当前位置: 仪器信息网 > 行业主题 > >

竖向膨胀率测定仪操作规程

仪器信息网竖向膨胀率测定仪操作规程专题为您提供2024年最新竖向膨胀率测定仪操作规程价格报价、厂家品牌的相关信息, 包括竖向膨胀率测定仪操作规程参数、型号等,不管是国产,还是进口品牌的竖向膨胀率测定仪操作规程您都可以在这里找到。 除此之外,仪器信息网还免费为您整合竖向膨胀率测定仪操作规程相关的耗材配件、试剂标物,还有竖向膨胀率测定仪操作规程相关的最新资讯、资料,以及竖向膨胀率测定仪操作规程相关的解决方案。

竖向膨胀率测定仪操作规程相关的论坛

  • 人造板吸水厚度膨胀率测试标准方法释疑?

    根据国家标准化管理委员会于2009年8月31日批准,自2009年8月31日起实施关于GB/T15102-2006《浸渍胶膜饰面人造板》国家标准中吸水厚度膨胀率技术指标修改最后一段里面提到“将原文中为“吸水厚度膨胀率测定按GB/T 17657-1999中4.5规定的方法进行,浸泡时间为24小时。” 修改为“按GB17657-1999中4.5的规定进行,干燥状态下使用的普通饰面刨花板和在干燥状态下使用的家具及室内装修用饰面刨花板浸泡时间为2h,其余浸渍胶膜纸饰面人造板浸泡时间均为24h。” 各位大侠对其中的一句话“干燥状态下使用的普通饰面刨花板和在干燥状态下使用的家具及室内装修用饰面刨花板浸泡时间为2h,其余浸渍胶膜纸饰面人造板浸泡时间均为24h。”是怎么理解的呢? 本人的理解是:干燥状态下使用的普通饰面刨花板;干燥状态下使用的家具上使用的刨花板;室内装修用饰面刨花板;这三类刨花板的浸泡时间为2h,其余的浸渍胶膜纸饰面人造板浸泡时间均为24h。 但是最近有个供应商跟我说他向北京国家人造板中心了解过,他们那边的理解是:干燥状态下使用的普通饰面刨花板;在干燥状态下使用的家具(不管此家具上的板材为什么板材,包括中纤板等等);室内装修用饰面刨花板,这三类板材的浸泡时间均为2h。 现在的分歧就是这个修改的浸泡时间为2h所针对的对象到底是只是这几种刨花板呢?还是针对的是这几种使用条件下的人造板。这个让我很是纠结,毕竟说这个话的还是人造板检测中心的一个有点身份的人物(报告上都能看得到他的签名)所以就不知道大家是怎么去理解这句话的,具体是怎么做的。

  • IRO-1氧测定仪操作规程

    纳克公司的IRO-1型氧测定仪操作规程[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=24635]IRO-1氧测定仪操作规程[/url]

  • 求组:哪个单位的线膨胀系数测定仪质量可靠?

    实验室要按照《GB/T 1036-2008 塑料 -30℃~30℃线膨胀系数的测定 石英膨胀计法》检测玻璃钢产品-30~50℃的膨胀系数,本人菜鸟,请高手指导哪家的仪器比较可靠?仪器选型和测试中有没有特别注意的问题。

  • 【原创】ZDJ-3S卡氏微量水份测定仪操作规程

    ****药业有限公司操 作 文 件文 件名 称ZDJ-3S卡氏微量水分测定仪操作规程文件编码SOP-EM-092-1.0第1页共2页起草部门起草人审核人批准人执行日期起草日期审核日期批准日期颁发部门质监部分发部门总经理、副总经理、质监部、质检中心1、目的:建立ZDJ-3S卡氏微量水分测定仪使用操作规程的使用操作规程,使检验人员正确操作。1、适用范围:适用于质检中心ZDJ-3S卡氏微量水分测定仪的使用和维护。3、责任者:操作人员对本规程实施负责。 4、规程:4.1 ZDJ-3S卡氏微量水分测定仪的使用4.1.1打开电源开关后,开机显示欢迎界面,在输入实验员名称后进入等机状态,如不输入,按“退出”键。4.1.2清洗滴定管4.1.2.1全程清洗,用于整个滴定管的清洗10ml,选择清洗次数“确认”、“启动”即可。清洗次数取值范围0-9次。当取0时,此项被关闭4.1.2.2分段清洗,用于排除滴定头前气泡时使用。取值范围0.1-10ml。使用此项必须关闭全程清洗。输入清洗数值后按“启动”键开始清洗。4.1.3按下进液键(左排右进)往滴定池中加入20ml左右的甲醇。4.1.4滴定参数已设定,此步跳过。4.1.5做空白,4.1.5.1按“预滴定”键 ,按“启动”键 ,开始预滴定。4.1.5.2当显示“****”时,滴定器处于平衡状态,显示当前的漂移值。当显示数值至10μl/min时,才可进入下一步实验。4.1.6漂移(消除系统误差):按“漂移”键,再按“启动”键,测量结束时,机器报警,按 “确认”键保存结果,按任意键返回平衡状态。4.1.7标定4.1.7.1按“标定”键,按“确认”用“↑”“↓”键选择去离子水,按“确认”键,选择单位1:μl和纯水的量,然后按输入的要求,快速注入水,按“启动” 键,滴定结束,按“确认”(打印)。*****药业有限公司操 作 文 件文件名ZDJ-3S卡氏微量水份测定仪操作规程文件编码SOP-EM-092-1.0第2页共2页修订日期批准人执行日期4.1.8样品滴定4.1.8.1按“样品”键,输入样品批号后按“确认”键,输入样品单位编码(1为%)后按“确认”键,输入样品重量后按“确认”键,输入样品名称时,按“选择”键后,屏幕左下角显示“区位码”查询《汉字区位码表》用数字键输入样品名称,用“退格”键删除样品名称。如不输入样品名称,直接按确认键跳过。输入实验员名称方法同样品名称输入。按“启动”键开始滴定。4.1.8.2滴定进行中显示滴定液消耗量、滴定时间,滴定结束后显示结果。按“确认”键(打印)。4.1.9统计4.1.9.1按“统计”键,选取已有滴定结果重新进行统计计算。按“统计”键后,按“启动”确认后用“↑”“↓”键调阅结果,用“╭”键标记选定的结果,显示“*”号,按“确认”键结束。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=42029]ZDJ-3S卡氏微量水分测定仪操作规程[/url]

  • 【讨论】膨胀度测定仪

    请问大家知道有没有关于测膨胀度的仪器?中国药典附录里面有测膨胀度的一项,但不知那个仪器是怎样的。哪里有得卖?[em0715]

  • 热膨胀仪(干涉计法)

