当前位置: 仪器信息网 > 行业主题 > >

简述光学比较测角仪的原理

仪器信息网简述光学比较测角仪的原理专题为您提供2024年最新简述光学比较测角仪的原理价格报价、厂家品牌的相关信息, 包括简述光学比较测角仪的原理参数、型号等,不管是国产,还是进口品牌的简述光学比较测角仪的原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合简述光学比较测角仪的原理相关的耗材配件、试剂标物,还有简述光学比较测角仪的原理相关的最新资讯、资料,以及简述光学比较测角仪的原理相关的解决方案。

简述光学比较测角仪的原理相关的资讯

  • 简述超声波风速风向传感器的原理特点和应用
    风既有大小,又有方向,因此风的预报包括风速和风向两项。风速,是指空气相对于地球某一固定地点的运动速率,常用单位是m/s。风速是没有等级的,风力才有等级,风速是风力等级划分的依据。一般来讲,风速越大,风力等级越高,风的破坏性越大。在气象上,一般将风力大小划分为十七个等级。 气象上把风吹来的方向确定为风的方向。风来自北方叫作北风,风来自南方叫作南风。当风向在某个方位摇摆不能肯定方位时,气象台站预报就会加以“偏”字,比如偏南风。利用风向可以在人们的生活、生产、建厂、农业、交通、军事等各种领域发挥积极作用。 测量风速时可以使用测风器,风压板扬起所过长短齿的数目,表示风力大小。测量风向时可以使用风向标,风向标对的风向箭头指在哪个方向即表示当时刮什么方向的风。 同时测量风速和风向可以使用超声波风速风向传感器。超声波风速风向传感器是一款基于超声波原理研发的风速风向测量仪器,利用超声波时差法来实现风速风向的测量。由于声音在空气中的传播速度会和风向上的气流速度叠加,如果超声波的传播方式和风向相同,那么它的速度会加快;反之则会变慢。所以在固定的检测条件下,超声波在空气中传播的速度可以和风速函数对应,通过计算即可得到精确的风速和风向。超声波风速风向传感器与传统的风速风向传感器相比,它不需要维护和现场校准, 360°全方位无角度限制,没有启动风速的限制,可以同时获得风速、风向的数据;无移动部件,磨损小,使用寿命长;采用随机误差识别技术,大风下也可以保证测量的低离散误差,使输出更平稳。 超声波风速风向传感器安装也比较简单方便。那超声波风速风向传感器可以应用在哪些方面呢? 超声波风速风向传感器可以应用在新型能源开发领域,一些重要的设备十分容易受到风速变化的影响;可以应用在工矿领域,为了确保煤矿安全生产的正常进行,相关部门也推出了针对矿井环境必须使用风速传感器这类设备的规定;可以应用在塔式起重机,当大风影响起重机工作时,它会发出报警;也可以应用于气象领域和煤矿等。
  • 封装工艺和设备简述
    晶圆大多是非常脆的硅基材料,直接拿取是非常容易脆断的,所以必须封装起来,并且把线路与外部设备连接,才能出厂。本文详述芯片的封装工艺和相关的设备。封装听起来似乎就是包装,好像比较简单。封装与蚀刻和沉积相比,在一定程度上是要简单一点,但封装同样是一个高科技的行业。封装技术的发展芯片封装被分传统封装和先进封装。传统封装的目的是将切割好的芯片进行固定、引线和封闭保护。但随着半导体技术的快速发展,芯片厚度减小、尺寸增大,及其对封装集成敏感度的提高,基板线宽距和厚度的减小,互联高度和中心距的减小,引脚中心距的减小,封装体结构的复杂度和集成度提高,以及最终封装体的小型化发展、功能的提升和系统化程度的提高。越来越多超越传统封装理念的先进封装技术被提出。先进封装(Advanced Packaging)是本文讨论的重点。我们先了解一下传统封装,这有利于更好地理解先进封装。传统封装技术发展又可细分为三阶段。阶段一(1980 以前):通孔插装(Through Hole,TH)时代其特点是插孔安装到 PCB 上,引脚数小于 64,节距固定,最大安装密度 10 引脚/cm2,以金属圆形封装(TO)和双列直插封装(DIP)为代表;阶段二(1980-1990):表面贴装(Surface Mount,SMT)时代其特点是引线代替针脚,引线为翼形或丁形,两边或四边引出,节距 1.27-0.44mm,适合 3-300 条引线,安装密度 10-50 引脚/cm2,以小外形封装(SOP)和四边引脚扁平封装(QFP)为代表;阶段三(1990-2000):面积阵列封装时代在单一芯片工艺上,以焊球阵列封装(BGA)和芯片尺寸封装(CSP)为代表,采用“焊球”代替“引脚”,且芯片与系统之间连接距离大大缩短。在模式演变上,以多芯片组件(MCM)为代表,实现将多芯片在高密度多层互联基板上,用表面贴装技术组装成多样电子组件、子系统。自20世纪90年代中期开始,基于系统产品不断多功能化的需求,同时也由于芯片尺寸封装(CSP)封装、积层式多层基板技术的引进,集成电路封测产业迈入三维叠层封装(3D)时代。这个发展阶段,先进封装应运而生。先进封装具体特征表现为:(1)封装元件概念演变为封装系统;(2)单芯片向多芯片发展;(3)平面封装(MCM)向立体封装(3D)发展;(4)倒装连接、TSV硅通孔连接成为主要键合方式。先进封装优势先进封装提高加工效率,提高设计效率,减少设计成本。先进封装工艺技术主要包括倒装类(FlipChip,Bumping),晶圆级封装(WLCSP,FOWLP,PLP),2.5D封装(Interposer)和3D封装(TSV)等。以晶圆级封装为例,产品生产以圆片形式批量生产,可以利用现有的晶圆制备设备,封装设计可以与芯片设计一次进行。这将缩短设计和生产周期,降低成本。先进封装以更高效率、更低成本、更好性能为驱动。先进封装技术上通过以点带线的方式实现电气互联,实现更高密度的集成,大大减小了对面积的浪费。SiP技术及PoP技术奠定了先进封装时代的开局,如Flip-Chip(倒装芯片), WaferLevelPackaging(WLP,晶圆级封装),2.5D封装以及3D封装技术,ThroughSiliconVia(硅通孔,TSV)等技术的出现进一步缩小芯片间的连接距离,提高元器件的反应速度,未来将继续推进着先进封装的进步。所有这些先进封装技术,被集中起来发展成为了3D封装。3D封装会综合使用倒装、晶圆级封装以及 POP/Sip/TSV 等立体式封装技术,其发展共划分为三个阶段:第一阶段:采用引线和倒装芯片键合技术堆叠芯片;第二阶段:采用封装体堆叠(POP);第三阶段:采用硅通孔技术实现芯片堆叠。3D封装可以通过两种方式实现:封装内的裸片堆叠和封装堆叠。封装堆叠又可分为封装内的封装堆叠和封装间的封装堆叠。最后,我们列举一下这些主要的先进封装技术:★ 倒装(FC-FlipChip)★ 晶圆级封装(WLP-Wafer level package)★ 2.5D封装★ (POP/Sip/TSV)等3D立体式封装技术★ 3D封装技术封装的级别电子封装的工程被分成六个级别:层次1(裸芯片)它是特指半导体集成电路元件(IC芯片)的封装,芯片由半导体厂商生产,分为两类,一类是系列标准芯片,另一类是针对系统用户特殊要求的专用芯片,即未加封装的裸芯片(电极的制作、引线的连接等均在硅片之上完成)。层次2(封装后的芯片即集成块)分为单芯片封装和多芯片封装两大类。前者是对单个裸芯片进行封装,后者是将多个裸芯片装载在多层基板(陶瓷或有机材料)上进行气密闭封装构成MCM。层次3(板或卡)它是指构成板或卡的装配工序。将多个完成层次2的单芯片封装在PCB板等多层基板上,基板周边设有插接端子,用于与母板及其它板或卡的电气连接。层次4(单元组件)将多个完成层次3的板或卡,通过其上的插接端子搭载在称为母板的大型PCB板上,构成单元组件。层次5(框架件)它是将多个单元构成(框)架,单元与单元之间用布线或电缆相连接。层次6(总装、整机或系统)它是将多个架并排,架与架之间由布线或电缆相连接,由此构成大型电子设备或电子系统。先进封装的主要设备了解了封装的工艺,再来看看有哪些实际的操作要做,所需的设备就明确了。这里按工艺步骤列举一些:1、裸片堆叠。需要晶圆级叠片机。这是一个对可靠性要求极高的设备,因为线路完成后的晶圆很昂贵,而且非常易碎,更重要的对叠片的精度要求更高。目前还没有孤傲产量产的设备。2、晶圆切割,将Wafer切割成单个芯片。常见有切割机(Saw锯切)、划片机、激光切割机等。3、芯片堆叠。这个设备的难度在于精度和速度。目前国内有很多家厂商在研发这类设备,主要还是速度(产能)方面的差距。4、、封装级光刻和刻蚀。这是光刻技术练兵的场所,这里的光刻精度是微米级的,精度高一点的也达到了0.1微米。5、贴片(把芯片放在基板上)。这一过程需要用到点胶机,贴片机/固晶机/键合机等主要设备,还要用到印刷机,植球机,回熔焊,固化设备,压力设备,清洗设备等。6、引线键合。主要有Wire Bound和Die Bound两类设备。7、置散热片、散热胶、外壳。这一过程也要用到点胶,灌胶,植片机/固晶机/贴片机,压合设备,清洗设备等主要设备。8、检验。包括检验、测试和分选。下面我们针对其中部分常见设备,介绍其原理和结构。1、清洗机这些设备中,清洗机听起来相对简单,但清洗机也绝对不是那么的简单。清洗的优劣,决定着产品的良率,性能及可靠性。有时更决定着工艺过程的成败。接触芯片的零件的清洗,对尘埃、油污的要求,都是绝对严苛的,有的还要对零件表面的挥发气体进行测量,对表面对不同物质的亲合性进行测量。而要达到这些要求,对清洗工艺的要求也往往非常复杂。一条清洗线也动辄十几道 ,几十道工艺过程,对零件进行物理的、化学的、生物级别的清洗与干燥。2、涂胶设备封装阶段的胶水,作用一是把IC的不同部分粘结起来,作用二是把IC各个部分之间的间隙填充起来,作用三是把IC包裹保护起来。这也就基本形成了三个类别,一是点胶,二是填充,三是塑封(Moding)。这些工艺过程,听起来比较简单,很容易理解。事实也确实如此。只是对胶量的控制,均匀性有很高的要求。胶水的压力,出胶口的形状,温度,运动的平稳性,设备的振动,空气流动等,每一个环节都要精确控制。涂胶的工艺的特性主要的还是决定于胶水的特性。在这里我们只谈设备,不谈耗材。芯片点胶芯片底填芯片塑封3、刻蚀\光刻机我们常听说的那些高大上的光刻机,是指晶圆级别上用来刻蚀芯片电路的。封装过程也要用到光刻机,需要制作用于定位和精确定位芯片的封装模板。光刻机可以用于制作这些封装模板的微米级图案。光刻机通过曝光光刻胶和进行显影的过程,将图案精确地转移到封装模板上。封装过程所用光刻机线宽要求比较低,一般500nm的都能用了。封装用光刻机封装用刻蚀机4、芯片键合机芯片键合机,是把芯片与基板连接在一起的设备,有两种主要的方式,Wire Bond和Die Bond。Wire Bond设备通常被称作绑线机,绑线机是用金属引线把IC上的引脚与基板(Substrate)的引脚进行连接的设备。这个工艺中使用的金属细线通常只有几十微米,一根一根把金属丝熔融在引脚上。这个过程在引脚多的芯片上就很耗时。Die Bond设备有时被称作贴片机或固晶机机。Die Bond是近些年才发展起来的技术,是通过金属球阵列来进行连接,就是常说的BGA技术(Ball Grid Array)。Die Bond的连接方式效率更高,一次性可以连接所有引脚,所以生产数百数千引脚的芯片也很方便。还有就是Die Bond封装更加紧凑,所以Die Bond是未来芯片键合的主要方式。Wire Bond设备5、贴片机贴片机是一种高度复杂且精密的机器,其工作原理可以追溯到微电子组件制造的核心。这些机器使用先进的视觉系统,如光学传感器和高分辨率摄像头,以检测和定位微小的电子元件。这种视觉系统能够在纳米级别准确度下进行操作,确保元件的精确定位。贴片通常是指表面贴装技术,是一种将无引脚或短引线表面组装元器件(简称SMC/SMD,中文称片状元器件)安装在印制电路板(PrintedCircuit Board,PCB)的表面或其它基板的表面上,通过再流焊或浸焊等方法加以焊接组装的电路装连技术。除此之外,贴片还指应用于裸芯片(Die)的贴装技术,是指将晶圆片上没有封装或保护层的晶片(裸芯片)贴装到基板上的过程。这些芯片通常由硅等材料制成,并通过刻蚀、沉积、光刻等工艺加工而成。裸芯片贴装是一种高精度、高技术含量的制造过程,在贴片过程中,由于裸芯片缺乏封装保护,对裸芯片的测试和组装要求更高,需要专门的贴片机设备和技术来确保其可靠性和稳定性。裸芯片贴装技术常用于高性能计算、光通信、存储和其他应用领域,其中需要更高的处理能力和集成度。
  • 科众精密仪器-光学接触角测量仪原理
    科众精密-光学接触角测量仪原理 接触角是液体在液固气三态 交接处平衡时所形成的角度,液滴的形状由的表面张力所决定,θ 是固体被液 体湿润的量化指标,但它同时也能用于表面 处理和表面洁净的质量管控,表面张力 液体中的分子受到各个方向 相等的吸引力,但在液体表面的分子受到液体分子的拉力会大于气体分子的拉力,所以 液体就会向内收缩,这种自发性的收缩称之为表面张力 γ。对于清洗性,湿润度,乳化作用和其它表面相关性质而言,γ 是一个相当敏感的指标 悬垂液滴量测法悬垂液滴测量能提供 一个非常简便的方法来量测液体的表面张力 (气液接口) 和两个液体之间的接口张力 (液液接口) ,在悬垂液滴量测法中,表面张力和界面张力值的计算是经由分析悬吊在滴管顶端 的液滴的形状而来,接触角分析可依据液滴的影像做 杨氏议程计算 表面张力和接口张力。这项技巧非常的准确,而且在不同的温度和压力下也可以量测。 前进角与后退角使用在固体基板上的固着液滴可以得到静态的接触角。另外有一种量测方式称之为动态接触角,如果液固气三态接触的边界是处于移动状态,所形成的角度称之为前进角与后退角,这个角度的求取是由液滴形状的来决定。另外,固体样品的表面张力无法被直接量测,要求取这个值,只要两种以上的已知液体, 就可求得固体表面的临界表。以下是通过接触角测量仪测量单位济南大学材料学院设备序号5设备名称接触角测定仪 数量1调研产品(品牌型号)科众KZS-20共性参数1. 接触角测量范围:0~180°,接触角测量分辨率:±0.01°,测量精度±0.1°。2. 表界面张力测量范围和精度:0.01~2000mN/m,分辨率:±0.01mN/m。3. 光学系统:变焦镜头(放大倍率≧4.5倍),前置长焦透镜,通光量可调节。4. 高清晰度高速CCD,拍摄速度可达1220张图像/S,像素最高可达2048 x 1088。5. 光源:软件可调连续光强且无滞后作用的光源。6. 注射体积、速度可以软件进行控制;注射单元精度≤0.1uL;注射液体既可通过软件,亦可通过手动按钮控制液体注射。7. 注射单元调节:注射单元可进行X-、Y-、Z-轴准确调节;8. 整个注射单元支架可以旋转90°调整。9. 滚动角测量:自动倾斜台(整机倾斜),可调节倾斜角度范围≥90°,可测量滚动角。10. 接触角拟合方法:宽高法、椭圆法、切线法、L-Y法11. 动态接触角计算:全自动的动态接触角测量,软件控制注射体积、速率、时间,自动计算前进角和后退角。12. 表面自由能计算:9种可选模型计算固体表面自由能及其分量,分析粘附功曲线、润湿曲线。13. 具有环境控温功能,进行变温测试(0-110 oC), 分辨率0.1K。14. 品牌计算机: i7 4790 /8GB内存/1TB(7200转)硬盘/2G独立显卡/19英寸液晶显示器/DVD刻录光驱。15. 必备易耗品(供应商根据投标产品功能提供)16. 另配附件,要求:进口微量注射器3个,备用不锈钢针6根,一次性针头100根、适合仪器功率的稳压电源(190-250V)1台、配置钢木结构实验台( C型钢架、钢厚≥1.5mm,长2m、宽0.75m,板材采用三聚氰胺板,铝合金拉手,铰链采用国际五金标准,抽屉三阶式静音滑轨、抽屉负重≥25KG,含专用线盒,可安装5孔或6孔插座,优质地脚)。17. 售后服务:自安装调试验收完毕后之日起24个月内免费保修;每年提供至少一次的免费巡检。
  • AAV基因治疗产品亚可见颗粒分析方法简述
    生物制药如治疗性蛋白质、疫苗、基因与细胞治疗是一个不断快速增长药物领域。生物制药原料药和药品中蛋白质聚集体和不溶性颗粒是需要充分评估和控制的杂质,因为它们有可能引发免疫原性反应,影响产品的安全性和有效性。中美药典中现行的颗粒定义是10-100 nm为蛋白寡聚体,0.1-1 μm为亚微米颗粒/纳米聚集体,1-100 μm是亚可见颗粒/微米聚集体,∽100 μm是可见颗粒。目前基因治疗产品亚可见颗粒分析方法可参考USP787、788和789对治疗性蛋白质注射液和眼科溶液中亚可见颗粒的规定。对于含量超过100mL容器中的治疗性蛋白质注射剂,总颗粒数≥10 μm的颗粒≤6000,对于≥25 μm颗粒≤600。 不同于治疗性蛋白质产品,基因治疗产品大多采用病毒作为载体包括腺病毒(AdV)、腺相关病毒(AAV)或慢病毒(LV)、溶瘤病毒等,所以细胞、病毒和脂质纳米颗粒等递送载体本身就是颗粒,可通过大小、形态、含量和浓度的分析技术来表征。这些基于病毒载体的基因治疗产品剂型主要是注射剂,相关质量标准可参考生物大分子药物不溶性颗粒技术要求。但由于病毒颗粒异质性和复杂性,以及对最终产品的有效性和安全性可能影响,如降低病毒的转导效率和诱发免疫原性反应等,所以需要多种不同技术和方法联合使用,实现更全面更准确的基因治疗产品颗粒表征。以rAAV载体的基因治疗产品为例,病毒颗粒本身是无包膜的,二十面体结构,直径约为25nm,可形成各种不同大小的变体和聚合形态。AAV大小变异体和聚集体可增加临床实验的免疫原性,较大的AAV聚集体在转导细胞效力方面可能降低,进而改变产品疗效。目前有多种技术来表征相关产品溶液中颗粒大小,从纳米级到肉眼可见级别,对于不同粒径大小的颗粒可采用不同技术进行分析表征。对于纳米级别颗粒,可采用动态或静态光散射(Dynamic or Static Light Scattering)、SEC-HPLC、电镜(EM)、原子力显微镜 (AFM)、分析型超速离心机(AUC)、纳米颗粒跟踪分析技术(NTA,Nanosight)和非对称流场流动分级(A4F)等;对于微米级别颗粒,可采用光阻法(LO)、微流成像颗粒分析技术(MFI)、库尔特颗粒计数(Coulter counter)等。可见颗粒可采用拉曼/红外显微镜、荧光显微镜或目测法等。可用于AAV颗粒分析的代表性方法参考下图。颗粒分类中亚可见颗粒是一种聚集形式,经历了相分离并变得不溶。多个国家药典规定注射剂亚可见颗粒物检测采用光阻法(LO)和显微计数法。其中光阻法只能计数颗粒大小和数目,不能看到颗粒形态。美国药典1787推荐了微流成像颗粒分析技术作为大小和形态表征重要的方法。同时推荐在保质期内应该评估产品中2-10 μm亚可见颗粒的范围和水平,10 μm以下颗粒总数分成两组≥2-5μm和≥5-10μm来统计。2021年中国食品药品检定研究院发表文章,详细比较了微流成像颗粒分析方法和光阻法对17种单克隆抗体的亚可见微粒分析结果,显示了微流成像颗粒分析技术在准确性方面具有优势,未来可能用于放行质量控制和稳定性研究。代表性亚可见颗粒分析方法介绍微流成像颗粒分析方法(MFI):技术原理是待测样本在流经样本检测池过程中,在固定的检测窗口处,采用高频成像检测器动态连续检测样本中颗粒物,获取一系列的数据照片,最终通过软件对所获取的颗粒物照片进行分类和计数分析。核心技术是通过精确地控制样本检测池中的流速,配合静态的图像捕获,使相邻两次成像检测液柱无重叠,从而避免对样本颗粒的重复计数,同时需要保证85%以上样本实现了颗粒成像检测,配合全景深立体成像,保证所有检测到的颗粒都在景深范围内,实现对颗粒大小检测准确性。该方法提供了样本中颗粒真实图像的原位条件,对捕获的数字图像进行分析,实现了颗粒的可视化、计数、大小调整和表征。还可根据颗粒图像、对比度和形状,可能指示颗粒的来源和类型如蛋白聚集、硅油、气泡和纤维等。与图像数据库联合使用,可识别一些颗粒,有助于了解污染源和产品性质。与光阻法和显微计数法相比,缩短了分析时间,具有更高重复性和分辨率。满足2-10 μm范围内亚可见颗粒分析需求。光阻法(LO)介绍:被检测的液体通过专门设计的流通室,与液体流向垂直的入射光束由于被液体中的粒子阻挡而减弱,从而使传感器输出的信号变化,这种信号变化与粒子通过光束时的截面积尺寸成正比。这种比例关系可以反映粒子的大小。每一个粒子通过光束时引起一个电压脉冲信号,脉冲信号的多少反映了粒子的数量。