当前位置: 仪器信息网 > 行业主题 > >

原子发射光谱仪常用检测

仪器信息网原子发射光谱仪常用检测专题为您提供2024年最新原子发射光谱仪常用检测价格报价、厂家品牌的相关信息, 包括原子发射光谱仪常用检测参数、型号等,不管是国产,还是进口品牌的原子发射光谱仪常用检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合原子发射光谱仪常用检测相关的耗材配件、试剂标物,还有原子发射光谱仪常用检测相关的最新资讯、资料,以及原子发射光谱仪常用检测相关的解决方案。

原子发射光谱仪常用检测相关的论坛

  • 原子发射光谱仪的构成

    [url=http://www.huaketiancheng.com/][b]原子发射光谱仪[/b][/url]是测定每种化学元素的气态原子或离子受激后所发射的特征光谱的波长及强度来确定物质中元素组成和含量。  原子发射光谱仪是根据试样中被测元素的原子或离子,在光源中被激发而产生特征辐射,通过判断这种特征辐射波长及其强度的大小,对各元素进行定性分析和定量分析的仪器。  原子发射光谱仪,是将成分复杂的光分解为光谱线的科学仪器。它密封在一个温度稳定的恒温机箱里,设计小巧,操作简易,设备的搬运和操作只要一个人就能完成。这一类仪器一般包括:光源、单色器、检测器和独处器件。原子发射光谱仪装备了超高灵敏度的光电倍增管,在全量程范围内使检测器的动态范围能鉴别出成分的最微小的差别。原子发射光谱仪有火花原子发射光谱仪,光电原子发射光谱仪,手持式光谱仪,便携式光谱仪,能量色散光谱仪,真空原子发射光谱仪等多种品种。原子发射光谱仪广泛应用于铸造、钢铁、金属回收和冶炼以及军工、航天航空、电力、化工、高等院校和商检、质检等部门。

  • 【资料】-用于气相色谱的微波等离子体原子发射光谱检测器的发展

    [size=4][B]用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的微波等离子体原子发射光谱检测器的发展[/B][/size][I]袁懋,师宇华[/I]摘要:分别介绍和评价了用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的微波诱导等离子体、电容耦合微波等离子体和微波等离子体炬等3种微波等离子体原子发射光谱检测器的发展、应用以及局限性。对用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的微波等离子体原子发射光谱检测器的发展作了展望。关键词:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url];微波等离子体;原子发射光谱;检测器自[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析法(GC)问世以来,色谱分离分析方法得到了迅速发展,已成为生命科学、石油化工、环境科学等学科必不可少的检测手段和工具。色谱法的发展在很大程度上取决于检测器的发展,每种新型检测器的提出和完善都在一定程度上提高了色谱仪器的性能,促进了色谱法更加广泛和深入的应用。如果没有合乎需要的检测器的诞生,再好的色谱分离方法也难满足社会的需求。迄今为止,已报道过的色谱检测器有100种之多。色谱分析的实践对检测器提出了更高的要求,理想的色谱检测器应具备的特点是灵敏度高、精密度好、线性范围宽、通用性或选择性强、具有形态分析的能力、操作特性优良等。传统的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器已不能满足上述要求。近30年来,由于新型光源和电子技术的发展,等离子体光源部分代替了电弧、火花和火焰等传统光源的主导地位, 为原子发射光谱分析增添了新的活力,且在作为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器方面越来越显示出它的优越性。[B]1 概述[/B][I]1. 1 等离子体和微波等离子体[/I]  在物理学上,“等离子体”是指由大量自由电子和离子组成且在整体上表现出近似为电中性的电离气体;在光谱学上,“等离子体”指的是用电学方法获得的类似于火焰的发光气体。因此,微波等离子体(MWP)包括微波诱导等离子体(MIP)、电容耦合微波等离子体(CMP)和微波等离子体炬(MPT) 。[I]1. 2 微波等离子体原子发射光谱检测器的特性[/I]  微波等离子体原子发射光谱检测器(MWP-AED)的检测原理是将微波等离子体作为激发光源,样品进入检测器(激发光源)后被原子化,然后被激发至高能态,再跃迁回到低能态,发射出原子光谱。根据这些发射光谱线的波长和强度即可对待测物进行定性和定量分析。原子发射光谱检测器有许多独特的性能和应用。选用某一特定波长通道时,它只对某一特定元素有响应,此时的检测器为选择性检测器, 并且其选择性比其他[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器(如电子俘获检测器(ECD)、火焰光度检测器(FPD)等)更好;如果选择碳或氢的波长作为通道,它就会对一系列含有这两种元素的化合物有响应而成为通用性检测器, 且对某些化合物的灵敏度高于火焰离子化检测器(FID )。  AED 对元素周期表中除了He以外的任何一种元素均可检测,属多元素检测器,并可用于测定未知化合物的经验式和分子式。对未知化合物的鉴定,AED是质谱(MS)、傅里叶变换红外光谱(FT-IR)的有力补充手段。20世纪60年代以来,随着环境科学、生物化学、农业科学、无机和有机化学等领域的发展,越来越多的检测要求得到样品中每个组分每个元素的信息。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]具有极强的分离能力,恰能满足单组分信息测定的要求。近年来AED与GC联用的应用领域更是不断扩大,成为一种十分有发展前景的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器。[B]2 微波诱导等离子体2原子发射光谱检测器的发展[/B]  由于MIP系统简单,操作方便,又是灵敏特效的元素选择性检测器,因而最受欢迎。微波耦合给等离子体工作气体的常用器件是微波谐振腔。它是一种空心的金属容器, 其形状和大小正好使微波可在其中形成一个电磁驻波。等离子体工作气体一般以连续流动方式通过谐振腔,并在谐振腔轴向插入的石英管中形成等离子体。用来获得MIP 的耦合器件的种类很多,常见的有TM010、3/4λ谐振腔和同轴表面波激励器件Surfatron等。[color=#DC143C]全文附件在5楼[/color]