    关于有关顶杆热膨胀仪的几个问题作者美国安特公司的王恒博士1.如果想达到更高的准确度,应该用非接触干涉膨胀仪。干涉膨胀仪的优点是,光学非接触、绝对测量、测量准确度高。但造价昂贵、仪器结构及操作都很复杂、温度不容易超过1000℃,对样品形状及表面要求苛刻,不适用于材料的烧结过程的研究。一般,为建立一级热膨胀标准的权威机构采用非接触干涉膨胀仪为主要手段。请注意一下,干涉计本身的测长很准,但组装在膨胀仪上后,因为与样品有关的热系统的关系,对于样品的随温度变化的真正伸长量的测量准确度会随温度升高而下降。比如在日本计量所作的双路差频干涉计和在美国西海岸的Precision Mesurement and Instrument Corp作的迈可耳逊干涉计,其本身的位移变化量可测到1nm到3nm左右,但用在热膨胀测量应用上,因热系统的各部份的热变形等原因,“零点漂移”在几百度时就达到了30至50nm,属于随机误差,不能修正的。请见国际热物理杂志Internation1 J. Thermophys. Vo1 23, No.2,2002年3月的文章“Development of a Laser Interferometric Dilatometer for Measurment of Thermal Expansion of Solid in Temperature range 300 to 1300K”d在的549页关于干涉仪的零漂的3.2节中的图4中,在300 to 1300K的温度范围内的零漂达到了50nm。这是不能修正的,必须考虑在误差分析内。因此,对于干涉法热膨胀仪来讲,伸长量的测量准确度受系统的热稳定性影响而不能达到干涉计本身的测长准确度的。商品化的干涉膨胀仪的最高温度是700℃。2.作为最传统的热膨胀仪的测量手段的顶杆法热膨胀仪的优点是,使用容易、结构简单适用各种形状的样品等。缺点是,属于接触、相对测量方法,需要用标准样品对系统定标,测长准确度低,但可达到很高温度,适用于材料的烧结过程的研究。顶杆法热膨胀仪结构特点是,用比样品长几倍的顶杆与试样接触,把试样的长度变化传递给加热炉外的与其接触的位移传感器。这样,在顶杆上存在从高温(试样)到室温(位移传感器)的温度变化,整体的热稳定性或者说“热环境”与干涉膨胀仪的情况比,就“差”了更多,温度超高越严重,这是自然引起而不可避免的。这是不能用标准样品的定标来完全消除的。这将导致位移传感器读数的波动,在有些情况下,甚至导致测量结果的突变。在文章“Examination of Thermal Expansion Uniformity of Glassy Carbon as a Candidate Standard Reference Material For Thermal Expansion Measurements”中的第94页第一段,指出对于玻璃碳材料的测量,第一次的测量结果不可靠而必须取消,在高温段和低温段的数据也要取消。即使顶杆法热膨胀仪的位移传感器本身测量准确度能达到了0.1微米以下,对试样的热膨胀量引起的真正伸长量测量准确度也很难说达到0.1微米。日本计量所曾把一个双路差频干涉计组装到一台顶杆法热膨胀仪的位移测量的头部作过实验,表明了这一点。当时的课题是考核顶杆法热膨胀仪的特性。就好比是用微伏电压表接一般的热电偶测温,尽管电压表可以读到微伏,但在毫伏读数以下对测温已没有任何意义了。3.LVDV本身的测量位移量的准确度达不到nm量级(1)目前最好螺旋测微仪的准确度是±1微米。Nech用于标定LVDT的是螺旋测微仪,所有的被定标的仪器的测量准确度不可能超过用于定标的仪器的测量准确度,所以即使用最好的螺旋测微仪定标,其热膨胀仪的LVDT也不可能得到优于1微米的准确度。离开准确度,来谈灵敏度是没有实际意义的。在日本计量所考核Netzsch的DIL402时,为了修正LVDT的读数,正是基于这个道理,用双路差频干涉计而不用螺旋测微仪。(2)LVDT的线性度用双路差频干涉计对Netzsch 的DIL402的LVDT的考察的结果表明,当位移量为105.23微米时,LVDV的读数与干涉计的读数的偏差达到0.69微米。因此,线性度实际上为0.66%之大,已排出了热效应的影响。而在NETZSCH的所有产品中,并没有对线性度进行修正的。这也说明了所谓nm量级读数的不正确性,是没有意义的。(3)在TN105中提到的其它因素,如对电压、温度、处理电路等极其敏感,易引起漂移,等等,其nm量级的读数在噪声之中。需要经常进行定标等。4.采用数字位移传感器在顶杆热膨胀仪上,比LVDV有很多的优点,请见TN105数字位移传感器的0.5微米的测长分辨率(也可以说准确度),对于顶杆热膨胀仪来讲,具有实际的意义,完全满足顶杆热膨胀仪的各种应用场合。5.对于低膨胀(如10-7/K)量级的材料在有限的温度范围内(如几十度)内的热膨胀的高精度的测量,顶杆热膨胀仪不适用,应采用非接触绝对的干涉热膨胀仪,并用阶梯等温的加热方式。我们接到过超低膨胀(如10-7/K)的材料在有限的温度范围内的高精度的测量的课题,比如说,一组10-7/K的量级的玻璃,要求分辨出不同成份、工艺下对热膨胀的影响。曾用Netzsch的DIL402和双路差频干涉膨胀仪进行了研究,同时也对DIL402的测量误差进行分析。结果表明,干涉膨胀仪能在10℃的温度间隔内,分辨到1.5X10-8/K,这里的分辨指的是在可能 的最大测量误差范围(或者说是极限误差,3σ程度)外。如果最大测量误差大于1.5X10-8/K,就不能说分辨到1.5X10-8/K。而DIL402的结果(加热范围为300℃,已得到足够的膨胀量),对于所有的材料都没有给出意义的分辨,因所测的各种材料的热膨胀率都在其测量误差范围内,即在12X10-8/K(最大误差,3σ)的误差带内。作为这一课题的附带结果再次表明,Netzsch关于达到1.25nm/digit的测长sensitivity的声称是没有实际意义的。如果有意义的话,已达到了干涉热膨胀仪的测长精度,而为什么实际的测量误差却是干涉热膨胀仪的测量误差的10倍?!有任何问题,欢迎随时交流。

  • 热膨胀仪(干涉计法)

    关于有关顶杆热膨胀仪的几个问题作者美国安特公司的王恒博士1.如果想达到更高的准确度,应该用非接触干涉膨胀仪。干涉膨胀仪的优点是,光学非接触、绝对测量、测量准确度高。但造价昂贵、仪器结构及操作都很复杂、温度不容易超过1000℃,对样品形状及表面要求苛刻,不适用于材料的烧结过程的研究。一般,为建立一级热膨胀标准的权威机构采用非接触干涉膨胀仪为主要手段。请注意一下,干涉计本身的测长很准,但组装在膨胀仪上后,因为与样品有关的热系统的关系,对于样品的随温度变化的真正伸长量的测量准确度会随温度升高而下降。比如在日本计量所作的双路差频干涉计和在美国西海岸的Precision Mesurement and Instrument Corp作的迈可耳逊干涉计,其本身的位移变化量可测到1nm到3nm左右,但用在热膨胀测量应用上,因热系统的各部份的热变形等原因,“零点漂移”在几百度时就达到了30至50nm,属于随机误差,不能修正的。请见国际热物理杂志Internation1 J. Thermophys. Vo1 23, No.2,2002年3月的文章“Development of a Laser Interferometric Dilatometer for Measurment of Thermal Expansion of Solid in Temperature range 300 to 1300K”d在的549页关于干涉仪的零漂的3.2节中的图4中,在300 to 1300K的温度范围内的零漂达到了50nm。这是不能修正的,必须考虑在误差分析内。因此,对于干涉法热膨胀仪来讲,伸长量的测量准确度受系统的热稳定性影响而不能达到干涉计本身的测长准确度的。商品化的干涉膨胀仪的最高温度是700℃。2.作为最传统的热膨胀仪的测量手段的顶杆法热膨胀仪的优点是,使用容易、结构简单适用各种形状的样品等。缺点是,属于接触、相对测量方法,需要用标准样品对系统定标,测长准确度低,但可达到很高温度,适用于材料的烧结过程的研究。顶杆法热膨胀仪结构特点是,用比样品长几倍的顶杆与试样接触,把试样的长度变化传递给加热炉外的与其接触的位移传感器。这样,在顶杆上存在从高温(试样)到室温(位移传感器)的温度变化,整体的热稳定性或者说“热环境”与干涉膨胀仪的情况比,就“差”了更多,温度超高越严重,这是自然引起而不可避免的。这是不能用标准样品的定标来完全消除的。这将导致位移传感器读数的波动,在有些情况下,甚至导致测量结果的突变。在文章“Examination of Thermal Expansion Uniformity of Glassy Carbon as a Candidate Standard Reference Material For Thermal Expansion Measurements”中的第94页第一段,指出对于玻璃碳材料的测量,第一次的测量结果不可靠而必须取消,在高温段和低温段的数据也要取消。即使顶杆法热膨胀仪的位移传感器本身测量准确度能达到了0.1微米以下,对试样的热膨胀量引起的真正伸长量测量准确度也很难说达到0.1微米。日本计量所曾把一个双路差频干涉计组装到一台顶杆法热膨胀仪的位移测量的头部作过实验,表明了这一点。当时的课题是考核顶杆法热膨胀仪的特性。就好比是用微伏电压表接一般的热电偶测温,尽管电压表可以读到微伏,但在毫伏读数以下对测温已没有任何意义了。3.LVDV本身的测量位移量的准确度达不到nm量级(1)目前最好螺旋测微仪的准确度是±1微米。Netzsch用于标定LVDT的是螺旋测微仪,所有的被定标的仪器的测量准确度不可能超过用于定标的仪器的测量准确度,所以即使用最好的螺旋测微仪定标,其热膨胀仪的LVDT也不可能得到优于1微米的准确度。离开准确度,来谈灵敏度是没有实际意义的。在日本计量所考核Netzsch的DIL402时,为了修正LVDT的读数,正是基于这个道理,用双路差频干涉计而不用螺旋测微仪。(2)LVDT的线性度用双路差频干涉计对Netzsch 的DIL402的LVDT的考察的结果表明,当位移量为105.23微米时,LVDV的读数与干涉计的读数的偏差达到0.69微米。因此,线性度实际上为0.66%之大,已排出了热效应的影响。而在NETZSCH的所有产品中,并没有对线性度进行修正的。这也说明了所谓nm量级读数的不正确性,是没有意义的。(3)在TN105中提到的其它因素,如对电压、温度、处理电路等极其敏感,易引起漂移,等等,其nm量级的读数在噪声之中。需要经常进行定标等。4.采用数字位移传感器在顶杆热膨胀仪上,比LVDV有很多的优点,请见TN105数字位移传感器的0.5微米的测长分辨率(也可以说准确度),对于顶杆热膨胀仪来讲,具有实际的意义,完全满足顶杆热膨胀仪的各种应用场合。5.对于低膨胀(如10-7/K)量级的材料在有限的温度范围内(如几十度)内的热膨胀的高精度的测量,顶杆热膨胀仪不适用,应采用非接触绝对的干涉热膨胀仪,并用阶梯等温的加热方式。我们接到过超低膨胀(如10-7/K)的材料在有限的温度范围内的高精度的测量的课题,比如说,一组10-7/K的量级的玻璃,要求分辨出不同成份、工艺下对热膨胀的影响。曾用Netzsch的DIL402和双路差频干涉膨胀仪进行了研究,同时也对DIL402的测量误差进行分析。结果表明,干涉膨胀仪能在10℃的温度间隔内,分辨到1.5X10-8/K,这里的分辨指的是在可能 的最大测量误差范围(或者说是极限误差,3σ程度)外。如果最大测量误差大于1.5X10-8/K,就不能说分辨到1.5X10-8/K。而DIL402的结果(加热范围为300℃,已得到足够的膨胀量),对于所有的材料都没有给出意义的分辨,因所测的各种材料的热膨胀率都在其测量误差范围内,即在12X10-8/K(最大误差,3σ)的误差带内。作为这一课题的附带结果再次表明,Netzsch关于达到1.25nm/digit的测长sensitivity的声称是没有实际意义的。如果有意义的话,已达到了干涉热膨胀仪的测长精度,而为什么实际的测量误差却是干涉热膨胀仪的测量误差的10倍?!有任何问题,欢迎随时交流。