光阻法检测颗粒范围为1∽300 μm(USP 40)。以光阻法为原理设计的微粒检测仪主要包括取样器、传感器和计算机控制的检测和数据处理系统。不同设备测量粒径范围涵盖了2∽100μm,检测粒径浓度为0∽10000个/ml,取样体积为0.2∽100 mL。符合药典对大小容量注射液和粉针剂不溶性微粒检测需求。其主要优势是可直接观察溶液中颗粒,具有大量历史数据的药典推荐方法。操作简单可进行中高通量检测。劣势是对比度低,可能会低估制剂配方中形成的不可见蛋白质颗粒,对气泡敏感,某些脱气技术会改变样本性质,更重要的只适合表征颗粒大小和分布,不能通过形态来分析颗粒。电感应区检测方法:基于库尔特原理检测颗粒,可检测0.4∽1600μm范围内的颗粒(不同商业化库尔特颗粒计数及粒度分析仪有变化)。稀释悬浮在电解液中的样本颗粒通过小孔管时,取代相同体积的电解液,在恒电流设计的电路中导致小孔管内外两电极间电阻发生瞬时变化,从而中断电场,产生电位脉冲。脉冲信号的大小和次数与颗粒的大小和数目成正比。 信号响应不受颗粒类型的影响(如颜色、硬度、不透明度和折射率变化)。本技术优势不受溶液光学特性的影响,可实现单孔中高通量样本检测。劣势是需要大样本体积,需要较低颗粒浓度,有时样品必须在电解质溶液中稀释获得足够电导率,可能会改变样品性质。同样也不能提供形态学参数。显微计数法:采用光学显微镜(LM)检测和分析颗粒,光在样品上透射或反射后通过一系列透镜,直接采用目镜观测,或数码相机采集信号成像。图像分析可使用软件系统,按照一定参数对颗粒群体进行分析。优势是可直接观察溶液中颗粒,可视化计数颗粒大小和数目,并鉴别颗粒形态。可与红外或拉曼计数整合来鉴定颗粒化学组成。但劣势是人工分析费时费力和通量低,难以看到低光学对比度颗粒,自动化程度低。颗粒鉴定表征可采用傅里叶红外光谱(FTIR)显微镜、显微拉曼光谱和扫描电镜-能谱分析(SEM-EDS)等技术,本文不做深入论述。基因治疗产品亚可见颗粒分析案例鉴于不溶性微粒研究在生物制品中重要性,有必要深入研究病毒为载体基因治疗产品中病毒颗粒聚集体和不溶性颗粒形成原因,并找到相应的解决方案来提高基因治疗产品的研发和质量控制水平。以下案例简要说明基因治疗产品亚可见微粒分析方案。AAV生产超滤工艺中颗粒监控AAV生产过程中超滤环节将AAV浓缩并置于最终制剂配方缓冲液中,作为生产工艺中关键步骤,需要深入研究和加深对AAV载体超滤的理解。美国Voyager Therapeutics公司研究超滤膜截留分子量和操作条件对复合再生纤维素(CRC)超滤膜的通量和传输的影响,采用AAV2和AAV9两个血清型病毒载体,以及对AAV超滤行为的定量理解,并指导工艺开发。利用微流成像颗粒分析方法(MFI)研究病毒浓缩超滤工艺开发过程中产生的亚可见颗粒,当通过CRC超滤膜时,膜截留分子量和操作条件对通量影响。下图结果展示1到10μm之间颗粒采用MFI检测时存在明显差异。两个批次A和B实验,对于特定的膜批次,当处理时间较长时,亚可见微粒浓度较高。与较低TMP 6.5 psig相比,当采用更高TMP(20 psig)进行超滤时,亚可见微粒浓度降低。这归因于较低TMP下超滤时,泵通过管道和通道次数增加导致。本研究可指导超滤工艺的条件设置。MFI系统具备自动进样系统,可一次自动检测多达90个样本,非常适合AAV生产过程中工艺优化。不同渗透率RC2A膜超滤的AAV2样本的不同大小颗粒评价,上图批号Lot A样本,下图Lot B样本AAV基因治疗产品稳定性研究制剂配方中AAV长期稳定性和密封容器封闭的完整性是冷冻产品两个关键方面。为了最大限度地减少化学和物理降解,也为了长期存储和运输,AAV原料药和产品制剂通常冷冻在≤-60 °C下,有时允许产品制剂短期存储在医院的2-8°C冰箱中。在制造、贴标签和临床使用过程中会在室温和冷藏条件下发生冻融循环。除了长期稳定性外,在外暴露期间AAV的稳定性也很重要。不同AAV血清型和制剂配方差异导致这期间的稳定性也会有所不同,所以在制剂配方早期开发过程中获得数据来确认AAV在制造、贴标签和临床使用期间将保持稳定是有意义的。为了研究温度、存储时间和冻融率对AAV8和AAV9稳定性的影响,美国REGENXBIO公司研究低浓度和高浓度AAV8和AAV9病毒在五个冻融循环中,预期存储以外时间的稳定性,考察病毒关键质量属性变化情况。下图是采用数字PCR检测病毒载体基因组浓度(GC/mL),结果显示病毒效力和浓度在方法误差范围内保持稳定。采用光阻法检测亚可见微粒(Particles/mL ≥10 μm)。左边第1列是配方F1中AAV8,第2列是配方F3中AAV8。每个小图中左边一对柱状图是低浓度结果和右边一对柱状图是高浓度结果。对照组标记为Cont.和累积预期存储时间外暴露样本标记为TOIS。实验结果显示TOIS后颗粒数非常低,≥2 μm的颗粒≤78个/mL,≥10μm的颗粒≤10个/mL,≥25μm的颗粒≤2个/mL,和≥50μm的颗粒0个/mL。在本研究设定实验条件下,结果表明AAV8和AAV9产品质量属性保持在可接受范围内,稳定性适合用于生产和临床使用。作者认为光阻法有局限,可能低估了半透明的蛋白质颗粒和病毒聚集体颗粒,后续研究需要采用微流成像技术对亚可见颗粒进行表征和稳定性研究。同样研究冻融条件对病毒载体稳定性影响,美国堪萨斯大学疫苗分析和制剂中心科学家(Vineet Gupta,2022,Journal of Virological Methods)研究了淋巴细胞性脉络丛脑膜炎病毒(LCMV)载体稳定性,使用TEM、NTA和MFI三种互补的病毒颗粒表征技术研究病毒载体在冻融应激下稳定性。4种不同制剂配方(Form 1-4)在0、3和6个冻融循环条件下亚可见颗粒变化,研究冻融对病毒载体稳定性影响。参考下图,结果证明了通过MFI可检测到样本中存在大量的亚可见微粒。揭示某些制剂(制剂F1和F3)病毒载体亚可见颗粒浓度与病毒载体滴度损失之间存在负相关,制剂配方2和4没有变化。与上述研究类似,Kumru等2015年观察到在冻融循环时,特定配方中溶瘤单纯疱疹病毒1的体外效力值和亚可见颗粒浓度之间呈现负相关。基于多项研究,不同制剂配方中观察到结果可能有所不同,所以在评估病毒感染能力和稳定性时,需要同步进行亚可见颗粒研究。综上所述,基因治疗产品在研发、生产、存储等多个工艺过程中需要持续监测样本中颗粒情况,从早期到晚期开发阶段都需要监测颗粒的动态变化过程,探索研究病毒聚集体和颗粒产生的原因。可采用多种不同分析检测技术联合使用,针对纳米级和微粒级颗粒进行全范围覆盖。特别是参考中美药典对不溶性颗粒检测规定,借鉴生物大分子蛋白质药物颗粒分析经验,不同方法优势互补,采用光阻法、显微计数法和微流成像颗粒分析方法(MFI)对亚可见微粒进行深入研究,分析基因治疗原料药和药品中颗粒形成原因,可用于优化病毒载体生产和纯化工艺、筛选合适制剂配方和存储条件,提高产品质量稳定性和安全性,保证产品疗效。索取资料请扫上方二维码参考文献:Alexandra Roesch, Sarah Zolls, et al. Particles in Biopharmaceutical Formulations, Part 2: An Update on Analytical Techniques and Applications for Therapeutic Proteins, Viruses, Vaccines and Cells. Journal of Pharmaceutical Sciences(2021) 1−18于雷,裴德宁等. 基因治疗产品中病毒颗粒的微粒特性研究. 药物分析杂志 Chin J Pharm Anal 2020,40(1)Andrew D.Tustian, Hanne Bak. Assessment of quality attribute
  • 聚焦离子束(FIB)技术原理与发展历史
    20世纪以来,微纳米科技作为一个新兴科技领域发展迅速,当前,纳米科技已经成为21 世纪前沿科学技术的代表领域之一,发展作为国家战略的纳米科技对经济和社会发展有着重要的意义。纳米材料结构单元尺寸与电子相干长度及光波长相近,表面和界面效应,小尺寸效应,量子尺寸效应以及电学,磁学,光学等其他特殊性能、力学和其他领域有很多新奇的性质,对于高性能器件的应用有很大潜力。具有新奇特性纳米结构与器件的开发要求开发出具有更高精度,多维度,稳定性好的微纳加工技术。微纳加工工艺范围非常广泛,其中主要常见有离子注入、光刻、刻蚀、薄膜沉积等工艺技术。近年来,由于现代加工技术的小型化趋势,聚焦离子束(focused ion beam,FIB)技术越来越广泛地应用于不同领域中的微纳结构制造中,成为微纳加工技术中不可替代的重要技术之一。FIB是在常规离子束和聚焦电子束系统研究的基础上发展起来的,从本质上是一样的。与电子束相比FIB是将离子源产生的离子束经过加速聚焦对样品表面进行扫描工作。由于离子与电子相比质量要大的非常多,即时最轻的离子如H+离子也是电子质量的1800多倍,这就使得离子束不仅可以实现像电子束一样的成像曝光,离子的重质量同样能在固体表面溅射原子,可用作直写加工工具;FIB又能和化学气体协同在样品材料表面诱导原子沉积,所以FIB在微纳加工工具中应用很广。本文主要介绍FIB技术的基本原理与发展历史。离子源FIB采用离子源,而不是电子束系统中电子光学系统电子枪所产生的加速电子。FIB系统以离子源为中心,较早的离子源由质谱学与核物理学研究驱动,60年代以后半导体工业的离子注入工艺进一步促进离子源开发,这类离子源按其工作原理可粗略地分为三类:1、电子轰击型离子源,通过热阴极发射的电子,加速后轰击离子源室内的气体分子使气体分子电离,这类离子源多用于质谱分析仪器,束流不高,能量分散小。2、气体放电型离子源,由气体等离子体放电产生离子,如辉光放电、弧光放电、火花放电离子源,这类离子源束流大,多应用于核物理研究中。3、场致电离型离子源是利用针尖针尖电极周围的强电场来电离针尖上吸附的气体原子,这种离子源多应用于场致离子显微镜中。除场致电离型离子源外,其余离子源均在大面积空间内(电离室)生成离子并由小孔引出离子流。故离子流密度低,离子源面积大,不适合聚焦成细束,不适合作为FIB的离子源。20世纪70年代Clampitt等人在研究用于卫星助推器的铯离子源的过程中开发出了液态金属离子源(liquid metal ion source,LMIS)。图1:LMIS基本结构将直径为0.5 mm左右的钨丝经过电解腐蚀成尖端直径只有5-10μm的钨针,然后将熔融状态的液态金属粘附在针尖上,外加加强电场后,液态金属在电场力的作用下形成极小的尖端(约5 nm的泰勒锥),尖端处电场强度可达10^10 V/m。在这样高电场作用下,液尖表面金属离子会以场蒸发方式逸散到表面形成离子束流。而且因为LMIS发射面积很小,离子电流虽然仅有几微安,但所产生电流密度可达到10^6/cm2左右,亮度在20μA/Sr左右,为场致气体电离源20倍。LMIS研究的问世,确实使FIB系统成为可能,并得到了广泛的应用。LMIS中离子发射过程很复杂,动态过程也很复杂,因为LMIS发射面为金属液体,所以发射液尖形状会随着电场和发射电流的不同而改变,金属液体还必须确保不间断地补充物质的存在,所以发射全过程就是电流体力学和场离子发射相互依赖和相互作用的过程。有分析表明LMIS稳定发射必须满足三个条件:(1)发射表面具有一定形状,从而形成一定的表面电场;(2)表面电场足以维持一定的发射电流与一定的液态金属流速;(3)表面流速足以维持与发射电流相应的物质流量损失,从而保持发射表面具有一定形状。从实用角度,LMIS稳定发射的一个最关键条件:制作LMIS时保证液态金属与钨针尖的良好浸润。由于只有将二者充分持续地粘附在一起,才能够确保液态金属很好地流动,这一方面能够确保发射液尖的形成,同时也能够确保液态金属持续地供应。实验发现LMIS还有一些特性:(1) 存在临界发射阈值电压。一般在2 kV以上;电压超过阈值后,发射电流增加很快。(2) 空间发射角较大。离子束的自然发射角一般在30º左右;发射角随着离子流的增加而增加;大发射角将降低束流利用率。(3) 角电流密度分布较均匀。(4) 离子能量分散大(色差)。离子能散通常约为4.5 eV,能散随离子流增大而增大,这是由于离子源发射顶端存在严重空间电荷效应所致。由于离子质量比电子质量大得多,同一加速电压时离子速度比电子速度低得多,离子源发射前沿空间电荷密度很大,极高密度离子互斥,造成能量高度分散。减小色差的一个最有效的办法是减小发射电流,但低于2uA后色差很难再下降,维持在4.5eV附近。继续降低后离子源工作不稳定,呈现脉冲状发射。大能散使离子光学系统的色差增加,加重了束斑弥散。(5) LMIS质谱分析表明,在低束流(≤ 10 μA)时,单电荷离子几乎占100%;随着束流增加,多电荷离子、分子离子、离子团以及带电金属液滴的比重增加,这些对聚焦离子束的应用是不利的。以上特性表明就实际应用而言,LMIS不应工作在大束流条件下,最佳工作束流应小于10μA,此时,离子能量分散与发散角都小,束流利用率高。LMIS最早以液态金属镓为发射材料,因为镓熔融温度仅为29.8 ºC,工作温度低,而且液态镓极难挥发、原子核重、与钨针的附着能力好以及良好的抗氧化力。近些年经过长时间的发展,除Ga以外,Al、As、Au、B、Be、Bi、Cs、Cu、Ge、Fe、In、Li、Pb、P、Pd、Si、Sn、U、Zn都有报道。它们有的可直接制成单质源;有的必须制成共熔合金(eutectic alloy),使某些难熔金属转变为低熔点合金,不同元素的离子可通过EXB分离器排出。合金离子源中的As、B、Be、Si元素可以直接掺杂到半导体材料中。尽管现在离子源的品种变多,但镓所具有的优良性能决定其现在仍是使用最为广泛的离子源之一,在一些高端型号中甚至使用同位素等级的镓。FIB系统结构聚焦离子束系统实质上和电子束曝光系统相同,都是由离子发射源,离子光柱,工作台以及真空和控制系统的结构所构成。就像电子束系统的心脏是电子光学系统一样,将离子聚焦为细束最核心的部分就是离子光学系统。而离子光学与电子光学之间最基本的不同点:离子具有远小于电子的荷质比,因此磁场不能有效的调控离子束的运动,目前聚焦离子束系统只采用静电透镜和静电偏转器。静电透镜结构简单,不发热,但像差大。图2:聚焦离子束系统结构示意图典型的聚焦离子束系统为两级透镜系统。液态金属离子源产生的离子束,在外加电场( Suppressor) 的作用下,形成一个极小的尖端,再加上负电场( Extractor) 牵引尖端的金属,从而导出离子束。第一,经过第一级光阑后离子束经过第一级静电透镜的聚焦和初级八级偏转器对离子束的调节来降低像散。通过一系列可变的孔径(Variable aperture),可以灵活地改变离子束束斑的大小。二是次级八极偏转器使得离子束按照定义加工图形扫描加工而成,利用消隐偏转器以及消隐阻挡膜孔可以达到离子束消隐的目的。最后,通过第二级静电透镜,离子束被聚焦到非常精细的束斑,分辨率可至约5nm。被聚焦的离子束轰击在样品表面,产生的二次电子和离子被对应的探测器收集并成像。离子与固体材料中的原子碰撞分析作为带电粒子,离子和电子一样在固体材料中会发生一系列散射,在散射过程中不断失去所携带的能量最后停留在固体材料中。这其中分为弹性散射和非弹性散射,弹性散射不损失能量,但是改变离子在固体中的飞行方向。由于离子和固体材料内部原子质量相当,离子和固体材料之间发生原子碰撞会产生能量损失,所以非弹性散射会损耗能量。材料中离子的损失主要有两个方面的原因,一是原子核的损失,离子与固体材料中原子的原子核发生碰撞,将一部分能量传递给原子,使得原子或者移位或者与固体材料的表面完全分离,这种现象即为溅射,刻蚀功能在FIB加工过程中也是靠这种原理来完成。另一种损失是电子损失:将能量传递给原子核周围的电子,使这些电子或被激发产生二次电子发射,或剥离固体原子核周围的部分电子,使原子电离成离子,产生二次离子发射。离子散射过程可以用蒙特卡洛方法模拟,具体模拟过程与电子散射过程相似。1.由原子核微分散射截面计算总散射截面,据此确定离子与某一固体材料原子碰撞的概率;2.随机选取散射角与散射平均自由程,计算散射能量的核损失与电子损失;3.跟踪离子散射轨迹直到离子损失其全部携带能量,并停留在固体材料内部某一位置成为离子注入。这一过程均假设衬底材料是原子无序排列的非晶材料且散射具有随机性。但在实践中,衬底材料较多地使用了例如硅单晶这种晶体材料,相比之下晶体是有晶向的,存在着低指数晶向,也就是原子排列疏密有致,离子一个方向“长驱直入”时穿透深度可能增加几倍,即“沟道效应”(channeling effect)。FIB的历史与现状自1910年Thomson发明气体放电型离子源以来,离子束已使用百年之久,但真正意义上FIB的使用是从LMIS发明问世开始的,有关LMIS的文章已做了简单介绍。1975年Levi-Setti和Orloff和Swanson开发了首个基于场发射技术的FIB系统,并使用了气场电离源(GFIS)。1975年:Krohn和Ringo生产了第一款高亮度离子源:液态金属离子源,FIB技术的离子源正式进入到新的时代,LMIS时代。1978年美国加州的Hughes Research Labs的Seliger等人建造了第一套基于LMIS的FIB。1982年 FEI生产第一只聚焦离子束镜筒。1983年FEI制造了第一台静电场聚焦电子镜筒并于当年创立了Micrion专注于掩膜修复用聚焦离子束系统的研发,1984年Micrion和FEI进行了合作,FEI是Micrion的供应部件。1985年 Micrion交付第一台聚焦离子束系统。1988年第一台聚焦离子束与扫描电镜(FIB-SEM)双束系统被成功开发出来,在FIB系统上增加传统的扫描电子显微系统,离子束与电子束成一定夹角安装,使用时试样在共心高度位置既可实现电子束成像,又可进行离子束处理,且可通过试样台倾转将试样表面垂直于电子束或者离子束。到目前为止基本上所有FIB设备均与SEM组合为双束系统,因此我们通常所说的FIB就是指FIB-SEM双束系统。20世纪90年代FIB双束系统走出实验室开始了商业化。图3:典型FIB-SEM 双束设备示意图1999年FEI收购了Micrion公司对产品线与业务进行了整合。2005年ALIS公司成立,次年ZEISS收购了ALIS。2007年蔡司推出第一台商用He+显微镜,氦离子显微镜是以氦离子作为离子源,尽管在高放大倍率和长扫描时间下它仍会溅射少量材料但氦离子源本来对样品的损害要比Ga离子小的多,由于氦离子可以聚焦成较小的探针尺寸氦离子显微镜可以生成比SEM更高分辨率的图像,并具有良好的材料对比度。2011年Orsay Physics发布了能够用于FIB-SEM的Xe等离子源。Xe等离子源是用高频振动电离惰性气体,再经引出极引出离子束而聚焦的。不同于液态Ga离子源,Xe等离子源离子束在光阑作用下达到试样最大束流可达2uA,显著增强FIB微区加工能力,可以达到液态Ga离子FIB加工速度的50倍,因此具有更高的实用性,加工的尺寸往往达到几百微米。如今FIB技术发展已经今非昔比,进步飞快,FIB不断与各种探测器、微纳操纵仪及测试装置集成,并在今天发展成为一个集微区成像、加工、分析、操纵于一体的功能极其强大的综合型加工与表征设备,广泛的进入半导体行业、微纳尺度科研、生命健康、地球科学等领域。参考文献:[1]崔铮. 微纳米加工技术及其应用(第2版)(精)[M]. 2009.[2]于华杰, 崔益民, 王荣明. 聚焦离子束系统原理、应用及进展[J]. 电子显微学报, 2008(03):76-82.[3]房丰洲, 徐宗伟. 基于聚焦离子束的纳米加工技术及进展[J]. 黑龙江科技学院学报, 2013(3):211-221.[3]付琴琴, 单智伟. FIB-SEM双束技术简介及其部分应用介绍[J]. 电子显微学报, 2016, v.35 No.183(01):90-98.[4]Reyntjens S , Puers R . A review of focused ion beam applications in microsystem technology[J]. Journal of Micromechanics & Microengineering, 2001, 11(4):287-300.
