当前位置: 仪器信息网 > 行业主题 > >

超声波液位显示仪工作原理

仪器信息网超声波液位显示仪工作原理专题为您提供2024年最新超声波液位显示仪工作原理价格报价、厂家品牌的相关信息, 包括超声波液位显示仪工作原理参数、型号等,不管是国产,还是进口品牌的超声波液位显示仪工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超声波液位显示仪工作原理相关的耗材配件、试剂标物,还有超声波液位显示仪工作原理相关的最新资讯、资料,以及超声波液位显示仪工作原理相关的解决方案。

超声波液位显示仪工作原理相关的论坛

  • 超声波液位计工作原理

    大家知道在工业生产装置的检测和控制中,了解所需的仪器仪表工作原理,对选取合适的测量调节仪表是非常有帮助的.在当前工矿企业的物位测量控制中,除了选用各种浮球液位计,压力变送器和差压变送器等等检测仪表外也常常选用超声波液位计那么它是如何工作的呢?一般来说我们把声波频率超过20kHz的声波称为超声波,超声波是机械波的一种,即是机械振动在弹性介质中的一种传播过程,它的特征是频率高、波长短、绕射现象小,另外方向性好,能够成为射线而定向传播。超声波在液体、固体中衰减很小,因而穿透能力强,尤其是在对光不透明的固体中,超声波可穿透几十米的长度,碰到杂质或界面就会有显著的反射,超声波物位计就是利用它的这一原理而工作的。在超声波检测技术中,不管那种超声波仪器,都必须把电能转换超声波发射出去,再接收回来变换成电信号,完成这项功能的装置就叫超声波换能器,也被称作为探头。将超声波换能器置于被测液体或物位上方,向下发射超声波,超声波穿过空气介质,在遇到水面或物体介面时被反射回来,然后被换能器所接收并转换为电信号,电子检测部分检测到这一信号后将其变成物位信号进行显示并输出标准信号,供其它仪表或控制装置使用.由超声波在介质中传播原理可知,若介质压力、温度、密度、湿度等条件一定,则超声波在该介质中传播速度是一个常数。因此,当测量出超声波由发射到遇到物面或液面反射被接收所需要的时间,则可换算出超声波通过的路程,从而间接地测量出物位或者液位数据。超声波液位计可采用二线制、三线制或四线制技术,二线制为:供电与信号输出共用;三线制为:供电回路和信号输出回路独立,当采用直流24v供电时,可使用一根3芯电缆线,供电负端和信号输出负端共用一根芯线;四线制为:当采用交流220v供电时,或者当采用直流24v供电,要求供电回路与信号输出回路完全隔离时,应使用一根4芯电缆线。直流或交流供电,具有4~20mADC,高低位开关量输出。    量程范围:0-50米,多种形式可选,适合各种腐蚀性、化工类场合,精度高,远传信号输出,PLC系统监控。超声波物位计工作原理是由超声波换能器(探头)发出高频脉冲声波遇到被测物位(物料)表面被反射折回反射回波被换能器接收转换成电信号.声波的传播时间与声波的发出到物体表面的距离成正比.声波传输距离S与声速C和声传输时间T的关系可用公式表示:S=C×T/2.   探头部分发射出超声波,然后被液面反射,探头部分   再接收,探头到液(物)面的距离和超声波经过的时间成比例:   hb = ct2 即   距离 = 时间×声速/2   声速的温度补偿公式: 环境声速= 331.5 + 0.6×温度

  • 超声波液位传感器工作原理

    超声波液位传感器工作原理

    [font='Segoe UI'][color=#333333]超声波液位传感器是一种常用于测量液体水位的传感器。其工作原理是利用超声波的传播和反射来测量液体的高度。[/color][/font][font='Segoe UI'][color=#333333][font=Segoe UI]能点科技的超声波液位传感器检测距[/font] [font=Segoe UI]10cm-250cm ,连续实时检,RS485/UART 输出,防水等级达 IP66 ,可选带 LCD 显示屏。[/font][/color][/font][font='Segoe UI'][color=#333333]根据超声波的传播速度和反射时间,可以计算出液体的高度。传感器会测量从发射到接收到反射信号所经过的时间,然后根据声速和时间的关系,计算出液体的高度。[/color][/font][align=center][img=超声波液位传感器,690,690]https://ng1.17img.cn/bbsfiles/images/2023/07/202307141523457225_2491_4008598_3.jpg!w690x690.jpg[/img][/align][font='Segoe UI'][color=#333333]超声波[url=https://www.eptsz.com]液位传感器[/url]具有非接触式测量、高精度、稳定性好等优点。它广泛应用于各种液体储罐、水池、河流等场景中,用于实时监测液位变化。[/color][/font][font='Segoe UI'][color=#333333]安装方式需要开孔安装在水箱顶部,广泛应用于家用蓄水池、热水器、水井、水槽、工业设备、水坝、河流洪水监测等。[/color][/font][font='Segoe UI'][color=#333333][font=Segoe UI]可以检测[/font] [font=Segoe UI]各种液体[/font][font=Segoe UI](水(污水/净水),香薰液,消毒液,饮料,植物营养液,海水,油(汽油/柴油/食用油),化学试剂等)和固体(谷物,粉末,颗粒等)。[/font][/color][/font]

  • 超声波液位传感器工作原理

    超声波液位传感器工作原理

    [font=宋体][url=http://www.eptsz.com]超声波液位传感器[/url]的应用是比较广泛的,可用于家用蓄水池、热水器、水井、水槽、工业设备、水坝、河流洪水检测等。超声波传感器一般是安装在水箱顶部的,可以测试各种液体和固体(谷物、粉末、颗粒等)。[/font][font=宋体]超声波液位传感器工作原理:超声波传感器[/font]TX[font=宋体]发出超声波,遇到障碍物(液体)后被反射,被[url=http://www.eptsz.com]超声波传感器[/url][/font][font=Calibri]RX[/font][font=宋体]接收,根据[/font][font=Calibri]Time-OF-FLight(TOF)[/font][font=宋体]计算出障碍物的距离[/font][font=Calibri]d:[img=,582,368]https://ng1.17img.cn/bbsfiles/images/2022/06/202206080942505971_1277_4008598_3.png!w582x368.jpg[/img][font=宋体][font=宋体]超声波[url=http://www.eptsz.com]液位传感器[/url]优点:正负[/font]2mm[font=宋体]高精度测距,能适应强酸,强碱,盐,高温场合,采用给电源、传感器的所有进出线都具有防雷保护装置,故障率极低,实现了仪表的稳定及可靠性,使用集成的按键显示模块可快捷设置。[/font][/font][/font]

  • 【资料】超声波测厚仪的工作原理和设计方案

    超声波测厚仪的工作原理和设计方案超声波测厚仪按工作原理分:有共振法、干涉法及脉冲反射法等几种,由于脉冲反射法并不涉及共振机理,与被测物表面的光洁度关系不密切,所以超声波脉冲法测厚仪是最受用户欢迎的一种仪表。  1. 工作原理  超声波测厚仪主要有主机和探头两部分组成。主机电路包括发射电路、接收电路、计数显示电路三部分,由发射电路产生的高压冲击波激励探头,产生超声发射脉冲波,脉冲波经介质介面反射后被接收电路接收,通过单片机计数处理后,经液晶显示器显示厚度数值,它主要根据声波在试样中的传播速度乘以通过试样的时间的一半而得到试样的厚度。  HT系列超志波测厚仪,在采用国内外先进技术的基础上,运用单片机技术研制 的一种低功耗低下限袖珍式的智能测量仪器,不仅有测量不同材质厚度的仪器,而且有单测钢,超薄型的,同时均可配套高温测厚探头。  2. 测厚仪应用领域  由于超声波处理方便,并有良好的指向性,超声技术测量金属,非金属材料的厚度,既快又准确,无污染,尤其是在只许可一个侧面可按触的场合,更能显示其优越性,广泛用于各种板材、管材壁厚、锅炉容器壁厚及其局部腐蚀、锈蚀的情况,因此对冶金、造船、机械、化工、电力、原子能等各工业部门的产品检验,对设备安全运行及现代化管理起着主要的作用。  超声清洗与超声波测厚仪仅是超声技术应用的一部分,还有很多领域都可以应用到超声技术。比如超声波雾化、超声波焊接、超声波钻孔、超声波研磨、超声波液位计、超声波物位计、超声波抛光、超声波清洗机、超声马达等等。超声波技术将在各行各业得到越来越广泛的应用。  3. 影响测量精度的原因  (1) 覆盖层厚度大于25μm时,其误差与覆盖层厚度近似成正比;   (2) 基体金属的电导率对测量有影响,它与基体金属材料成分及热处理方法有关;   (3) 任何一种测厚仪都要求基体金属有一个临界厚度,只有大于这个厚度,测量才不会受基体金属厚度的影响;   (4) 涡流测厚仪对式样测定存在边缘效应,即对靠近式样边缘或内转角处的测量是不可靠的;   (5) 试样的曲率对测量有影响,这种影响将随曲率半径的减小明显地增大;   (6) 基体金属和覆盖层的表面粗糙度影响测量的精度,粗糙度增大,影响增大。

  • 超声波清洗机工作原理是什么?