  • 热膨胀仪(干涉计法)

    关于有关顶杆热膨胀仪的几个问题作者美国安特公司的王恒博士1.如果想达到更高的准确度,应该用非接触干涉膨胀仪。干涉膨胀仪的优点是,光学非接触、绝对测量、测量准确度高。但造价昂贵、仪器结构及操作都很复杂、温度不容易超过1000℃,对样品形状及表面要求苛刻,不适用于材料的烧结过程的研究。一般,为建立一级热膨胀标准的权威机构采用非接触干涉膨胀仪为主要手段。请注意一下,干涉计本身的测长很准,但组装在膨胀仪上后,因为与样品有关的热系统的关系,对于样品的随温度变化的真正伸长量的测量准确度会随温度升高而下降。比如在日本计量所作的双路差频干涉计和在美国西海岸的Precision Mesurement and Instrument Corp作的迈可耳逊干涉计,其本身的位移变化量可测到1nm到3nm左右,但用在热膨胀测量应用上,因热系统的各部份的热变形等原因,“零点漂移”在几百度时就达到了30至50nm,属于随机误差,不能修正的。请见国际热物理杂志Internation1 J. Thermophys. Vo1 23, No.2,2002年3月的文章“Development of a Laser Interferometric Dilatometer for Measurment of Thermal Expansion of Solid in Temperature range 300 to 1300K”d在的549页关于干涉仪的零漂的3.2节中的图4中,在300 to 1300K的温度范围内的零漂达到了50nm。这是不能修正的,必须考虑在误差分析内。因此,对于干涉法热膨胀仪来讲,伸长量的测量准确度受系统的热稳定性影响而不能达到干涉计本身的测长准确度的。商品化的干涉膨胀仪的最高温度是700℃。2.作为最传统的热膨胀仪的测量手段的顶杆法热膨胀仪的优点是,使用容易、结构简单适用各种形状的样品等。缺点是,属于接触、相对测量方法,需要用标准样品对系统定标,测长准确度低,但可达到很高温度,适用于材料的烧结过程的研究。顶杆法热膨胀仪结构特点是,用比样品长几倍的顶杆与试样接触,把试样的长度变化传递给加热炉外的与其接触的位移传感器。这样,在顶杆上存在从高温(试样)到室温(位移传感器)的温度变化,整体的热稳定性或者说“热环境”与干涉膨胀仪的情况比,就“差”了更多,温度超高越严重,这是自然引起而不可避免的。这是不能用标准样品的定标来完全消除的。这将导致位移传感器读数的波动,在有些情况下,甚至导致测量结果的突变。在文章“Examination of Thermal Expansion Uniformity of Glassy Carbon as a Candidate Standard Reference Material For Thermal Expansion Measurements”中的第94页第一段,指出对于玻璃碳材料的测量,第一次的测量结果不可靠而必须取消,在高温段和低温段的数据也要取消。即使顶杆法热膨胀仪的位移传感器本身测量准确度能达到了0.1微米以下,对试样的热膨胀量引起的真正伸长量测量准确度也很难说达到0.1微米。日本计量所曾把一个双路差频干涉计组装到一台顶杆法热膨胀仪的位移测量的头部作过实验,表明了这一点。当时的课题是考核顶杆法热膨胀仪的特性。就好比是用微伏电压表接一般的热电偶测温,尽管电压表可以读到微伏,但在毫伏读数以下对测温已没有任何意义了。3.LVDV本身的测量位移量的准确度达不到nm量级(1)目前最好螺旋测微仪的准确度是±1微米。Netzsch用于标定LVDT的是螺旋测微仪,所有的被定标的仪器的测量准确度不可能超过用于定标的仪器的测量准确度,所以即使用最好的螺旋测微仪定标,其热膨胀仪的LVDT也不可能得到优于1微米的准确度。离开准确度,来谈灵敏度是没有实际意义的。在日本计量所考核Netzsch的DIL402时,为了修正LVDT的读数,正是基于这个道理,用双路差频干涉计而不用螺旋测微仪。(2)LVDT的线性度用双路差频干涉计对Netzsch 的DIL402的LVDT的考察的结果表明,当位移量为105.23微米时,LVDV的读数与干涉计的读数的偏差达到0.69微米。因此,线性度实际上为0.66%之大,已排出了热效应的影响。而在NETZSCH的所有产品中,并没有对线性度进行修正的。这也说明了所谓nm量级读数的不正确性,是没有意义的。(3)在TN105中提到的其它因素,如对电压、温度、处理电路等极其敏感,易引起漂移,等等,其nm量级的读数在噪声之中。需要经常进行定标等。4.采用数字位移传感器在顶杆热膨胀仪上,比LVDV有很多的优点,请见TN105数字位移传感器的0.5微米的测长分辨率(也可以说准确度),对于顶杆热膨胀仪来讲,具有实际的意义,完全满足顶杆热膨胀仪的各种应用场合。5.对于低膨胀(如10-7/K)量级的材料在有限的温度范围内(如几十度)内的热膨胀的高精度的测量,顶杆热膨胀仪不适用,应采用非接触绝对的干涉热膨胀仪,并用阶梯等温的加热方式。我们接到过超低膨胀(如10-7/K)的材料在有限的温度范围内的高精度的测量的课题,比如说,一组10-7/K的量级的玻璃,要求分辨出不同成份、工艺下对热膨胀的影响。曾用Netzsch的DIL402和双路差频干涉膨胀仪进行了研究,同时也对DIL402的测量误差进行分析。结果表明,干涉膨胀仪能在10℃的温度间隔内,分辨到1.5X10-8/K,这里的分辨指的是在可能 的最大测量误差范围(或者说是极限误差,3σ程度)外。如果最大测量误差大于1.5X10-8/K,就不能说分辨到1.5X10-8/K。而DIL402的结果(加热范围为300℃,已得到足够的膨胀量),对于所有的材料都没有给出意义的分辨,因所测的各种材料的热膨胀率都在其测量误差范围内,即在12X10-8/K(最大误差,3σ)的误差带内。作为这一课题的附带结果再次表明,Netzsch关于达到1.25nm/digit的测长sensitivity的声称是没有实际意义的。如果有意义的话,已达到了干涉热膨胀仪的测长精度,而为什么实际的测量误差却是干涉热膨胀仪的测量误差的10倍?!有任何问题,欢迎随时交流。

