当前位置: 仪器信息网 > 行业主题 > >

元素分析等离子体光谱仪原理

仪器信息网元素分析等离子体光谱仪原理专题为您提供2024年最新元素分析等离子体光谱仪原理价格报价、厂家品牌的相关信息, 包括元素分析等离子体光谱仪原理参数、型号等,不管是国产,还是进口品牌的元素分析等离子体光谱仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合元素分析等离子体光谱仪原理相关的耗材配件、试剂标物,还有元素分析等离子体光谱仪原理相关的最新资讯、资料,以及元素分析等离子体光谱仪原理相关的解决方案。

元素分析等离子体光谱仪原理相关的论坛

  • 等离子体光谱仪

    等离子体光谱仪原理 当高频发生器接通电源后,高频电流I通过感应线圈产生交变磁场(绿色)。开始时,管内为Ar气,不导电,需要用高压电火花触发,使气体电离后,在高频交流电场的作用下,带电粒子高速运动,碰撞,形成“雪崩”式放电,产生等离子体气流。在垂直于磁场方向将产生感应电流(涡电流,粉色),其电阻很小,电流很大(数百安),产生高温。又将气体加热、电离,在管口形成稳定的等离子体焰炬。等离子体光谱仪特点(1) 测定每个元素可同时选用多条谱线;(2) 可在一分钟内完成70个元素的定量测定;(3) 可在一分钟内完成对未知样品中多达70多元素的定性;(4) 1mL的样品可检测所有可分析元素;(5) 扣除基体光谱干扰;(6) 全自动操作;(7) 分析精度:CV 0.5%。等离子体光谱仪应用 等离子体光谱仪的研究领域是生命科学。 等离子体光谱仪的主要用途:用于环保、地质、化工、生物、医药、食品、冶金、农业等方面样品的定性、定量分析。 等离子体光谱仪能够自动等离子激发和待机运行模式,可以节省能耗和氩气耗量。能够适应样品种类的连续变换,同时可确保对多种样品甚至快速更换样品时始终具有稳定、有效的等离子体能量。

  • 【分享】3种光谱分析用等离子体光源,配有漂亮图片!

    (1) DCP-直流等离子体光源 200伏直流电源,500W-700W,三电极放电,氩气工作气体,气动雾化进样,灵敏度较高,基体效应较大。(2)MIP-微波等离子体光源 用2450MHz的微波电源,功率约100瓦-数百瓦,用He气等惰性气体做工作气体,可测定金属元素和于非金属元素分析(:H,C,F,Cl,Br,I,S),但测定非金属元素灵敏度较高,用于测定有机物中的元素成分.(3)电感耦合等离子体(ICP) 频率27-40MHz电源,0.8-1.5KW高频功率,氩气工作气体,形成的大气压力下的气体放电作为激发源,灵敏度较高,基体效应较低,可以进行多元素同时测定,得到广泛应用.成为无机元素分析的重要工具.[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=58080]3种光谱分析用等离子体光源,配有漂亮图片![/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=58081]3种光谱分析用等离子体光源,配有漂亮图片![/url]

  • 电感耦合高频等离子体ICP工作原理

    [b]电感耦合高频等离子体ICP工作原理分析原理:[/b]利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。

  • 【转帖】等离子体原子发射光谱分析常见问题

    等离子体原子发射光谱分析常见问题1、影响等离子体温度的因素有:载气流量:流量增大,中心部位温度下降;载气的压力:激发温度随载气压力的降低而增加;频率和输入功率:激发温度随功率增大而增高,近似线性关系,在其他条件相同时,增加频率,放电温度降低;第三元素的影响:引入低电离电位的释放剂(如T1)的等离子体,电子温度将增加。 2、电离干扰的消除和抑制:原子在火焰或等离子体的蒸[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]中电离而产生的干扰。它使火焰中分析元素的中性原子数减少,因而降低分析信号。在标准和分析试样中加入过量的易电离元素,使火焰或等离子体中的自由电子浓度稳定在相当高的水平上,从而抑制或消除分析元素的电离。此外,由于温度愈高,电离度愈大,因此,降低温度也可减少电离干扰。 3、试剂酸度对ICP-AES法的干扰效应主要表现在哪些方面?提升率及其中元素的谱线强度均低于水溶液;随着酸度增加,谱线强度显著降低;各种无机酸的影响并不相同,按下列顺序递增:HCl HNO3 HClO4 H3PO4 H2SO4;谱线强度的变化与提升率的变化成正比例。 4、ICP-AES法中的光谱干扰主要存在的类型:谱线干扰;谱带系对分析谱线的干扰;连续背景对分析谱线的干扰;杂散光引起的干扰。 5、ICP-AES法分析中灵敏度漂移的校正:在测定过程中,气体压力改变会影响到原子化效率和基态原子的分布;另外,毛细管阻塞、废液排泄不畅,会使溶液提升量和雾化效率受到影响;以及电压变化等诸多因素都会使灵敏度发生漂移,其校正方法可每测10个样品加测一个与样品组成接近的质控样,并根据所用仪器的新旧程度适当缩短标准化的时间间隔。 6、ICP分析中如何避免样品间的互相沾污?测量时,不要依次测量浓度悬殊很大的样品,可把浓度相近的样品放在一起测定,测定样品之间,应用蒸馏水或溶剂冲洗之。 7、ICP-AES法中,用来分解样品的酸,必须满足的条件:尽可能使各种元素迅速、完全分解;所含待测元素的量可忽略不计;分解样品时,待测元素不应损失;与待测元素间不形成不溶性物质;测定时共存元素的影响要小;不损伤雾化器、炬管等。 8、在ICP-AES法中,为什么必须特别重视标准溶液的配置?不正确的配置方法将导致系统偏差的产生;介质和酸度不合适,会产生沉淀和浑浊;元素分组不当,会引起元素间谱线干扰;试剂和溶剂纯度不够,会引起空白值增加、检测限变差和误差增大。 9、配制ICP分析用的多元素贮备标准溶液的注意事项:溶剂用高纯酸或超纯酸;用重蒸的离子交换水;使用光谱纯、高纯或基准物质;把元素分成几组配制,避免谱线干扰或形成沉淀。 10、当采用有机试剂进行ICP分析时,有哪些特殊要求?高频功率一般应高于水溶液试样;冷却气流量要增高,载气流量要减少,同时应通入较高流量的辅助气;对炬管的结构和安装也有某些特殊要求;多采用链状结构的有机溶剂作稀释剂。 11、什么叫稀释剂?ICP-AES法用的稀释剂有哪些要求?一般粘度大的试样,用气动雾化进样较难,常用低粘度的有机溶剂去稀释试样,这种有机溶剂称为稀释剂。对其要求有:①粘度较低;②分子中的碳原子数较少;③有中等的挥发性;④不产生或少产生有毒气体;⑤ 允许有较高的进样量而不致使等离子体熄灭;⑥在炬管口产生的碳沉积较少。 12、稀释剂对ICP分析有哪些影响?稀释剂的粘度对雾化进样、速率产生影响;密度、粘度和表面张力影响形成雾滴的初始致敬;沸点影响雾滴的挥发及进入ICP通道的有机溶剂蒸发量,从而影响ICP的稳定性。