    所谓超声波,是指人耳听不见的声波。正常人的听觉可以听到20-20000赫兹(HZ)的声波,低于20赫兹的声波称为次声波或亚声波,超过20000赫兹的声波称为超声波。那么超声波清洗机的工作原理是什么呢?下面由超声波清洗机生产厂商科洁盟为大家介绍下超声波清洗机的工作原理:  超声波清洗机原理主要是将换能器,将功率超声频源的声能,并且要转换成机械振动,通过清洗槽壁使之将槽子中的清洗液辐射到超声波。由于受到辐射的超声波,使之槽内液体中的微气泡能够在声波的作用下从而保持振动。当声压或者声强受到压力到达一定程度时候,气泡就会迅速膨胀,然后又突然闭合。在这段过程中,气泡闭合的瞬间产生冲击波,使气泡周围产生1012-1013pa的压力及局调温,这种超声波空化所产生的巨大压力能破坏不溶性污物而使他们分化于溶液中,蒸汽型空化对污垢的直接反复冲击。在超声波清洗过程中,肉眼能看见的泡并不是真空核群泡,而是空气气泡,它对空化作用产生抑制作用降低清洗效率。只有液体中的空气气泡被完全拖走,空化作用的真空核群泡才能达到最佳效果。  超声波清洗效果及相关参数:  (1).超声波频率:  超声波频率越低,在液体中产生空化越容易,作用也越强。频率高则超声波方向性强,适合于精细的物体清洗。  (2).清洗介质:  采用超声波清洗,一般有两种清洗剂:化学清洗剂和水基清洗剂。清洗介质是化学作用,而超声波清洗是物理作用,两种作用相结合,以对物体进行充分、彻底的清洗。  (3).功率密度:  超声波的功率密度越高,空化效果越强,速度越快,清洗效果越好。单对于精密的、表面光洁度甚高的物体,采用长时间的高功率密度清洗会对物体表面产生“空化”腐蚀。  (4).超声波清洗温度:  一般来说,超声波在30℃~40℃时空化效果最好。清洗剂则温度越高,作用越显著。通常实际应用超声波清洗时,采用30oС~60oС的工作温度。

  • 【转帖】超声波流量计※超声波流量计原理※超声波流量计价格

    关于便携式超声波流量计、手持式超声波流量计、超声波流量计原理以及超声波流量计价格是什么多少钱, 比如:科隆超声波流量计、多普勒超声波流量计的价位各是多少?超声波气体流量计、超音波流量计的品牌有哪些, 这些超声波流量计精度都比较高的那种。下面我们看看超声波流量计的详解吧:管段式超声波流量仪表引是以“速度差法”为原理, 测量圆管内液体流量的仪表。它采用了先进的多脉冲技术、信号数字化处理技术及纠错技术, 使流量仪表更能适应工业现场的环境, 计量更方便、经济、准确。产品达到国内外先进水平, 可广泛应用于石油、化工、冶金、电力、给排水等领域。1、智能化标准信号输出, 人机界面友好、多种二次信号输出, 供您任意选择。2、电路更优化、集成度高、功耗低、可靠性高。3、无机械传动部件不容易损坏, 免维护, 寿命长。4、独特的信号数字化处理技术, 使仪表测量信号更稳定、抗干扰能力强、计量更准确。5、管段式小管径测流经济又方便, 测量精度高手持式超声波流量计F601/G601的技术参数如下:测量测量原理:时差相关原理流速: 0.01~25 m/s分辨率: 0.025 cm/s重复性: 0.15%读数, 视应用而定精度:(流场充分发展且 径向对称)体积流量: ± 1%读数, 视应用而定± 0.5%读数, 经过标定流速: ± 0.5%读数, 视应用而定可测介质: 所有导声流体, 且气泡或固体颗粒的体积含量14h显示: 2 x 16 字符, 点阵, 带背光工作温度: -10 ~ 60℃功耗: 100000条测量量通讯接口: RS232, RS485(可选)可通讯的参数: 实测值, 记录值, 参数记录软件: FluxData(可选)功能: 下载测量值/记录, 图形显示, 格式转换操作系统: ????WindowsTM ????过程输出(可选)输出与主设备电隔离输出组数视输出类型而定. 更多信息请洽FLEXIM电流范围: (0/4-20) mA精度: 0.1%读数± 15μA有源输出: Rext 500??无源输出: Uext 24V, Rext 1k??电压范围: (0~1) V或(0~10) V精度: 0~1V: 0.1%读数± 1mV0~10V: 0.1%读数± 10mV仪表阻抗: Ri = 500??频率范围: 0~1kHz或0~10kHz集电极开路: 24 V/4mA开关量集电极开路: 24 V/4mA干簧继电器: 48 V/0.1A功能,如状态输出: 上下限, 符号变化或出错脉冲输出: 值: (0.01~1000)units宽度: (80~1000)ms过程输入(可选)输入与主设备电隔离, 最多4组输入.温度类型: Pt100, 四线制范围: -50℃~400℃分辨率: 0.1 K精度: ± (0.02K + 0.1%读数)电流范围: 有源: (0~20)mA无源: (-20~20)mA精度: 0.1%读数± 10 A有源输入: Ri = 50??无源输入: Uext 24V, Rext 1k??电压范围: (0~1) V或(0~10) V精度: 0~1V: 0.1%读数± 1mV0~10V: 0.1%读数± 10mV仪表阻抗: Ri= 1M夹装式探头

  • 【资料】超声波流量计的工作原理

    超声波流量计的工作原理  超声波流量计是运用超声波在流动的流体中传播时就载上流体流速的信息。因此通过接收到的超声波就可以检测出流体的流速,从而换算成流量。超声脉冲穿过管道从一个传感器到达另一个传感器,就像一个渡船的船夫在横渡一条河。当气体不流动时,声脉冲以相同的速度(声速,C)在两个方向上传播。如果管道中的气体有一定流速V(该流速不等于零),则顺着流动方向的声脉冲会传输得快些,而逆着流动方向的声脉冲会传输得慢些。这样,顺流传输时间tD会短些,而逆流传输时间tU会长些。这里所说的长些或短些都是与气体不流动时的传输时间相比而言;根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。超声波流量计是近十几年来随着集成电路技术迅速发展才开始应用的一种。

  • 超声波测厚仪的工作原理与应用领域

    测厚仪是基础的物性仪器之一,其中,又分为涂层测厚仪和超声波测厚仪。涂层测厚仪用来测试表面涂层的厚度,而超声波测厚仪作为一种精准度非常高的科学仪器,则可以测试多种材料的厚度和声速。[img]https://mp.toutiao.com/mp/agw/article_material/open_image/get?code=YjU4NmFlN2ExMmNkZjc2MmZiZWQxNWU5ZWI4MDliYTQsMTY1MDc4Mjg5MjYxMA==[/img][b]一、什么是超声波测厚仪[/b]超声波测厚仪是一款利用超声波测量原理,采用高速处理器、高集成芯片设计,实现便携、无损、快速、精准地测量多种材料厚度及声速的高精度测厚仪。适用于能使用超声波以一恒定速度在其内部传播,并能从其背面得到反射的各种材料厚度的测量,如钢铁、各种金属、玻璃、ABS、塑料、PVC,球墨铸铁等材质的厚度测量。[b]二、超声波测厚仪的工作原理是什么?[/b]当探头发射的超声波脉冲通过被测物体到达材料分界面时,脉冲被反射回探头,通过精准测量超声波在材料中传播的时间来确定被测材料的厚度。凡能使超声波以一恒定速度在其内部传播的各种材料均可采用此原理测量。[img]https://mp.toutiao.com/mp/agw/article_material/open_image/get?code=YWEzZTM0OWVhNzlhNjdiOTYyMjRmZGZlMTliMjkxMzIsMTY1MDc4Mjg5MjYxMA==[/img][b]三、超声波测厚仪主要用来测什么?[/b]适用于各种材料的高精度厚度测量需求,可应用于各种金属(钢铁、不锈钢、铝、铜、等)石英、玻璃、塑料等材质的被测物体厚度测量。[color=#333333]广泛应用于冶金、造船、机械、化工、电力、原子能等各工业部门的产品检验[/color]。[img]https://mp.toutiao.com/mp/agw/article_material/open_image/get?code=OTkxZjA0NzM2ODgwZDBmZGMwM2RmNWEzMWI1OGRlYTQsMTY1MDc4Mjg5MjYxMA==[/img]英徕铂超声波测厚仪几乎适合于所有材质的厚度测量:各种金属,玻璃,塑料等材料;仪器精美,小巧,采用2.3寸彩屏显示,手持式携带方便,适合现场检测;测量精度高,测量范围大,单一探头全量程。除此之外,它还具有以下特点:? 测量模式:标准模式/超薄模式(ELB-UTG500CB专用)? 测量模式:标准模式/穿透模式(ELB-UTG500CT专用)? 测量精度高,测量范围大,单一探头全量程? 中英文双语言版本? 蓝牙互联数据传输功能(适用于蓝牙版测厚仪)? 校准:标准块校准,声速校准,可通过已知厚度求声速? 手动关机和自动关机两种,用户可随意选择;? 内置7种常用材料的声速,并可编辑,方便用户使用;? 人性化数据保存模式:大容量存储,并且可分组保存数据,可存储10组数据,每组可保存200个数据,可存储2000个数据? 大容量存储、查看、删除操作,方便简单? 多探头选择使用,高温环境测量可选配高温探头耐高温(300℃)[img]https://mp.toutiao.com/mp/agw/article_material/open_image/get?code=ZjEyYzJlYzhkNzkxMzJlOWRmMWI4OWVlYzMxYWFjMzksMTY1MDc4Mjg5MjYxMA==[/img]【英徕铂】英徕铂ENLAB,物性检测仪器品牌,为国内市场提供数百种物性检测仪器,为科研工作者提供检测仪器解决方案与服务。

  • 超声波流量计的原理及安装方法

    SY系列 超声波流量计 采用的是时差法测量原理。它的高可靠性是积8年的制造经验加上博采众长,通过不断完善提高得到的;是由于采用了最新的诸如Philips、Tl、美国国家半导体公司的新型高性能集成元器件加上先进的SMD贴装器件生产线大规模生产实现的。 40皮秒(40×10 秒)的时间分辨率,0.5%的线性度。 低电压多脉冲原理,保证可靠运行。 两路0.1%精度的模拟输入,接入温度传感器电流信号,即变成热量计! 实现中文显示,软件开放式设计,所有参数用户皆可设定;硬件元件参数无关化设计,无需调整即能确保每一台流量计具有完全相同的性能。 主机机型有:便携式、壁挂式、标准盘装式、手持式、一体式。 传感器具有:方便安装的外缚式、可靠工作的插入式、高可靠高精度的标准管段式、超高精度的标准型π管段式。   SY系列超声波流量计的安装应从几个方面来考虑:(1)详细了解现场情况;(2) 确定安装方式;(3) 选择安装管道;(4)计算安装距离, 确定探头位置; (5)管道表面处理;(6)探头安装及接线。在检测过程中, 应该注意到:  一、换能器位置的选择  SY系列超声波流量计要求管道内液体必须为满管流。对安装时前、后直管段的要求为至少满足前10D后5D(D为管道直径)。若上、下游侧安装有弯头、渐扩管、渐缩管等阻流件,应将超声波流量计上、下游直管段延长到(25~50)D。许多企业在安装流量计时,并未考虑到其后续检测, 未留足够长的直管段或安装在泵/阀门附近,导致阀门和焊缝产生的紊流,给流量计检测带来一定的麻烦。此时一般需要整改后检测,并尽量远离阀门和焊缝,否则因流场不稳定,会造成数据偏差或准确度变大。    管道的顶部易积聚气体,底部易沉淀杂物,气体、杂物和焊缝都会使超声波信号发生非正常的反射,从而影响超声波流量计的测量准确度,甚至造成超声波流量计无法正常工作,检测过程中要考虑这些因素的存在。  二、换能器的安装  在安装前需要了解流量计安装管道的外径、材质(包括铸铁、不锈钢、PVC、铝等)、壁厚、衬里及衬里厚度等参数,根据主机的提示找到相应检测点。进行管道打磨(有保温层的预先需去除),检测点必须磨光、平正,有一定半径弧度和换能器吻合,并涂上耦合剂进行啮合。  根据超声波流量计的测量原理, 换能器的安装是影响测量准确度的关键因素。当采用V法安装时,两个换能器的水平位置较易保证。当采用Z法安装时,应当用坐标纸包裹管道,再沿中线对折,然后将两个换能器的水平中心对准坐标纸两端进行安装, 这样可以保证换能器发射的声波信号穿过管道轴线,减小对测量准确度的影响。  但是,仍需注意的是,由于现场工艺条件变化较大,在线实流检定的每个流量点应在检定流量、压力、温度变化较小的范围内完成。由于受现场工艺条件的限制,很难完成流量计全量程范围检定。超声波流量计一般按口径范围配备多组探头, 不同的探头适用不同的口径段, 探头之间不能简单互换, 因此检定时应注意口径范围。同时,便携式超声波流量计在使用过程中应避开强电磁和声波信号的干扰。高压线下方、变频器旁、车辆密集的马路旁, 都会对超声波流量计的测量准确度产生影响,仪表电源应避免引起电压波动,换能器与仪表之间的连线应用屏蔽线。

