当前位置: 仪器信息网 > 行业主题 > >

电子俘获检测器的结构原理

仪器信息网电子俘获检测器的结构原理专题为您提供2024年最新电子俘获检测器的结构原理价格报价、厂家品牌的相关信息, 包括电子俘获检测器的结构原理参数、型号等,不管是国产,还是进口品牌的电子俘获检测器的结构原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电子俘获检测器的结构原理相关的耗材配件、试剂标物,还有电子俘获检测器的结构原理相关的最新资讯、资料,以及电子俘获检测器的结构原理相关的解决方案。

电子俘获检测器的结构原理相关的论坛

  • 电子俘获检测器(ECD)的结构原理及检测方法

    电子俘获检测器的结构、原理及检测方法节选自:色谱分析方法应用电子俘获检测器(ECD)是灵敏度最高的气相色谱检测器,同时又是最早出现的选择性检测器。它仅对那些能俘获电子的化合物,如卤代烃、含N、O和S等杂原子的化合物有响应。由于它灵敏度高、选择性好,多年来已广泛用于环境样品中痕量农药、多氯联苯等的分析。其应用面仅次于TCD和FID,一直稳居第三位。ECD是气相电离检测器之一,但它的信号不同于FID等其他电离检测器,FID等信号是基流的增加,ECD信号是高背景基流的减小。ECD的不足之处是线性范围较小,通常仅102-104。ECD的发现是一系列射线电离检测器发展的结果。1952年首次出现了β-射线横截面电离检测器;1958年Lovelock提出β-射线氩电离检测器。当卤代化合物进入该检测器时,出现了异常,于是Lovelock进一步研究,首次提出了此异常是具电负性官能团的有机物俘获电子造成的,进而发展成电子俘获检测器。此后至今的40多年中,ECD在电离源的种类、检测电路、池结构和池体积等方面均作了很大的改进,从而使现代ECD的灵敏度、线性及线性范围、最高使用温度及应用范围等均有了很大的改善和提高。ECD工作原理ECD系统由ECD池和检测电路组成,见图3-6-1。它与FID系统相比,仅两部分不同:电离室和电源E。为以后叙述方便,我们将电源从微电流放大器中移出,另成一单元(7)。不同电源的具体情况将在下节介绍。ECD作原理是:由柱流出的载气及吹扫气进入ECD池,在放射源放出β-射线的轰击下被电离,产生大量电子。在电源、阴极和阳极电场作用下,该电子流向阳极,得到10-9-10-8A的基流。当电负性组分从柱后进入检测器时,即俘获池内电子,使基流下降,产生一负峰。通过放大器放大,在记录器记录,即为响应信号。其大小与进入池中组分量成正比。负峰不便观察和处理,通过极性转换即为正峰。

  • 【资料】-电子俘获检测器(ECD)及检测方法

    [b]电子俘获检测器及检测方法[/b]节选自:[i]色谱分析方法应用[/i]电子俘获检测器(ECD)是灵敏度最高的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器,同时又是最早出现的选择性检测器。它仅对那些能俘获电子的化合物,如卤代烃、含N、O和S等杂原子的化合物有响应。由于它灵敏度高、选择性好,多年来已广泛用于环境样品中痕量农药、多氯联苯等的分析。其应用面仅次于TCD和FID,一直稳居第三位。ECD是[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]电离检测器之一,但它的信号不同于FID等其他电离检测器,FID等信号是基流的增加,ECD信号是高背景基流的减小。ECD的不足之处是线性范围较小,通常仅102-104。ECD的发现是一系列射线电离检测器发展的结果。1952年首次出现了β-射线横截面电离检测器;1958年Lovelock提出β-射线氩电离检测器。当卤代化合物进入该检测器时,出现了异常,于是Lovelock进一步研究,首次提出了此异常是具电负性官能团的有机物俘获电子造成的,进而发展成电子俘获检测器。此后至今的40多年中,ECD在电离源的种类、检测电路、池结构和池体积等方面均作了很大的改进,从而使现代ECD的灵敏度、线性及线性范围、最高使用温度及应用范围等均有了很大的改善和提高。ECD工作原理ECD系统由ECD池和检测电路组成,见图3-6-1。它与FID系统相比,仅两部分不同:电离室和电源E。为以后叙述方便,我们将电源从微电流放大器中移出,另成一单元(7)。不同电源的具体情况将在下节介绍。ECD作原理是:由柱流出的载气及吹扫气进入ECD池,在放射源放出β-射线的轰击下被电离,产生大量电子。在电源、阴极和阳极电场作用下,该电子流向阳极,得到10[sup]-9[/sup]-10[sup]-8[/sup]A的基流。当电负性组分从柱后进入检测器时,即俘获池内电子,使基流下降,产生一负峰。通过放大器放大,在记录器记录,即为响应信号。其大小与进入池中组分量成正比。负峰不便观察和处理,通过极性转换即为正峰。

  • 【原创大赛】电子俘获检测器ECD的源污染的判定和处理方法

    【原创大赛】电子俘获检测器ECD的源污染的判定和处理方法

    [align=center][font=宋体]电子俘获检测器[/font][font=宋体]ECD的源污染的[/font][font=宋体]判定[/font][font=宋体]和处理方法[/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体]电子俘获检测器是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]常规检测器中灵敏度最高的检测器,也是比较容易发生污染的检测器,分析灵敏度增大和基线异常是判定污染的标志。[/font][font=宋体]电子俘获检测器内部存在放射源,不建议用户拆解或者溶剂清洗,只推荐使用升高检测器温度驱赶杂质的办法。[/font][align=center][font=宋体]简介[/font][/align][font=宋体]电子俘获检测器([/font][font=宋体]ECD[/font][font=宋体])[/font][font=宋体]的工作原理:[/font][font=宋体][font=宋体]来自色谱柱和尾吹的载气(高纯氮气或者氩气[/font]-甲烷)[/font][font=宋体],在[/font][font=宋体]检测器内放射源发出[/font][font=宋体]β射线的轰击下[/font][font=宋体]发生[/font][font=宋体]电离,产生大量电子。在电源、阴极和阳极电场作用下,电子流向阳极,[/font][font=宋体]从而获得[/font][font=宋体]10[/font][sup][font=宋体]-8[/font][/sup][font=宋体]~10[/font][sup][font=宋体]-9[/font][/sup][font=宋体]A的基流。当[/font][font=宋体]目标[/font][font=宋体]组分[/font][font=宋体]进[/font][font=宋体]入检测器时,即俘获池内电子使基流下降。[/font][font=宋体]检测器的信号放大器将基流的变化,转化成为电压信号输出,即为色谱信号[/font][font=宋体]。[/font][font=宋体]ECD检测器属于选择性检测器,适用于含卤素、氧、硫、氮等元素的易俘获电子的化合物检测,检测灵敏度很高。[/font][align=center][img=,297,489]https://ng1.17img.cn/bbsfiles/images/2020/09/202009281507100635_4662_1604036_3.png!w297x489.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font]1 ECD检测器结构原理[/font][/align][align=center][font=宋体]电子俘获检测器污染之后的现象[/font][/align][font=宋体][font=宋体]电子俘获检测器([/font]ECD),容易受载气、色谱柱、样品等各个部分的污染,使用中需要特别予以注意,检测器污染之后的主要表象为:[/font][font=宋体]1 基线状态异常[/font][font=宋体]基线噪声变大[/font][font=宋体]或者[/font][font=宋体]基线无噪声[/font][font=宋体]。[/font][font=宋体][font=宋体]带有电子俘获检测器的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]系统,基线的稳定时间比较长,开启系统之后会观测到长时间漂移的基线,而且基线噪声是客观存在的,不论[/font]“看上去”多么平直的基线,幅度放大之后总会观察到一定水平的噪声信号。[/font][font=宋体][font=宋体]如果[/font]GC系统开启之后,很快获得一条平直无任何噪声的曲线,那么就表示检测器存在严重物质,ECD的放大器已经输出饱和信号。[/font][font=宋体]再执行[/font][font=宋体]程序升温时,[/font][font=宋体]如果[/font][font=宋体]基线漂移幅度过大[/font][font=宋体],甚至基线漂移至无噪声的饱和状态,也是检测器污染的明显标志。[/font][font=宋体] [/font][font=宋体]2 灵敏度异常增高[/font][font=宋体][font=宋体]使用时间较长的[/font]ECD检测器,如果发现日常分析项目中目标组分的检测灵敏度异常增加,也是检测器污染的标志。[/font][font=宋体][font=宋体]可以这样来考虑这个问题,检测器实际感知的是基流变化的幅度。如果正常状态下基流值为[/font]100,样品俘获电流为10,那么变化率为10%;ECD污染后,基流值为50,样品俘获电流为10,那么变化率为20%。[/font][font=宋体] [/font][align=center][font=宋体]ECD污染之后的处理方式[/font][/align][font=宋体]常用的方式是提高检测器温度,提高尾吹气流量,驱赶杂质,净化检测器。[/font][font=宋体]也可以考虑多次进样溶剂的方法,予以辅助清洁。[/font]