  • 比朗简述核酸分子杂交技术及未来展望
    核酸分子杂交技术是20世纪70年代发展起来的一种崭新的分子生物学技术。它是基于 DNA分子碱基互补配对原理,用特异性的核酸探针与待测样品的DNA/RNA形成杂交分子的过程。分子杂交实验依据其形式的不同可以分为液相杂交、固相杂交、原位杂交,而固相杂交又可以分为菌落杂交、点/狭缝杂交、Southern印迹杂交和Northern印迹杂交。各类型杂交稻基本原理和步骤是基本相同的,只是选用的杂交原材料、点样方法有所不同。   核酸分子杂交的技术应用:   (1)Southern印记杂交   1、单基因遗传病的基因诊断:早在1978年,简悦威等医学家在镰状细胞贫血症的基因诊断中就采用过Southern杂交的方法,取得了基因诊断的突破。   2、基因点突变的检测:例如ATP敏感性钾离子通道的亚单位内向整流钾通道基因A635G突变的检测   (2)Northern印记杂交Northern印记技术多用来检查基因组中某个特定的基因是否得到转录以及转录的相对水平。   目前,Northern印记技术仍然被认为是检测基因表达水平的金标准。(3)液相杂交 以液相杂交技术为基本工作原理设计的多功能悬浮点阵仪是液态芯片技术应用的典范。这一技术平台已被应用于遗传突变的分子诊断,如出生缺陷干预工程中的Down&rsquo s综合征、珠蛋白合成障碍性贫血、葡萄糖-6-磷酸脱氢酶缺陷的基因诊断,也已被用于SNPs分析、感染性疾病的鉴别诊断、药物敏感性和亲子鉴定。此外,还可以应用于基因表达谱的分析,从而进行肿瘤性疾病如血液病、乳腺癌、肝癌、胃癌、肺癌、膀胱癌和结肠癌的分子病理学研究。   比朗小编总结到尽管核酸分子杂交技术的应用越来越广泛,但其在临床实用中仍存在不少问题,必须提高检测单拷贝基因的敏感性,用非放射性物质代替放射性同位素标记探针以及简化实验操作和缩短杂交时间,这样,就需要在以下三方面着手研究:   第一,完善非放射性标记探针   第二,靶序列和探针的扩增以及信号的放大   第三,发展简单的杂交方式,只有这样,才能使DNA探针实验做到简便、快速、低廉和安全。   上海比朗仪器有限公司专业生产分子杂交仪、分子杂交箱、紫外交联仪厂家,了解分子杂交技术更多信息请链接:http://www.canytec.info
  • 玩具中铬元素形态分析简述
    在自然界中,铬主要以三价铬(Cr(III))和六价铬(Cr(VI))的形式存在。有研究表明,Cr(III是人体必需的微量元素 而Cr(VI)则具有很大毒性。Cr(VI)化合物具有免疫毒性、神经毒性、生殖毒性、肾脏毒性及致癌性等,其致癌性目前已被国际癌症研究机构(IARC)及美国政府工业卫生学家协会(ACGIH)确认。   近年来,限制玩具中有害物质含量,一直是全球关注的一个焦点话题。欧盟于2009 年6 月18 日通过的欧盟玩具安全新指令(2009/48/EC),将玩具中可迁移重金属元素由原来的8种增加到了17 种,还提出了元素价态分析的要求,包括Cr(III)、Cr(VI)和有机锡。新玩具指令将玩具材料分成三类:I类是干燥易碎的固体材料,例如粉笔 II类是粘手的材料或者液体,例如指画涂料和彩笔墨水 III类是可刮下来的材料,例如油漆涂层。新玩具指令对I/II/III类玩具材料中的可迁移Cr(VI)的限值分别是0.02,0.005和0.2 mg/kg。欧盟在2013年6月正式发布了EN71-3:2013,作为玩具指令2009/48/EC的协调标准。按照EN71-3:2013的规定,测定可迁移元素的前处理方法的稀释倍数为50倍。除以稀释倍数后,Cr(VI)在迁移液(migration solution)中的浓度仅为0.4,0.1和4&mu g/L。   现有的Cr(VI)检测方法,主要有分光光度法(UV/VIS)、离子色谱(高效液相色谱)柱后衍生法(IC(HPLC)-UV/VIS)、以及高效液相色谱-电感耦合等离子体质谱仪法(HPLC-ICPMS)。UV/VIS法使用最为广泛,被大量的国际、国内标准方法所采用(例如国标《GBT 17593.3-2006 纺织品 重金属的测定 第3部分:六价铬 分光光度法》)。UV/VIS法的检测原理是利用六价铬具有强氧化性,在酸性环境下可以氧化二苯基碳酰二肼并且络合成有颜色的络合物,在540nm处测定它的光吸收,从而通过朗伯比尔定律定量分析。但UV/VIS检出限一般10 &mu g/L左右,难以满足玩具样品的要求。IC(HPLC)-UV/VIS法与UV/VIS的检测原理大同小异,只是多了IC(HPLC)的分离降低了干扰,并且把二苯卡巴肼衍生过程自动化了,检出限虽比单独的UV有所改善但仍难以满足玩具样品的要求。UV/VIS与IC(LC)-UV/VIS这两种方法都是测定衍生产物分子的光吸收,因此有颜色的样品干扰会比较大 衍生的条件(例如温度、酸度等等)需要严格控制,对衍生过程有影响的基体也会造成干扰(例如一些高价态的过渡金属离子,能氧化二苯卡巴肼,容易造成假阳性)。   HPLC-ICPMS是近年来迅速发展起来的分析技术,也是EN71-3:2013推荐用于检测玩具样品中可迁移Cr(VI)的分析方法。   当HPLC-ICPMS用于分析EN71-3的铬形态分析时,六价铬在PH大于6.8时以阴离子CrO42-的形式存在,可以和TBAOH形成离子对 三价铬大多采用EDTA络合,形成螯合物阴离子[Cr(III)-EDTA ] 1-,也可以和TBAOH形成离子对 两种离子对在C8上的保留时间不同,三价铬的离子对先出来,六价铬的离子对后出来 ICP-MS检测Cr52离子,形成色谱图。   该方法需要先把迁移液的pH值调节到7.1左右,再加入含有EDTA的流动相在50 ℃温浴2小时。这个步骤耗费了大量的时间和人力,而且容易带入污染和误差,导致不同操作者、不同实验室之间的结果重复性差。由于有的玩具样品经过迁移后,迁移液含有高浓度的Al/Zn/Cu/Fe/Ca等金属离子,这些离子不但会与三价铬竞争EDTA的络合,而且它们与EDTA形成的络合离子又会干扰Cr(VI)的分析,造成保留时间漂移、分离度差、回收率不理想等情况。同时,迁移液中含有高浓度的氯离子,会改变Cr(VI)的保留时间,并且形成Cl35O17和Cl35O16H1的多原子离子对Cr52产生质谱干扰。为了降低样品基体的干扰,目前的方法大多采用流动相把迁移液稀释10的做法,Cr(VI)也被稀释了10倍,这样会造成方法检测限急剧升高,甚至高于I/II类玩具的限值。
  • 外泌体粒径分析该选谁?不同外泌体粒径分析技术间的比较
    测量外泌体的粒径分布一直以来都是外泌体表征的重要组成部分。但是由于外泌体的尺寸仅为30~200 nm,所以必须借助一些特殊的检测手段才能够对这种在光学显微镜下不可视的颗粒进行观测。本篇就外泌体粒径测量技术的发展进行简述,并对不同技术的差异进行比较。一、电镜技术在外泌体发现的早期,由于还没有专门针对这类尺寸颗粒的分析方法,因此直接在电镜下面观察粒径并统计成为了早的外泌体粒径统计方法。但是这种方法费时费力,且通量低,在面对临床和科研中的大量样本时显得十分无力。文献中外泌体在电镜TEM模式下的经典形态 二、动态光散射技术 & 纳米粒子跟踪分析技术由于外泌体与材料学所合成的脂质体在形态上十分相似,因此用于脂质体表征的动态光散射技术(DLS)便被应用于外泌体的尺寸测量上。DLS利用光射到远小于其波长的小颗粒上时会产生瑞利散射现象,通过观察散射光的强度随时间的变化推算出溶液中颗粒的大小。但是这种技术会受到测量物质的颜色、电性、磁性等理化特性的影响,并且对于灰尘和杂质十分敏感。因此使得DLS在测量尺寸较小的粒子时,测量出的粒径与实际的分布具有较大的偏差。为了弥补DLS的短板,纳米粒子跟踪分析(NTA)技术孕育而生。这种技术采用激光散射显微成像技术,用于记录纳米粒子在溶液中的布朗运动轨迹,并通过Stokes-Einstein方程推算粒子大小。这种技术能够对30~1000 nm的粒径进行测量,因此能够提供更为地粒径数据。在诸多文献的测试中均取得了较DLS更好的精度,因此成为目前为主流的外泌体尺寸测量手段。NTA技术的工作原理与DLS技术在测量不同尺寸纳米球的数据对比。可见相比于DLS,NTA测量的粒径分布更为。 虽然NTA取得了比DLS 更高的性,但是随着外泌体研究的深入,其局限性也十分明显。先NTA仅能够测量溶液中颗粒的平均粒径尺寸,但是NTA无法分辨其中的外泌体、囊泡、脂蛋白,也不能区别不同源性的外泌体。这直接限制了外泌体粒径表征的意义,使得研究者很难探究外泌体尺寸与外泌体来源之间的关系。另外NTA本身对于测试时的温度、浓度和校准都有着较高要求,因此使得NTA在测试较小的粒子时其精度仍不能达到令人满意的效果,其测试结果却仍与电镜、AFM等成像技术所观测到的粒径存在着明显差异。外泌体在TEM下的成像及粒径统计与NTA测量的结果对比。可见NTA测量到的粒径要比TEM直接测量的结果大50~100 nm。 三、单粒子干涉反射成像技术为了解决上述在实际测试中的问题,一种新型的单粒子干涉反射成像传感器(SP-IRIS)技术孕育而生。这种技术摒弃了布朗运动轨迹追踪方法,通过基底与颗粒形成的相干光进行成像,通过成像后的亮度来直接计算纳米粒子的大小。从而避免了NTA测量粒径轨迹误差大的短板,拥有更高的灵敏度和精度,即使对于NTA无法区分的40 nm与70 nm的粒子混合溶液也依然能够取得很好的分辨率。SP-IRIS的原理及芯片微阵列打印的成像效果和对混合不同粒径小球的区分效果。可见SP-IRIS技术拥有更高的测试通量和测量精度。得益于这种高精度测量方法,越来越多的研究者终于能够测量到与电镜直接观测相当的粒径。这种优势所带来的效果不单单是能够让TEM的数据与纳米粒子表征的数据更为一致,同时还能够表征不同来源的外泌体之间的粒径差异。SP-IRIS、NTA和TEM统计同一样品时所测量的粒径分布。SP-IRIS在测量不同尺寸的外泌体时,测量的粒径与TEM的尺寸统计基本一致,而NTA统计的粒径则比TEM大约50 nm。此外SP-IRIS技术还能够提供不同来源外泌体的尺寸差异,能够看出CD9来源的外泌体要比其它来源的外泌体大~10 nm。 SP-IRIS的另一个优势在于能够更换激光源的波长,因此除了能够实现外泌体的形貌成像外,还能够实现单外泌体的荧光成像。使得单外泌体的荧光共定位成为可能,研究者通过这种单外泌体荧光成像能够研究单外泌体的表型、载物、来源等生物信息。使用SP-IRIS 对受伤组和对照组小鼠不同时间点的血清CD9、CD81来源外泌体的分泌量监测。可以看到CD81来源的外泌体的分泌量呈现先增加后减少的趋势,而CD9来源的外泌体分泌量则一直在增加。 综上所述,由于SP-IRIS技术的高精度、高灵敏度、可做单外泌体荧光成像的优势,目前有越来越多的学者开始对比NTA技术和SP-SPIS技术,其结果均认为SP-SPIS技术测试的效果要明显优于NTA,这其中也不乏Cell等高水平期刊。相信在不久的将来,SP-IRIS技术将会越来越普及,为研究者研究外泌体打开新的大门。 参考文献:[1]. Ayuko Hoshino, et al, Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers,cell, 2020, 182, 1–18.[2]. Oguzhan Avci, et al., Interferometric Reflectance Imaging Sensor (IRIS)—A Platform Technology for Multiplexed Diagnostics and Digital Detection, Sensors 2015, 15, 17649-17665.[3]. George G. Daaboul, et al, Digital Detection of Exosomes by Interferometric Imaging, Scientific Reports,6, 37246.[4]. Federica Collino, et al, Extracellular Vesicles Derived from Induced Pluripotent Stem Cells Promote Renoprotection in Acute Kidney Injury Model, Cells 2020, 9, 453.[5]. Daniel Bachurski, et al, Extracellular vesicle measurements with nanoparticle tracking analysis – An accuracy and repeatability comparison between NanoSight NS300 and ZetaView, JOURNAL OF EXTRACELLULAR VESICLES 2019, 8, 1596016.[6]. Robert D. Boyd, et al, New approach to inter-technique comparisons for nanoparticle size measurements using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering, Colloids and Surfaces A: Physicochem. Eng. Aspects 387,2011, 35– 42.
  • 《中国药典》0431质谱法修订公示稿 一表简述质谱技术应用领域
    国家药典委员会发布的“0431质谱法草案”增加了质谱技术在中药、化学药、生物药和微生物鉴定等相关领域应用的简述。总述部分提到质谱法主要用于中药、化学药和生物药的研发、生产(QC)和上市后质量监测与评价。津津老师根据药典委网站0431通则公示稿附件、近两年发布的其他通则公示稿合并整理了以下应用领域。公示稿另提到质谱法在代谢物、内源性核酸和蛋白质等微量或复杂成分分析中应用广泛。质谱法还可用于细菌、真菌分类与鉴定、分子成像分析等。本文内容非商业广告,仅供专业人士参考。
  • 电镜学堂丨扫描电子显微镜的结构(一) - 电子光学系统
    这里是TESCAN电镜学堂第四期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!扫描电子显微镜主要由电子光学系统、信号收集处理系统、真空系统、图像处理显示和记录系统、样品室样品台、电源系统和计算机控制系统等组成。第一节 电子光学系统电子光学系统主要是给扫描电镜提供一定能量可控的并且有足够强度的,束斑大小可调节的,扫描范围可根据需要选择的,形状完美对称的,并且稳定的电子束。电子光学系统主要由电子枪、电磁聚光镜、光阑、扫描系统、消像散器、物镜和各类对中线圈组成,如图3-1。图3-1 SEM的电子光学系统§1. 电子枪(Electron Gun)电子枪是产生具有确定能量电子束的部件,是由阴极(灯丝)、栅极和阳极组成。灯丝主要有钨灯丝、LaB6和场发射三类。① 钨灯丝电子枪:如图3-2,灯丝是钨丝,在加热到2100K左右,电子能克服大约平均4.5eV的逸出功而逃离,钨灯丝是利用热效应来发射电子。不过钨灯丝发射电子效率比较低,要达到实用的电流密度,需要较大的钨丝发射面积,一般钨丝电子源直径为几十微米。这样大的电子源直径很难进一步提高分辨率。还有,钨灯丝亮度差、电流密度低、单色性也不好,所以钨灯丝目前最高只能达到3nm的分辨率,实际使用的放大倍数均在十万倍以下。不过由于钨灯丝价格便宜,所以钨灯丝电镜得到了广泛的应用。图3-2 钨灯丝电子枪② LaB6电子枪:要提高扫描电镜的分辨率,就要提高电子枪的亮度。而一些金属氧化物或者硼化物在加热到高温之后(1500~2000K),也能克服平均逸出功2.4eV而发射热电子,比如LaB6,曲率半径为几微米。LaB6灯丝亮度能比钨灯丝提高数倍。因此LaB6灯丝电镜有比钨灯丝更好的分辨率。除了LaB6外,类似的还有CeB6等材料。不过目前在扫描电镜领域,LaB6灯丝价格并不便宜,性能相对钨灯丝提升有限,另外就是场发射的流行,使得LaB6灯丝的使用并不多见。图3-3 LaB6电子枪② 场发射电子枪:1972年,拥有更高亮度、更小电子束直径的场发射扫描电镜(FE-SEM)实现商品化,将扫描电镜的分辨率推向了新的高度。场发射电子枪的发射体是钨单晶,并有一个极细的尖端,其曲率半径为几十纳米到100nm左右,在钨单晶的尖端加上强电场,利用量子隧道效应就能使其发射电子。图3-4为场发射电子枪的结构示意图。钨单晶为负电位,第一阳极也称取出电极,比阴极正几千伏,以吸引电子,第二阳极为零电位,以加速电子并形成10nm左右的电子源直径。图3-5为场发射电子枪的钨单晶灯丝结构,只有钨灯丝支撑的非常小的尖端为单晶。图3-4 场发射电子枪结构示意图图3-5 场发射电子枪W单晶尖端场发射电子枪又分为冷场发射和热场发射。热场发射的钨阴极需要加热到1800K左右,尖端发射面为或取向,单晶表面有一层氧化锆(如图3-6),以降低电子发射的功函数(约为2.7eV)。图3-6 热场发射电子枪钨单晶尖端冷场发射不需加热,室温下就能进行工作,其钨单晶为取向,逸出功最小,利用量子隧道效应发射电子。冷场电子束直径,发射电流密度、能量扩展(单色性)都优于热场发射,所以冷场电镜在分辨率上比热场更有优势。不过冷场电镜的束流较小(一般为2nA),稳定性较差,每个几小时需要加热(Flash)一次,对需要长时间工作和大束流分析有不良影响。不过目前Hitachi最新的冷场SEM,束流已经能达到20nA,稳定性也比以往提高了很多,能够满足一些短时间EBSD采集的需要,不过对于WDS、阴极荧光等分析还不够。热场发射虽然电子束直径、能量扩展不及冷场,但是随着技术的发展,其分辨率也越来越接近冷场的水平,有的甚至还超越了冷场。特别是热场电镜束流大,稳定性好,有着非常广阔的应用范围。从各个电镜厂商对待冷场和热场的态度来看,欧美系厂商钟情于热场电镜,而日系厂商则倾向于冷场电镜。不过目前日系中的日本电子也越来越多的推出热场电镜,日立也逐步推出热场电镜,不过其性能与自家的冷场电镜相比还有较大差距。① 各种类型电子源对比:各类电子源的对比如表3-1。表3-1 不同电子源的主要参数SEM的分辨率与入射到试样上的电子束直径密切相关,电子束直径越小,分辨率越高。最小的电子束直径D的表达式为:其中D为交叉点电子束在理想情况下的最后的束斑直径,CS为球差系数、CC为色差系数、ΔV/V0为能量扩展、I为电子束流、B为电子源亮度,a为电子束张角。由此可以看出,不同类型的电子源,其亮度、单色性、原始发射直径具有较大的差异,最终导致聚焦后的电子束斑有明显的不同,从而使得不同电子源的电镜的分辨率也有如此大的差异。通常扫描电镜也根据其电子源的类型,分为钨灯丝SEM和冷场发射SEM、热场发射SEM。§2. 电磁透镜电磁透镜主要是对电子束起汇聚作用,类似光学中的凸透镜。电磁透镜主要有静电透镜和磁透镜两种。① 静电透镜一些特定形状的并成旋转对称的等电位曲面簇可以使得电子束在库仑力的作用下进行聚焦,形成这些等电位曲面簇的装置就是静电透镜,如图3-7。图3-7 静电透镜静电透镜在扫描电镜中使用相对较少。不过电子枪外的栅极和阳极之间,自然就形成了一个静电透镜。另外一些特殊型号的电镜在某些地方采用了所谓的静电透镜设计。② 磁透镜电子束在旋转对称的磁场中会受到洛伦兹力的作用,进而产生聚焦作用。能使产生这种旋转对称非均匀磁场并使得电子束聚焦成像的线圈装置,就是磁透镜,如图3-8。图3-8 磁透镜磁透镜主要有两部分组成,如图3-9。第一部分是软磁材料(如纯铁)制成的中心穿孔的柱体对称芯子,被称为极靴。第二部分是环形极靴的铜线圈,当电流通过线圈的时,极靴被磁化,并在心腔内建立磁场,对电子束产生聚焦作用。图3-9 磁透镜结构磁透镜主要包括聚光镜和物镜,靠近电子枪的透镜是聚光镜,靠近试样的是物镜,如图3-10。一般聚光镜是强励磁透镜,而物镜是弱励磁透镜。图3-10 聚光镜和物镜聚光镜的主要功能是控制电子束直径和束流大小。聚光镜电流改变时,聚光镜对电子束的聚焦能力不一样,从而造成电子束发散角不同,电子束电流密度也随之不同。然后配合光阑,可以改变电子束直径和束流的大小,如图3-11。当然,有的电镜不止一级聚光镜,也有的电镜通过改变物理光阑的大小来改变束流和束斑大小。图3-11 聚光镜改变电流密度、束斑和束流物镜的主要功能是对电子束做最终聚焦,将电子束再次缩小并聚焦到凸凹不平的试样表面上。虽然电磁透镜和凸透镜非常像似,不过电子束轨迹和光学中的光线还是有较大差别的。几何光学中的光线在过凸透镜的时候是折线;而电子束在过磁透镜的时候,由于洛伦兹力的作用,其轨迹是既旋转又折射,两种运动同时进行,如图3-12。图3-12 电子束在过磁透镜时的轨迹§3. 光阑一般聚光镜和物镜之间都有光阑,其作用是挡掉大散射角的杂散电子,避免轴外电子对焦形成不良的电子束斑,使得通过的电子都满足旁轴条件,从而提高电子束的质量,使入射到试样上的电子束直径尽可能小。电镜中的光阑和很多光学器件里面的孔径光阑或者狭缝非常类似。光阑一般大小在几十微米左右,并根据不同的需要选择不同大小的光阑。有的型号的SEM是通过改变光阑的孔径来改变束流和束斑大小。一般物镜光阑都是卡在一个物理支架上,如图3-13。图3-13 物理光阑的支架在电镜的维护中光阑的状况十分重要。如果光阑合轴不佳,那将会产生巨大的像散,引入额外的像差,导致分辨率的降低。更有甚者,图像都无法完全消除像散。另外光阑偏离也会导致电子束不能通过光阑或者部分通过光阑,从而使得电子束完全没有信号,或者信号大幅度降低,有时候通过的束斑也不能保持对称的圆形,如图3-14,从而使得电镜图像质量迅速下降。还有,物镜光阑使用时间长了还会吸附其它物质从而受到污染,光阑孔不再完美对称,从而也会引起额外的像差,信号的衰弱和图像质量的降低。图3-14 光阑偏离后遮挡电子束因此,光阑的清洁和良好的合轴,对扫描电镜的图像质量来说至关重要。光阑的对中调节目前有手动旋拧和电动马达调节两种方式。TESCAN在电镜的设计上比较有前瞻性,所有型号的电镜都采用了中间镜技术,利用电磁线圈代替了传统的物镜光阑。中间镜是电磁线圈,可以受到软件的自动控制,并且连续可调,所以TESCAN的中间镜相当于是一个孔径可以连续可变的无极孔径光阑,而且能实现很多自动功能。 §4. 扫描系统① 扫描系统扫描系统是扫描电镜中必不可少的部件,作用是使电子束偏转,使其在试样表面进行有规律的扫描,如图3-15。图3-15 扫描线圈改变电子束方向扫描系统由扫描发生器和扫描线圈组成。扫描发生器对扫描线圈发出周期性的脉冲信号,如图3-16,扫描线圈通过产生相应的电场力使得电子束进行偏转。通过对X方向和Y方向的脉冲周期不同,从而控制电子束在样品表面进行矩形的扫描运动。此外,扫描电镜的像素分辨率可由X、Y方向的周期比例进行控制;扫描的速度由脉冲频率控制;扫描范围大小由脉冲振幅进行控制;另外改变X、Y方向脉冲周期比例以及脉冲的相位关系,还可以控制电子束的扫描方向,即进行图像的旋转。图3-16 扫描发生器的脉冲信号另外,从扫描发生器对扫描线圈的脉冲信号控制就可以看出,电子束在样品表面并不是完全连续的扫描,而是像素化的逐点扫描。即在一个点驻留一个处理时间后,跳到下一个像素点。值得注意的是扫描电镜的放大率由扫描系统决定,扫描范围越大,相应的放大率越小;反之,扫描的区域越小,放大率越大。显示器观察到的图像和电子束扫描的区域相对应,SEM的放大倍数也是由电子束在试样上的扫描范围确定。① 放大率的问题有关放大率,目前不同的电镜上有不同的形式,即所谓的照片放大率和屏幕放大率,不同的厂家或行业有各自使用上的习惯,故而所用的放大率没有明确说明而显得不一样。这只是放大率的选择定义不一样而已,并不存在放大率不同的问题。首先是照片放大率。照片放大率使用较早,在数字化还不发达的年代,扫描电镜照片均是用照片冲洗出来。业内普遍用宝丽来的5英寸照片进行冲洗。所用冲洗出来的照片的实际长度除以照片对应样品区域的实际大小之间的比值,即为照片放大率。不过随着数字化的到来,扫描电镜用冲洗出来的方式进行观察已经被淘汰,扫描电镜几乎完全是采用显示器直接观察。所以此时用显示器上的长度除以样品对应区域的实际大小,即为屏幕放大率。同样的扫描区域,照片放大率和屏幕放大率会显示为不同的数值。不过不管采用何种放大倍数,在通常的图片浏览方式下,其放大率通常都不准确。对于照片放大率来说,只有将电镜图像冲印成5英寸宝丽来照片时观察,其实际放大倍数才和照片放大率一致,否则其它情况都会存在偏差;对屏幕放大率来说,只有将电镜照片在控制电镜的电脑上,按照1:1的比例进行观察时,实际放大倍数才和屏幕放大率一致。否则照片在电脑上观察时放大、缩小、或者自适应屏幕,或者照片被打印成文档、或者被投影出来、或者不同的显示器之间会有不同的像素点距,都会造成实际放大率和照片上标出的放大率不同。不过不管如何偏差,照片上的标尺始终一致。所以在针对放大率倍数发生争执时,首先要弄清楚照片上标的放大倍数为何种类型,尽量回避放大率的定义,改用视野宽度或者标尺来进行比对。 §5. 物镜扫描电镜的物镜也是一组电磁透镜,励磁相对较弱,主要用于电子束的最后对焦,其焦距范围可以从一两毫米到几厘米范围内做连续微小的变化。① 物镜的类型:物镜技术是相对来说比较复杂,不同型号的电镜可能其它部件设计相似,但是在物镜技术上可能有较大的差异。目前场发射的物镜通常认为有三种物镜模式,即所谓的全浸没式、半磁浸没式和无磁场式,如图3-17。或者各厂家有自己特定的名称,但是业界没有统一的说法,不过其本质是一样的。图3-17 全浸没式(左)、无磁场式(中)、半磁浸没式(右)透镜A.全浸没式:也被称为In-LensOBJ Lens,其特点是整个试样浸没在物镜极靴以及磁场中,顾名思义叫全浸没模式。