当前位置: 仪器信息网 > 行业主题 > >

介质阻挡放电离子化检测

仪器信息网介质阻挡放电离子化检测专题为您提供2024年最新介质阻挡放电离子化检测价格报价、厂家品牌的相关信息, 包括介质阻挡放电离子化检测参数、型号等,不管是国产,还是进口品牌的介质阻挡放电离子化检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合介质阻挡放电离子化检测相关的耗材配件、试剂标物,还有介质阻挡放电离子化检测相关的最新资讯、资料,以及介质阻挡放电离子化检测相关的解决方案。

介质阻挡放电离子化检测相关的论坛

  • 质谱 带电离子的产生、传输和检测

    [font=微软雅黑, sans-serif]带电离子的产生、传输和检测[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]单四极杆质谱仪工作时,仪器内部真空环境中带电离子的产生、传输和检测需要经过离子源、质量分析器和检测器等部件。[color=red]本文主要介绍单四极杆质谱仪的电子轰击电离源/电子电离源(EI)部分。[/color][/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/f0/1d/ff01dcd00e8e45a3bc8250abe70575b7.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.1 [/font][font=微软雅黑, sans-serif]离子源-电子轰击电离源(EI)[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]离子源的主要作用是将分析样品中的待测组分电离成带电离子,并将带电离子集中成密集的离子束,引入质量分析器。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-单四极杆质谱联用仪常见的离子源主要有电子轰击电离源(EI)、化学电离源(CI)等。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)[/font][font=微软雅黑, sans-serif]通过灯丝释放高能电子,在磁场与电场的作用下,化合物分子经过碰撞和诱导等相互作用发生裂解,在推斥极正电压作用下正离子进入静电透镜,并通过静电透镜聚焦引入质量分析器[size=12px](四极杆质量分析器等)[/size]。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)是最常见和最简单的电离方式之一,可靠性和灵敏度高,碎片离子信息丰富,质谱图具有良好的再现性,能够提供详细的结构信息和可供对照的标准NIST质谱数据库。目前EI 源是分析鉴定中草药、香精、香料、杀虫剂和石油成品等挥发性和半挥发性复杂样品的主要手段。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)的结构包括电离腔、透镜组和模拟电路板三大部分。电离腔包括磁铁、灯丝、推斥极等;透镜组则包括离子出口板、离子出口板间隔、聚焦透镜和引入透镜等;模拟电路板[size=12px](点击链接,了解详细内容:[url=https://ibook.antpedia.com/x/666377.html][color=#7030a0]单四极杆质谱仪工作流程及框架概述[/color][/url])[/size]则用以实现电子轰击电离源(EI)灯丝电流控制,离子源加热控制,推斥电极、静电透镜、电子能量电压控制等。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/c6/fc/6c6fc7a87049a3eaa393fdac683e4dfc.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.1.1 [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)中离子的产生[/font][font=微软雅黑, sans-serif]2.1.1.1 [/font][font=微软雅黑, sans-serif]离子的产生位置-电离腔[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电离腔[/font][font=微软雅黑, sans-serif]位于灯丝1与灯丝2之间,(上图)推斥极右侧,(上图)离子出口板左侧;磁铁位于灯丝1和灯丝2 的正上方;色谱柱于上图中色谱柱入口将分析样品中的待测组分引入离子源;另外,位于色谱柱入口正对面的真空腔门上开有小孔,外部装有开关阀及调谐用的全氟三丁胺,称为标液和标液阀。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]离子源中的两个磁体之间会形成磁场,运动电荷在磁场中受到洛伦兹力的作用;洛伦兹力不改变运动电荷的速率和动能,只改变电荷的运动方向使之偏转;灯丝经过加热产生热电子,并在加速电压的作用下进入磁场,在磁场作用下螺旋形向前运动,增加与样品分子相互作用的几率。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/4e/b2/64eb2f97caa88572c504d6aa382c3628.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.1.1.2 [/font][font=微软雅黑, sans-serif]电离腔中离子产生的原理[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif][color=#7030a0]说明:该小节参考《质谱分析技术原理与应用》,台湾质谱学会[/color][/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)又称为电子电离源(EI),其基本原理是灯丝经过加热产生热电子,并在加速电压的作用下具有一定的能量和波长。当电子的波长符合分子电子能级跃迁所需的波长时,电子能量会被分子吸收,使分子内能提高,将外层电子提升至高能级,进而至离子化态并产生自由基阳离子。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在离子源中可以通过参数设置控制电子产生的数量和电子的能量。有机化合物的电离能大多数为(10-20)eV,但通常将灯丝产生的电子动能设置为70eV[size=12px](电子伏特(electron volt),符号为eV,是能量的单位。代表一个电子(所带电量为1.6×10-19C的负电荷)经过1伏特的电位差加速后所获得的动能)[/size]。电子动能为70eV时波长约为1.4?,该波长与分子键长度接近,更容易与化学键相互作用。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子动能为70eV位于最佳离子化效率能量区(50-100eV)的中间,可以避免由于在区间起始或者结束位置时电子能量微小波动导致的离子化效率明显变化;同时,也避免了当电子能量过低无法被分析物有效吸收或者过高直接穿透分子引起的离子化效率降低等情况。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子动能为70eV时可以提供较高的谱图重现性,同时具有丰富的碎片离子,可以提供分子离子的结构信息,用来鉴定或者解析分子。目前美国国家标准与技术研究院(NIST)收集了数十万分子电子电离产生的质谱图并建立了谱图库,可以通过与该标准谱图库进行对比的方法检定化合物的身份。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]2.1.2 [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)中离子的传输和聚焦[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在电离腔中产生的离子碎片运动方向较为发散,为了将离子引出电离区,并将轴向发散的离子进一步加速、聚焦成离子束以减少在传输中的损失,并最终以较小的束宽和散角送入质量分析器中,一般使用透镜组对离子进行空间聚焦。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]单四极杆质谱仪电子轰击电离源(EI)中的透镜组(静电透镜/单透镜)是离子导向装置的一种,作为离子光学系统的一部分,承担着将离子传输至质量分析器的重要作用。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/4e/b2/64eb2f97caa88572c504d6aa382c3628.png[/img][/align][font=微软雅黑, sans-serif]工作过程中,由电子轰击电离源(EI)的裂解机理产生的离子多为正离子,因此首先在推斥极上施加正电压,将离子推向离子出口板;一般而言,离子出口板和离子出口板间隔接地,推斥极和离子出口板之间会形成电压差,电压差亦会推动正离子向前运动;聚焦透镜和引入透镜为负电压,且聚焦透镜的电压值会更低[size=12px](说明:负的更厉害)[/size]。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在三个圆筒形电极[size=12px](离子出口板和离子出口板间隔、聚焦透镜和引入透镜)[/size]的作用下,中间电极附近形成一鞍形电场——即中间电极电压低于两边电极电压,构成起始减速型单透镜结构,散射的正离子在起始减速型结构的单透镜中先加速后减速,先聚焦后发散再聚焦。该透镜组(静电透镜/单透镜)的特点是对传输离子无质量歧视,可以保持离子的动能,通过调节电压即可实现离子聚焦和改善离子传输效率。[/font]