  • ICP光谱议中等离子体焰的形成过程及原理

    ICP光谱议中等离子体焰的形成过程及原理ICP英文翻译过来是电感耦合等离子体,顾名思义,在炬管的切向方向引入高速氩气,氩气在炬管的外层形成高速旋流,通过类似真空检漏仪的装置产生的高频电火花使氩气电离出少量电子,形成一个沿炬管切线方向的电流.因为炬管放置在高频线圈内,通过高频发生器产生的高频振荡通过炬管线圈耦合到已被电离出少量电子的氩气上,使氩气中的这部分电子加速运动,撞击其他电子产生电离,形成雪崩效应,最终靠高频发生器连续提供能量,即可形成一个稳定的等离子体火焰. 电感耦合高频等离子(ICP)光源 等离子体是一种由自由电子、离子、中性原子与分子所组成的在总体上呈中性的气体,利用电感耦合高频等离子体(ICP)作为原子发射光谱的激发光源始于本世纪60年代。ICP装置由高频发生器和感应圈、炬管和供气系统、试样引入系统三部分组成。高频发生器的作用是产生高频磁场以供给等离子体能量。应用最广泛的是利用石英晶体压电效应产生高频振荡的他激式高频发生器,其频率和功率输出稳定性高。频率多为27-50 MHz,最大输出功率通常是2-4kW。  感应线圈一般以圆铜管或方铜管绕成的2-5匝水冷线圈。  等离子炬管由三层同心石英管组成。外管通冷却气Ar的目的是使等离子体离开外层石英管内壁,以避免它烧毁石英管。采用切向进气,其目的是利用离心作用在炬管中心产生低气压通道,以利于进样。中层石英管出口做成喇叭形,通入Ar气维持等离子体的作用,有时也可以不通Ar气。内层石英管内径约为1-2mm,载气载带试样气溶胶由内管注入等离子体内。试样气溶胶由气动雾化器或超声雾化器产生。用Ar做工作气的优点是,Ar为单原子惰性气体,不与试样组分形成难解离的稳定化合物,也不会象分子那样因解离而消耗能量,有良好的激发性能,本身的光谱简单。  当有高频电流通过线圈时,产生轴向磁场,这时若用高频点火装置产生火花,形成的载流子(离子与电子)在电磁场作用下,与原子碰撞并使之电离,形成更多的载流子,当载流子多到足以使气体有足够的导电率时,在垂直于磁场方向的截面上就会感生出流经闭合圆形路径的涡流,强大的电流产生高热又将气体加热,瞬间使气体形成最高温度可达10000K的稳定的等离子炬。感应线圈将能量耦合给等离子体,并维持等离子炬。当载气载带试样气溶胶通过等离子体时,被后者加热至6000-7000K,并被原子化和激发产生发射光谱。  ICP焰明显地分为三个区域:焰心区、内焰区和尾焰区。  焰心区呈白色,不透明,是高频电流形成的涡流区,等离子体主要通过这一区域与高频感应线圈耦合而获得能量。该区温度高达10000K,电子密度很高,由于黑体辐射、离子复合等产生很强的连续背景辐射。试样气溶胶通过这一区域时被预热、挥发溶剂和蒸发溶质,因此,这一区域又称为预热区。  内焰区位于焰心区上方,一般在感应圈以上10-20mm左右,略带淡蓝色,呈半透明状态。温度约为6000-8000K,是分析物原子化、激发、电离与辐射的主要区域。光谱分析就在该区域内进行,因此,该区域又称为测光区。  尾焰区在内焰区上方,无色透明,温度较低,在6000K以下,只能激发低能级的谱线。

  • 【资料】电感耦合等离子体光谱仪(ICP-AES)

    电感耦合等离子体光谱仪(ICP-AES) 分析性能评价 J.M Mermet University of Lyon 里昂大学 1.ICP-AES市场 全世界每年约售销ICP光谱仪1400~1500台,粗略计,50%为顺序(扫描))型,50%为(同时)多道型.目前,全世界已经超过17,000台.主要生产厂家有Perkin-E1mer公司,Thermo Optek司,Varian公司和Jobin一Yvon/Horiba公司等。 2.通过实验对ICP一AES分析性能评价 一般用户要求通过较为简单的实验对ICP-AES性能进行评价,而这些性能可以反映分析结果的质量以及仪器系统的质量,因此可以对不同的分析仪器进行比较。 2.1等离子体的稳定性(Robustness) 等离子体的稳定性是指仪器系统在负载发生变化时,分析信号强度发生的变化的程度。负载变化主要来于基体浓度或基体本身发生的变化。可以通过MgII280nm/MgI285mn的强度比来简单计价等离子体的稳定性,这一比值在0.1~15范围内,其理论值接近12,此时等离子体处于动态平衡状态,为保证合适的操作条件,JY公司仪器的这一比值应大于6。 2.2实际分辨率(△λins) 实际分辨率可以通过以下两条窄线进行测量: Cdl228nm, BaII233nm,分辨率取决于:理论分辨率(光栅刻线数);光谱通带(线色散和狭缝宽度),光学象差。 对实际分辨率为△λins的仪器,两条强度相等的谱线,波长差为2△λins 时能够被分开。 谱线宽度范围: a.多普勒效应(Doppler effect) △λ1=0.9~7nm b.超精细结构:10~32pm c.理论上可以获得小于△λ1的实际分辨率 即 △λins〈△λ1 2.3检出限(LOD)检出限是指从空白中能确切地检测到的最低浓度,一般分两步:首先测出最小的检测信号,然后通过校正曲线将其转换成浓度。检出限降低,定量测量下限也相应降低,定量测量下限指获得期望的重现性时的最低测量浓度。检出限可以通过下式近似计算: CL=3• C• RSDB/SBR 式中:C,测量元素的浓度: RSDB,谱线背景强度的相对标准偏差; SBR,谱线信号`背景强度之比。 2.4重现性(repeatability) 可以通过测量信号(如MgI285nm)的相对标准偏差(RSD)来判断分析结果的重现性。在测量元素的纯溶液中,浓度高于100倍检出限时,最佳的ICP光谱仪系统其RSD可低达0.2%,RSD因以下几个因素而变差: a.使用高盐溶液 b.雾化不充分 c.样品导入系统本身出现干扰(如悬浮体或导入系统发生消蚀)。 2.5 实验原理 特性 诊断 元素及分析线 测量 选择性 分辨率 谱线半峰宽 重现性 信号RSD RSD长期稳定性 (4) 预热时间 稳定性 时间 RSD(信号) 等离子体 稳定性 强度比 检测限 背景 处) 信背比 最佳背景RSD3.ICP-AES仪器性能评分标准 得分诊断 谱线范围分辨率信号RSD 分辨率()预热 重现性(%RSD)预热时间()长期稳定性(%RSD)信背比()背景RSD

  • 【分享】等离子体原子发射光谱分析常见问题

    1、影响等离子体温度的因素有:载气流量:流量增大,中心部位温度下降;载气的压力:激发温度随载气压力的降低而增加;频率和输入功率:激发温度随功率增大而增高,近似线性关系,在其他条件相同时,增加频率,放电温度降低;第三元素的影响:引入低电离电位的释放剂(如T1)的等离子体,电子温度将增加。2、电离干扰的消除和抑制:原子在火焰或等离子体的蒸[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]中电离而产生的干扰。它使火焰中分析元素的中性原子数减少,因而降低分析信号。在标准和分析试样中加入过量的易电离元素,使火焰或等离子体中的自由电子浓度稳定在相当高的水平上,从而抑制或消除分析元素的电离。此外,由于温度愈高,电离度愈大,因此,降低温度也可减少电离干扰。3、试剂酸度对ICP-AES法的干扰效应主要表现在哪些方面?提升率及其中元素的谱线强度均低于水溶液;随着酸度增加,谱线强度显著降低;各种无机酸的影响并不相同,按下列顺序递增:HCl HNO3 HClO4 H3PO4 H2SO4;谱线强度的变化与提升率的变化成正比例。4、ICP-AES法中的光谱干扰主要存在的类型:谱线干扰;谱带系对分析谱线的干扰;连续背景对分析谱线的干扰;杂散光引起的干扰。5、ICP-AES法分析中灵敏度漂移的校正:在测定过程中,气体压力改变会影响到原子化效率和基态原子的分布;另外,毛细管阻塞、废液排泄不畅,会使溶液提升量和雾化效率受到影响;以及电压变化等诸多因素都会使灵敏度发生漂移,其校正方法可每测10个样品加测一个与样品组成接近的质控样,并根据所用仪器的新旧程度适当缩短标准化的时间间隔。6、ICP分析中如何避免样品间的互相沾污?测量时,不要依次测量浓度悬殊很大的样品,可把浓度相近的样品放在一起测定,测定样品之间,应用蒸馏水或溶剂冲洗之。7、ICP-AES法中,用来分解样品的酸,必须满足的条件:尽可能使各种元素迅速、完全分解;所含待测元素的量可忽略不计;分解样品时,待测元素不应损失;与待测元素间不形成不溶性物质;测定时共存元素的影响要小;不损伤雾化器、炬管等。8、在ICP-AES法中,为什么必须特别重视标准溶液的配置?不正确的配置方法将导致系统偏差的产生;介质和酸度不合适,会产生沉淀和浑浊;元素分组不当,会引起元素间谱线干扰;试剂和溶剂纯度不够,会引起空白值增加、检测限变差和误差增大。9、配制ICP分析用的多元素贮备标准溶液的注意事项:溶剂用高纯酸或超纯酸;用重蒸的离子交换水;使用光谱纯、高纯或基准物质;把元素分成几组配制,避免谱线干扰或形成沉淀。10、当采用有机试剂进行ICP分析时,有哪些特殊要求?高频功率一般应高于水溶液试样;冷却气流量要增高,载气流量要减少,同时应通入较高流量的辅助气;对炬管的结构和安装也有某些特殊要求;多采用链状结构的有机溶剂作稀释剂。11、什么叫稀释剂?ICP-AES法用的稀释剂有哪些要求?一般粘度大的试样,用气动雾化进样较难,常用低粘度的有机溶剂去稀释试样,这种有机溶剂称为稀释剂。对其要求有:①粘度较低;②分子中的碳原子数较少;③有中等的挥发性;④不产生或少产生有毒气体;⑤ 允许有较高的进样量而不致使等离子体熄灭;⑥在炬管口产生的碳沉积较少。12、稀释剂对ICP分析有哪些影响?稀释剂的粘度对雾化进样、速率产生影响;密度、粘度和表面张力影响形成雾滴的初始致敬;沸点影响雾滴的挥发及进入ICP通道的有机溶剂蒸发量,从而影响ICP的稳定性。