  • 【原创大赛】电子俘获检测器(ECD)的使用和维护注意事项

    [align=center][font=宋体][font=宋体]电子俘获检测器([/font]ECD)的使用和维护注意事项[/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体]电子俘获检测器的核心使用注意是一定要控制系统的清洁。[/font][font=宋体]电子俘获检测器不建议使用溶剂清洗,不可以拆解,只可以用高温驱赶杂质的办法。[/font][align=center][font=宋体]简介[/font][/align][font=宋体][font=宋体]电子俘获检测器是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]常规检测器中灵敏度最高的,可以实现[/font]fg级别样品的检测,但电子俘获检测器同时也是最娇嫩的检测器,对分析过程中可能存在的氧气、水、其他有机化物比较敏感,使用时一定要注意色谱仪工作条件的清洁。[/font][align=center][font=宋体][font=宋体]电子俘获的使用注意事项:[/font][/font][/align][font=宋体]1. [/font][font=宋体]载气或者尾吹气的种类[/font][font=宋体][font=宋体]电子俘获检测器使用中必须有氮气(甲烷[/font]/氩气)的参与。[/font][font=宋体][font=宋体]如果[/font][/font][font=宋体][font=宋体]色谱分析[/font][/font][font=宋体][font=宋体]使用毛细管柱[/font][/font][font=宋体][font=宋体],[/font][/font][font=宋体][font=宋体]载气[/font][/font][font=宋体][font=宋体]采用[/font][/font][font=宋体][font=宋体]氢气、氦气等[/font][/font][font=宋体][font=宋体]情况下[/font][/font][font=宋体][font=宋体],[/font][/font][font=宋体][font=宋体]电子俘获检测器([/font][/font][font=宋体]ECD[/font][font=宋体][font=宋体])[/font][/font][font=宋体][font=宋体]的尾吹必须是氮气(或是[/font][/font][font=宋体]5%的甲烷[/font][font=宋体]/[/font][font=宋体][font=宋体]氩气[/font][/font][font=宋体][font=宋体])。[/font][/font][font=宋体]2. [/font][font=宋体]载气(或尾吹气)的纯度[/font][font=宋体]必须使用高纯度的氮气作为载气或尾吹气,载气管路中应当加装脱水、脱氧、脱烃的净化器。[/font][font=宋体]3. [/font][font=宋体][font=宋体]色谱柱的洁净[/font][/font][font=宋体][font=宋体]色谱柱必须严格老化之后,才可以连接到电子俘获检测器上。[/font][/font][font=宋体][font=宋体]尽量避免使用耐温较低和固定相含量较高的色谱柱。[/font][/font][font=宋体]4. [/font][font=宋体][font=宋体]样品的处理[/font][/font][font=宋体][font=宋体]样品需要更加优化的前处理方法,避免过多杂质进入检测器系统。[/font][/font][font=宋体]5. [/font][font=宋体][font=宋体]溶剂[/font][/font][font=宋体][font=宋体]优先采用烷烃类溶剂,如正己烷、环己烷等;绝对禁止使用含卤素的溶剂,例如三氯甲烷、氯仿等。[/font][/font][font=宋体]6. [/font][font=宋体][font=宋体]检测器的清洁维护[/font][/font][font=宋体][font=宋体]电子俘获检测器内部含有放射源,禁止拆卸检测器金属外壳,退役的检测器也禁止随意处置。[/font][/font][font=宋体][font=宋体]如果检测器发生污染,可以拆掉色谱柱,将检测器入口封闭,然后升高检测器温度,提高检测器尾吹驱赶杂质。[/font][/font]