  • 超声波负离子加湿器工作原理

    新一代的超声波加湿设备采用先进的集成式机芯;一体模块式设计;稳定的双水位自动控制,有效的提高了设备的雾化加湿性能,使雾化颗粒均匀在5微米左右,使单位加湿量的能耗指标降至最低。是一种空气加湿的仪器。 利用水槽底部换能器(超声波振子)将电能转换成机械能,向水中发射1.7MHz超声波。水表面在空化效应作用下产生直径为3-5μm的超微粒子。水雾粒子与流动空气进行热湿交换,达到等焓加湿空气的目的。 超声波负离子加湿器是国内外应用较广的一种加湿方式。超声波系列加湿器,在工作时无机械驱动、无噪音干扰、无污染,故障率低、能耗低、雾化效率高、维护简便、可靠。具有护肤美容、康体健身、净化环境等多种用途,是高效、可靠、实用的超声波空气质量调节加湿设备。既可以较大空间进行均匀加湿,也可对特殊空间进行局部温度补偿,具有较高的使用灵活性。

  • 求助关于超声波液位计技术方面问题!

    1、外测超声波液位计的传感器封装工艺;我公司自主研发的外测超声波液位计传感器探头的封装技术目前依然是原始的手工封装,对产品的性能有比较大的影响。希望能有对超声波有丰富经验的专家,对我公司的产品进行技术指导或者与我公司联合攻关。2、外贴式超声波液位开关的工作原理优化;我公司自主研发的外贴式超声波液位开关的工作原理、测量方法不能完全满足实际测量需要,希望有这方面研究的专家能提供技术指导或者与我公司联合攻关。

  • 【分享】超声波流量计的基本原理及类型

    超声波在流动的流体中传播时就载上流体流速的信息。因此通过接收到的超声波就可以检测出流体的流速,从而换算成流量。根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。起声波流量计是近十几年来随着集成电路技术迅速发展才开始应用的一种。 超声波流量计由超声波换能器、电子线路及流量显示和累积系统三部分组成。超声波发射换能器将电能转换为超声波能量,并将其发射到被测流体中,接收器接收到的超声波信号,经电子线路放大并转换为代表流量的电信号供给显示和积算仪表进行显示和积算。这样就实现了流量的检测和显示。 超声波流量计的电子线路包括发射、接收、信号处理和显示电路。测得的瞬时流量和累积流量值用数字量或模拟量显示。 根据对信号检测的原理,目前超声波流量计大致可分传播速度差法 ( 包括:直接时差法、时差法、相位差法、频差法 ) 波束偏移法、多普勒法、相关法、空间滤波法及噪声法等类型,如图所示。其中以噪声法原理及结构最简单,便于测量和携带,价格便宜但准确度较低,适于在流量测量准确度要求不高的场合使用。由于直接时差法、时差法、频差法和相位差法的基本原理都是通过测量超声波脉冲顺流和逆流传报时速度之差来反映流体的流速的,故又统称为传播速度差法。其中频差法和时差法克服了声速随流体温度变化带来的误差,准确度较高,所以被广泛采用。按照换能器的配置方法不同,传播速度差拨又分为: Z 法 ( 透过法 ) 、 V 法 ( 反射法 ) 、 X 法 ( 交叉法 ) 等。波束偏移法是利用超声波束在流体中的传播方向随流体流速变化而产生偏移来反映流体流速的,低流速时,灵敏度很低适用性不大。 多普勒法是利用声学多普勒原理,通过测量不均匀流体中散射体散射的超声波多普勒频移来确定流体流量的,适用于含悬浮颗粒、气泡等流体流量测量。相关法是利用相关技术测量流量,原理上,此法的测量准确度与流体中的声速无关,因而与流体温度,浓度等无关,因而测量准确度高,适用范围广。但相关器价格贵,线路比较复杂。在微处理机普及应用后,这个缺点可以克服。噪声法 ( 听音法 ) 是利用管道内流体流动时产生的噪声与流体的流速有关的原理,通过检测噪声表示流速或流量值。其方法简单,设备价格便宜,但准确度低。 测量时应根据被测流体性质.流速分布情况、管路安装地点以及对测量准确度的要求等因素进行选择。一般说来由于工业生产中工质的温度常不能保持恒定,故多采用频差法及时差法。只有在管径很大时才采用直接时差法。对换能器安装方法的选择原则一般是:当流体沿管轴平行流动时,选用 Z 法;当流动方向与管铀不平行或管路安装地点使换能器安装间隔受到限制时,采用 V 法或 X 法。当流场分布不均匀而表前直管段又较短时,也可采用多声道 ( 例如双声道或四声道 ) 来克服流速扰动带来的流量测量误差。多普勒法适于测量两相流,可避免常规仪表由悬浮粒或气泡造成的堵塞、磨损、附着而不能运行的弊病,因而得以迅速发展。随着工业的发展及节能工作的开展,煤油混合 (COM) 、煤水泥合 (CWM) 燃料的输送和应用以及燃料油加水助燃等节能方法的发展,都为多普勒超声波流量计应用开辟广阔前景。

  • 超声波探伤仪的设计原理及功能简介

    超声波探伤仪的种类繁多,但在实际的探伤过程,脉冲反射式超声波探伤仪应用的最为广泛。由反射定理我们知道,超声波在两种不同声阻抗的介质的交界面上将会发生反射,一般在均匀的材料中,缺陷的存在将造成材料的不连续,这种不连续往往又造成声阻抗的不一致,反射回来的能量的大小与交界面两边介质声阻抗的差异和交界面的取向、大小有关。脉冲反射式超声波探伤仪就是根据这个原理设计的。 超声波探伤仪比X射线探伤具有较高的探伤灵敏度、周期短、成本低、灵活方便、效率高,对人体无害等优点。但是超声波探伤仪对工作表面要求平滑、要求富有经验的检验人员才能辨别缺陷种类、对缺陷没有直观性。超声波探伤仪的方向性好、频率越高、方向性越好,以很窄的波束向介质中辐射,易于确定缺陷的位置。超声波在介质中传播时,在不同质界面上具有反射的特性,超声波在缺陷上反射回来,探伤仪可将反射波显示出来;适合于厚度较大的零件检验。 超声波探伤仪适用于材料金属、非金属等,焊接件、锻件、铸件等道路建设、水坝建设、桥梁建设、机场建设等需要缺陷检测和质量控制的领域,超声波探伤仪广泛地应用在也广泛应用于航空航天、铁路交通、锅炉压力容器等领域的在役安全检查与寿命评估。

  • 超声波清洗机的工作原理介绍

    超声波清洗机原理主要是将换能器,将功率超声频源的声能,并且要转换成机械振动,通过清洗槽壁使之将槽子中的清洗液辐射到超声波。由于受到辐射的超声波,使之槽内液体中的微气泡能够在声波的作用下从而保持振动。    当声压或者声强受到压力到达一定程度时候,气泡就会迅速膨胀,然后又突然闭合。在这段过程中,气泡闭合的瞬间产生冲击波,使气泡周围产生1012-1013pa的压力及局调温,这种超声波空化所产生的巨大压力能破坏不溶性污物而使他们分化于溶液中,蒸汽型空化对污垢的直接反复冲击。

  • 制药级超声波清洗机工作原理

    制药级超声波清洗机工作原理

    [font=微软雅黑]制药级超声波清洗机主要对瓶子、盖子、标签去除装置、排气装置、处理器皿、处理器具、充填装置管道等进行清洗。制药级超声波清洗机工作原理:利用空化渗透力强的机械振动,冲击工件表面并结合清洗剂的改变污渍分子结构,当换能效率达到最大,超声波的物理力大于污渍的吸附力,从而达到精洗的作用。[img=,690,293]https://ng1.17img.cn/bbsfiles/images/2022/08/202208081737241597_394_5792110_3.jpg!w690x293.jpg[/img][/font][font=微软雅黑][font=微软雅黑]制药级超声波清洗机还能对反应釜进行有效清洗。通过循环装置将清洗液在设备内循环流动,洗去污垢。清洗工工艺为:清洗剂超声波粗洗、市水高压喷淋漂洗和热风烘干。待清洗槽水温达到[/font][font=微软雅黑]40度,将装有反应釜的清洗篮放入到超声波清洗槽中,历时一分钟,转入高压喷淋清洗槽中,将150-200MPa的高压水通过喷头冲刷污垢,一分钟后取出,放入到烘干槽中干燥处理。将150-200MPa的高压水通过喷头冲刷污垢。[/font][/font][font=微软雅黑] [font=微软雅黑]制药级超声波清洗机结构简单。由发生器、换能器和清洗槽组成。特殊的发生器具有频率跟踪功能,使负载变化与超声波一致,在不同的工况条件下,频率自动调整,使换能器始终在最佳状态下,换能达到最大,[/font][font=微软雅黑]PLC液晶屏人机界面。换能器采用进口压电陶瓷片组合而成,进口胶接剂粘接和焊钉双重固定方式,延长换能器使用寿命。清洗槽采用2mm厚SUS304不绣钢材质制成,耐酸碱耐磨。[/font][/font][img=,690,694]https://ng1.17img.cn/bbsfiles/images/2022/08/202208081738211741_2686_5792110_3.png!w690x694.jpg[/img][font=微软雅黑]制药级超声波清洗机不会对工件产生腐蚀,对污垢可以有效清洗,用时短。可以根据用户的实际需求定制。[/font]