  • 关于水分测定仪操作及维护规程操作规程

    水分测试仪操作及维护规程操作规程—— 1.1接通电源.打开仪器电源开关;1.2开启“Burette",使卡氏滴定剂循环回流,使之均匀.1.3开启“Pump”,加无水甲醉于滴定杯中,开启“Stirrer"搅拌.1.4设定方法,先标定卡尔菲休试剂浓度,依据标准用卡尔菲休试剂滴定试样中的水分.1.5设备使用完后.关掉仪器电源开关,并切断电源.2水分测试仪(在线微波水分仪)维护规程2.1仪器设备使用人员要严格按照操作规程进行操作,如发现异常要及时切断电源,待仪器冷却后检查并做适当处理.2.2设备在高温运行状态下.取放样品要注意安全,以免烫伤.2.3定期清洁仪器表面,用蘸有酒精的布清洁滴定仪.2.4当电极响应时间退化时,应该清洁电极.可以用去离子水超声清洗或铬酸浴中60s,然后用水或乙醇清洗电极。2.5当系统不再密封时.需要更换螺帽的0形圈.2.6当特氟龙密封不再紧密时,窝要更换泵管.2.7若卡尔非休溶液漂移值偏高。就需要更换分子筛或干燥剂.2.8检查泵钮.电磁搅拌、电池等,及时更换.2.9做好相应的维护检修记录.转载——中国仪器仪表网

  • 【分享】利用膨胀系数测定密度

    膨胀系数在密度仪测密度中的应用膨胀系数的应用在生产过程中,密度检测受温度影响较大,为得到固定温度下的密度,可采用膨胀系数法,较方便的测定密度,例如便携式密度仪在输入膨胀系数后,在生产过程温度为70至75摄氏度间,可测定出较准确的密度值,省去对物料恒温的过程,节约时间

  • 同时可测8个试样的热膨胀仪是不是很带劲!

    同时可测8个试样的热膨胀仪是不是很带劲!

    对于目前市场上的各种热膨胀系数测定仪,无论采用的是顶杆式、光学式、激光干涉式等测试方法,基本都为单试样结构,一次只能测试一个试样。如果按照通常5℃/分钟升降温速度进行测试,在1000℃范围内,一个工作日一般只能完成一个试样的测试,而昼夜测试最多也只能测试两个试样,这样的测试效率普遍较低。 美国ANTER公司和德国林赛斯公司都在提高热膨胀测试效率方面做出过努力,如美国Anter公司UNITHERM™ 1000 系列热膨胀仪,采用了积木式结构,即将多个单试样热膨胀仪巧妙的组合在一起形成多试样热膨胀测试系统,做多可以集成4套装置对4个试样同时进行测量,测试温度范围-150℃~1600℃。由于此系列热膨胀仪在低膨胀测试中存在较大误差,此系列产品已经停产。http://ng1.17img.cn/bbsfiles/images/2017/03/201703281652_01_3384_3.png 美国ANTER公司UNITHERM™ 1000 系列多试样热膨胀仪 德国林赛斯公司也出品了多试样热膨胀仪,最多一次可以进行8个试样测量,但测试温度较低,测试温度范围为-40℃~160℃。林赛斯这种一个加热腔体内放置8个试样的思路是可行的,这样可以避免每个加热炉只能加热一个试样的硬件重复性,但还是存在着每个试样测量必须采用对应的独立位移传感器的弊端。http://ng1.17img.cn/bbsfiles/images/2017/03/201703281652_02_3384_3.png。 德国林赛斯公司常温型多试样热膨胀仪 有次可见,目前市场上并没有测量1000℃以上的多试样热膨胀仪,即采用一个加热加热装置同时加热8个试样,并只用一个位移传感器进行所有试样的变形测量。如果有这种设备,是不是很带劲呢?抛砖引玉,供大家讨论!

  • 国内大尺寸构件超低热膨胀系数测试技术综述

    国内大尺寸构件超低热膨胀系数测试技术综述

    摘要:航天器用各种大尺寸构件都普遍要求超低膨胀系数以保证构件尺寸的稳定性,传统热膨胀系数测试只针对长度100mm以下的小试样,已无法满足大尺寸构件的超低热膨胀系数测量,需要精确测量整个构件的超低热膨胀系数。本文对国内在大尺寸构件热膨胀系数整体测量方面的研究工作进行了综述,以了解国内目前的发展状况,给今后开展此方面工作提供参考和借鉴。1. 前言 在太空运行的各种航天器,由于没有大气层的保护,其环境温度变化很大,受阳面温度可高达上百摄氏度,而被阳面温度却在零下几十摄氏度。因此,航天器在空间环境中,由于材料的热膨胀,会引起航天器结构的尺寸变化。但是从航天器的某些部件和仪器的技术要求考虑,希望航天器的某些结构的稳定性要好,这一点对通讯卫星天线结构及敏感元件、太空望远镜的镜筒支架等的使用和安装尤为重要。尤其是卫星和望远镜桁架结构更要求其在一定的环境温度变化范围内不因热应力产生变形或者变形极小,即所谓零膨胀。传统热膨胀系数测试只针对长度100mm以下的小试样,已无法满足大尺寸构件的超低热膨胀系数测量。为适应航天器制造的要求,特别是对于以m为长度单位的E-08/K量级材料热膨胀系数需要更加准确的测试。因此,研究航天器用复合材料工程构件的超低膨胀测试方法和相应的测试设备,具有重要的科学意义和实用价值。 本文将介绍国内在工程构件级热膨胀系数测试方法和测试设备方面所开展的工作。2. 光纤位移传感器测试方法(1) 针对卫星用低膨胀纤维增强复合材料杆件,上海复合材料科技有限公司与国防科技大学合作开展相应的热膨胀系数测试系统研究,具体的测试要求为: (1)测试件是碳纤维复合材料杆件,杆件形状为圆杆或矩形杆。长度尺寸1m,圆杆直径φ10~80mm,壁厚为2mm左右。矩形杆的截面不超过100mm×100mm,壁厚2mm左右。 (2)能测量在温度范围-70~+100℃的轴向伸缩量,并测量相应温度,从而得出工程试件的热膨胀曲线。测量误差不大于±3%。 (3)试验箱能按要求的程序升温,升温程序可调,并能实时控制。对设定点的温度控制精度优于±1℃,测量精度优于0.5℃。试件周边温度的均匀性优于±2℃。 上海复合材料科技有限公司研制的这套热膨胀测试系统主要由温度控制系统、机械系统、数据采集系统、计算机控制与分析系统四大部分构成。 (1)温度控制系统:采用高低温试验箱,满足温度范围和温度控制要求。 (2)机械系统:包括测试系统的基座、测试基准、试件支架。 (3)数据采集系统:包括光纤位移传感器。 (4)计算机控制与分析系统:主要用于控制整个测试过程,实现测试数据的自动采集、分析、存储与测试结果的显示。 位移采集采用MTI2000光纤位移传感器,其特点是非接触式,最大量程2mm,分辨率为0.25um。MTI2000光纤位移传感器包含一组发射光光纤和一组接收光光纤,如图 2 1所示,发射光光纤和接受光光纤以三种不同方式排列(不规则、半圆心及同心圆形状),卤钨灯提供光源,光传输到光纤中,光纤探头发出的光照射在被测物上,被测物反射回来的光进入接受光光纤并传入到MTI-2000中。http://ng1.17img.cn/bbsfiles/images/2016/10/201610221657_614789_3384_3.png图 2-1 光纤分布示意图 如图 2-2所示,当光纤与被测物接触时,没有光能传输给接收光光纤,输出信号为“零”。随着探头与被测物之间距离的增加,接收光纤接收的光也增加,并且增加的光和距离之间非常敏感,与信号输出也呈很好的线性。随着距离的继续增加,接收光光纤接收到的光达到峰值,如果探头和被测物之间的距离继续增加,接收到的光将会持续减少,结果是具有第二个很灵敏且具有大量程和标准距离的测量范围。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610221657_614790_3384_3.png图 2-2 MTI2000光纤位移传感器输出信号与位移的变化关系 整个测量系统的测量基准利用低膨胀系数材料殷钢制作,测量基准包括殷钢连杆、传感器微调台和殷钢传感器夹具。测量基准至于试验箱外,因醋不受试验箱内温度变化影响,而且整个测量基准能够控制在0.5um/m℃以下。 被测件通过试件支架安装在试验箱内,试件支架包括殷钢V形架、低导率材料升降杆和剪式升降台,被测件水平置于V形架内,由V形架自动定心,从而保证被测件轴心与两个传感器侧头平行。被测件支架通过剪式升降台固定在大理石基础件上,不与试验箱体接触。 剪式升降台能够调整被测件在试验箱内高度,从而保证能够测量不同直径的被测件的热膨胀系数。在温度快速变化的情况下保证箱体和支架对称变形,同时减小支架的质量,以减小其热容,防止测量时受到支架变形影响而产生的缓慢漂移。 文献中并未报道此测试系统的结构,但根据分析可以大概此测试系统为双端面测试结构,即将两路光纤位移传感器对准被测件的两个端面,同时测量两个端面的位移,最终得到整个测试件的热膨胀长度变化。整个测试系统的结构如图2-3所示。http://ng1.17img.cn/bbsfiles/images/2016/10/201610221657_614791_3384_3.png图 2-3 低膨胀纤维增强复合材料杆件热膨胀系数测试系统结构示意图 从文献报道分析这套大尺寸构件热膨胀系数测试系统技术指标和测试结果,可以得出以下初步的结论: (1)位移传感器分辨率为0.25um,那么测量准确度基本也就在1um左右,这个测量准确度基本与千分表相同,所能测试的热膨胀系数最小也就在1E-06/K左右,还无法测试-7量级甚至-8量级的零膨胀系数材料。而目前的2m长构件热膨胀系数可以达到5E-08/K水平,由此可见采用这种测试方法无法满足目前零膨胀构件的测试需求。 (2)采用光纤式位移传感器所进行的位移测量,是一种相对测试方法,实际测量精度还需要采用更高级别仪器进行计量标定才能保证热膨胀系数测量准确性。 (3)采用已知热膨胀系数的铝材Ly12CZ(淬火状态)制成的测试件进行测量精度考核,测试件直径为φ20mm,常温下长度1m,壁厚为2.5的管型材。在-50?20℃测试温度范围内,测定的平均热膨胀系数为19.9E-6/K,20~100℃测试温度范围内,测定的平均热膨胀系数为21.4E-6/K。文中得出的结论是对于这种E-06/K量级的热膨胀系数测试偏差在7%以内。由此试验证明这套大尺寸只能测试E-06/K量级的热膨胀系数。 (4)文中报道了对直径?20mm、壁厚2mm、长度为1m的碳纤维复合材料圆杆热膨胀系数测试结果,测试温度范围为10~30℃。测试结果显示热膨胀长度变化量为-17.47um,线膨胀系数为-0.87E-06/K。文中仅报道了两次重复性测量,两次重复行测量重复精度为1.3%。由此可见这种碳纤维复合材料圆杆热膨胀系数很大,距离所需要的零膨胀系数差距很大。 (5)从文中报道可以看出,整个测试是以殷钢基座为基准,理论上这个测量基准能够控制在0.5um/m℃以下。但考虑到伸入试验箱内光纤长度的变化,以及并未采用同侧差分测量抵消光纤长度的技术手段,很大可能会出现碳纤维复合材料圆杆实际热膨胀系数很小,但此套装置并不能准确测试,测试结果反而是此装置的系统误差,即碳纤维复合材料圆杆很小的热膨胀以及完全淹没在测试系统误差内。 (6)尽管文中报道的碳纤维复合材料圆杆热膨胀系数测试结果在-0.87E-06/K左右,这表现出碳纤维复合材料圆杆生产工艺还未能实现整体圆杆的零膨胀,更表现出测试方法自身精度完全无法达到零膨胀测试需要,但这是目前国内对大尺寸管件低膨胀测试的首次尝试,尽管不成功但意义非常重大。从对1m长的圆杆测试结果可以看出,在10?30℃温度范围内,圆杆收缩了17.47um。那么如果采用取样方式进行热膨胀测试,取样尺寸如果为100mm,那么100mm小试样的受热收缩也仅仅为1.7um左右。对于这种不到2um的热膨胀,采用目前常规的热膨胀仪器都无法进行测量。文中所报道的1m长碳纤维复合材料圆杆热膨胀系数测试恰恰证明了低膨胀构件整体热膨胀系数测试的必要性,这点在超低热膨胀系数构件中显得更为突出。[color=#ff000

