当前位置: 仪器信息网 > 行业主题 > >

水中油浓度在线分析仪标准

仪器信息网水中油浓度在线分析仪标准专题为您提供2024年最新水中油浓度在线分析仪标准价格报价、厂家品牌的相关信息, 包括水中油浓度在线分析仪标准参数、型号等,不管是国产,还是进口品牌的水中油浓度在线分析仪标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水中油浓度在线分析仪标准相关的耗材配件、试剂标物,还有水中油浓度在线分析仪标准相关的最新资讯、资料,以及水中油浓度在线分析仪标准相关的解决方案。

水中油浓度在线分析仪标准相关的论坛

  • 水中油分析技术概述

    关于水中油在线监测仪市场情况调查水中油监测有很多方法其中包括:重量法,比色法,容量法,紫外法,红外法,荧光法,红外光折射法,雷达法,微波法,声学法等等,其中重量法,比色法和容量法多数应用在实验室测定中,而雷达法,微波法和声学法很少在商业仪器上使用。根据GB16488-1996和国际上通用的MEPC.107(49)标准规定,水中油监测要求采用红外法。现在市场上商品化的符合上述标准的只有Deckma公司的在线水中油监测仪。像国内有些用户使用的加拿大亚捷公司的在线水中油监测仪采用的是紫外荧光法,美国Turner公司的在线水中油监测仪也是采用得紫外荧光法,与国标要求有差距。在选择具体型号时要考虑到以下几个关键因素:1.待分析样品的浓度范围,一般为0-300ppm, 如果采用在线稀释方式也可以达到1000ppm.2.工艺介质即水样温度,一般为1—90℃。3.工作环境温度,一般为-20―50℃。4.用户界面选择,如显示方式,是模拟显示,数字显示还是图像显示,是CRT,纯平还是液晶等5.控制模式:采用手动控制还是计算机编程控制6.是否采用温度补偿,是否使用电池驱动,是否采用事件触发器,是否防爆,是否具备内置校正和自诊断系统,是否具备信号处理或过滤功能。根据有关要求及国际国内有关标准,我们认为只有选用红外法在线水中油监测仪,而符合此要求的产品只有德国Deckma的仪器。

  • 水中油类的自动萃取分析仪器、流动注射

    有没有哪位大虾知道做水中石油类、动植物油的全自动分析仪器啊????使用方法是HJ637-2012 四氯化碳 萃取听说有厂家在研究流动注射做油了??哪位大虾知道呢?昂林仪器 的 OL 1010-C 全自动分析套装 哪位大虾知道呢?有没有使用体验啊??现在想调研一下从萃取到吸光全自动的仪器,手工做动植物油太慢了,样品量一大实验人员都萎了华夏科创 也有一款全自动萃取分析仪 OIL510型,据说有单位在使用了,有么有刚好路过的大虾分享一下??萃取剂除了四氯化碳,S-316、氟利昂、四氯乙烯都适用,估计也是为了保证新方法更改萃取剂还能延续仪器的使用我没有使用过,只是跟他们的产品经理交流过对于这些自动萃取分析,我个人感觉硅酸镁吸附柱是一个大问题!可能对于干净地表水做石油类影响不大,网上也有说浓度低可以重复利用,经理也说做批量样品不换柱子影响不大,当然是低浓度的前提但是做生活污水?工业废水?排污口?的动植物油、石油类检测呢?对于这种受污染的样品,四氯化碳萃取液中油浓度高的话会不会直接影响下一个样品?柱子有残留或者说柱子可承受的吸附量是多大?可不可以做到硅酸镁吸附柱自由更换?或者进入一个震荡过滤的模块呢?这个我也跟华夏科创产品经理提过,也没有具体的答复。跪求介绍解放劳动力的测油仪!

  • 【分享】在线分析仪表常用的浓度单位

    在线分析中气体浓度的表示方法有:摩尔分数、体积分数、质量浓度、质量分数、物质的量浓度等。在线分析仪表中最常用的是体积分数。 摩尔分数——即待测组分的物质的量与混合气体中各组分物质的量的总和之比。 常用的单位是%、10-6、10-9,即我们以前常用的% vol(摩尔百分比)、ppm mol、ppb mol。 体积分数——即待测组分的体积与混合气体中各组分体积的总和之比。 常用的单位是%、10-6、10-9,即我们以前常用的% vol(体积百分比)、ppm vol、ppb vol。 对于理想气体来说,摩尔分数=体积分数,因为在标准状态下1 mol任何气体的体积都是22.4升。 质量浓度——即待测组分的质量与混合气体(或夜体)的体积之比。 常用的单位是kg/m3、g/m3、mg/m3、mg/l、µg/l。 质量分数——即待测组分的质量与混合气体(或液体)中各组分的质量总和之比。 常用的单位是%、10-6、10-9,即我们以前常用的% wt(质量百分比)、ppm wt、ppb wt。 气体分析中,一般不单独使用质量分数表示方法,仅用于气体和液体混合物浓度之间的相互换算。 气体浓度单位换算表1(20℃、101.325KPa下,空气中) 浓度单位换算后单位需乘的换算系数说明

  • Fluori氟化物在线分析仪

    BT6108-[b]Fluori氟化物在线分析仪[/b]是Bebur公司开发的氟离子在线分析仪,是目前世界上绝大多数饮用水氟离子检测都可适用的分析仪。它采用ISEs(离子选择性电极)并带有积分参比、自动温度补偿和固体聚合物连接桥,无需试剂。它运行及其稳定,具有低维护和低运行成本的优势。  产品特点:  l 高达2年持续运行  l 稳定好,可靠性高-完美过程控制  l 适用于所有饮用水  l 内置温度补偿  l 可选用自动清洗装置  测量原理:  几乎所有的氟离子分析仪都是基于氟离子选择性电极,有些通过在样品中持续滴加离子稳定液来提高仪器的精度,比较典型的是添加TISAB(总离子加强调节缓冲液)。这种缓冲液解决离子强度的一种方案,但是考虑到成本和复杂性,很多人认为在饮用水中没有必要进行氟离子投加控制。  BT6108-Fluori不采用TISAB,因此它只适合于定点精度不是很关键和水中离子强度相对比较温度的领域。  在很多应用中,BT6108-Fluori主要用来确保流量比列投加工作正常,在这些应用中,BT6108-Fluori氟化物在线分析仪是作为一种相对便宜,容易安装的仪表可靠选择。  即使这个仪表添加上其他附属功能,相比竞争对手而言,采购成本还是非常低廉的。  制造商:英国Bebur  型号:BT6108-Fluori  传感器类型:ISE(IonSpecific Electrode)  参比类型:固体聚合物桥  浓度范围:1x10-6M 到饱和(0.02ppm到饱和)  pH范围:5-7pH@1x10-6M  5-11pH@饱和  温度范围:0-80°C-持续  80-100°C-间歇  电极阻率:50MΩ  重复性:±2%  最小样品大小:300ml/min  校准:使用试剂手动校准  短期保存:使用DI水彻底冲洗后放回”传感器帽”中保存  长期保存:使用DI水彻底冲洗后干燥存放。更换新的传感器帽来保护传感元件.

  • 【原创大赛】SKALAR连续流动分析仪联合测定水中氰化物和挥发酚

    【原创大赛】SKALAR连续流动分析仪联合测定水中氰化物和挥发酚

    氰化物和挥发酚均是剧毒物质,水中一旦超标,会严重威胁人类的生命和健康,因此准确快速地检测环境水体中氰化物和挥发酚具有非常重要的意义。我国“生活饮用水卫生标准”,规定生活饮用水中挥发酚的含量不超过0.002mg/L,氰化物含量不得超过0.05mg/L。其中挥发酚是利用4- 氨基安替比林对其进行比色测定。水中氰化物的测定方法有硝酸银 滴定法、异烟酸-吡唑啉酮分光光度法、异烟酸-巴比妥酸分光光度法、吡啶-巴比妥酸分光光度法。这些方法测定水中挥发性酚和氰化物时,水样都需经蒸馏、富集处理过程,因此,要耗费较多的人工和时间,特别是在分析大批量水样时,这个缺点尤为明显,且试剂多为有毒或有恶臭的有机物,试剂消耗量大,有可能对环境造成危害。 连续流动分析具有在线蒸馏功能,它有分析速度快,试剂消耗少,自动化程度高的优点,避免了标准分析方法的测定结果与分析者个人的技术水平高低和工作态度的优劣所带来的人为误差。连续流动分析分析结果的准确性、精密度有了很大的提高。现代化的连续流动分析仪配备了计算机和相应的专用软件系统,使分析过程更为简单,操作更容易,并具有自动数据处理能力,使分析结果一目了然。基于上述原因,连续流动分析方法在饮用水及原水的水质分析方面得到越来越广泛的应用。1.实验部分1.1仪器与原理仪器 SKALARSAN++连续流动分析仪-氰化物和挥发酚分析模块。原理: 氰化物在 pH =5.2的缓冲溶液中通过125℃的在线蒸馏可得到HCN, 氰化物与氯胺T反应生成氯化氰,然后与异烟酸及巴比妥酸 反应生成红色配合物,在600nm 处检测其吸光度;挥发酚,酚类化合物在 PH=10±0.2 的介质中,在铁氰化钾存在下,与4- 氨基安替比林发生反应,生成橙红色的安替比林染料,在500-510nm 的波长下,可以被检测出来。1.2试剂和标准的配置氰化物:磷酸质量浓度1.69 g/mL,EDTA二钠溶液质量浓度为100 g/L,磷酸盐缓冲液(pH=7)、氯胺-T质量浓度为10 g/L 异烟酸-巴比妥酸显色剂。标准曲线浓度:0.0025ppm,0.0050ppm,0.0075ppm,0.010ppm,0.0125ppm。http://ng1.17img.

  • 烟气烟尘分析仪执行标准有哪些?