  • ICP光谱仪中等离子体焰的形成过程及原理

    ICP英文翻译过来是电感耦合等离子体,顾名思义,在炬管的切向方向引入高速氩气,氩气在炬管的外层形成高速旋流,通过类似真空检漏仪的装置产生的高频电火花使氩气电离出少量电子,形成一个沿炬管切线方向的电流.因为炬管放置在高频线圈内,通过高频发生器产生的高频振荡通过炬管线圈耦合到已被电离出少量电子的氩气上,使氩气中的这部分电子加速运动,撞击其他电子产生电离,形成雪崩效应,最终靠高频发生器连续提供能量,即可形成一个稳定的等离子体火焰。 电感耦合高频等离子(ICP)光源 等离子体是一种由自由电子、离子、中性原子与分子所组成的在总体上呈中性的气体,利用电感耦合高频等离子体(ICP)作为原子发射光谱的激发光源始于本世纪60年代。 ICP装置由高频发生器和感应圈、炬管和供气系统、试样引入系统三部分组成。高频发生器的作用是产生高频磁场以供给等离子体能量。应用最广泛的是利用石英晶体压电效应产生高频振荡的他激式高频发生器,其频率和功率输出稳定性高。频率多为27~50 MHz,最大输出功率通常是2~4kW。  感应线圈一般以圆铜管或方铜管绕成的2-5匝水冷线圈。  等离子炬管由三层同心石英管组成。外管通冷却气Ar的目的是使等离子体离开外层石英管内壁,以避免它烧毁石英管。采用切向进气,其目的是利用离心作用在炬管中心产生低气压通道,以利于进样。中层石英管出口做成喇叭形,通入Ar气维持等离子体的作用,有时也可以不通Ar气。内层石英管内径约为1~2mm,载气载带试样气溶胶由内管注入等离子体内。试样气溶胶由气动雾化器或超声雾化器产生。用Ar做工作气的优点是,Ar为单原子惰性气体,不与试样组分形成难解离的稳定化合物,也不会象分子那样因解离而消耗能量,有良好的激发性能,本身的光谱简单。  当有高频电流通过线圈时,产生轴向磁场,这时若用高频点火装置产生火花,形成的载流子(离子与电子)在电磁场作用下,与原子碰撞并使之电离,形成更多的载流子,当载流子多到足以使气体有足够的导电率时,在垂直于磁场方向的截面上就会感生出流经闭合圆形路径的涡流,强大的电流产生高热又将气体加热,瞬间使气体形成最高温度可达10000K的稳定的等离子炬。感应线圈将能量耦合给等离子体,并维持等离子炬。当载气载带试样气溶胶通过等离子体时,被后者加热至6000-7000K,并被原子化和激发产生发射光谱。  ICP焰明显地分为三个区域:焰心区、内焰区和尾焰区。  焰心区呈白色,不透明,是高频电流形成的涡流区,等离子体主要通过这一区域与高频感应线圈耦合而获得能量。该区温度高达10000K,电子密度很高,由于黑体辐射、离子复合等产生很强的连续背景辐射。试样气溶胶通过这一区域时被预热、挥发溶剂和蒸发溶质,因此,这一区域又称为预热区。  内焰区位于焰心区上方,一般在感应圈以上10-20mm左右,略带淡蓝色,呈半透明状态。温度约为6000~8000K,是分析物原子化、激发、电离与辐射的主要区域。光谱分析就在该区域内进行,因此,该区域又称为测光区。  尾焰区在内焰区上方,无色透明,温度较低,在6000K以下,只能激发低能级的谱线。

  • 【原创大赛】电感耦合等离子体质谱仪半定量方法在盲样液元素分析中的应用

    【原创大赛】电感耦合等离子体质谱仪半定量方法在盲样液元素分析中的应用

    电感耦合等离子体质谱仪半定量方法在盲样液元素分析中的应用摘要 采用电感耦合等离子体质谱法(ICP-MS),建立了一种盲样元素分析的半定量检测方法,对合成样品的半定量分析以及对实际样品的加标回收试验结果显示,该方法能够有效消除干扰,实现对多种元素的一次性快速测定,测定结果的偏差为(-29.0~+17.0)%,加标回收率为(-29.0~+17.0)%,该方法能快速确定样品中存在的元素及浓度范围,可以应用于盲样元素含量扫描分析,为快速了解盲样元素信息提供科学根据。 关键词 半定量分析方法;元素; 盲样检测;电感耦合等离子体质谱法摘要 采用电感耦合等离子体质谱法(ICP-MS),建立了一种盲样元素分析的半定量检测方法,对合成样品的半定量分析以及对实际样品的加标回收试验结果显示,该方法能够有效消除干扰,实现对多种元素的一次性快速测定,测定结果的偏差为(-29.0~+17.0)%,加标回收率为(-29.0~+17.0)%,该方法能快速确定样品中存在的元素及浓度范围,可以应用于盲样元素含量扫描分析,为快速了解盲样元素信息提供科学根据。 关键词 半定量分析方法;元素; 盲样检测;电感耦合等离子体质谱法中图分类号: 文献标识码: 文章编号: 随着经济的发展,突发性污染事件的发生越来越频繁,污染物种类也越来越繁多。近几年来,电感耦合等离子体质谱技术具有检出限低、动态范围宽、基体效应小、准确度和精密度高、可同时进行多元素分析等的特点,除能进行常规定量分析外,还因与质谱联用而拓展了许多功能,其中半定量分析(Semi-quantitative Analysis)为ICP-MS所特有的一项实用功能,不需要外部标准,即可对盲样液进行测定。因此,ICP-MS半定量分析能为盲样的金属元素分析提供更快更多的分析数据。本文着重研究了ICP-MS半定量方法在检测盲样元素中的应用。常规的定量分析中,对于需进行分析检测的每一种元素都必须提供标准溶液,在完成标准曲线后才能进行分析测定;而ICP-MS半定量分析则不需要对每一个元素都提供相应的标准物质,它只需几种已知浓度(最好能涵盖整个质量轴从6Li到239U)的元素作为标准溶液,以此为基础对ICP-MS所能分析的元素或被选定测量的元素进行测量,从而获得盲样液中有何种元素及元素浓度的相关信息,为进一步快速准确测定相关元素提供依据。1 试验部分1.1 主要仪器Agilent 7700 x ICP-MS (美国安捷伦科技有限公司产)。1.2 主要试剂超纯水;默克产进口硝酸;标准溶液(1000μg·mL-1):锂、钪、钇、铟、铈、铋(由国家钢铁材料测试中心提供);由各单标标准混合成混标溶液,并用硝酸逐级稀释成10ng·mL-1使用液。1.3 仪器条件ICP-MS仪器操作条件见表1。http://ng1.17img.cn/bbsfiles/images/2011/12/201112120701_337301_1601435_3.jpg1.4 试验方法选定以锂、钪、钇、铟、铈、铋为标准(浓度为10ng·mL-1使用液),绘制半定量灵敏度曲线,以此曲线为基础,将盲样液用2%硝酸稀释100倍,对其他的能检测的元素进行半定量分析。2 结果与讨论2.1 干扰的消除与常规定量分析一样, ICP-MS半定量分析质谱干扰主要有同质异位数、多原子离子、氧化物、双电荷等, 可以通过调谐仪器参数和编辑干扰校正方程来消除,本试验通过选择干扰较少的同位素以及采用推荐的干扰校正公式消除干[