  • 【资料】-气相色谱/光离子化检测器(PID)简介及光离子检测器

    [b][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]/光离子化检测器简介[/b][i]刘星等;环境监测管理与技术;第9卷,第4期[/i]1 概述60年代以来,人们对[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]光离子化检测器进行了较多的研究和报道。光离子化检测器是一种通用性兼选择性的检测器,对大多数有机物都有响应信号,美国EPA己将其用于水、废水和土壤中数十种有机污染物的检测。1.1光离子化检测器类型光离子化检测器从结构上可分为光窗型和无光窗型两种。(1) 无光窗离子化检测器这是一种利用微波能量激发常压惰性气体产生的等离子体,作为光源的光离子化检测器(Microwave Photo-ionization detector),以石英或硬质玻璃管材料制作。当样品的组分进入光离子化检测器离子化室后,分子组分被高能量的等离子体激发为正离子和自由电子,在强电场的作用下作定向运动形成离子流并输出信号 当分子的电离能高于光子能量时则不会发生离子化效应。如选用氦气作为放电气体,在理论上可检测一切气化的物质。(2)光窗式光离子化检测器它克服了无窗口式光离子化检测器的许多缺陷,主要由紫外光源和电离室组成,中间由可透紫外光的光窗相隔,窗材料采用碱金属或碱土金属的氟化物制成。在电离室内待测组分的分子吸收紫外光能量发生电离,选用不同能量的灯和不同的晶体光窗,可选择性地测定各种类型的化合物,其过程如下:R+hv-R++eR-R+hv-R1++R2-(离解)当用N2作载气时N2+hv-N2*N2+R-N2+R++e不同的紫外灯光有不同的放电气体。不同能量的光子,使用11.7ev的高能灯和氟化锂(LiF)光窗时,光离子化检测器可作为通用型检测器 当使用低能量灯时,待测组分的范围变窄,此时光离子化检测器为选择性检测器。影响光离子化检测器的因素(1)光离子化检测器的响应与待测组分的碳数、烃的不饱和度以及功能团类型有关。(2)选用气体的电离势要高于所用灯的光子能量。氩通常认为是最佳响应的理想气体。

  • 氢火焰离子化检测器(FID)(收集)

    [b]氢火焰离子化检测器[/b] 1958年Mewillan和Harley等分别研制成功氢火焰离子化检侧器(FID),它是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10[sup]-12[/sup]~10[sup]-8[/sup]A)经过高阻(10[sup]6[/sup]~10[sup]11[/sup]Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。 氢火焰检测器由于结构简单、性能优异、稳定可靠、操作方便,所以经过40多年的发展,今天的FID结构仍无实质性的变化。其主要特点是对几乎所有挥发性的有机化合物均有响应,对所有径类化合物(碳数≥3)的相对响应值几乎相等,对含杂原子的烃类有机物中的同系物(碳数≥3)的相对响应值也几乎相等。这给化合物的定量带来很大的方便,而且具有灵敏度高(10-13~10-10g/s),基流小(10[sup]-14[/sup]~10[sup]-13[/sup]A),线性范围宽(10[sup]6[/sup]~10[sup]7[/sup]),死体积小(≤1µ L),响应快(1ms),可以和毛细管柱直接联用,对气体流速、压力和很度变化不敏感等优点,所以成为应用最广泛的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器。其主要缺点是需要三种气源及其流速控制系统,尤其是对防爆有严格的要求。氢火焰离子化检测器的结构 氢火焰离子化检测器(FID)由电离室和放大电路组成,分别如图2-9(a),(b)所示。 FID的电离室由金属圆筒作外罩,底座中心有喷嘴 喷嘴附近有环状金属圈(极化极,又称发射极),上端有一个金属圆简(收集极)。两者间加90~300V的直流电压,形成电离电场加速电离的离子。收集极捕集的离子硫经放大器的高组产生信号、放大后物送至数据采集系统;燃烧气、辅助气和色谱柱由底座引入;燃烧气及水蒸气由外罩上方小孔逸出。

  • 【讨论】放电离子化仪器出现以下故障的原因

    【讨论】放电离子化仪器出现以下故障的原因

    有一个用户的情况: 1、592DID,系统30,专门做氢的系统,配有氢分离器,仪器主要用于做N2、Ar、H2;预柱和柱1都是13X分子筛柱,柱2是DB柱; 2、近期2~3个月,仪器基线不稳、漂移严重;用维诺克泡沫法检漏仪测试无泄露; 以做氩为例,柱温一般72度,检测器温度51度,放电电流7.24mA,直流电压524,电极电压衰减为-11次,一般都用13X柱,DB他们总用不好; 3、现在色谱谱图上反映出CH4峰面积减小,测Ar、CH4、CO2的保留时间缩短,但前面的H2、Ar保留时间不变。——是否可以怀疑背景气里含有较大浓度的CH4? [img]http://ng1.17img.cn/bbsfiles/images/2008/09/200809091051_108012_1614420_3.jpg[/img]基线噪声[img]http://ng1.17img.cn/bbsfiles/images/2008/09/200809091059_108023_1614420_3.jpg[/img][em0814]

  • 【分享】氢火焰离子化检测器

    氢火焰离子化检测器氢火焰离子化检测器简介  简称氢焰检测器,又称火焰离子化检测器 (FID: flame ionization detector)   (1) 典型的质量型检测器;   (2) 对有机化合物具有很高的灵敏度;   (3) 无机气体、水、四氯化碳等含氢少或不含氢的物质灵敏度低或不响应;   (4) 氢焰检测器具有结构简单、稳定性好、灵敏度高、响应迅速等特点;   (5) 比热导检测器的灵敏度高出近3个数量级,检测下限可达10-12g·g-1。   1958年Mewillan和Harley等分别研制成功氢火焰离子化检侧器(FID),它是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10-12~10-8A)经过高阻(106~1011Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。 氢火焰检测器由于结构简单、性能优异、稳定可靠、操作方便,所以经过40多年的发展,今天的FID结构仍无实质性的变化。其主要特点是对几乎所有挥发性的有机化合物均有响应,对所有径类化合物(碳数≥3)的相对响应值几乎相等,对含杂原子的烃类有机物中的同系物(碳数≥3)的相对响应值也几乎相等。这给化合物的定量带来很大的方便,而且具有灵敏度高(10-13~10-10g/s),基流小(10-14~10-13A),线性范围宽(106~107),死体积小(≤1µL),响应快(1ms),可以和毛细管柱直接联用,对气体流速、压力和很度变化不敏感等优点,所以成为应用最广泛的气相色谱检测器。其主要缺点是需要三种气源及其流速控制系统,尤其是对防爆有严格的要求。氢火焰离子化检测器的结构 氢火焰离子化检测器(FID)由电离室和放大电路组成,分别如图2-9(a),(b)所示。 FID的电离室由金属圆筒作外罩,底座中心有喷嘴;喷嘴附近有环状金属圈(极化极,又称发射极),上端有一个金属圆简(收集极)。两者间加90~300V的直流电压,形成电离电场加速电离的离子。收集极捕集的离子硫经放大器的高组产生信号、放大后物送至数据采集系统;燃烧气、辅助气和色谱柱由底座引入;燃烧气及水蒸气由外罩上方小孔逸出

  • 物质离子化

    实验做得多了发现的问题也就多了!!!液质离子源的机理是先将物质离子化,然后进入毛细管。。。。我很难理解什么样的物质容易离子化,什么样的物质完全不能离子化。(不能产生带电离子就不能用质谱测,是这个意思吗)比如异戊醇,异丁醇,苯乙醛等可以产生离子吗?还有点疑问就是有机相增大对液相来说是保留时间减少,那么有机相增多对质谱来说有什么影响?(有机相越多对越容易离子化?)有机相比水更容易蒸发,所以有机相减少要求干燥气的温度和流量都要大。这只是我的一点点认识。还想问问大家还发现有机相增大对质谱有什么影响吗?