  • 实验室分析仪器--电子捕获检测器结构、原理及应用介绍

    [b]一、ECD的结构[/b]ECD多采用圆筒同轴电极式结构,其收集极用陶瓷、聚四氟乙烯成玻璃与池体绝缘,绝缘电阻大于500MΩ。收集极兼作正的极化极,放射源接地,池体般很小。[b]二、原理[/b]ECD室内的放射源([sup]3[/sup]H或[sup]63[/sup]Ni)能放出初级电子、β射线,在电场加速作用下向正极(收集极)移动,与载气(N[sub]2[/sub]或Ar)碰撞,产生更多的次级电子和正离子: Ar+β=Ar[sup]+[/sup]+e[sup]-[/sup]N[sub]2[/sub]+2β=2N[sup]+[/sup]+2e[sup]-[/sup]在电场作用下,分别趋向极性相反的电极,形成本底电流,或称基流(I0=10-9A)。当电负性组分AM进入电场,捕获场内电子,形成分子离子:AM+e[sup]-[/sup]=(AM)[sup]-[/sup]+能量(非离解型)或AM+e[sup]-[/sup]=A+M[sup]-[/sup]±能量(离解型)AM+2e[sup]-[/sup]=A[sup]-[/sup]+M[sup]-[/sup]±能量非离解型捕获过程多发生在检测器较低温度的条件下,而离解型则多发生在温度较高的情况下。负离子质量大,运动慢于电子,向正极移动过程中有机会与正离子(Ar[sup]+[/sup]或N[sup]+[/sup])“复合”,生成中性分子,被载气带出检测器。“复合”作用使基流下降,于是出现基流下降的反峰信号。所以ECD的信号都是反峰信号。检测信号电流I(引入电负性组分后剩余的电流)与被测组分浓度c的关系为:[img=image.png,200,100]https://i2.antpedia.com/attachments/att/image/20220126/1643187002933676.png[/img]由于线性范围窄(10[sup]1[/sup]~10[sup]2[/sup]),ECD已很少采用直接供电和脉冲供电方式。国外仪器全部采用恒流调制脉冲供电,线性范围可达10[sup]4[/sup]。[b]三、操作条件的选择1.载气和载气流速[/b]ECD一般采用N[sub]2[/sub]作为载气,也可以使用Ar+5%~10%CH[sub]4[/sub]或N[sub]2[/sub]+5%CO[sub]2[/sub]。CO[sub]2[/sub]和CH[sub]4[/sub]的加入是为了降低检测器内电子的能量。载气必须严格纯化,彻底除水和氧。因为水和氧的存在会降低基流,影响ECD的灵敏度。可以采用脱氧剂使O[sub]2[/sub]的含量(体积分数)低于10 [sup]-8[/sup],用硅胶和分子筛联合脱水。系统微小的泄漏也会使基流降低以至消失。所以确保系统净化和不泄漏是使用ECD的必要条件。载气流速增加,基流随之增大,N[sub]2[/sub]在100mL/min左右,基流最大。为了获得较好的柱分离效果和较高基流,通常在柱与检测器间引入补充的N[sub]2[/sub],以便检测器内N[sub]2[/sub]达到最佳流量(这种补充气还可以清洗检测器,所以又称清洗气)。ECD是浓度型检测器,清洗气同时会稀释组分浓度,因而在流量的选择上要两者兼顾。[b]2.检测器的使用温度[/b]温度对灵敏度的影响与检测器组分的反应过程有关。当电子俘获机理为非离解型时,温度升高会降低ECD的灵敏度。当机理为离解型时由于分子解离需要能量,所以温度升高ECD的灵敏度亦增加。为了获得较稳定的基流,还要求检测器有较高的控温精度(△T<±0.1℃)。ECD是放射性检测器,检测器的温度受放射性污染的限制。1964年美国原子能委员会宣称:在空气中[sup]3[/sup]H的剂量超过2×10[sup]-7[/sup]uCi/cm[sup]3[/sup](7.4×10[sup]-3[/sup]Bq/cm[sup]3[/sup])对人体有害。ECD流出的[sup]3[/sup]H量即使在200℃操作时,也远远超过以上规定。因此建议将ECD的尾气导入通风橱或室外。使用[sup]3[/sup]H源的ECD时,严禁检测器的使用温度高于220℃或不通气就升温。[table][tr][td]放射源[/td][td]射线[/td][td]使用剂量/GBq[/td][td]最大能量/MeV[/td][td]标准状况下空气中射程/cm[/td][td]最高使用温度/℃[/td][td]半衰期/S[/td][/tr][tr][td][sup]3[/sup]H[/td][td]β[/td][td]3.7~37(100~1000)[/td][td]0.018[/td][td]0.5~1.0[/td][td]200[/td][td]12.5[/td][/tr][tr][td][sup] 63[/sup]Ni[/td][td]β[/td][td]0.37~1.1(10~30)[/td][td]0.067[/td][td]4.5[/td][td]400[/td][td]85[/td][/tr][/table]表1放射源的特性由于不断要求ECD在高温下使用,从表1可以知道[sup]63[/sup]Ni是较理想的放射源,它是衰变中没有y辐射的低能量的B放射源。放射核体是高熔点金属,所以它不仅最高使用问题可达400℃(特殊设计可达450℃),而且排放上远比3H安全。目前绝大多数ECD都采用[sup]63[/sup]Ni作为放射源。[b]3.极化电压[/b]极化电压对基流和响应值都有影响,选择基流等于饱和基流值的85%时的极化电压为最佳极化电压。直流供电时,为20~40V;脉冲供电时,为30~50V。[b]4.脉冲周期和宽度[/b]最佳脉冲周期一般为50~100us,脉冲宽度为0.5~5us。[b]5.固定液的选择[/b]为保证ECD正常使用,必须严防其放射源被污染。源污染主要来自样品与固定液。须特别防止样品中难挥发组分在柱内累积。因为一旦从柱后流出,就会污染放射源。色谱柱的固定液必须选择低流失、电负性小的,柱子必须充分老化后才与ECD联用。[b]6.安全保障[/b]ECD是放射性检测器,必须严格执行放射源使用、存放管理条例。拆卸、清洗应由专业人员进行。尾气必须排放到室外,严禁检测器超温。[b]四、ECD的相对响应因子[/b]ECD的操作条件、检测器的结构与尺寸、放射源的种类、载气的种类和流速、极化电源的供电方式、样品的导入方式等对其输出信号值都有影响。因此文献提供的相对响应值一般只可供参考,不宜作为定量的根据。[b]五、新型的ECD[/b]ECD的主要缺点是采用放射源产生电子,从而造成污染新开发的ECD是用胺在远红外照射下,相互作用产生电子;或He在高压脉冲下产生电子,称为脉冲放电电子俘获检测器(PDECD),其操作条件类似脉冲放电发射检测器(PDED),其检测限可达亚飞克(fg)级。通用的ECD都采用恒流源,固定频率的ECD(FF-ECD)和化学激活型的ECD(CS-ECD)也被用于特殊目的的分析。[b]六、谱学检测器[/b]色谱技术是目前解决复杂体系分离定量最为重要的手段,但常规色谱检测器无法解决化合物的定性问题,质谱、红外等谱学技术具有极强的化合物结构解析能力,但只能针对纯化合物。色谱和谱学技术联用已成为复杂体系分析最为有效的手段。在联用系统中,色谱相当于谱学仪器的进样装置,谱学仪器相当于色谱的检测器。与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]联用的谱学检测器主要有质谱和红外等

  • 电子捕获检测器池结构详解

    电子捕获检测器池结构详解

    [align=left][color=black]电子捕获检测器池结构[/color][/align][align=left][color=black]电子捕获检测器池结构要有利于收集电子,而不收集负离子,这是一大原则。如果两者不能明显区分,将出现非线性响应。[/color][/align][align=left][color=black]通常,电子捕获检测器池结构按照放射源、电极位置及形状(电场分布)、气体流路和池的几何形状,可分为三种主要类型:平行板型、同轴圆筒型和位移同轴圆筒型三种,见图(a)、(b)、(c)。[/color][/align][align=left][color=black][img=,426,320]https://ng1.17img.cn/bbsfiles/images/2018/09/201809070854229879_7658_2384346_3.png!w426x320.jpg[/img][img=,420,194]https://ng1.17img.cn/bbsfiles/images/2018/09/201809070854237330_1037_2384346_3.png!w420x194.jpg[/img][img=,515,197]https://ng1.17img.cn/bbsfiles/images/2018/09/201809070854243950_3062_2384346_3.png!w515x197.jpg[/img][/color][/align][align=left][color=black]图 1 三种电子捕获检测器池结构示意图[/color][/align][color=black]1[/color][color=black].平行版型[/color][color=black]为早期使用的一种结构,因池体积太大等弊端,已经基本被淘汰。[/color][color=black]2[/color][color=black].同轴圆筒型[/color][color=black]这是普遍采用的一种结构。与平行板型相比,相同面积的放射源箔,要求从放射源至阳极的距离,应大于β粒子的射程。将其电离,β粒子本身亦变成热电子,产生最大基流。同时又可防止高速的β粒子碰撞至阳阳极时,造成表面侵蚀。但此距离又不能太大。若距离太大,当窄的(约1μs)低压(50V)脉冲加至极阳时,可能池中的电子不能完全被收集,特别是用[sup]63[/sup]Ni源,N[sub]2[/sub]作载气时,很容易出现此问题。而小直径的[sup]3[/sup]H[sub]2[/sub]源,用Ar-CH[sub]4[/sub]作载气时,则不易出现。因[sup]63[/sup]Ni源与[sup]3[/sup]H[sub]2[/sub]源相比,前者的β粒子能量大于后者;N[sub]2[/sub]与Ar-CH[sub]4[/sub]相比,前者使高能电子降低能量变成热电子的能力不如后者。文献已表明:对10mCi的[sup]63[/sup]Ni源,如用Ar-CH[sub]4[/sub]作载气,40V脉冲高度时,<4μs的脉冲宽度还能安全收集池中的所有电子,而用N[sub]2[/sub]载气,脉冲宽度必须大于20μs才能完全收集。通常,接填充柱的同轴型电子捕获检测器,其池体积为2-4mL。[/color][color=black]3[/color][color=black].这是近年发展的一种较新结构。与同轴圆筒型相比,相同面积的放射源箔,池体积可更小。因阳极已从射线的发射区内移出,β射线不大可能与阳极相撞,故其池腔直径可更小。但还要考虑到以下两种情况:①如何尽量减小粒子和放射晾本身相撞;②调整阳极移出的距离,保证在脉冲宽度小时,电子捕获检测器池中的电子亦能完全被收集。7.5mCi[sup]63[/sup]Ni源、池体积为0.3mL的电子捕获检测器,在N[sub]2[/sub]作载气时,-50V脉冲高度、0.64μs的脉冲宽度即可完全收集池中的电子。近年毛细管柱的电子捕获检测器,均是此结构。图(a)、(b)为两种微电子捕获检测器示意图,池腔体积分别为150μL和100μL。[/color][color=black]另外,按负空间电荷理论,岛津GC-17A的“洁净”电子捕获检测器,使柱后流出组分不直接与放射源接触,这样,既可正常响应,又可防止样品对箔的污染。特别是在分析一些粉“脏”的样品,如变压器油或动物组织中的农药时,更为理想,见图(c)。[/color][color=black] [/color]