  • 超声波液位计和雷达液位计的区别

    我们一般把声波频率超过20kHz的声波称为超声波,超声波是机械波的一种,即是机械振动在弹性介质中的一种传播过程,它的特征是频率高、波长短、绕射现象小,另外方向性好,能够成为射线而定向传播。超声波在液体、固体中衰减很小,因而穿透能力强,尤其是在对光不透明的固体中,超声波可穿透几十米的长度,碰到杂质或界面就会有显著的反射,超声波测量物位就是利用了它的这一特征。 在超声波检测技术中,不管那种超声波仪器,都必须把电能转换超声波发射出去,再接收回来变换成电信号,完成这项功能的装置就叫超声波换能器,也称探头。将超声波换能器置于被测液体上方,向下发射超声波,超声波穿过空气介质,在遇到水面时被反射回来,又被换能器所接收并转换为电信号,电子检测部分检测到这一信号后将其变成液位信号进行显示并输出。 由超声波在介质中传播原理可知,若介质压力、温度、密度、湿度等条件一定,则超声波在该介质中传播速度是一个常数。因此,当测出超声波由发射到遇到液面反射被接收所需要的时间,则可换算出超声波通过的路程,即得到了液位的数据。 超声波有盲区,安装时必须计算预留出传感器安装位置与测量液体之间的距离。 雷达液位计采用发射—反射—接收的工作模式。雷达液位计的天线发射出电磁波,雷达波以光速运行。这些波经被测对象表面反射后,再被天线接收,电磁波从发射到接收的时间与到液面的距离成正比,关系式如下:D=CT/2式中 D——雷达液位计到液面的距离C——光速T——电磁波运行时间 雷达液位计记录脉冲波经历的时间,而电磁波的传输速度为常数,则可算出液面到雷达天线的距离,从而知道液面的液位。在实际运用中,雷达液位计有两种方式即调频连续波式和脉冲波式。采用调频连续波技术的液位计,功耗大,须采用四线制,电子电路复杂。而采用雷达脉冲波技术的液位计,功耗低,可用二线制的24V DC供电,容易实现本质安全,精确度高,适用范围更广。 超声波用的是声波,雷达用的是电磁波,这才是最大的区别。而且超声波的穿透能力和方向性都比电磁波强的多,这就是超声波探测现在比较流行的原因。主要应用场合的区别: 超声波和雷达主要是测量原理的不同,而导致他们的不同的运用场合。雷达是鉴于被测物质的介电常数的,而超声波是鉴于被测物质的密度的。所以介电常数很低的物质雷达的测量效果就要打折扣,对于固体物质一般也推荐用超声波。同时雷达发射的是电磁波,不需要传播媒介,而超声波是声波,是一种机械波,是需要传播媒介的。另外波的发射方式元件不同,如超声波是通过压电物质的振动来发射的,所以它不可能用在压力较高或负压的场合,一般只用在常压容器。而雷达可以用在高压的过程罐。雷达的发射角度比超声波大,在小容器或瘦长的容器不推荐用非接触式雷达,一般推荐导波雷达。最后就是精度的问题,当然了,雷达的精度肯定是比超声波高,在储罐上肯定是用高精度雷达的,而不会选超声波。至于价格方面,一般情况下超声波比雷达低,当然一些大量程的超声波价格也是很高的,如6~70米的量程,这时雷达也达不到,只能选超声波! 声波的传输是需要媒介的,所以在真空中就不能传播。所以超声波在现实应用中的局限性还是很大的,与雷达比起来多有不足。首先,超声波物位计有温度限制,一般探头处温度不能超过80度,并且声波速度受温度影响很大。其次,超声波物位计受压力影响很大,一般有求0.3MPa以内,因为声波要靠振动来发出,压力太大时发声部件会受影响。第三,当测量环境中雾气或粉尘很大时将不能很好的测量。凡此种种,都限制了超声波物位计的应用。与之相比,雷达的是电磁波,不受真空度影响,对介质温度压力的适用范围又很宽,随着高频雷达的出现,其应用范围就更加广泛了,所以在物位测量中,雷达是一个非常好的选择。 但是不论是雷达还是超声波液位计,在安装过程中都必须注意安装位置,注意盲区。比如安装在罐体上时,不要装在进料口,不要装在人梯附近,离罐壁要有300到500mm的距离,防止回波干扰。在有搅拌,液面波动大的时候也要选择合适的安装方法。总之,没有十全十美的东西。1.雷达测量范围要比超声波大很多。2.雷达有喇叭式、杆式、缆式,相对超声波能够应用于更复杂的工况。3.超声波精度不如雷达。4.雷达相对价位较高。5.用雷达的时候要考虑介质的介电常数。6.超声波不能应用于真空、蒸汽含量过高或液面有泡沫等工况。

  • 【原创】超声波流量计工作原理及应用

    超声波流量计是近十几年来随着集成电路技术的发展才出现的一种非接触式仪表,适于测量不易接触、观察的流体以及大管径流量。使用超声波流量计,不用在流体中安装测量元件,故不会改变流体的流动状态,不产生附加阻力,仪表的安装及检修均可在不影响生产管线运行的情况下进行,因而是一种理想的节能型流量计。超声波流量计测量原理超声波流量计的测量是以物理学中的多普勒效应为基础的。根据声学多普勒效应,当声源和观察者之间有相对运动时,观察者所感受到的声频率将不同于声源所发出的频率。这个因相对运动而产生的频率变化与两物体的相对速度成正比.在超声波多普勒流量测量方法中,超声波发射器为一固定声源,随流体一起运动的固体颗粒起了与声源有相对运动的“观察者”的作用,当然它仅仅是把入射到固体颗粒上的超声波反射回接收据.发射声波与接收声波之间的频率差,就是由于流体中固体颗粒运动而产少的超声波多普勒频移.由于这个频率差正比于流体流速,所以测量频差可以求得流速.进而可以得到流体的流量.超声波流量计的种类很多,依照不同的分类方法,可以分为不同类型的超声波流量计。http://www.tayasaf.com/UploadFiles/201132315929117.jpg如上图所示,换能器1发射频率为f1的超声波信号,经过管道内液体中的悬浮颗粒或气泡后,频率发生偏移,以f2的频率反射到换能器2,这就是多谱勒将就,f2与f1之差即为多谱勒频差fd。 当管道条件、换能器安装位置、发射频率、声速确定以后,c、f1、θ即为常数,流体流速和多谱勒频移成正比,通过丈量频移就可得到流体流速,进而求得流体流量。目前市面上的多谱勒式超声波流量计主要以进口为主,可检测直径12.5 mm—4.5 mm的管道,随机附带不锈钢安装组件、耦合剂、交流充电器,坚固的携带机箱符合IP67 防护标准。适用于绝大多数含气泡或固体颗粒的液体流量监测,如废水、泥浆、石油、化学液、酸液、碱液、腐蚀液、研磨剂和粘性液体等。易于操作,传感器安装在管道外壁耗时不到一分钟。使用内置键盘和校验菜单可快速设置参数。可测量管道包括PVC、球墨铸铁、碳钢、不锈钢等所有可以传导超声波的材料。http://www.tayasaf.com/uploadfiles/20091282416.jpgPDFM5.0便携式多普勒超声波流量计时差式超声波流量计是利用声波在流体中顺流传播和逆流传播的时间差与流体流速成正比这一原理来丈量流体流量的。广泛应用于江、河、水库原水测量,石化产品工艺流检测,生产过程耗水量测量等领域。根据实际应用需要,时差式超声波流量计又分为,便携式时差式超声波流量计,固定式时差式超声波流量计,时差式气体超声流量计。便携式时差式超声波流量计方便移动测量,便携式时差式超声波流量计就属于此类,安装时只要把检测器夹装在管道外壁上,不需要截管或停流。因此没有一般流量计所必须的法兰,也不存在介质泄漏、压力损失等问题。http://www.tayasaf.com/uploadfiles/b2009810112635.jpgPT878便携式时差式超声波流量计固定式时差式超声波流量计大多应用于工厂、车间,对流体进行常规的实时测量,由于设备需要经年累月的长期运转,所以固定式超声波流量计 对稳定性、可靠性提出了更高的要求http://www.tayasaf.com/UploadFiles/2011323151851162.jpgPT878固定式时差式超声波流量计时差式气体超声流量计主要应用于石油化工领域中对气体流量的检测,环保领域亦有应用。http://www.tayasaf.com/uploadfiles/b2009813145850.jpgPT878GC便携式时差式气体超声流量计根据实际应用的需要,超声波流量计又分为外夹式、插进式、管段式三种(1)外夹式外夹式超声波流量计是生产最早,用户最熟悉且应用最广泛的超声波流量计,安装换能器无需管道断流,即贴即用,它充分体现了超声波流量计安装简单、使用方便的特点。http://www.tayasaf.com/uploadfiles/b20098311196.jpgPTF-H便携式外夹超声波流量计,(2)管段式某些管道因材质疏、导声不良,或者锈蚀严重,衬里和管道内空间有间隙等原因,导致超声波信号衰减严重,用外贴式超声波流量计无法正常丈量,所以产生了管段式超声波流量计。管段式超声波流量计把换能器和丈量管组成一体,解决了外贴式流量计在丈量中的一个困难。而且丈量精度也比其它超声波流量计要高,但同时也牺牲了外贴式超声波流量计不断流安装这一优点,要求切开管道安装换能器。比如泰亚赛福代理的美国GE公司的Sentinel TM 计量级天然气超声波流量计,是一种功能完善的超声波流量测量系统,可用于天然气流量的测量,完整的Sentinel系统包括超声波流量计,整流器和上下游直管段。该配置可消除系统安装带来的不确定因素(阀门,弯管及其他系统部件可能导致的流场变形)对流量的计性能的影响。该解决方案提供了一个简单且经济高效的测量系统,用户不会受到其他测量不确定因素的影响,未充分发展,非均衡的流场是主要的不确定因素之一,而该超声波流量计系统中已经去除了这一因素,因此用户可以获得有保障的测量精度。http://www.tayasaf.com/UploadFiles/2011323152850101.jpg天然气超声波流量计(3)插进式插进式超声波流量计 介于上述二者中间。在安装上可以不断流,利用专门工具在有水的管道上打孔,把换能器插进管道内,完成安装。由于换能器在管道内,其信号的发射、接受只经过被测介质,而不经过管壁和衬里,所以其丈量不受管质和管衬材料限制。http://www.tayasaf.com/uploadfiles/b2009813145449.jpgXGM868气体流量计 流量计的独到之处在于它集宽量程,易安装,低维护高精度和低廉价格等各种优点于一身,全数字化德XGM868没有压损,既无可能造成塞堵或集聚残物德部件,也无可被磨损的运动部件,极少需要日常维护,长期提供可信,无漂的测量。