  • 光源是如何影响原子发射光谱分析的误差的?

    原子发射光谱分析的误差,主要来源是光源,因此在选择光源是应尽量满足以下要求:1) 高灵敏度,随着样品中浓度微小变化,其检出的信号有较大的变化;2) 低检出限,能对微量和痕量成份进行检测;3) 良好的稳定性,试样能稳定地蒸发、原子化和激发,分析结果具有较高的精密度;4) 谱线强度与背景强度之比大(信噪比大);5) 分析速度快;6) 结构简单,容易操作,安全;7) 自吸收效应小,校准曲线的线性范围宽。 原子发射光谱仪的类型,目前常用的光源有以下两种:一类是经典光源(电弧及火花),另一类是等离子体及辉光放电光源,其中以电感耦合等离子体光源(ICP)居多,在不同的领域中得到广泛的应用。

  • 原子吸收与原子发射光谱

    近期公司有计划想采购检测金属离子的仪器。请各位大虾帮助请救,如何进行选型。业界有哪家公司的原子吸收与原子发射光谱做的质量是公认的。

  • 原子发射光谱测Al

    原子发射光谱测Al

    用原子发射光谱测Al出现这样的谱线,该怎么处理,没有强度[img=,690,920]http://ng1.17img.cn/bbsfiles/images/2017/09/201709011703_01_3244127_3.png[/img]

  • 【转帖】原子发射光谱法

    编辑词条原子发射光谱法  Atomic Emission Spectrometry  原子发射光谱法(AES),是利用物质在热激发或电激发下,每种元素的原子或离子发射特征光谱来判断物质的组成,而进行元素的定性与定量分析的方法。  原子发射光谱法是根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。   原子发射光谱法包括了三个主要的过程,即:   由光源提供能量使样品蒸发、形成气态原子、并进一步使气态原子激发而  产生光辐射;   将光源发出的复合光经单色器分解成按波长顺序排列的谱线,形成光谱;   用检测器检测光谱中谱线的波长和强度。   由于待测元素原子的能级结构不同,因此发射谱线的特征不同,据此可对样品进行定性分析;而根据待测元素原子的浓度不同,因此发射强度不同,可实现元素的定量测定。