但是其试样必须做的非常小,插入到镜筒里面,和TEM比较类似。这种电镜在市场里面非常少,没有引起人们的足够重视。B.无磁场式:也叫Out-lensOBJ Lens,这也是电镜最早发展起来的,大部分钨灯丝电镜都是这种类型的物镜。此类电镜的特点是物镜磁场开口在极靴里面,所以物镜产生的磁场基本在极靴里面,样品附近没有磁场。但是绝对不漏磁是不可能的,只要极靴留有让电子束穿下来的空隙,就必然会有少量磁场的泄露。这对任何一家电镜厂商来说都是一样,大家只能减少漏磁,而不可能彻底杜绝漏磁,因为磁力线总是闭合的。采用这种物镜模式的电镜漏磁很少,做磁性样品是没有问题的。特别是TESCAN的极靴都采用了高导磁材料,进一步减少了漏磁。TESCAN的VEGA、MIRA、LYRA系列均是采用此种物镜。C. 半磁浸没式:为了进一步提高分辨率,厂商对物镜做了一些改进。比较典型的就是半浸没式物镜,也叫semi-in-lens OBJ Lens。因为全浸没式物镜极少,基本别人忽视,所以有时候也把半浸没式物镜称为浸没式物镜。半浸没式物镜的特点是极靴的磁场开口是在极靴外面,故意将样品浸没在磁场中,以减少物镜的球差,同时产生的电子信号会在磁场的作用下飞到极靴里面去,探测器在极靴里面进行探测。这种物镜最大的优点是提高了分辨率,但是缺点是对磁性样品的观察能力相对较弱。为了弥补无磁场物镜分辨率的不足和半浸没物镜不能做磁性样品的缺点,半磁浸没物镜的电镜一般将无磁场式物镜和半磁浸没式物镜相结合,形成了多工作模式。从而兼顾无磁场和半浸没式的优点,做特别高的分辨率时,使用浸没式物镜(如TESCAN MAIA3和GAIA3的Resolution模式),做磁性样品的时候,关闭浸没式物镜使用一般的物镜(如TESCAN的Field模式)。从另一个角度来说,在使用无磁场模式物镜时,对应的虚拟透镜位置在镜筒内,距离样品位置较远;使用半浸没式物镜时,对应的透镜位置在极靴下,距离样品很近。根据光学成像的阿贝理论也可以看出,半浸没式物镜的分辨率相对更高,如图3-18。图3-18 无磁场式(左)和半磁浸没式(右)透镜对应的位置① 物镜的像差电磁透镜在理想情况下和光学透镜类似,必须满足高斯成像公式,但是光学不可避免的存在色差和像差以及衍射效应,在电子光学中一样存在。再加上制造精度达不到理论水平,磁透镜可能存在一定的缺陷,比如磁场不严格轴对称分布等,再加上灯丝色差的存在,从而使得束斑扩大而降低分辨率。所以减少物镜像差也一直是电镜在不断发展的核心技术。A.衍射的影响:由于高能电子束的波长远小于扫描电镜分辨率,所以衍射因子对分辨率的影响较小。图3-19 球差、色差、衍射的对束斑的影响B.色差的影响:色差是指电子束中的不同电子能量并不完全相同,能量范围有一定的展宽,在经过电磁透镜后焦点也不相同,导致束斑扩大。不同的电子源色差像差很大,也造成了分辨率的巨大差异。C.像差的影响:像差相对来说比较复杂,在传统光学理论中,由于成像公式都是基于旁轴理论,所以在数学计算上做了一定的近似。不过如果更严格的考虑光学成像,就会发现在光学成像中存在五种像差。a. 球差:电子在经过透镜时,近光轴的电子和远光轴电子受到的折射程度不同,从而引起束斑的扩大。而电镜中的电子束不可能细成完美的一条线,总会有一定的截面积,故而球差总是存在。不过球差对扫描电镜的影响相对较小,对透射电镜的影响较大。b. 畸变:原来横平竖直的直线在经过透镜成像后,直线变成曲线,根据直线弯折的情况分为枕形畸变和桶形畸变,如图3-20。不过在扫描电镜中因为倍数较大,所以畸变不宜察觉,但是在最低倍率下能观察到物镜的畸变。特别是扫描电镜的视场往往有限,有的型号的电镜具有了“鱼眼模式”,虽然增加了视场但却增加了畸变。TESCAN的电镜很有特点,利用了独特的技术,既保证了大视野,又将畸变减小到了最低甚至忽略不计,如图3-21。图3-20 透镜的畸变图3-21鱼眼模式和TESCAN的视野模式c. 像散:像散是由透镜磁场非旋转对称引起的一种像差,使得本应呈圆形的电子束交叉点变成椭圆。这样一个的束斑不再是完美对称的圆形,会严重影响电镜的图像质量。以前很多地方都说极靴加工精度、极靴材料不均匀、透镜内线圈不对称或者镜头和光阑受到污染,都会产生像散。但是,像散更是光学中的一种固有像差,即使极靴加工完美,镜头、光阑没有污染,也同样会有像散。当然由于加工及污染的问题,会进一步加大像散的影响。在光学理论中,不在光轴上的物点经过透镜后,用屏去截得到的光斑一般不再是圆形。其中有三个特殊位置如图3-23,一个叫做明晰圆位置,这里的光斑依然是圆形;而另外两个特殊的位置称为子午与弧矢,这里截到的是两条正交的直线;其它任意位置截到的是一个会随位置而变化的椭圆。图3-22 电镜中的消像散图3-23 光学理论中的像散 对于电子束来说也一样,原来圆形的束斑在经过电磁透镜后,会因为像散的存在变得不再是完美的圆形,引起图像质量的降低。要消除像散需要有消像散线圈,它可以产生一个与引入像散方向相反、大小相等的磁场来抵消像散,为了能更好的抵消各个方向的像散,消散线圈一般都是两组共八级线圈,构成一个米字形,如图3-24。如果电镜的像散没有消除,那么图像质量会受到极大的影响。图3-24 八级消像散线圈d. 慧差和像场弯曲:慧差也总是存在的,只是在扫描电镜中不易被发觉,不过在聚焦离子束中对中状况不好时可以发现慧差的存在;由于扫描电镜的成像方式和TEM等需要感光器件的仪器不同,像场弯曲在扫描电镜中也很难发现。慧差和像场弯曲在扫描电镜中都可以忽略。 福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。奖品公布上期获奖的这位童鞋,请后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。【本期问题】哪种物镜设计的扫描电镜可以观测磁性样品(特指可充磁性样品)?↓ 往期课程,请关注微信“TESCAN公司”查阅以下文章:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应
  • 2012激光共聚焦扫描显微学研讨会举行
    北京市2012年度激光共聚焦扫描显微学最新进展学术研讨会顺利举行   仪器信息网讯 2012年3月27日,为推动北京市及周边省市激光共焦扫描显微学的进步和发展,提高广大相关工作者的学术及技术水平,促进激光共焦扫描显微学在生命科学等领域中的应用和发展,北京理化分析测试技术学会和北京市电镜学会在北科大厦成功举办了“北京市2012年度激光共聚焦扫描显微学最新进展学术研讨会”。来自高校、科研院所、企业的100余名专家学者参加了本次会议。 会议现场 军事医学科学研究院张德添教授 北京大学医学部生物医学分析中心何其华高工   会议由军事医学科学研究院张德添教授,北京大学医学部生物医学分析中心何其华高工主持。 Cdc42在小鼠卵母细胞减数分裂成熟中的作用 中国科学院动物研究所孙青原研究员   孙青原研究员现任中国科学院动物研究所计划生育生殖生物学国家重点实验室主任,他在报告中介绍了利用Zeiss LSM710激光共聚焦显微镜、珀金埃尔默Ultra VIEW VOX活细胞实时成像系统等仪器研究Cdc42在小鼠卵母细胞减数分裂成熟中的作用,Cdc42作为一种细胞骨架和细胞极化的重要调节物,在减数分裂和卵母细胞成熟过程中有重要的作用。 毫米级多光子显微镜荧光成像 奥林巴斯(中国)有限公司位鹏先生   采集更明亮和更清晰地标本深层图像,对于更好的开展生命科学研究工作来说十分重要。位鹏先生介绍了奥林巴斯在这方面所能提供的解决方案:利用日本理学院Miyawaki博士研发的组织、器官透明液处理小鼠大脑样本,结合奥林巴斯的XLPLN25×SVMP镜头可以观察到深度达4mm处的深层图像。目前奥林巴斯还推出了一款新型的镜头,观察深度可达8mm,不过还未正式推向市场,可接受定制。 超高分辨率显微镜技术 中国显微图像网秦静女士   在生命科学研究中科学家总希望看到更加细微的结构,从细胞到细胞器、再到蛋白质等生物大分子,这些结构的尺度都在纳米量级远远超出了常规的光学显微镜的分辨极限,电子显微镜虽然能提供纳米级的分辨率,但不适合观察活细胞,为了解决这一难题,超高分辨显微镜技术应时而生。在报告中秦静女士详细介绍了四种基于不同原理的超高分辨显微镜:4Pi显微镜、STED(受激发射损耗显微镜)、PALM(光激活定位显微镜)、STORM(随机光学重建显微束),并分析了各类显微镜的性能及优缺点。 多光子技术的新进展 徕卡仪器有限公司王怡净博士   王怡净博士从单分子探测(SMD)、相干反斯托克斯拉曼散射(CARS)、光参量振荡器(OPO)等三个方面介绍了多光子技术的最新进展。王怡净博士介绍说如果想观察分子的运动或分子的识别,采用普通的共聚焦技术就比较困难,所以单分子探测技术就应用而生。相干反斯托克斯拉曼散射技术是一种基于分子固有的振动特性的观察方法,样品无需进行荧光标记,避免了荧光漂白等问题,该技术是由华裔科学家谢晓亮发明,徕卡公司购买了该技术并将其产品化。光参量振荡器是一种新型红外激光器,它的激发波长可以达到1300nm,由于激发波长变长,因而散射更小,观测深度更深、对样品损伤更小。 现代荧光显微镜学在生命科学中的应用 蔡司光学仪器(上海)国际贸易有限公司张宁博士   张宁博士介绍了在生命科学研究中,不同的样品分析对于仪器的灵活性、观察深度、扫描速度,以及分辨率等都有不同的需求,蔡司根据不同的需求能够提供相应的仪器:如果对深度要求比较高,可以选择多光子显微镜 如果要进行瞬态分析,可以选择转盘式共聚焦显微镜、纯内反射荧光显微镜等 如果对分辨率要求非常高,可以选择光活化定位系统、结构光学照明系统等。此外,张宁博士还介绍了蔡司最新的780点扫描激光共聚焦系统,以及在2011年7月蔡司将光学显微镜部门和电镜部门进行了整合。 激光共聚焦扫描技术在神经发育中的作用研究 北京大学医学部王韵博士   神经系统是机体最重要、最复杂的系统。王韵博士在报告中介绍了激光共聚焦扫描显微技术在神经细胞增殖和分化中的应用;胚胎电转结合Confocal技术观察神经细胞的迁移;利用Confocal技术研究神经元极性、观察轴突导向;利用双光子Confocal技术观察培养的海马脑片中单个树突棘长时程结构可塑性改变时分子激活的时空变化、观察活体动物皮层神经元树突棘随外界刺激而出现的数目消长等。 Volocity——3D活细胞时代的成像分析软件 珀金埃尔默仪器(上海)有限公司公司焦磊博士   焦磊博士介绍了珀金埃尔默推出的Volocity细胞三维结构分析软件,该软件包括多个功能模块,用户可以在同一软件环境下完成图像获取、分析和数据发表的全过程。Volocity软件的Acquisition模块可以实现多通道、多位点3D图像的精确定位和自动实时采集 Visualization模块可为用户提供多种图像展现方式,用户可以在高分辨率、完全交互的3D模式下实时解决样品构造 Quantitation模块提供了丰富的工具可以在3D模式下对物体进行测量、分析和跟踪描绘 Restoration模块设计用于三维或四维图像的反卷积计算,以提高图像的分辨率。 超高分辨率显微镜的引进与发展态势分析 中科院生物物理所纪伟博士   纪伟博士介绍了目前不同的提高分辨率的成像方法的原理及其分辨能力,以及各种方法对样品制备的要求和在实际应用当中的优劣势。采用光敏定位技术的超分辨率显微镜采用大功率激光器和快速采样EMCCD,可以很好的观察活细胞 利用片层光扫描结合光敏定位成像技术可以观察厚样品 具有更高的分辨率,可以研究百nm尺度的细胞器细节结构。最后纪伟博士总结说,更高的分辨率、更快的分析速度以便观察活细胞、以及与其他技术的融合:如TIRF-STED、PALM-EM、STED-AFM、FCS-STED、STORM-AFM等。   会议中,与会人员同专家及企业人员进行了充分的互动和交流,通过会议大家对于激光共聚焦扫描显微技术的最新进展有了更多的认识和了解。
  • HORIBA讲座回放视频|光栅光谱仪原理简介
    课程内容 光谱测量系统组成 光栅技术 光栅光谱仪原理 小结讲师介绍熊洪武,HORIBA 应用技术主管,负责光学光谱仪的应用支持,光学背景深厚,有着丰富的光学系统搭建经验。可根据用户需求提供性能优异,功能独特的的光谱测试方案,如光致发光、拉曼、荧光、透射/反射/吸收等。课程链接识别下方“二维码”即可观看我们录制好的讲解视频了,您准备好了吗? HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,其旗下的Jobin Yvon有着近200年的光学、光谱经验,我们非常乐意与大家分享这些经验,为此特创立 Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 我们希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。
  • 薄膜沉积工艺和设备简述
    薄膜沉积(Thin Film Deposition)是在基材上沉积一层纳米级的薄膜,再配合蚀刻和抛光等工艺的反复进行,就做出了很多堆叠起来的导电或绝缘层,而且每一层都具有设计好的线路图案。这样半导体元件和线路就被集成为具有复杂结构的芯片了。化学气相沉积(CVD)化学气相沉积(CVD)通过热分解和/或气体化合物的反应在衬底表面形成薄膜。CVD法可以制作的薄膜层材料包括碳化物、氮化物、硼化物、氧化物、硫化物、硒化物、碲化物,以及一些金属化合物、合金等。化学气相沉积是目前很重要的微观制造方法,因为它有如下的这些特点:1. 沉积物种类多: 可以沉积金属薄膜、非金属薄膜,也可以按要求制备多组分合金的薄膜,以及陶瓷或化合物层。2. CVD反应在常压或低真空进行,镀膜的绕射性好,对于形状复杂的表面或工件的深孔、细孔都能均匀镀覆。3. 能得到纯度高、致密性好、残余应力小、结晶良好的薄膜镀层。由于反应气体、反应产物和基材的相互扩散,可以得到附着力好的膜层,这对表面钝化、抗蚀及耐磨等表面增强膜是很重要的。4. 由于薄膜生长的温度比膜材料的熔点低得多,由此可以得到纯度高、结晶完全的膜层,这是有些半导体膜层所必须的。5. 利用调节沉积的参数,可以有效地控制覆层的化学成分、形貌、晶体结构和晶粒度等。6. 设备简单、操作维修方便。7. 反应温度太高,一般要850~ 1100℃下进行,许多基体材料都耐受不住CVD的高温。采用等离子或激光辅助技术可以降低沉积温度。化学气相沉积过程分为三个重要阶段:1、反应气体向基体表面扩散2、反应气体吸附于基体表面3、在基体表面发生化学反应形成固态沉积物及产生的气相副产物脱离基体表面CVD的主要有下面几种反应过程:i). 多晶硅 PolysiliconSiH4 — Si + 2h2 (600℃)沉积速度 100 - 200 nm /min可添加磷(磷化氢)、硼(二硼烷)或砷气体。多晶硅也可以在沉积后用扩散气体掺杂。ii). 二氧化硅 DioxideSiH4 + O2→SiO2 + 2h2 (300 - 500℃)SiO2用作绝缘体或钝化层。通常添加磷是为了获得更好的电子流动性能。当硅在氧气中存在时,SiO2会热生长。氧气来自氧气或水蒸气。环境温度要求为900 ~ 1200℃。氧气和水都会通过现有的SiO2扩散,并与Si结合形成额外的SiO2。水(蒸汽)比氧气更容易扩散,因此使用蒸汽的生长速度要快得多。氧化物用于提供绝缘和钝化层,形成晶体管栅极。干氧用于形成栅极和薄氧化层。蒸汽被用来形成厚厚的氧化层。绝缘氧化层通常在1500nm左右,栅极层通常在200nm到500nm间。iii). 氮化硅 Siicon Nitride3SiH4 + 4NH3 — Si3N4 + 12H2(硅烷) (氨) (氮化物)化学气相沉积CVD 设备CVD反应器有三种基本类型:◈ 大气化学气相沉积(APCVD: Atmospheric pressure CVD)◈ 低压CVD (LPCVD:Low pressure CVD,LPCVD)◈ 超高真空化学气相沉积(UHVCVD: Ultrahigh vacuum CVD)◈ 激光化学气相沉积(LCVD: Laser CVD,)◈ 金属有机物化学气相沉积(MOCVD:Metal-organic CVD)◈ 等离子增强CVD (PECVD)物理气相沉积(PVD)在真空条件下,采用物理方法,将材料源(固体或液体) 表面材料气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积不仅可沉积金属膜、合金膜, 还可以沉积化合物、陶瓷、半导体、聚合物膜等。物理气相沉积技术基本原理可分三个工艺步骤:(1)镀料的气化:即使镀料蒸发,升华或被溅射,也就是通过镀料的气化源。(2)镀料原子、分子或离子的迁移:由气化源供出原子、分子或离子经过碰撞后,产生多种反应。(3)镀料原子、分子或离子在基体上沉积。物理气相沉积技术工艺过程无污染,耗材少。成膜均匀致密,与基体的结合力强。该技术广泛应用于航空航天、电子、光学、机械、建筑、轻工、冶金、材料等领域,可制备具有耐磨、耐腐蚀、装饰、导电、绝缘、光导、压电、磁性、润滑、超导等特性的膜层 。物理气相沉积也有多种工艺方法:◈ 真空蒸度 Thin Film Vacuum Coating◈ 溅射镀膜 PVD-Sputtering◈ 离子镀膜 Ion-Coating
  • 科众精密-解析气-液-固界面接触角的测量原理
    一、液-固界面接触角的测量的实验目的1. 了解液体在固体表面的润湿过程以及接触角的含义与应用。2. 接触角测定材料表面接触角和表面张力的方法。二、接触角测量的过程 : 用接触角测量仪注射器针头将一滴待测液体滴在基质上。液滴会贴附在基质表面上并投射出一个阴影。投影屏幕千分计会使用光学放大作用将影像投射到屏幕上以进行测量。三、接触角测量原理 润湿是自然界和生产过程中常见的现象。通常将固-气界面被固-液界面所取代的过程称为润湿。将液体滴在固体表面上,由于性质不同,有的会铺展开来,有的则粘附在表面上成为平凸透镜状,这种现象称为润湿作用。前者称为铺展润湿,后者称为粘附润湿。如水滴在干净玻璃板上可以产生铺展润湿。如果液体不粘附而保持椭球状,则称为不润湿。如汞滴到玻璃板上或水滴到防水布上的情况。此外,如果是能被液体润湿的固体完全浸入液体之中,则称为浸湿。上述各种类型示于图1。 光学接触角测量仪可以记录液滴图像并且自动分析液滴的形状。液滴形状是液体表面张力、重力和不同液体样品的密度差和湿度差及环境介质的函数。在固体表面上,液滴形状和接触角也依赖于固体的特性(例如表面自由能和形貌)。使用液滴轮廓拟合方法对获得的图像进行分析,测定接触角和表面张力。使用几种已知表面张力的液体进行接触角测试可以计算得到材料的表面自由能。 作为光学方法,光学接触角测量仪的测量精度取决于图片质量和分析软件。Attension光学接触角测量仪使用一个高质量的单色冷LED光源以使样品蒸发量降到zui低。高分辨率数码镜头、高质量的光学器件和精确的液体拟合方法确保了图片质量。图1 各种类型的润湿当液体与固体接触后,体系的自由能降低。因此,液体在固体上润湿程度的大小可用这一过程自由能降低的多少来衡量。在恒温恒压下,当一液滴放置在固体平面上时,液滴能自动地在固体表面铺展开来,或以与固体表面成一定接触角的液滴存在,如图2所示。图2 接触角假定不同的界面间力可用作用在界面方向的界面张力来表示,则当液滴在固体平面上处于平衡位置时,这些界面张力在水平方向上的分力之和应等于零,这个平衡关系就是著名的Young方程,即γSG - γSL = γLGcosθ 式中γSG,γLG,γSL分别为固-气、液-气和固-液界面张力;θ是在固、气、液三相交界处,自固体界面经液体内部到气液界面的夹角,称为接触角,在0o-180o之间。接触角是反应物质与液体润湿性关系的重要尺度。在恒温恒压下,粘附润湿、铺展润湿过程发生的热力学条件分别是:粘附润湿,铺展润湿, 粘附润湿、铺展润湿过程的粘附功、铺展系数。 以上方程说明,只要测定了液体的表面张力和接触角,便可以计算出粘附功、铺展系数,进而可以据此来判断各种润湿现象。还可以看到,接触角的数据也能作为判别润湿情况的依据。通常把θ=90°作为润湿与否的界限,当θ>90°,称为不润湿,当θ<90°时,称为润湿,θ越小润湿性能越好;当θ角等于零时,液体在固体表面上铺展,固体被完全润湿。
  • 简述电子点天平的组成部分
    电子天平构造原理基本构造是相同的。主要由以下几个部分组成:      (1)秤盘      秤盘多为金属材料制成,安装在天平的传感器上,是天平进行称量的承受装置。它具有一定的几何形状和厚度,以圆形和方形的居多。使用中应注意卫生清洁,更不要随意掉换秤盘。      (2)传感器      传感器是的关键部件之一,由外壳、磁钢、极靴和线圈等组成,装在秤盘的下方。它的精度很高也很灵敏。应保持天平称量室的清洁,切忌称样时撒落物品而影响传感器的正常工作。      (3)位置检测器位置检测器是由高灵敏度的远红外发光管和对称式光敏电池组成的。它的作用是将秤盘上的载荷转变成电信号输出。      (4)PID调节器      PID(比例、积分、微分)调节器的作用,就是保证传感器快速而稳定地工作。      (5)功率放大器      其作用是将微弱的信号进行放大,以保证天平的精度和工作要求。      (6)低通滤波器      它的作用是排除外界和某些电器元件产生的高频信号的干扰,以保证传感器的输出为一恒定的直流电压。      (7)模数(A/D)转换器      它的优点在于转换精度高,易于自动调零能有效地排除干扰,将输入信号转换成数字信号。      (8)微计算机      此部件可说是电子天平的关键部件了o它是电子天平的数据处理部件,它具有记忆、计算和查表等功能      (9)显示器      现在的显示器基本上有两种:一种是数码管的显示器 另一种是液晶显示器。它们的作用是将输出的数字信号显示在显示屏幕上。      (10)机壳      其作用是保护电子天平免受到灰尘等物质的侵害,同时也是电子元件的基座等。      (11)底脚      电子天平的支撑部件,同时也是电子天平水平的调节部件,一般均靠后面两个调整脚来调节天平的水平。 下面为欧洲瑞德威电子天平的图片:
  • 色度测定仪工作原理及仪器维护
    工作原理仪器使用 220V、100W,色温为 2750±50K 的内磨砂乳壳灯泡为标准光源。光源光经由乳白色玻璃片和日光滤色 33 玻璃片滤色后,所得到的标准光的光谱特性类似于自然光。标准光经由平面反射镜,棱镜组成二条平行光束,其大小形状完全相同,分别均匀地照射在标准色盘的颜色玻璃片上和比色管的试样上。标准色盘上有 26个 Ø14光孔,其中 25顺序装有(1~25)色号的标准颜色玻璃片,第 26孔为空白,色盘安装在仪器右侧由手轮转动。试验时用于选择正确的标准颜色。比色管为内径 Ø32毫米,高(120~130)mm的无色平底玻璃管。比色管由仪器顶部的小盖位置放入。观察目镜由凹镜和分隔栅组成,在目镜中可同时看到二个半圆色,其左边的为试样颜色。其右边的为标准色颜色,光学目镜具有光线调节和调焦能力,使用方便。仪器的维护1,光学目镜系统,已经调焦和光线调节正确,使用时不宜多动,如需调整需专业人士调整,或返修厂家。2,标准颜色玻璃片每隔半年,须用 SH/T0168规定的标定比色液作校验一次如发现色片颜色与相当色号的比色液颜色相差达一个色号时,应更换新的色盘或送请制造厂重新标定。3,请勿随意拆卸目镜。4,目镜表面附着脏物,影响观察,客户只能做简单处理,将目镜从仪器上取下,倒放在干净的平台上,用洁净的洗耳球,轻吹目镜表面,如问题未解决,必须返厂处理,或请专业人员进行清理。相关仪器ENDBT-0168石油产品色度测定仪符合SH/T0168-92标准,可与GB6540的16个色号相对应,适用于测定润滑油及其他石油产品的颜色。测定时将欲测定的石油产品试样注入比色管内,然后与标准色片相比较就可以确定其色度色号。仪器特点1、仪器由标准色盘、观察光学镜头、光源、比色管组成2、采用磨砂乳壳灯泡为发光源3、光源经滤色后能分别均匀照射在标准色盘的颜色玻璃片和比色管4、光学目镜具有光线调节和调焦能力,使用方便技术参数比色管内径:Φ32mm 高:120~130mm环境温度:5℃~40℃相对湿度:≤85%电源电压:交流220V±10% 50Hz±10%功率消耗:
  • 全聚焦和相位相干成像技术及与相控阵技术的比较
    为推动我国无损检测技术发展和行业交流,促进新理论、新方法、新技术的推广与应用,仪器信息网将于2023年9月26-27日召开第二届无损检测技术进展与应用网络会议。本届会议开设射线检测技术、超声检测技术、无损检测新技术与新方法(上)、无损检测新技术与新方法(下)四大专场,邀请二十余位无损检测领域专家老师围绕无损检测理论研究、技术开发、仪器研制、相关应用等方面展开研讨。9月27日上午,仪景通光学科技(上海)有限公司高级产品经理刘沛将于无损检测新技术与新方法专场(上)分享报告《全聚焦和相位相干成像技术及与相控阵技术的比较》,欢迎大家参会交流。参会指南1、进入第二届无损检测技术进展与应用网络会议官网(https://www.instrument.com.cn/webinar/meetings/ndt2023/)进行报名。扫描下方二维码,进入会议官网报名2、报名开放时间为即日起至2023年9月25日。3、会议召开前统一报名审核,审核通过后将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)6、赞助联系人:周老师(电话:010-51654077-8120 邮箱:zhouhh@instrument.com.cn)
  • 自适应光学仪器可以带来“超视力”吗?
