中光化学最大有效量子产量(Fv/Fm 和DF' /F m))●三波长下功能性PSII吸收截面积(sPSII)●光合作用单元之间的能量转移效率("连接因子")●PSII 受体侧电子传递时间常数(Q a 到Qb,Qa 到 Qb-)●PSII 和 PSI 之间的光合作用电子传输时间常数●电子传递速率,ETR,作为光强的函数 *●光化学淬火系数 (qP)和非光化学淬火系数 (NPQ) *●最大光合速率、初始斜率和光合作用周转时间(从 F 与 E 曲线得到)●这些参数是使用光化光源 (ALS) 测量,并记录为光强曲线。mini-FIRe 系统的技术规格:●极端灵敏度:0.005 - 100 mg/m3叶绿素a(可通过添加中性密度减压过滤器提高采样浓度)●激发光源:蓝色(峰值波长450 nm,30 nm带宽),绿色(峰值波长530 nm,40 nm带宽),橙色(峰值波长590 nm,30 nm带宽),用于选择性激发不同功能组的浮游植物。●发射检测:680 nm(叶绿素a)和880 nm(细菌叶绿素a),其他波长可使用可更换的发射滤光片进行选择。●尺寸: 10 x 5 x 12 英寸 References related to methodology Peer-Reviewed Publications:Behrenfeld, M. J., A. J. Bale, Z. S. Kolber, J. Aiken, and P. G. Falkowski. 1996. Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 383: 508-511.K.H. Coale, K.S. Johnson, F.P. Chavez, K.O. Buesseler, R.T.. Barber, M.A. Brzezinski, W.P. Cochlan, F.J. Millero, P.G. Falkowski, J.E. Bauer, R.H. Wanninkhof, R.M. Kudela, M.A. Altabet, B.E. Hales, T. Takahashi, M.R. Landry, R.R. Bidigare, X.Wang, Z.Chase., P.G. Strutton, G.E. Friederich, M.Y. Gorbunov, V.P. Lance, A.K. Hilting, M.R. Hiscock, M.Demerest, W.T. Hiscock, K.A. Sullivan, S.J. Tanner, R. M. Gordon, C.L. Hunter, V.A. Elrod, S.E. Fitzwater, S. Tozzi, M. Koblizek, A.E. Roberts, J. Herndon, J. Brewster, N. Ladizinsky, G. Smith, D. Cooper, D. Timothy, S.L. Brown, K.E. Selph, C.C. Sheridan, B.S. Twining, and Z.I. Johnson (2004) - Southern ocean iron enrichment experiment: Carbon cycling in high- and low-Si waters. – Science, 304 (5669): 408-414.Falkowski PG, Koblizek M., Gorbunov M, and Kolber Z., (2004). Development and Application of Variable Chlorophyll Fluorescence Techniques in Marine Ecosystems. In: “Chlorophyll a Fluorescence: A signature of Photosynthesis” (Eds. C.Papageorgiou and Govingjee), Springer, pp. 757-778.Falkowski, P.G., and Z. Kolber. (1995). Variations in the chlorophyll fluorescence yields in the phytoplankton in the world oceans. Aust. J. Plant Physiol. 22: 341–355.Falkowski, P.G. and J.A. Raven. (2007). Aquatic Photosynthesis (2nd edition). Princeton University Press. Princeton, 484 pp.Gorbunov M.Y., Fadeev V.V., and Chekalyuk A.M. (1991) Method of remote laser monitoring of photosynthesis efficiency in phytoplankton. - Moscow University Physics Bulletin. 46(6): 59?65.Gorbunov M.Y., Kolber Z., and Falkowski P.G. (1999) Measuring photosynthetic parameters in individual algal cells by Fast Repetition Rate fluorometry. - Photosynthesis Research, 62(2-3): 141-153.Gorbunov M.Y., Falkowski P.G. and Kolber Z. (2000) Measurement of photosynthetic parameters in benthic organisms in situ using a SCUBA-based fast repetition rate fluorometer. - Limnol. Oceanogr., 45(1):242-245.Gorbunov M.Y., Z. Kolber, M.P. Lesser, and P.G. Falkowski P.G. (2001) Photosynthesis and photoprotection in symbiotic corals. - Limnol. Oceanogr., 46(1):75-85.Gorbunov MY, and Falkowski PG. (2005). Fluorescence Induction and Relaxation (FIRe) Technique and Instrumentation for Monitoring Photosynthetic Processes and Primary Production in Aquatic Ecosystems. In: “Photosynthesis: Fundamental Aspects to Global Perspectives” - Proc. 13th International Congress of Photosynthesis, Montreal, Aug.29 – Sept. 3, 2004. (Eds: A. van der Est and D. Bruce), Allen Press, V.2, pp. 1029-1031.Kolber, Z., and Falkowski, P.G., (1993) Use of active fluorescence to estimate phytoplankton photosynthesis in situ, Limnol. Oceanogr., 38, 1646-1665, 1993.Kolber, Z., O. Prasil, and P.G. Falkowski (1998). Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochem. Biophys. Acta 1367: 88-106.Lin H., Kuzminov F.I., Park J., Lee S.H., Falkowski P.G., and Gorbunov M.Y. (2016) The fate of photons absorbed by phytoplankton in the global ocean – Science, 351(6270), pp. 264-267. Park J., Bailleul B., Lin H., Kuzminov F.I., Yang E.J., Falkowski P.G., Lee S.H., and Gorbunov M.Y. (2017) Light availability rather than Fe controls the magnitude of massive phytoplankton bloom in the Amundsen Sea polynyas, Antarctica – Limnology and Oceanography, DOI: 10.1002/lno.10565.Thamatrakoln K., Bailleul B., Brown C.M., Gorbunov M.Y., Kustka A.B., Frada M., Joliot P.A., Falkowski P.G., Bidle K.D. (2014) Death-specific protein in a marine diatom regulates photosynthetic responses to iron and light availability - Proc. Natl. Acad. Sci USA, vol. 110, no. 50: 20123-20128. doi:10.1073/pnas.1304727110.