  • 敞开式离子化质谱技术在中草药研究中的应用(一)

    敞开式离子化质谱(ambient ionization mass spectrometry,AIMS)是近年来兴起的一种无需(或稍许)样品前处理步骤,在敞开的大气环境下实现离子化的质谱分析技术。近年来,各种AIMS技术的研制与应用成为质谱领域备受关注的焦点之一。本工作综述了AIMS技术在中草药研究中的应用,对典型的分析策略进行了讨论,阐述了AIMS技术的基本原理、特点和分类,并展望了该技术在中医药研究领域未来发展的趋势和可能的影响。敞开式离子化质谱(ambient ionization mass spectrometry,AIMS)是一种能在敞开的常压环境下直接对样品或样品表面物质进行分析的新型质谱技术,此技术无需(或者只需简单的)样品前处理,便可实现对样品的分析,具有实时、原位、高通量、简便快速、环保、可以与各种质谱仪器联用等一系列优点,同时兼具传统质谱的高分析速度、高灵敏度等特点。2004年Cooks课题组在电喷雾电离基础上首次提出解吸电喷雾电离(Desorption electrospray ionization,DESI)技术。2005年Cody等在大气压化学电离基础上研制出实时直接检测的DART(Direct analysis in real time)技术 几乎同时,谢建台等也研制出类似的电喷雾辅助激光解吸电离质谱技术。继而,AIMS的研发引起了广泛关注,各类新技术不断涌现,目前AIMS技术的种类已有40余种。为促进AIMS技术的创新和发展,由中国质谱学会和华质泰科生物技术(北京)有限公司共同主办的AIMS国际学术年会从2013年至今已经成功举办4次,引领着AIMS技术迅速向各个行业逐层渗透,深深地影响着下一代分析检测技术的开发和利用。与经典的电喷雾、大气压化学电离和大气压光电离等电离方式相比,AIMS具有溶剂消耗少、更强的耐盐和抗基质干扰能力,同时,AIMS的敞开结构和模块化设计使其可以方便的与各种质谱连接,从而大大降低了仪器购置成本。这一技术在医学、药学、食品安全、环境污染物监控、爆炸物检测、生物分子及代谢物表征、分子成像等诸多领域已展现出广泛的应用前景。因此,AIMS的基础和应用研究备受质谱学家的关注,基础研究主要围绕构建开发新型的AIMS离子源,探究研究相应的离子化机理 应用研究主要是对各种实际样品进行定性和定量分析。本工作着重综述AIMS在中草药研究中的应用,通过对典型的分析策略进行讨论,阐述AIMS技术的基本原理、特点和分类,并展望该技术在中医药研究领域未来发展的可能趋势和影响。⒈敞开式离子化质谱技术的基本原理、特点和分类AIMS集成了样品原位解吸附、待测物实时离子化和离子传输至质量分析器三个核心步骤。下面,以DART为例,介绍离子化的基本原理:利用He或者N2作为工作气通过放电室,放电室内部的阴极和阳极之间施加一个高达几千伏的电压导致高压辉光放电,使工作气电离成为含激发态气体原子或分子、离子、电子的等离子体气流。等离子体气流流经圆盘电极,选择性地移除某些离子后被加热,加热等离子体气流从DART口喷出至样品表面,完成热辅助的解吸附和离子化过程。离子化机理一般认为包括周围气体被激发态工作气体的彭宁(Penning)电离、进而发生的质子转移以及其他类型[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]离子分子反应等过程。AIMS技术不仅可在常压下对待测样品离子化,而且离子源的敞开结构易于实现物体表面的直接离子化及质谱分析。这类离子源操作简便、快捷,无需复杂的样品前处理。AIMS技术的另一重要特征是快速及高通量,通常每个样品的分析时间不超过5s,充分展现了质谱快速分析的优势,为高通量分析提供了一种新的有效途径。因此,常压敞开式离子源开辟了质谱技术在无需样品前处理的直接、快速分析,表面与原位分析等领域的广阔应用领域。AIMS离子源按照其离子化过程和机理可以分为三大类:1)直接电离离子源。样品直接进入高电场被电离,如,在ESI源基础上发展起来的众多离子源,包括直接电喷雾探针(Direct electrospray probe ionization,DEPI)、探针电喷雾电离(Probe electrospray ionization,PESI)、纸喷雾电离(Paper spray ionization,PSI)、场致液滴电离(Field induced droplet ionization,FIDI)和超声波电离(Ultra-sound ionization,USI)等 2)直接解吸电离离子源,同时起到对样品解吸和电离的作用。包括解吸电喷雾电离(Desorption electrospray ionization,DESI)、电场辅助解吸电喷雾电离(Electrode-assisted desorption electrospray ionization,EADESI)、简易敞开式声波喷雾电离(Easy ambient sonic spray ionization,EASI)、解吸大气压化学电离(Desorption atmospheric pressure chemical ionization,DAPCI)、介质阻挡放电电离(Dielectric barrier discharge ionization,DBDI)、等离子体辅助解吸电离(Plasma-assisted desorption ionization,PADI)、大气压辉光放电电离(Atmospheric glow discharge ionization,APGDI)、解吸电晕束电离(Desorption corona beam ionization,DCBI)、激光喷雾电离(Laser spray ionization,LSI)等 3)解吸后电离离子源。这是一种两步机理离子源,第1步先对被分析物进行解吸附,第2步实现被分析物的电离过程,包括[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-电喷雾质谱(Gas chromatography electrospray ionization,GC-ESI)、二次电喷雾电离(Secondary electrospray ionization,SESI)、熔融液滴电喷雾电离(Fused droplet electrospray ionization,FD-ESI)、萃取电喷雾电离(Extractive electrospray ionization,EESI)、液体表面彭宁电离质谱(Liquidsurface Penning ionization,LPI)、大气压彭宁电离(Atmospheric pressure Penning ionization,APPeI)、电喷雾激光解吸电离(Electrospray laser desorption ionization,ELDI)、基质辅助激光解吸电喷雾电离(Matrix-assisted laser desorption electrospray ionization,MALDESI)、激光消融电喷雾电离(Laser ablation electrospray ionization,LAESI)、红外激光辅助解吸电喷雾电离(Infrared laser-assisted desorption electrospray ionization,IR-LADESI)、激光电喷雾电离(Laser electrospray ionization,LESI)、激光解吸喷雾后离子化(Laser desorption spray post-ionization,LDSPI)、激光诱导声波解吸电喷雾电离(Laser-induced acoustic desorption electrospray ionization,LIAD-ESI)、激光解吸-大气压化学电离(Laser desorption-atmospheric pressure chemical ionization,LD-APCI)、激光二极管热解吸电离(Laser diode thermal desorption,LDTD)、电喷雾辅助热解吸电离(Electrospray-assisted pyrolysis ionization,ESA-Py)、大气压热解吸-电喷雾电离(Atmospheric pressure thermal desorption-electrospray ionization,AP-TD/ESI)、基于热解吸敞开式电离(Thermal desorption-based ambient ionization,TDAI)、大气压固态分析探针(Atmosphericpressure solids analysis probe,ASAP)、实时直接分析(Direct analysis in real time,DART)、解吸大气压光致电离(Desorption atmospheric pressure photoionization,DAPPI)等。