    烟气烟尘分析仪(执行标准HJ/T 47-1999《烟气采样器技术条件》HJ/T 48-1999《烟尘采样器技术条件》JJG 968-2002《烟气分析仪》JJG 680-1990《烟尘测试仪》烟气烟尘分析仪(适用范围锅炉、炉窑烟尘排放浓度、折算浓度和排放总量测量配油烟、沥青烟取样管,可进行油烟、沥青烟采样烟气连续在线检测系统(CEMS)的准确度评估和校准脱硫除尘设备效率的测定烟气烟尘分析仪(主要特点一机多用(可测烟尘、烟气、油烟、沥青烟)高性能长寿命烟气采样泵,负压高达60KPa烟气恒流抽取,测定值更加稳定准确实测NOx=NO+NO2二氧化碳(CO2)浓度可计算,可实测(NDIR)先进可靠的SMT工艺数字版大容量数据存储(1000组)内置打印机,打印更方便坚固外壳,可在恶劣环境下使用

  • 在线溶解氧(DO)分析仪的测量原理及维护

    核心提示:  在污水处理过程中,通过增加污水中的氧含量使污染物通过活化泥浆被分解出来,达到污水净化的目的,在线测量氧含量有助于确定  在污水处理过程中,通过增加污水中的氧含量使污染物通过活化泥浆被分解出来,达到污水净化的目的,在线测量氧含量有助于确定最佳的净化方法和最经济的曝气池配置。在生物发酵过程中氧含量的测量数据可对工艺过程进行指导,如判断发酵过程的临界氧浓度、发酵罐的供氧能力以及菌体的活性和菌体的生长量等,并根据发酵时的供氧和需氧变化来指导补料操作。一、溶解氧分析仪测量原理氧在水中的溶解度取决于温度、压力和水中溶解的盐。溶解氧分析仪传感部分是由金电极(阴极)和银电极(阳极)及氯化钾或氢氧化钾电解液组成,氧通过膜扩散进入电解液与金电极和银电极构成测量回路。当给溶解氧分析仪电极加上0.6~0.8V的极化电压时,氧通过膜扩散,阴极释放电子,阳极接受电子,产生电流,整个反应过程为:阳极Ag Cl→AgCl 2e-阴极O2 2H2O 4e→4OH-根据法拉第定律:流过溶解氧分析仪电极的电流和氧分压成正比,在温度不变的情况下电流和氧浓度之间呈线性关系。二、溶解氧含量的表示方法溶解氧含量有3种不同的表示方法:氧分压(mmHg);百分饱和度(%);氧浓度(mg/L或10-6),这3种方法本质上没什么不同。(1)分压表示法:氧分压表示法是最基本和最本质的表示法。根据Henry定律可得,P=(Po2 PH2O)×0.209,其中,P为总压;Po2为氧分压(mmHg);PH2O为水蒸气分压;0.209为空气中氧的含量。(2)百分饱和度表示法:由于曝气发酵十分复杂,氧分压不能计算得到,在此情况下用百分饱和度的表示法是最合适的。例如将标定时溶解氧定为100%,零氧时为0%,则反应过程中的溶解氧含量即为标定时的百分数。(3)氧浓度表示法:根据Henry定律可知氧浓度与其分压成正比,即:C=Po2×a,其中C为氧浓度(mg/L);Po2为氧分压(mmHg);a为溶解度系数(mg/mmHg·L)。溶解度系数a不仅与温度有关,还与溶液的成分有关。对于温度恒定的水溶液,a为常数,则可测量氧的浓度。氧浓度表示法在发酵工业中不常用,但在污水处理、生活饮用水等过程中都用氧浓度来表示。三、影响溶解氧测量的因素氧的溶解度取决于温度、压力和水中溶解的盐,另外氧通过溶液扩散比通过膜扩散快,如流速太慢会产生干扰。1.温度的影响由于温度变化,膜的扩散系数和氧的溶解度都将发生变化,直接影响到溶氧电极电流输出,常采用热敏电阻来消除温度的影响。温度上升,扩散系数增加,溶解度反而减小。温度对溶解度系数a的影响可以根据Henry定律来估算,温度对膜扩散系数β可以通过阿仑尼乌斯定律来估算。(1)氧的溶解度系数:由于溶解度系数a不仅受温度的影响,而且受溶液的成分的影响。在相同氧分压下,不同组分的实际氧浓度也可能不同。根据亨利定律可知氧浓度与其分压成正比,对于稀溶液,温度变化溶解度系数a的变化约为2%/℃。(2)膜的扩散系数:根据阿仑尼乌斯定律,溶解度系数β与温度T的关系为:C=KPo2·exp(-β/T),其中假定K、Po2为常数,则可以计算出β在25℃时为2.3%/℃。当溶解度系数a计算出来后,可通过仪表指示和化验分析值对比计算出膜的扩散系数(这里略去计算过程),膜的扩散系数在25℃时为1.5%/℃。2.大气压的影响根据Henry定律,气体的溶解度与其分压成正比。氧分压与该地区的海拔高度有关,高原地区和平原地区的差可达20%,使用前必须根据当地大气压进行补偿。有些仪表内部配有气压表,在标定时可自动进行校正;有些仪表未配置气压表,在标定时要根据当地气象站提供的数据进行设置,如果数据有误,将导致较大的测量误差。3.溶液中含盐量盐水中的溶解氧明显低于自来水中的溶解氧,为了准确测量,必须考虑含盐量对溶解氧的影响。在温度不变的情况下,盐含量每增加100mg/L,溶解氧降低约1%。如果仪表在标定时使用的溶液的含盐量低,而实际测量的溶液的含盐量高,也会导致误差。在实际使用中必须对测量介质的含盐量进行分析,以便准确测量及正确补偿。4.样品的流速氧通过膜扩散比通过样品进行扩散要慢,必须保证电极膜与溶液完全接触。对于流通式检测方式,溶液中的氧会向流通池内扩散,使靠近膜的溶液中的氧损失,产生扩散干扰,影响测量。为了测量准确,应增加流过膜的溶液的流量来补偿扩散失去的氧,样品的最小流速为0.3m/s。四注意的问题对溶解氧分析仪来说,只要选型、设置、维护得当,一般均能满足工艺的测量要求。溶解氧分析仪的使用不好的主要问题出在:使用维护不正确;电极内部泄露造成温度补偿不正常;电极输入阻抗降低等。1.日常维护仪表的日常维护主要包括定期对电极进行清洗、校验、再生。(1)1~2周应清洗一次电极,如果膜片上有污染物,会引起测量误差。清洗时应小心,注意不要损坏膜片。将电极放入清水中涮洗,如污物不能洗去,用软布或棉布小心擦洗。(2)2~3月应重新校验一次零点和量程。(3)电极的再生大约1年左右进行一次。当测量范围调整不过来,就需要对溶解氧电极再生。电极再生包括更换内部电解液、更换膜片、清洗银电极。如果观察银电极有氧化现象,可用细砂纸抛光。(4)在使用中如发现电极泄露,就必须更换电解液。2.仪表标定仪表的标定方法一般可采用标准液标定或现场取样标定。(1)标准溶液标定法:标准溶液标定一般采用两点标定,即零点标定和量程标定。零点标定溶液可采用2%的Na2SO3溶液。量程标定溶液可根据仪表测量量程选择4M的KCl溶液(2mg/L);50%的甲醇溶液(21.9mg/L)。(2)现场取样标定法(Winkler法):在实际使用中,多采用Winkler方法对溶解氧分析仪进行现场标定。使用该方法时存在两种情况:取样时仪表读数为M1,化验分析值为A,对仪表进行标定时仪表读数仍为M1,这时只须调整仪表读数等于A即可;取样时仪表读数为M1,化验分析值为A,对仪表进行标定时仪表读数改变为M2,这时就不能将调整仪表读数等于A,而应将仪表读数调整为1MA×M2。3.使用中应注意的问题使用中应注意以下问题:由于溶解氧电极信号阻抗较高(约20MΩ),溶解氧电极与转换器之间距离最大为50m;溶解氧电极不用时也应处于工作状态,可接在溶解氧转换器上。久置或重新再生(更换电解液或膜)的电极,在使用前应置于无氧环境极化1~2h;由于温度变化对电极膜的扩散和氧溶解度有较大影响,标定时需较长时间(约10min),以使温补电阻达到平衡;氧分压与该地区的海拔高度有关,仪表在使用前必须根据当地大气压进行补偿;测量溶液的含盐量高时,仪表标定时应使用含盐量相当的溶液;对于流通式测量方式,要求流过电极的最小流速为0.3m/s。

  • 【原创】怎样正确使用血气分析仪标准气体

    ①血气分析仪什么时当需更换气体    一般情况下,当压力指示表显示150-200psi时或10bar时,需要更换气体。 ②国产钢瓶和进口专用钢瓶有什么不同:    一般国产钢瓶内表面很粗糙,瓶内气体由于气体压力和分子活动能力大小等情况,容易产生不同的分子吸附和渗透,而进口专用钢瓶内表面涂有专用分子膜能有效地控制这些问题。 ③国产钢瓶和进口专用钢瓶盛装的保质期有什么不同:    由于钢瓶内表面结构不同及分子本身活动能力大小等情况,气体浓度会随时间的变化而改变,一般情况下,国产钢瓶所装气体保质期为18个月,进口钢瓶保质期一般为2年。 ④气体浓度变化对血气分析仪有什么影响:    a:使检验报告不准确    b:血气分析仪不能定标,仪器无法正常使用    c:引起检验电极灵敏度度的变化,长时间的使用会对电极造成不可逆转的损伤 ⑤有时为什么一瓶气体使用较长时间后仪器不能定标,而换上新的气体后仪器又能正常使用;    由于时间长,瓶内气体浓度变化 ⑹为什么我所能配制多种型号的进口气瓶的标准气,(特别是康仁-348系列,雷度ABL-700系列)    因为我所设备齐全,备有多种进口钢瓶专用接头。 ⑺使用国产减压阀和进口减压阀的区别:    血气分析仪是一种很精密的仪器,其使用的减压阀必须与原机相匹配,因为仪器内的气体必须在一定压力和一定流量的情况下分析结果才准确,而国产减压阀根本达不到这种要求,长时间使用国产减压阀会引起分析数据不准确及对仪器有很大的损伤。 ⑻怎样检验国产减压阀不能恒压和恒流工作:    我们可以做这样一个简单试验,在气瓶上接一个国产减压阀,再在减压阀上接一根橡皮管,并把橡皮管导入水中,这样我们可以观察从橡皮管中冒出的气泡,从而了解减压阀的工作情况。然后打开气瓶总阀,调节减压阀按钮,我们可以看到气泡均匀从水中冒出。但我们一旦关闭钢瓶总阀,则发现气泡不再均匀冒出,而是一瞬间就冲出来了。所以说国产减压阀输出压力会因钢瓶压力变化而变化。当压力达到一定程度时会对仪器造成巨大的损伤,但进口减压阀不会出现这样的情况。 ⑼为什么当血气分析仪因某种原因停机一段时间后,CO2二点定标很难通过(特别是当标准气使用完后,因更换气瓶时而停机)。    这种情况在血气仪使用过程中很普遍,是因为CO2电极易怕干燥,特别是在空气中。血气分析仪停机后再重新启动仪器,CO2二点定标很长时间不能通过就是这种原因所引起的。 ⑽为什么血气分析仪平时能正常工作,当停机后更换了新的标准气后,很长时间不能正常工作是什么原因?    这种情况特别是使用3年以上的仪器相当普遍,当出现这种情况时你们常常怀疑是新标准气浓度不准确引起的,其实这种情况是因为CO2电极干燥所引起的,只要有备用瓶轮流使用就   不会出现这种情况。 ⑾血气分析仪是一种很精密的仪器,我们应要像呵护小孩一样爱护它,十余年的实践经验提醒广大医院朋友:    ①定时更换标准气(进口瓶不要超过2年,国产瓶不要超过1年半)    ②最好使用原装进口减压阀,不要使用国产减压阀    ③使用专用的生产厂家配制的标准气    ④最好使用进口原装的气瓶    ⑤配有备用气瓶,不要因换气而停机。 ⑿为什么我所推出的备用气瓶广大医院都很受欢迎:    因为我所推出的备用气瓶重量轻,小巧灵便,同时配有专用接头,可以直接和进口减压阀直接匹配使用,而不需要更换减压阀。 [B]PS: 请楼主不要添加明显的产品及商家信息,否则做广告帖处理。本帖已被我修改[/B]

  • 【讨论】在线水分分析仪的问题

    在线分析仪板有很多专家,想要请教一个真实实例。某一个EVA厂需使用VA(vinylacetate)单体为主原料,其入槽后需检测水分,验收标准为80ppm以下,请问采用哪一种在线分析仪最好及保养费用最少。这个题目蛮有趣的, 最后采用的方法, 公布后可能会让人跌破眼镜, 不过, 也可显示出选择适当的在线分析仪的不容易, 几乎将所有的化学分析及分析仪器都有一定的基础后,才有办法做到!!!加油!加油!顺便看看能不能冲到点击热帖第一名!