  • 【原创】原子发射光谱仪的优点和缺点

    [font=宋体]ICP[/font][font=宋体]光谱法是上世纪60年代提出、70年代迅速发展起来的一种分析方法,它的迅速发展和广泛应用是与其克服了经典光源和原子化器的局限性分不开的,与经典光谱法相比它具有如下优点:[/font][font=宋体] 1. 因为ICP光源具有良好的原子化、激发和电离能力,所以它具有很好的检出限。对于多数元素,其检出限一般为0.1~100ng/ml。[/font][font=宋体] 2. 因为ICP光源具有良好的稳定性,所以它具有很好的精密度,当分析物含量不是很低即明显高于检出限时,其RSD一般可在1%以下,好时可在0.5%以下。[/font][font=宋体] 3. 因为ICP发射光谱法受样品基体的影响很小,所以参比样品无须进行严格的基体匹配,同时在一般情况下亦可不用内标,也不必采用添加剂,因此它具有良好的准确度。这是ICP光谱法最主要的优点之一。[/font][font=宋体] 4. ICP发射光谱法的分析校正曲线具有很宽的线性范围,在一般场合为5个数量级,好时可达6个数量级。[/font][font=宋体] 5. ICP发射光谱法具有同时或顺序多元素测定能力,特别是固体成像检测器的开发和使用及全谱直读光谱仪的商品化更增强了它的多元素同时分析的能力。[/font][font=宋体] 6. 由于ICP发射光谱法在一般情况下无须进行基体匹配且分析校正曲线具有很宽的线性范围,所以它操作简便易于掌握,特别是对于液体样品的分析。[/font][font=宋体]ICP[/font][font=宋体]发射光谱法除具有上述主要优点外目前尚有一些局限性,主要体现在以下几个方面:[/font][font=宋体] 1. 对于固体样品一般需预先转化为溶液,而这一过程往往使检出限变坏。[/font][font=宋体] 2. 因为工作时需要消耗大量Ar气,所以运转费用高。[/font][font=宋体] 3. 因目前的仪器价格尚比较高,所以前期投入比较大。[/font][font=宋体] 4. ICP 发射光谱法如果不与其他技术联用,它测出的只是样品中元素的总量,不能进行价态分析。[/font][font=宋体]ICP[/font][font=宋体]发射光谱法测定的是样品中的多种元素,它可以进行定性分析、半定量分析和定量分析,它的定性分析通常准确可靠,而且在原子光谱法中它是唯一一种可以进行定性分析的方法。[/font][font=宋体]  ICP发射光谱法的应用领域广泛,现在已普遍用于水质、环境、冶金、地质、化学制剂、石油化工、食品以及实验室服务等的样品分析中。截止到上世纪80 年代初,用ICP发射光谱法就已测定过多达78种元素,目前除惰性气体不能进行检测和元素周期表的右上方的那些难激发的非金属元素如C、N、O、F、Cl 及元素周期表中碱金属族的H、Rb、Cs的测定结果不好外,它可以分析元素周期表中的绝大多数元素。[/font][font=宋体]ICP[/font][font=宋体]发射光谱法是根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。[/font][font=宋体]  ICP发射光谱法包括了三个主要的过程,即:[/font][font=宋体]  由plasma提供能量使样品溶液蒸发、形成气态原子、并进一步使气态原子激发而产生光辐射;[/font][font=宋体]  将光源发出的复合光经单色器分解成按波长顺序排列的谱线,形成光谱;[/font][font=宋体]  用检测器检测光谱中谱线的波长和强度。[/font][font=宋体]  由于待测元素原子的能级结构不同,因此发射谱线的特征不同,据此可对样品进行定性分析;而根据待测元素原子的浓度不同,因此发射强度不同,可实现元素的定量测定。[/font][font=宋体]优点:[/font][font=宋体]1. [/font][font=宋体]多元素同时检出能力。[/font][font=宋体]可同时检测一个样品中的多种元素。一个样品一经激发,样品中各元素都各自发射出其特征谱线,可以进行分别检测而同时测定多种元素。[/font][font=宋体]2. [/font][font=宋体]分析速度快。[/font][font=宋体]试样多数不需经过化学处理就可分析,且固体、液体试样均可直接分析,同时还可多元素同时测定,若用光电直读光谱仪,则可在几分钟内同时作几十个元素的定量测定。[/font][font=宋体]3. [/font][font=宋体]选择性好。[/font][font=宋体]由于光谱的特征性强,所以对于一些化学性质极相似的元素的分析具有特别重要的意义。如铌和钽、铣和铪、十几种稀土元素的分析用其他方法都很困难,而对AES来说是毫无困难之举。[/font][font=宋体]4. [/font][font=宋体]检出限低。[/font][font=宋体]一般可达0.1~1ugg-1,绝对值可达10-8~10-9g。用电感耦合等离子体(ICP)新光源,检出限可低至 数量级。[/font][font=宋体]5. [/font][font=宋体]用ICP光源时,准确度高,标准曲线的线性范围宽,可达4~6个数量级。可同时测定高、中、低含量的不同元素。因此ICP-AES已广泛应用于各个领域之中。[/font][font=宋体]6. [/font][font=宋体]样品消耗少,适于整批样品的多组分测定,尤其是定性分析更显示出独特的优势。[/font][font=宋体]缺点:[/font][font=宋体]1. [/font][font=宋体]在经典分析中,影响谱线强度的因素较多,尤其是试样组分的影响较为显著,所以对标准参比的组分要求较高。[/font][font=宋体]2. [/font][font=宋体]含量(浓度)较大时,准确度较差。[/font][font=宋体]3. [/font][font=宋体]只能用于元素分析,不能进行结构、形态的测定。[/font][font=宋体]4. [/font][font=宋体]大多数非金属元素难以得到灵敏的光谱线。[/font][font=宋体]1 [/font][font=宋体]因为工作时需要消耗大量Ar气,所以运转费用高。[/font][font=宋体]2 [/font][font=宋体]因目前的仪器价格尚比较高,所以前期投入比较大。[/font][font=宋体]3 ICP [/font][font=宋体]发射光谱法如果不与其他技术联用,它测出的只是样品中元素的总量,不能进行价态分析。[/font][font=宋体]原子发射光谱法主要是通过热激发来获得特征辐射的,因为分析物原子可以被激发至各个激发态能级,所以在原子光谱中发射光谱的谱线最为复杂,光谱干扰非常严重。ICP发射光谱法与采用经典光源的发射光谱法相比,因为只改变了激发光源,提高的只是光源的分析性能,所以光谱干扰的问题依然存在,并且没有得到任何改善。因此在进行定量分析时往往必须考虑光谱干扰的问题,需要选择适当的校正方法。[/font][font=宋体]  发射光谱谱线多是形成光谱干扰的主要原因,但同时它也为我们提供了丰富的信息,让我们有了更多的选择余地,这也是其定性分析之所以准确可靠的原因所在。当我们进行定量分析时,如果我们选用的分析灵敏线被与其他谱线发生了重叠干扰,这时我们就可以重新选择没有被干扰的谱线。特别值得一提的是现在很 多的商品仪器已经采用了中阶梯光栅的二维色散方式,使光的色散率和谱线的分辨率得到了明显的提高,这无疑又为我们选择分析线创造了更好的条件。[/font][size=3][font=Times New Roman] [/font][/size]