  • 【原创】俺家的iCAP 6000等离子体发射光谱仪

    【原创】俺家的iCAP 6000等离子体发射光谱仪

    [em09505][img]http://ng1.17img.cn/bbsfiles/images/2017/10/200961010259_01_1816404_3.jpg[/img]俺家的iCAP 6000等离子体发射光谱仪:我来说两句:**当今世界体积最小的新型iCAP 6000系列等离子体发射光谱仪 **更优异的仪器性能 **更高的工作效率 **更方便的操作 **更低的运行成本 **广泛应用于环境、石化、冶金、食品饮料、地球化学和水泥行业的普通和元素分析实验室 主要特点 :@降低了气体消耗 @改善了对于诸如砷(As)、锑(Sb)、硒(Se)和碲(Te)的元素分析性能全@自动波长校正和补偿校正保证了长时间的优异稳定性 @第四代电荷注入式(CID)检测器RACID86 @快速、可靠和便捷性能的常规分析,既可采用单一的等离子体炬垂直观测, 也可采用双向观测 俺家的ICAP 6000系列您可以放心来了解。

  • 【资料】-用于气相色谱的微波等离子体原子发射光谱检测器的发展

    [size=4][B]用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的微波等离子体原子发射光谱检测器的发展[/B][/size][I]袁懋,师宇华[/I]摘要:分别介绍和评价了用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的微波诱导等离子体、电容耦合微波等离子体和微波等离子体炬等3种微波等离子体原子发射光谱检测器的发展、应用以及局限性。对用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的微波等离子体原子发射光谱检测器的发展作了展望。关键词:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url];微波等离子体;原子发射光谱;检测器自[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析法(GC)问世以来,色谱分离分析方法得到了迅速发展,已成为生命科学、石油化工、环境科学等学科必不可少的检测手段和工具。色谱法的发展在很大程度上取决于检测器的发展,每种新型检测器的提出和完善都在一定程度上提高了色谱仪器的性能,促进了色谱法更加广泛和深入的应用。如果没有合乎需要的检测器的诞生,再好的色谱分离方法也难满足社会的需求。迄今为止,已报道过的色谱检测器有100种之多。色谱分析的实践对检测器提出了更高的要求,理想的色谱检测器应具备的特点是灵敏度高、精密度好、线性范围宽、通用性或选择性强、具有形态分析的能力、操作特性优良等。传统的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器已不能满足上述要求。近30年来,由于新型光源和电子技术的发展,等离子体光源部分代替了电弧、火花和火焰等传统光源的主导地位, 为原子发射光谱分析增添了新的活力,且在作为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器方面越来越显示出它的优越性。[B]1 概述[/B][I]1. 1 等离子体和微波等离子体[/I]  在物理学上,“等离子体”是指由大量自由电子和离子组成且在整体上表现出近似为电中性的电离气体;在光谱学上,“等离子体”指的是用电学方法获得的类似于火焰的发光气体。因此,微波等离子体(MWP)包括微波诱导等离子体(MIP)、电容耦合微波等离子体(CMP)和微波等离子体炬(MPT) 。[I]1. 2 微波等离子体原子发射光谱检测器的特性[/I]  微波等离子体原子发射光谱检测器(MWP-AED)的检测原理是将微波等离子体作为激发光源,样品进入检测器(激发光源)后被原子化,然后被激发至高能态,再跃迁回到低能态,发射出原子光谱。根据这些发射光谱线的波长和强度即可对待测物进行定性和定量分析。原子发射光谱检测器有许多独特的性能和应用。选用某一特定波长通道时,它只对某一特定元素有响应,此时的检测器为选择性检测器, 并且其选择性比其他[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器(如电子俘获检测器(ECD)、火焰光度检测器(FPD)等)更好;如果选择碳或氢的波长作为通道,它就会对一系列含有这两种元素的化合物有响应而成为通用性检测器, 且对某些化合物的灵敏度高于火焰离子化检测器(FID )。  AED 对元素周期表中除了He以外的任何一种元素均可检测,属多元素检测器,并可用于测定未知化合物的经验式和分子式。对未知化合物的鉴定,AED是质谱(MS)、傅里叶变换红外光谱(FT-IR)的有力补充手段。20世纪60年代以来,随着环境科学、生物化学、农业科学、无机和有机化学等领域的发展,越来越多的检测要求得到样品中每个组分每个元素的信息。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]具有极强的分离能力,恰能满足单组分信息测定的要求。近年来AED与GC联用的应用领域更是不断扩大,成为一种十分有发展前景的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器。[B]2 微波诱导等离子体2原子发射光谱检测器的发展[/B]  由于MIP系统简单,操作方便,又是灵敏特效的元素选择性检测器,因而最受欢迎。微波耦合给等离子体工作气体的常用器件是微波谐振腔。它是一种空心的金属容器, 其形状和大小正好使微波可在其中形成一个电磁驻波。等离子体工作气体一般以连续流动方式通过谐振腔,并在谐振腔轴向插入的石英管中形成等离子体。用来获得MIP 的耦合器件的种类很多,常见的有TM010、3/4λ谐振腔和同轴表面波激励器件Surfatron等。[color=#DC143C]全文附件在5楼[/color]

  • 电感耦合等离子体发射光谱仪的应用

    电感耦合等离子体发射光谱仪的应用

    [align=center][font='宋体'][size=16px]电感耦合等离子体发射光谱仪的应用[/size][/font][/align][font='宋体'][size=16px]中广测配备了电感耦合等离子体发射光谱仪(ICP-OES),配有CMOS固态检测器,具有真实同步直读式测量检测,全谱一次曝光同时读取的功能,读取速度是传统CCD检测器速度的10倍。ICP-OES作为无机分析的主要手段之一,可测定元素周期表中硫、磷、硅等73种元素金属和非金属元素,可用于医药、食品、化妆品、化工产品、肥料等各类样品中常量、微量无机元素的快速定性分析及定量分析。[/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271130132059_3999_2862401_3.jpeg[/img][/align][align=center][font='宋体'][size=16px][color=#000000]电感耦合等离子体发射光谱仪[/color][/size][/font][/align][font='宋体'][size=16px]一、仪器信息[/size][/font][font='宋体'][size=16px]1.仪器名称:电感耦合等离子体发射光谱仪[/size][/font][font='宋体'][size=16px]2.英文名称:Inductively Coupled Plasma Optical Emission Spectrometer[/size][/font][font='宋体'][size=16px]3.生产制造商:美国利曼公司[/size][/font][font='宋体'][size=16px]4.型号:Prodigy7[/size][/font][font='宋体'][size=16px]二、主要技术参数[/size][/font][font='宋体'][size=16px]1. 波长范围:165-900nm;[/size][/font][font='宋体'][size=16px]2.光学分辨率:≤0.007nm (@200nm);[/size][/font][font='宋体'][size=16px]3.重复性:Zn/Ni/Mn/Cr/Cu/Ba小于1.5%;[/size][/font][font='宋体'][size=16px]4.稳定性:Zn/Ni/Mn/Cr/Cu/Ba小于2.0%;[/size][/font][font='宋体'][size=16px]5.等离子体观测方式:具备水平和垂直两种观测方式;[/size][/font][font='宋体'][size=16px]6.检测器:CMOS固态检测器,具有真实同步直读式测量检测,全谱一次曝光同时读取。[/size][/font][font='宋体'][size=16px]三、应用领域[/size][/font][font='宋体'][size=16px]用于医药、食品、化妆品、化工产品、肥料等领域。[/size][/font][font='宋体'][size=16px]四、服务范围[/size][/font][font='宋体'][size=16px]1.各类样品中常量、微量无机元素分析检测[/size][/font][font='宋体'][size=16px]2.样品中常量、微量无机元素含量测定的方法开发与验证[/size][/font][font='宋体'][size=16px]五、应用案例[/size][/font][font='宋体'][size=16px]肥料中的矿物元素对植物的生长有重要的意义,根据NY 1429-2010 含氨基酸水溶肥料标准要求,采用ICP-OES测定了含氨基酸水溶肥料(微量元素型)中的微量元素,结果如下:[/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271130134300_1550_2862401_3.png[/img][/align]

