当前位置: 仪器信息网 > 行业主题 > >

叶绿素荧光仪的基本原理

仪器信息网叶绿素荧光仪的基本原理专题为您提供2024年最新叶绿素荧光仪的基本原理价格报价、厂家品牌的相关信息, 包括叶绿素荧光仪的基本原理参数、型号等,不管是国产,还是进口品牌的叶绿素荧光仪的基本原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合叶绿素荧光仪的基本原理相关的耗材配件、试剂标物,还有叶绿素荧光仪的基本原理相关的最新资讯、资料,以及叶绿素荧光仪的基本原理相关的解决方案。

叶绿素荧光仪的基本原理相关的论坛

  • 叶绿素a的测定

    叶绿素a存在于一切独立营养植物中,是一种能将光合作用的光能传递给化学反应系统的惟一色素。因此,叶绿素a就成为水中有机物的源泉。通过测定叶绿素a,可以了解海洋、湖泊和河流中植物性浮游生物的现存量和基础生产量,可掌握水体中藻类现存量。因此,叶绿素a指标是评价水体富营养化程度最直接有效的方法,也是目前科学地预测其发展趋势的有效方法。根据实测资料分析,当叶绿素a含量从常量上升至10 mg/m3以上,并有迅速增加的趋势,就可预测水体即将发生富营养化。(一)叶绿素a的分光光度法测定在一定量的水样中添加1%碳酸镁悬浮液1 mL,充分搅匀,用玻璃纤维滤纸或微孔滤膜过滤。若不能立即提取,将带样品的滤膜放人冰箱保存(1~2 d)。将载有藻类的滤膜放人研钵中,加入90%丙酮6~7 mL,研磨至呈糊状,再用90%丙酮溶液洗入具塞刻度离心管中,密封,放置暗处静置萃取6~20 h。以3500~4000r/min转速离心lO~15 min,取上清液转入1 cm比色皿中,以90%丙酮溶液为参此,于波长665 nm和750 nm处测吸光度,然后加入几滴l mol/L盐酸酸化,于波长665 nm和750 nm处再测吸光值。叶绿素a浓度计算公式为:Chla=27.3×665一E750)一(A665一A750)]×V丙酮/V水样式中:Chla——叶绿素a含量(μg/L);E665,E750——丙酮萃取液分别于波长665 nm和750 nm的吸光度;A665,A750——丙酮萃取液酸化后分别于波K 665 nm和750 nm的吸光度;V丙酮——丙酮萃取液的体积,mL;V水样——水样过滤的体积,L。(二)叶绿素a的荧光法测定适合于藻类较少的贫营养湖泊或外海洋中的叶绿素a的测定。基本原理是,当丙酮提取液经紫外线照射时,叶绿素a显现其固有的红色荧光特征,其浓度与荧光强度存在一定的规律性,因此可定量测定叶绿素a的含量。由于所用的光源强度高,故荧光法的灵敏度比分光光度法约高两个数量级。[/td][/tr][/table]

  • X射线荧光光谱分析的基本原理 及应用

    X射线荧光光谱分析的基本原理   当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12-10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子。它的能量是特征的,与入射辐射的能量无关。当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差。因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。图10.1给出了X射线荧光和俄歇电子产生过程示意图。   K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。同样,L层电子被逐出可以产生L系辐射(见图10.2)。如果入射的X射线使某元素的K层电子激发成光电子后L层电子跃迁到K层,此时就有能量ΔE释放出来,且ΔE=EK-EL,这个能量是以X射线形式释放,产生的就是Kα射线,同样还可以产生Kβ射线 ,L系射线等。莫斯莱(H.G.Moseley) 发现,荧光X射线的波长λ与元素的原子序数Z有关,其数学关系如下: λ=K(Z-s)-2   这就是莫斯莱定律,式中K和S是常数,因此,只要测出荧光X射线的波长,就可以知道元素的种类,这就是荧光X射线定性分析的基础。此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析。

  • 多元素直读光谱分析的基本原理

    对于光学的发展过程,直读光谱仪的发展已经是一种化时代的话题了。对于它的自动化的程度也提高了,同时,它的选择性也是很多的,对于操作简单的和分析速度快的性能,可同时进行多元素定量分析直读光谱分析的基本原理。  因为直读光谱仪的测定物质的组成,主要是由人类的认识自然开始的,想要改造自然就是必要的学习手段。在研究物质时,主要是通过对分子和原子的组成来实现的。然后,去测试物质的各各组成功能,再通常不同的化学手法分析法,但光谱分析也是广泛采用的方法。其实,我们对于物质都有其属性的了解,每一种物质都有它不贩因素,我们通过它们的不同的属性可以区别不同的物质性质。对于物质的组成也是不同的,如果,在一定条件下物质能发射其特征的光谱。我们就是利用光谱这个属性来测定物质的组成。它们都是利用不同的物质来测定的。但为简单起见,我们就称之为光谱分析。