  • 【分享】30种药品检验仪器自检和操作规程

    [color=#DC143C][B][center]目录[/center][/B][/color][B]1.仪器自检规程 [/B]1.净化工作台和净化空调器2.半自动青霉素电位滴定仪3.四道生理记录仪[B]2.仪器操作规程 [/B]1.高压消毒锅2.AE-240电子天平3.AEL-200电子天平4.ZRS-6型智能溶出试验仪5.ZRS-4型智能溶出试验仪6.BP-9300高分子杂质分析仪7.ZY-300A型抑菌圈测量仪8.AD-2.5型电子体重秤9.LDZ4-0.8型自动平衡微型离心机10.ZRY-2智能热原仪11.MS-302多媒体化生物信号记录分析系统 12.ZYT-1型自动永停滴定仪13.智能崩解试验仪 ZBS-6B型 14.Waters 高效液相色谱仪15.501/486/U6K/746 HPLC仪16、 DL?熔点测定仪17.pHS-3C型酸度计18.旋转式粘度计19.紫外分光光度计 UV-2401PC20.紫外分光光度计 UV-16021.天平的操作规程与维护保养22.折光计23.韦氏比重秤24.TLC操作规程25.TLC照相操作规程26.显微镜的使用规程及日常维护27. DWNER`SMANUAL 纯水器

  • 【分享】pH计工作原理 操作规程 注意事项

    pH是实验室分析检测中最常用的仪器,其正确的操作对检测结果至关重要,现将本人编写的操作规程及一些工作原理等资料上传分享,希望对大家的工作有所帮助.pH值测定仪使用指导书1.0目的 正确使用和保养pH计,确保pH值测定正确。2.0适用范围产品pH值的测定。3.0术语(无)4.0职责4.1 XX部:负责pH值测定仪使用与日常保养;5.0工作流程图(无)6.0内容及要求6.1仪器:Thermo Orion 420 A+酸度计。6.2 主机自检注意:当首次使用或出现测量故障时,请执行此步骤,以辨别主机是否有故障,若主机自检正常,表明主机无故障,可能是电极出现故障,需对电极清洗活化处理或更换电极。6.2.1先不要将pH电极和温度补偿电极连接在主机上,而把主机顶部连接pH电极的通道的短路盖盖紧电极通道。6.2.2将变压器的输出接头牢固地插在主机上(否则主机可能出现显示固定不动的情况,此时须拔掉电源,重新开始)。6.2.3压power键关闭电源。6.2.4先压住yes键不放,再压power键开机,待出现软件版本号2.70或2.80时,放开yes键,主机自检开始:屏幕显示TEST1→ TEST2→ TEST3→TEST4→TEST5→ TEST6→TEST7当屏幕出现0时,立即将每一个键压一遍(包括power键),注意:压键时的间隔不能超过4秒,否则出现错误提示:E-07。此时须关机重新自检。6.2.5自检完成后,主机自动关机,然后又自动开机进入pH测量状态,屏幕显示0.0或0.00。6.3 主机设置先将主机背板支架撑开,放置好主机,再将主机与电源变压器连接,压“power”键接通电源。6.3.1终点提示选择1-1①压2nd键,再压setup键,屏幕下端出现1-1,压“▲或▼”滚动键选择终点提示开启(ON)或关闭(OFF)。建议选择ON。②压yes键确认,仪器进入数据锁定功能选择,屏幕显示1-2。6.3.2数据锁定功能选择1-2①压“▲或▼”键选择数据自动锁定功能开启(ON)或关闭(OFF)。②yes键确认,仪器进入按键声音功能选择,屏幕显示1-3。6.3.3按键声音功能选择1-3①压“▲或▼”键选择按键声音功能“ON”(开启)或“OFF”(关闭)。建议选择ON。②压yes键确认,仪器进入自动关机功能选择,屏幕显示1-4。6.3.4自动关机功能选择1-4①压“▲或▼”键选择自动关机功能“ON”(开启)或“OFF”(关闭)。建议选择OFF。②压yes键确认,仪器进入查看上次电极校正斜率功能,屏幕显示2-1。6.3.5电极斜率查看功能2-1①压yes键确认,仪器进入分辨率选择功能,屏幕显示2-2。6.3.6分辨率选择功能2-2①压“▲或▼”键选择分辨率:7.000,7.00,7.0。常规pH测量建议选择7.00.②压yes键确认,仪器进入电极等电位点选择功能,屏幕显示2-3。6.3.7电极等电位点选择功能2-3①压“▲或▼”键选择与所配pH电极相一致的等电位。ORION的pH电极的等电位点为初始值7.000,若选用其他品牌的pH电极,就需要根据此电极的等电位点,修改主机的等电位点。②压yes键确认,仪器进入主机复原功能,屏幕显示2-46.3.8主机恢复出厂设置功能2-4①压“▲或▼”键选择主机复原功能开启(ON)或关闭(OFF)。若选此功能若开启(ON),就将仪器的设置参数恢复到出厂设置状态。建议通常情况下选择关闭(OFF),但是当主机出现故障时,可尝试选择开启(ON),将主机恢复到出厂状态后对主机进行自检,以判断主机是否有故障。②压yes键确认,仪器进时钟设置功能,屏幕显示3-1