    留言咨询
  • Moxi V ® Orflo库尔特流式荧光细胞计数仪应用:细胞计数,粒径测量,细胞活率检测特点:采用行业公认的金标准库尔特原理,对细胞样本进行精准计数和精确粒径测量;配备荧光检测通道,对细胞活率进行精准测定。描述:Moxi V库尔特流式荧光细胞计数仪细胞计数和粒径测量准确性极高,是目前市面上最准确的荧光细胞计数仪。系统内预设多种应用程序,包括细胞精准计数,粒径测量,细胞活性检测,CAR-T应用,细胞质控等,广泛适用于哺乳动物,血小板,酵母,藻类等多种样本。Moxi Z的优势:细胞计数准确:对3um-35um细胞样本进行逐个计数,样本浓度可低至5x103细胞/ml粒径测量精准:采用体积置换的方式测量细胞体积,准确度高, CV值3%活率检测精准:采用PDT检测通道,进行高灵敏度,高精准度活率检测快速:结果检测仅需10秒易用:小巧便携,即开即用,触屏操作,无需维护应用方向:哺乳动物,血小板,酵母,藻类等多种样本,细胞计数,细胞粒径测量,活率检测。
    留言咨询
  • Aquation叶绿素荧光仪 400-860-5168转4713
    产品介绍 Aquation经典叶绿素荧光仪可作为台式使用,也可用于田间,防水设计传感器测量质包括水生植物和珊瑚等也非常方便,同时备选USB以及无线连接。此系列经典叶绿素荧光仪坚固耐用、操作简便、配置灵活多样,使之成为实验室、温室、田间、水下研究和教学实验的理想工具。本系列叶绿素荧光仪可实现全防水野外测量(乃至水下测量)甚至实现无线连接,将测量变的简单便捷。 Aquation经典叶绿素荧光仪使用PAM 测量技术来测量光合系统II的不同荧光,测量值为F,Fo,Fm′,Fm,Fv/Fm, ΦPSII以及其它计算值 (如ΦNO, ΦNPQ)。此类易于使用的PAM荧光仪用在陆生植物、海藻、珊瑚、大型海藻和小型海藻的生理研究,叶绿素浓度通过从获取的相对叶绿素指数进行估计。无线备选允许在无线范围内使计算机远离水;全防水荧光传感器可用于水下研究,可提供台式工作平台基座或将电缆从基座接入。所有命令均通过PC来实现。Aquation公司的经典叶绿素荧光仪使调制叶绿素荧光测量变得非常简单。它们采用饱和脉冲技术来测量较大光合效率和实际光合效率,并提供光化光和远红光。用户可以使用预置程序进行测量,也可编辑自己的程序进行测量。所有的程序测量过程都可以在软件中设置好进行自动重复。 技术参数 测量参数:F, Fo, Fo′, Fm, Fm′,rETR,PAR,T 计算参数:ΦII, Fv/Fm, NPQ,ΦNO, ΦNPQ, qP, qL,qN 光化光 (白 LED) :4500 Φmol.m-2.s-1 饱和光 (白LED):10500 Φmol.m-2.s-1 测量光 (470 nm LED) :0.1W 远红光 (735 nm LED) :40 Φmol.m-2.s-1 电压:110~240 VAC或 12 V DC 通讯:USB 或2.4 GHz 控制:Windows PC (或 Windows emulator) 温度范围:0~45°C (操作);-5~ 60°C (储存) 尺寸 (传感器):45mm (2.4”) 直径x 55mm (2.4”) 尺寸(接口盒):长127 x 63 x 30 mm (5” x 2.5” x 1.2”) 重量:传感器和电缆 250g/8.8oz 外壳材质:Acetal 塑料和316不锈钢 电池:可充电锂电池 内存:2GB产品特点 使用PAM方法测量叶绿素荧光 配置采用远红光 自动调量程以及自动归零 田间防水设计 无线或USB连接电脑 传感器采用平基座或从基座延伸的电缆 连接到电脑或数据采集仪可实现重复测量 易用软件、界面简洁 预编程光曲线产品应用 植物光合作用 植物生理、生态研究 监控叶绿素含量 各种生物和非生物逆境胁迫 水生植物、藻类、珊瑚研究Aquation经典在线叶绿素荧光仪参考文献 1.Nayar, S. and Bott, K. (2015). Uptake and translocation of ammonium and nitrate by temperate seagrass Zostera nigricaulis in Port Phillip Bay. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2014/000665-1. SARDI Research Report Series No. 819. 