  • 【原创大赛】电感耦合等离子体质谱仪半定量方法在食品盲样元素分析中的应用

    【原创大赛】电感耦合等离子体质谱仪半定量方法在食品盲样元素分析中的应用

    电感耦合等离子体质谱仪半定量方法在食品盲样元素分析中的应用摘要 采用电感耦合等离子体质谱法(ICP-MS),建立了一种盲样元素分析的半定量检测方法,对合成样品的半定量分析以及对实际样品的加标回收试验结果显示,该方法能够有效消除干扰,实现对多种元素的一次性快速测定,测定结果的偏差为(-29.0~+17.0)%,加标回收率为(97~112)%,该方法能快速确定样品中存在的元素及浓度范围,可以应用于盲样元素含量扫描分析,为快速了解盲样元素信息提供科学根据。 关键词 半定量分析方法;元素; 盲样检测;电感耦合等离子体质谱法中图分类号: 文献标识码: 文章编号:Inductively coupled plasma mass spectrometry blind semi-quantitative method in the sample solution in the application of elemental analysisAbstract Inductively Coupled Plasma Mass Spectrometry (ICP-MS), established a kind of blind semi-quantitative elemental analysis of the detection method, samples of synthetic and semi-quantitative analysis of spiked samples for recovery of the actual test results show that the method can effectively eliminate the interference, to achieve the rapid determination of various elements of the one-time, the deviation of measured results (-29.0 ~ +17.0)%, and the recovery of ([color=bla

  • 【讨论】ICP等离子体原子发射光谱分析常见问题

    1、影响等离子体温度的因素有:载气流量:流量增大,中心部位温度下降;载气的压力:激发温度随载气压力的降低而增加;频率和输入功率:激发温度随功率增大而增高,近似线性关系,在其他条件相同时,增加频率,放电温度降低;第三元素的影响:引入低电离电位的释放剂(如T1)的等离子体,电子温度将增加。2、电离干扰的消除和抑制:原子在火焰或等离子体的蒸[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]中电离而产生的干扰。它使火焰中分析元素的中性原子数减少,因而降低分析信号。在标准和分析试样中加入过量的易电离元素,使火焰或等离子体中的自由电子浓度稳定在相当高的水平上,从而抑制或消除分析元素的电离。此外,由于温度愈高,电离度愈大,因此,降低温度也可减少电离干扰。:3、试剂酸度对ICP-AES法的干扰效应主要表现在哪些方面?提升率及其中元素的谱线强度均低于水溶液;随着酸度增加,谱线强度显著降低;各种无机酸的影响并不相同,按下列顺序递增:HCl HNO3 HClO4 H3PO4 H2SO4;谱线强度的变化与提升率的变化成正比例.4、ICP-AES法中的光谱干扰主要存在的类型:谱线干扰;谱带系对分析谱线的干扰;连续背景对分析谱线的干扰;杂散光引起的干扰。5、ICP-AES法分析中灵敏度漂移的校正:在测定过程中,气体压力改变会影响到原子化效率和基态原子的分布;另外,毛细管阻塞、废液排泄不畅,会使溶液提升量和雾化效率受到影响;以及电压变化等诸多因素都会使灵敏度发生漂移,其校正方法可每测10个样品加测一个与样品组成接近的质控样,并根据所用仪器的新旧程度适当缩短标准化的时间间隔。6、ICP分析中如何避免样品间的互相沾污?测量时,不要依次测量浓度悬殊很大的样品,可把浓度相近的样品放在一起测定,测定样品之间,应用蒸馏水或溶剂冲洗之.7、ICP-AES法中,用来分解样品的酸,必须满足的条件:尽可能使各种元素迅速、完全分解;所含待测元素的量可忽略不计;分解样品时,待测元素不应损失;与待测元素间不形成不溶性物质;测定时共存元素的影响要小;不损伤雾化器、炬管等。8、在ICP-AES法中,为什么必须特别重视标准溶液的配置?不正确的配置方法将导致系统偏差的产生;介质和酸度不合适,会产生沉淀和浑浊;元素分组不当,会引起元素间谱线干扰;试剂和溶剂纯度不够,会引起空白值增加、检测限变差和误差增大。9、配制ICP分析用的多元素贮备标准溶液的注意事项:溶剂用高纯酸或超纯酸;用重蒸的离子交换水;使用光谱纯、高纯或基准物质;把元素分成几组配制,避免谱线干扰或形成沉淀。10、当采用有机试剂进行ICP分析时,有哪些特殊要求?高频功率一般应高于水溶液试样;冷却气流量要增高,载气流量要减少,同时应通入较高流量的辅助气;对炬管的结构和安装也有某些特殊要求;多采用链状结构的有机溶剂作稀释剂.11、什么叫稀释剂?ICP-AES法用的稀释剂有哪些要求?一般粘度大的试样,用气动雾化进样较难,常用低粘度的有机溶剂去稀释试样,这种有机溶剂称为稀释剂。对其要求有:①粘度较低;②分子中的碳原子数较少;③有中等的挥发性;④不产生或少产生有毒气体;⑤ 允许有较高的进样量而不致使等离子体熄灭;⑥在炬管口产生的碳沉积较少。12、稀释剂对ICP分析有哪些影响?稀释剂的粘度对雾化进样、速率产生影响;密度、粘度和表面张力影响形成雾滴的初始致敬;沸点影响雾滴的挥发及进入ICP通道的有机溶剂蒸发量,从而影响ICP的稳定性。

  • 激光等离子体光谱平台的建设?

    最近在接手做激光等离子体光谱的定量分析课题(LIBS或LIPS),原来的实验室前辈利用自制激光器+单色仪+光电倍增管做了一些基础探索,目前想扩展更新检测装置,包括光源+光谱仪+探测器等以及辅件,目前外文文献上一些平台的又太贵了,老板不是很想买,有没有同行有什么好建议?供货商、型号、参数等等都行,谢谢。对了,我们是做固体元素定量分析,比如煤、灰、土壤等等。