  • 静电离子色谱分离方法

    近年来离子色谱研究的一个重要趋势是研究各种分离效率高, 选择性好, 分析速度快, 可同时分析阴离子和阳离子的色谱柱. 研究的重点是将涂覆有生物表面活性剂的物质作离子色谱固定相, 并已在光学异构体和无机离子分离分析方面展示出独特的优越性和发展潜力. 1994年, Hu Wezhi等人首先采用在一分子内含有正负电荷的两性离子分子的表面活性剂作色谱固定相, 开创了静电离子色谱法. 本文利用自制的静电离子色谱柱, 选用不同种类流动相, 对含有不同阴离子的钠盐进行分离, 并初步探讨在磁场中静电离子色谱的保留行为. 1 实验部分  1.1 仪器和试剂  LC-4A高效液相色谱仪; RID-2AS示差析光检测器, C-R2A数据处理机. 静电离子色谱柱(自制), 流动相分别为水, 10 mmol/L Na2HPO4-NaH2PO4缓冲液(pH=6.8), 2.4 mmol/L NaHCO3和3 mmol/L Na2CO3; 1 mmol/L十二烷基磺酸钠. 所用试剂均为优级纯或分析纯; 溶液用二次蒸馏水按常规配制.   1.2 色谱柱制备和分离方法  把含有胆汁酸盐水溶液通过动态涂层法涂覆在ODS表面. 选用国产ODS分离柱(4.6 mm×250 mm), 将30 mmol/L的CHAPS溶液(经0.4 μm滤膜过滤)以 0.7 mL/min流速流经ODS柱80 min, 收集流出液重复上述操作2次, 然后用水冲洗40 min, 即得到在ODS柱表面涂覆一层含有正/负电荷胶束的静电离子色谱柱.  静电离子色谱法是利用在ODS载体上涂覆在同一分子内同时含有正/负两种电荷的胆汁酸诱导体胶束作固定相, 纯水或电解质溶液作流动相, 被测样品中的阴离子和阳离子通过纯粹的静电吸引、 离子配对后形成正、 负离子的缔合物(离子对), 由于被测离子的电荷和半径、 离子种类和离子浓度的不同, 因此形成的各种离子对受涂覆在固定相上的表面活性剂所带的正/负电荷静电吸引和排斥作用力不同而相互分离. 分离后的离子对进入检测器进行定量检测. 实验表明, 用本法制备的静电离子色谱柱, 连续使用3个月未发现分离效率下降. 2 结果与讨论 2.1 流动相和色谱图  分别以纯水、磷酸盐缓冲溶液为流动相得到色谱分离图  纯水为流动相时, Na2SO4和NaBr, KNO3和NaNO3, Na2S2O3和NaF+NaNO3各离子对得到分离, 但NaF与NaNO3不能分离开. 而磷酸盐为缓冲溶液时(图2), 不但Na2SO4和NaBr得到分离, 而且Na2S2O3, NaF, NaNO3也可相互分离. 由图2可见, 与纯水流动相相比, 流动相中磷酸盐的存在使各离子对保留时间和色谱峰形状发生变化, 虽然各离子对保留时间显著增加, 但出峰顺序未发生变化. 实验表明, 各离子对的保留时间与阴阳离子的半径、 电荷、 流动相种类和离子强度有关, 在流动相中加入不同种类的电解质溶液将有利于某些离子对的分离.   分别以碳酸盐、十二烷基磺酸钠为流动相得到的静电离子色谱分离图如图3所示. 由图3可见NaBr和Na2SO4可以完全分离, 与纯水为流动相相比, NaBr和Na2SO4的分离效率提高, 但保留时间增加. 特别是以十二烷基磺酸钠(表面活性剂)为流动相时, 使NaBr的保留时间延长(见图3(b)), 这说明表面活性剂的存在将对离子对的分离效率产生重要影响. 可以认为, 在流动相中加入电解质溶液, 除样品离子与固定相相互作用外, 流动相中电解质也参与了与固定相之间的静电吸引和排斥作用, 由于各离子对和电解质与固定相相互竞争的静电作用, 提高了各离子对的分离度.   2.2 流动相流速影响 当流动相流速不同时, 各离子对的保留时间发生改变. 纯水为流动相时, NaBr和Na2SO4离子对的保留时间与纯水流速的关系. 实验表明, 当采用不同种类流动相时, 随着流动相流速的增加, 保留时间都有不同程度的缩短. 但要根据被分离的离子对的分离效率和分析速度来选择流动相流速, 本实验选择流动相流速为0.6 mL/min. 2.3 外加磁场对静电离子色谱分离的影响  将静电离子色谱置于静态磁场(Nb磁铁, 160 mm×30 mm)中, 考察各离子对的分离效率和保留时间. 实验表明, 在外加磁场作用下, 纯水为流动相时, NaNO3和Na2S2O3离子对的保留时间稍向后位移(见图5), 但二者的峰形状未发生变化. 这可能是在离子对形成和洗脱过程中, 由于外加磁场的作用, 使形成的离子对与涂覆在载体上胆汁酸盐胶束所带的正负电荷静电吸引和排斥作用力发生变化, 打破了原来的平衡状态, 使离子对的保留时间发生位移.

  • 敞开式离子化质谱技术在中草药研究中的应用(一)

    敞开式离子化质谱(ambient ionization mass spectrometry,AIMS)是近年来兴起的一种无需(或稍许)样品前处理步骤,在敞开的大气环境下实现离子化的质谱分析技术。近年来,各种AIMS技术的研制与应用成为质谱领域备受关注的焦点之一。本工作综述了AIMS技术在中草药研究中的应用,对典型的分析策略进行了讨论,阐述了AIMS技术的基本原理、特点和分类,并展望了该技术在中医药研究领域未来发展的趋势和可能的影响。敞开式离子化质谱(ambient ionization mass spectrometry,AIMS)是一种能在敞开的常压环境下直接对样品或样品表面物质进行分析的新型质谱技术,此技术无需(或者只需简单的)样品前处理,便可实现对样品的分析,具有实时、原位、高通量、简便快速、环保、可以与各种质谱仪器联用等一系列优点,同时兼具传统质谱的高分析速度、高灵敏度等特点。2004年Cooks课题组在电喷雾电离基础上首次提出解吸电喷雾电离(Desorption electrospray ionization,DESI)技术。2005年Cody等在大气压化学电离基础上研制出实时直接检测的DART(Direct analysis in real time)技术 几乎同时,谢建台等也研制出类似的电喷雾辅助激光解吸电离质谱技术。继而,AIMS的研发引起了广泛关注,各类新技术不断涌现,目前AIMS技术的种类已有40余种。为促进AIMS技术的创新和发展,由中国质谱学会和华质泰科生物技术(北京)有限公司共同主办的AIMS国际学术年会从2013年至今已经成功举办4次,引领着AIMS技术迅速向各个行业逐层渗透,深深地影响着下一代分析检测技术的开发和利用。与经典的电喷雾、大气压化学电离和大气压光电离等电离方式相比,AIMS具有溶剂消耗少、更强的耐盐和抗基质干扰能力,同时,AIMS的敞开结构和模块化设计使其可以方便的与各种质谱连接,从而大大降低了仪器购置成本。这一技术在医学、药学、食品安全、环境污染物监控、爆炸物检测、生物分子及代谢物表征、分子成像等诸多领域已展现出广泛的应用前景。因此,AIMS的基础和应用研究备受质谱学家的关注,基础研究主要围绕构建开发新型的AIMS离子源,探究研究相应的离子化机理 应用研究主要是对各种实际样品进行定性和定量分析。本工作着重综述AIMS在中草药研究中的应用,通过对典型的分析策略进行讨论,阐述AIMS技术的基本原理、特点和分类,并展望该技术在中医药研究领域未来发展的可能趋势和影响。⒈敞开式离子化质谱技术的基本原理、特点和分类AIMS集成了样品原位解吸附、待测物实时离子化和离子传输至质量分析器三个核心步骤。下面,以DART为例,介绍离子化的基本原理:利用He或者N2作为工作气通过放电室,放电室内部的阴极和阳极之间施加一个高达几千伏的电压导致高压辉光放电,使工作气电离成为含激发态气体原子或分子、离子、电子的等离子体气流。等离子体气流流经圆盘电极,选择性地移除某些离子后被加热,加热等离子体气流从DART口喷出至样品表面,完成热辅助的解吸附和离子化过程。离子化机理一般认为包括周围气体被激发态工作气体的彭宁(Penning)电离、进而发生的质子转移以及其他类型[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]离子分子反应等过程。AIMS技术不仅可在常压下对待测样品离子化,而且离子源的敞开结构易于实现物体表面的直接离子化及质谱分析。这类离子源操作简便、快捷,无需复杂的样品前处理。AIMS技术的另一重要特征是快速及高通量,通常每个样品的分析时间不超过5s,充分展现了质谱快速分析的优势,为高通量分析提供了一种新的有效途径。因此,常压敞开式离子源开辟了质谱技术在无需样品前处理的直接、快速分析,表面与原位分析等领域的广阔应用领域。AIMS离子源按照其离子化过程和机理可以分为三大类:1)直接电离离子源。样品直接进入高电场被电离,如,在ESI源基础上发展起来的众多离子源,包括直接电喷雾探针(Direct electrospray probe ionization,DEPI)、探针电喷雾电离(Probe electrospray ionization,PESI)、纸喷雾电离(Paper spray ionization,PSI)、场致液滴电离(Field induced droplet ionization,FIDI)和超声波电离(Ultra-sound ionization,USI)等 2)直接解吸电离离子源,同时起到对样品解吸和电离的作用。包括解吸电喷雾电离(Desorption electrospray ionization,DESI)、电场辅助解吸电喷雾电离(Electrode-assisted desorption electrospray ionization,EADESI)、简易敞开式声波喷雾电离(Easy ambient sonic spray ionization,EASI)、解吸大气压化学电离(Desorption atmospheric pressure chemical ionization,DAPCI)、介质阻挡放电电离(Dielectric barrier discharge ionization,DBDI)、等离子体辅助解吸电离(Plasma-assisted desorption ionization,PADI)、大气压辉光放电电离(Atmospheric glow discharge ionization,APGDI)、解吸电晕束电离(Desorption corona beam ionization,DCBI)、激光喷雾电离(Laser spray ionization,LSI)等 3)解吸后电离离子源。这是一种两步机理离子源,第1步先对被分析物进行解吸附,第2步实现被分析物的电离过程,包括[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-电喷雾质谱(Gas chromatography electrospray ionization,GC-ESI)、二次电喷雾电离(Secondary electrospray ionization,SESI)、熔融液滴电喷雾电离(Fused droplet electrospray ionization,FD-ESI)、萃取电喷雾电离(Extractive electrospray ionization,EESI)、液体表面彭宁电离质谱(Liquidsurface Penning ionization,LPI)、大气压彭宁电离(Atmospheric pressure Penning ionization,APPeI)、电喷雾激光解吸电离(Electrospray laser desorption ionization,ELDI)、基质辅助激光解吸电喷雾电离(Matrix-assisted laser desorption electrospray ionization,MALDESI)、激光消融电喷雾电离(Laser ablation electrospray ionization,LAESI)、红外激光辅助解吸电喷雾电离(Infrared laser-assisted desorption electrospray ionization,IR-LADESI)、激光电喷雾电离(Laser electrospray ionization,LESI)、激光解吸喷雾后离子化(Laser desorption spray post-ionization,LDSPI)、激光诱导声波解吸电喷雾电离(Laser-induced acoustic desorption electrospray ionization,LIAD-ESI)、激光解吸-大气压化学电离(Laser desorption-atmospheric pressure chemical ionization,LD-APCI)、激光二极管热解吸电离(Laser diode thermal desorption,LDTD)、电喷雾辅助热解吸电离(Electrospray-assisted pyrolysis ionization,ESA-Py)、大气压热解吸-电喷雾电离(Atmospheric pressure thermal desorption-electrospray ionization,AP-TD/ESI)、基于热解吸敞开式电离(Thermal desorption-based ambient ionization,TDAI)、大气压固态分析探针(Atmosphericpressure solids analysis probe,ASAP)、实时直接分析(Direct analysis in real time,DART)、解吸大气压光致电离(Desorption atmospheric pressure photoionization,DAPPI)等。