  • 低温环境混凝土热膨胀系数测试技术研究

    低温环境混凝土热膨胀系数测试技术研究

    [color=#cc0000]摘要:本文针对低温环境,介绍了目前国内外测量混凝土热膨胀系数的标准测试方法,着重介绍低温环境下混凝土热膨胀系数测量的最新中国国家标准测试方法,对国家标准方法提出了改进建议,并介绍符合国家标准测试方法的大尺寸多样品混凝土低温热膨胀仪。  关键词:低温,混凝土,热膨胀系数,测试方法,膨胀仪[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000][b]1. 引言[/b][/color]  混凝土作为使用最广泛的建筑材料,它在室温和高温环境下的性能都得到了深入的研究。然而,在低温温度(即低于-165℃的温度)环境下混凝土的热物理性能尚未开展系统性研究。目前大多数液化天然气(LNG)储罐都采用了混凝土结构形式展,利用混凝土进行LNG主要密封的罐体设计将是未来发展的趋势,这将大大降低罐体的建造成本。因此,为了提高混凝土结构LNG储罐的安全性和长期耐久性,必须从根本上了解混凝土冷却到低温时的行为,而这些了解低温环境下混凝土的努力将集中于控制由于其部件的热膨胀系数引起的热变形和损伤增长的机制,因此准确测量低温环境下混凝土热膨胀系数是液化天然气储罐设计和建造的前提。  本文针对低温环境,将介绍目前国内外测量混凝土热膨胀系数(CTE)的标准测试方法,着重介绍低温环境下混凝土CTE测量的最新中国国家标准测试方法,对国家标准方法提出了改进建议,并介绍符合国家标准测试方法的大尺寸多样品混凝土低温热膨胀仪。[color=#cc0000][b]2. 国内外测试方法介绍[/b]2.1. 国内标准测试方法[/color]  针对低温环境下的混凝土热膨胀系数测试,我国在2015年新制订了国家标准GB 51081-2015“低温环境混凝土应用技术规范”。  在GB 51081中对低温环境混凝土热膨胀系数的样品规定了应符合现行国家标准《普通混凝土力学性能试验方法标准》GB/T 50081,试件应为边长100mm×100mm×300mm的棱柱体,每次检验应在相同条件下制作12个试件。  对低温环境下混凝土热膨胀系数测试设备GB 51081给出了下列规定:  (1)低温设备应有同时容纳不少于6个试件的有效空间,应满足常温至-197℃区间各种温度的施加,应具有自动控温和给出各种降温速率的功能,恒温器件的温度波动范围应在±0.5℃内。  (2)微变形测量装置应满足各职能过低温下的测量要求,且测量精度不得低于0.001mm。[img=,690,342]https://ng1.17img.cn/bbsfiles/images/2019/04/201904012229434228_5404_3384_3.png!w690x342.jpg[/img][align=center][color=#cc0000]图2-1 低温混凝土热膨胀系数测试棱柱体样品示意图[/color][/align]  在GB 51081中对低温环境混凝土热膨胀系数的具体测量方法给出了如下规定:  (1)试件标准养护应达到设计龄期时取出,并应用湿布擦去表面水分后静置于室内自然环境中。应静置14天后进行时间外观检查和尺寸测量,并应将试件分成2组,每组6个试件。  (2)应标识热膨胀系数检验棱柱体试件两端面的3个测量点位置(图2-1),并应在这3个测量位置测量棱柱体试件的长度。  (3)检验低温时的低温环境混凝土热膨胀系数,第1组试件作用的温度值应为,第2组试件作用的温度值应为。  (4)测量第1组6个试件3个测量位置处的棱柱体试件长度后,应将试件全部放于低温设备内,按不高于1℃/min速率降至,然后保持温度不变,且恒温器件的温度波动范围应在±0.5℃内。低温作用48小时后再测量试件3个测量位置处的棱柱体试件长度。  (5)测量第2组6个试件3个测量位置处的棱柱体试件长度后,应将试件全部放于低温设备内,按与第1组试件相同的降温速率降至,然后保持温度不变,且恒温器件的温度波动范围应在±0.5℃内。低温作用48小时后再测量试件3个测量位置处的棱柱体试件长度。  综上所述,针对低温环境下混凝土热膨胀系数测试设备,国标GB 51081只给出了测量温度范围、温度波动大小、样品尺寸、测量位置点和热膨胀变形测量精度的规定,并没有测试设备更详细的内容,这使得很难具体执行国标GB 51081并有效保证测量准确性。[color=#cc0000]2.2. 国外标准测试方法[/color]  目前国际上并没有针对混凝土及其结构在低温环境下的热膨胀系数标准测试方法,对于液化天然气(LNG)储罐采用的混凝土及其结构,美国混凝土协会(ACI,American Concrete Institute)制订过相应的标准ACI 376(混凝土结构冷冻液化气体容器的设计和构造规范及说明),其中关于热膨胀系数测试所推荐的标准测试方法是改进后的CRD-C 39测试方法。  国外在以往混凝土常温下的热膨胀系数测试中,大多采用的测试方法为ASTM C531、CRD-C 39、AASHTO T336和Protocol-P63,但这些方法在所测试的温度范围基本适用于常温条件下,并不能直接推广应用到低温环境。  在ASTM C531中规定了需要在烘干条件下测量CTE,其中样品长度测量的温度范围为22.8~93.9℃,通过样品长度变化量除以温度变化量来得到CTE。而CRD-C 39中规定了将样品浸入水中48小时来达到饱和条件,然后在4.4~60℃温度范围内测量样品长度。在ASTM C531和CRD-C 39中,样品长度测量都是离线式测量方式,即将达到一定恒温时间的样品从恒温器中取出,并放置在样品长度测量的比较器上。由此可见,ASTM C531和CRD-C 39并不是连续测量热应变来得到热膨胀变化行为。  AASHTO T336和Protocol-P63测试方法也规定了在饱和条件下测试CTE,测试温度范围为10~50℃。然而各种混凝土构件,特别是液化天然气(LNG)储罐采用的混凝土及其结构的实际应用温度会非常低,因此需要拓展测试温度范围以覆盖低温范围。  因此,对于液化天然气(LNG)储罐采用的混凝土及其结构,其热膨胀系数的测试需要重点考虑两方面的因素,一是温度范围的拓展以满足低温测试要求,二是样品要保持一定的湿度然后在低温下进行热膨胀系数的测量。[b][color=#cc0000]3. GB 51081标准方法的改进建议[/color][/b]  对于低温环境下的混凝土热膨胀系数测试,我国基本上基于AASHTO T336标准制订了GB 51081-2015“低温环境混凝土应用技术规范”。因此,AASHTO T336中存在的问题在低温环境下会被放大,从而严重影响测量的准确性。另外,要使得GB 51081标准方法真正能推广应用并保证CTE测试的准确性,GB 51081还需要进行重大改进,主要改进建议如下:  (1)在AASHTO T336测试方法中,由于测试温度在10~50℃范围内,混凝土CTE测量装置中的辅助装置(如承台、导杆、支架等)的影响并不严重,这些辅助装置一般采用CTE较小的殷钢等材料制成就能满足要求。而按照GB 51081规定,低温环境下的最低温度要达到液氮温度(-197℃),在测试温度接近200℃这样大的温度变化范围内,CTE为1×10-6/K量级的殷钢材料的热胀冷缩影响将非常凸出。这就需要采用CTE更小的超低膨胀系数材料制作热膨胀仪的相应辅助装置,同时还需要进行热膨胀仪的基线校准来进一步降低热膨胀仪的系统误差。  (2)在AASHTO T336测试方法中,由于测试温度在10~50℃范围内,样品温度变化并不会对LVDT探测器带来明显的影响。同样,低温环境下的CTE测试,低温环境就会对安装在室温环境下的LVDT探测器产生明显影响,特别是对探测器的支撑板和固定架的温度影响从而带来探测器自身位置的改变。因此,在测试方法中要规定出LVDT探测器及其相关装置的温度变化范围,这方面的影响往往是重要的测量误差源。  (3)在GB 51081标准中缺乏校准样品相关条款,建议在GB 51081标准中增加与AASHTO T336类似的校准样品相关条款,即校准样品的CTE测定必须由第三方实验室测定,测试方法应采用ASTM E228或ASTM E289。此外,第三方实验室的CTE测定必须在与GB 51081相同的温度范围内进行,即低温要达到-197℃。[b][color=#cc0000]4. 低温环境混凝土热膨胀测定仪设计[/color][/b]  为了实现低温环境下混凝土热膨胀系数测试,上海依阳实业有限公司专门设计了一种大尺寸多样品的低温混凝土热膨胀测定仪。混凝土低温膨胀仪一种测试混凝土块体低温下线膨胀系数的测试设备,测量方式为接触方式,整体结构如图4-1所示。此低温热膨胀仪依据测试标准为国家标准GB 51081-2015“低温环境混凝土应用技术规范”,测试温度范围为室温~196℃。[align=center][img=,690,397]https://ng1.17img.cn/bbsfiles/images/2019/04/201904012230310478_4454_3384_3.png!w690x397.jpg[/img][/align][color=#cc0000][/color][align=center]图4-1 低温混凝土热膨胀系数测定仪结构示意图[/align]  此混凝土低温膨胀仪具有测试试样体积大、可多样品同时测量的特点,适合大批量样品的连续测量。  混凝土低温膨胀仪由计算机进行自动控制和检测,自动进行样品温度的监控、自动进行样品变形量的监控以及自己进行测试结果计算。  按照标准方法规定每个样品需测试三个位置点处的热变形。“低温腔体”采用侧开门结构,开启侧门安装或取出样品,使得被测样品处于“低温腔体”内进行升降温。[color=#cc0000][b]5. 参考文献[/b][/color]  AASHTO TP60,Standard Test Coefficient of Thermal Expansion of Hydraulic Cement Concrete,In American Association of State Highway and Transportation Officials,Standard Specifications for Transportation Materials and Methods of Sampling and Testing,Washington, DC, 2000.  CRD-C 39-81,Standard Test Method for Coefficient of Linear Thermal Expansion of Concrete,US Corps OF ENGINEERS,1981.   ASTM C531-00,Standard Test Method for Linear Shrinkage and Coefficient of Thermal Expansion of Chemical-Resistant Mortars,Grouts,Monolithic Surfacings,and Polymer Concretes,ASTM International, West Conshohocken, PA, 2012.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【资料】设备 操作规程