    人类的视力有极限吗?最近,科学家在实验中运用新技术,通过光学仪器矫正人的视力,有的被试者的视力甚至达到了2.0。   新技术为“超视力”提供可能   中国科学技术大学周逸峰小组与中科院成都光电所张雨东小组合作,创造性地将视知觉训练与人眼自适应光学技术结合起来。在实验中,他们对20岁左右的正常被试者测量视力等视功能后,让他们每天参加一小时的视觉训练。这种训练,即在自适应光学系统上,呈现一种高空间频率光波的黑白条纹图像,让被试者根据要求完成图像的检测任务。训练程序根据完成任务情况,自动调控图像参数,使之维持在一定的难度水平上。如此反复多次,坚持10—12天,每天1小时左右。   周逸峰指出,“这项实验反映了在一定的条件下,经过学习,成年神经系统对图像识别的能力可大大提高。即便是发育成熟后,正常成年视觉神经系统仍具有相当程度的可塑性。不过,这些可塑性的发挥,受限于人眼的光学系统质量。”   据专家介绍,人眼的光学系统,除了存在近视、远视等“低阶像差”外,还存在难以用普通手段测量和矫正的“高阶像差”。研究小组对被试者进行高阶像差的矫正,使之拥有较理想的人眼光学系统,在此基础上配合视知觉训练,让被试者的视力有了明显的提高,有的甚至达到了2.0及以上的视力。据介绍,他们的“超视力”在5个月后复测时仍可保持。该研究成果可用于探索新的治疗方法,来提高视力低下患者的视功能,也为达到“超视力”提供了可能。   目前还处于临床阶段   关于这项技术的最新应用情况,周逸峰在接受采访时介绍:“目前,我们与合作单位中科院光电技术研究所一起正在进行面向临床应用的产品开发和推广,已经研制出自适应光学视力治疗仪,7月份进入医院进行临床试验,在国家药监局审批注册后即可上市用于临床。”同时,周逸峰还指出:“这项技术还处于临床试验阶段,从之前测试的结果来看,效果比较显著,但由于临床试验受到各种因素的制约,不能保证每次试验都达到预期效果。”   对此,焦永红指出,“自适应光学技术属于高科技,作为一种辅助的装置,它主要从两个层面推动眼科技术的发展。其一,让使用设备的医务人员可以更清楚地分析数据;其二,可以让病人接受的手术更加精准。目前,它仍属于前瞻性的研究。”   关于视知觉训练,焦永红则认为:“视知觉训练主要通过锻炼肌肉的灵敏度,通过反复刺激的方法来训练人的能力。这项训练比较主观,而且需要坚持。因此,被试者的视力恢复水平可能因人而异。”   不过,任何一项新技术的发展都是不断尝试、不断推新的过程。屈光手术自90年代初期试用以来,已经发展成熟,这一技术通过改变人眼的光学系统,使得人眼视力水平得到很大改善。焦永红认为:目前,自适应光学技术还处在临床适应阶段,从原理上说,这项技术可以辅助临床试验,让手术更加精准。   是否具有“超视力”不重要   那么视力的优劣该如何测定呢?2.0的视力是怎样的“超视力”呢?   目前国内有两种视力表记录法:小数记录法、五分记录法。一般情况下,正常裸视力能达到1.0,也就是5.0。小数记录法的1.5,2.0分别相当于五分记录法的5.2,5.3。   对于视力有限性的问题,北京同仁医院眼科中心眼肌科主任焦永红指出:“人的视力受限于最小视角,它是指视网膜视觉细胞能分辨的最近距离的两点对眼的最小夹角。”视力表是根据视角的原理制定的。正常人眼能看清最小物体的视角为1分视角,又称最小视角。   焦永红认为,“人的视力是有极限的,单纯通过视力表的指标来衡量人的视力的优劣并不是目的。1.5的视力已经是正常视力,不同衡量体系得出的结论也不同。衡量视力水平,不能光看指数,还要看眼睛各个方面是否协调一致。关键在于眼睛的健康,无各种眼科疾病,这才是我们追求的目标。至于是否是2.0这样的"超视力"并不重要。”   焦永红说:“视力检查是一种知觉检查,具有较强的主观性,一些其他的因素,也会影响到检查结果。”常见的影响视力检查准确性的因素有:光线,比如灯箱老旧、光源亮度不达标、面板刮花、检测地点周围光线昏暗等;环境,如周边环境吵闹、噪音大等;此外,如果在感冒、发烧或服药期间,视力也可能下降。   中国人民解放军第二炮兵总医院眼科主任医师蔡春梅介绍说:“目前所测的视力主要为远视力,被试者离视力表5米。视力达到2.0,说明远视力很好,不排除有其他眼睛问题的可能,没有一个评论视力优劣的绝对指数,普通人达到1.0的视力就是正常视力。”   通常情况下,人们认为成人的视力不具备可塑性。就此,蔡春梅认为:“如果一个成年人存在屈光不正的问题,如近视、远视、散光等问题,通过镜片、手术矫正的方法,才可以矫正视力。”自适应光学技术也正基于此,通过仪器调整人眼的光学系统,才能够有效的矫正视力。
  • 复享光学显微角分辨光谱仪完成国家科技部科技成果入库
    2022年9月,上海复享光学首创的基于傅里叶光学显微角分辨光谱仪(ARMS)通过科学技术部科技成果评价并成功入库,这标志着我国在相关领域技术不仅达到国际先进水平,也为光子芯片、光子晶体、超构材料等领域的技术发展奠定了坚实基础。由主任庄松林院士、副主任王建宇院士领衔的共七位专家组成的评价委员会对 ARMS进行考察、现场测试及讨论后,一致认定——1. ARMS解决了显微角分辨光谱检测的关键问题,实现了在广谱频域空间的高分辨率,首次完成了实空间和动量空间的自动化扫描技术,可用于可见和近红外波段瞬态信号采集,并且开发了具有自主知识产权的光学逆问题算法,解决了光学微纳尺度结构的量测和性能评价问题。2.此技术成果难度大、创新性强。产品综合技术已居国际先进水平,其中适合显微角分辨的动量空间透镜组与动量空间外差干涉技术核心点达到国际领先水平。BIC和涡旋光束研究中的显微角分辨光谱实测结果Nature Photonics. 2020, 14(10): 623-628.资剑教授等放眼全球,复享光学既是角分辨光谱技术的早期探索者,也是推动该技术发展、实现产品多样化并深入产业落地的先行者,并掌握该领域核心技术知识产权,已拥有完整技术链及对应产品线。角分辨光谱技术广泛服务于多学科多领域在全球微纳光子学领域,ARMS已服务了包括清华大学、北京大学、美国加州大学河滨分校和韩国光云大学等高等院校及科研院所的上百个课题组。论文引用、标注与致谢超200篇,其中包括殷亚东教授团队发表在Nano Letters, 2020, 20(8): 6051-6058.的关于太阳能集成蒸发器的研究;王占山教授、程鑫彬教授团队发表在Science Advances, 2022, 8(9): eabk3381.的关于超表面材料的研究;成都光电所罗先刚院士团队发表在Advanced Science, 2022, 9(9): 2103429.的关于二维材料的研究。助力学科发展的同时,ARMS还服务国家重大工程。复享光学与中国人民银行的合作是其中的代表案例,成功将角分辨光谱技术应用于人民币 OVMI光学渐变磁性油墨的研发环节。当前,ARMS在集成电路与光电子等战略新兴产业多点发力,已囊括歌尔光学、中芯国际、OPPO、京东方等头部客户,并凭借角分辨光谱技术的独特性和成熟性,通过了行业验证。角分辨光谱技术,洞察光场的新工具角分辨光谱技术是一种在动量空间观测光子色散关系(k~ω)的精细化光谱技术。该技术能够在实空间、动量空间以及频率空间,实现对微纳光子结构的多维度(光谱、偏振态以及光学相干性等)成像观测,是观测微结构光学模式最直接、最有效的手段。角分辨光谱技术-光子学的ARPES角分辨光谱技术是复享光学面向全球市场、具有开创性的鼎力之作。历时多年沉淀,复享光学的角分辨光谱技术不断创新,产品持续迭代,应用领域加速扩展;复享光学始终以先进光谱技术助力科研创新,赋能微纳制造。ARMS扎根全球实验室ARMS,角分辨光谱技术的新高度随着角分辨光谱技术的推进,复享光学历经三代技术发展不断迭代推新,已拥有全代次的系列化角分辨光谱产品。三代角分辨光谱技术基于光学傅里叶变换的角分辨光谱技术,采用光学变换取代了一般角分辨操作中的机械角度转动,再结合显微物镜的空间分辨能力,因此具备了在微纳米尺度即时(瞬态)获取全部光谱信息的能力,是目前唯一可以同时获取包括能量、动量、空间、偏振等物质结构信息的精细化光谱分析技术,具有优异指标和卓越性能。1.精细的角度分辨,角分辨率可达 1.9 mrad @VIS, 20 mrad @NIR;2.超宽光谱探测,最宽可达 350~1700 nm的光谱探测;3.瞬态光谱采集能力,毫秒级实现全角度角分辨光谱检测;4.不变的探测光斑,真正实现原位探测;5.丰富的测量模式,多达 9种光谱测量模式;6.微米量级样品的光谱检测,最小可达 10 μm角分辨光谱探测;7.优异的扩展性,可扩展适用于低温和强磁场等条件。ARMS,微纳光电子学科发展的新动力ARMS是随着微纳光子学的发展应运而生的系统级产品,是获取光子材料色散关系,实现光学性质“全面表征”的必要装备。其中,近红外波段 ARMS具有更强的技术新颖性,能够为相关科学研究的快速突破带来帮助。ARMS广泛适用于光子晶体、表面等离子体、超构材料、微腔光子材料、光-激子强耦合、二维材料、有机发光、等离子体激光、纳米线激光、量子点、光学天线、纳米颗粒、SERS、光子芯片、LED/OLED等多学科领域。ARMS发现光子晶体动量空间偏振新自由度Physical Review Letters, 2018, 120(18): 186103.石磊教授等ARMS助力新冠病毒检测Matter, 2022, 5(6):1865-1876.宋延林研究员等ARMS,微纳制造检测的新方案处于集成电路和光电子产业上游的微纳制程光学量测环节,是芯片良品率控制的关键。在此关键领域,我国远远落后于国际先进水平。ARMS所采集的多维度光谱富含微纳结构的三维形貌信息,可以作为微纳制程量检测的一把精密的标尺。复享光学提出并实现了基于 ARMS的全新光学微纳制程量测新原理和新技术。该原理利用深度神经网络构筑了微纳米尺度结构与动量空间色散的构效关系和映射。同时,由于在所测量的色散关系中包含了冗余的结构信息,因此在实际技术应用中极大优化了量测逆问题中测量噪音带来的病态问题,实测结果达到亚纳米分辨稳定性和 98%以上的置信度。光学逆问题解决产业微纳量检测难点三维等离子尺结构重构结果与OCD量测结果对比Light: Science & Applications, 2021, 10(1): 1-10.石磊教授等复享光学,全球高端光学设备的新势力ARMS是极具先进性和实用性的复杂光谱系统,是全球高端光学设备的代表产品。ARMS由复享光学与复旦大学光子晶体课题组资剑教授、石磊教授共同研发。从基础创新、技术突破,到产学研转化,再到市场验证,ARMS多次获得政府项目支撑,包括国家重大科研仪器项目、上海市科委仪器专项、上海集成电路支撑专项、科技启明星项目等。为精准响应市场需求,持续推出突破性的产品,复享光学建立了多层次的研发平台。为此,复享光学成立了对接产业需求的“上海微纳制程智能检测工程技术研究中心”,并与复旦大学共同建立了致力于研究微纳制造前沿共性关键技术的“复旦大学光检测与光集成校企联合研究中心”。复享光学作为深度光谱技术的创导者,发展智能光谱技术,以深度算法为驱动,持续精研角分辨光谱、显微光谱、偏振光谱、相位光谱、拉曼光谱等分析技术,通过以科研应用为基础和出发点,以产业需求为目标和落脚点,形成具有自主知识产权的复杂光谱系列产品,参与全球技术迭代,建立高端光学设备的世界品牌。附:复享光学ARMS角分辨光谱技术文献清单(部分)[1] Wang B, Liu W, Zhao M, et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum[J]. Nature Photonics, 2020, 14(10): 623-628.[2] Zhang Y, Chen A, Liu W, et al. Observation of polarization vortices in momentum space[J]. Physical review letters, 2018, 120(18): 186103.[3] Zhang Z, Zhao M, Su M, et al. Self-assembled 1D nanostructures for direct nanoscale detection and biosensing[J]. Matter, 2022, 5(6):1865-1876.[4] Sun C L, Li J, Song Q W, et al. Lasing from an Organic Micro‐Helix[J]. Angewandte Chemie International Edition, 2020, 59(27): 11080-11086.[5] Yue W, Gao S, Lee S S, et al. Highly reflective subtractive color filters capitalizing on a silicon metasurface integrated with nanostructured aluminum mirrors[J]. Laser & Photonics Reviews, 2017, 11(3): 1600285.[6] Li T, Chen A, Fan L, et al. Photonic-dispersion neural networks for inverse scattering problems[J]. Light: Science & Applications, 2021, 10(1): 1-10.
  • 张福根专栏|激光粒度仪应用导论之原理篇
    p style=" text-indent: 2em " strong 编者按: /strong 如今激光粒度的应用越来越广泛,技术和市场屡有更迭,潮起潮落,物换星移,该如何全方位掌握激光粒度仪的技术和应用发展,如何更好地让激光粒度仪成为我们科研、检测工作中的好战友呢?仪器信息网有幸邀请在中国颗粒学会前理事长,真理光学首席科学家,从事激光粒度仪的研究和开发工作近30年的张福根博士亲自执笔开设专栏,以渊博而丰厚的系列文章,带读者走进激光粒度仪的今时今日。 /p p style=" text-indent: 2em text-align: center " strong 激光粒度仪应用导论之原理篇 /strong /p p style=" text-indent: 2em " 当前,激光粒度仪在颗粒表征中的应用已经非常广泛。测量对象涵盖三种形态的颗粒体系:固体粉末、悬浮液(包括固液、气液和液液等各类二相流体)以及液体雾滴。应用领域则包含了学术研究机构,技术开发部门和生产监控部门。第一台商品化仪器诞生至今已经50年,作者从事该方向的研究和开发也将近30年。尽管如此,由于被测对象——颗粒体系比较抽象,加上激光粒度仪从原理到技术都比较复杂,且自身还存在一些有待完善的问题,作者在为用户服务的过程中,感觉到对激光粒度仪的科学和技术问题作一个既通俗但又不失专业性的介绍,能够帮助读者更好地了解、选择和使用该产品。本系列文章的定位是通俗性的。但为了让部分希望对该技术有深入了解的读者获得更多、更深的有关知识,作者在本文的适当位置增加了“进阶知识”。只想通俗了解激光粒度仪的读者,可以略过这些内容。 /p p style=" text-indent: 2em " 首先应当声明,这里所讲的激光粒度仪是指基于静态光散射原理的粒度测试设备。当前还有一种也是基于光散射原理的粒度仪,并且也是以激光为照明光源,但是称为动态光散射(Dynamic light scattering,简称DLS)粒度仪。前者是根据不同大小的颗粒产生的散射光的空间分布(认为这一分布不随时间变化)来计算颗粒大小,而后者是在一个固定的散射角上测量散射光随时间的变化规律来分析颗粒大小;前者适用于大约0.1微米以粗至数千微米颗粒的测量,而后者适用于1微米以细至1纳米(千分之一微米)颗粒的测量。激光粒度仪在英文中又称为基于激光衍射方法(Laser diffraction method)的粒度分析技术。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 176, 240) " 【进阶知识1】严格地说,把激光粒度仪的原理说成是“衍射方法”是不准确,甚至带有误导性的。从物理上说,光的衍射和散射是有所区别的。“光的衍射”学说源自光的波动性已经被实验所证实,但是还没从理论上认识到光是一种电磁波这一时期,大约是19世纪上半叶。在更早的时候,人们认为光的行进路线是直线,就像一个不受外力作用的粒子作匀速直线运动那样。这一说法历史上被称为“光的粒子说”。后来人们发现光具有波动形。那个时候人们所知道的波只有水波,所以“衍”字是带水的。“光的衍射”描述的是光波在传播过程中遇到障碍物时,会改变原来的传播方向绕到障碍物后面的现象,故衍射又称做“绕射”。描述衍射现象的理论称为衍射理论。衍射理论在远场(即在远离障碍物的位置观察衍射)的近似表达称为“夫朗和费衍射(Fraunhofer diffraction)”。衍射理论不考虑光场与物质(障碍物)之间的相互作用,只是对这一现象的维像描述,所以是一种近似理论。它只适用于障碍物(“颗粒”就是一种障碍物)远大于光的波长(激光粒度仪所用的光源大多是红光,波长范围0.6至0.7微米),并且散射角的测量范围小于5° 的情形。 /span /p p style=" text-indent: 2em " 麦克斯韦(Maxwell)在19世纪70年代提出电磁波理论后,发现光也是一种电磁波。光的衍射现象本质上是电磁场和障碍物的相互作用引起的。衍射理论是电磁波理论的近似表达。严谨的电磁波理论认为,光在行进中遇到障碍物,与之相互作用而改变了原来的行进方向。一般把这种现象称作光的散射。用电磁波理论能够描述任意大小的物体对光的散射,并且散射光的方向也是任意的。不论是早期还是现在,用激光粒度仪测量颗粒大小时,都假设颗粒是圆球形的。如果再假设颗粒是均匀、各向同性的,那么就能用严格的电磁波理论推导出散射光场的严格解析解(称为“米氏(Mie)散射理论”)。 /p p style=" text-indent: 2em " 现在市面上的激光粒度仪绝大多数都采用Mie散射理论作为物理基础,因此把现在的激光粒度仪所用的物理原理说成是衍射方法是不准确的,甚至会被误认为是早期的建立在衍射理论基础上的仪器。 /p p style=" text-indent: 2em " 世界上第一台商品化激光粒度仪是1968年设计出来的。尽管当时Mie理论已经被提出,但是受限于当时计算机的计算能力,还难以用它快速计算各种粒径颗粒的散射光场的数值。所以当时的激光粒度仪都是用Fraunhofer衍射理论计算散射光场,这也是这种原理被说成激光衍射法的缘由。这种称呼一直延用到现在。不过现在国际上用“光散射方法”这个词的已经逐渐多了起来。 /p p style=" text-indent: 0em text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/d07b19f0-4c57-4748-9d53-229c65c56d4e.jpg" title=" 图1:颗粒光散射示意图.jpg" / /p p br/ /p p style=" text-indent: 0em text-align: center " 颗粒光散射示意图 /p p style=" text-indent: 2em " 激光粒度仪是基于这样一种现象:当一束单色的平行光(激光束)照射到一个微小的球形颗粒上时,会产生一个光斑。这个光斑是由一个位于中心的亮斑和围绕亮斑的一系列同心亮环组成的。这样的光斑被称为“爱里斑(Airy disk)”,而中心亮斑的尺寸是用亮斑的中心到第一个暗环(最暗点)的距离计算的,又称为爱里斑的半径。爱里斑的大小和光强度的分布随着颗粒尺寸的变化而变化。一种传统并被业界公认的说法是:颗粒越小,爱里斑越大。因此我们可以根据爱里斑的光强分布确定颗粒的尺寸。当然,在实际操作中,往往有成千上万个颗粒同时处在照明光束中。这时我们测到的散射光场是众多颗粒的散射光相干叠加的结果。 /p p style=" text-indent: 2em " strong & nbsp 编者结: /strong 明了内功心法,下一步自然会渴望于掌握武功招式。本文深入浅出地介绍激光粒度仪的原理,激光粒度仪的结构自然是读者们亟待汲取的“武功招式”。欲得真经,敬请期待张福根博士系列专栏——激光粒度仪应用导论之结构篇。 /p p style=" text-indent: 0em text-align: right " (作者:张福根) /p
  • 【综述】红外热成像无损检测技术原理及其应用
    常规的无损检测技术如射线检测、超声波检测、磁粉检测、渗透检测等,这些方法在实践应用中都有各自的缺点及局限性。红外热成像无损检测技术是近年来应用逐渐广泛的一种新兴检测技术,广泛应用于航空航天、机械、医疗、石化等领域。与其他的无损检测技术相比,红外热成像技术的特点有:1. 测量速度快,因为红外探测器通过物体表面发射的红外辐射能来测得物体表面的温度,所以响应极快,能测得迅速变化的温度场;2. 非接触性,拍摄红外图片时,红外摄像仪与被测物体是保持一定距离的,对被测温度场没有干扰,操作安全、方便;3. 测量结果直观形象,热像图以彩色或黑白的图像形式对结果进行输出,从图上可以方便地读取各点的温度值,并且热像图中还包含有丰富的与被测物体有关的其它信息;4. 测温范围广,由于是采用辐射测温,与玻璃测温计和热电偶测温计相比,测温范围大大扩展,理论上可从绝对零度到无穷大;5. 测量精度高;6. 易于实现自动化和实时观测。红外热成像无损检测原理红外线是一种电磁波,为0.78~1000 μm,可分为近红外、中红外和远红外。任何物体只要不是绝对零度,都会因为分子的旋转和振动而发出辐射能量。红外辐射是其中一种,如果把物体看成是黑体,吸收所有的入射能量,则根据斯蒂芬-玻尔兹曼定律,在全波长范围内积分可得到黑体的总辐射度为:式中:为黑体的光谱辐射度;c1、c2为辐射常数,c1=3.7418×108 Wm-2μm4,c2=1.4388×104 μmK;σ为斯蒂芬-玻尔兹曼常数,为5.67×10-8 Wm-2K-4。实际大部分人工或天然材料都是灰体,与黑体不同,灰体材料的发射率ε≠1,灰体表面能反射一部分入射的长波(λ>3 μm)辐射,因此灰体表面的辐射由自身发射的和环境反射的两部分组成,用红外探测器可直接测量灰体发射和反射的总和Map,但无法确定各自的份额。通常假设物体表面为黑体,将Map称为表观辐射度,为便于理解,一般将其转换为人们较熟悉的温度单位,称为表观温度Tap,即:上述表观温度Tap即为红外探测器测量所得温度,在无损检测中测量距离一般较近,可以忽略大气的影响,故被测物体的表面发射率ε的取值是否准确是影响测量精度的关键因素。检测方式1. 主动式检测为了使被测物体失去热平衡,在红外热成像无损检测时为被测物体注入热量。被测物体内部温度不必达到稳定状态,内部温度不均匀时即可进行红外检测的方法即为主动式红外检测。该种检测方式是人为给试样加载热源的同时或延迟一段时间后测量表面的温度场的分布。从而确定金属、非金属、复合材料内部是否存在孔洞、裂缝等缺陷。2. 被动式检测被动式红外热成像无损检测利用周围环境的温度与物体温度差,在物体与环境进行热交换时,通过对物体表面发出的红外辐射进行检测缺陷的一种方式。这种检测方法不需要加载热源,一般应用于定性化的检测。被测物本身的温度变化就能显示内部的缺陷。它经常被应用于在线检测电子元器件和科研器件及运行中设备的质量控制。红外热成像技术在无损检测中的应用1. 材料热物性参数检测与其它的测温技术相比,红外热像仪能迅速、准确地测量大面积的温 值,且测温范围宽。因此,当需要准确测量较大范围的温度边界条件时,红外热像仪具有其它测温仪器不可比拟的优越性。哈尔滨工业大学的研究人员针对焊接温度场中材料的传热系数随温度升高而变化的情况进行了研究,证明了焊接过程热传导系数反演算法的可行性,结合红外热像法与热电偶测量了LY2铝合金固定TIG点焊过程的焊接温度场,通过计算分别获得了加热和冷却过程的热传导系数随温度变化的曲线。热传导反问题的研究,具有广泛的工程应用前景,近年来在热物性参数的识别、边界形状的识别、边界条件的识别、热源的识别等多方面已经取得了很多研究成果。在进行传热反问题研究时,采用红外热像技术测量研究对象的温度图,可以方便快捷地解决温度边界的测量问题,该方法在热传导反问题的研究中已被广泛采用。2. 结构内部损伤及材料强度的检测目前利用红外热像技术进行的结构损伤研究有混凝土内部损伤检测、混凝土火灾损伤研究、焊缝疲劳裂纹检测、碳纤维增强混凝土内部裂纹检测等,由于损伤部位的导热系数的变化,导致红外热像图中损伤位置温度异常。与常规的探伤方法如X射线、超声波等相比,红外热像技术具有不需要物理接触或耦合剂,操作简单方便、无放射性危害等优点。同济大学的研究人员采用红外热像技术对混凝土火灾损伤进行了实验研究,得出了火灾损伤混凝土红外热像的平均温升随时间的变化曲线,及混凝土红外热像的平均温升与其受火温度与强度损失之间的回归方程。将红外热像技术应用于火灾混凝土检测,在国际上尚属首创,突破了传统的检测模式,为进行混凝土的火灾损伤评价开创了一条新途径。但将该方法运用于实际工程检测中,尚有许多问题需要解决,如混凝土强度等级、碳化深度、级配、火灾类型等对检测结果的可靠性的影响,以及检测时的加热措施等。近年在光热红外技术的基础上发展的超声红外技术发挥了红外技术和超声技术的优点,该方法以超声脉冲作为激发源,当超声脉冲在试件中传播遇到裂纹等缺陷时,缺陷引起超声附加衰减而局部升温,从而利用红外热像技术可以检测出这些裂纹缺陷。南京大学的研究人员将红外热像仪与超声波发射器结合起来,用超声波发射器对有疲劳裂纹的铝合金试件进行热量输入,拍摄红外热图像,与计算机模拟计算结果进行比较,试验表明超声红外热像技术对裂纹缺陷、不均匀结构及残余应力非常敏感。3. 在建筑节能中检测的应用在建筑物节能检测方面,瑞典早在1966年就开始采用红外热像技术检测建筑物节能保温,美国、德国等许多国家的研究人员也都进行过这方面的研究工作。在我国随着对建筑节能要求的提高,建筑物的节能检测势在必行。目前我国对建筑围护结构传热系数的检测多采用建筑热工法现场测量,红外热像技术只作为辅助手段,通过检测围护结构的传热缺陷,综合评价建筑物的保温性能。目前我国红外热像技术在节能检测领域的研究尚属于起步阶段,还没有确定的指标对建筑物的红外热像图进行节能定量评价,由于建筑物立面形式和饰面材料的多样性,编制专用的图像分析与处理软件和建立墙体内外饰面材料的发射率基础数据库成为该项研究中一个重要环节。4. 在建筑物渗漏检测中的应用建筑物的渗漏有由供水管道引起的渗漏和屋顶或外墙开裂引起的雨水渗漏等,由于渗漏部位的含水率和正常部位不一样,造成在进行热传导的过程中二者温度有差异,因而可以用红外热像仪拍摄湿度异常部位墙面的红外热图像,与现场直接观察结果进行对比分析,可以找出渗漏源的位置。结语红外热像技术在无损检测中的应用前景非常广泛,相应的研究工作也取得了初步的研究成果,并逐步地从定性研究走向定量研究,但总体来说在目前尚属起步阶段,能应用于实际工程中的研究成果不多,且多属一些定性的结论,缺乏相应的操作规范。因此,应加强定量研究工作,提高对红外热像图的处理能力。