  • 【参数解读】氢火焰离子化检测器(FID)的技术参数解读与使用

    【参数解读】氢火焰离子化检测器(FID)的技术参数解读与使用

    氢火焰离子化检测器 1958年Mewillan和Harley等分别研制成功氢火焰离子化检侧器(FID),它是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10-12~10-8A)经过高阻(106~1011Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。 氢火焰检测器由于结构简单、性能优异、稳定可靠、操作方便,所以经过40多年的发展,今天的FID结构仍无实质性的变化。其主要特点是对几乎所有挥发性的有机化合物均有响应,对所有径类化合物(碳数≥3)的相对响应值几乎相等,对含杂原子的烃类有机物中的同系物(碳数≥3)的相对响应值也几乎相等。这给化合物的定量带来很大的方便,而且具有灵敏度高(10-13~10-10g/s),基流小(10-14~10-13A),线性范围宽(106~107),死体积小(≤1uL),响应快(1ms),可以和毛细管柱直接联用,对气体流速、压力和很度变化不敏感等优点,所以成为应用最广泛的气相色谱检测器。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_646876_1608710_3.jpg◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆列举部分仪器的个别参数,供参考:技术参数:最高使用温度:450℃自动点火装置,自动调节点火气流,具有自动灭火检测功能基线噪声:≤1*10-12A基线漂移(30min):≤1*10-11A检测限:5*10-10g/s重复性:≤3%〓〓〓〓〓〓〓〓〓〓〓〓〓〓分割线〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓请您来解析:1、为什么FID的检定对载气流速稳定性无要求,而TCD、ECD却有要求1%。2、你采购FID都是用来检测什么样品?灵敏度是否满足?3、FID的优缺点都有哪些?4、FID存在什么局限性,如何互补?5、FID哪些参数可以调整色谱出峰效果?欢迎大家参与讨论,补充自己想交流的参数,说说自己的认识或者提出自己的疑问!!!往期回顾:【参数解读】COD测定仪的技术参数解读与使用

  • 【资料】DID检测器

    看到程版主做高纯气体中痕量杂质的分析,涉及了DID检测器,以前接触的很少,遂上网查了点资料,供我们这些菜鸟级的人学习学习。闲话少说,上资料: 目前的市场上所说的氦离子化检测器都是指氦放电离子化检测器——DID,英文全名为DISCHARGE IONIZATION DETECTOR,是美国GOW-MAC公司生产的专利产品,其在国内的主要应用有592DID、582DID、816DID等多种型号。 该检测器由电离室和放电室两部分组成,两室之间有狭路相通。当在放电室内的两个高压电极上加以适量高压电后,两电极之间就会产生放电,从而得到一束高能量的紫外光辐射(400-500nm)。高能紫外光被引入射向电离室内,在这过程中,高能光子直接照射样品成份中被测杂质分子,使其电离形成离子,同时高能光子首先将载气氦离子激发至亚稳态( He*),然后,具有较高能量的He*再与样品中杂质分子发生非弹性碰撞并使电离。此时在集电极上加以适当电压收集被电离的杂质分子,并将其信号放大记录即得到被测成份的谱峰。由于光子和亚稳态氦原子均具有较高能量(24.8ev),因此可使包括氖在内的一切物质分子电离,因此,也可以将DID视为一种通用型检测器。 DID色谱对于中高端尤其是以高纯气体、特种气体为主的检测来讲,放电离子化检测器是最通用,也是性价比最高,稳定性最好的检测器。除高纯气体分析、微量及痕量杂质分析应用之外,常见的特殊行业应用还有乙炔、氧化亚氮、NH3、氯化氢、氯气、硅烷类物质、氟化物(四氟化碳、六氟化硫)、氯化物、砷烷磷烷等气体的纯气或杂质含量分析。 普通用户的一般条件下,其检测精度可达到10ppb,其线性为10^6,其上限可达到1%,相比较TCD线性10^3、FID线性10^5~10^6,DID检测器的线性是最高的!它不适用于测高浓度组份是因为其超高的灵敏度和针对方向决定的,而不是什么“线性范围小”。GOW-MAC公司DID色谱仪特点:(1)高纯氦(≥99.9999%He)为载气时,其对各杂质组分的灵敏度比氩(或其他气体)为载气提高几十倍以上,直接进样几毫升气体样品便可获得<1X10-9 的灵敏度。(2)根据实际需要,选用不同色谱柱可以测定多种高纯气中多种杂质气体成分,还可以配接毛细管柱,扩大分离效能,检测更多种成份。(3)采用中心切割阀时,在第一柱内分离的主组分可在进第二柱分离之前放空,使其余组分在第二柱内得到完全分离,从而解决了主组分峰掩盖杂质峰问题,且保持10-9级灵敏度。 (4)在测定高纯氧及高纯氢中微量及痕量杂质时,可配附属设备-脱氧阱和氢分离器,在样气进入色谱柱进行分离之前,将其中主要成份氧和氢脱掉,不仅使被测组分的分离避免了主组分峰的干扰, 同时也进一步提高了仪器检测灵敏度。

  • 为什么ICPMS的炬管产生带电离子而ICPOES中产生特定波长光子?