  • 【转载】在线分析仪的核心问题是长期稳定性

    (本文转载) 1 在线分析仪是在线分析系统的核心技术  从系统学理论分析,在线分析仪是在线分析系统的次一层级子系统,在线分析仪是在线分析系统最强大的技术基础之一,在线分析仪无疑是在线分析系统的核心技术。  2 在线分析仪及其系统工程应用的终极目的  在线分析仪以在线分析系统形式和业态进入工程现场,在线分析仪的检测准确度就是在线分析系统工程应用的准确度。  在线分析仪是计量仪器,从技术本质上讲,在线分析系统就是计量设备。检测准确度是工程项目采用在线分析系统的终极目的。  3 在线分析仪的核心技术指标  在线分析仪的技术指标,单就出厂检验来讲,就有11项之多(完整测试有19项)。出厂检验最费时费事的是分析仪的稳定性检验,一般至少要七天以上,一线产品的合格指标,零点稳定性和量程(终点)稳定性要达到≤±1%/7d。  稳定性指标也是所有出厂检验项目中最困难、最不容易通过的,特别是微量红外分析仪,例如0~10ppmCO2,有的企业即使反复挑选检测器,仍然颇感困难。  在线分析仪的出厂检验项目中,还有重复性(误差)、输出波动、预热时间等都和分析仪的稳定性绝对直接相关。  根据对在线分析仪高精度应用的长期研究,我于2009年又延伸为在线分析系统高准确度应用的研究,新的结论是:在线分析仪,进而在线分析系统的基础技术指标可以认为是重复性误差,一线产品的合格指标是其相对标准偏差Cv≤0.5%,实测值可达到0.1~0.2%。所谓基础技术指标,就是其它技术指标的大小,都是根据它来确定。从技术本质上讲,分析仪的检测准确度也取决于它,这在在线分析仪的国家标准中能够得到印证。  根据以上事实和分析,早就该有核心技术观念的转变,应该认定稳定性是在线分析仪,也是在线分析系统代表性的核心技术指标,更简洁明了的表达是“稳定性第一”。  4 广义在线的技术思考  北京化工大学袁洪福教授对“在线”进行了全新的诠释和表述:在线不但是指工业生产工艺过程,还包括生产(及工艺过程),流通到消费的全过程,还有炉前分析和便携式。甚至还包括物流运输(如液化天然气的海运)、航天(如航天员训练)、医疗(如高压氧仓治疗)等,以及广泛领域的科学研究,这就有了“广义在线”这个全新的技术概念。  在线有两个突出的典型特征:一是与应用对象有直接的“在线”联接,二是工程应用状态下的长期连续性。  此时应将序3的结论予以修正:长期稳定性是在线分析仪,也是在线分析系统代表性的核心技术指标。  5 在线分析仪的稳定性优先原则  《仪器仪表行业十二·五发展规划》在关键内容的表述中,都是将稳定性置于可靠性之前,例如,存在问题的第一条题目就是“国产产品稳定性和可靠性和国外产品有明显差距。”这是令人佩服的十分高明的技术见解。当然这并不是为了否定可靠性的重要,而是因为稳定性有很客观的必须检验的技术指标,本行业的所有参与者对国家技术标准不会没有异议,对检测准确度的终极目的也有最大程度的共识,因此稳定性指标的可操作性就特别强。而可靠性就显得很抽象和概念化,就连无故障连续工作时间MTBF(h),大型专业厂也很少试验过。所谓很少,几十年才一两次吧。  在技术表达上,将稳定性置于可靠性之前,应该说是有技术根据的,有充分理由的,经过深思熟虑的。  6 在线分析仪检测器研发的制高点  在线分析仪检测器(即传感器)是在线分析仪的心脏,其研发的制高点定然是稳定性。令人十分遗憾的是,很多不成熟的工程师却止步于仅仅是传感器的灵敏度达到了要求,对稳定性不是盲目疏忽,就是根本无能为力,使得该在线分析仪的技术成熟度很不够。为该产品的技术生命和今后的大批生产就此埋下了“定时炸弹”般的巨大隐患。  因此在线分析仪的检测器研发,定然也是“稳定性第一”。

  • 【分享】在线溶解氧(DO)分析仪的测量原理及维护

    在污水处理过程中,通过增加污水中的氧含量使污染物通过活化泥浆被分解出来,达到污水净化的目的,在线测量氧含量有助于确定最佳的净化方法和最经济的曝气池配置。在生物发酵过程中氧含量的测量数据可对工艺过程进行指导,如判断发酵过程的临界氧浓度、发酵罐的供氧能力以及菌体的活性和菌体的生长量等,并根据发酵时的供氧和需氧变化来指导补料操作。 一 溶解氧分析仪测量原理氧在水中的溶解度取决于温度、压力和水中溶解的盐。溶解氧分析仪传感部分是由金电极(阴极)和银电极(阳极)及氯化钾或氢氧化钾电解液组成,氧通过膜扩散进入电解液与金电极和银电极构成测量回路。当给溶解氧分析仪电极加上0.6~0.8V 的极化电压时,氧通过膜扩散,阴极释放电子,阳极接受电子,产生电流,整个反应过程为:阳极 Ag+Cl→AgCl+2e-阴极 O2+2H2O+4e→4OH-根据法拉第定律:流过溶解氧分析仪电极的电流和氧分压成正比,在温度不变的情况下电流和氧浓度之间呈线性关系。二 溶解氧含量的表示方法溶解氧含量有3 种不同的表示方法:氧分压(mmHg);百分饱和度(%);氧浓度(mg/L 或10-6),这3 种方法本质上没什么不同。(1)分压表示法:氧分压表示法是最基本和最本质的表示法。根据Henry 定律可得,P=(Po2+P H2O )×0.209,其中,P 为总压;Po2 为氧分压(mmHg);P H2O为水蒸气分压;0.209 为空气中氧的含量。(2)百分饱和度表示法:由于曝气发酵十分复杂,氧分压不能计算得到,在此情况下用百分饱和度的表示法是最合适的。例如将标定时溶解氧定为100%,零氧时为0%,则反应过程中的溶解氧含量即为标定时的百分数。(3)氧浓度表示法:根据Henry 定律可知氧浓度与其分压成正比,即:C=Po2×a,其中C 为氧浓度(mg/L);Po2 为氧分压(mmHg);a 为溶解度系数(mg/mmHgL)。溶解度系数a 不仅与温度有关,还与溶液的成分有关。对于温度恒定的水溶液,a为常数,则可测量氧的浓度。氧浓度表示法在发酵工业中不常用,但在污水处理、生活饮用水等过程中都用氧浓度来表示。三 影响溶解氧测量的因素氧的溶解度取决于温度、压力和水中溶解的盐,另外氧通过溶液扩散比通过膜扩散快,如流速太慢会产生干扰。1. 温度的影响由于温度变化,膜的扩散系数和氧的溶解度都将发生变化,直接影响到溶氧电极电流输出,常采用热敏电阻来消除温度的影响。温度上升,扩散系数增加,溶解度反而减小。温度对溶解度系数a 的影响可以根据Henry 定律来估算,温度对膜扩散系数β可以通过阿仑尼乌斯定律来估算。(1)氧的溶解度系数:由于溶解度系数a 不仅受温度的影响,而且受溶液的成分的影响。在相同氧分压下,不同组分的实际氧浓度也可能不同。根据亨利定律可知氧浓度与其分压成正比,对于稀溶液,温度变化溶解度系数a 的变化约为2%/℃。(2)膜的扩散系数:根据阿仑尼乌斯定律,溶解度系数β与温度T 的关系为:C=KPo2exp(-β/T),其中假定K、Po2 为常数,则可以计算出β在25℃时为2.3%/℃。当溶解度系数a 计算出来后,可通过仪表指示和化验分析值对比计算出膜的扩散系数(这里略去计算过程),膜的扩散系数在25℃时为1.5%/℃。2. 大气压的影响根据Henry 定律,气体的溶解度与其分压成正比。氧分压与该地区的海拔高度有关,高原地区和平原地区的差可达20%,使用前必须根据当地大气压进行补偿。有些仪表内部配有气压表,在标定时可自动进行校正;有些仪表未配置气压表,在标定时要根据当地气象站提供的数据进行设置,如果数据有误,将导致较大的测量误差。3. 溶液中含盐量盐水中的溶解氧明显低于自来水中的溶解氧,为了准确测量,必须考虑含盐量对溶解氧的影响。在温度不变的情况下,盐含量每增加100mg/L,溶解氧降低约1%。如果仪表在标定时使用的溶液的含盐量低,而实际测量的溶液的含盐量高,也会导致误差。在实际使用中必须对测量介质的含盐量进行分析,以便准确测量及正确补偿。4. 样品的流速氧通过膜扩散比通过样品进行扩散要慢,必须保证电极膜与溶液完全接触。对于流通式检测方式,溶液中的氧会向流通池内扩散,使靠近膜的溶液中的氧损失,产生扩散干扰,影响测量。为了测量准确,应增加流过膜的溶液的流量来补偿扩散失去的氧,样品的最小流速为0.3m/s。四 注意的问题对溶解氧分析仪来说,只要选型、设置、维护得当,一般均能满足工艺的测量要求。溶解氧分析仪的使用不好的主要问题出在:使用维护不正确;电极内部泄露造成温度补偿不正常;电极输入阻抗降低等。1. 日常维护仪表的日常维护主要包括定期对电极进行清洗、校验、再生。(1)1~2 周应清洗一次电极,如果膜片上有污染物,会引起测量误差。清洗时应小心,注意不要损坏膜片。将电极放入清水中涮洗,如污物不能洗去,用软布或棉布小心擦洗。(2)2~3 月应重新校验一次零点和量程。(3)电极的再生大约1 年左右进行一次。当测量范围调整不过来,就需要对溶解氧电极再生。电极再生包括更换内部电解液、更换膜片、清洗银电极。如果观察银电极有氧化现象,可用细砂纸抛光。(4)在使用中如发现电极泄露,就必须更换电解液。2. 仪表标定仪表的标定方法一般可采用标准液标定或现场取样标定。(1)标准溶液标定法:标准溶液标定一般采用两点标定,即零点标定和量程标定。零点标定溶液可采用2%的Na2SO3 溶液。量程标定溶液可根据仪表测量量程选择4M 的KCl 溶液(2mg/L);50%的甲醇溶液(21.9mg/L)。(2)现场取样标定法(Winkler 法):在实际使用中,多采用Winkler 方法对溶解氧分析仪进行现场标定。使用该方法时存在两种情况:取样时仪表读数为M1,化验分析值为A,对仪表进行标定时仪表读数仍为M1,这时只须调整仪表读数等于A 即可;取样时仪表读数为M1,化验分析值为A,对仪表进行标定时仪表读数改变为M2,这时就不能将调整仪表读数等于A,而应将仪表读数调整为1 MA ×M2。3. 使用中应注意的问题使用中应注意以下问题:由于溶解氧电极信号阻抗较高(约20MΩ),溶解氧电极与转换器之间距离最大为50m;溶解氧电极不用时也应处于工作状态,可接在溶解氧转换器上。久置或重新再生(更换电解液或膜)的电极,在使用前应置于无氧环境极化1~2h;由于温度变化对电极膜的扩散和氧溶解度有较大影响,标定时需较长时间(约10min),以使温补电阻达到平衡;氧分压与该地区的海拔高度有关,仪表在使用前必须根据当地大气压进行补偿;测量溶液的含盐量高时,仪表标定时应使用含盐量相当的溶液;对于流通式测量方式,要求流过电极的最小流速为0.3m/s。此文章由 http://www.3017.com.cn 转发文章连接: http://www.31517.cn/jishuwenzhang/wenzhang.asp?wenzhang_id=150&ta=3&tb=4 我站诚邀友情连接:QQ 84424693