  • 电子捕获检测器被污染后处理方法

    电子捕获检测器被污染后处理方法

    张晓东 ,孙峰 ,郑祺(日照市卫生防疫站 ,山东 276800)电子捕获(electron capture detector ,ECD)是一种选择性强、灵敏度高的检测器 ,目前在分析领域得到了广泛应用 ,但由于ECD检测器线性范围窄 ,往往因受复杂性组分浓度的影响或使用不当引起检测器有污染 ,致使检测器性能下降。对受污染的检测器一般是采取热清洗法、热水蒸汽法和氢气还原清洗法进行处理 ,此类方法适用于检测器管道的污染或进样量过载引起的放射源轻微的污染。而对于污染严重的检测器 ,以往方法是将检测器经过拆卸取出放射源进行处理。但检测器拆卸处理的成功率只占 30 % ,而且处理后放射性同位素Ni63将会流失 ,缩短检测器的使用寿命。更为严重的是拆卸处理过程中放射源Ni63暴露于外环境中 ,污染周围环境 ,危害人体健康。为此根据电子捕获检测器的结构和特点,以岛津 GC - 9A电子捕获检测器为例 ,在放射源 Ni63处于封闭状态的情况下 ,利用活性溶剂 —超声洗脱的方法对受污染检测器进行处理 ,使检测器的性能得到恢复 ,并处于正常工作状态。 1 故障的判定仪器噪声大 ,信噪比下降 ,基线漂移严重 ,线性范围变窄 ,电平值增高 ,出现倒峰。2 处理方法2.1.1 仪器与试剂  超声波分离器 ,EP— 3013B γ辐射仪 ,2. 5ml一次性注射器 ,甲醇(GR) ,丙酮(GR) ,1 #清洗剂:洗涤剂(主要成分为 Triton X— 100) 0. 5ml 加入丙酮 50ml 混匀。2 #清洗剂:洗涤剂0. 3ml 加入甲醇50ml 混匀。2.1.2 步骤   将污染严重的电子捕获检测器从气相色谱仪中拆除 ,使检测器的接柱口朝上 ,用2. 5ml 一次性注射器抽取2. 5ml1 #清洗剂 ,从载气出口处注入 ,待载气进口和柱子接口处流出溶液时 ,分别用胶塞塞住管口放入超声波分离器中洗涤20min。将检测器中的洗涤液弃去 ,再注入 2 #清洗剂溶剂放入超声波分离器中洗涤 10min ,再将检测器中的洗涤液弃去 ,用3ml 甲醇溶液分3次冲洗 ,待溶剂挥干后 ,装入气相色谱仪 ,接空玻璃柱通入氮气以90ml/ min流速保持 20min ,然后接通电源使检测器温度升到使用温度 ,当仪器条件达到平衡时 ,观察处理后检测器的基流情况 ,使仪器处于正常工件状态后 ,接色普柱进行样品分析。3 讨论与小结311 近年来随着色谱分析理论和应用技术的发展 ,电子捕获检测器在分析领域得到了广泛应用 ,而检测器污染也成为实际工作中不可避免的问题。电子捕获检测器的污染一般有两种情况:1、被测组分中的杂质直接俘获 ECD中的电子 ,使检测器基流下降或恒电流方式中的基频增高;2、放射源表面受被测组分中的杂质污染 ,使放射源电离能力下降 ,从而使直流电压和频率方式 ECD基流下降或恒电流方式中基频增高。检测器中放射源Ni63耐高温 ,使用温度为 350℃,半衰期为 85 年,因此放射源Ni63在不泄露的情况下是不会流失的。所以对于以上两种情况的污染不要误认为是检测器中放射源流失或检测器已损坏 ,只要进行有妥善的处理便可恢复检测器的性能。312 该方法是利用超声波分离作用 ,在不拆卸检测器情况下 ,使镍源处于封闭状态 ,清除检测器管道或放射源的杂质 ,避免因拆卸处理造成检测器损坏或性能的降低 ,减少不必要的损失。仪器经处理待基线稳定后 ,按照气相色谱仪检定规程(JJG700 - 900)规定 ,以 0. 1 μg/ ml 丙体六六六 —正已烷溶液为标准标物质 ,对检测器进行检定。其基线噪声为 0. 1mV ,基线漂移为0. 23mV/ 30min ,检测限为 9. 6 ×10 - 13g/ ml ,符合规程要求。处理效果见色谱图。http://ng1.17img.cn/bbsfiles/images/2012/08/201208221035_385320_1621890_3.jpg对处理液进行放射线检测 ,检测器放射剂量率本底为 4.96×10 - 9μR/ h ,处理液放射剂量率:1 #清洗液为 5. 10 ×10 - 9μR/ h ,2 #清洗液92 ×10 - 9μR/ h ,甲醇 4. 84 ×10 - 9μR/ h ,通过检测清洗液中不存在放射源Ni63。结果证明该方法操作简单、效果明显、使用安全、处理过程中不损坏检测器。参 考 文 献1 吴烈钧,等主编[/fo

  • 电子捕获检测器的工作原理是什么?

    电子捕获检测器(ECD)是一种对痕量电负性(亲电子)有机化合物的分析很有效的检测器。它只对电负性物质有信号,样品电负性越强,给出的信号越大,但对不具电负性的物质则没有信号输出。该检测器的灵敏度很高。

  • 【金秋计划】+电子捕获检测器工作原理

    [font=宋体][color=black][back=white]载气及吹扫气进入电离室中,在放射源发射的β—粒子(高能粒子)轰击下电离,产生大量电子。在电源、阴极和阳极电场作用下,该电子流向阳极,得到10-9~10-8的基流。当被分离的电负性组分进入检测器时,即捕获电子,使基流下降,产生一负峰。它通过放大器放大,在记录器上记录,即为响应信号,其大小与进入池中组分量成正比。[/back][/color][/font]