  • 叶绿素荧光原理及应用

    如题[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=24112]叶绿素荧光原理[/url]

  • 【讨论】SEM-EDS检测结果中的元素百分比换算的基本原理

    SEM-EDS检测结果中的元素百分比换算的基本原理检测出的样品中的各种元素重量百分比为C 4.02O 29.26Al 10.09Ti 56.62我想要的只是 O Al Ti 三种就可以了,这时候能谱软件中怎样来重新计算三者的百分比?是把去除的C的含量垒加在其他三个中重新按比例计算吗?我自己按照这种方法算出的结果和能谱软件中去除碳外显示的结果不一样,它的元素百分比换算的基本原理是什么啊

  • 【孙素琴专家系列讲座】:3月12日 红外光谱基本原理

    【专家讲座】:红外光谱基本原理【讲座时间】:2015年03月12日 10:00【主讲人】:孙素琴 (现任清华大学分析中心研究员。从事红外光谱分析工作30年。借助于化学计量学创建了复杂体系的多级红外光谱宏观指纹分析法。)【会议简介】第一讲:红外光谱基本原理内容提要:频率/波长/波数的换算,远红外/中红外/近红外的光谱范围,光与物质的相互作用与分子能量变化,分子能级跃迁与分子光谱类型,谐振子与非谐振子模型的经典力学和量子力学分析,多原子分子的简正振动模式和多分子的简正振动模式,群论与分子振动光谱的量子化学计算。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2015年03月12日 9:303、报名参会: http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/13474、报名及参会咨询:QQ群—379196738

  • 叶绿素测定仪是干什么的仪器

    叶绿素测定仪是一种用于测量植物或其他生物样品中叶绿素含量的仪器。叶绿素是植物中的关键色素之一,它在光合作用中扮演着重要的角色,将光能转化为化学能。测定叶绿素含量可以用来评估植物的生长状况、健康状态以及光合作用效率。  叶绿素测定仪在许多领域都有广泛的应用,主要涉及到植物生长、生态系统研究、环境监测和农业等。以下是叶绿素测定仪的一些主要应用范围:  植物生长与健康评估: 叶绿素测定仪可以用于评估植物的健康状况和生长状态。通过测量叶绿素含量,可以推断出植物的光合作用活性、养分吸收能力以及受到的环境影响。  农业领域: 叶绿素测定仪在农业中被用来监测作物的生长情况和健康状态。这有助于决定适宜的施肥、灌溉和其他农业管理措施,以提高农作物产量和质量。  生态学研究: 叶绿素测定仪在生态系统研究中非常有用。通过对植物叶片和水体中叶绿素的测量,可以了解生态系统的光合作用活动、能量流动和生态链的结构。  水质监测: 叶绿素测定仪可用于评估水体中的藻类和蓝藻数量,从而判断水体的富营养化程度和水质。这对于保护水体生态平衡和提供饮用水质量至关重要。  环境污染监测: 叶绿素测定仪可以用于检测污染物对植物生长和光合作用的影响。它们可以帮助监测工业排放、空气污染和土壤污染等对环境的影响。  生物学研究: 叶绿素测定仪在生物学领域中用于研究不同生物体中叶绿素的含量和分布,如藻类、植物、海洋生物等。  教育与科普: 叶绿素测定仪也可用于教育和科普活动,帮助人们理解光合作用的基本原理以及叶绿素在生态系统中的作用。  总之,叶绿素测定仪在植物学、生态学、环境科学、农业和生物学等多个领域中都发挥着重要作用,帮助人们更好地了解和评估生态系统、植物健康和环境状况。

  • 化学反应中的电子——基本原理

    化学反应中的电子——基本原理[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=15753]化学反应中的电子——基本原理[/url]