  • 【资料】原子发射光谱法(共20讲)

    [B][center]原子发射光谱法:1 概述[/center][/B]原子发射光谱法,是利用物质在热激发或电激发下,每种元素的原子或离子发射特征光谱来判断物质的组成,而进行元素的定性与定量分析的方法。原子发射光谱法是光学分析法中产生与发展最早的一种。在近代各种材料的定性、定量分析中,原子发射光谱法发挥了重要作用。特别是新型光源的研制与电子技术的不断更新和应用,使原子发射光谱分析获得了新的发展,成为仪器分析中最重要的方法之一。(1)原子发射光谱分析的优点① 具有多元素同时检测能力。可同时测定一个样品中的多种元素。② 分析速度快。若利用光电直读光谱仪,可在几分钟内同时对几十种元素进行定量分析。分析试样不经化学处理,固体、液体样品都可直接测定。③ 检出限低。一般光源可达10~0.1µ g/g(或µ g/mL),绝对值可达1~0.01µ g。,电感耦合高频等离子体原子发射光谱(ICP-AES)检出限可达ng/mL级。④准确度较高。一般光源相对误差约为5%~10%,ICP-AES相对误差可达l%以下。⑤试样消耗少。⑥ ICP光源校准曲线线性范围宽可达4~6个数量级。(2)原子发射光谱分析的缺点高含量分析的准确度较差;常见的非金属元素如氧、硫、氮、卤素等谱线在远紫外区.一般的光谱仪尚无法检测;还有一些非金属元素,如P、Se、Te等,由于其激发电位高,灵敏度较低。