    跪求防爆个体采样仪、防爆多用气体检测分析仪、流量校准器、呼吸性粉尘采样器、直读式粉尘浓度测定仪、噪声频谱分析仪、手持风速仪、个人噪声剂量计、多通道噪声振动分析仪、精密脉冲声级计、分析天平的操作规程 谢谢各位老师!!!谢谢!!

  • 关于线膨胀系数的测定

    小弟从来没有接触过测定线膨胀系数,不知道怎么测定。看资料说是用示差法可以测定,不知道各位大哥是否有这方面的资料啊。

  • 【分享】溶出仪标准操作规程

    1.目的 为使仪器正常运转,保证结果的可靠性,特制定此操作规程。 2.适用范围 化验室 3.责任者 化验员应严格遵照该操作规程,QC主管负责监督本规程的实施。 4.定义 无 5.安全注意事项 无 6.操作规程 6.1.准备 6.1.1.控制水槽水位,使之高于溶出杯中介质的高度。 6.1.2.开启溶出仪,自动取样器及打印机电源。 6.1.3.排除对试验有影响振动干扰。 6.1.4.调节高度:将桨或蓝的底部轻轻置于杯的底部,抬起显示面板,垫上标准垫块P或B(P为转桨法,B为转蓝法),放下显示面板,测桨或蓝的底部距杯底距离应为2.5+0.2cm。 6.1.5.溶出介质使用前需脱气。 6.1.6.设定试验所需参数:按JKL键进入PROTOCOL画面,依次设定转速、水浴温度、试验时长、自动打印间隔、设定药品名称、药品剂量及测定方法。 6.1.7.按Esc键退回主菜单后,光标移至Header项下,输入操作员姓名,药品批号及注意事项,按ENTER键。 6.2.试验操作过程 6.2.1.在采用逐个取样时,转蓝法要在转蓝到位后才能按下RUN键启动计时,桨板法要在药片到达底部时才能启动转轴计时。 6.2.2.采用自动样器要注意交叉污染。 6.2.3.取样位置在转蓝上部或转桨叶上部到介质表面中间位置,距离溶出杯壁约1cm处取样,并尽量在30秒内完成。 6.2.4.按各药品项下规定取出适量溶液,弃去初滤液,续滤液备用。 6.2.5.样品取出待冷却到室温后,按规定方法测定。 6.3.结束工作 6.3.1.先清洗转蓝或转轴,再取出杯子进行清洗。 6.3.2.试验结束后按STOP键,待画面消失后,切断电源。 6.3.3.试验中如有不正常情况,应做记录并报上级主管。 6.4.在使用此设备后应填写使用记录

  • 林赛斯热膨胀仪-激光-相变-----自荐

    热膨胀仪用于测量样品随温度变化而产生的膨胀;测量样品随温度或时间变化的函数关系,测得样品长度变化(Delta L)或CTE值(热膨胀系数)的膨胀信息。激光热膨胀--未来热膨胀测量技术的趋势—高精度和高分辨率。L75 激光热膨胀仪的优越性体现在精度是传统顶杆热膨胀仪的33倍。测量原理是麦克尔逊(Michelson)干涉计,因而消除了系统误差,专利保护的测量技术可以研究最新的高科技超低膨胀材料(ULE),Linseis成功地将最新的技术应用于此系列热膨胀仪和优化设计系统,使之易用性和传统的热膨胀仪一样。相变热膨胀仪--L78 RITA 是特别适合于研究和测量TTT,CHT和CCT图表。特殊的加热炉可以加热和制冷速度高于400°C/s。系统符合标准 ASTM A1033。所有的关键参数,如加热制冷速度,气体控制和安全保护都通过软件控制。专业的32-Bit 软件 Linseis TA- WIN 兼容Windows 系统,所有的常规(如TTT,CHT和CCT图表的建立)和应用要求可以通过仪器的软件包来实现。图解和ASCII格式可以输出,方便用户测量数据和图表导出。

  • 线性热膨胀系数

    GBT 3810.8陶瓷砖线性热膨胀,5的第一行,原始供校准用的标准试样。。。这个怎么具体做校准,这规范上没写。是用仪器测定标准试样的膨胀系数是否为标定的值么。提供的标准试样是圆柱的石英玻璃,说明上给的石英平均膨胀系数是0.55x10(^-6),我用仪器测了室温到100℃和500℃,得到的值都大于这个值。。。厂家说仪器自动减去了补偿值Kt,也加过石英托架的膨胀系数了。。[img]https://ng1.17img.cn/bbsfiles/images/2022/02/202202162136086286_6916_5536684_3.png[/img]

  • 【求购】金相、物理试验工操作规程

    1、做酸蚀试验时应遵守《化学试验一般操作规程》。试样应轻轻放入酸槽中,避免溅出。 2、做微观检验在配制、使用电解液时必须做到;(1)配制溶液时药物应按顺序加入溶液。硫酸、高氯酸应缓慢滴入溶剂,并应搅拌。(2)电解液不能用得过久,电解抛光温度不能过高,以防发生爆炸危险。(3)使用氰盐溶液电解腐蚀时,操作人员工作完毕必须认真洗手漱口。用完的工具均应用5%硅酸亚铁水溶液中和,工作服不准穿出室外。3、使用光电分光光度计前应先检查按地线,应保证仪器机壳接地可靠。4、使用硬度计时,试样硬度大于HRc30及脆性材料,受荷后要防止夹具振脱和碎片飞出损机伤人。5、试样表面要平整放稳,平面倾斜不能大于5°。6、严禁在平面物台打圆柱试样,以免损坏钻头或样品挤动伤人。7、做光谱分析时,用电仪器必须有良好的接地保护。使用高压电的地方,必须悬挂警示牌注意安全。8、操作摄谱仪或质谱计的工作人员,必须站在橡皮的地毯上。电子弧光及火花发出光容易刺激眼的角膜,工作之前必须挡上颜色玻璃。9、做磁性试验时,严禁输出短路和过载使用,使用时间不得超过4小时。当AC4/3墙式冲击检流计从支架取下来 时,应事先锁好。10、做低温试验时,在冷冻机运转后,应调整滴油量和油压,并且经常注意机器的声音、压力、温度和膨胀的开启量等。11、制冷系统在使用及停车时,都应挂上明显的开关牌子。停车时曲轴箱内压力应降到0.5kg以下,蒸发器里的水温度不应低于0℃。12、机器运转时机房内应保持两个人操作(除特殊情况例外),各种附属设备中的液体量不应超过80%。13、停车时先关膨胀阀,待低压系统的压力降低后再关吸气阀,然后再关电门,再逐渐关闭排气阀,托紧密封器夹头,最后关闭冷却水。14、根据实际使用情况,对机器及其附属设备进行放油清洗,校正、检查、修理。压力表应按规定每六个月校验一次,发现压力表不正常时,应及时送去校验。15、当发生严重漏氨气故障时,应戴上防毒面具,然后进行修理。开启冷冻机总电门和装保险时,应在停车和戴上耐压手套后方可进行工作。16、安全阀要定期校验和试开。凡检修,清洗,校正、试压等大小修理和改进情况,应作好原始记录,做到安全生产。