  • 【原创】超声波清洗器工艺技术原理

    超声波清洗器工艺技术原理  超声波清洗器的原理由超声波发生器所发出的高频振荡讯号,通过换能器转换成高频机械振荡而传播到介质--清洗溶液中,超声波在清洗液中疏密相间地向前辐射,使液体流动而产生数以万计的微小气泡,这些气泡在超声波纵向传播成的负压区形成、生长,而在正压区迅速闭合,在这种被称之为"空化"效应的过程中气泡闭合可形成超过1000个气压的瞬间高压,连续不断产生的高压就象一连串小"爆炸"不断地冲击物件表面,使物件表面及缝隙中的污垢迅速剥落。从而达到物件全面洁净的清洗效果。超声波清洗对任何物件的材质及精度不受影响。 1.什么是超声波:所谓超声波,是指人耳听不见的声波。正常人的听觉可以听到16-20千赫兹(KHZ)的声波,低于16千赫兹的声波称为次声波或亚声波,超过20千赫兹的声波称为超声波。 2.超声波的产生:超声波的两个主要参数:频率:F≥20KHz;功率密度:p=发射功率(W)/发射面积 (cm2) 通常p≥0.3w/cm2.在液体中传播的超声波能对物体表面的污物进行清洗,其原理可用“空化”现象来解释:超声波振动在液体中传播的音波压强达到一个大气压时,其功率密度为0.35 w/cm2,这时超声波的音波压强峰值就可达到真空或负压,但实际上无负压存在,因此在液体中产生一个很大的力,将液体分子拉裂成空洞一空化核。此空洞非常接近真空,它在超声波压强反向达到最大时破裂,由于破裂而产生的强烈冲击将物体表面的污物撞击下来。这种由无数细小的空化气泡破裂而产生的冲击波现象称为“空化”现象。 3.超声波的空化效应超声波清洗效果及相关参数:a.清洗介质:采用超声波清洗,一般有两种清洗剂:化学清洗剂和水基清洗剂。清洗介质是化学作用,而超声波清洗是物理作用,两种作用相结合,以对物体进行充分、彻底的清洗。b. 功率密度:超声波的功率密度越高,空化效果越强,速度越快,清洗效果越好。单对于精密的、表面光洁度甚高的物体,采用长时间的高功率密度清洗会对物体表面产生“空化”腐蚀。c. 超声波频率:超声波频率越低,在液体中产生空化越容易,作用也越强。频率高则超声波方向性强,适合于精细的物体清洗。d. 一般来说,超声波在30oС~40oС时空化效果最好。清洗剂则温度越高,作用越显著。通常实际应用超声波清洗时,采用30oС~60oС的工作温度。 4.超声波清洗特点:“超声波清洗工艺技术”是指利用超声波的空化作用对物体表面上的污物进行撞击、剥离,以达到清洗目的。它具有清洗洁净度高、清洗速度快等特点。特别是对盲孔和各种几何状物体,独有其他清洗手段所无法达到的洗净效果。相关的内容情点击http://www.labyq.net/labyq_Affiche_113252.html[URL=http://www.labyq.net/labyq_Affiche_113252.html]http://www.labyq.net/labyq_Affiche_113252.html[/URL]

  • 液位检测-超声波传感器

    液位检测-超声波传感器

    [size=24px][font=宋体]超声波原理检测液位的传感器,是比较常见的一种非接触式传感器,它可以在不接触液体的情况下,检测到液位的状态,因此更加卫生,方便用户清洗。[/font][font=宋体][font=宋体][url=https://www.eptsz.cn/Product/120060.html][b]超声波液位传感器[/b][/url]是利用声波的反射原理来检测,它可以将水位的变化情况转换成数据显示,超声波传感器最大的特点就是可以实时侦测液位变化情况,其检测精度高,可以达到[/font][font=宋体]±[/font][font=Calibri]2mm[/font][font=宋体]。这类非接触式的传感器不受液体颜色、密度、压力、腐蚀性的影响,超声波传感器应用领域广泛,多用在工业设备上。[/font][/font][img=,497,287]https://ng1.17img.cn/bbsfiles/images/2022/12/202212131102287427_7789_4008598_3.png!w497x287.jpg[/img][font=宋体]需要注意的是:在超声波传感器的检测范围内不能有障碍物,如果在检测范围内有障碍物,会造成传感器出现误判情况。如果您有需要,我们可以给您提供专业的方案。[/font][/size]

  • 超声波测厚仪基本原理及影响精度的因素

    超声波测厚仪基本原理:  超声波测厚仪是根据超声波脉冲反射原理来进行厚度测量的,当探头发射的超声波脉冲通过被测物体到达材料分界面时,脉冲被反射回探头,通过精确测量超声波在材料中传播的时间来确定被测材料的厚度。凡能使超声波以一恒定速度在其内部传播的各种材料均可采用此原理测量。按此原理设计的测厚仪可对各种板材和各种加工零件作精确测量,也可以对生产设备中各种管道和压力容器进行监测,监测它们在使用过程中受腐蚀后的减薄程度。可广泛应用于石油、化工、冶金、造船、航空、航天等各个领域。使用技巧:(以我公司销售的超声波测厚仪为例)1、一般测量方法:(1)在一点处用探头进行两次测厚,在两次测量中探头的分割面要互为90°,取较小值为被测工件厚度值。(2)30mm 多点测量法:当测量值不稳定时,以一个测定点为中心,在直径约为30mm 的圆内进行多次测量,取最小值为被测工件厚度值。2、精确测量法:在规定的测量点周围增加测量数目,厚度变化用等厚线表示。3、连续测量法:用单点测量法沿指定路线连续测量,间隔不大于5mm。4、网格测量法:在指定区域划上网格,按点测厚记录。此方法在高压设备、不锈钢衬里腐蚀监测中广泛使用。5、影响示值的因素:(1)工件表面粗糙度过大,造成探头与接触面耦合效果差,反射回波低,甚至无法接收到回波信号。对于表面锈蚀,耦合效果极差的在役设备、管道等可通过砂、磨、挫等方法对表面进行处理,降低粗糙度,同时也可以将氧化物及油漆层去掉,露出金属光泽,使探头与被检物通过耦合剂能达到很好的耦合效果。(2)工件曲率半径太小,尤其是小径管测厚时,因常用探头表面为平面,与曲面接触为点接触或线接触,声强透射率低(耦合不好)。可选用小管径专用探头(6mm ),能较精确的测量管道等曲面材料。(3)检测面与底面不平行,声波遇到底面产生散射,探头无法接受到底波信号。(4)铸件、奥氏体钢因组织不均匀或晶粒粗大,超声波在其中穿过时产生严重的散射衰减,被散射的超声波沿着复杂的路径传播,有可能使回波湮没,造成不显示。可选用频率较低的粗晶专用探头(2.5MHz)。(5)探头接触面有一定磨损。常用测厚探头表面为丙烯树脂,长期使用会使其表面粗糙度增加,导致灵敏度下降,从而造成显示不正确。可选用500#砂纸打磨,使其平滑并保证平行度。如仍不稳定,则考虑更换探头。(6)被测物背面有大量腐蚀坑。由于被测物另一面有锈斑、腐蚀凹坑,造成声波衰减,导致读数无规则变化,在极端情况下甚至无读数。(7)被测物体(如管道)内有沉积物,当沉积物与工件声阻抗相差不大时,测厚仪显示值为壁厚加沉积物厚度。 (8)当材料内部存在缺陷(如夹杂、夹层等)时,显示值约为公称厚度的70%,此时可用超声波探伤仪进一步进行缺陷检测。(9)温度的影响。一般固体材料中的声速随其温度升高而降低,有试验数据表明,热态材料每增加100°C,声速下降1%。对于高温在役设备常常碰到这种情况。应选用高温专用探头(300-600°C),切勿使用普通探头。(10)层叠材料、复合(非均质)材料。要测量未经耦合的层叠材料是不可能的,因超声波无法穿透未经耦合的空间,而且不能在复合(非均质)材料中匀速传播。对于由多层材料包扎制成的设备(像尿素高压设备),测厚时要特别注意,测厚仪的示值仅表示与探头接触的那层材料厚度。(12)耦合剂的影响。耦合剂是用来排除探头和被测物体之间的空气,使超声波能有效地穿入工件达到检测目的。如果选择种类或使用方法不当,将造成误差或耦合标志闪烁,无法测量。因根据使用情况选择合适的种类,当使用在光滑材料表面时,可以使用低粘度的耦合剂;当使用在粗糙表面、垂直表面及顶表面时,应使用粘度高的耦合剂。高温工件应选用高温耦合剂。其次,耦合剂应适量使用,涂抹均匀,一般应将耦合剂涂在被测材料的表面,但当测量温度较高时,耦合剂应涂在探头上。(13)声速选择错误。测量工件前,根据材料种类预置其声速或根据标准块反测出声速。当用一种材料校正仪器后(常用试块为钢)又去测量另一种材料时,将产生错误的结果。要求在测量前一定要正确识别材料,选择合适声速。(14)应力的影响。在役设备、管道大部分有应力存在,固体材料的应力状况对声速有一定的影响,当应力方向与传播方向一致时,若应力为压应力,则应力作用使工件弹性增加,声速加快;反之,若应力为拉应力,则声速减慢。当应力与波的传播方向不一至时,波动过程中质点振动轨迹受应力干扰,波的传播方向产生偏离。根据资料表明,一般应力增加,声速缓慢增加。(15)金属表面氧化物或油漆覆盖层的影响。金属表面产生的致密氧化物或油漆防腐层,虽与基体材料结合紧密,无名显界面,但声速在两种物质中的传播速度是不同的,从而造成误差,且随覆盖物厚度不同,误差大小也不同。 http://www.1718-show.cn/ComFolder/18show/908/2006621161542373.gif 超声波测厚仪基本原理:  超声波测厚仪是根据超声波脉冲反射原理来进行厚度测量的,当探头发射的超声波脉冲通过被测物体到达材料分界面时,脉冲被反射回探头,通过精确测量超声波在材料中传播的时间来确定被测材料的厚度。凡能使超声波以一恒定速度在其内部传播的各种材料均可采用此原理测量。按此原理设计的测厚仪可对各种板材和各种加工零件作精确测量,也可以对生产设备中各种管道和压力容器进行监测,监测它们在使用过程中受腐蚀后的减薄程度。可广泛应用于石油、化工、冶金、造船、航空、航天等各个领域。使用技巧:(以我公司销售的超声波测厚仪为例)1、一般测量方法:(1)在一点处用探头进行两次测厚,在两次测量中探头的分割面要互为90°,取较小值为被测工件厚度值。(2)30mm 多点测量法:当测量值不稳定时,以一个测定点为中心,在直径约为30mm 的圆内进行多次测量,取最小值为被测工件厚度值。2、精确测量法:在规定的测量点周围增加测量数目,厚度变化用等厚线表示。3、连续测量法:用单点测量法沿指定路线连续测量,间隔不大于5mm。4、网格测量法:在指定区域划上网格,按点测厚记录。此方法在高压设备、不锈钢衬里腐蚀监测中广泛使用。5、影响示值的因素:(1)工件表面[/si