  • 【原创大赛】AOA在线藻类分析仪比对结果和误差来源分析

    【原创大赛】AOA在线藻类分析仪比对结果和误差来源分析

    地表水体的富营养化引起藻类及其它浮游生物迅速繁殖,导致溶解氧下降,水质恶化,鱼类和其它生物大量死亡,甚至引发供水危机。色素是藻类光合作用时吸收、转化和传递光能的主要物质,叶绿素以多种形式存在于藻类植物中,大约占有机物干重的1-2%,是估算其生物量的重要指标,快速准确测定水体中叶绿素a浓度对于评价水体营养状态和水质管理具有重要意义。 叶绿素测定方法有很多,大致分为萃取测定、荧光活体测定及水华遥感监测。萃取分析利用有机溶剂萃取植物细胞叶绿素进行光谱光度测定,根据分析技术的不同分为分光光度法、荧光法和高效液相色谱法。萃取分析只要操作准确,提取完全,可以得到准确和重复性好的结果,但是过程繁琐,不方便用于连续监测。 AOA在线藻类分析仪利用叶绿素荧光特性进行分类定量分析,活体测量,无需样品预处理,仪器操作简单,可以快速地获得大量叶绿素数据,广泛运用在在线监测。为保证在线分析仪的有效运行,需要用标准样品来校准、性能考核和日常数据质量控制,但国内还未开发叶绿素的标准样品和质控样品,已知叶绿素含量(用萃取方法测定)的浮游植物悬浮液被认为是最好的标样替代品。当水体发生水华,生物多样性下降,往往是一种藻类成为绝对优势,可作为纯种藻类标准样品,本文将几个代表性的比对实验整理分析,探讨误差原因。[b]1.比对方法[/b]1.1清洗AOA在线藻类分析仪蠕动泵、测量室及其底盖,检查纯水透光率值。1.2水样不经任何处理,测量叶绿素浓度值。1.3剩余水样酌量加入1%碳酸镁悬浊液(按1升水量加入1ml),防止酸化。1.4带回实验室,尽快分析,实验室分析方法依据《无水乙醇热浴超声法测定淡水中的叶绿素a》[sup][/sup]。[b]2实验2.1微囊藻水样2.1.1样品来源[/b] 2014年8-10月某水库出现铜绿微囊藻水华,采集水华“浓密”处水样作为标准储备液,分别取0、2、5、10、15、20、25、50、100ml,用纯水稀释成500ml,检查两种方法叶绿素a和藻密度线性。取水库水华严重区、进水口、湖心和出水口四个水样,做实际水样比对分析。[img=,690,690]http://ng1.17img.cn/bbsfiles/images/2018/07/201807011537059882_3331_3247383_3.jpg!w690x690.jpg[/img][b]2.1.2实验结果[img=,690,361]http://ng1.17img.cn/bbsfiles/images/2018/07/201807011538312332_220_3247383_3.png!w690x361.jpg[/img][/b]表1微囊藻稀释水样比对结果[b][img=,622,352]http://ng1.17img.cn/bbsfiles/images/2018/07/201807011539397062_938_3247383_3.png!w622x352.jpg[/img][/b]图2微囊藻水样线性比对[img=,690,215]http://ng1.17img.cn/bbsfiles/images/2018/07/201807011611492722_7678_3247383_3.png!w690x215.jpg[/img]表2含微囊藻实际水样比对表1、表2和图2表明,两种测量方法的结果与藻类数量之间存在非常显著的相关性,但AOA在线分析仪测量结果低于分光光度法,浓度越高,差异性越大。[b]2.1.3结果分析[/b]2.1.3.1分光光度法误差分析 萃取后叶绿素,对光照和氧气很敏感,极易造成不可逆的分解,因此,节时高效是分光光度法的质量保证,而温度是质控措施的关键。在超声波萃取过程,提高温度加快叶绿素溶出速度,同时,叶绿素降解的速度也是加快的,最佳超声波萃取条件:60℃萃取25分钟,2小时内完成测定。另外,实验室遮光也是必要。[img=,690,690]http://ng1.17img.cn/bbsfiles/images/2018/07/201807011541253150_3659_3247383_3.jpg!w690x690.jpg[/img]2.1.3.2AOA荧光法误差来源 AOA在线藻类分析仪原理:叶绿素具有荧光特性,一定的激励光,任何一种藻产生的荧光强度与其所含叶绿素a成正比,几种不同藻混合体产生的荧光强度等于各自荧光的总和。采用325纳米、450纳米、525纳米、570纳米、590纳米和610纳米作为激励光,其中325纳米是用来补偿黄色物质(有机物),测定685nm的光强,计算总叶绿素a值和不同藻的浓度。(1)水样原始性状发生变化暗室环境下,激励光照到藻上,能量分成三部分:光合作用、叶绿素自发荧光和热能辐射。如果藻的活性强,光合作用消耗的能量就越多,产生荧光的强度越小,反之,如果藻的活性弱,荧光强度就强。荧光能量和光合作用的能量是相互竞争的,叶绿素荧光常常被认为光合作用无效指标的依据。比对实验的样品,从采样经实验室样品处理,到水质自动监测站仪器分析,剩余样品送回实验室做分光光度法比对,再紧凑也需要3-4天完成,运输、保存过程,叶绿素在活体内也和其它物质处于不断更新变化中,可能衰老、也可能分解破坏,比对实验要求的同步水平也不可能实现,这是比对误差不可忽视的部分。(2)微囊藻特殊的细胞结构使水样分布不均匀微囊藻群体有胶鞘和伪空泡,可以自由漂浮在水中,水样在实验室静置一天后,出现明显的分层,测量过程难以保证均匀分布。[img=,690,690]http://ng1.17img.cn/bbsfiles/images/2018/07/201807011542423667_4598_3247383_3.jpg!w690x690.jpg[/img](3)工作温度与校准温度不一致参考各类荧光法仪器说明书,浮游生物悬浊液的荧光反应受温度的影响很大,有些仪器的温度补偿2%⁄ ℃,但这种经验补偿不能保证准确的现场测量,因为每一种浮游植物的荧光强度随温度变化程度不同。这台AOA藻类分析仪安装测试在冬季,这次比对实验在9月份进行,温差亦有影响。(4)浊度的影响 实验室分光光度法经过0.8um滤纸过滤,比色扣除750nm吸光度值,只要操作正确,浊度的影响很小。水中的悬浮颗粒物对激励光和产生的荧光有反射、散射和阻挡的作用,造成激励光和荧光产量的下降,YSI3026传感器检测结果:1NTU的 浊度影响大约是0.03ug/L叶绿素。 除色素以外的细胞结构(细胞壁、胶被、储藏物质)以溶解有机碳为主要成分,对紫外光和蓝光具有强烈的吸收,也可视为影响测定的悬浮物,AOA在线藻类分析仪称之为黄色物质,用325纳米补偿。铜绿微囊藻细胞壁分为两层,内层是纤维素,外有胶鞘,有相当的厚度,互相溶合形成多细胞群体。图5显示黄色物质与叶绿素含量相关,AOA的测量结果反映了铜绿微囊藻细胞群体特征。分光光度法和AOA扣除浊度方法各有不同,是否有可比性,有待进一步了解。[img=,586,305]http://ng1.17img.cn/bbsfiles/images/2018/07/201807011543564741_5446_3247383_3.png!w586x305.jpg[/img]图5(5)水样镜检微囊藻绝对优势,视野内不见其它藻类,AOA分析结果有少量绿藻、硅藻,其它的比对实验也出现藻类识别错误。[b]2.2薄甲藻水样[img=,690,920]http://ng1.17img.cn/bbsfiles/images/2018/07/201807011545089042_4958_3247383_3.jpg!w690x920.jpg[/img][/b]图6[b]2.2.1实验结果[/b][img=,690,289]http://ng1.17img.cn/bbsfiles/images/2018/07/201807011547036798_1735_3247383_3.png!w690x289.jpg[/img]表3薄甲藻水样比对结果2.2.2结果分析2.2.2.1镜检视野内为单一薄甲藻,与AOA定性结果相差较大。从图7可知,绿藻和硅甲藻的光谱图很相似,从光谱图识别绿藻和硅甲藻是困难的,AOA的藻类分类和藻密度估量值仅能作为参考,要将监测数据做水体生态评估的依据,必须结合实验室镜检和萃取分析方法。[img=,690,496]http://ng1.17img.cn/bbsfiles/images/2018/07/201807011547417547_4700_3247383_3.png!w690x496.jpg[/img]图72.2.2.2薄甲藻AOA测量值约为光度法的1/3,薄甲藻有鞭毛,可以自由游动,离开有利的生活条件则很快失去活性,沉入水底不再活动,且细胞内容物溶出。不能保证水样原始性状,是叶绿素a比对测定误差的主要来源。[img=,690,690]http://ng1.17img.cn/bbsfiles/images/2018/07/201807011548482013_3683_3247383_3.jpg!w690x690.jpg[/img][color=#423B3B]2.2.2[/color][color=#423B3B].3[/color][color=#423B3B]薄甲藻细胞内容物溶出后,显微镜照片清楚看到细胞壁很薄,AOA测量结果印证黄色物质影响极小。[/color][b]2.3小球藻[img=,690,920]http://ng1.17img.cn/bbsfiles/images/2018/07/201807011550015246_3694_3247383_3.jpg!w690x920.jpg[/img]图9 小球藻[/b]垃圾渗滤液水样,实验室放置几周,变绿,镜检结果:小球藻绝对优势,少量硅藻。[b]2.3.1实验结果[/b][img=,690,367]http://ng1.17img.cn/bbsfiles/images/2018/07/201807011551332128_4472_3247383_3.png!w690x367.jpg[/img]表4小球藻水样比对[b]2.3.2结果分析[img=,537,303]http://ng1.17img.cn/bbsfiles/images/2018/07/201807011552368052_2948_3247383_3.png!w537x303.jpg[/img][/b]图10小球藻水样线性分析2.3.2.1藻类分类与实验室镜检结果基本吻合;2.3.2.2低浓度出现少量蓝藻,因为仪器刚做完微囊藻样品,检测室可能有少量残留,比对实验之前彻底清洗检测室很有必要;2.3.2.3分光光度法相关系数小于AOA,并非方法不可行,而是叶绿素萃取太依赖分析人员的操作,稍有疏忽就会造成萃取损失,相比之下仪器要稳定可靠些。2.3.2.4小球藻叶绿素a测量结果AOA/分光光度法比值0.7-1.5,高于铜绿微囊藻和薄甲藻。两种方法测量结果比较接近的原因是因为小球藻不会运动,活体样品保持比较稳定的悬浮液状态,而AOA测量结果高于分光光度法的误差,一方面来自叶绿素和藻密度系数的确定,一方面来自萃取的损失。[img=,601,407]http://ng1.17img.cn/bbsfiles/images/2018/07/201807011554177672_7731_3247383_3.png!w601x407.jpg[/img]图11AOA仪器校正界面 荧光测定仪校准即确定叶绿素和藻密度相关系数,可以给活体叶绿素传感器提供的最好标准物是浮游植物悬浮液,此悬浮液亦有部分用萃取方法测定叶绿素含量,并且应该从监测地点获得,这样的标准物质产生的荧光可以尽可能接近现场的生物体。荧光测定同时受浊度、温度、细胞活性、不同藻的种类、大小、形状、和叶绿素种类的影响,这些都大大限制活体测量的准确度。2.4不同水体样品分析[img=,690,267]http://ng1.17img.cn/bbsfiles/images/2018/07/201807011555277271_2806_3247383_3.png!w690x267.jpg[/img]表5不同水体样品分析2.4.1与单一藻类样品结果一致,绿藻含量高的水样AOA测量值偏高,微囊藻水样上浮分层、甲藻和裸藻活性降低下沉造成水样不均匀分布,是比对结果偏低的一个因素。而在线监测时,水样中的藻类足够鲜活,吻合度会好些。2.4.2按照AOA提供的分类方法(图12),绿藻和蓝藻分类结果与镜检匹配,单一种类薄甲藻检测结果显示为绿藻、隐藻、蓝藻、极少量甲藻,镜检中数量可观的硅藻、裸藻在AOA测量结果中未见。[img=,600,350]http://ng1.17img.cn/bbsfiles/images/2018/07/201807011602453540_1118_3247383_3.jpg!w600x350.jpg[/img]图122.4.3水库水质良好,杂质少,其它水体有机杂质含量相对高,AOA黄色物质测量结果与水体洁净程度吻合。[b]小结[/b]:萃取分析耗时长,不方便用于连续监测,需要有经验、高效率的分析人员才能得到准确、重复性好的结果。活体荧光法简便易操作,但准确度受更多因素的限制。两种方法不可互相替代,而应该取长补短,互为参照。参考文献 王丽娟,章岳蓬,郭步平等. 无水乙醇热浴超声法测定淡水中的叶绿素a.当代环保,2010,2(4):14-17.