  • 【我们不一YOUNG】+关于安捷伦科技有限公司电子俘获器中镍-63放射源实行豁免管理的复函

    [font=宋体][color=black][back=white]安捷伦科技有限公司:[/back][/color][/font][font=宋体][color=black][back=white] 你公司《放射源许可证豁免报告》收悉。根据《放射性同位素与射线装置安全和防护条例》(国务院令第449号)的有关规定和专家审查意见,经研究,函复如下:[/back][/color][/font][font=宋体][color=black][back=white] 一、你公司生产的电子俘获检测器(ECD,型号分别为:G1176A、G1180A、G1540N、G1530N、G2397-60510、G2397-65505、G2397A、G2397AC、G2630B、G3440A-CN、G3440A-US、G3430-632310)中镍-63放射源的活度不大于5.55E+8Bq/台,虽为Ⅴ类放射源,但由于其活度很低,且制造工艺具有固有安全性,该放射源对环境、公众和工作人员的影响很小。因此,我局同意对上述各种型号电子俘获检测器(ECD)中镍-63放射源实行豁免管理。[/back][/color][/font][font=宋体][color=black][back=white] 二、使用及销售上述含源仪器可以免于办理辐射安全许可证;转让上述含源仪器无需办理放射性同位素转让审批及备案手续;进口上述含源仪器无需办理放射性同位素进口审批许可手续。[/back][/color][/font][font=宋体][color=black][back=white] 三、使用上述型号ECD的单位,其ECD中的镍-63放射源不作为放射性物质进行管理。如发生个别镍-63放射源的丢失事件,也不作为辐射事故处理。[/back][/color][/font][font=宋体][color=black][back=white] 四、你公司应健全相关制度,建立镍-63放射源销售台账,并尽可能对废源进行跟踪回收。 [/back][/color][/font]

  • 【讨论】气相色谱检测器讨论

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器发展很快,目前大概有20多种:1、热导检测器 thermal conductivity detector,TCD 又称热导池检测器,也称卡他计(Katharomater)。2、氢火焰离子化检测器 flame ionization detector, FID 又称火焰电离检测器。3、氮-磷检测器 nitrogen-phosphorus detector ,NPD 4、电子俘获检测器 electron capture detector,ECD,对电负性化合物(能俘获电子的组分)具有特别高的灵敏度的一种选择性检测器。5、火焰光度检测器 flame photometric detector, FPD 是对含磷、含硫的化合物有高选择性和高灵敏度的一种[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器。6、无放射源电子俘获检测器 non-radioactive electron capture detector 一种不用放射源的电子俘获检测器。7、氦电离检测器 helium ionization detector ,HID, 用于永久性气体超微量分析的一种检测器。8、氩电离检测器 argon ionization detector ,AID, 其工作原理与氦电离检测器完全相同,只是用氩气作载气。9、电离截面检测器 ionization cross section detector 又称截面积电离检测器。10、电子迁移率检测器 electron mobility detector 是一种用于检测微量永久性气体的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器。11、光离子化检测器 photo-ionization detector, PID 利用紫外光能激发解离电位较低(小于10.2eV)的化合物,使之电离,在电场作用下形成电流而进行检测的一种检测器。12、质量选择检测器(质谱),MSD。13、傅里叶变换红外光谱检测器,FTIR。14、原子发射光谱检测器,AED。15、脉冲火焰光度检测器,PFPD。16、脉冲放电检测器,PDD。17、气体密度天平检测器,GDB。18、化学发光检测器,CLD。19、电导检测器,ELCD。20、微库仑检测器 micro coulometric detector 又称电量检测器。但是,应用最多的仍然是TCD、FID,像ECD、NPD、FPD相对来说还比较少,特别是在石油化工领域,PFPD和HID,以及SCD到底用途有多大,发展趋势是什么?

  • 实验室分析仪器--质谱仪的电子倍增器检测器结构原理

    电子倍增器是一个能高倍放大微弱离子信号的检测器件。按打拿极的排列方式区分,有分离打拿极式电子倍增器和通道式电子倍增器(CEM)。图2(a)为分离打拿极式电子倍增器的结构示意。当进入电子倍增器的离子轰击第一个电子打拿极(倍增器电极)后,会激发出大量的二次电子,这些电子在电场的作用下会加速继续轰击第二个电极,从而产生更多的电子,而这些电子接着再去轰击第三个电极,如此相继轰击而产生越来越多的二次电子,最后再用一个电子接收器将这些电子信号输出,从而达到放大输入信号的目的。通常一个电子倍增器约有16~20个电子打拿极,可将离子信号放大达10[sup]4[/sup]~10[sup]8[/sup]倍。[img=3e9bc165958eb2b163e903ae7640ebf.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643179449777099.jpg[/img]图2 电子倍增器结构示意图通道式电子倍增器又称为连续打拿极电子倍增器,见图2(b),工作原理类似于分离打拿极式电子倍增器。其结构由一个弯曲的漏斗状玻璃管构成,二次电子沿弯管加速,并在对应管内壁连续碰撞出更多的二次电子形成沿弯管逐渐增大的电子流,最后在接收极输出电信号。需要注意的是,所有类型的倍增检测器在使用过程中增益都会因使用时间的增长而逐渐变小,这就需要根据仪器灵敏度的要求定期调整倍增器的工作电压,使增益保持在适当的水平。最终,电压达到其使用极限值后,如果增益下降显著,就需要立即更换电子倍增器。[img=1.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643179449537190.jpg[/img]图3 计数法测量的原理框图数字采集通常有模拟和计数两种方式。在一些仪器中,模拟放大器部分设计成积分器形式,此时反馈电阻被去掉,能获得更好的信噪比(SNR)。计数方式一般采用宽带前置放大器结合快甄别器。在飞行时间质谱的数据采集系统中,用时间数字转换器(TDC)替代计数器(见图3)随着模拟和数字技术的快速发展及成本的降低智能化数据采集成为一种趋势。来自检测器的模拟信号被快速转换为数字信号,再进行数字滤波、校正以及谱累加等。例如,将来自ADC的数据与设定阈值比较,大于阈值的数据被记录下来,小于阈值的则被认为是噪声而被舍弃从而提高信噪比、减少数据量。采用高阶数字滤波器可实现较为理想的通带频率特性,显著提高信噪比,并降低高频模拟信号电路实现的难度。此外,智能模块化数据采集也减少了给主控计算机的数据量,同时具有更好的可编程特性。磁式质谱仪中,多接收器的采用可消除离子源和部分仪器状态随时间波动对测量结果的影响,适用于高精度同位素比值分析。但由于存在不同通道的零点校正和增益差,需在数据采集系统中增加校准回路。典型的校准回路采用精密开关将标准电流分别接入到各前置放大器的输入端,在离子流关断的条件下分别测量各放大器的输出,如图4所示。这些数据被用来校正实际测量过程中各通道间的偏差。[img=2.jpg,800,600]https://i4.antpedia.com/attachments/att/image/20220126/1643179450294290.jpg[/img]图4 典型的多通道数据采集校正电路

  • 请教电子捕获检测器输出信号使用赫兹为单位

    初学者的请教:从电子捕获检测器的工作原理得知,其输出是倒峰的电流信号,可JJF700—2016《[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]》之第三章 计量性能要求中,表1 电子捕获检测器有注——仪器输出信号使用赫兹(Hz)为单位时,基线噪声=5Hz,基线漂移(30min)=20Hz。 为什么电子捕获检测器输出信号可以相当是频率输出,原理是什么?恳请赐教!