  • 食品中元素形态分析方法与标准简述
    元素的形态是指某一元素以不同的同位素组成、不同的电子组态或价态以及不同的分子结构等存在的特定形式。元素形态分为物理形态和化学形态,物理形态是指元素在样品中的物理状态,如溶解态、胶体和颗粒状等 化学形态是指元素以某种离子或分子的形式存在,其中包括元素的价态、结合态、聚合态及其结构等。一般意义上所说的元素形态泛指化学形态,元素形态不同于元素价态,同一元素的相同价态可能有多种形态,如价态为五的砷元素,其元素形态可分为无机态和多种有机态的砷形态。   元素在食品中以不同的形态存在,元素对于人体的作用和元素的形态密切相关。这里所说形态是指该元素在不同种类化合物中的表现或分布。比如铬,三价铬是人体耐糖因子的组成部分,很多糖尿病和人体缺乏三价铬有关,而六价铬则是比较强的致癌物。不同形态砷之间的毒性差异也很大,如以有机砷形式存在的砷糖、砷甜菜碱几乎没有毒性,而无机砷化物的毒性却很高。所以,对于某些元素,只了解某元素在食品中的总量还是不够的,我们在了解总量的同时,更希望了解某元素在食品中的形态组成。   测量元素的形态,可以通过以下一些方法来实现:   分光光度法:在显色时对元素的形态有特定要求,可以利用这一特性,进行形态分析。比较典型的例子是水中六价铬的测量。这一方法通常干扰大、灵敏度不是很高,在简单基质有一定应用的范围。   原子荧光法(AFS):由于产生氢化物对元素的形态有一定的要求,可以利用这一特点进行形态分析。比如说有机砷几乎不会和硼氢化物生成氢化砷,氢化物-原子荧光法不能直接检测有机砷,而无机砷则能和硼氢化物进行反应而被探测到。利用这一特点可以测量某些元素的不同形态。该方法的特点是灵敏度很高。不足之处是特异性强,只能分析有限几种元素中某些形态,应用不广。   色谱法:采用色谱柱分离不同形态,然后用分光光度或电导等检测器测量。比如离子色谱法就是比较常用的方法。这一方法由于有预分离处理,干扰比分光光度法小,灵敏度也好一些。   预分离法:对试样先根据元素不同形态的特点,进行预分离,如有机萃取、离子吸附和交换等手段,将某特定形态和其它形态分离后收集,再采用一些光谱的分析方法测量。这种方法灵敏度比较高,但前处理比较复杂,也容易受到干扰。   色谱-光谱(质谱)联用法:该方法采用在线色谱分离,分离后各组分直接进入光谱仪器测量。结合了色谱和光谱技术的优点,具有分离效果好、灵敏度高、应用广泛等优点。缺点是设备较为昂贵,从色谱到光谱的接口技术需要解决,前处理方法也有待加强研究。不同的色谱和光谱联用技术都有文献报道,主要集中在色谱和等离子体质谱仪(ICP-MS)的联用上。目前常见的有以下几种联用方法。   1、液相色谱-ICP-MS联用   液相色谱(HPLC)-ICP-MS联用技术适用于食品样品中难挥发的化合物的分析。由于液相色谱的流速和ICP-MS 进样速度一致,所以联接非常简单方便,其联用接口非常简单。另外,由于液相色谱的特点,具有进样量小、分析速度快、分离效果好等优点。因此,HPLC与ICP&mdash MS联用技术在各类食品中砷、硒、锡、汞等元素形态分析领域得到了越来越多的应用,相关的研究也最多。在使用该技术时,要注意液相流动相的成分是否符合ICP-MS的进样溶液要求。如果有机相比例过高,则需要辅助氧化技术。   2、离子色谱-ICP-MS联用   离子色谱法(IC)作为一种有效的分离和检测技术,已经在金属和非金属离子的测定中得到了较多应用,已成为成为解决复杂机体中超痕量离子形态分析的有效工具,也是ICP&mdash MS相关联用技术研究的热点之一,在食品分析领域有着越来越多的应用。其联用方法和液相色谱一样,也很简单。目前相关文献集中在铬、砷、锑、溴、碘等形态的检测研究上。同样的,使用该技术时,要注意离子色谱流动相和ICP-MS进样要求的匹配性,流动相的可溶性固体含量不能太高。   3、气相色谱-ICP-MS   气相色谱(GC)适用于易挥发或中等挥发的有机金属化合物的分离,而且分离之前的衍生化步骤不仅使分离与分析过程复杂化,而且增加了待测形态丢失或玷污的可能性。而且气相和ICP-MS联接需要一个专用的接口。因此,GC与ICP&mdash MS联用应用于元素的形态分析具有一定局限性。目前,GC-ICP-MS技术仅限于烷基铅、烷基锡和烷基汞等形态的分析上。   4、毛细管电泳-ICP-MS   相对与气相和液相色谱,毛细管电泳(CE)具有分离效率高、消耗样品量少、分离时间快等特点适用范围广,可分离从简单离子、非离子性化合物到生物大分子等各类化合物。但是在分离过程中,样品中分析物的原始形态可能由于电解质或pH值的调节而发生变化,样品的组成也是影响CE分离的一个重要因素,由于CE与ICP&mdash MS的接口没有HPLC成熟,在一定程度上制约了CE-ICP&mdash MS联用技术的应用。但相关的研究还是不少,主要集中在食品中砷、硒、汞等元素形态的分析。   5、液相色谱-AFS   由于中国AFS的技术领先于世,所以该研究在国内发展也很快。由于AFS对某些元素,如As、Se、Hg等的检测灵敏度很高,而且这些元素也是形态分析所最关注的元素,所以AFS在元素形态分析上大有用武之地。如前所述,单用AFS能进行一些特定的形态分析,而要完成更好的分离和检测,就需要和色谱联用。现在主要是和液相色谱联用,已经有多款HPLC-AFS仪器上市。该技术的优势在于具备了液相分离的优点,也能利用AFS的高灵敏度和元素特异性,仪器的整体价格也不高。其缺点在于,检测元素受到AFS的限制,而且AFS检测状态的稳定性也较难保证。   食品中元素形态分析的标准:   1、砷的形态分析标准   根据GB 2762-2012 《食品中污染物限量》,规定了食品中无机砷的限量标准,所以也有相关的检测方法:   GB/T 5009.11-2003 食品中总砷及无机砷的测定 :无机砷检测采用原子荧光法,前处理和总砷不一样。   GB/T 23372-2009 食品中无机砷的测定 液相色谱-电感耦合等离子体质谱法:该标准采用HPLC-ICP-MS联用技术,分离和检测能力都很强。   有机砷农药的检测方法有一个行业标准:SN/T 2316-2009 进出口动物源性食品中阿散酸、硝苯砷酸、洛克沙砷残留量检测方法 离子色谱-电感耦合等离子体质谱法   2、汞的形态分析标准   根据GB 2762-2012 《食品中污染物限量》,规定了食品中有机汞(以甲基汞计)的限量标准,所以也有相关的检测方法:   GB/T 5009.15-2003 食品中总汞及有机汞的测定: 有机汞采用气相色谱法和预分离&mdash 冷原子光度法。   无机砷和有机汞的检测方法都有缺陷,修订的新方法(草案)采用液相-原子荧光联用法,但也有问题,到现在没有颁布为更新方法。   3、溴酸盐的形态分析标准   由于溴酸盐是2B类致癌物,所以已不允许作为添加剂使用。食品中溴酸盐的形态分析有两个标准,都用离子色谱法:   GB/T 20188-2006 小麦粉中溴酸盐的测定 离子色谱法   SN/T 3138-2012 出口面制品中溴酸盐的测定 柱后衍生离子色谱法   水中溴酸盐也有限量标准和检测方法,在相关水检测标准中,也是离子色谱法。   4、铬的形态分析标准   六价铬的检测方法有一个行业标准:   SN/T 2210-2008 保健食品中六价铬的测定 离子色谱-电感耦合等离子体质谱法   水中的六价铬也有相应标准检测方法,采用经典的比色法。在水的检测标准中。     (撰稿人:上海出入境检验检疫局 杨振宇 博士)   注:文中观点不代表本网立场,仅供读者参考
  • 粒子束成像设备的分辨能力测试原理和测试方式
    一、测试原理粒子束成像设备如SEM、FIB等,成像介质为被聚焦后的高能粒子束(电子束或离子束)。以扫描电镜(SEM)为例,通过光学系统内布置的偏转器控制这些被聚焦的高能电子束在样品表面做阵列扫描动作,电子束与样品相互作用激发出信号电子,信号电子经过探测器收集处理后,即可得到由电子束激发的显微图像。图1:偏转器的结构示意(左);电镜图像(右)基于以上原理,一台粒子束设备在进行显微成像时,其分辨能力与下落至样品表面的粒子束的束斑尺寸相关,束斑的尺寸越小,扫描过程中每个像元之间的有效间距即可越小,设备的分辨本领越高。当相邻的两个等强度束斑其中一个束斑的中心恰好与另一个束斑的边界重合时,设备达到分辨能力极限(图2)。图2:分辨能力极限示意图不考虑粒子衍射效应时,经聚焦后的粒子束截面可视为圆形(高斯斑),其束流强度沿中心向边缘呈高斯分布(图3)。以扫描电镜为例,在光学设计和实验阶段,通常使用直接电子束跟踪和波光计算(direct ray-tracing and wave-optical calculations)方法,来获得聚焦电子束的束斑轮廓。该过程是将电子束的束流分布采用波像差近似算法来计算图像平面上的点展宽函数PSF(Point Spread Function),基于PSF即可估算出包含总探针电流的某一部分(如50%或80%)的圆的直径,从而得到设备的分辨能力水平。图3:高斯斑的截面形状和强度分布示意图但是在设备出厂后,由于粒子束斑尺寸在纳米量级,无法直接测量,因此行业通常使用基于成像的测试方法,测试粒子束设备的分辨能力。 锐利物体边界的边界变化率法是行业目前达到共识的测试粒子束斑尺寸的方法,即使用粒子束成像设备对锐利物体(通常是纳米级金颗粒)进行成像,沿图像中锐利物体的边缘绘制亮度垂直边缘方向的变化曲线,并选取曲线上明暗变化位置一定比例对应的物理距离,来表示设备的分辨率(图4)。为了保证测试准确性,可以在计算机帮助下取数百、数千个锐利边界的亮度变化率曲线求取均值,以获知设备的整体分辨能力。图4:金颗粒边界测量线(上图红线);测量线上的亮度变化(下左);取多条测量线后得到的设备分辨率示意(下右)边界变化率曲线上亮度25%-75%位置之间的物理距离d,可以近似认为是粒子探针束流50%时所对应的粒子束斑直径,在粒子束成像设备行业通常用此距离d来最终标识设备的分辨能力。图5:边界变化曲线与高斯斑直径对应示意图二、测试方式「 样品的选择 」金颗粒通常采用CVD或者PVD等沉积生长的方法获得,由于颗粒形核长大的过程可以人工调控,因而最终得到的金颗粒直径的大小可以被人工控制,所以视不同用途,金颗粒的规格也不同。以Ted Pella品牌分辨率测试金颗粒为例,用于SEM分辨率测试的标准金颗粒有五种规格,其中颗粒尺寸较小的高分辨、超高分辨金颗粒(如617-2/617-3)通常用于测试场发射电镜的分辨能力;颗粒尺寸较大的金颗粒(如617/623)通常用于测试钨灯丝或小型化电镜的分辨能力,详细的颗粒尺寸和适用设备见图6。测试时,不合适的金颗粒选择无法准确反映一台电镜的分辨能力。图6:Ted Pella品牌金颗粒规格及适用机型「 SEM光学参数的设置 」分辨率的测试旨在测试设备在不同落点电压下的各个探测器的极限分辨能力,因此,与电子光学相关的成像参数设置需要注意以下内容:(1)视场校准:保证放大倍数、视场尺寸的准确;(2)目标电压:这里特指落点电压,即电子束作用在样品上的真实撞击电压;(3)探测器:不同探测器收取信号的能力不同,因此获得图像的极限分辨能力不同,因此都要测试,通常镜筒内探测器ETBSE;(4)光阑/束斑:通常在每个电压下使用可以正常获得图像的最小光阑(以获得极限分辨能力);(5)工作距离:通常在每个电压下使用可以正常获得图像的最小工作距离(以获得极限分辨能力)。「 SEM图像采集条件 」(1)合理的测试视野/放大倍数测试时,所选用的测试视野(放大倍数)需要根据设备的分辨能力做出调整,一般放大倍数取每个像素的pixel size恰好与真实束斑尺寸接近即可。比如:对于真实分辨能力约1.5nm的设备,调整放大倍数使屏幕上每个像素对应样品上的真实物理尺寸为1.5nm,即在采集1024*1024像素数的图像进行测试的前提下,选择不大于1024*1.5nm≈1.5um的视野进行测试即可。表1:分辨率测试的FOV及放大倍数估算表(2)合理的亮度、对比度采集金颗粒图像时,亮度和对比度的选择也需要合理,也就是通常所讲的不要丢失信息。在不丢失信息的前提下,图像亮度对比度稍微偏高或偏低,只要边缘变化曲线的高线和低线均未超出电子探测器采集能力的上限或者下限,曲线虽然在强度方向(Y方向)出现的位置和差值有所变化,但距离方向(X方向)及变化趋势均不改变,因此使用25%-75%变化率对测量出来的分辨率数值d基本没有影响(图7)。然而,当使用过大的亮度、对比度设定后,当边缘变化曲线的高线和低线至少一边超出电子探测器采集能力的上限或者下限,再使用25%-75%变化率对测量出来的分辨率数值d就不再准确,这时测出的分辨率数值无效(图8)。图7:合理的亮度对比度及边界变化率的曲线图8:不合理的亮度对比度及边界变化率的曲线三、总结基于上述图像学进行的分辨率测试,是反映粒子束设备整体光学、机械、电路、真空等全面综合性能的关键手段。该测试在设备出厂交付时用于验证设备的性能指标,在设备运行期间不定期运行该测试以关注分辨率指标,可以快速帮助使用人员和厂商工程师快速发现设备风险,从而及时制定维护、维修方案,以延长设备的稳定服役时间。 钢研纳克是专业的仪器设备制造商,同时提供完善可靠的第三方材料检测服务、仪器设备校准服务,力求在仪器设备产品的开发、生产、交付、运行全流程阶段遵循行业标准和规范,采用统一的品质监控手段,保证所交付产品品质的稳定可靠。参考文献[1] J Kolo&scaron ová, T Hrn&ccaron í&rcaron , J Jiru&scaron e, et al. On the calculation of SEM and FIB beam profiles[J]. Microscopy and Microanalysis, 2015, 21(4): 206-211.[2] JJF 1916-2021, 扫描电子显微镜校准规范[S].本技术文章中扫描电镜图像由钢研纳克FE-2050T产品拍摄。
  • LSA100光学接触角测量仪取得中国计量院校准证书
    北京东方德菲仪器有限公司代理的德国LAUDA Scientific品牌的LSA100光学接触角测量仪顺利通过中国计量科学研究院(NIM)检测,取得校准证书,证书编号:CDjc2021-11489。 中国计量科学研究院(NIM)是国家高级别的计量科学研究中心和国家ji法定计量技术机构,质量管理体系符合ISO/IEC17025标准,标准结果不确定度的评估和表述均符合JJF1059系列标准的要求。 经过申请、现场检测、认可批准等层层把关,LSA100光学接触角测量仪顺利通过中国计量科学研究院(NIM)检测,取得校准证书,这标志着LSA100完全满足材料润湿性分析中接触角值的测量需求。我们能够为客户提供更加规范、专业、优质的服务,为实验室科学研究和质量控制等领域提供更高质量的保障。
  • 真空衰减法密封仪与色水法密封试验仪哪个检测效率比较高
    一、引言在评估包装密封性的过程中,真空衰减法密封仪和色水法密封试验仪是两种常用的检测方法。它们各自具有独特的检测原理和应用场景,但在检测效率方面存在差异。本文将对这两种仪器的检测效率进行比较,以便更好地了解它们在实际应用中的表现。二、真空衰减法密封仪的检测效率检测原理:真空衰减法密封仪基于真空传感技术,通过测量包装内部与外部之间的压力差来评估包装的密封性能。测试过程中,真空传感器会实时检测压力变化,并与预设的标准值进行比较,从而判断包装是否存在泄漏现象。检测速度:真空衰减法密封仪的检测速度较快,因为其在测试过程中可以自动化地进行数据记录和分析。根据参考文章2中的信息,第三代真空衰减技术灵敏度最大可达0.5μm(0.002ccm漏率),基于物理的基本原理进行泄漏检测,实现了最大限度地采用非破坏方式检测。这意味着在较短的时间内,真空衰减法密封仪可以完成大量的测试任务。应用优势:真空衰减法密封仪不仅检测速度快,而且具有高度自动化和智能化的特点。它能够减少人工干预,提高测试效率。此外,该测试仪还具有广泛的适用性,可适用于不同类型的药品包装,如玻璃瓶、塑料瓶、铝塑包装等。三、色水法密封试验仪的检测效率检测原理:色水法密封试验仪通过观察包装内液体渗出情况来判断密封性能。测试过程中,需要将待测包装充满色水,并观察是否有色水渗出。这种方法需要人工观察和判断,因此可能存在一定的主观性和误差。检测速度:与真空衰减法密封仪相比,色水法密封试验仪的检测速度较慢。首先,需要准备足够的色水并填充到待测包装中;其次,在测试过程中需要人工观察是否有色水渗出,这可能会耗费大量的时间和人力。应用局限性:色水法密封试验仪虽然适用于某些特定的包装类型,如塑料袋、瓶子等,但其应用范围相对有限。此外,由于需要人工观察和判断,该方法可能不适用于需要大量测试的情况。四、总结综上所述,真空衰减法密封仪在检测效率方面相较于色水法密封试验仪具有明显优势。其快速、准确、自动化的特点使得它能够在较短时间内完成大量的测试任务,并且具有广泛的适用性。因此,在需要高效、准确地评估包装密封性的场合中,真空衰减法密封仪是更为理想的选择。
  • 专家约稿|压电力显微术的基本技术原理与使用注意事项
    原子力显微术(AFM)作为一种表征手段,已成功应用于研究各个领域的表面结构和性质。随着人们对多功能和更高精度的需求,原子力显微技术得到了快速发展。目前,原子力显微镜针对不同的研究对象,搭配特定的应用功能模块可以研究材料的力学、电学以及磁学等特性。其中压电力显微术(PFM)已被广泛应用于研究压电材料中的压电性和铁电性。1. 压电材料与铁电材料压电材料具有压电效应,从宏观角度来看,是机械能与电能的相互转换的实现。当对压电材料施加外力时,内部产生极化现象,表面两侧表现出相反的电荷,此过程将机械能转化为电能,为正压电效应。与之相反,若给压电材料的施加电场,材料会产生膨胀或收缩的形变,此过程将电能转化为机械能,为逆压电效应。铁电材料同时具备铁电性和压电性。铁电性指在一定温度范围内材料会产生自发极化。铁电体晶格中的正负电荷中心不重合,没有外加电场时也具有电偶极矩,并且其自发极化可以在外电场作用下改变方向。并非所有的压电材料都具有铁电性,例如压电薄膜 ZnO。压电铁电材料广泛应用于压电制动器、压电传感器系统等各个领域,与我们的生活息息相关,还应用于具有原子分辨率的科学仪器技术,例如在原子力显微镜中扫描的精度在很大程度上取决于内部压电陶瓷管扫描器的性能。2. PFM工作原理原子力显微镜是一种表面表征工具,通过检测针尖与样品间不同的相互作用力来研究样品表面的不同结构和性质。针尖由悬臂固定,激光打在悬臂的背面反射到位置敏感光电二极管上,由于针尖样品间作用力发生变化会使悬臂产生相应的形变,激光光束的位置会有所偏移,通过检测光斑的变化可获得样品的表面形貌信息。 图1 压电力显微术工作原理PFM测量中导电针尖与样品表面接触,样品需提前转移到导电衬底上,施加电压时可在针尖在样品间形成垂直电场。为检测样品的压电响应,在两者之间施加AC交流电场,由于逆压电效应,样品会出现周期性的形变。当施加电场与样品的极化方向相同时,样品会产生膨胀,反之,当施加电场与样品的极化方向相反时,样品会收缩。由于样品与针尖接触,悬臂会随着样品表面周期性振荡发生形变,悬臂挠度的变化量与样品电畴的膨胀或收缩量直接相关,被AFM锁相放大器提取,获得样品的压电响应信号。3. PFM的测量模式图2 压电力显微术的三种测量模式PFM目前有三种测量模式,分别为常规的压电力显微术、接触共振压电力显微术和双频共振追踪压电力显微术。常规的压电力显微术在测量过程中针尖的振动频率远小于其自由共振频率,将其称为Off-resonance PFM。这种模式得到的压电信号通常较小,一般需要施加更高的电压,通常薄层材料的矫顽场较小,有可能会改变样品本身的极性,不利于薄层材料压电响应的测量,存在一定的局限性。此时获得的振幅值正比于压电系数,利用针尖的灵敏度可直接将振幅得到的PFM 信号转换为样品的表面位移信息,获得材料的压电系数。接触共振的压电力显微术测量称其为contact-resonance PFM,可以有效放大信号,针尖的振动频率为针尖与样品接触时的接触共振频率,一般是针尖自由共振频率的3-5倍。此时无需施加很高的外场就能得到较强的PFM信号,不会改变样品的极化方向。此时测得 PFM 压电响应信号比常规FPM测量的响应信号幅值放大了 Q 倍(Q为共振峰品质因子),计算压电系数时需考虑放大的倍数。但此技术也存在一定的局限性,针尖的接触共振频率是在某一位置获得的,接触共振频率取决于此位置的局部刚度。在扫描的过程中,针尖与样品之间的接触面积会发生变化,引起接触共振频率的变化,若以单一的接触共振频率为针尖的振动频率会使得信号不稳定,测得的振幅信号在共振频率处放大,其余地方信号较弱,极大的影响压电系数的定量分析,得到与理论值不符的压电系数。