  • 【资料】在线pH计和溶解氧分析仪的不同

    污水处理厂使用的分析仪有两种:在线pH计和溶解氧分析仪。工作原理1、工业pH计的工作原理工作原理  水的pH值随着所溶解的物质的多少而定,因此pH值能灵敏地指示出水质的变化情况。pH值的变化对生物的繁殖和生存有很大影响,同时还严重影响活性污泥生化作用,即影响处理效果,污水的pH值一般控制在6.5~7之间。  水在化学上是中性的,某些水分子自发地按照下式分解:H2O=H++OH-,即分解成氢离子和氢氧根离子。在中性溶液中,氢离子H+和氢氧根离子OH-的浓度都是10-7mol/l,pH值是氢离子浓度以10为底的对数的负数:pH=-log,因此中性溶液的pH值等于7。如果有过量的氢离子,则pH值小于7,溶液呈酸性;反之,氢氧根离子过量,则溶液呈碱性。   pH值通常用电位法测量,通常用一个恒定电位的参比电极和测量电极组成一个原电池,原电池电动势的大小取决于氢离子的浓度,也取决于溶液的酸碱度。采用了CPS11型pH传感器和CPM151型pH变送器。测量电极上有特殊的对pH反应灵敏的玻璃探头,它是由能导电、能渗透氢离子的特殊玻璃制成,具有测量精度高、抗干扰性好等特点。当玻璃探头和氢离子接触时,就产生电位。电位是通过悬吊在氯化银溶液中的银丝对照参比电极测到的。pH值不同,对应产生的电位也不一样,通过变送器将其转换成标准4~20mA输出。2、溶氧分析仪的工作原理   水中的氧含量可充分显示水自净的程度。对于使用活化污泥的生物处理厂来说,了解曝气池和氧化沟的氧含量非常重要,污水中溶氧增加,会促进除厌氧微生物以外的生物活动,因而能去除挥发性物质和易于自然氧化的离子,使污水得到净化。   测定氧含量主要有三种方法:自动比色分析和化学分析测量,顺磁法测量,电化学法测量。水中溶氧量一般采用电化学法测量。麦该厂采用了COS 4型溶氧传感器和COM252型溶氧变送器。   氧能溶于水,溶解度取决于温度、水表面的总压、分压和水中溶解的盐类。大气压力越高,水溶解氧的能力就越大,其关系由亨利(Henry)定律和道尔顿(Dalton)定律确定,亨利定律认为气体的溶解度与其分压成正比。   以COS 4氧量测量传感器为例。其中的电极由阴极(常用金和铂制成)和带电流的反电极(银)、无电流的参比电极(银)组成,电极浸没在电解质如KCl、KOH中,传感器有隔膜覆盖,隔膜将电极和电解质与被测量的液体分开,因此保护了传感器,既能防止电解质逸出,又可防止外来物质的侵入而导致污染和毒化。   向反电极和阴极之间施加极化电压,假如测量元件浸入在有溶解氧的水中,氧会通过隔膜扩散,出现在阴极上(电子过剩)的氧分子就会被还原成氢氧根离子: 电化学当量的氯化银沉淀在反电极上(电子不足):4Ag+4Cl-? 4AgCl+4e-。 对于每个氧分子,阴极放出4个电子,反电极接受电子,形成电流,电流的大小与被测污水的氧分压成正比,该信号连同传感器上热电阻测出的温度信号被送入变送器,利用传感器中存储的含氧量和氧分压、温度之间的关系曲线计算出水中的含氧量,然后转化成标准信号输出。参比电极的功能是确定阴极电位。 COS 4溶氧传感器的响应时间为:3分钟后达到最终测量值的90%,9分钟后达到最终测量值的99%;最低流速要求为0.5cm/s。

  • 在线石油产品分析仪样本

    以下附件是HACH-DKK的在线油品分析仪,包括蒸馏仪、总硫分析仪、闪点仪、蒸气压仪、浊点、倾点、冷滤点分析仪、色度分析仪、油品识别仪等。其中蒸馏仪、总硫分析仪、蒸气压分析仪取得NEPSI 氢气环境下的防爆认证,这是唯一一个取得中国防爆认证的外国品牌。总硫分析仪则是最先进技术的产品,维护量小,测量达到国V标准,安全可靠,无日常维护的机械与真空部件。

  • 【讨论】你的在线分析仪的标定。

    通常空分行业的在线分析仪都采用标准气标定仪器,严格按照标气值标定,至于测量数据是否与工艺工况相接近,往往不太在意。1、你是否对标气值有所怀疑呢?2、你是否会想法去验证它的数值,来加强你的判断呢?3、你通常采用何种方法验证呢?大家都是搞在线分析表的,有任何想法都可以谈,不要顾忌!