  • 【资料】电子捕获检测器被污染后处理方法

    [size=3]电子捕获(electron capture detector ,ECD) 是一种选择性强、灵敏度高的检测器,目前在分析领域得到了广泛应用,但由于ECD 检测器线性范围窄,往往因受复杂性组分浓度的影响或使用不当引起检测器有污染,致使检测器性能下降。对受污染的检测器一般是采取热清洗法、热水蒸汽法和氢气还原清洗法进行处理,此类方法适用于检测器管道的污染或进样量过载引起的放射源轻微的污染。而对于污染严重的检测器,以往方法是将检测器经过拆卸取出放射源进行处理。但检测器拆卸处理的成功率只占30 % ,而且处理后放射性同位素Ni63将会流失,缩短检测器的使用寿命。更为严重的是拆卸处理过程中放射源Ni63暴露于外环境中,污染周围环境,危害人体健康。为此根据电子捕获检测器的结构和特点,以岛津[url=https://insevent.instrument.com.cn/t/Mp]gc[/url] - 9A 电子捕获检测器为例,在放射源Ni63处于封闭状态的情况下,利用活性溶剂—超声洗脱的方法对受污染检测器进行处理,使检测器的性能得到恢复,并处于正常工作状态。[/size]

  • 你了解气相色谱的各种“D”么?——浅谈气相色谱检测器的分类与选择

    你了解气相色谱的各种“D”么?——浅谈气相色谱检测器的分类与选择

    检测器是气相色谱分析中不可或缺的部分,被称做色谱仪的“眼睛”。被测组分经色谱柱分离后,以气态分子与载气分子相混状态从柱后流出,必须要有一个装置或方法,将混合气体中组分的真实浓度或质量流量变成可测量的电信号,且信号大小与组分量成比例关系,此装置就是检测器,是一种能检测气相色谱流出组分及变化的器件。检测器按照不同方法有不同的分类:按照性能特征分类:http://ng1.17img.cn/bbsfiles/images/2016/10/201610201417_614520_2384346_3.png按照工作原理分类:http://ng1.17img.cn/bbsfiles/images/2016/10/201610201419_614522_2384346_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/10/201610201419_614521_2384346_3.png 大家可以发现气相色谱检测器的种类繁多,而平日里我们最常见到的检测器有电子捕获检测器(ECD)、氮磷检测器(NPD)、火焰离子化检测器(FID)和质谱仪(MSD)等。今天就和大家聊一聊这些检测器的选择问题。通性 MSD与ECD、NPD、FID等都可作为GC的检测器,提供GC分离后的组分相关信息。样品经色谱柱分离后,各成分按保留时间不同,顺序地随载气进入检测器,检测器按时间及其浓度(质量)的变化,把组分化合物转化成易于测量的电信号,经过必要的放大传递给记录仪或计算机,最后得到该样品的色谱图及定性和定量信息。区别 ECD、NPD、FID都属于有一定选择性的检测器,仅对某类特征化合物有响应,可以排除样品中其他组分的干扰,从而可简化复杂样品的前处理,降低对色谱柱分离能力的要求。而MSD是质量型、通用型检测器,只要化合物能够离子化,就能获得响应,在总离子流色谱图上表现出来。对不同的化合物,各种检测器的适用性和信号响应有所差别,见图1,具体如下:①电子捕获检测器(ECD)是灵敏度最高的气相色谱检测器之一。ECD工作原理是色谱柱流出载气及吹扫气进入ECD池,在放射源放出β-射线轰击下被电离,产生大量电子;在电源、阴极和阳极电场作用下,该电子流向阳极,得到10-9-10-8A的基流;当电负性组分从柱后进入检测器时,即俘获池内电子,使基流下降,产生一负峰;通过放大器放大,在记录器记录,即为响应信号。其大小与进入池中组分量成正比。负峰不便观察和处理,通过极性转换即为正峰。ECD仅对那些能俘获电子的化合物(含电负性元素)有响应,如卤代烃、含N、O和S等杂原子的化合物,但线性范围较窄。②氮磷检测器(NPD)是一种质量型检测器。NPD工作原理是将一种涂有碱金属盐如Na2SiO3、Rb2SiO3类化合物的陶瓷珠,放置在燃烧的氢火焰和收集极之间,当试样蒸气和氢气流通过碱金属盐表面时,含氮、磷的化合物便会从被还原的碱金属蒸气上获得电子,失去电子的碱金属形成盐再沉积到陶瓷珠的表面上,从而获得信号响应。NPD对氮、磷化合物有较高的响应,灵敏度极高,可以检测到5×10-13g/s偶氮苯类含氮化合物,2.5×10-13g/s的含磷化合物,如有机磷及氨基甲酸酯类农药等。③火焰离子化检测器(FID)由Harley和Pretorious发明,演化自Scott发明的燃烧热检测仪(Heat of Combustion Detector)。FID工作原理是以氢气作为燃烧气,和空气在一个圆筒状的电极里的喷嘴处燃烧,燃烧的火焰作为能源,其中氦气、氮气等载气作为洗脱剂,在极化极和收集极之间外加的高电压电场作用下,利用含碳有机物在火焰中燃烧产生离子,使离子形成离子流,收集起来产生电流,根据离子流产生的电信号强度,放大并传送到记录仪或电脑数据采集系统的A/D转换器处,从而检测被色谱柱分离出的组分。④质谱检测器(MSD)是质量型、通用型检测器,对所有适合于GC检测、能离子化的化合物都能给出响应。MSD不仅能给出色谱图(即总离子流色谱图,TIC),且能够给出每个色谱峰时间点的质谱图,利用计算机对标准谱库的自动搜索,可提供化合物分子结构信息,是GC定性分析的有效工具。将色谱的高分离能力与MS的结构鉴定能力结合在一起,采用保留时间和质谱图双重定性,灵敏度高。MSD数据处理工作量非常大,一般必须配计算机系统才能有效地工作;根据仪器配置不同,还可以采用EI、CI等电离方式,结合不同扫描方式,提高灵敏度与准确度。http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gifhttp://ng1.17img.cn/bbsfiles/images/2015/06/201506241721_551410_2989334_3.png图1 气相色谱不同检测器灵敏度对比

  • 【原创】Agilent气相常用检测器原理简介

    Agilent [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]检测器原理 1、 火焰离子化检测器(FID)样品和载气经过柱子后进入FID的氢气-空气火焰中。氢气-空气火焰本省只产生少许离子,但是有机化合物燃烧时,产生的离子数量增加。极化电压把这下离子吸引到火焰附近的收集极上。产生的电流与燃烧的样品量成正比。用一个电流计检测电流并转换成数字信号,送到输出装置。2、 热导检测器(TCD)TCD比较两种电流的热导率。两种气流是纯的载气(也叫参比气)和带样品成分的载气(也叫柱流出物)。这种检测器有一个电加热的热丝,因此热丝比检测器本体要热。当参比气和不含样品的载气交替通过时,热丝温度保持恒定。当加上加上样品时,为保持热丝温度恒定其电流会有变化,每秒钟两种电流在热丝上切换5次,电流的差别被测量并记录下来。氦(或氢)作为载气时,样品引起热导率下降。使用氮气时,由于大多数物质都比氮气的传导好,所有热导率通常增加。因此,在检测过程中TCD不会破坏样品,所以这种检测器可串联装在火焰离子检测器和其他检测器前面。3、 氮磷检测器(NPD)NPD通过氢气/空气等离子体传送样品和载气。一个加热陶瓷元---常叫铷珠---处于喷嘴上方。低的氢气/空气比率不能维持火焰,使碳氢化合物的电离减至最小,而铷珠表面的碱离子促进有机氮或有机磷化合物的电离。输出的电流与收集到的离子数正比。用静电计测量并将其转换数字形式,传送到一个输出设备。4、 电子捕获检测器(ECD)Agilent有两种型号的电子捕获检测器,与微池检测器(简称u-ECD)相比,“常规”检测器(简称ECD)的内部体积大(大约10倍)。这两种型号可以通过检测器的顶盖来区分---ECD的顶盖是实心的,而u-ECD的顶盖是有孔的。电子捕获检测器(ECD)包括一个镀有63Ni(一种放射性同位素)的检测器池。63Ni释放β粒子,它与载气分子碰撞,产生低能电子---每个β粒子能产生大约100个电子。这些自由电子形成小电流---称为参比或固定电流---在一个脉冲回路中被收集并被测定。当样品组分的分子进入并与自由电子碰撞,电子则被样品分子捕获而产生负电荷离子。池电极被通过以脉冲电压以收集剩余自由电子,而较重的离子相对不受影响并且由载气带出检测器出口。测定池电流并与参比电流比较。调解脉冲频率以保持恒定的池电流。未被捕获的电子越多,所需的与参比电流相匹配的脉冲频率越低。当捕获电子的一个组分通过池时,脉冲频率增加。此脉冲频率被转化为电压并被记录下来。5、 火焰光度检测器(FPD)样品在富氢火焰中燃烧,在此一些碎片被还原并受到激发,气体把激发的碎片带到火焰上方的低温发射区,衰变并出现光辐射,通过带宽狭窄的滤光片选择特定的碎片,进入到光电倍增管(PMT)的碳发射光被屏蔽掉。光碰撞到光电倍增管的光敏表面,光子逐出电子,在光电倍增管中电子被放大到100万倍以上。从PMT出来的电流又被放大并在FPD电路上得到数字化处理,得到的信号要么作为数字信号输出,要么以电压的模拟信号输出。FPD不能在高于50度的条件下存放,对PMT要根据厂家的指标来对待。