    刚刚看到ICPMS的培训材料,它里面是这么比较ICPMS和ICPOES的炬管功能的区别的:“在ICP-OES中,炬管通常是垂直放置的,等离子体激发基态原子的电子至较高能级,当较高能级的电子“落回”基态时,就会发射出某一待测元素的特定波长的光子。在ICP-MS中,等离子体炬管都是水平放置的,用于产生带正电荷的离子,而不是光子。实际上,ICP-MS分析中要尽可能阻止光子到达检测器,因为光子会增加信号的噪音。正是大量离子的生成和检测使ICP-MS具备了独特的ppt量级的检测能力,检出限大约优于ICP-OES技术3~4个数量级。”但我还是没搞明白,为什么炬管从竖着放变成横着放就能从产生光子变成产生带电离子了呢?希望有大虾答疑解惑~~~

  • 【分享】安捷伦技术贴示:火焰离子化检测器 (FID)—检测器知识

    【分享】安捷伦技术贴示:火焰离子化检测器 (FID)—检测器知识

    安捷伦技术贴示:火焰离子化检测器 (FID)—检测器知识 N. Reuter*, I. van der Meer, E. de Witte, L. Flipse, Technical Helpdesk Europe, Middelburg, The Netherlands 前言火焰离子化检测器是气相色谱的标准检测器,几乎可以检测所有的有机组分。所得到色谱图的峰面积与样品中该组分的含量成正比。FID的灵敏度极高,具有9个数量级的宽动态范围,它唯一的缺点是需要破坏样品组分。示意图http://ng1.17img.cn/bbsfiles/images/2010/12/201012231940_269431_1615838_3.jpg图1: FID示意图说明FID包含一个氢气/空气火焰和一个集电片,从GC色谱柱出来的流出物通过火焰,有机物分子在火焰中电离产生离子,这些离子被收集到极化的集电极上,产生电信号。集电极带负电荷,火焰喷口带正电荷。

  • 氦离子气相色谱仪

    原理及特点:1、基本原理以高纯氦为载气,在检测室内高压作用下产生一定强度电晕放电,放电产生的高能粒子电离色谱柱中流出物而形成可检测的电流信号。无组分流出时为载气电离产生的基流信号,被测组分流出时电流增大,电流增大的程度与组分浓度成正比,从而实现定量检测。2、仪器特点a.环境友好:没有放射源,老的HID检测器放射源因受半衰期的影响,能量随时间逐渐下降,使仪器不能保持长时间稳定,且易造成严重的环境污染。b.灵敏度高:对大多数化合物检测限在10ppb量级,与放射源氦离子化检测器(HID)灵敏度相近。c.通用型:原则上可以检测除氖气以外所有物质,根据实际需要,选用不同色谱柱可以测定多种高纯气中多种杂质气体成分,还可以配接毛细管柱,扩大分离效能,检测更多种成分。d.安全性好:与火焰离子化检测器(FID)相比,只需要一种气体,它没有明火,不需要氢气,安全性高。e.多模式工作:一个检测器可以实现放光离子化、电子捕获等工作模式,相当于多个检测器,既有通用型又有选择型。 简介:现代工业的发展离不开检测手段的进步,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]一直是工业界、科学研究领域中主要的分析方法之一,它已经广泛应用于化学化工、生物医药、材料科学、环境工程等各个领域。检测器是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的核心部件,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的发展是以[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测方法为中心展开的。据报道现有[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器约50种之多。随着高技术工业的发展,对分析任务的要求也越来越高,对于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]来说就是要求其具有更高的灵敏度、精度和稳定性。例如半导体工业的发展要求有极高纯度的气体,就需要有高灵敏度的色谱仪来检测气体中的痕量杂质;环境监测方面要求样品不用预先浓缩可以直接测定痕量有毒有害的农药组分等。脉冲氦放电离子化检测器是以氦气高压放电后产生的高能粒子作为离子化源,此离子化源与被测组分或参杂气作用使其产生电离而实现检测。脉冲放电离子化源可以替代传统氦离子化检测器和电子俘获检测器中有害的放射源,而且可作为激光发射光谱的能源的制成元素选择检测器。这类检测器的出现可以认为是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的离子化检测器和发射光谱检测器的离子化源或光激发源的重大革新。它具有通用、灵敏度高、不需要放射源、非破坏性、没有明火等特点。1996年由VICI公司首次推出了商品化仪器,其优点正大逐渐被业界人士所认可,该技术获得了美国R&D 100 Award。国外现在配备这种检测器的色谱仪已经开始取代老的放射源式氦离子化色谱仪,VICI公司2003年的一份报告提到该公司已全球有2000多个用户.由于这种色谱仪集通用、高灵敏度、线性范围宽的三大特点于一身,它几乎可以适用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]应用的所有领域。特别是既需要热导的通用性,又需要氢气火焰的高灵敏度时,脉冲氦放电离子化检测器是不二的选择。例如该产品可用于高纯气体杂质分析、烟气分析、残留农药检测、大气中的甲醛和氟里昂检测等半导体工业、环保、农业领域;它还是科研机构首选的色谱仪,因为一台这样的色谱可以代替配有多种检测器或多台单检器色谱,既节省费用又节省实验室空间。氢火焰检测器是最近30年来除热导池外用量最大的检测器。这种色谱可以广范用于石化、炼没行业。但是由于氢火焰色谱需要氢气、空气、氮气或氦气三种气体,而且工作环境中有氢气和明火存在,这就造成了潜在的危险,尤其是在石化、炼油行业。而氦放电离子化检测器不需要氢气作载气,也没有明火,而且所以它是氢火焰检测器的理想替代品。目前此类色谱仪完全进口。每台售价格3-4万美元,我所研制的GC9890H氦离子[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]填补了我国的仪器的一项空白。随着我国经济发展,工业、科研、环保等方面的要求也会不断提高,传统色谱的换代也是势在必行。

  • 氦离子化检测器与ECD的区别?

    最近在了解氦离子化检测器的相关内容,看到使用放射源作为氦气激发的氦离子化检测器,请问这种情况下的氦离子化检测器,和使用氦气作为载气的电子捕获检测器ECD有啥区别么??