  • 【分享】在线分析仪表的分类

    按测定方法分: 光学分析仪器、电化学分析仪器、色谱分析仪器、物性分析仪器、热分析仪器等。 按被测介质的相态分:气体分析仪和液体分析仪。其中气体分析仪表包括红外线分析仪、热导式气体分析仪(氢表、氩表)、氧化锆、磁力机械氧分析仪、热磁式氧分析仪、磁压式氧分析仪、激光烟气分析仪、折射仪、硫比值分析仪、微量水、微量氧、CEMS烟气分析仪、烃分析仪、色谱分析仪、质谱分析仪、拉曼光谱分析仪等等。 液体分析仪表主要是常见的水分析仪表包括PH计、电导仪、COD、DO、TOC、ORP、浊度计、氨氮分析仪、水中油、余氯分析仪等等。 以上分类方法不是绝对的,比如电容式微量水分仪既可以测量气体中的微量水分又可以处理液体中的微量水分。但是习惯上把它归在气体分析仪表中。

  • 在线中子活化煤质分析仪在煤矿的应用

    在线中子活化煤质分析仪在煤矿的应用 [澳]M艾德沃兹  在线煤质分析仪应用于煤炭业已有20多年的历史,其稳定的销量足以证明其价值。在线分 析仪通过提供实时信息为煤厂各煤种的质量控制和生产管理提供了极大的帮助, 如果依赖化验室,这些数据只能在采样后的数小时甚至数天后才能得到。 近年来, 随着经济下滑,生产优化和料堆控制变得尤为重要。煤炭业的持续下滑导致该行业重新关注 煤炭质量管理,从而提高客户满意度最终增加煤炭销量。同时也提高矿区资源的有效利用, 使原先认为煤质不达标的资源可以有选择地开采。为达到上述目的,煤炭生产商和煤炭用户 开始寻找更为经济且仍然高精度煤质分析仪。随着人们对环境的日益关注,特别是对硫释放的关注导致法律对污染控制更加严格。 新近设计的皮带在线中子活化煤质分析仪(PGNAA)恰好可以满足上述要求。  1 在线煤质分析技术与设备  1.1  双能量伽玛传输技术(DUET)  DUET仪器自20世纪80年代早期上市以来,已成为在线煤质监测设备家族中的重要一员。 该设备价格相对低廉,安装便捷,可以直接在皮带上进行在线煤质分析,只要是分析固定煤 种,DUET分析仪测定煤质灰分就可以达到相当的精度。它利用两个γ射线源贯穿煤层而测量 灰分。对给定的煤种,该设备的测定精度为:一个标准偏差下0.5%~1%。该设备的主要缺点 是其标定与煤种有关,特别是在灰中的铁和钙元素变动很大的情况下。  该设备的用途包括:监测运送到选煤厂的原煤;监测洗净的精煤;给选煤厂提供反馈信息; 通过混煤优化资源利用,使之达到一定的质量目标;监测送往用户的煤质是否达到合同要求 的质量。  1.2  自然伽玛射线技术  另一种广泛使用的简单的分析仪能够测定煤中的自然放射性大小,并将其与灰分联系起来。 这种煤质分析仪不需要放射源,对影响DUET系统的铁和钙元素的变化不敏感。  然而,作为一种“被动”的系统,该分析仪的精度大约只为1%~2%,其理想应用是测量厚煤 层的灰分,例如原煤输送机或选煤厂入料输送机上的煤质,在煤层很厚时,这仍然是测定灰 分的唯一技术。然而,该分析仪同样与煤种有关,因为它依赖与灰分相关的自然伽玛放射素 的存在(如钾)。    1.3 快速伽玛中子活化分析技术(PGNAA)  为满足市场上对具有高精度却与煤种无关的灰分仪的需求,上世纪80年代中期开发了首 台PGNAA旁线分析仪。该分析仪最常用于电厂配煤控制,以及选煤厂控制和煤的分选和销售 煤的质量控制。除了测定人们通常感兴趣的灰分,水分,发热量以外,还可以测定灰分中的 硫分,美国清洁空气法案要求电厂对SO2的排放进行控制,该分析仪也可以测定对锅炉结 焦有影响的Na和Cl。  这种旁线分析仪需要采样设备把煤从皮带上采初样。煤样通过垂直溜槽进行中子照射分析 。在几分之一秒的时间内,吸收的能量以伽玛辐射的形式释放出来。由于每一元素具有特定 的伽玛射线光谱,光谱可以拆解成组成元素的光谱,从而确定煤中的元素成分。 。该技术与煤种无关,所以很有吸引力。  元素分析通过计算组合,可以得出灰分,发热量和挥发分。该分析仪对灰分的分析精度0.25 %~0.4%。  该分析仪本身价值数十万美金,而且配套的采样和传输系统也价格不菲,这就限制了分析仪 的广泛使用。  2  PGNAA皮带在线分析仪的应用  直到最近,把PGNAA直接用于在线测量输送机上的煤质测试才获得成功。实验结果虽不能达 到通常旁线PGNAA分析仪低于0.4%的精度,但使得系统成本大为降低。理论计算表明,溜槽 通过式的PGNAA分析仪不存在皮带在线分析时受到煤层厚度变化和煤质垂直方向分布不均匀 的问题。  与PGNAA旁线分析仪相比,PGNAA在线分析仪的优势体现在该设备不需要安装采样楼,可以直 接放在主皮带上使用。因此,大大节省了采样和传输设备的安装和维护成本。除此之外,也 避免了采样偏差,因为在线分析仪是对整个煤流进行分析。  除了煤层很厚的现场之外,在线分析仪可以在任意位置安装。在煤层厚度超过35cm ,使用通过自然放射性来测定灰分的分析仪仍然是合适的。  PGNAA在线分析仪的适用性意味着它可以分析各种不同的煤种,工厂试验已经证明了其准确 测定煤质的能力。由于该设备能够准确、实时地分析灰分、水分、硫分、发热量、灰分中的 氧化物和其他参数,能进行更好的配煤和选煤。因此,降低了工厂的生产成本。分析结果可 以实现每两分钟更新一次,便于工厂相应进行快速调节。  3  皮带在线分析仪的发展  3.1  工厂测试  以PGNAA旁线分析仪的技术为基础,加上经济、可靠和高速的现成的电脑处理芯片,克服了 早期PGNAA在线分析仪遇到的困难。工厂测试首次表明可以对输送机上煤质成分的变化进行 修正补偿,基于此结果,就可以进行分析仪的现场试验了。   3.2  现场试验  2000年3月,Scantech公司在澳大利亚昆士兰州进行了COALSCAN9500X型PGNAA在线分析仪的 商业化现场试验。在现场,卡车把煤运到料仓中,然后三级破碎机把煤加工成最大粒度为90 mm。分析仪安装在破碎机之后的1050mm宽的输送机上,把煤送入1000t的料仓。皮带上煤 层 在厚度100~400mm之间变动。分析仪后面装有皮带刮扫式自动采样系统,煤可以直接从缓 冲仓装到火车上或者地面运输至电厂,电厂的自动采样系统测定每个班的结果,并与分析 仪的分析结果相比较以进行核实,这是PGNAA分析仪的典型应用。  通过动态采样可以检验仪器在工厂里按静态煤样所作的标定是否准确。将所有的动态采样均 按双倍收集以评估采样误差,化验室的误差,以及分析仪误差。当年进行了6次采样比较, 使分析仪涵盖了一系列不同煤种、煤厚以及皮带垂直方向上不均匀的分布。每次采样比较会 收集10份双倍样本,送到两个权威化验室进行分析。因此每一样本会有三个结果(分别来自 化验室1、化验室2和分析仪)。由于一些外部因素的影响,每次收集的样本数量比预定的30 个(10×3)要少。  3.3  现场试验的结果  每个样本均在PGNAA分析仪后的某一位置由皮带刮扫双倍收取,奇数样本送往化验室1,偶数 样本送往化验室2,每90秒采样一次,根据选煤厂的工作状况,样本在1~3小时内采完,每 次采样均依照ASTM标准。  尽管该试验原先并不研究采样和化验室的精度,但任何一项新技术都必须与现有的方法进行 比较,再来讨论彼此之间有哪些不同。两个样本分析结果的不同使检验分析仪标定结果变得 更加不确定。样本按照GRUBBSESTIMATOR方法进行评估。  双倍收集样本提供了公平、独立地评估化验室和分析仪的误差手段。事 实上,由于试验中动态样本的收集特别仔细和严格,化验室结果的准确性很可能优于日常进 行的传统化验结果。我们预见分析结果会有发散分布,但是7月份两组化验室结果的灵敏性 不同,8月份出现了偏移误差。化验室结果的不可靠性增加了需要用现场数据标定分 析仪的困难,两组化验室灰分结果的标准偏差是1.02%。如果这一结果是在线分析仪和 化验结果的偏差,通常是不能被接受的。  表1 皮带在线分析仪灰分精度的Grubbs估算值(略)  通过G RUBBSESTIMATOR方法可以单独估算分析仪精度以及每一个化验室的精度。表1汇总了这些估 算精度,分析仪的估算精度高于化验室的估算精度。数据中有明显的偏离点,因此在舍弃了这些偏离点数据后对估算精度重新进行了计算。舍弃 这些数据采用两级步骤,即分别对35个样本,32个样本以及全部36个样本进行了评估。分析 仪的灰分估算精度达到了0.25%,对适当标定的PGNAA分析。