  • MSD与ECD、NPD、FID等其他检测器的区别

    资讯MSD与ECD、NPD、FID等其他检测器的区别?北京华盛谱信仪器有限责任公司阅读量 536进入商铺北京华盛谱信仪器有限责任公司ECD、NPD、FID都属于一定选择性的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]检测器,仅对某类特征化合物有响应,可以排除样品中其它组分的干扰,从而可简化复杂样品的前处理,降低对色谱柱分离能力的要求。而MSD是质量型、通用型检测器,只要化合物能够离子化,就能获得响应、在总离子流色谱图上表现出现。?对不同的化合物,各种检测器的适用性和信号响应有所区别,具体如下:1?电子捕获检测器(ECD)是灵敏度最高的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]检测器之一。ECD工作原理是色谱柱流出载气及吹扫气进入ECD池,在放射源放出β射线轰击下被电离,产生大量电子;在电源、阴极和阳极电场作用下,该电子流向阳极,得到基流;当电负性组分从柱后进入检测器时,即俘获池内电子,使得基流下降,产生一负峰;通过放大器放大,在记录器记录,即为响应信号。2氮磷检测器是一种质量型检测器。NPD工作原理是将一种涂有碱金属盐类化合物的陶瓷珠,放置在燃烧的氢火焰和收集极之间,当试样蒸汽和氢气流通过碱金属盐表面时,含氮、磷的化合物便会从被还原的碱金属蒸汽上获得电子,失去电子的碱金属形式盐再沉积到陶瓷珠的表面上,从而获得信号响应。3火焰离子化检测器的工作原理是以氢气作为燃烧气,和空气在一个圆筒状的电极里的喷嘴处燃烧,燃烧的火焰作为能源,其中氦气、氮气等载气作为洗脱剂,在极化极和收集极之间外加的高电压电场作用下,利用含碳有机物在火焰中燃烧产生离子,使离子形成离子流,收集起来产生电流,根据离子流产生的电信号强度,放大并传送到记录仪或电脑数据采集系统。4质谱检测器是质量型、通用型检测器,对所有适合于GC检测、能离子化的化合物都能给出响应。

  • 检测系统之检测器特点与选择

    检测系统之检测器特点与选择

    [align=center]检测系统之检测器特点与选择[/align]一、检测器的特点与选择 如果说色谱柱是色潜分离的心脏,那么,检测器就是色谱仪的眼睛。无论色谱分离的效果多么好,若没有好的检测器就“看”不到分离结果。因此,高灵敏度、高选择性的检测器一直是色谱仪发展的关键技术。目前,[url=https://insevent.instrument.com.cn/t/Mp]gc[/url] 所使用的检测器有多种,但商品化的检测器不外乎热导检测器(TCD)、火焰离子化检测器(FID)、火焰光度检测器(FPD)、氮磷检测器(NPD)、电子俘获检测器(ECD)、光离子化检测器(PID)、原子发射光谱检测器(AED)、红外光谱检测器(IRD)和质谱检测器(MSD)几种。表1总结了几种常用检测器的特点和技术指标(以商品检测器的最好性能为例)。下面只对检测器的选择和操作问题做一简单讨论,至于检测器的原理等详细情况请参看《[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测方法》分册。[align=center]表1 常用[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]检测器的特点和技术指标[/align][align=center][img=,690,599]http://ng1.17img.cn/bbsfiles/images/2018/07/201807260918261358_1798_2384346_3.jpg!w690x599.jpg[/img][/align][align=left] 质谱检测器(MSD)是质量型、通用型[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]检测器,其原理与质谱(MS)相同。它不仅能够给出一般[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]检测器所能获得的色谱图(叫总离子流色谱图 TIC 或重建离子流色谱图RIC),而且能够给出每个色谱峰所对应的质谱图。通过计算机对标准谱库的自动检索,可提供化合物分子结构的信息,故是[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]定性分析的有效工具。常被称为色谱一质谱联用([url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-MS)分析,是将色谱的高分离能力与 MS 的结构鉴定能力结合在了一起。MSD实际上是一种专用于 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url] 的小型 MS 仪器,一般配置电子轰击(EI)和化学电离(CI)源,也有直接MS进样功能。MSD的质量数范围通常为2-1000Da ,检测灵敏度和线性范围与 FID 接近,采用选择离子检测(SIM)时灵敏度更高。[/align][align=left] 原子发射光谱检测器(AED)是由惠普(现安捷伦科技)公司生产的商品化[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]检测器,采用微波等离子体技术,实际上也是一种联用仪器([url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-AED)分析技术。它是将色谱的高分离能力与 AE 的元素分析能力结合在一起,也是 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url] 的有效定性手段。[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-AED原则上可测定除载气以外的所有元素,一次进样可同时测定不同元素的色谱图,根据元素色谱峰的面积或峰高可以确定化合物的元素组成。AED的一个重要的优点是其响应值只与元素的含量有关,而与化合物的结构无关,因此可以进行所谓绝对定童分析。AED的灵敏度为pg/s量级,如测碳元素是为lpg/s,硫和磷为2pg/s,氢为4pg/s,氧为150pg/s。线性范围为10[sup]3[/sup]-10[sup]4[/sup]。[/align][align=left] 检测器的选择要依据分析对象和目的来确定,表1所列的各种检测器的主要用途可供参考。在上述检测器中,FID应用最为普遍,一般实验室均要配置。测定农药残留物的实验室应选择ECD(或微型ECD)、NPD和/或FPD(或PFPD),有条件的实验室当然最好配置MSD或AED。至于光离子化检测器(PID)和化学发光检测器,其使用远不及上述检测器普遍。PID主要用于芳烃和杂环化合物的分析,化学发光检测器则主要用于含硫化合物的高灵敏度检测。[/align]

  • 【资料】电子捕获检测器详解

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=171592]电子捕获检测器详解[/url]电子捕获检测器详解内容包括ECD的概述、发展、工作机理、分类和操作参数的选择,还包括了该检测器的日常维护和常见问题。其内容之详尽可以说是:一份在手,ECD不愁。