与此同时PFM信号易与形貌信号耦合,产生串扰。双频共振追踪压电力显微术(DART-PFM)可以有效避免压电信号与形貌的串扰。在这项技术中,通过两个锁相放大器分别给针尖施加在接触共振峰两侧同一振幅位置的频率,当接触共振频率变化时,振幅会随之变化,锁相放大器中的反馈系统会通过调节激励频率消除振幅的变化,由此获得清晰的形貌和压电信号。此时在量化压电系数时需要额外的校准步骤确定振幅转化为距离单位的值,目前一般是通过三维简谐振动模型去校准修订得到压电材料的压电系数。 4. PFM的表征与应用PFM测量中可获得样品的振幅和相位图。图中相位的对比度反映样品相对于垂直电场的极化方向,振幅信息显示极化的大小以及畴壁的位置。一般来说,材料的压电响应是矢量,具有三维空间分布,可分为平行和垂直于施加外场的两个分量。图3 BFO样品的PFM表征图[1]若样品只存在与电场方向平行的极化响应,PFM所获得的振幅和相位信息可直接反映样品形变的大小和方向,若样品畴极化方向与外加电场相同,相位φ=0;若样品畴极化方向与外加电场相反,则相位φ=180°。此时垂直方向的压电响应常数可直接由获得的振幅与施加的外场计算出来,在共振频率下可以定量测量。值得说明的是,PFM获得的压电响应常数很难与块体材料相比较,因为样品在纳米尺度的性质会与块体材料有显著的不同。若样品具有平行和垂直于电场的压电响应,在施加电场时,样品的形变出现面内和面外两个方向。利用Vector PFM可以同时获得悬臂的垂直和横向位移,可以将得到的信号矢量叠加,获得样品的三维PFM图像。压电力显微术不仅可以成像,还能用于研究铁电材料的电滞回线,并且可以对铁电材料进行写畴。铁电材料的相位和振幅与施加的电压呈函数关系,测得的电滞回线和蝴蝶曲线可以用于判断铁电材料的矫顽场,矫顽场是铁电材料发生畴极化反转时的外加电压。一般的电滞回线的获取需要施加大于±10V的直流偏压,但值得注意的是较高的直流电压会增加针尖与样品间的静电力贡献,静电力信号有可能超过压电响应信号,从而掩盖畴极化反转信号。图4 SS-PFM的工作原理图开关谱学压电力显微术(SS-PFM)可以有效减小静电力的影响,原理如图4所示与普通PFM在测量电滞回线时线性施加DC电压的方式不同,SS-PFM将DC电压以脉冲的形式初步增加或减小,每隔一定的时间开启和关闭DC电压,并且持续施加AC交流电。其中DC用于改变样品的极化,AC交流电用于记录DC电压接通和关闭时的压电信号。图为研究二维异质材料MoS2/WS2压电性能时利用SS-PFM测得的材料特性曲线。 图5 二维异质材料MoS2/WS2的材料特性曲线[2]铁电材料与普通压电材料最大不同是在没有外加电场时也具有电偶极矩,并且其自发极化可以在外电场作用下改变方向,因此可利用是否能够写畴来区分铁电材料。知道压电材料的矫顽场之后可以对样品进行局部极化样品进行写畴,畴区可以自定义,正方形、周期阵列型或者更加复杂的图案。最简单的写畴是先选择一10×10μm正方形区域,其中6×6μm区域施加正偏压,4×4μ区域施加负偏压,获得回字形写畴区域,在相位图中可以清晰的看到所写畴区。图6 Si掺杂HfO2样品的回字形写畴区域[3]5. 注意事项在PFM测量中首先要保证在样品处于电场之中,在样品的前期准备时需将样品转移至导电衬底,并确定针尖和放置样品的底座可以施加电信号,此时才能保证施加电压时在针尖在样品间具有垂直电场。在PFM测量中静电效应的影响也不容忽略,导电针尖电压的电荷注入可诱导静电效应并影响材料的压电响应,导致PFM振幅和相位信息与特性曲线失真。尽管静电效应在 PFM 测试中无可避免,但可以使用弹簧常数较大的探针或者施加直流偏压来尽量减小其中的静电影响。此外针尖的磨损也会极大的影响PFM测量。由于针尖与样品间相互接触,加载力不宜过高,过高会损坏样品表面,保持恒定适中的加载力。此外使用较软的针尖在扫描过程中可以保护针尖不受磨损,并且保护样品。PFM测量中常用的针尖为PtSi涂层的导电针尖,以获得较稳定的PFM信号。参考文献[1] HERMES I M, STOMP R. Stabilizing the piezoresponse for accurate and crosstalk-free ferroelectric domain characterization via dual frequency resonance tracking, F, 2020 [C].[2] LV JIN W. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides [J]. Science (New York, NY), 2022, 376: 973-8.[3] MARTIN D, MüLLER J, SCHENK T, et al. Ferroelectricity in Si-doped HfO2 revealed: a binary lead-free ferroelectric [J]. Adv Mater, 2014, 26(48): 8198-202.作者简介米烁:中国人民大学物理学系在读博士研究生,专业为凝聚态物理,主要研究方向为低维功能材料的原子力探针显微学研究。程志海:中国人民大学物理学系教授,博士生导师。2007年,在中国科学院物理研究所纳米物理与器件实验室,获凝聚态物理博士学位。2011年-2017年,在国家纳米科学中心纳米标准与检测重点实验室,任副研究员/研究员。曾获中国科学院“引进杰出技术人才计划”和首届“卓越青年科学家”、卢嘉锡青年人才奖等。目前,主要工作集中在先进原子力探针显微技术及其在低维量子材料与表界面物理等领域的应用基础研究。
  • 负氧离子检测仪的工作原理与选择
    空气中负氧离子的含量是空气质量好坏的关键。在自然生态系统中,森林和湿地是产生空气负(氧)离子的重要场所。在空气净化、城市小气候等方面有调节作用,其浓度水平是城市空气质量评价的指标之一。自然界中空气正、负离子是在紫外线宇宙射线、放射性物质、雷电、风暴、瀑布、海浪冲击下产生,既是不断产生,又不断消失,保持某一动态平衡状态。由于负离子的特性,空所中的负离子产生与消失会保持一个平衡,因此判断环境下负离子浓度需要借助专门的空气离子检测仪进行准确测量。负氧离子是带负电荷的单个气体分子和轻离子团的总称,简言之就是带负电荷的氧离子。在自然生态系统中,森林和湿地是产生空气负氧离子的重要场所。其浓度水平是城市空气质量评价的指标之一,有着 “空气维生素”之称。工作原理:空气离子测量仪是测量大气中气体离子的专用仪器,它可以测量空气离子的浓度,分辨离子正负极性,并可依离子迁移率的不同来分辨被测离子的大小。一般采用电容式收集器收集空气离子所携带的电荷,并通过一个微电流计测量这些电荷所形成的电流。测量仪主要包括极化电源、离子收集器、微电流放大器和直流供电电源四部分。首要要了解自己选负离子检测用途,目前有进口的负离子检测仪,国产的负离子检测仪,仿冒的负离子检测仪等等。分为便携的负离子检测仪,在线的负离子检测仪,按原理分又分为平行电极负离子检测仪和圆通电容器负离子检测仪两种。空气负氧离子检测分为 “平极板法测空气负离子” 和”电容法测空气负离子“这两种原理,其中“平极板”原理是比较常用的一种方法,检测快速,经济实惠,用于个人、工厂、实验室等单位。电容法测空气负离子检测仪是一种高性能检测方法,具有防尘、防潮等特点,相对于平极板法测空气负离子更加,特别适合于森林、风景区的使用,是林业局,科研单位测量空气质量的常见仪器。按收集器的结构分,负离子检测仪可以划分为平行板式和Gerdien 冷凝器式/双重圆筒轴式两种类型。1.Ebert式/平行电板式离子检测仪平行电板式离子检测仪是目前低端空气离子检测仪比较常用的一种方法。A跟B是一组平行的且相互绝缘的电极,B极顶端边着一个环形双极电极,空气通过右下角的风扇吸入,空气中的负离击打A/B电极放电,电荷传导到E环形电极形成自放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上比较成熟,造价成本也比较低,但是易受外部环境影响,另外这种结构自身的弱点容易导致电解边缘效应,容易造成气流湍流,造成检测结果偏移较大。2.Gerdien冷凝器式/双重圆筒轴式双重圆筒轴式离子检测仪是目前中高端空气离子检测仪成熟的一种方法。整体结构由3个同心圆筒组成,外围筒身及内轴为电极,空气通过圆筒时,离子撞击筒身跟轴产生放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上已非常成熟,但由于内部复杂的结构及控制,造价成本高昂,这种结构可以有效解决平行电板式结构固有的电解边缘效应,同时圆筒本身的结构及特殊的进气方式可以保持气流通过的平顺性,对离子数量及大小的检测精确性有极大提高。
  • 谈国内外激光粒度仪技术现状及行业亟需解决的问题——珠海真理光学仪器有限公司董事长张福根
    在进入主题之前,我首先要澄清一下,这里的“激光粒度仪”是指基于静态光散射或衍射原理的粒度分析仪器, 测量范围从大约100纳米到几毫米。与之容易混淆的还有另一种也是以激光作为照明光源的粒度分析仪器——动态光散射粒度仪,在国内通常叫作纳米粒度分析仪。本文探讨的产品是指前者。 一提起高端的科学仪器,大多数国人都认为进口的国外仪器比国产仪器先进。但是,对激光粒度仪,我可以很负责任地说,总体上国产仪器与进口仪器水平相当,有些国产品牌甚至领先于世界同行。国外产品的价格确实高,但是技术性能一点都不高。所以,某些国家如果想在激光粒度仪上卡中国的脖子,不仅对中国的粒度仪应用产业丝毫无损,而且还会自行断送国外品牌在中国的市场,对中国的上下游产业发展只有好处,没有坏处。 能不能制造出高水平的科技产品,关键点有三:一是产品的设计,二是供应链(配套原材料),三是制程管理。 就原料供应来说,国内国外的粒度仪厂商都是全球采购的,相互之间没什么差别。具体来说,集成电路和部分电子元件大多是国外生产的,机械零件和光学镜头大多是中国生产的,有些国外品牌甚至连整机都是在中国境内、由中国工人完成组装调试的。某些国产品牌为了宣传自己的粒度仪“高大上”,声称光学镜头是某发达国家生产的,不知真假?但愿是假的;如果是真的,那真要为之惋惜了。其实,国产光学镜头完全能够满足激光粒度仪的使用需求。就连某些著名的进口品牌的镜头都是中国产的,说明国外同行早就认可中国镜头的质量。你又何必花高价到国外采购呢?要说卡脖子,电子元器件真是国产科学仪器“脆弱的要害部位”。激光粒度仪要用到的激光二极管,一些模拟集成电路,单片机等,都需要进口。但这不是我们激光粒度仪的厂商能够解决的。 至于制程管理,需要经验的积累和精益求精的态度。国产品牌或者其主要负责人,进入激光粒度仪行业都已超过20年,而且有些人曾长期在国外同行企业工作,再笨也学会该如何管理了,更何况中国人还是挺聪明的,至少不会在智力上输给西方人。对产品质量的态度,我认为几家主要的国产品牌都是很认真的。或许是激烈竞争的原因,大家都迫切地希望用户使用自己的产品时有良好的体验:精确、稳定、可靠。说到用户体验,我要提一句提外话:目前进口产品在售后服务上给用户的感觉都不太好:不仅服务不及时,态度不友好,而且收费巨贵。在这一点上,国外品牌就大大比不上国产品牌了。 最后一点就是激光粒度仪的设计了,这是硬核技术,也是本文要谈的重点。在供应链和制程管理不相上下的情况下,设计水平的高低决定了激光粒度仪的技术性能的高下。 下面将正式展开对国内外激光粒度仪的认知和设计水平的比较。表述听起来可能比较“学究”,请读者诸君谅解。这是因为不用专业的表达,就无法把其中的要点说清楚,就会显得模棱两可,给人留下质疑的空间。但是我会尽量表达得通俗一点。1. 激光粒度仪的光学模型及简要历史回顾 粒度仪器有多种原理,但大多数都把被测量的颗粒看成一个理想的圆球。尽管实际的颗粒很少是理想圆球,有的甚至远远偏离圆球,但是由于颗粒的数量太大,形状也是千变万化,如果连形状都要考虑进去,是一件无法完成的工作,所以只能把颗粒当作圆球来处理。激光粒度仪也是把颗粒当成理想圆球来处理,全世界的品牌都一样。 1.1 光散射的模型 光是电磁波。在均匀的介质中,光是沿着直线传播的。如果光在传播的途中遇到一个颗粒,光和颗粒就会发生相互作用,光波一部分可能被颗粒吸收,一部分则偏离原来的方向继续传播,后者就称为“光的散射”。这种相互作用遵循电磁波理论,即麦克斯韦方程组。只要颗粒尺寸远大于原子尺度,并且没有原子激发辐射(荧光)现象发生,那么,电磁波理论的正确性是不容置疑的。平面电磁波遇到圆球颗粒后发生的散射现象,可以有严格的数学解,称作“Mie散射理论”。不过这个解在数学形式上非常复杂、计算量庞大,物理意义很抽象。在颗粒直径远大于光波长时,散射现象可以用几何光学近似理论解释,这样物理意义就变得很直观了。 请看图1。在颗粒远大于光波长的情况下,颗粒对光的散射,可以分成两个部分:衍射和几何散射。从无限远(远场)的位置观察,衍射光的偏离角度只跟颗粒在观察面上的投影的大小有关,颗粒越小,衍射角越大,这部分信息可以用来分析颗粒的大小。几何散射光是指光线投射到颗粒表面以后,一部分发生反射,另一部分经过折射进入颗粒内部,又在另一个界面上发生折射(到介质)和反射的现象。散射光场是这两部分光的叠加。图1中只画出了衍射光和一次折射光。从远场看,几何散射光的相对强度分布与颗粒大小无关,只与颗粒的折射率与吸收系数有关。另外,当颗粒很大时,衍射光的分布范围远远小于几何散射光的分布范围,但是由于两种散射光的总能量相同,所以从小角度看,衍射光的强度要远远大于几何散射光的强度。这也是在小角度范围内观察大颗粒的散射光时,可以只考虑衍射光的原因。图1 光散射模型的几何光学近似 激光粒度仪在上世纪70年代初刚出现时,只考虑衍射光,所以颗粒可以看成一个不透光的圆片,见图2。根据光学上著名的巴比涅互补原理,一个不透光的圆片所产生的衍射场与同直径的圆孔所产生的衍射场只在位相上差180°,振幅则完全相同。激光粒度仪直接测量的是光强的分布,它是振幅的模的平方,跟位相没关系,所以一个直径为D的颗粒所产生的衍射光强的分布可以用等直径的圆孔产生的光强分布来代替。图2 从圆球散射到圆孔衍射的简化圆孔的衍射在19世纪末就有解析形式的理论表达。远场的衍射理论称为“夫朗和费衍射理论”。图2还表示出了观察远场衍射的经典装置:在圆孔后放置一个光学透镜,在透镜的焦平面上放置观察屏,这样在屏上看到的图像就是远场衍射光斑。衍射角度为的衍射光落在屏上的位置到屏的中心的距离为( 是透镜的焦距)。顺便科普一个光学名词:如果透镜是对焦平面消像差的,该透镜就称为“傅里叶透镜”。从图2可以看到,远场的衍射光斑由中心亮斑和一系列同心圆环组成,被称为“爱里斑”。理论上可以证明,爱里斑的第一个暗环内包含了大约84%的衍射总光能,所以习惯上把第一个暗环所对应的衍射角称为爱里斑的(角)半径。爱里斑的半径与圆孔直径、也就是颗粒的直径近似成反比,因此屏上的光强分布与颗粒大小之间有一一对应关系。激光粒度仪就是根据这个原理分析颗粒大小的。 1.2 国内外激光粒度仪的发展史 一个10微米的颗粒,如果用0.633微米(红光he-Ne激光波长)的光去照射,那么衍射角就是4.4°;100微米的颗粒,衍射角就是0.44°了。世界上第一台激光粒度仪直到1970年前后(准确的年份有几种说法)才出现,就是因为它首先需要一种单色性、方向性都足够高、强度足够强的光源,这就是激光。所以它只能出现在激光器问世(1961年)之后。另外,探测衍射光场的分布需要硅光电探测器阵列,需要用到集成电路制作工艺;把衍射光的分布转换成粒度分布需要台式计算机,这些条件都是1960年以后才出现的。国内最早开始激光粒度仪研制的是天津大学的张以谟团队,当时是承接了国家科委的六五(1981年到1985年)科技攻关项目。项目于1989年通过了国家科委的技术鉴定。产品名称当时叫做“激光滴谱仪”,设定的应用对象是液体雾滴的粒度测量。比天津大学略晚开展激光粒度仪研制的单位还有上海机械学院(后改名“上海理工大学”)、山东建材学院(后并入济南大学)、四川省轻工业研究院、重庆大学和辽宁(丹东)仪器仪表研究所。从上面的介绍可以看出,国产激光粒度仪的出现时间比世界上最早的同类产品晚了大约20年。早期国产仪器的落后,首先就是因为起步的时间晚。起步晚的原因有这么几个:(1)国外开始研发激光粒度仪的时间正好是中国的文革时期,闭关锁国,国内的科研人员不太了解国外的动态,一直到1970年代末改革开放后,国外的产品卖到中国,以及国内的科研人员到国外进修,才知道有这么一种产品。(2)激光粒度仪的应用对象是从事粉体、浆料、乳液、胶体以及喷雾的科研和生产单位,当时中国在生产和科研两个方面都大幅落后于国外。国内的应用需求对该产品的研发的拉动不强烈。(3)在改革开放前以及改革开放后的很长一段时间,科研由高校和研究机构做,而生产由工厂做。科研单位感受不到应用的需求,而生产单位即使知道有需求,也没有能力设计一款光、机、电和计算机一体化的产品。(4)激光粒度仪作为当时的高精尖产品,需要激光器、电脑、形硅光电池阵列、半导体芯片等元器件和设备的配套,在上世纪六、七十年代,中国很难获得这些东西。目前国内的情况已经完全改观:一是国内需求拉动强烈,二是各种电子元件、计算机软硬件等都能在全球采购,三是国内的研发人员理论基础雄厚,创新意识强,能开展基础理论研究和技术创新。经过30多年的进步,国产激光粒度仪的技术已经能和全球同行并驾齐驱,并有一部分实现了超越。1.3 当前各种品牌对光学模型的应用从1.1节的讨论可以看到,如果只考虑远大于光波长的颗粒,并且只测量小角度的散射光(例如小于5°)的话,用衍射理论基本可以满足粒度测量的要求。衍射理论的优势在于数值计算相对简单,也不需要知道颗粒的光学参数(折射率和吸收系数)。但是如果想把粒度测量下限扩展到接近或小于光的波长,那么就不得不考虑更大角度范围的散射光了。现在的粒度仪测量下限可以达到光波长的1/10左右。图3表示出几种亚微米颗粒的散射光强分布。从图上可以看出,对小颗粒来说,不同粒径散射光强度分布的差别,主要在大角度上,甚至大到180°。这就需要仪器的光学系统能测量0°到180°全角范围的散射光,光学模型也必须用Mie散射理论了。图3 对数极坐标下亚微米颗粒的散射光强分布图中的坐标系是对数极坐标,方位角就是散射角,辐射线的长度是散射光强度的对数。(a)(d)分别表示1µm、0.5µm、0.25µm和0.12 µm的颗粒的散射光强分布。 目前国内国外的厂商,大多数采用复杂但严谨的Mie理论,但也有个别国外厂商还在用衍射理论。从所采用的光学模型来看,国内厂商与国外的主流厂商是同步的。相反,个别国外厂商还在用夫朗和费衍射理论,就显得抱残守缺了。1.4 对光学模型研究的新发现 激光粒度测试技术的研究者和厂商都隐藏着一个困惑:激光粒度仪无法正常测量3微米左右的聚苯乙烯微球。这是为什么? 国内厂商——珠海真理光学仪器有限公司与天津大学的联合团队发现了造成这个困惑的根源:爱里斑的反常变化(ACAD)。通常我们都认为颗粒越小,爱里斑越大,于是颗粒大小与爱里斑大小之间有一一对应关系,所以粒度仪能够根据散射光的分布推算粒度分布。但事实上在有的粒径区间,会出现违反上述规律的情况:颗粒越小,爱里斑也越小。我们把这样的粒径区间叫做“反常区”。图4是根据Mie散射理论用数值计算的方法模拟出的聚苯乙烯微球的爱里斑的变化。图中粒径从3微米到3.5微米的爱里斑尺寸的变化就属于反常变化。对聚苯乙烯微球来说,3微米左右正好是在反常区,所以测量出现异常。研究论文发表于2017年。 图4 爱里斑的反常变化现象 该研究揭示出,任何无吸收或弱吸收的颗粒的光散射都存在反常现象。如果颗粒无吸收,则存在无限多个反常区。对粒度测量有影响的主要是第一反常区,其所处的粒径区间大约在0.5微米到10微米,具体位置跟颗粒与分散介质的折射率以及光波长有关。颗粒折射率越大,反常区中心对应的粒径越小。被测颗粒的粒径落在第一个反常区的话,通常的反演算法就难以根据散射光的分布计算出正确的粒度分布。反常现象对激光粒度测量的影响是普遍存在的,这将在第3节继续讨论。 爱里斑反常变化现象的发现与研究,是国内厂商与研究机构对激光粒度测试技术的创造性贡献,当然是世界范围内独一无二的,是领先于世界的。 2. 各种仪器的散射光接收系统 粒度仪的散射光接收系统决定了仪器能否获得充分的颗粒散射光信息,从而准确计算出被测颗粒的粒度分布。它是激光粒度仪的关键技术之一。 亚微米颗粒的散射光能分布见图5,其中假设了探测器的面积与散射角成正比,照明光是线偏振光,偏振方向垂直于散射面。其中图(a)表示全角范围内完整的散射光能分布。从中可以看出,垂直偏振散射光是分布在0°到180°的全角范围内的,对0.3微米以细的颗粒来说,散射光能的主峰分布处在40°到90°的前向大角度上。由于光能分布的主峰位置(如果有)与粒径之间有最显著的特异性,因此获取40°以上的散射光信息对亚微米颗粒测量至关重要。图5 亚微米颗粒的散射光能分布曲线(a) 全角范围的光能分布,(b) 正入射平板玻璃窗口得到的;(c) 斜置梯形玻璃窗口得到的 图6是当前国内外比较有影响力的几种品牌的激光粒度仪的散射光接收系统的光路图。其中图 (a)称为经典光路,又称正傅里叶变化光路。是激光粒度仪发展的早期就开始采用的光路。其特点是用平行激光束垂直入射到测量窗(池),相同角度的散射光通过傅里叶镜头后被聚焦到探测器的一个点上。其缺点是系统能接收的最大散射角受傅里叶镜头的孔径限制。目前能达到的最大孔径角是45°。如果颗粒分散在水介质中,那么对应的最大散射角是32°。这样的系统能测量的最小粒径约为0.4微米。图6 各种散射光接收系统原理图 图6(b)是一种逆(反)傅里叶变换系统。它用会聚光垂直照射到测量池。在小散射角上也能会聚同角度的散射光。但是大角度的聚焦不良,不过可以在光学模型的数值计算上对此进行补偿,并不影响对散射光分布的测量。它的好处是最大接收角不受透镜孔径限制。空气中的最大接收角可达60°或更大,对应于水介质中的散射角为41°以上。如果前向散射角继续增大,大于49°时,就会受到全反射规律的约束,无法出射到空气中,该以上角度称为“全反射盲区”。盲区内的散射光也就无法被探测器接收。这将丢失0.3微米及以细颗粒的散射光能主峰信息,见图5(b)。这种系统一般还设置后向探测器,能接收大于139°的散射光。对0.1左右的颗粒测量有帮助。 图6(c)是一种是多光束方案,是为突破全反射的限制而专门设计的。它用一束光作为主光束,正入射到测量池,用另外一束或两束光作为辅助光束,斜入射到测量池。如果设置后向探测器,则只需一束辅助光。。通常,为了尽量扩大仪器的测量范围,主光束用红色激光,而辅助光束用蓝色LED光源。假设辅助光的对测量池的入射角为45°,那么在该辅助光的配合下,测量盲区可以减小32°。如果只有主光束时散射角测量上限为41°,那么现在的测量上限可达73°。但是它的缺点是,主光束照明情况下的散射光测量和辅助光照明下的测量(如果两束辅助光,也要分别测量)必须分开进行,两次测量的数据拼接,不是一件容易做好的事情。如果辅助光和主光用不同的波长,还需要同时获取两种波长所对应的折射率。有时要得到一种波长的折射率都有困难,两种更难了。 图6(d)称为偏振光强度差(PIDS)方案(该图取自许人良博士未出版的书稿)。其特征是除了正入射的主光束以及配套的双镜头散射光接收系统外,另外串联了一个测量池,并在照明光行进路径的侧面设置对应不同散射角的探测系统。利用90°散射角周围垂直偏振的散射光与平行偏振的散射光的分布差异,分析亚微米颗粒的大小。存在的问题是: (1)主光束获得的信息与PIDS窗口获得的信息之间如何拼接?(2)PIDS测量利用了多种波长的照明光,要想获得多种波长的折射率是非常困难的。 图6(e)称为“斜置平行窗口”方案或“照明光斜入射”方案。作者最早于2010年提出该方案(专利)。它的优点是用一束照明光就可以突破全反射的限制,却没有多光束方案的数据拼接难题。比如说斜置20,被接收的最大散射角就可以增加到60°。但是要完全消除全反射的影响,必须斜置70°。此时入射光在探测平面上不能良好聚焦,从而影响了大颗粒的测量。这是作者没有在真理光学的产品中采用这种方案的原因,但有其他国产品牌在用这种方案。 