  • 等离子体发射光谱仪分类与“全谱直读”一词

    等离子体发射光谱仪分类与“全谱直读”一词陆文伟上海交通大学分析测试中心, 上海 200030摘 要 本文从仪器结构原理上讨论了当前国内在新型等离子体发射光谱仪分类命名上的问题。指出“全谱直读”一词用于仪器分类的不严谨性。提仪使用固态检测器等离子体发射光谱仪作为分类词。主题词 等离子体发射光谱仪 中阶梯光栅 固态检测器 全谱直读中图分类号:O657131   文献标识码:B   文章编号:100020593 (2002) 0220348202 收稿日期:2000208205 ,修订日期:2000212212 作者简介:陆文伟,1951 年生,上海交通大学分析测试中心高级工程师  早期国外把等离子体发射光谱仪( ICP2OES) 仪器分成同时型(Simultanous) 和顺序型(Sequential) 二类。国内把色散系统区分为多色器(Polychromator) 、单色器(Monochromator) ,仪器则从检测器来区分,命名为多通道型(多道) ,顺序型(单道扫描) 仪器[ 1 ,2 ] 。其仪器的分类命名与仪器功能,仪器结构基本一致,与国外的仪器分类也一致。ICP2OES 仪器在其发展期间,又有N + 1 的单道与多道结合型仪器出现,以及有入射狭逢能沿罗兰圈光学平面移动,完成1~2 nm 内扫描,能获得谱图的多道仪器出现,但总体上仍没动摇仪器的原始分类。1991 年新的中阶梯光栅固态检测器ICP2OES 仪器问世,新的仪器把中阶梯光栅等光学元件形成的二维谱图投影到平面固态检测器的感光点上,使仪器同时具有同时型和顺序型仪器的功能,这样形成了新一类的仪器。从它的信号检出来看,它与同时型仪器很接近,故有的国外文献仍把它简单归为同时型(Simultaneous) 仪器。但更多的是从仪器的硬件结构上出发,采用中阶梯光栅固态检测器等离子体发射光谱仪“Echelle grating solid state detector ICP2OES”的命名。1993 年该类仪器进入中国市场,国内仪器广告上出现“全谱直读”一新名词。随着该类仪器的推广使用,该名词逐渐渗入期刊杂志,教科书,学术界,甚至作为仪器分类词出现在《现代分析仪器分析方法通则及计量检定规程》[ 3 ]中。纵观国外涉及到中阶梯光栅固态检测器等离子体发射光谱仪的期刊杂志,书籍和文献均未使用到该词或与之意思相近的词。甚至各仪器厂家的英文样本中也无该词出现。实际上“全谱直读”是中文广告词,它不严谨,并含糊地影射二方面意思:11 光谱谱线的全部覆盖性和全部可利用性 21 全部谱线的总体信号同时采集读出。从中阶梯光栅固态检测器等离子体发射光谱仪的光谱范围(英文常采用Wavelength coverage range) 来看,一般仪器都在160~800 nm 左右。如有的仪器在167~782 nm ,有的在165~800 nm ,有的在175~900 nm ,有的在165~1 000 nm ,有的是在122~466 nm 基础上另加590 ,670 ,766 nm 的额外单个检测器。有的在超纯Ar 装置下短波段区扩展至134nm ,其长波段区能扩展至1 050 nm。很明显所有此类仪器的光谱范围目前离“全谱”还是有距离的,而且仪器厂家还在扩大其光谱范围。再说此类仪器的“光谱范围”,实际上更确切的意思是指可利用的分析谱线波长跨度范围!实际上中阶梯光栅和棱镜所形成的二维光谱图在目前固态检测器芯片匹配过程中,高级次光谱区可以说是波长连续的,不同级次的光谱波长区甚至重迭。而低级次光谱区级次与级次之间的波长区并不衔接,最大可以有20 nm 以上的间隙,其间隙随着级数增大而变小,严格地说也就是仪器的光谱不连续性存在,尽管对有用谱线影响并不太大。另外中阶梯光栅多色器系统产生的二维谱图闪烁区与检测器芯片匹配的边缘效应,固态检测器的分段或分个处理,都会造成使用全部谱线的困难,甚至发生有用谱线的丢失。大面积的固态检测器芯片可望用于光谱仪,光谱级次间波长区的连续性会进一步改善,其波长区复盖也会增大。但仪器制造成本及芯片因光谱级次间波长过多重叠显得利用效率不高,都会形成其发展的阻力。从仪器可利用谱线上看,目前中阶梯光栅固态检测器等离子体发射光谱仪还只能是多谱线同时分析仪器。当然它可利用的谱线要比以前多道发射光谱仪器的谱线(最多六十多条) 多得多。如目前仪器有6 000 多条的,有2 万7 千条的,有在2 万4 千条的基础上再可由使用者在仪器波长区任意定址添加的等等。但这与“全谱”给人的含糊概念,与数十万以上的全部谱线概念相差甚远。就是从全部可利用谱线讲,该类仪器在定量分析时也不等于纪录全部谱线。有的仪器是在定性分析时能纪录所有覆盖谱线。“全谱直读”一词还常常被沿伸到一次曝光像摄谱仪一样工作。直读一词(Direct reading) 出现在摄谱仪之后、光电倍© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.增管用于发射光谱仪之时。是相对摄片2读片过程变成一步而言。多道发射光谱仪采用该词较多。目前中阶梯光栅固态检测器等离子体发射光谱仪还没有完全达到全部谱线的总体信号同时采集读出的水平。有的仪器分检测器读出,有的仪器分波长区读出,有的仪器分波长区检测器再加几个单个波长检测器读出。固态检测器的曝光与摄片又不同,固态检测器比照相底片更灵活,为了适应样品分析元素高低浓度大小信号的要求,固态检测器灵活处理,有的分区曝光,有的分级扫描曝光,有的级中分二段控制曝光,有的检测器分子阵列(Subarray) 控制曝光,有的从其检测器机理出发分每个感光点(Pixel) 控制曝光。“全谱直读”给人是含糊的印象,不能正确反映仪器的特点。当前新的仪器还在不断涌现,有分级扫描式中阶梯光栅固态检测器等离子体发射光谱仪,有新的多个固态检测器在罗兰圈排列使用的仪器,从检测器硬件结构分类,它们都能方便地归入中阶梯光栅固态检测器等离子体发射光谱仪,或固态检测器等离子体发射光谱仪类别里。而“全谱直读”则明显不能适应。新名词会受到实践和事实的考验。国外文献中名词也有变化的,如电感耦合等离子体原子发射光谱仪的ICP2AES 英文缩写名词,因AES 含义面广,易与俄歇电子光谱[ 4 ]混淆,现在逐渐被ICP2OES 取代。切入实际的名词才会在发展中生存。参考文献 [ 1 ]  化学试剂电感耦合等离子体原子发射光谱方法通则,中华人民共和国国家标准GB10725289. [ 2 ]  发射光谱仪检定规程,中华人民共和国国家计量检定规程J TG768294. [ 3 ]  感耦等离子体原子发射光谱方法通则 感耦等离子体原子发射光谱仪检定规程,1997. (第一版) 科学技术文献出版社,现代分析仪器分析方法通则及计量检定规程. [ 4 ]  英汉仪器仪表词汇,科学出版社,1987 (第一版) .

  • 【求助】-使用全谱等离子体发射光谱仪IRIS Intrepid Ⅱxsp做元素分析,滤膜的预处理

    使用Andersen碰撞采样器,Teflon(PTFE)滤膜采集大气种的PM2.5欲采用全谱等离子体发射光谱仪(美国热电公司的IRIS Intrepid Ⅱxsp)做阳离子分析 我们原定的预处理方案为:将滤膜剪碎于100mL塑料瓶中,加入10mL左右的蒸馏水。将塑料瓶在振荡器中振荡30min,超声萃取10min后用0.45μm滤膜抽滤,滤液定容到25mL。可是不知道直接用蒸馏水萃取的方法是否得当?还是要用HNO3和HCl提(1:1)提取呢?