  • 水中油在线监测法--紫外荧光法与红外法的对比介绍

    [align=center]水中油在线监测法--紫外荧光法与红外法的对比介绍[/align] 水中的油分属于有机污染物的一种,其降解会导致水中溶解氧含量的下降,导致水质恶化,因此,在污水排放口以及地表水监测领域,水中油是重要的监测指标。在线水中油是近年来水质监测的新热点,可以覆盖到工业冷却水、循环水、锅炉用水、中水回用、污水排放等应用领域,尤其是在石化、炼油等行业的循环水处理领域。同时水中油也是地表水监测的一项重要指标。 国家环境保护总局 2002-12-25发布的自2003-01-01开始实施的中华人民共和国环境保护行业标准(HJ/T 92—2002)《水污染物排放总量监测技术规范》指出水污染物排放总量监测项目和监测方法中石油类、动植物油监测方法的自动在线监测法为(红外法、荧光法)。[align=left](1)红外法[/align][align=left]1)测定原理:采用有机溶液(四氯化碳、四氯乙烯等)萃取水样后,用三波长红[/align][align=left]外光度法或非分散红外法测定。[/align][align=left]2) 性能指示:[/align][align=left](1) 测定范围:0-20mg/L至0-100mg/L[/align][align=left](2) 重线性:±10%以内[/align][align=left](3) 测定周期:10min[/align][align=left](4) 输出信号: DC0-5V 4-20mA DC[/align][align=left](2)荧光法[/align][align=left] 紫外荧光作为最快速且具有良好选择性的方法,它可以检测到非常低浓度的水中油,是一种可靠性强维护量低的稳定测量系统,它适用于江河,湖泊和水库;设备冷却水;废水(炼油厂和化工厂排出的污水)[/align][align=left] 测定原理:水中石油类的测定也可以采用荧光法,主要测定水中含苯环的化合物,该方法采用直接测定水样的方法。多环芳烃具有很强的荧光特性,他们可以吸收紫外荧光,同时,受到紫外光激发会产生可见光波段的荧光,在波长254nm的荧光照射下,油类物质特征比230nm时要强。经过大量实验,我们确定用254nm的紫外光激发,水中油中的多数成分具有最强烈的荧光特性。不需要试剂,降低运行成本。采用与手工油类测定方法的比对实验,可间接得到水中的石油类浓度。 采用荧光法制成的仪器对水中油有非常良好的选择性,分析技术可应用于实验室也可应用于现场在线监测,荧光法测水中油很容易解决水中悬浮物等的影响,一般来说不需要对化合物和样品的背景干扰进行修正,荧光法检出限低(最低可达0.001mg/L),动态检测范围宽(0.005mg/L-1000mg/L),干扰因素少,即时测量分析速度快,可有效测量溶于水的油(光折射、散射法只能测量少的油滴)。[/align][align=left][b][color=black]两种监测方法对比:[/color][/b][/align][align=left][color=black] [/color][/align][table=625][tr][td][align=center][color=black] [/color][/align][align=center][color=black]方法[/color][/align][/td][td][align=center][color=black]紫外荧光法[/color][/align][align=center][color=black]Uvpcx[/color][color=black](HX1000)[/color][/align][/td][td][align=center][color=black]萃取+红外[/color][/align][align=center][color=black]吸收法[/color][/align][/td][td][align=center][color=black]吹脱+离子火焰[/color][/align][align=center][color=black]检测器(FID)[/color][/align][/td][td][align=center][color=black]紫外荧光法[/color][/align][align=center][color=black]开放式流通池流通池+汞灯[/color][/align][/td][/tr][tr][td][align=center][color=black]测量时间[/color][/align][/td][td][align=center][color=black]5[/color][color=black]分钟[/color][/align][/td][td][align=center][color=black]5[/color][color=black]分钟[/color][/align][/td][td][align=center][color=black]30Kg[/color][/align][/td][td][align=center][color=black]30Kg[/color][/align][/td][td][align=center][color=black]30Kg[/color][/align][/td][/tr][tr][td][align=center][color=black]用车或客机随身运输[/color][/align][/td][td][align=center][color=black]可以[/color][/align][/td][td][align=center][color=black]不可以[/color][/align][/td][td][align=center][color=black]不可以[/color][/align][/td][td][align=center][color=black]不可以[/color][/align][/td][/tr][tr][td][align=center][color=black]安装时间[/color][/align][/td][td][align=center][color=black]一小时[/color][/align][/td][td][align=center][color=black]几天[/color][/align][/td][td][align=center][color=black]几天[/color][/align][/td][td][align=center][color=black]几小时[/color][/align][/td][/tr][/table][align=left] [/align][align=left] 目前紫外荧光法已在美国、加拿大、瑞士、俄罗斯等发达地区和国家广泛应用并被列为标准。我国国家标准《海洋监测规范》GB17378.5-1998 也采用荧光法测量海水中的油,国家环境保护总局颁布的 HU/T 92-2002 《水污染物排放总量监测技术规范》中也明确规定水中油自动在线测量法为荧光法,我国水利部门也考虑采用荧光法测量地表水中的油污染。在地表水及水源水监测领域,水中油日益成为一个重要的监测参数。[/align][align=left] 油田采出水基本监测物质为水中油、悬浮物、温度等值,通过监测这几项指标的数值可以对采油过程进行指导,及时修改水处理过程中的参数,降低损失。[/align][align=left] 将采出水处理后回注于油层,不仅可以回收水中的原油、实现水的循环利用、改善环境污染情况,而且提供了充足的注水水源、节约大量的淡水资源,取得了显著的经济效益和社会效益。如果把含油废水处理后,重新回注地层,以补充地层的压力,不仅可以避免环境污染,而且节约大量的水资源。[/align][align=left] [/align]

  • 【在线分析仪知识普及】说说在线分析仪三…现在的在线分析仪(收集)

    三、现在的在线分析仪(90年代的初期…现在)进入九十年代,新建装置自动化水平也越来越高,对在线分析仪的要求也越来越高,主要变化在三个方面:第一个是数据处理方面:过去的分析仪,只是将分析结果以4…20MA的信号远程传输,在中央控制仪实时显示,操作人员根据显示结果,进行流程调整。而现在,信号传输过去后,输入的是中央数据处理系统。此系统收集所有的温度、压力、流量、物位、阀门定位及分析数据,组成一个物料平衡系统。每一项数据的改变,也就意味着其它数据跟着要改变,以促成一个新的平衡产生。这也就意味着,靠过去的实验室分析的分析结果,在数据上已不能保证它的时效性,没有时效性,分析结果的准确性也就无从谈起。实验室分析结果证明的是过去,在线分析仪分析数据说明的是现在。当然这个现在也是有一定的滞后性的,一般有几分钟。我们缩短的就是滞后时间。第二个方面:分析数据的储存。上一节我说到,中期的分析数据是靠记录仪走纸书面保存的。随着CPU的出现,一些数据显示已经从走纸信号显示发展到数字显示且能储存一周左右的数据啦,可通过软盘,随时下载保存,数据显示开始由书面走进了电子文件显示。分析数据不光能显示,而且可能通过设定高低报警值,来监视数据运行,一旦超限,即可发出声和光报警。发展到如今,分析数据的保存,只要你的硬盘足够大,可无限保存,读取更是不成问题。分析结果的趋势少则查一周,多则查一月,再长,只好调硬盘啦。这对仪器运行判断和流程变化判断都提供了无可比拟的方便。第三方面 仪器更新:仪器信号线也从无屏蔽线变成有屏蔽线,大大降低了信号衰减,分析仪测量数值与中央控制系统上的显示数值基本一致。同时,分析仪器的检测器也在突飞猛进。检测器结构更加紧凑,仪器布局更加合理,小型化趋势也越来越明显。检测器核心材质也发生了很大变化,检测数据更加灵敏,仪器适应性和适应领域也逐步普及。过去一台仪器所占有的空间,现在可以放2台,甚至4台仪器。仪器无论从重量还是体积,都在大幅缩水,而检测性能却呈现数量级式的上升。仪器常规维护量也在大幅下降。例如:过去的电解式微量氧,一个银电极有近30克重,拉直啦,有近十米长,蒸馏水和电解液消耗量大,两到三天就要加液一次,中期的这类仪器,其检测器核心部件…银电极,只有3克左右,网状布局,接触面大,外形只有过去的三分之一,维护保养量不及前者的五分之一;后期的同类仪器,则采用多对电极平衡,仪器测量反应速度快速,偏差小。后期的在线分析仪重在发展仪器的准确、快速、稳定上下了不少功夫。各类仪器都有显著进步,后面咱们分门别类再稍加叙述吧。现在的在线分析仪,广泛应用于石化、化工、炼油、天然气、热电、冶金、化纤、轻工、城市公用工程、环境监测、分析仪器制造、电子、医药生产等多种领域。四、在线分析仪分类

  • 【原创】防爆型水中油在线监测仪技术参数

    ZDA-OW01型 防爆型水中油在线监测仪防爆型水中油在线监测仪,是利用光学传感器实现对水体中的水中油、水温实时连续监测。系统可根据用户需要扩展配置其它水质监测传感器,实现对水体中的UV254值、COD、TOC、DOC、BOD、O3、硝氮、浊度、PH、悬浮物的连续在线监测。系统分为采样系统、预处理系统、清洗系统、防爆传感器、防爆控制器五部分,整体系统均为防爆设计,符合国家防爆现场应用要求。所有监测传感器采用免试剂监测方法,配备连续监测清洗池,可快速、快捷的实现对水体中的污染物浓度的在线连续监测,对超标水体,系统将自动记录超标数据,并根据报警设置进行现场声光报警。该仪器的开发可大大提高了防爆场所污染排放及水质监测效率,减少人工采样频率,降低监测工作量。填补了国内防爆场所水质在线监测市场的空白,是石油、化工企业水质在线监测、监督、监控、污染排放监测及工艺过程控制的最佳装备。该设备可广泛应用于石油、化工行业排放水质连续监测;采油厂回注水连续监测;石油化工企业工业过程水质在线监测;石油化工企业厂区地表径流监测;油库排放废水连续监测;含有可燃性气体的水质在线监测。正大环保此监测系统通过国家防爆产品认证,防爆认证编号:CNEx14.2042。技术特点:1.全防爆设计,全彩触摸屏操作,监测传感器(发明专利),采样预处理(实用新型专利技术);2.原装进口美国AB控制器,防爆气动阀控制,运行可靠稳定;3.全光学传感器同时监测水温、水中油,可根据用户后期要求选择扩展配置监测水体中的UV254值、COD、TOC、DOC、BOD、O3、硝氮、浊度、氨氮、PH、悬浮物等,所有传感器采用免试剂监测方法,配套采样、预处理系统,维护简单,人工干预周期长;4.采用高性能UV LED做为光源,使用寿命长,采用独特的光学和电子滤光技术,可消除环境光对测量的影响;5.监测传感器须通过国家防爆产品认证,可应用于含有微量可燃性气体或易燃、易爆水体中水中油的监测。6.可设置监测报警值,对可疑水体或异常水体可自动报警,并保存监测数据;7.系统采取射流清洗技术(实用新型专利),保持传感器的清洁,减少现场维护量。技术参数:1.测量参数:水中油(原油、精炼油)、温度2.测量原理:紫外荧光法3.量程:0-2500ppb(出厂可选)4.温度范围:(0~50)℃5.测量精度:水中油:≤±10%读数6.重复性:水中油:≤7%读数7.分辨率:0.2ppb8.传感器标定周期:6个月9.清洗方式:射流清洗10.功耗:150W(不包含气源功率)11.防爆等级:ExdmbIIBT5 Gb12.外形尺寸:1700mm × 600 mm× 400 mm13.重量:150Kg

  • 溶解氧在线分析仪的测量原理

    (1)膜电极法   膜电极法是一个目前最常用的一种溶解氧连续测定方法,膜电极又名Clark氧电极,这种电极利用膜可渗透氧但不能渗透水和有机及无机溶质的原理,保护电极不与这类还原物质紧密接触,从而使传感器的灵敏度不受影响。这种半透膜通常采用聚四氟乙烯纤维、聚乙烯等材料组成。   膜电极法溶解氧传感器是由金电极(阴极)和银电极(阳极)及氯化钾或氢氧化钾电解液组成,氧通过膜扩散进入电解液与金电极和银电极构成测量回路。当给溶解氧分析仪电极加上0.6~0.8V的极化电压时,氧通过膜扩散,阴极释放电子,阳极接受电子,产生电流,整个反应过程为:   阳极反应:4Ag 4Cl-→4AgCl 4e-   阴极反应:O2 2H2O 4e-→4OH-   根据法拉第定律:当电极结构固定时,在一定温度下,扩散电流的大小只与样品氧浓度成正比例线性关系,测得电流值大小,便可知待测试样中氧的浓度。   (2)无膜电极法   传感器由特殊的银合金电极(阴极)和铁电极(阳极)组成,没有覆盖膜和特制的电解液,两极之间也没有极化电压。它是将被测溶液作为电解液,两极形成一个原电池,并产生一个电流,反应式如下:   阳极反应:2Fe→2Fe2 4e-   阴极反应:O2 2H2O 4e-→4OH-   该电流的大小与溶液中的被测氧分子的多少成正比。该信号连同传感器上热电阻测出的温度信号送入变送器,利用传感器中存储的含氧量和氧分压、温度之间的关系曲线计算出水中的含氧量,然后转化成标准信号输出。   (3)荧光法   溶解氧在线分析仪   溶解氧变送器的特点:   1.系统具有密码保护、输出保持、输出延时、模拟量输出、继电器输出(需选配)和实时模拟功能。   2.具有两种标定方法:1点标定法(在线)及空气(离线)标定法。为了提高传感器的精确度,系统在接受标定数据之前,将对温度等重要参数进行自动检测。   3.系统具有完整的自诊断信息:当测量电极损坏,传感器密封损坏,温度传感器损坏时都会自动报警。   4.变送器可以自定义刻度。   5.可靠性高、稳定性好、操作简单,方便。   6.完全电气隔离。   7.溶解氧是测量水溶液中氧气的含量,它的测量范围是0~40ppm,并采用两线制直流24V电源输入,可输出4~20mA模拟量,电源线电缆长度可经达到914米,变送器到传感器的距离可以达305米。溶解氧传感器特点:

  • 梅特勒-托利多FAQ:总有机碳分析仪TOC

    1.什么是TOC?总有机碳是用来描述水系统中有机(含碳有机物)污染物的术语。由于有机物是如糖、蔗糖、酒精、石油、PVC粘结剂、塑料衍生物等化合物,有机污染物有很多来源给水中有可能有有机物在纯化及分配系统中,过滤或部件的脱落有可能产生有机物水系统中可能产生的微生物也会产生有机物2.为什么要测量TOC?正常情况下,有机污染物是非离子性的,标准的电导率测量是检测不出的。因此,超纯水系统中高的电阻率(低的电导率)测量值可能检测不出很高的TOC污染。TOC浓度过高的话:水纯化系统效率降低降低半导体的产率药品批次的污染损害电力和蒸汽设备TOC用于监测许多水纯化工艺的水质及设备效率。用在许多我们其它产品已经使用的行业和应用电半导体行业制药行业电力和蒸汽发电3.如何测量TOC? TOC可以通过在线或离线方法来测量。离线测量(实验室方法)主要用于高的浓度测量(1 ppm)。在线测量主要用于低于ppm(1000ppb)的检测,响应时间比实验室方法要快得多。Thornton产品所使用的行业大多使用在线仪器,响应时间更快以满足过程控制的需要。4.在哪个点需要测量TOC?反渗透后面用于监测膜的效率(尤其是使用薄的膜或TFC膜)在去离子床后面来监测树脂的寿命和效率,并且监测新树脂的脱落。在再循环(湿床排水返回)和再回收(在二级应用中重新使用排水)生产线,在回到水系统前确保合理的和低的有机物水平。紫外灯破坏TOC后以监测紫外灯的效率。在分配线前进行监测以保证最用用水的品质 监测锅炉给水防止损坏涡轮和其它设备满足USP 643 和 EP 2.2.44 的要求。制药行业生产USP纯水、注射用水和高纯水时必须测量TOC。在1996年11月15号,USP通过了在线TOC测量可以替换离线的重金属测量方法。在1998年五月15号,USP在USP 23 643中要求TOC测量作为一种新的测试方法。使用USP 23 643规定的定量的TOC测量方法取代了之前的实验室USP测量程序,从而提供了一种定量的测量方法。TOC测量用在水纯化系统中的存储罐前及其它点的监测。5.连续监测TOC比批次监测TOC的效果更好吗?是这样。连续监测的TOC分析仪可以“看到”水系统整体中有代表性的样本中的有机物。更像一个连续放映的电影,不会错过某一个片段或TOC过量情况。无论如何,批次过程就像对系统拍了一个“快照”。如果定期拍“快照”,有可能错误测量TOC过量现象,因为含有大量TOC的部分有可能测量不到,或如果批量TOC测量仪的响应时间是5分钟或30分钟的话,整个的过量现象都可能监测不到,重要的信息有可能永远都没有检测到。6.响应时间和更新时间的比较?响应时间:TOC分析仪氧化和测量水中有机物需要的时间。包括水通过第一个电导率传感器,然后通过石英螺旋管到达第二个电导率传感器进行TOC的测量。550TOC分析仪的相应时间少于1分钟。nute!更新时间:更新测量值需要的时间,550TOC分析仪的更新时间是2秒钟!

  • 浅谈我国在线分析仪表及PAT技术的新进展

    【亚洲流体网讯】 水质在线分析仪表及系统 由于环保的要求,水质在线分析仪表及系统已经成了环保部门对辖区水质状况进行实时监测的主要手段,已能够实时、连续、稳定、可靠地提供准确、快速的监测数据。作为水质自动监测,还要实行远程监控,达到掌握主要流域重点断面水体的水质状况,预警预报重大或流域性水质污染事故、解决跨行政区域的水污染事故纠纷、监督总量控制、排放达标情况等目的。在水质自动监控系统网络中,中心站通过卫星和电话拨号两种通讯方式实现对子站的实时监视,托管站也可以通过电话拨号方式实现对所托管子站的实时监控。其他经授权每个子站是一个独立的水质自动监测系统,一般子站有一台或多台的多参数水质自动化分析仪组成,另有固定式子站和流动式子站(拖车—监测小屋)共三种。子站分采水单元,配水单元,分析单元,控制单元,子站站房及配套设置。 国内在水质氨氮监测等复杂仪表的深入研究方面也取得很多成果。如北京市化学工业研究院研制出自动化程度很高的智能分析系统,为环境管理提供了有力的监管工具,目前我国已有30多家企业有了认证合格的相关产品,国内在2003年也颁布了“氨氮水质自动分析仪技术要求”(HJ/T101-2003)标准,规定了地表水、工业污水和市政污水的基于电极法和分光光度法的氨氮水质自动分析仪的技术性能要求和性能试验方法。 气体在线分析仪表及系统 从环保的角度看,气体在线分析仪表及系统比水质在线分析仪表及系统更为重要,大气污染物排放标准等,从法规上要求安装连续排放监测系统CEMS。近十余年间,我国固定污染源安装了1.8万套CEMS,具体标准有HJ/T75固定污染源烟气排放连续监测技术规范、HJ/T76固定污染源烟气排放连续监测系统技术要求及检测方法以及HJ/T212污染源在线自动监控(监测)系统传输标准。 目前还试点燃煤电厂排放烟气中汞的连续自动监测、超声波流速测定仪解决低流速(=3m/s)烟气测定、适应宽范围气体浓度的测定专项技术。此外,美国博纯公司提供的一种创新的冷干直抽法CEMS样气预处理技术是样气除湿的好技术。实现由“点末端监控”向“全过程监控”的转变,协调实验室检测项目、便携式仪器检测项目等控制工程网版权所有,适应新形势下对生态文明的要求。 为了环保的需要,环保部已修改了《环境空气质量标准》,将PM2.5列入环境空气基本监测项目,有条件的城市均开展了大气颗粒物PM2.5的监测。目前所用监测仪大部分是引进国外产品。为此,国内如青岛佳明测控公司也进行了开发。目前国际上的监测方法有微量振荡天平法和β射线法,β射线法按照输出方式不同,分为实时方法和时均值方式。青岛佳明测控公司就采用β射线法的实时显示方式。该公司解决了计数器选择和数据处理、等在炼油、石化、化工行业的应用 在炼油、石化行业、在线分析仪表的选用越来越普遍,投资越来越上升。据中石化咨询公司谢怀仁、石彦秋提供的数据显示:某大型乙烯装置,进口自控仪表设备费为2亿元,进口在线分析仪表设备费为5000万元,即4:1;某大型聚乙烯装置,进口自控仪表设备费8000万元,进口在线分析仪表设备费1700万元,其中远红外总碳氢分析仪500万元,在线气相色谱仪500万元,氧分析仪400万元,水分析仪300万元,即4:0.85;某大型硫磺回收装置,进口自控仪表设备费500万元,进口在线分析仪设备费250万元,即2:1;某油品长输管线分输站,进口自控仪表设备费200万元,进口在线分析仪设备费100万元,即2:1。而在线分析仪主要集中在如下几方面:在线质量分析仪(工业色谱、全镏程分析仪、质谱仪等)、在线近红外分析仪、工业核磁共振仪、放射性仪表(料位密度测量)以及环境监测和水质分析仪等。 通力分析自控技术公司罗海涛的“炼油过程应用在线分析技术提高油品品质和轻质油收率”的报告中,对油品质量在线分析工作进行了总结,主要产品有汽油镏程在线分析仪、倾点在线分析仪、饱和蒸汽压在线分析、粘度在线分析仪以及闪点在线分析仪等油品质量分析仪表,以及各类油品预处理系统、分析小屋及分析仪表成套系统、远程工作站,先后在兰州石化、新疆克拉玛依、天津大港石化、大连石化、华北石化、湖南长岭石化、广州石化、上海高桥炼油厂、陕西榆林石化、洛阳石化、河北沧州石化、山东济南石化、西安石化、新疆独山子石化、武汉石化、江苏清江石化、延安炼油厂等30个炼油企业得到了很好的应用。如武汉石化焦化柴油项目进行卡边操作,柴油95%点由投用前平均357℃提前到了投用后363℃,平均提高了6℃,按每提高1℃即产生680万元计算,柴油95%点提高了6℃,每年增加3500万元以上的经济效益。独山子石化公司炼油厂加氢裂化车间罗祥生在“全镏程在线分析仪在加氢裂化装置中的应用探讨”一文中指出,该厂60万加氢裂化装置采用了IDA系列全镏程在线分析仪(通力产品),2011年10月底开始调试,2012年1月15日正式投用。至今运行平稳,实现生产过程在线质量监测、全塔优化控制,年经济效益为1519.3万元。 在医药、食品行业的应用 医药等行业对于在线分析仪表及系统的需求,从PAT过程分析技术来说,与石化等行业是相似的,特别是塔、釜、罐等工艺设备的测控,燃烧、冷却等控制,节能环保的要求等,并无特别之处,但制药流程后处理部分,如颗粒和药丸干燥过程的测量控制,在线分析仪表及系统仍有用武之地。济南金宏利实业公司董海平等人在“AOTF-NIR光谱技术在线测量G/att流化床湿度”一文中,介绍了颗粒和药丸干燥过程的含水量和湿度的控制。作为现代制药领域对湿度控制主要手段,流化床喷雾制粒是一种复杂的生产过程,物料含水量变动较大,药物颗粒表的湿度和内部湿度准确的检测是个难题。将近红外(NIR)反射光谱法用于流化床干燥制粒,监测喷雾阶段并可以测定干燥终点。通过在线红外技术收集干燥不同阶段产品的近红外光谱图,结合其它过程测量技术组合建立线性校正模型,可以实时监测干燥过程。具体采用luminar3075小型AOTF-NIR光谱仪(美国Brimrose公司),AOTF为声光可调滤光器(Acousto-optictunablefilter),结构简单,光学系统无移动性部件,体积小,集光能力强,波长切换快、重现性好,程序化的波长控制使得灵活性强,在现场使用广泛。本文转载:亚洲流体网

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制