  • TMA精确测量铝合金6061的热膨胀系数

    TMA精确测量铝合金6061的热膨胀系数

    铝合金6061是含有镁和硅为主成分的通用铝合金。此材料质量轻、机械强度和焊透性良好,广泛用于交通工具领域,比如飞机、船只、汽车和自行车。热膨胀测试仪(DIL)、热机械分析仪(TMA)都是测量铝合金6061和其他金属合金热膨胀的理想工具。[color=#1f497d][/color][b]测试条件[/b]耐驰热机械分析仪,TMA 402 F1 Hyperion温度范围:-20°C ... 500°C加热与降温速率:5°C/min气氛:He,20ml/min样品长度:25.00mm样品支架:石英测量模式:膨胀[color=#1f497d][/color][b]结果讨论[img=,590,329]http://ng1.17img.cn/bbsfiles/images/2018/06/201806131407412759_976_163_3.jpg!w590x329.jpg[/img][/b][color=#000000]图[/color][color=#000000]1[/color][color=#000000]显示了铝合金在室温至[/color][color=#000000]500[/color][color=#000000]°[/color][color=#000000]C[/color][color=#000000]范围的热膨胀曲线。得到的平均热膨胀系数([/color][color=#000000]20[/color][color=#000000]°[/color][color=#000000]C...100[/color][color=#000000]°[/color][color=#000000]C[/color][color=#000000])为[/color][color=#000000]22.8X10[sup]-6[/sup] 1/K[/color][color=#000000],非常接近文献数据[/color][color=#000000]23.0 ... 23.6X10[sup]-6[/sup] 1/K[/color][color=#000000]。([/color][color=#000000]20[/color][color=#000000]°[/color][color=#000000]C ... 500[/color][color=#000000]°[/color][color=#000000]C[/color][color=#000000])范围内的平均热膨胀系数为[/color][color=#000000]27.0 X 10[sup]-6[/sup] 1/K[/color][color=#000000]。[/color]

  • 【资料】卫生监督现场快速监测仪器操作规程

    卫生监督现场快速监测仪器操作规程目 录一、职业卫生1、AKFC-92A防爆粉尘测量仪…………………………………………62、AVM-05 数显风速仪…………………………………………………83、DHM-2型通风干湿温度计…………………………………………94、DS-21T粉尘采样仪…………………………………………………105、HS6280D声级计……………………………………………………116、MR-3型辐射热计……………………………………………………127、P-5型数字粉尘仪……………………………………………………138、PortaSensⅡ枪式气体检测仪………………………………………149、RCQ-1A微波漏能测试仪………………………………………… 1510、RJ-2高频电磁场场强仪…………………………………………1611、SHH-A型呼吸性粉尘采样仪……………………………………1712、TWA-300低流量空气采样器……………………………………1813、TWA-300X采样器…………………………………………………1914、VM-63A振动检测仪………………………………………………2015、XQC-15E型电子时控大气采样器………………………………2116、Z-1100型氧气检测仪………………………………………………2217、Miran SapphIRe 多组分红外气体检测仪…………………………2318、4540一氧化氮测定仪……………………………………………2619、4150二氧化氮测定仪……………………………………………2720、4170硫化氢测定仪………………………………………………2821、4280氰化氢测定仪 ……………………………………………2922、Ⅱ型突发事故快速检测箱 ………………………………………3023、便携式红外分析仪系统 ………………………………………31二、食品、环境卫生和传染病防治24、ATP荧光检测仪 …………………………………………………3325、QPQ-100型电动气溶胶喷雾器 …………………………………3626、TES-1332照度计 ………………………………………………3727、TY-9900数字微风仪………………………………………… 3828、YYT-2000倾斜式微压计………………………………………3929、酒精度计 ……………………………………………………… 4130、指标剂培养器 ………………………………………………… 4231、UV-B紫外辐照计 …………………………………………………4332、酒醇(甲醇、乙醇)速测箱………………………………………4433、笔式电导仪…………………………………………………………4634、KL-03笔式高精度酸度计…………………………………………4735、A5测距仪…………………………………………………………4836、红外测温仪…………………………………………………………4937、106-T2食品中心温度计…………………………………………5038、HY-LiTE卫生监视系统 ………………………………………5139、Pi-102便携式食品微生物快速检测系统 ………………………5240、RSY-1肉类水分快速测定仪………………………………………5341、农药(有机磷和氨基甲酸酯类)残毒量快速检测 ……………5542、CL-BⅢ型四通道残留农药测定仪………………………………5743、210A便携式酸度计………………………………………………6044、2100P便携式浊度仪………………………………………………6145、4140-1一氧化碳测定仪…………………………………………6346、FA-2空气微生物采样器…………………………………………6447、GM-70二氧化碳分析仪…………………………………………6548、GXH-305A二氧化碳分析仪 ……………………………………6749、TES-1352A声级计……………………………………………6850、PGM-7600VOC测定仪 …………………………………………6951、145便携式电导率仪……………………………………………7052、C-200多参数离子测定仪 ………………………………………7153、HI98501水温计…………………………………………………7254、Z800XP氨气检测仪……………………………………………7355、采样数码检测录像机器人……………………………………7456、JWL-ⅡC型撞击式多功能空气微生物监测仪…………………7557、4160甲醛检测仪…………………………………………………7658、DYM3空气压力表…………………………………………………7859、HS6288D多功能噪声分析仪 ……………………………………7960、LD-3C数字式粉尘测定仪 ………………………………………8161、LD-5C微电脑激光粉尘仪 ………………………………………8462、HM34C温湿度计 …………………………………………………8663、HI93701余氯分析仪……………………………………………8764、NTU-E浊度计……………………………………………………88三、放射卫生65、BH3105型中子剂量当量仪………………………………………9066、FD-71A地表γ辐射仪……………………………………………9167、FT-648测氡仪………………………………………………………9268、FJ-2207α、β表面污染测量仪…………………………………9369、451P型X、γ、β射线巡测仪…………………………………9570、FJ-347A型X、γ剂量仪…………………………………………96[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=90817]卫生监督现场快速监测仪器操作规程[/url]

  • 发一个我们的仪器操作规程

    ********************作业指导书AWA5610B型个人声暴露计操作规程文件编号:********版号:第一版编写:*****2010年 11月 11日审核:*****2010年 11月 21日批准:*******2010年 12月 15日修改记录修改页码修改内容修改人批准人生效日期1. 目的规范AWA5610B型个人声暴露计的操作规程,正确使用仪器,保证检测工作顺利进行、操作人员人身安全和设备安全。2. 适用范围适用于AWA5610B型个人声暴露计的操作。3. 职责3.1 操作人员:严格按本操作规程使用仪器,确保本设备的安全,正常运行,作好使用登记;定期参与仪器的期间核查,做好记录。 3.2 管理人员:负责监督仪器操作是否符合规程,对设备进行日常管理和定期维护,作好记录;当设备出现无法排除的故障时,应作好记录,并及时向检测室负责人汇报,联系维修;定期参与仪器的期间核查,做好记录。 3.3 监测科负责人:监督设备的安全正常运行,配合中心组织的每年设备校准/检定工作;监督设备的期间核查。4. 主要技术性能4.1 测量范围:50dB~140dBA(以2*10-5Pa为参考)4.2 频率范围:20HZ~8KHZ 频率计权:A计权4.3 时间计权:F(快)4.4 最大记录数据量:28100个等效声级和256字节注释信息。4.5 采样间隔:1、2、3、4、5秒4.6 参考方向:为电容传声器的轴向4.7 准确度:符合GB/T3785-1983、IEC61672-1:2002 2级和GB/T15952-1995 2级4.8 显示:4位LCD,直接显示测量的LP4.9 [/siz

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制