  • 超声波清洗原理及注意

    众所周知,人们所听到的声音是频率20Hz~20000Hz的声波信号,高于20000Hz的声波称为超声波,声波的传递依照正弦曲线纵向传播,即一层强一层弱,依次传递,当弱的声波信号作用于液体中时,会对液体产生一定的负压,使液体内形成许许多多微小的气泡,而当强的声波信号作用于液体时,则会对液体产生一定的正压,因而,液体中形成的微小气泡被压碎。经研究证明:超声波作用于液体中时,液体中每个气泡的破裂会产生能最极大的冲击波,相当于瞬间产生的高温和高达上千个大气压,这种现象被称之为“空化效应”,超声波淸洗正是应用液体中气泡破裂所产生的冲击波来达到淸洗和冲刷工件内外表面的作用。 超声波可以分为三种,即次声波、声波、超声波。次声波的频率为20Hz以下,声波的频率为20Hz~20kHz,超声波的频率则为20kHz以上。其中次声波和超卢波一般人耳是听不到的。超卢波由于频率高、波长短,因而传播的方向性好、穿透能力强。超声波淸洗机原理主要是将换能器,将功率超声频源的声能,并且要转换成机械振动,通过淸洗槽壁使之将槽子中的淸洗液辐射到超声波。由于受到辐射的超声波,使之槽内液体中的微气泡能够在声波的作用下从而保持振动。 当声压或者声强受到压力到达一定程度时候,气泡就会迅速膨胀,然后又突然闭合。在这段过程中,气泡闭合的瞬间产生冲击波,使气泡周围产生1012Pa~1013Pa的压力,这种超声波气化所产生的巨大压力能破坏不溶性污物而使它们分化于溶液中。 超声波一方面破坏污物与淸洗件表面的吸附,另一方面能引起污物层的疲劳破坏而被剥离,气体型气泡的振动对固体表面进行擦洗,污层一旦有缝可钻,气泡立即“钻入”振动使污层脱落,由于空化作用,两种液体在界面迅速分散而乳化,当固体粒子被油污裹着而粘附在淸洗件表面时,油被乳化,固体粒子自行脱落,超声在淸洗液中传播时会产生正负交变的声压,形成射流,冲击清洗件,同时由于非线性效应会产生声流和微声流,而超声空化在固体和液体界面会产生高速的微射流,所有这些作用,能够破坏污物,除去或削弱边界污层,增加搅拌、扩散作用,加速可溶性污物的溶解,强化化学淸洗剂的淸洗作用。 由此可见,凡是液体能浸到且声场存在的地方都有淸洗作用,其特点适用于表面形状非常复杂的零件的淸洗。尤其是采用这一技术后,可减少化学溶剂的用量,从而大大降低环境污染。 超声波清洗机使用注意事项 1、超声波淸洗机电源及电热器电源必须有良好接地装置。 2、超声波清洗机严禁无清洗液开机,即清洗缸没有加一定数量的淸洗液,不得合超声波开关。 3、有加热设备的淸洗设备严禁无液时打开加热开关。 4、禁止用重物(铁件)撞击淸洗缸缸底,以免能童转换器晶片受损。 5、超声波发生器电源应单独使用一路220V/50Hz电源并配装2000W以上稳压器。 6、淸洗缸缸底要定期冲洗,不得有过多的杂物或污垢。 7、每次换新液时,待超声波起动后,方可洗件。

  • 【分享】超声波清洗的应用原理及正确使用超声波清洗机的方法

    超声波清洗的应用原理 超声波清洗的应用原理是由超声波发生器发出的高频振荡信号,通过换能器转换成高频机械振荡而传播到介质,清洗溶剂中超声波在清洗液中疏密相间的向前辐射,使液体流动而产生数以万计的微小气泡,存在于液体中的微小气泡(空化核)在声场的作用下振动,当声压达到一定值时,气泡迅速增长,然后突然闭合,在气泡闭合时产生冲击波,在其周围产生上千个大气压力,数百度的高温,利用闭合时的爆炸冲击波破坏不溶性污物而使它们分散于清洗液中,当团体粒子被油污裹着而粘附在清洗件表面时,油被乳化,固体粒子即脱离,从而达到清洗件表面净化的目的。由于超声波固有的穿透力,所以可以清洗各种表面复杂,形状特异的物件,对小孔和缝隙都有很好的清洗效果,对不吸音或吸音系数小的物体清洗效果最佳。 正确使用超声波设备 1、了解超声波 用超声波可以分为三种,即次声波、声波、超声波。次声波的频率为20Hz以下;声波的频率为20Hz~20kHz;超声波的频率则为20kHz以上。其中的次声波和超声波一般人耳是听不到的。超声波由于频率高、波长短,因而传播的方向性好、穿透能力强,这也就是为什么设计制作超声波清洗机的原因。 2、超声波如何完成清洗工作 超声波清洗是利用超声波在液体中的社会化作用、加速度作用及直进流作用对液体和污物直接、间接的作用,使污物层被分散、乳化、剥离而达到清洗目的。目前所用的超声波清洗机中,空化作用和直进流作用应用得更多。 (1)空化作用:空化作用就是超声波以每秒两万次以上的压缩力和减压力交互性的高频变换方式向液体进行透射。在减压力作用时,液体中产生真空核群泡的现象,在压缩力作用时,真空核群泡受压力压碎时产生强大的冲击力,由此剥离被清洗物表面的污垢,从而达到精密洗净目的。 (2)直进流作用:超声波在液体中沿声的传播方向产生流动的现象称为直进流。声波强度在0.5W/cm2时,肉眼能看到直进流,垂直于振动面产生流动,流速约为10cm/s。通过此直进流使被清洗物表面的微油污垢被搅拌,污垢表面的清洗液也产生对流,溶解污物的溶解液与新液混合,使溶解速度加快,对污物的搬运起着很大的作用。 (3)加速度:液体粒子推动产生的加速度。对于频率较高的超声波清洗机,空化作用就很不显著了,这时的清洗主要靠液体粒子超声作用下的加速度撞击粒子对污物进行超精密清洗。

  • 超声波测厚仪原理及影响精度的因素

    超声波测厚仪基本原理:  超声波测厚仪是根据超声波脉冲反射原理来进行厚度测量的,当探头发射的超声波脉冲通过被测物体到达材料分界面时,脉冲被反射回探头,通过精确测量超声波在材料中传播的时间来确定被测材料的厚度。凡能使超声波以一恒定速度在其内部传播的各种材料均可采用此原理测量。按此原理设计的测厚仪可对各种板材和各种加工零件作精确测量,也可以对生产设备中各种管道和压力容器进行监测,监测它们在使用过程中受腐蚀后的减薄程度。可广泛应用于石油、化工、冶金、造船、航空、航天等各个领域。使用技巧:1、一般测量方法:(1)在一点处用探头进行两次测厚,在两次测量中探头的分割面要互为90°,取较小值为被测工件厚度值。(2)30mm 多点测量法:当测量值不稳定时,以一个测定点为中心,在直径约为30mm 的圆内进行多次测量,取最小值为被测工件厚度值。2、精确测量法:在规定的测量点周围增加测量数目,厚度变化用等厚线表示。3、连续测量法:用单点测量法沿指定路线连续测量,间隔不大于5mm。4、网格测量法:在指定区域划上网格,按点测厚记录。此方法在高压设备、不锈钢衬里腐蚀监测中广泛使用。5、影响示值的因素:(1)工件表面粗糙度过大,造成探头与接触面耦合效果差,反射回波低,甚至无法接收到回波信号。对于表面锈蚀,耦合效果极差的在役设备、管道等可通过砂、磨、挫等方法对表面进行处理,降低粗糙度,同时也可以将氧化物及油漆层去掉,露出金属光泽,使探头与被检物通过耦合剂能达到很好的耦合效果。(2)工件曲率半径太小,尤其是小径管测厚时,因常用探头表面为平面,与曲面接触为点接触或线接触,声强透射率低(耦合不好)。可选用小管径专用探头(6mm ),能较精确的测量管道等曲面材料。(3)检测面与底面不平行,声波遇到底面产生散射,探头无法接受到底波信号。(4)铸件、奥氏体钢因组织不均匀或晶粒粗大,超声波在其中穿过时产生严重的散射衰减,被散射的超声波沿着复杂的路径传播,有可能使回波湮没,造成不显示。可选用频率较低的粗晶专用探头(2.5MHz)。(5)探头接触面有一定磨损。常用测厚探头表面为丙烯树脂,长期使用会使其表面粗糙度增加,导致灵敏度下降,从而造成显示不正确。可选用500#砂纸打磨,使其平滑并保证平行度。如仍不稳定,则考虑更换探头。(6)被测物背面有大量腐蚀坑。由于被测物另一面有锈斑、腐蚀凹坑,造成声波衰减,导致读数无规则变化,在极端情况下甚至无读数。(7)被测物体(如管道)内有沉积物,当沉积物与工件声阻抗相差不大时,测厚仪显示值为壁厚加沉积物厚度。 (8)当材料内部存在缺陷(如夹杂、夹层等)时,显示值约为公称厚度的70%,此时可用超声波探伤仪进一步进行缺陷检测。(9)温度的影响。一般固体材料中的声速随其温度升高而降低,有试验数据表明,热态材料每增加100°C,声速下降1%。对于高温在役设备常常碰到这种情况。应选用高温专用探头(300-600°C),切勿使用普通探头。(10)层叠材料、复合(非均质)材料。要测量未经耦合的层叠材料是不可能的,因超声波无法穿透未经耦合的空间,而且不能在复合(非均质)材料中匀速传播。对于由多层材料包扎制成的设备(像尿素高压设备),测厚时要特别注意,测厚仪的示值仅表示与探头接触的那层材料厚度。(12)耦合剂的影响。耦合剂是用来排除探头和被测物体之间的空气,使超声波能有效地穿入工件达到检测目的。如果选择种类或使用方法不当,将造成误差或耦合标志闪烁,无法测量。因根据使用情况选择合适的种类,当使用在光滑材料表面时,可以使用低粘度的耦合剂;当使用在粗糙表面、垂直表面及顶表面时,应使用粘度高的耦合剂。高温工件应选用高温耦合剂。其次,耦合剂应适量使用,涂抹均匀,一般应将耦合剂涂在被测材料的表面,但当测量温度较高时,耦合剂应涂在探头上。(13)声速选择错误。测量工件前,根据材料种类预置其声速或根据标准块反测出声速。当用一种材料校正仪器后(常用试块为钢)又去测量另一种材料时,将产生错误的结果。要求在测量前一定要正确识别材料,选择合适声速。(14)应力的影响。在役设备、管道大部分有应力存在,固体材料的应力状况对声速有一定的影响,当应力方向与传播方向一致时,若应力为压应力,则应力作用使工件弹性增加,声速加快;反之,若应力为拉应力,则声速减慢。当应力与波的传播方向不一至时,波动过程中质点振动轨迹受应力干扰,波的传播方向产生偏离。根据资料表明,一般应力增加,声速缓慢增加。(15)金属表面氧化物或油漆覆盖层的影响。金属表面产生的致密氧化物或油漆防腐层,虽与基体材料结合紧密,无名显界面,但声速在两种物质中的传播速度是不同的,从而造成误差,且随覆盖物厚度不同,误差大小也不同。