  • 【原创大赛】原子发射光谱仪常用检测器(PMT、CCD、CID)简介

    【原创大赛】原子发射光谱仪常用检测器(PMT、CCD、CID)简介

    仪器信息网论坛一直是我学习工作当中的一个好帮手,每次工作中遇到不懂的地方,在这里多多少少都能找到一些想要的信息,或者寻求帮助也总是能得到热心网友的回应,不胜感激。近期刚刚想了解一些有关光谱检测器的知识,在仪器信息网的论坛搜索了一下,发现有不少帖子,大家各抒己见,提供了许多宝贵的资料,于是将其中的一些信息稍作整理,同大家分享一下。光谱仪器的检测器有很多种,PMT、CPM(端窗式光电倍增管)、CCD、CID、PDA(光电二极管阵列)、InGaAs、SDD(硅漂移探测器)等,其中论坛讨论最多的主要是用于原子发射光谱仪的PMT、CCD、CID等,下文将从各个检测器的原理,优缺点以及相互间的比较做一介绍。一、基本原理及特点1.PMT(photomultiplier tube,光电倍增管)光电倍增管将微弱光信号转换成电信号的真空电子器件,可分成4个主要部分:光电阴极、电子光学输入系统、电子倍增系统、阳极。光电阴极受光照后释放出光电子,在电场作用下射向第一倍增电极(打拿极),引起电子的二次发射,激发出更多的电子,然后在电场作用下飞向下一个倍增电极,又激发出更多的电子。如此电子数不断倍增,阳极最后收集到的电子可增加 10E4~10E8倍,这使光电倍增管的灵敏度比普通光电管要高得多,可用来检测微弱光信号。http://ng1.17img.cn/bbsfiles/images/2011/12/201112131831_337911_2086240_3.jpg光电倍增管具有灵敏度高,噪声低及响应速度快的特点,所以被广泛地应用在许多光学仪器中作为检测器。PMT的寿命是比较长的,电子管真空度越高寿命就越长。虽然光电倍增管有许多优点,但该器件自身也有缺陷;灵敏度因强光照射(这也就是为何仪器在通电的情况下样品室盖子不能打开的原因)或因照射时间过长而降低,停止照射后又部分地恢复;鉴于光电倍增管的这种特性致使它随着使用时间的累加,灵敏度会逐渐下降(一般从长波长开始下降,俗称“红外紫移”)且噪声输出却逐渐加大,直至被弃用。我们把这种现象称为“疲乏效应”;光阴极表面各点的灵敏度不是均匀的,而是根据入射光束的输出变动而定。光电倍增管的灵敏度和工作光谱区间主要取决与于光电倍增光阴极和打拿极的光电发射材料。光电倍增管的短波响应的极限主要取决于窗的材料,而长波响应极限主要取决于阴极和打拿极材料的性能。一般用于可见-红外光谱区的光电倍增管用玻璃窗,而用于紫外光谱区的用石英窗。光阴极一般选用表面功函数低的碱金属材料,如红外谱区选用银-氧-铯阴极,可见光谱区用锑-铯或铋-银-铯阴极,而紫外谱区则采用多碱光电阴极或锑-碲阴极。http://ng1.17img.cn/bbsfiles/images/2011/12/201112141746_338132_2086240_3.jpg 滨松研制的μPMT滨松是PMT的主要供应商,至于价格,不同型号的PMT价格相差很大,几百到几万之间的都有。2010年 滨松光电开发出了全球首款可采用MEMS技术制造的小型光电倍增管“μPMT”。由于利用MEMS技术加工硅基板后,只需用2张玻璃基板封装即可,部件点数很少,因此可实现与半导体产品相当的大批量生产。原来的PMT单价为1万日元以上,但此次的μPMT“如果以量产为前提,价格可为数千日元”。当然,新生事物具体效果如何还有待考证。2.CCD(Charged Coupled Device,电荷耦合器件)CCD是一种固态检测器,由多个光敏像元组成,其中每一个光敏像元就是一个MOS(金属—氧化物—半导体)电容器。它的突出特点是以电荷作为信号,实现电荷的存的转移。因此,CCD工作过程的主要问题是信号电荷的产生、存储、传输和检测。好的CCD具有极高的电荷转移效率,一般可达0.999995,所以电荷在多次转移过程中的损失可以忽略不计。CCD的量子效率大大优于PDA和CID,在400~700nm波段优于PMT。但是,不同厂商制造的CCD在几何尺寸、制造方法、材料上有所不同,结果它们的量子效率差别较大。CCD在低温工作时,暗电流非常低,暗电流是由热生电荷载流子引起的,冷却会使热生电荷的生成速率大为降低。但是CCD的冷却温度不能太低,因为光生电荷从各检测元迁移到放大器的输出节点的能力随温度的下降而降低。CCD的简单动态范围非常大,宽达10个数量级。但在一些光谱分析中,如AES(原子发射光谱)中,实际的动态范围达不到那么大的值。一种扩展CCD动态范围的方法是根据光的强弱改变每次测量的积分时间。强信号采用短的积分时间,弱信号采用长的积分时间。这种方法测量强信号旁的弱信号非常不利,存在Blooming(溢出)的问题,特别是对于AES。通过改进CCD制作工艺生产出来的性能优秀的CCD已在不同程度上解决了这个问题。 CCD检测器可分为商用CCD检测器,还有专业CCD检测器。普通商用CCD检测器坏点较多,通过软件的插值计算,可以修正坏点,这就是市面上所谓“700万像素的CCD可以达到1000万像素的效果”,这种CCD检测器的成本比光电倍增管便宜。专业CCD检测器像素点之间的间距远小于普通的CCD,而且它不仅要求坏的像素点极少甚至没有外,一般还必须处理饱和溢出问题,所以光谱仪上用的CCD要比一般普通商业型CCD贵很多,据了解在2万美元左右。3.CID(charge injection device,电荷注入器件)CID是通过电极电压的改变使在检测单元两个电极势阱中电荷发生转移而进行读出、注入检测过程的,当电荷的转移、注入N型硅的衬底便在外电路中引起信号电流,由于它不需要将阵列检测器的电荷全部顺序输出而是直接注入单元体内衬底形成电流来读出的,因此这种方式是一种非破坏性的读出过程,具有防溢出功能。CID检测器为了保证检测器在真空紫外区有较高的灵敏度需要在器件表面涂以增敏剂,因此在此光谱区域的量子效率对增敏剂的依赖性较强。二、不同检测器之间的比较1 光电倍增管和CCDPMT光电倍增管采用电子管技术,是点(或线)测量,可在常温下测量有较好的信噪比。CCD采用半导体技术,是面扫描(分区)测量,须要深冷处理以提高信噪比数元素(全谱)。光电倍增管在分光后一次只能检测一个波长的光信号,而CCD