  • 脉冲氦离子气相色谱仪

    脉冲氦离子气相色谱仪

    原理及特点:1、基本原理以高纯氦为载气,在检测室内高压作用下产生一定强度电晕放电,放电产生的高能粒子电离色谱柱中流出物而形成可检测的电流信号。无组分流出时为载气电离产生的基流信号,被测组分流出时电流增大,电流增大的程度与组分浓度成正比,从而实现定量检测。2、仪器特点a.环境友好:没有放射源,老的HID检测器放射源因受半衰期的影响,能量随时间逐渐下降,使仪器不能保持长时间稳定,且易造成严重的环境污染。b.灵敏度高:对大多数化合物检测限在10ppb量级,与放射源氦离子化检测器(HID)灵敏度相近。c.通用型:原则上可以检测除氖气以外所有物质,根据实际需要,选用不同色谱柱可以测定多种高纯气中多种杂质气体成分,还可以配接毛细管柱,扩大分离效能,检测更多种成分。d.安全性好:与火焰离子化检测器(FID)相比,只需要一种气体,它没有明火,不需要氢气,安全性高。e.多模式工作:一个检测器可以实现放光离子化、电子捕获等工作模式,相当于多个检测器,既有通用型又有选择型。 简介:现代工业的发展离不开检测手段的进步,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]一直是工业界、科学研究领域中主要的分析方法之一,它已经广泛应用于化学化工、生物医药、材料科学、环境工程等各个领域。检测器是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的核心部件,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的发展是以[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测方法为中心展开的。据报道现有[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器约50种之多。随着高技术工业的发展,对分析任务的要求也越来越高,对于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]来说就是要求其具有更高的灵敏度、精度和稳定性。例如半导体工业的发展要求有极高纯度的气体,就需要有高灵敏度的色谱仪来检测气体中的痕量杂质;环境监测方面要求样品不用预先浓缩可以直接测定痕量有毒有害的农药组分等。脉冲氦放电离子化检测器是以氦气高压放电后产生的高能粒子作为离子化源,此离子化源与被测组分或参杂气作用使其产生电离而实现检测。脉冲放电离子化源可以替代传统氦离子化检测器和电子俘获检测器中有害的放射源,而且可作为激光发射光谱的能源的制成元素选择检测器。这类检测器的出现可以认为是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的离子化检测器和发射光谱检测器的离子化源或光激发源的重大革新。它具有通用、灵敏度高、不需要放射源、非破坏性、没有明火等特点。1996年由VICI公司首次推出了商品化仪器,其优点正大逐渐被业界人士所认可,该技术获得了美国R&D 100 Award。国外现在配备这种检测器的色谱仪已经开始取代老的放射源式氦离子化色谱仪,VICI公司2003年的一份报告提到该公司已全球有2000多个用户.由于这种色谱仪集通用、高灵敏度、线性范围宽的三大特点于一身,它几乎可以适用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]应用的所有领域。特别是既需要热导的通用性,又需要氢气火焰的高灵敏度时,脉冲氦放电离子化检测器是不二的选择。例如该产品可用于高纯气体杂质分析、烟气分析、残留农药检测、大气中的甲醛和氟里昂检测等半导体工业、环保、农业领域;它还是科研机构首选的色谱仪,因为一台这样的色谱可以代替配有多种检测器或多台单检器色谱,既节省费用又节省实验室空间。氢火焰检测器是最近30年来除热导池外用量最大的检测器。这种色谱可以广范用于石化、炼没行业。但是由于氢火焰色谱需要氢气、空气、氮气或氦气三种气体,而且工作环境中有氢气和明火存在,这就造成了潜在的危险,尤其是在石化、炼油行业。而氦放电离子化检测器不需要氢气作载气,也没有明火,而且所以它是氢火焰检测器的理想替代品。目前此类色谱仪完全进口。每台售价格3-4万美元,我所研制的GC9890H氦离子[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]填补了我国的仪器的一项空白。随着我国经济发展,工业、科研、环保等方面的要求也会不断提高,传统色谱的换代也是势在必行。 [img]http://ng1.17img.cn/bbsfiles/images/2006/03/200603070955_14578_1305730_3.jpg[/img]

  • 氢火焰离子化检测器(FID

    氢火焰离子化检测器(FID) 氢火焰离子化检测器(flame ionization detector,FID)简称氢焰检测器,是使用最广泛的检测器。系利用H2在O2中燃烧生成火焰,当样品成分在火焰中产生离子(离子化)时,于电场作用下形成离子流,收集于电极成为电流而加以检测。电流的大小与离子数成正比,可用于检测绝大多数有机化合物,并可检测ng/mL级痕量物质,易于进行痕量有机物的分析。它具有结构简单、灵敏度高(约克分析物/秒)、响应快、线性范围宽(约)、选择性好、低干扰性、坚固易于使用等优点。

  • 氢火焰离子化检测器(FID)

    氢火焰离子化检测器(FID) 氢火焰离子化检测器(flame ionization detector,FID)简称氢焰检测器,是使用最广泛的检测器。系利用H2在O2中燃烧生成火焰,当样品成分在火焰中产生离子(离子化)时,于电场作用下形成离子流,收集于电极成为电流而加以检测。电流的大小与离子数成正比,可用于检测绝大多数有机化合物,并可检测ng/mL级痕量物质,易于进行痕量有机物的分析。它具有结构简单、灵敏度高(约克分析物/秒)、响应快、线性范围宽(约)、选择性好、低干扰性、坚固易于使用等优点。

  • 敞开式离子化质谱技术在中草药研究中的应用(二)