  • 电感耦合等离子体发射光谱法在化学分析中的应用

    摘 要:介绍了电感耦合等离子体发射光谱法(ICP-AES)的原理和检出限低、准确度高、线性范围宽且多种元素同时测定等优点。运用ICP-AES法在电力生产过程中所涉及的废气、大气尘埃、焊尘、粉煤灰、燃煤、结垢物、合金材料、锅炉用水、各种排放水等进行成分分析,指导生产运行。关键词:电感耦合等离子体发射光谱法;化学分析;结垢物;粉煤灰Abstract: The principle of inductively coupled plasma atomic emission spectrometry (ICP-AES) method is introduced, which has the features of low detecting limit, high accuracy, broad linearity scope and can detect more than one element at the same time. In the power generation process, the ICP-AES method, for production supervision, can be used to analyze the contents of waste water, atmospheric dusts, welding dusts, coal powder ash, fuel coal, scales, alloys, boiler water, and all kinds of discharged water, to direct production.Keywords: ICP-AES method chemical analysis deposition coal powder ashICP-AES法是以等离子体原子发射光谱仪为手段的分析方法,由于其具有检出限低、准确度高、线性范围宽且多种元素同时测定等优点,因此,与其它分析技术如[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]、X-射线荧光光谱等方法相比,显示了较强的竞争力。在国外,ICP-AES法已迅速发展为一种极为普遍、适用范围广的常规分析方法,并已广泛应用于各行业,进行多种样品、70多种元素的测定,目前也已在我国高端分析测试领域广泛应用。1 等离子体原子发射光谱仪的性能特点1.1分析精度高电感耦合等离子体原子发射光谱仪可准确分析含量达到10-9级的元素,而且很多常见元素的检出限达到零点几μg/L,分析精度非常高。对高低含量的元素要求同时测定,尤其对低含量元素要求精度高的项目,使用ICP-AES法非常方便。1.2样品范围广电感耦合等离子体原子发射光谱仪可以对固态、液态及气态样品直接进行分析,但由于固态样品存在不稳定、需要特殊的附件且有局限性,气态样品一般与质谱、氢化物发生装置联用效果较好,因此应用最广泛也优先采用的是溶液雾化法(即液态进样)。从实践来看,溶液雾化法通常能取得很好的稳定性和准确性。而在测试工作中,运用一定的专业知识和经验,采取各种化学预处理手段,通常都能将不同状态的样品转化为液体状态,采用溶液雾化法完成测定。溶液雾化法可以进行70多种元素的测定,并且可在不改变分析条件的情况下,同时进行多元素的测定,或有顺序地进行主量、微量及痕量浓度的元素测定。1.3动态线性范围宽一般的精密分析仪器都有它的线性范围(一般在103以下),以明确该类仪器准确测定的浓度区间(不同类型的仪器或同类不同生产厂家的仪器还有区别),如果待测元素的浓度过高或过低,就必须进行化学处理,如稀释或浓缩富集,使待测浓度位于误差允许的线性范围之内。因此,当常量元素和微量元素需要同时测定时,就增加了分析的难度,加大了工作量,而测定结果往往还不理想。 电感耦合等离子体原子发射光谱仪的动态线性范围大于106,也就是说,在一次测定中,既可测百分含量级的元素浓度,也可同时测10-9级浓度的元素,这样就避免了高浓度元素要稀释、微量元素要富集的操作,既提高了反应速度,又减少了繁琐的处理过程不可避免产生的误差。以粉煤灰为例,固态的粉煤灰经过适当的预处理(根据待测元素种类确定预处理方法)转化成液态,一次进样既可测定常量的铁、铝、钙等元素,也可同时测定微量的钒、钼等综合利用及环境评定时的影响元素,方便准确。1.4多种元素同时测定多种元素同时测定是ICP-AES法最显著的特点。众所周知,每一种物质无论是以何种物理状态存在,其化学成分往往是很复杂的,既有必须存在的高浓度的主量元素,也存在不需要的杂质元素;有金属元素,也有非金属元素。用化学分析、[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法等只能单个元素逐一测定,而ICP-AES法可在适当的条件下同时测定,不但可测金属元素,而且对很多样品中必测的非金属元素硫、磷、氯等也可一次完成,这也是[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]达不到的。1.5定性及半定量分析对于未知的样品,等离子体原子发射光谱仪可利用丰富的标准谱线库进行元素的谱线比对,形成样品中所有谱线的“指纹照片”,计算机通过自动检索,快速得到定性分析结果,再进一步可得到半定量的分析结果。这一优势对于事故的快速初步的判断、某种处理过程中的中间产物的分析、不需要非常准确的结果等情形非常快速和实用。2 ICP-AES法在电力生产中的应用由于ICP-AES法检出限低、测试范围广、动态线性范围宽等优点,而广泛应用于含量范围宽、精度要求高的技术领域,如食品、卫生、医药、化妆品、土壤、钢铁等精密分析及基础研究中。电力行业的应用,为准确了解设备状况,保证安全生产,为设计、生产提供了良好的技术支持手段。电力生产过程中所涉及的废气、大气尘埃、焊尘等气态样品,粉煤灰、燃煤、结垢物、合金材料等固态样品,以及润滑油及绝缘油等均可采用不同的预处理方法,如吸收液法、高温熔融法、高温高压法、酸化法、微波消解法等转化成液体状态进行成分分析,而本身为液态的样品如锅炉用水、各种排放水等,要根据所测元素的存在形式和样品的物化性质来决定是否可以直接进样分析,还是需要进行处理后再分析。总之,ICP-AES法适用于电力生产中所涉及到的各个系统及各种介质分析。2.1锅炉部分ICP-AES法通过对燃煤、灰渣等物质中所含钾、钠、硫、氯等与锅炉结焦现象密切相关的元素进行准确的定量和跟踪,可对锅炉燃烧过程中形成的结焦物的成分及原因进行分析;可对锅炉系统运行中水冷壁、过热器等部位形成的沉积物进行快速分析;对锅炉爆管形成的原因及爆管处金属材料中合金元素含量的变化分析;燃煤化学全成分的快速分析;锅炉给水、补水及排水的成分分析;完成水汽品质的评定等诸多项目,以确保锅炉运行安全正常。2.2汽轮机部分ICP-AES法可对高压缸、中压缸、低压缸、汽轮机多级叶片等不同部位形成的沉积物进行快速分析;对汽轮机系统所使用的润滑油中微量磨损金属进行检测,保证部件的正常运转和预防事故的发生;对系统中用排水的水质进行评定等工作,使汽轮机系统能高效运转。2.3化学设备及系统ICP-AES法可进行化学所有设备和系统的进水和排水中常量及微量元素检测;进行系统结垢及腐蚀的成分分析;循环水的结垢元素判定;化学处理添加剂中元素成分分析;系统水汽流程中微量元素的检测;水处理膜前后处理元素的浓度比较及膜前沉积物的成分分析等,使电厂用水系统高质量运行。2.4环保部分通过ICP-AES法对飞灰成分的准确分析来为除尘器设计、改造提供必需的技术参数;对粉煤灰主量及微量元素的分析,不但可以掌握粉煤灰的污染元素,还可为综合利用提供技术指标;对脱硫系统中脱硫剂、中间物、脱硫产物中的元素及脱硫效率的分析,指导系统进行及时调整;进行粉煤灰对灰场土壤和地下水的影响分析;进行灰场种植物中重金属元素的检测;灰管结垢物的成分分析;电厂排水中重金属元素的测定;密闭空间中电焊烟尘中有害元素检测等,为企业进行环境保护、造福社会而创造条件。2.5其它ICP-AES法还可进行金属材料中常量及微量合金元素的检测等多种多样的化学分析工作。3 结束语总之,ICP-AES法的应用,使电力系统的化学分析工作从速度、精度到范围等多方面得到大幅度的提升,从而保证电力生产的安全、稳定运行。 河北电力技术

  • 【文献】-微波萃取毛细管电泳等离子体原子发射光谱法分析银杏中的元素形态

    摘 要:以微波萃取提取银杏叶与银杏果中的水溶液。采用毛细管电泳2电感耦合等离子体原子发射光谱法(CE2ICP2AES) ,对银杏叶与银杏果水提取液中的Ca、Mg、Zn、Cu等元素的形态进行了研究,并对这些元素在银杏叶和银杏果中的含量及其水提取液中的提取率做了对比研究。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=31679]微波萃取毛细管电泳等离子体原子发射光谱法分析银杏中的元素形态[/url]