图6(f)是真理光学在用的“斜置梯形窗口”光学系统。它只需一束照明光。测量池整体倾斜10°,不影响入射光的聚焦,测量池右侧的玻璃做成梯形,让接近或大于全反射临界角的散射光从梯形的斜面出射。这种方案能让前向最大散射角达到80°,使系统能够接收所有亚微米颗粒的散射光能分布的主峰信息,见图5(c)。这是目前前向散射接收角最大的光学系统,而且还只用了一束照明光,没有数据拼接问题。是一种世界领先的方案。3. 反演算法与粒度测试结果的真实性 反演算法就是把仪器测量得到的被测颗粒的散射光分布,结合事先根据光学模型的数值计算得到的预设的各种粒径颗粒的散射光能分布(组成“散射矩阵”),反向计算出被测颗粒的粒度分布的计算机程序。粒度分布是激光粒度仪输出的最终结果,它能否真实反映被测颗粒的粒度,是激光粒度仪性能的最终体现。3.1 获得真实的粒度测试结果的基本条件 能否获得好的粒度分布数据由以下三点决定: (A)充分的被测颗粒的散射光分布信息,最好含有光能分布的主峰(如果有); (B)利用光学模型计算得到的散射光分布与粒度分布之间存在一一对应关系; (C)合理的算法。 各厂商的算法是技术秘密,外人无从知晓与评价。但是可以确定的是,如果条件(A)和(B)有缺失,一定会影响最终的粒度分布结果。从第2节的叙述我们已经看到,现有的各种散射光的接收方案都不能百分之百获得0到180°的散射光信息,但是有的方案好一些,比如图6(f)的方案;有的则有较大的信息缺口,比如图6(a)和(b)所示的方案。作者在第1节中谈到过,真理光学团队发现的爱里斑的反常变化,将导致在被测颗粒是透明的条件下,对于粒径落在第1反常区内的颗粒,条件(B)不能满足。 相对来说,国产的真理光学做得比较好。对条件(A),前向最大散射角(介质中)的接收能力达到80°,能捕获所有颗粒的光能分布主峰,并且只用一束照明光,避免了不同照明光的数据拼接。对条件(B),基于对爱里斑反常变化的原创发现和规律的深入研究,通过软硬件的结合,基本上解决了爱里斑反常变化对粒度分析的影响。 现在国内外各厂商都宣称自己的仪器能测量小到100纳米以细,大到数千微米,全量程无死角的粒度分布,但是上述条件(A) 和(B)的缺失,从客观上限制了这些仪器的测量能力,使得它们宣称的性能难以实现。3.2 国外某仪器有多种反演计算模式,不同模式会给出不同的粒度分析结果 有些国外仪器有多种反演计算模式。同样的被测样品,选不同的模式就会输出不同的结果。图7 国外某仪器不同反演模式输出不同结果的案例 图7是该仪器的实测案例。图7(a)是标称D50为150纳米的聚苯乙烯微球标样的测量结果。选“通用”模式时,D50为121纳米,与样品标称值相差较远,且分布曲线明显展宽;选”单峰窄分布”模式时,D50为148纳米,与样品标称值相符。图7(b)是标称D50为3微米的标样的测量结果。选“通用”模式时,结果呈现多峰,与样品的单分散特征完全不符;选“单峰窄分布”模式时,与样品形态特征及标称值相符。图7(c) 是一个人工配制的3个峰的SiO2 微球。选“通用”模式时,结果只有1个峰,完全失真;选“多峰窄分布”模式时,曲线呈现2个峰,结果比“通用”模式接近真实,但还是有失真。 从使用经验看,该仪器在测量颗粒标准样品时只能用“单峰窄分布”模式去分析。因为颗粒标准物质就是单峰窄分布的,所以这种做法颇有“量身定做”的意味。如果用 “通用”模式分析标准微球时,则经常出错。人们难免要问:“通用”模式连最容易测量的颗粒标准物质都给不出正确的结果,如何保证一般样品的测量结果是正确的?还有一个疑问是:一种仪器的不同模式给出不同的结果,究竟哪一个是正确的结果? 上述问题如果没有合理的解答,那么从基本的科学逻辑出发,我们就可以得出这样的结论:一种仪器有多种分析模式是仪器性能不完善的表现。国产的真理光学的仪器就完全没有这样的问题。它只有一个统一的反演模式,不论测什么样品,都用同样的算法。图8是上述3个样品用国产真理光学仪器测量的结果:150纳米和3微米标样的D50值和分布形态完全符合预期,实际样品的3个峰也能得到正确的体现。图8 国产真理光学的激光粒度仪对三个样品的测量结果3.3 国内外仪器对爱里斑反常现象的处理 爱里斑的反常变化会导致一种散射光能分布对应多种粒度分布的可能性,从而使粒度仪得不到正确的粒度分布结果。图7(b)所示的3微米标样在某国外仪器“通用”模式下给出的完全失真的结果,就是因为3微米标样的构成材料是聚苯乙烯微球,这个粒径正好处在这种材料颗粒的第1个反常区。该国外仪器没能解决这个问题,所以在“通用”模式下得不到正确结果,而只能选用“单峰窄分布”这种量身定做的模式进行“特殊处理”。如果是普通的待测样品,由于事先无法知道被测颗粒的粒度分布特征,不知如何去“特殊”,就难以给出正确的结果。 目前除了真理光学以外,国内外的激光粒度仪厂家的通行做法是,在计算散射矩阵(光学模型)时,即使被测颗粒是透明的,也要人为加一个吸收系数,最常见的数值是0.1。这样在光学模型中就不会出现反常现象,从而使反演结果稳定,或者看上去比较正常。问题在于实际颗粒是无吸收的,人为加吸收必然使测量结果失真。 图9是一个碳酸钙样品的粒度测量结果。该样品经过沉降法的分离,去除了2微米以细的颗粒(可通过显微镜验证)。碳酸钙的折射率是1.69,无吸收。图9(a)是真理光学仪器的测量结果,2微米以细的颗粒含量几乎为零,与预期的一致。图9(b)是在光学模型中加了0.1的吸收系数后的反演结果:在2微米后拖了一个长长的尾巴。我们知道真实的粒度分布中,这个尾巴是不存在的,这是人为加吸收系数所引起的错误结果。有些国外仪器为了避免假尾巴的出现,人为地在1到3微米之间减去一定比例的颗粒含量。这种人为主观的处理会引起新的不良后果:如果在该粒径区域真实存在颗粒,也会被人为减少其含量甚至清零。图8(c)所示的SiO2样品在1微米到3微米之间有一个小峰,但是用该进口仪器测量的结果如图7(c)所示:无论用什么模式分析,这个真实存在的小峰都消失了。图9 在光学模型中给透明颗粒加吸收系数的后果(a)实际的粒度分布 (b)光学模型中加0.1吸收系数后得到的结果 可见,当透明颗粒的粒度分布处在反常区时,通过人为加吸收系数的方法无论怎么做,都有问题。目前国产的真理光学是世界上唯一解决了爱里斑反常变化困扰的厂家。3.4 国内外激光粒度仪对亚微米颗粒的测量能力的比较 采用图6(b)所示的散射光接收系统的仪器是国外品牌,在中国占有很可观的市场份额。然而这种结构由于丢失了0.3微米以细颗粒的光能分布主峰的信息(见图5(b)),从而注定了难以很好地测量0.3微米以细的实际样品(有别于标样,因此通常都用“通用”模式)。图10 某进口仪器和国产真理光学仪器测量纳米硅碳颗粒样品结果的比较 图10是某进口仪器和国产真理光学仪器测量纳米硅碳颗粒样品结果的比较。图10(a)是国外仪器的结果,图10(b)是真理光学的测量结果。两张图中的上图是粒度分布,下图是拟合光能分布与实测光能分布的对比。比较两种结果,可判断真理光学的结果更加真实、可靠。理由是: (A)真理光学的结果拟合残差只有0.43%,而进口仪器的拟合残差高达5.25%。前者拟合更好。 (B)真理光学给出的粒度分布曲线是单峰的,而进口仪器的结果是多峰的。经验告诉我们,正常制造出来的样品极少出现多峰的情况. (C)从光能拟合曲线看,进口仪器在第40单元后测量值(绿线)和拟合值(红线)之间出现较大的偏离,而国产仪器的两条曲线非常一致。 类似的0.3微米以细颗粒的测量案例还有很多。 4. 激光粒度仪行业的未来发展问题 前面三节从激光粒度仪的光学模型、散射光接收系统和反演算法及实际测量能力等三项硬核技术方面对比了国内外激光粒度仪的技术水平和测试性能,表明国产激光粒度仪不会逊色于国外同类产品。真理光学团队发现的爱里斑反常变化现象及规律、独创的斜置梯形窗口克服前向超大角测量盲区以及统一的反演算法等技术,则领先于世界同行。但是,对于激光粒度仪整个行业来说,还存在需要改进甚至急需改进的地方。我的建议如下:(1)国内外的厂家都应正视粒度测量数据对比困难的问题 目前,全球范围内激光粒度仪测量实际样品时给出的数据经常是不可比的。对同一颗粒样品,不同品牌的仪器的测量结果不可比;同一厂家生产的仪器,不同型号之间的结果不可比;更绝的是同一台仪器不同反演模式给出的结果也不可比。到目前为止,对这三个“不可比”,都没有人拿出令人信服的、符合科学的解释。 作者尝试分析一下原因。从理论上说,大家测量相同的样品,使用相同原理的仪器,应该得到相同的结果(在合理的误差范围内)。两个结果如有不同,那么至少有一个结果是错的,甚至两个结果都是错的。这就说明当前国内外的各种激光粒度仪还存在不完善的地方。这些不完善包括:(A)光散射模型上,有的仪器还在使用夫朗和费衍射理论;(B)光的全反射现象的制约,或者大角与小角散射光数据拼接的困难,导致有的仪器没有获得或者没有准确获得大角散光的信息,影响了0.3微米以细颗粒测量的准确性;(C)爱里斑的反常变化引起粒径与散射光分布之间一一对应关系的破坏,除了真理光学,其他品牌都采用人为地在光学模型中给颗粒添加吸收系数的方法来敷衍性地解决,但是没有真正解决,导致结果失真;(D)一种仪器有多种反演算法,从逻辑上就可断定这样的算法是不完善的,而根据作者分析,这个不完善又和不完善点(B)和(C)有关。(E)仪器厂商为了迎合客户的偏好,对原始的粒度分析结果进行了失实的修饰,比如把多峰分布改为单峰分布,把粒度分布中粗、细方向的展宽改窄等等。 仪器技术上的不完善,需要国内外厂家去正视问题,然后改正原先的不足。(2)国内用户应破除对进口仪器的迷信心理 国内很多用户都认为进口仪器就是比国产仪器好。国内用户要是遇到进口仪器的测量结果与国产仪器数据不一致的情况,第一反应就是国产仪器错了。我在前面分析过,进口仪器不比国产仪器好,请用户客观判断。 另一方面,国内有的仪器厂家也拿自己的仪器结果能和国外的结果相一致,来证明自己的高水平。这是自我矮化行为,当然也表明该厂家对自己制造的仪器没有信心。但是国内厂家的这种行为会助长用户原本就有的认为国产仪器水平低的心理。(3)激光粒度仪测量数据的正确运用问题 激光粒度测试报告的核心内容是体积粒度分布。形式上可以是表格或者曲线。有时为了简洁起见,用特征粒径来表示粒度分布。最常见的是D10、D50和D90三个数。其中D50表示样品颗粒的平均粒径(与之并行的也可用D[4,3])),而D10和D90分别表示粒度分布往小粒径和大粒径方向延伸的宽度。在大多数情况下,一个粉体样品的平均粒径和分布宽度(或者均匀性)确定了,其粒度特征也就基本确定了。激光粒度仪国家标准(GB/T 19077-2016/ISO 13320:2009)中明确规定,不允许用D100的数值。这是因为从概率论分析,D100的数值是不稳定的,另外D100实际上并不代表颗粒样品中的最大粒直径。如果把这个值作为最大粒,可能会引发严重的应用后果。 然而在有些激光粒度仪的应用行业,例如电池的正负极材料行业,其国家标准中就把激光粒度仪的Dmax(即D100)作为控制指标。该行业内上下游间的粒度控制指标中,不仅包含了D100,还包还可了D0和Dn10,这些都是误导性的应用。(4) 激光粒度仪的测量下限和上限被严重夸大的问题 目前激光粒度仪的测量范围动辄下限10纳米,上限5000微米以上。这显然被严重夸大了。这会误导客户,扰乱市场。需要行业自律。国家相关组织也要加强督导的力度。
  • LAUDA光学接触角测量仪入驻安徽工程大学实验室
    近日,LAUDA Scientific OSA60 光学接触角测量仪入驻安徽工程大学生物与化学工程学院唐海教授课题组。唐海教授主要从事亲水膜的研究,亲水膜因其耐污染等性能,成为当前分离膜研究的热点之一。OSA60光学接触角测量仪能够准确测量亲水膜的接触角并计算表面自由能,为亲水膜的研究增添了一大助力。 OSA60光学接触角测量仪是德国Lauda Scientific品牌中功能较全,性价比较高的仪器,它可以准确可靠测量接触角、表面自由能、和表界面张力等常见的测量,其主要测量性能如下: 测量静态接触角 测量动态接触角 测量液体的表面/界面张力 分析液体表面张力及其组成 在线测量表面/界面张力 计算固体的表面自由能及其组成 计算及分析粘附功 记录吸收材料的吸收过程 OSA60光学接触角测量仪结构简单,占用空间小,性价比高,适用于高校和科研院所中与材料和界面化学相关的实验室,以及石油、化工、日化、电子等工业企业的质量控制部门和政府部门所属的官方质检单位。
  • 哈希:污水检测技术已比较成熟,未来比拼的是企业的从业经验积累
    p    span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(79, 129, 189) " 中国面临严重的水污染问题,污水废水治理也一直是水环境治理最重要的组成部分。近几年在政策支持下,污水处理行业发展态势较好,污水处理能力持续增强。污水废水包括医疗污水、工业废水、生活废水等。从污水处理基础设施建设情况来看,污水处理厂数量和城市排水管道长度都在逐年递增。而随着新冠肺炎疫情的爆发,由于新冠病毒存在通过粪便和污水传播的可能,所以对污水废水处理提出了更高的要求。而对污水废水水质的监测检测则成为污水废水处理的基础和保障。为了帮助相关用户学习、了解污水废水水质监测最新技术及相关仪器在其中发挥的作用等内容,仪器信息网特别策划了“污水废水水质监测”专题并邀请哈希市场行业主管余得昭谈谈他对中国污水废水水质监测现状的看法。 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/ba03c3a1-5b2b-4915-9271-b8f12e80848a.jpg" title=" 哈希 余得昭450psi.jpg" alt=" 哈希 余得昭450psi.jpg" / /p p style=" text-align: center " span style=" font-family: arial, helvetica, sans-serif " strong 哈希市场行业主管 余得昭 /strong /span /p p    strong span style=" color: rgb(192, 0, 0) " 仪器信息网:余经理,您好。据您了解,我国污水废水排放和治理现状呈现怎样的特点?对于我国污水废水监测检测行业发展您认为有哪些需要改进和完善的地方? /span /strong /p p    strong span style=" color: rgb(31, 73, 125) " 余得昭: /span /strong 2018年,全国污水处理厂同比增长了14.6%,增速明显提高。全国城市排水管道增加至68.3万公里,同比增速为8.4%,按照2009-2018年年均7.9%的复合增长率,2019年排水管道长度将突破70万公里。污水处理行业在政府政策的支持下近几年发展态势较好,污水处理能力持续增强。国家统计局数据显示,2018年我国城市污水日处理能力已达1.81亿立方米,同比增长6.5%。 /p p   “规模增长”向“提质增效”的主题转变,是我国污水处理行业的发展重点和政策方向。污水处理法律法规及行业标准逐步完善,这促进了污水处理生产供应能力全面提升和污水处理技术的不断升级:《城镇污水处理厂污染物排放标准》的实施促进了城镇污水处理设施新一轮的提标改造,推动了污水脱氮除磷技术进一步提升。《城镇污水处理提质增效三年行动方案(2019—2021年)》的发布更是推动了污水处理厂技术升级改造以及排水管网的建设。污水处理提质增效工作的核心在管网。我国目前的水环境问题多集中在管网排水系统。排水管网体系建设不健全带来的核心问题是污水处理厂的进水浓度偏低带来的污染物削减效益不佳。如何进一步做好排水管网的水量、水质监测以及预警,是未来的发展趋势之一。 /p p   系统化、一体化进行污水处理的需求日益提升,尤其是针对农村分散型污水的收集与处理。厂网一体化、建设与运维的结合已成为发展的趋势。 /p p   当前我国污水处理行业主要是以BOT(建设-经营-移交:政府和私人机构之间达成协议,由政府向私人机构颁布特许,允许其在一定时期内筹集资金建设某一基础设施并管理和经营该设施及其相应的产品与服务)/TOT(移交-经营-移交:政府或国有企业将项目一定期限的产权或经营权有偿转让给投资人,由其进行运营管理 投资人在约定的期限内通过经营收回全部投资并得到回报,合约期满后,投资人再将项目交还政府部门或原企业)、特许经营模式引入社会性资本,从传统的经营模式转向民营化发展道路,民营化程度还不够。我认为污水处理行业的发展需要社会资本更多的参与,积极深化污水处理行业市场化改革,引入多方面的资本是未来的投资方向之一。PPP、EPC、EPC+O等多种投资、建设、运维模式的组合,也将促使水务资产市场化节奏加快。 /p p    span style=" color: rgb(192, 0, 0) " strong 仪器信息网:目前,污水废水水质监测的技术现状怎么样,相关水质监测的难点在哪?除了常规参数检测,您觉得污水废水水质监测中还有哪些项目值得关注? /strong /span /p p    strong span style=" color: rgb(31, 73, 125) " 余得昭: /span /strong 从污水监测相关的技术角度而言,当前常规水质参数监测技术已较为成熟,无论国外、国内技术均已达到较高的水平。区别在于仪器从业经验的累积,这体现在仪器的长期稳定运行、方案完整性、细节处理以及操作便利性等方面。目前,水质监测的难点在于:①仪器适应能力差,对安装环境要求较高,尤其是湿化学法仪器,在如管网或进厂水泥沙等杂物含量高的区域需要较好的预处理过程才能保证仪器的正常运行。同时由于试剂的保存需要一定温度,所以对于安装点位及环境也有一定的要求 ②湿化学法仪器的维护频率高,定期的管路排修检查、试剂更换、比色皿清洗等维护工作需要投入大量人力物力,某种程度影响了仪器的可靠性 ③而电极法仪表的稳定性和准确性还需要进一步提高。 /p p   除了常规水质参数检测,排放口TOC的在线监测、排放水质的综合毒性以及大肠杆菌也是值得关注的指标。 /p p    strong span style=" color: rgb(192, 0, 0) " 仪器信息网:请介绍贵公司在污水废水水质监测方面有哪些仪器产品或产品组合?相比于同类产品,贵公司产品有哪些优势? /span /strong /p p    strong span style=" color: rgb(31, 73, 125) " 余得昭: /span /strong 哈希的NA8000氨氮在线分析仪拥有双光程双波长比色计专利设计,保证准确度的同时扩展了测量覆盖范围。并且运用了哈希专利的Prognosys技术,提供预防性维护提醒,降低停机风险。仪器使用的新试剂无需冰箱保存,并且配方公开,可以降低用户后期的运维成本。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C317044.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/57872de4-141f-4466-9b7b-cfc38c908bdc.jpg" title=" 哈希Amtax NA8000 360psi.jpg" alt=" 哈希Amtax NA8000 360psi.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C317044.htm" target=" _blank" strong 哈希 NA8000氨氮在线分析仪 /strong /a /p p   Phosphax LR在线磷酸盐分析仪采用了新的钼黄比色法,反应试剂采用分开添加的方式,并且搭载了新的光度计,使其光程为Phosphax sc的两倍。这些可实现低浓度范围内测量的高准确性,并同时降低化学除磷药剂的使用成本。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C391622.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/00bf9e43-ce8d-4fd4-a202-ec74d232917a.jpg" title=" 哈希Phosphax LR在线磷酸盐分析仪300x300.jpg" alt=" 哈希Phosphax LR在线磷酸盐分析仪300x300.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C391622.htm" target=" _blank" strong 哈希Phosphax LR在线磷酸盐分析仪 /strong /a /p p   Solitax污泥浓度计采用双光束红外散射原理测量水体的浊度或悬浮物浓度,可补偿光源和检测器参数变化以及水体色度的影响。探头式测量方式使安装方式灵活多样,也让用户可根据自身情况选择沉入式安装、管道插入式安装或流通式安装方式。并且仪器自带清洗刮刷,能定期自动清洗光学窗口,减少人工维护量。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C256909.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/ea0581ad-aced-4d5b-8db5-438ff657584d.jpg" title=" 哈希Solitax污泥浓度计300x300.jpg" alt=" 哈希Solitax污泥浓度计300x300.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C256909.htm" target=" _blank" strong 哈希 Solitax污泥浓度计 /strong /a /p p   NPW160H在线总磷总氮分析仪采用一体化、小型化设计,简化了管线连接。仪器符合国家要求的120℃、30 min标准加热分解法。可同时对总磷、总氮两项指标进行测量,并且总氮测量的同时具备浊度补偿功能。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C391625.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/bbaeb789-0dd6-4cbf-8f9f-4bb4fe13a701.jpg" title=" 哈希NPW160H总氮总磷分析仪 300x300.jpg" alt=" 哈希NPW160H总氮总磷分析仪 300x300.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C391625.htm" target=" _blank" strong 哈希 NPW160H在线总磷总氮分析仪 /strong /a /p p    span style=" color: rgb(192, 0, 0) " strong 仪器信息网:哈希在污水废水水质监测方面可以提供哪些解决方案? /strong /span /p p    strong span style=" color: rgb(31, 73, 125) " 余得昭: /span /strong 哈希目前可以提供从进厂水到污水排放的全过程水处理监测解决方案:如进厂水COD、SS、氨氮总磷总氮、流量等在线监测方案 初沉池及二沉池监测污泥界面及污泥浓度在线监测 厌氧及缺氧池监测pH、ORP及硝氮等 好氧池pH、溶解氧、污泥浓度及氨氮在线监测 污泥脱水中污泥浓度在线监测、深度处理应用方案以及化验室监测解决方案等。尤其是哈希的污水排放口监测方案,包括符合2019年HJ-35X系列的自动采样、留样系统,COD、氨氮、总氮、总磷、pH、SS、流量计消毒剂余量的在线监测等。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制