  • 【资料】-良好农业规范(GAP)的八个基本原理

    良好农业规范(GAP)的八个基本原理1998年10月26日,美国食品与药物管理局(FDA)和美国农业部(USDA)联合发布了《关于降低新鲜水果与蔬菜微生物危害的企业指南》。在该指南中,首次提出良好农业操作规范(Good Agricultural Practices)概念。GAP主要针对未加工或最简单加工(生的)出售给消费者或加工企业的大多数果蔬的种植、采收、清洗、摆放、包装和运输过程中常见的微生物危害控制,其关注的是新鲜果蔬的生产和包装,但不限于农场,包含从农场到餐桌的整个食品链的所有步骤。GAP是以科学为基础,其采用是自愿的,但FDA和USDA强烈建议鲜果蔬生产者采用。GAP的建立是基于某些基本原理和实践的基础上,贯穿于减少新鲜果蔬从田地到销售全过程的生物危害。现将八个原理简要介绍如下: 原理1对新鲜农产品的微生物污染,其预防措施优于污染发生后采取的纠偏措施(即防范优于纠偏); 原理2为降低新鲜农产品的微生物危害,种植者、包装者或运输者应在他们各自控制范围内采用良好农业操作规范;原理3新鲜农产品在沿着农场到餐桌食品链中的任何一点,都有可能受到生物污染,主要的生物污染源是人类活动或动物粪便;原理4无论任何时候与农产品接触的水,其来源和质量规定了潜在的污染,应减少来自水的微生物污染;原理5生产中使用的农家肥应认真处理以降低对新鲜农产品的潜在污染;原理6在生产、采收、包装和运输中,工人的个人卫生和操作卫生在降低微生物潜在污染方面起着极为重要的作用;原理7良好农业操作规范的建立应遵守所有法律法规,或相应的操作标准;原理8各层农业(农场、包装设备、配送中心和运输操作)的责任,对于一个成功的食品安全计划是很重要的,必须配备有资格的人员和有效的监控,以确保计划的所有要素运转正常,并有助于通过销售渠道溯源到前面的生产者。

  • 【资料】testo风速仪的基本原理

    testo风速仪其基本原理是将一根细的金属丝放在流体中,通电流加热金属丝,使testo风速仪温度高于流体的温度,因此将金属丝称为“热线”。当流体沿垂直方向流过金属丝时,将带走金属丝的一部分热量,使金属丝温度下降。根据强迫对流热交换理论,可导出热线散失的热量Q与流体的速度v之间存在关系式。标准的热线探头由两根支架张紧一根短而细的金属丝组成,金属丝通常用铂、铑、钨等熔点高、延展性好的金属制成。常用的丝直径为5μm,长为2mm;最小的探头直径仅1μm,长为0.2mm。根据不同的用途,热线探头还做成双丝、三丝、斜丝及V形、X形等。为了增加强度,有时用金属膜代替金属丝,通常在一热绝缘的基体上喷镀一层薄金属膜,称为热膜探头,热线探头在使用前必须进行校准。静态校准是在专门的标准风洞里进行的,测量流速与输出电压之间的关系并画成标准曲线;动态校准是在已知的脉动流场中进行的,或在风速仪加热电路中加上一脉动电信号,校验热线testo风速仪的频率响应,若频率响应不佳可用相应的补偿线路加以改善。

  • 一周一题:ICP-MS技术与基本原理

    ICP-MS是上世纪八十年代兴起的测试分析技术,其以谱线简单,干扰少,低背景、低检测限、多元素同时测试、线性动态范围宽等优势成为无机元素分析的佼佼者,是分析技术的一次革命,虽然简单,但能够用的得心应手并非易事,了解一台仪器要从他的组成原理入手,因此请大家多多发表一些与ICP-MS基本结构与基本原理方面的资料,一起来庖丁解牛吧!

  • 色谱法的基本原理

    色谱法的基本原理利用样品混合物中各组分理、化性质的差异,各组分程度不同的分配到互不相溶的两相中。当两相相对运动时,各组分在两相中反复多次重新分配,结果使混合物得到分离。两相中,固定不动的一相称固定相;移动的一相称流动相。分类:根据流动相分—以气体作流动相—气相色谱——固定相为液体 气-液色谱固定相为固体 气-固色谱—以液体作流动相—液相色谱——固定相为液体 液-液色谱

  • 顶空进样基本原理

    各位老师,我工作中一直使用顶空进样法来测定样品的有机溶剂残留,外标法做标曲,但是一直对于这个顶空法的基本原理不是很了解,为什么用顶空可以代表真实样品中的组分呢?基于什么定理?使用中有什么限制条件吗?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制