51pp.Procaccini, G., Ruocco, M., Marín-Guirao, L., et al. 2017. Depth-specific fluctuations of gene expression and protein abundance modulate the photophysiology in the seagrass Posidonia oceanica. Scientific Reports 2.Cui, Y., Tian, Z., Zhang, X. et al. 2015. Effect of water deficit during vegetative growth periods on post-anthesis photosynthetic capacity and grain yield in winter wheat (Triticum aestivum L.). Acta Physiol Plant. 37:196.Dudley, B.D., Hughes, R.F. and Ostertag, R. 2014. Groundwater availability mediates the ecosystem effects of an invasion of Prosopis pallida. Ecological Applications 24(8): 1954–1971
    留言咨询
  • AP-C100手持式叶绿素荧光测量仪采用调试式荧光测量技术,可设置多种参数,方便测量多种植物叶绿素荧光。外观小巧,方便携带,设计新颖,操作简单,经济耐用,精度高稳定性好。应用领域 适用于光合作用研究和教学,植物及分子生物学研究,农业、林业,生物技术领域等。研究内容涉及光合活性、胁迫响应、农药药效测试、突变等。植物光合特性和代谢紊乱筛选生物和非生物胁迫的检测植物抗胁迫能力或者易感性研究代谢混乱研究长势与产量评估植物&mdash &mdash 微生物交互作用研究植物&mdash &mdash 原生动物交互作用研究典型样品地表结皮地衣、苔藓表层水体藻类其它工作原理利用调制式荧光测量技术,采用LED光源,选择仪器内置的给光方案测量并计算叶绿素荧光的各种参数。功能特点:实验过程和测量参数测量光密度OD680和OD720Ft:瞬时叶绿素荧光、暗适应完成后Ft=FoQY:光量子效率,表示光系统II 的效率,等于Fv/Fm(暗适应完成的样品)或Fv&rsquo /Fm&rsquo (光适应完成的样品)OJIP:叶绿素荧光瞬时OJIP曲线是反应光合作用过程中植物生理时间过程的重要信号。NPQ:非光化学淬灭,表示光合作用中叶绿素吸收光能后以热形式散失掉的部分。光曲线:Qy对不同光强的适应曲线。PAR测量:可在荧光仪上显示PAR值,可计算20次检测值的平均。另外还具有GPS定位功能技术参数测量参数:Fo, Ft, Fm, Fm´ ,QY, OJIP, NPQ 1,2和光曲线1,2,3。测量光:蓝光(可选红光或白光)光化学光和饱和光:0&ndash 3000µ mol.m-2.s-1可调波长检测范围:697nm-750nm· 光曲线测量方案BOIS:可升级通讯:可选蓝牙、USB或串行接口存储:4M数据存储:100,000个显示:2 x 8字符黑白液晶屏键盘:密封防水设计2键自动关机:5分钟无操作电源:4 AAA碱性电池或充电电池电池寿命:持续测量70 h低电报警尺寸:120 x 57 x 30 mm 4.7" x 2.2" x 1.2"重量:180 g, 6.5 oz操作条件:温度:0 ~ 55 º C;相对湿度:0 ~ 95 %非冷凝存储条件:温度:-10 to +60 º C;相对湿度:0 ~ 95 %非冷凝软件:FluorPen2.0, Windows 2000,XP或更高*,实时显示和遥控,植入GPS绘图,EXCEL输出PAR传感器:读数单位µ mol(photons)/m² .s,可显示读数,检测范围400-700 nm操作软件与实验结果配置型号指南:标准配置&mdash &mdash AP-C100 + GPS模块 + PAR传感器:功能完备简化配置&mdash &mdash AP-C100:无PAR数据+ 无GPS数据 产地: 欧洲
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制