  • 原子荧光与原子发射光谱的区别??

    原子发射光谱和原子荧光光谱两者都是电子由基态跃迁到激发态,然后又回到基态,在回的过程中发射特征谱线的光。那原子发射光谱发的光也是荧光吗?从激发态回到基态的光都是荧光吗?

  • 原子发射光谱背景

    环境检测中,当样品被光源激发时,常常同时发出一些波长范围较宽的连续辐射,形成背景叠加在线光谱上。被测样品产生背景的原因主要有如下几种:分子的辐射、谱线的扩散、离子的复合。  什么是原子发射光谱背景?其消除的方法有哪些?  环境检测中,当样品被光源激发时,常常同时发出一些波长范围较宽的连续辐射,形成芦景叠加在线光谱上。被测样品产生背景的原因主要有如下几种。  (1)分子的辐射 在光源中未解离的分子所发射的带光谱会造成背景。在电弧光源中,因空气中的N。和碳电极挥发的C能生成稳定的化合物CN分子,它在350~420nm有吸收,干扰了许多元素的灵敏线。为了避免CN的影响,可不用碳电极。  (2)谱线的扩散 有些金属元素(如锌、铝、镁、锑、铋、锡、铅等)的一些谱线是很强烈的扩散线,可在其周围的一定宽度内对其他谱线形成强烈的背景。  (3)离子的复合 放电间隙中,离子和电子复合成中性原子时,也会产生连续辐射,其范围很宽,可在整个光谱区域内形成背景。火花光源因形成离子较多,由离子复合产生的背景较强,尤其在紫外光区。  从理论上讲,背景会影响环境检测分析的准确度,应予以扣除。但在摄谱法中,因为在扣除背景的过程中,要引入附加的误差,故一般不采用扣除背景的方法,而针对产生背景的原因,尽量减弱、抑制背景,或选用不受干扰的谱线进行测定。