  • 超声波传感器测量方法_超声波液位传感器水位监测

    超声波传感器测量方法_超声波液位传感器水位监测

    [align=left]过去,河流水位监测通常使用手动现场测量来获取数据。虽然这种方法可靠,但同时存在许多问题,例如:[/align](1)河岸上的手工测量存在一定的风险(河流深5米)。(2)在恶劣天气下不能停止工作。(3)测量值不是很准确,只能作为参考。(4)人工成本高,每天需要多个现场数据记录。所以现在测量水位都采用相应的仪器仪表,最常用的还是超声波液位传感器了,超声波液位传感器使用超声波原理,发射和接收所需的时间以及液位或距离的转换是液位监测领域中经常使用的方法。这种非接触方法稳定可靠,因此超声波液位传感器被广泛使用。[b]超声波传感器测量方法:[/b]OFweek Mall了解到超声波物位测量有多种方法,如超声脉冲回波法、共振法、频差法、超声衰减法:超声波脉冲回波方法的基本原理是超声波探头发射超声波。当超声波遇到障碍物时,它将被反射。根据当前环境中的超声波,由单片机记录超声波传输的时间和接收回波的时间。传播速度可以通过公式S = C * t / 2计算(其中S是测量距离,C是超声波传播速度,t是回波时间。)计算超声波的距离,并且获得了障碍。测试系统的距离。共振方法的基本原理是调节超声波的频率,以便在探头和液体表面之间建立驻波共振状态。此时,探针和液体表面之间的距离与介质中超声波的波长成比例。当已知超声速度时,可以从共振频率计算波长,并且可以转换从探针到液体表面的距离。频差法是让超声波探头发出调频超声波。超声波的频率随传播距离而变化,并且可以根据接收信号和发送信号之间的频率差来获得从发送到接收的时间。超声波衰减测量顾名思义,测量介质中超声波的衰减随距离而变化,液位根据接收信号与发射信号之间的衰减变化来测量。从上述方法的比较可以看出,共振法检测液位受某些特定条件的限制,需要与液体表面建立驻波关系,属于接触测量方法。频率差方法要求频率调制器产生调制频率,衰减方法需要测量超声波的衰减量。相比之下,超声脉冲回波方法不需要与液面建立驻波,并且可以实现非接触检测。因此,脉冲回波方法是最合适的方法。OFweek Mall技术工程师推荐使用MB7066超声波液位传感器进行水位监测:[b]MaxBotix 超声波液位传感器-MB7066 [/b]精准而窄的波束角分辨率是1cmIP67防尘防水标准封装超低功耗适合电池供电系统体积小、多种输出方式小、轻重量为您简单集成的项目或产品而设计快速的测量周期可测距离长达10米[img=,293,258]https://ng1.17img.cn/bbsfiles/images/2018/11/201811141618574529_7904_3422752_3.png!w293x258.jpg[/img]超声波液位传感器MB7066是一种体积小但坚固的耐风雨的超声波传感器。符合IP67防护安全等级,可以防护灰尘吸入,可以短暂浸泡。可测距离长达10米,在远距离检测和水槽液位检测中,得到很好的应用。首先,超声波传感器发出噪声脉冲,然后用户可以基于反射信号几乎实时地知道水位。用户还可以使用雷达、深度水位传感器和其他技术,为他们的应用提供最佳解决方案。当使用超声波液位传感器时,用户可以获得所有需要的数据,用于绘制、绘图、分析、 API(应用程序编程接口)转发、数据下载和短信和电子邮件提醒。相关的地方部门可以根据超声波液位传感器反馈的数据快速部署洪水监测系统,具有很高的成本效益。设备可以安装在桥、河、流和任何需要安装远程监控系统的地方。预警系统将提醒您,水位正在上升,以便保护人民和社区免受洪水侵袭。由于数据读取方便。此外,所有超声波液位传感器测量数据的历史存储在云中,用户可以随时随地访问,从而便于历史分析。相关[url=https://mall.ofweek.com/category_5.html]传感器[/url]分类:气体传感器丨氨气传感器丨二氧化硫传感器丨一氧化碳传感器丨臭氧传感器丨氧化锆氧气传感器丨空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量传感器丨二氧化碳传感器丨氧气传感器丨可燃气体传感器丨酒精传感器丨PID传感器丨温湿度传感器丨湿度传感器丨光纤应变传感器丨voc传感器丨光电液位传感器丨超声波液位传感器https://mall.ofweek.com/category_136.html丨紫外线传感器丨CO2传感器丨CO传感器丨超声波传感器丨UV传感器丨光离子传感器丨氧化锆传感器丨PH传感器丨荧光氧气传感器丨流量传感器丨光纤传感器丨光纤压力传感器丨双气传感器丨PM2.5传感器

  • 【分享】超声波探伤仪的使用原理

    脉冲反射式超声波探伤仪是目前应用的最为广泛。一般在均匀的材料中,缺陷的存在将造成材料的不连续,这种不连续往往又造成声阻抗的不一致,由反射定理我们知道,超声波在两种不同声阻抗的介质的交界面上将会发生反射,反射回来的能量的大小与交界面两边介质声阻抗的差异和交界面的取向、大小有关。脉冲反射式超声波探伤仪就是根据这个原理设计的。 脉冲反射式超声波探伤仪大部分是A扫描方式的,所谓A扫描显示方式即显示器的横坐标是超声波在被检测材料中的传播时间或者传播距离,纵坐标是超声波反射波的幅值。譬如,在一个钢工件中存在一个缺陷,由于这个缺陷的存在,造成了缺陷和钢材料之间形成了一个不同介质之间的交界面,交界面之间的声阻抗不同,当发射的超声波遇到这个界面之后,就会发生反射,反射回来的能量又被探头接收到,在显示屏幕中横坐标的一定的位置就会显示出来一个反射波的波形,横坐标的这个位置就是缺陷在被检测材料中的深度。这个反射波的高度和形状因不同的缺陷而不同,反映了缺陷的性质。

  • 【资料】超声波测厚仪检测原理

    超声波测厚仪是根据超声波脉冲反射原理来进行厚度测量的,当探头发射的超声波脉冲通过被测物体到达材料分界面时,脉冲被反射回探头,通过精确丈量超声波在材料中传播的时间来确定被测材料的厚度。凡能使超声波以一恒定速度在其内部传播的各种材料均可采用此原理丈量。按此原理设计的测厚仪可对各种板材和各种加工零件作精确丈量,也可以对出产设备中各种管道和压力容器进行监测,监测它们在使用过程中受侵蚀后的减薄程度。可广泛应用于石油、化工、冶金、造船、航空、航天等各个领域。 使用技巧: 1、一般丈量方法: (1)在一点处用探头进行两次测厚,在两次丈量中探头的分割面要互为90°,取较小值为被测工件厚度值。 (2)30mm 多点丈量法:当丈量值不不乱时,以一个测定点为中央,在直径约为30mm的圆内进行多次丈量,取最小值为被测工件厚度值。 2、精确丈量法:在划定的丈量点附近增加丈量数量,厚度变化用等厚线表示。 3、连续丈量法:用单点丈量法沿指定路线连续丈量,距离不大于5mm。 4、网格丈量法:在指定区域划上网格,按点测厚记实。此方法在高压设备、不锈钢衬里侵蚀监测中广泛使用。 5、影响超声波测厚仪示值的因素: (1)工件表面粗拙渡过大,造成探头与接触面耦合效果差,反射回波低,甚至无法接收到回波信号。对于表面锈蚀,耦合效果极差的在役设备、管道等可通过砂、磨、挫等方法对表面进行处理,降低粗拙度,同时也可以将氧化物及油漆层去掉,露出金属光泽,使探头与被检物通过耦合剂能达到很好的耦合效果。 (2)工件曲率半径太小,尤其是小径管测厚时,因常用探头表面为平面,与曲面接触为点接触或线接触,声强透射率低(耦合不好)。可选用小管径专用探头(6mm),能较精确的丈量管道等曲面材料。 (3)检测面与底面不平行,声波碰到底面产生散射,探头无法接受到底波信号。 (4)铸件、奥氏体钢因组织不平均或晶粒粗大,超声波在其中穿过期产生严峻的散射衰减,被散射的超声波沿着复杂的路径传播,有可能使回波湮没,造成不显示。可选用频率较低的粗晶专用探头(2.5MHz)。 (5)探头接触面有一定磨损。常用测厚探头表面为丙烯树脂,长期使用会使其表面粗拙度增加,导致敏捷度下降,从而造成显示不准确。可选用500#砂纸打磨,使其平滑并保证平行度。如仍不不乱,则考虑更换探头。 (6)被测物背面有大量侵蚀坑。因为被测物另一面有锈斑、侵蚀凹坑,造成声波衰减,导致读数无规则变化,在极端情况下甚至无读数。 (7)被测物体(如管道)内有沉积物,当沉积物与工件声阻抗相差不大时,测厚仪显示值为壁厚加沉积物厚度。 (8)当材料内部存在缺陷(如夹杂、夹层等)时,显示值约为公称厚度的70%,此时可用超声波探伤仪进一步进行缺陷检测。 (9)温度的影响。一般固体材料中的声速随其温度升高而降低,有试验数据表明,热态材料每增加100°C,声速下降1%。对于高温在役设备经常遇到这种情况。应选用高温专用探头(300-600°C),切勿使用普通探头。 (10)层叠材料、复合(非均质)材料。要丈量未经耦合的层叠材料是不可能的,因超声波无法穿透未经耦合的空间,而且不能在复合(非均质)材料中匀速传播。对于由多层材料包扎制成的设备(像尿素高压设备),测厚时要特别留意,测厚仪的示值仅表示与探头接触的那层材料厚度。 (12)耦合剂的影响。耦合剂是用来排除探头和被测物体之间的空气,使超声波能有效地穿入工件达到检测目的。假如选择种类或使用方法不当,将造成误差或耦合标志闪烁,无法丈量。因根据使用情况选择合适的种类,当使用在光滑材料表面时,可以使用低粘度的耦合剂;当使用在粗拙表面、垂直表面及顶表面时,应使用粘度高的耦合剂。高温工件应选用高温耦合剂。其次,耦合剂应适量使用,涂抹平均,一般应将耦合剂涂在被测材料的表面,但当丈量温度较高时,耦合剂应涂在探头上。 (13)声速选择错误。丈量工件前,根据材料种类预置其声速或根据尺度块反测出声速。当用一种材料校正仪器后(常用试块为钢)又去丈量另一种材料时,将产生错误的结果。要求在丈量前一定要准确识别材料,选择合适声速。 (14)应力的影响。在役设备、管道大部门有应力存在,固体材料的应力状况对声速有一定的影响,当应力方向与传播方向一致时,若应力为压应力,则应力作用使工件弹性增加,声速加快;反之,若应力为拉应力,则声速减慢。当应力与波的传播方向不一至时,波动过程中质点振动轨迹受应力干扰,波的传播方向产生偏离。根据资料表明,一般应力增加,声速缓慢增加。 (15)金属表面氧化物或油漆笼盖层的影响。金属表面产生的致密氧化物或油漆防腐层,虽与基体材料结合紧密,无名显界面,但声速在两种物质中的传播速度是不同的,从而造成误差,且随笼盖物厚度不同,误差大小也不同。