    ⒉敞开式离子化质谱技术在中草药研究中的应用建立一种新的方法,能够对中草药中的药效成分和杂质进行分析,这对于中草药的质量评价和质量控制有重要意义。敞开式离子化质谱技术的发展为中草药分析提供了一种快速、直接的手段。本文综述了不同类型敞开式离子化质谱在中草药分析中的应用,并对典型分析案例加以讨论。⑴直接电离离子源直接电离离子源是基于电喷雾原理的直接电离敞开式离子化质谱技术,将样品组织中分析物直接电离进行质谱分析。这项技术快速、直接、实时、原位,无需样品前处理,适用于中药材直接分析。主要应用技术包括:直接电离(Direct ionization)、组织喷雾电离(Tissue spray)、叶片喷雾(Leaf spray)、直接植物喷雾(Direct plant spray)场致直接电离(Field-induced DI)、内部萃取电喷雾电离(Internal extractive electrospray ionization mass spectrometry,iEESI)等。虽然这些技术的名称不同,但它们的原理和分析策略是相似的,即,将样品本身作为固体基质,应用溶剂和高电压使分析物溶解或萃取到溶剂中,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]分析物分子在高电场作用下直接电离、喷雾、产生带电液滴和离子进行质谱分析。姚钟平课题组在固体基质下的电喷雾离子化机理与应用方面做了大量的研究工作。固体基质电喷雾电离是将中草药的粉末、混悬液、提取液附着于固体基质上用于直接电离分析,可用的固体基质包括:纯金属探针、纸三角、木片、铝箔、[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头等。因铝箔具有惰性、不渗透性、相对刚性等特点,可以折叠承载溶剂,对粉末样品有目的性的提取,在敞开式的环境下进行电喷雾质谱分析。铝箔电喷雾质谱已经成功应用于西洋参和附子等中药粉末样品中主要成分的测定。[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头模式的分析是将[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头与质谱进样器和进样泵连接,在线提取进样器头中的中药粉末,加以高电压使带电有机溶剂通过中药粉末将分析物提取出来后电离,经由质谱分析。这种[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头模式的分析已成功应用于人参、西洋参和三七中皂苷类成分、南、北五味子中木脂素类成分和多种药材中生物碱类成分的测定。⑵直接解吸电离离子源自DESI问世以来,其在中草药分析中的应用已被陆续报道。采用的主要方式包括:分析物的表面解吸电离、反应直接解吸电离、分析物的表面成像、薄层色谱与直接解吸电离质谱联用等,其中应用最广泛的是分析物的表面解吸电离,无需中药材样品的前处理,可直接分析。DAPCI是应用大气压电晕放电从化学试剂中产生电子、质子、亚稳态原子、水合氢离子和质子化溶剂离子,去解吸电离样品表面的分析物,进行质谱分析,主要用于分析低分子质量的挥发性或半挥发性化合物。已报道的研究有南、北五味子中萜品烯类成分和人参、红参中皂苷类成分的分析。DCBI是将高直流电压加在尖针上引发氦原子电晕放电,在电晕针附近产生激发态离子,与分析物在样品表面发生反应,产生单电荷分析物离子,进行质谱分析。应用DCBI分析中草药中低极性成分是极具挑战性的。为了解决这一难点,文献报道了一种设计方案,将反应试剂(饱和氢氧化钠与甲醇溶液,3:7,V/V)加入样品中以提高DCBI的电离效率,并将该方法成功应用于6种中药材中生物碱的测定,并将其与TLC联用测定生物碱的含量。⑶解吸后电离离子源DART-MS是在中草药分析中应用较为广泛的一种敞开式离子化质谱技术,其离子源目前已有商品化的产品。DART-MS的主要分析策略包括:分析物的表面解吸电离,将样品置于DART源与质谱进口 粉末样品的分析,将填充样品的玻璃毛细管(棒)置于DART源加热的气体束中电离 液态样品分析,将样品滴在熔点管(浸管)、金属筛网(不锈钢金属网格)上面,置于DART源与质谱进口之间 TLC与DART-MS联用分析,是将化合物在薄层板上分离后,将薄层板置于DART源与质谱进口之间,分析物经加热气体的热解吸附,通过离子-分子反应使分析物电离再引入质谱进行分析。EESI和nano-EESI是基于电喷雾电离的敞开式离子化质谱技术,发明最初主要被应用于液态和气态样品分析,被分析物从溶[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]或[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]样品中被萃取出来,经由电喷雾电离产生离子进行质谱分析。陈焕文课题组将Nano-EESI-MS技术成功应用于人参中人参皂苷的测定。将激光解吸或消融与电喷雾结合的敞开式离子化技术(LAESI)适用于固体样品分析,在中草药分析中的应用主要有:孔雀草根、茎、叶中的成分分析和鼠尾草叶中萜类成分的测定。将敞开式离子化技术与光致电离原理相结合,应用于中草药研究中,主要有两种方式:解吸大气压化学电离(DAPPI)和激光消融大气压光致电离(LAAPPI)。这两种方式可以使样品表面非极性和中性分析物有效电离进行质谱分析,另外,这两种方式还具有表面成像功能,例如,DAPPI-MS和LAAPPI-MS技术在鼠尾草叶成分表面成像研究中的应用,以及枳壳叶中主要药效成分的DAPPI-MS分析等。等离子体辅助激光解吸质谱(PALDI-MS)已被成功用来研究黄芩中黄芩素和汉黄芩素成像,结果显示,此成分集中分布于根的表皮维管束边缘。⑷在中草药质量评价和质量控制中的应用随着敞开式离子化质谱技术的不断发展,其在中草药质量快速评价和控制中的应用日益广泛。敞开式离子化质谱指纹分析方法能够给出中草药成分的整体化学轮廓,可用于评价中草药质量的稳定性、追溯基源、鉴别真伪。应用敞开式离子化质谱方法评价和控制中草药质量,首先要选择一种适合的敞开式离子化技术,建立指纹图谱分析方法,进而对样品进行分析,将获得的数据采用多变量统计分析方法处理,例如主成分分析(PCA)、偏最小二乘判别分析(PLS-DA)、聚类分析(HCA)等。目前,应用DART-MS技术结合多种统计分析方法,成功区分了蒌叶的不同栽培品种 区分了曼陀罗、萝芙木、荜澄茄以及伞形科中药的不同品种,并鉴定了其中标志性化学成分 区分了不同来源的当归 鉴定了川乌中标志性化学成分,并区分了其炮制程度的不同。将DAPCI-MS技术结合PCA分析应用于南、北五味子研究,成功区分了不同栽培品种和野生品种,并区分了不同炮制品种。应用Wooden-tipESI-MS结合PCA和PLS-DA技术,鉴定了川贝母粉末的品种,并区分了其中掺伪品。⑸本实验室的研究工作中药成分的确认和定量分析是近年来AIMS的重要发展方向之一,本实验室选用商品化的DART为离子源,开发的方法具有较强的可重复性和实际应用价值。研究内容主要包括5个方面。①中药的快速分析:研究了8种中药的化学成分,实现了生物碱类、黄酮类和部分人参皂苷的快速、直接分析 并对DART的电离机制进行了较深入的讨论 ②中药成分的DART定量分析:针对中药延胡索的功效成分延胡索甲素和乙素进行DART定量分析,利用甲基化衍生和氘代内标实现了人参皂苷的DART定量分析 ③对DART技术不易电离成分的分析:本实验室首次采用瞬时衍生化试剂四甲基氢氧化铵对皂苷和寡糖类成分进行DART源内的瞬时甲基化,通过甲基化衍生增加皂苷成分的挥发性,生成铵加合物离子,实现了多羟基化合物(如人参皂苷和寡糖)的DART分析检测。其中,四甲基氢氧化铵不仅发挥了衍生化的作用,同时还作为辅助电离试剂增强了皂苷成分在DART中的灵敏度[62]。因为该反应属于自由基反应,反应控制难度较大,重复性还有待提高 ④DART用于农药残留的检测:针对100余种农残成分开展了DART快速检测研究,发现多种农药成分在DART电离过程中不仅有加合离子(离子-分子反应产物),还产生碎片(过剩能量产生),此外,实验发现有机磷农药会发生氧硫交换的氧化反应,并对其反应机制进行了深入探讨 ⑤开展DART电离机理研究:研究发现,不同的工作气体(氦气、氩气、氮气等)因其不同的电离能和氮气的振动自由度影响,使得其在电离过程中展现出不同的特性,虽然氦气因具有更高的电离能应用范围更广,但是在某些场合下使用电离能较低的氩气和氮气(较氦气价格低廉)产生的待测化合物碎片较少,再适当引入辅助(make up)试剂可有效地提高待测物的灵敏度。经过研究发现,具有较低电离能的氟苯和丙酮等作为辅助试剂能明显的提高待测物的分析灵敏度。⒊总结与展望中药品质的安全有效主要取决于其中所含的药效成分和杂质,这就要求应用快速、可靠的分析方法来评价和控制中药材的质量。目前,多种敞开式离子化质谱技术已成功应用于多种中药中多种类型化学成分的检测,并可对多种中药的品质进行综合评价和质量控制。一般来讲,对于挥发性较好或质子亲合能较高的成分,如生物碱,黄酮类等成分,电离可以直接发生在植物组织表面附近而不需借助溶剂和其他基质。为了得到好的分析结果,对于皂苷类等组分需溶剂辅助,对于糖类组分的分析甚至需要简单的衍生化。敞开离子化源,其原理之一是被分析物周围的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]离子-分子反应,这些反应很难达到经典的密闭CI源平衡条件,因此,在实验条件控制,数据的重复性方面还存在一些困难,尚需技术本身不断完善。另外,对分析物的准确定量方法也有待开发及改进。以上这些问题需要分析化学家和质谱学家的持续关注和潜心研究,相信在不远的将来,敞开式离子化技术与小型质谱仪器结合的分析方法能应用于中药生产的田间地头、成品药生产线、中医诊断的辅助等更多的中医药领域,为推动传统中医药的现代发展发挥更大的作用。

  • 求助离子源与curtain plate放电火花原理?

    求助各位老师,最近一台仪器在使用过程发现灵敏度降低很快,观察离子源发现喷针底端与挡锥间出现明显放电火花现象,查了一下电火花原理的资料,放电真的是因为挡锥上有带电荷的杂质与自身带离子化电压的喷针之间形成的电火花吗?我尝试把检测模式更换成负离子,放电消失,过一会重新调回正离子检测模式依然放电。求助这种情况的原因及解决对策,离子源前几天刚洗过,但不是我洗的不知道擦的干不干净……谢谢![img]https://ng1.17img.cn/bbsfiles/images/2021/05/202105250821177346_4625_3255306_3.png[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制