  • 实验室分析仪器--质谱仪检测器——电子倍增器分类及原理

    [b]一、二次电子倍增器[/b]当离子电流10[sup]-15[/sup]A时需要用二次电子倍增器检测。其原理大致为:由质量分析器引入具有一定能量的离子束,轰击多级Cu-Be电极活性表面时,可发射出大量的二次电子,在加速电压的驱使下依次撞击其他倍增电极片,由于撞击和发射位置不是在同一个点,所以这些二次电子连续地倍增,并将离子流转化为电子流,放大倍数可达10[sup]4[/sup]~10[sup]8[/sup],然后再用直流测量或脉冲计数测量电子流强度。[b]二、通道电子倍增器[/b]通道电子倍增器(channel electron multiplier,CEM)又称连续打拿极电子倍增器。电子倍增管使用多个独立的打拿极将光子转换成电子,而通道电子倍增器釆用开放式玻璃锥管结构(表面镀有一层半导体膜),将撞击在其表面的离子转换成电子。检测带正电离子时,在其前端施加一负偏压,靠近收集器的末端接地。离子通过四极杆质量分析器后,被锥体负高压吸引,撞击检测器表面,释放出一个或更多二次电子。由于锥体内不同位置具有不同电势,二次电子在此电位梯度作用下向末端收集器运动。当电子再次碰撞新的膜层表面时,释放出更多二次电子。多次重复后,得到单个脉冲信号,包含撞击所产生的大量电子。 [img=8.jpg,800,400]https://i2.antpedia.com/attachments/att/image/20220126/1643179530347215.jpg[/img]通道电子倍增器原理图示通道电子倍增器一个重要的缺陷是有效使用时间有限,尤其是当检测高浓度离子束时,更为敏感。另外其保质期较短,使备用倍增器无法长时间保存。[b]三、不连续打拿极电子倍增器[/b]不连续打拿极电子倍增器( discrete dynode electron multiplier)通常称为活性膜放大器,与通道电子倍增器工作原理相似,但采用离散的打拿极(图4.31)。通常采用离轴安装方式,以减小杂散辐射及离子源所产生的中性粒子离子离开四极杆后,以曲线运动方式撞击到第一个打拿极上,释放出二次电子。打拿极的电子光学设计使得二次电子加速运动至下一个打拿极,产生更多二次电子。如此反复,最终产生电子脉冲信号被放大检测器接收。由于采用不同于通道倍增器的表面材料,且电子产生方式不同,通常比通道电子倍增器灵敏度提高了50%~100%

  • 【实战宝典】关于测定土壤中的54种VOC检测器的选择问题?

    [font=宋体]发帖人:[/font]shinwajunjin[font=宋体]链接:[/font]https://bbs.instrument.com.cn/topic/838092[font=黑体][b]问题描述:[/b][/font][font=宋体]为什么选择[/font]MS[font=宋体]检测器,而不选择其他检测器([/font]ECD[font=宋体]或[/font]FID[font=宋体])?[/font][font=黑体][b]解答:[/b][/font]ECD[font=宋体](电子捕获检测器)属于有一定选择性的检测器,仅对含电负性元素的化合物有响应,如卤代烃、含氮、氧和硫等杂原子的化合物,其工作原理是色谱柱流出载气及吹扫气进入[/font]ECD[font=宋体]池,在放射源放出[/font]p[font=宋体]射线轰击下被电离,产生大量电子;在电源、阴极和阳极电场作用下,该电子流向阳极,得到[/font]10[sup]-9[/sup][font=宋体]~[/font]10[sup]-8[/sup]A[font=宋体]的基流;当电负性组分从柱后进入检测器时,即俘获池内电子,使基流下降,产生一负峰;通过放大器放大,在记录器记录,即为响应信号。其大小与进入池中组分量成正比。[/font]FID[font=宋体](火焰离子化检测器)是以氢气作为燃烧气,空气作为助燃气,利用含碳有机物在火焰中燃烧产生离子,根据收集起来的离子产生电信号,放大并传送到电脑数据采集系统,从而检测被色谱柱分离出的组分。[/font]MSD[font=宋体](质谱检测器)是质量型、通用型检测器,对所有适合于[/font]GC[font=宋体]检测、能离子化的化合物都能给出响应。[/font]MSD[font=宋体]工作原理,不仅能给出色谱图(即总离子流色谱图,[/font]TIC[font=宋体]),且能够给出每个色谱峰时间点的质谱图,利用计算机对标准谱库的自动搜索,可提供化合物分子结构信息,是[/font]GC[font=宋体]定性分析的有效工具。将色谱的高分离能力与[/font]MS[font=宋体]的结构鉴定能力结合在一起,采用保留时间和质谱图双重定性,灵敏度高。对不同的化合物,各种检测器的适用性和信号响应有所差别,[/font]MSD[font=宋体]相较于[/font]FID[font=宋体]和[/font]ECD[font=宋体]有更好的选择性,各个化合物在电离作用下会产生特定质量数的离子碎片,通过保留时间和离子碎片进行同时定性,拥有更准确的定性能力,也能够很好的排除基质干扰,适合复杂样品的分析。[/font][font=宋体]可参考《土壤和沉积物[/font][font=宋体]挥发性有机物的测定[/font][font=宋体]顶空[/font][font='Times New Roman', 'serif']/[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱法[/font][font=宋体]》([/font][font='Times New Roman', 'serif']HJ 642-2013[/font][font=宋体])和《土壤和沉积物[/font][font=宋体]挥发性有机物的测定[/font][font=宋体]吹扫捕集[/font][font='Times New Roman', 'serif']/[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱法[/font][font=宋体]》([/font][font='Times New Roman', 'serif']HJ 605-2011[/font][font=宋体])等标准,在进行土壤中挥发性样品的测定时要注意环境中可能存在的有机污染物,实验用水需进行验收,最好有独立的前处理空间,挥发性检测仪器应该与其他有机测定仪器分开,降低样品受外来污染的风险。其中,在做挥发性样品的测定时,间、对-二甲苯是比较难以分离的,定量时一般取两种物质加和的结果。[/font]

  • 【资料】-氮磷检测器(NPD)的原理、结构

    【资料】-氮磷检测器(NPD)的原理、结构

    [b]氮磷检测器[/b]氮磷检测器(NPD)又称热离子化检侧器(TID)是分析含N、P化合物的高灵敬度高选择性和宽线性范围的检测器。1961年Cremer等最初研制的火箱热离子化检测器是在FID检侧器的喷口上方加热碱源。由于采用的碱源为挥发性碱金属,寿命短、检测器灵敏度不稳,无推广价值;1974年Kolb采用不易挥发性碳酸铷和二氧化硅烧结成硅酸铷珠,解决了铷珠寿命短的缺点,由于铷珠在冷氢焰中用电加热。因此检测器的稳定性明显改警、灵敏度显著提高,背景基流从10-9A降至10-13A,从而使NPD一越为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]中最常装备的检测器之一,成为检侧痕量氮、磷化合物的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]专一检侧器广泛被用于环保、医药、临床、生物化学、食品等领域。1 氮磷检测器的结构 NPD的结构与操作因产品型号不同而异,典型结构如图2-26所示。 NPD与FID的差异是在喷口与收集极间加一个热电离源(又称铷珠)。热电离源通常采用硅酸铷或硅酸铯等制成的玻璃或陶瓷珠,珠体约为1~5mm3,支择在一根约0.2mm直径的铂金丝支架上。其成分、形态、供电方式、加热电流及负偏压是决定NPD性能的主要因素,各公司不同型号的NPD电离源的设计也不尽相同。NPD的操作有两种方式:(1)氮磷型操作,此为主要的操作方式,如图2-27(a)所示,喷嘴不接地,空气和氢气流量较小[V空气<150/ml/min,VH2<(4~9ml/min)]被电加热至红热的电离源,在电离源周围形成冷焰,含N、P的有机化合物在此发生裂解和激发反应,形成N,P的选择性检侧,对烃的选择性可达102~104。(2)磷型操作,如. 2-27(b)所示,喷嘴接地,电离源在正常FID操作状态的火焰中[V空气=300ml/min,VH2=50~60ml/min]加热至发红,烃类化合物的的信号被导入大地,而含P的化合物坡电离源激发,形成P的选择性检测。[img]http://ng1.17img.cn/bbsfiles/images/2006/09/200609191838_27266_1613333_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2006/09/200609191839_27267_1613333_3.jpg[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制