  • 【求助】求教原子发射光谱的两个问题

    最近,看一台原子发射光谱的说明书,产生了两个问题,望各位不吝赐教!1、原子发射光谱的激发方式有几种?2、同一种物质,在不同的激发方式下,产生的特征光谱是否相同?为什么?原子发射,老资料都归类于[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url],近十几年才逐渐从[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]中分化出来,其理论还是有许多相通的,我就是想进一步把它搞清楚,希望大家能随手把我解决下,不胜感谢!

  • 原子发射光谱仪检验表单

    原子发射光谱仪内校规程的检定记录[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=24634]ICP-AES检定表单[/url][color=red]【由于该附件或图片违规,已被版主删除】[/color]

  • 火花源/电弧原子发射光谱分析技术考核与培训大纲

    火花源/电弧原子发射光谱分析技术考核与培训大纲1 总则1.1 目标 熟悉火花源/ 电弧原子发射光谱(SPARK/ARC-AES )分析技术基本概念及基础理论知识;了解 SPARK/ARC-AES 光谱仪组成结构及工作原理;具备SPARK/ARC-AES 光谱仪的实际操作能力;掌握SPARK/ARC-AES 分析技术在相关领域的应用。1.2 适用范围 本大纲适用于对金属固体样品进行直接分析的火花源/ 电弧原子发射光谱分析技术的考核与培训。适用仪器包括检测器为光电倍增管或CCD 的各类固定式、移动式火花源/电弧原子发射光谱仪。1.3 应具备的基础知识和技能1.3.1 通用基础 具备分析化学的基础知识。1.3.2 分析测试基本操作 具备分析化学实验的基本操作能力,具备实验室一般仪器和设备的操作能力。1.3.3 数据处理基础知识 具备数据统计处理和误差理论的基础知识。

  • 【原创】【原子发射光谱仪的组成及各部分功用】

    原子发射光谱仪的基本组成应包括:激发光源、摄谱仪(含分光系统及照相系统)、映谱仪(就是光谱投影仪)、测黑度计(也叫测微光度计)。 (1)激发光源:提供试样蒸发、原子化,激发所需要的能量以便产生光辐射; (2)摄谱仪:用来观察光源产生的光辐射并可进一步将其分解为按一定次序排列的光谱的装置; (3)映谱仪:当将通过洗相处理好的谱片(感光板)放在映谱仪上时,映谱仪即将该谱片放大20±0.25倍,以便进行谱线的观察、完成光谱定性分析。 (4)测黑度计:用来测量感光板上所记录的谱线黑度(即深浅程度)的装置,它是光谱定量分析不可或缺的设备。

  • 【原创】【原子发射光谱分析法的基本原理】

    原子发射光谱分析(摄谱法)的一般过程是:使试样从外界能量的作用下转变成气态原子并使原子外层电子进一步被激发;当被激发的电子从较高能级跃迁到较低的能级时,原子将释放出多余的能量从而产生光辐射——特征发射谱线;所产生的光辐射经过摄谱仪器进行色散(分光)、按波长长短顺序记录在感光板上;经暗室处理后,借助光谱投影仪就可观察到有规则的谱线条即光谱图;根据所得光谱图进行元素定性鉴定或定量分析。 当采用原子发射光谱的摄谱分析法时,首先要将样品蒸发、原子化、激发以便产生光辐射,为此要有一激发光源;然后要将光辐射(混合光)色散开以便展开成谱并用相板加以记录得到光谱图,为此要有一摄谱仪;对所得到的光谱图进行波长鉴别以完成定性分析,需要一映谱仪,对黑度测量以完成定量分析,需要一测黑度计。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制