  • 【原创】外贴式超声波液位计

    外贴式超声波液位计 一. 概述    WO-2000智能型外贴式超声波液位计测量时将超声波探头安装于被测容器外壁的正下方(底部),无需开孔,安装简易,不影响现场生产,可实现对高温,高压密闭容器内各种有毒物质,各种纯净液体的精确测量。仪器采用隔爆设计,满足防爆要求。 二. 仪器特点  (1) 探头外置,无需对被测容器开孔,真正实现非接触测量,适用于对各种密闭容器内有毒、易挥发、易燃、易爆、强腐蚀性等液体介质液位的精确测量。  (2) 仪器无任何机械可动部件,寿命长。无腐蚀、无污染、使用面积广。  (3) 仪器内置ASIC(智能超声波专用硬件集成电路),使仪器体积小、测量结果稳定、可靠,能适合于各种被测液体和被测容器,现场安装简易,无需复杂的现场标定。  (4) 仪器内置自动温度修正、自动固定距离标定等多种校准功能,使测量结果更加准确、可靠。  (5) 仪器功能齐全,具有RS-485接口、4-20mA接口。 三. 主要性能参数  量程:3m 5m 10m 20m 30m  测量误差:1‰(罐壁过厚、压力温度不稳可能影响精度)  显示分辨率:1mm  迁移量:±10 m   电流输出:4~20mA,最大负载750Ω   通信:RS-485  电源:DC 24V±15%,10W   湿度:15%RH~100%RH   外壳防护:IP65   防爆标志:ExdIICT6  材质:铸铝  显示:宽温LCD显示 6位数码显示  超声波探头使用环境温度:-50~+100℃ 四. 安装示意图 见采购 五. 应用条件  (一)介质纯净度  1、液体中不能充满密集气泡。  2、液体中不能悬浮大量固体,如结晶物。  3、容器底部不能沉积大量泥沙及沉淀物。  (二) 介质粘度 动力粘度30mPaS时不能测量。 注:随温度升高粘度降低,大部分高粘度的液体受温度影响更为明显,所以在测量有粘度液体时就注意液体温度影响。  (三)被测容器 1、材质:安装测量探头处的容器壁要求用能够良好传递信号的硬质材料制成。举例:碳钢、不锈钢、各种硬金属、玻璃钢、硬质塑料、陶瓷、玻璃、硬橡胶等材料或其复合材料。安装测量探头处的容器壁若为多层材料,则层间应紧密接触,无气泡或气体夹层.该处容器壁的内外表面应平整.举例:硫化硬橡胶衬层,不锈钢衬层,钛衬层。 2、壁厚:2-70mm 3、罐型:球罐、卧罐、立式罐等。 (四)探头安装要求 1、对于铁质容器,可以给探头工作端面涂上硅脂并用磁性吸盘将其直接贴在容器底部即可;若容器外壳是玻璃等其它材料,可以用胶将探头粘贴固定或用支架固定于容器底部。探头指向须与所测距离在同一直线上。 2、探头正上方无盘管等遮挡物; 3、远离罐底进液口,以避免进液剧烈流动对测量的影响; 4、远离罐顶进液口下方位置,以避免进液冲击使液面剧烈波动影响测量; 5、高于出液口或排污口,以避免罐底长期沉积污物对测量的影响.如不满足条件,则应有措施保证定期清除罐底污物; 6、液位测量头用磁性或焊/粘接固定方式安装时,容器壁上的安装表面尺寸应不小于Ф80的圆面,表面粗糙度应达到1.6,倾斜度应小于3°(旁通管除外)。

  • 怎样深刻认识超声波液位计

    这里介绍超声波物位计的应用环境:通常应用于温度在-40℃一100℃之间、压力在3Bar (5kg/cm2)以下的场所进行液位或料位的测量。在常温、常压的情况下,选择超声波物位计测量液体液位是最佳的选择,具有工作可靠、安装简便、使用周期长、免维护的特点,并具有相对的价格优势。由于超声波物位计在测量物位时,被测介质不接触,同时为全密闭防腐结构,因此对于粘稠的、腐蚀性的、浑浊的等各种液体的液位测量,效果最佳。仪器仪表网中超声波物位计包含 防爆型超声波液位计,这里介绍超声波物位计的应用环境:测量密闭容器内的挥发性的液体的液位,注意事项:容器内气体声速可能与空气中的声速不同,域名注册如液位计不能对声速进行修正,则会出现一定的误差;挥发性的液体会在超声波液位计探头表面凝结,阻挡声波的收发,要求液位计具有可变功率控制功能。超声波物位计测量固体料位:使用超声波物位计进行料位测量是可行的,有足够的应用经验和成功实例。在对料位进行测量时,应选择好安装位置,选择料面相对平整的位置;对于粉末状的料位,可选择功率(量程)更人的物位计进行测量。超声波液位计测量液面剧烈波动的液体:选用具有自动功率控制功能的超声波液位计;选用更大量程的超声波液位计;在液体中加入塑料管,液位计测量塑料管内液位。两线制超声波物位计与三线制超声波物位计的区别:两线制超声波物位计其供电(DC24v )与信号输出(DC4-2OmA)共用一个回路,仅使用两条线即可,为标准的变送器形式。 三线制超声波物位计实际上为四线制,其供电(DC24v )与信号输出(DC4-2OmA )回路分离,各使用两条线,当它们负端共地相连时,通常使用三条线即可。其优势是发射功率较大。超声波物位计的盲区?超声波物位计在发射超声波脉冲时,不能同时检测反射回波。磁翻柱液位计由于发射的超声波脉冲具有一定的时间宽度,同时发射完超声波后传感器还有余振,期间不能检测反射回波,因此从探头表面向下开始的一小段距离无法正常检测,这段距离称为盲区。被测的最高物位如进入盲区,仪表将不能正确检测,会出现误差。如有需要,可以将物位计加高安装。在工程设计选型时,最应注意的问题:要选择一个好的安装位置,设计合适的安装接口。安装位置要尽可能选择液面平稳、料面平整的位置,同时远离扶梯、进料口、出料口,压力式液位计尽可能与容器壁保持较远的距离,远离搅拌器。安装接口要求开口尺寸足够大,当为法兰安装时,法兰下面的接管长度要设计合理,对于我公司的10米、12米量程的物位计,接管长度应不大于15cm,选择DN80以上的法兰口。对于巧米、20米、30米和40米量程的物位计,接管长度应不大于20cm;选择DN200以上的法兰口。对于8米以下量程的物位计,超声波液位计对接管长度无要求,可适当设计,以消除盲区的影响,并选择DN65以上的法兰口。对于8米以下量程的物位计,对接管长度无要求,可适当设计,以消除盲区的影响,并选择DN65以上的法兰口。超声波物位计是超声波液位计和超声波料位计的统称。当用于测量液体液位时,通常称为超声波液位计。来源—仪器仪表网

  • 【转帖】超声波清洗的原理与清洗特点

    超声波清洗的原理由超声波发生器所发出的高频振荡讯号,通过换能器转换成高频机械振荡而传播到介质--清洗溶液中,超声波在清洗液中疏密相间地向前辐射,使液体流动而产生数以万计的微小气泡,这些气泡在超声波纵向传播成的负压区形成、生长,而在正压区迅速闭合,在这种被称之为"空化"效应的过程中气泡闭合可形成超过1000个气压的瞬间高压,连续不断产生的高压就象一连串小"爆炸"不断地冲击物件表面,使物件表面及缝隙中的污垢迅速剥落。从而达到物件全面洁净的清洗效果。超声波清洗对任何物件的材质及精度不受影响。 1.什么是超声波: 所谓超声波,是指人耳听不见的声波。正常人的听觉可以听到16-20千赫兹(KHZ)的声波,低于16千赫兹的声波称为次声波或亚声波,超过20千赫兹的声波称为超声波。 2.超声波的产生: 超声波的两个主要参数: 频率:F≥20KHz; 功率密度:p=发射功率(W)/发射面积(cm2) 通常p≥0.3w/cm2. 在液体中传播的超声波能对物体表面的污物进行清洗,其原理可用“空化”现象来解释:超声波振动在液体中传播的音波压强达到一个大气压时,其功率密度为0.35w/cm2,这时超声波的音波压强峰值就可达到真空或负压,但实际上无负压存在,因此在液体中产生一个很大的力,将液体分子拉裂成空洞一空化核。此空洞非常接近真空,它在超声波压强反向达到最大时破裂,由于破裂而产生的强烈冲击将物体表面的污物撞击下来。这种由无数细小的空化气泡破裂而产生的冲击波现象称为“空化”现象。 3.超声波的空化效应 超声波清洗效果及相关参数: a.清洗介质: 采用超声波清洗,一般有两种清洗剂:化学清洗剂和水基清洗剂。清洗介质是化学作用,而超声波清洗是物理作用,两种作用相结合,以对物体进行充分、彻底的清洗。 b.功率密度: 超声波的功率密度越高,空化效果越强,速度越快,清洗效果越好。单对于精密的、表面光洁度甚高的物体,采用长时间的高功率密度清洗会对物体表面产生“空化”腐蚀。 c.超声波频率: 超声波频率越低,在液体中产生空化越容易,作用也越强。频率高则超声波方向性强,适合于精细的物体清洗。 d.一般来说,超声波在30oС~40oС时空化效果最好。清洗剂则温度越高,作用越显著。 通常实际应用超声波清洗时,采用30oС~60oС的工作温度。 4.超声波清洗特点: “超声波清洗工艺技术”是指利用超声波的空化作用对物体表面上的污物进行撞击、剥离,以达到清洗目的。它具有清洗洁净度高、清洗速度快等特点。特别是对盲孔和各种几何状物体,独有其他清洗手段所无法达到的洗净效果。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制