  • 等离子体光谱测定稀土

    国产WLY100-1型等离子体顺序扫描光谱仪在痕量稀土组份分析中的应用研究陈小珍 沈长春( 浙江省地质矿产研究所 )摘要:将岩石矿样经过Na2O2-NaOH熔融后,经过沉淀和离子交换两次分离富集,用国产ICP顺序扫描光谱仪对稀土组份进行全分析。关键词:沉淀 离子交换 稀土组份全分析 稀土元素广泛应用于地质调查、医疗卫生、农业微肥、食品、激光晶体、超导与储氢材料和原子能工业等各个领域,对稀土元素的组份分析自然必不可少。目前,国内外主要的分析手段有:中子活化、质谱、ICP-质谱、X-荧光光谱及ICP-AES等,因为中子活化、MS、[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]设备昂贵,XRF检出限差,都难以推广,而ICP-AES以其检出限好、稳定、效率高、价格便宜等优点成为首选办法,但目前国内开展的ICP-AES分析稀土组份都采用进口仪器,尤其浙江省进口ICP-AES仪器不少,可是用光电直读法对15个稀土组份分析尚为空白,而采用国产ICP-AES对稀土15个元素组份分析在国内也未见报道。本研究将岩石矿样经Na2O2-NaOH熔融后,经过沉淀和离子交换两次分离杂质,并富集稀土元素,引入等离子矩管中,对国产ICP光电直读光谱仪进行条件实验,得到一项稳定的国产ICP顺序扫描光谱仪对痕量稀土组份分析的方法,方法检出限为1×10-7-1×10-9,精密度RSD5%。1试验部分1.1仪器与试剂 WLY100-1等离子单道扫描光电直读光谱仪(北京地质仪器研究所)工作参数: 功率: 0.84Kw 积分时间: 0.1s 载气: 0.25L/min 火焰高度: 18mm等离子气:13L/min 测量方法:峰高732型强酸性阳离子交换树脂混合提取液(每100ml水中5ml三乙醇胺0.25gEGTA)Na2O2、NaOH、H2SO4(均为分析纯)标准储备液:分别称取已在850℃灼烧后的各种稀土氧化物,用优级纯的盐酸配制成1ml含1mg各稀土储备液100ml,10×10-2盐酸介质。工作标准用液:μg/ml表一 标准系列表含量 元素序号La、Ce、Nd、YPr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu110.12101由标准储备液逐个分别吸取,并稀释至1号和2号标准溶液,以10×10-2盐酸作为标准零点。1.2分析手续称取0.2g待测岩矿样品,于刚玉坩锅中加入Na2O25克,搅匀,覆盖一层NaOH, 置于 650℃高温马弗炉中熔20分钟。取出冷却.擦净埚底部,放入250ml烧杯,加入热的混往合提取液100ml,洗出坩埚,如果此时沉淀太少,加入一毫升(1mg/ml)的Mg溶液作为共淀剂,溶液煮沸3分钟,取下稀释冷却后,用中速滤纸过滤,用1%NaOH清洗3次,洗沉淀7-8次,弃去滤液,用热的1+2 HCL 20ml分2-3次溶解沉淀,用原烧杯承接,再用1%的HCL洗涤滤纸10次,最终体积为200ml(酸度约为0.5mol/l HCL).然后将此溶液分次倒入已用0.5mol/l HCL 平衡过的离子交换柱中,用0.5mol/l HCL溶液洗涤烧杯3次加入离子交换柱中,待溶液流尽后,用1+10的HCL 150ml 淋洗Fe、Al、Ca、Mg、Mn、等基体杂质,然后用0.5mol/l的H2SO4100ml淋洗Zr、Ti、等杂质,再用1+10的HCL100ml淋洗,最后用1+2HCL 250ml洗脱离子交换柱中的稀土素,洗脱液收集于原烧杯中, 于电热板上加热蒸约1ml,用1% HCL 将其移入10ml的比色管中并稀释至刻度、摇匀。此溶液酸度约为10×10-2。将此溶液在试验结果所得的仪器工作参数状态下引入等离子体中,测定稀土各组份的含量。2结果与讨论2.1离子交换树脂的选择要使稀土元素和基体杂质元素得到较好的分离,并使待测元素在交换柱上得以最大量的吸附和富集,选择适当的树脂是前提。我们选用了732型强酸性聚苯乙稀阳离子交换树脂(粉碎至60-80目)和P507萃淋树脂(粒度为100-150目)进行比较实验,结合不同的酸度和介质进行上柱、吸附和淋洗试验,发现732阳离子树脂在低酸度分离效果好,且避免使用有机试剂,而P507树脂虽然液体体积可减少,但要使用有机试剂而且手续繁琐,故我们选用732强酸性离子交换树脂。2.2仪器工作参数选择 在ICP-AES分析中,分析方法的精密度和检出限主要取决于雾化器的质量及其参数:雾化效率的高低、雾滴粒径的大小及雾化器的稳定性。此外发生器的输出功率、矩管火焰高度、载气流量等等都影响着分析结果的稳定性和准确性,为此我们对每个稀土元素,分别从功率、载气、火焰高度和负高压等因素上进行试验研究,从它们各自的信背比(S/N)分析中获得最佳工作条件。见图一和图二从功率因素上分析,除元素Lu以低功率0档为最佳,元素Yb和Gd以III档功率较好外,大部分稀土元素以II档功率为最佳。再从载气流量因素考虑,从分析图中看出分为三组,一组为0.2L/h,为最佳载气流量,它们是Yb、Gd、Eu、Nd;第二组为0.25L/h的元素为Ho、Tb、Dy、Ce、Pr、Sm;第三组为0.3L/h的元素是Lu、Tm、La、Er、Y。因为本方法是多元素同时测定,折衷考虑各因素,功率以居中的大小为最佳,载气流量也是左右兼顾为准。故本方法最后选定载气流量为0.25L/h。 S/N 0 II III V 功率 图一 功率影响示意图 S/N 第二组 第三组 第一组 0.15 0.20 0.25 0.30 0.35 0.40 0.45 图二 载气影响示意图同时我们还实验了火焰高度和负高压,对特别灵敏的元素来说,基本上不受负高压的影响,只要调至适中即可,大部分元素以负高压的负值越高越好,这还要考虑样品或待测元素本身浓度的大小,浓度大,强度达到饱合值不行,在分析过程中随时要试验,以选择最佳的负高压值。火焰高度也是不可忽视的因素之一,由于稀土元素原子结构极为相似,化学性质非常相近,蒸发电离行为不差上下,故分别选择几个重稀土、轻稀土元素的火焰高度即可,本方法采用的火焰高度为18mm。此外,我们所用的雾化器和Scott型雾室均为仪器所配的性能较佳的石英雾室和雾化器,试验结果表明雾化效率、雾滴大小和稳定性均符合本方法的要求。2.3干扰的排除稀土分析的干扰首先是基体的干扰,其次是被测元素相互之间的干扰和光谱谱线干扰。对此我们首先选择了合适的交换树脂。实验结果表明:在分析操作中,经过沉淀和离子交换两次的分离,绝大部分的基体在样品处理过程中除去,剩下的Fe、Ca约有40μg/ml,和Al、Mg约20μg/ml,在实际的测定中,其影响可以忽略不计,其实,在我们的实际测试过程中,在标准曲线试验中我们也加入了相应的基体Fe、Al、Ca、Mg以消除可能造成的误差。对于不可避免的光谱谱线干扰和待测元素间的相互干扰,主要采取选择不同的谱线和依靠仪器的分辨能力加以排除,稀土元素的光谱谱线非常丰富,根据其不同的强度、激发能量,结合自然界岩石矿物中稀土元素的相对含量,分别选择其合适的灵敏线和次灵敏线,通过谱图分析结果,找到了比较合适的分析线。见表二。2.4检出限、精密度准确度为了检定方法的检出能力,仪器方法的稳定性,特配制一标准样品,加入相应量的基体元素Fe、Al、Ca、Mg等,在选定的工作条件下,进行检出限、精密度和准确度的测试,其结果见表二和表三。2.5讨论 本方法所选用的混合提取液效果良好,经碱融后的样品,用三乙醇胺能同时和Fe、Cu、Mn等元素形成络合物,EGTA又是大量Ca与稀土分离时的很好的掩蔽剂,所以大量的伴生元素、杂质在提取时均留在溶液中,不影响稀土氢氧化物的沉淀、过滤。在离子交换分离柱上,用硫酸、盐酸淋洗杂质,尽管试剂、蒸馏水中都含有一定量的Al、Ca,在分析液中我们作了Ca、Al等杂质的测定但最终不至于影响我们分析结果。本台仪器的光栅的闪耀波长在长波,对位于长波段的稀土来说灵敏度就要差些,所对于低含量的稀土元素,误差就大些。在本实验中,所获得的检出限和精密度分别是1×10-8和RSD5×10-2(Tb除外),均已达到本课题设计要求。 表二 项目元素分析线( nm )检出限(μg/L)精密度( RSD% )Lu261.5421.02.30Tm313.1262.53.01Yb328.9370.52.65La333.7494.02.09Er337.2710.52.26Gd342.2471.02.82Ho345.6000.52.63Tb350.9170.52.52Dy353.1700.51.75Sm359.2600.52.73Y371.0300.51.23Eu381.9670.51.88Pr390.8441.51.57Ce413.7655.01.62Nd430.3584.02.40 表 三元素标准值μg/ml测 定 值(μg/ml)RE%12345Lu0.1000.1010.1020.1000.1020.1021.4Tm0.1000.0920.0850.0820.0840.081-15.2Yb0.1000.1080.1010.0970.1040.1042.8La1.0001.101.041.051.060.974.4Er0.1000.1100.1100.1080.1020.1057.0Gd0.1000.1020.1010.1070.1030.0971.8Ho0.1000.1050.1000.1020.1040.1083.8Tb0.1000.0960.0910.0800.1020.103-5.6Dy0.1000.1030.1020.1070.1020.101

  • 电感耦合等离子体原子发射光谱的若干进展

    摘要: 综述了近年来电感耦合等离子体原子发射光谱在基础理论研究、进样技术以及广泛的分析应用领域方面的进展,并简介了对仪器装置的改进和研制。引用文献108篇。  关键词: 电感耦合等离子体原子发射光谱;综述  中图分类号: O657.31   文献标识码: A文章编号: 0254-5357(2000)01-0032-10The Development of Inductively Coupled PlasmaAtomic Emission SpectrometryYANG Xiang, JIN Ze-xiang(Faculty of Material Science and Chemical Engineering,China University of Geosciences, Wuhan 430074, China)Abstract: A review on the development of inductively coupled plasma atomic emission spectrometry including basis research, sampling techniques, application and instrumentation development is presented. 108 references are cited.Key words: inductively coupled plasma atomic emission spectrometry review  30多年来,电感耦合等离子体原子发射光谱(ICP-AES)以其优良的分析特性得到迅速发展和广泛应用。现代科学技术的进步和生产发展的需求不断推动这种分析技术的改进和革新。本文简要介绍ICP-AES的若干进展。1 基础理论研究  ICP-AES基础理论研究主要涉及ICP放电热平衡性质、离子布居特征、激发电离机理以及基体效应等方面。而ICP放电基本参数特别是温度(T)和电子密度(ne)测量是解释诸多基础理论问题的重要信息依据。虽然任何对温度和电子密度变化敏感的物理量(如线光谱、带光谱和连续光谱或吸光度及线光谱宽度)均可以成为测量等离子体相应温度和电子密度的尺度[1],但应用较多的方法主要有三种:① 以双线发射法或多线发射法测量等离子体激发温度(Texc)[2,3],由同一元素的离子线和原子线强度比来测量ne或电离度(α)[4],这种完全建立在局部热平衡(LTE)条件的方法最大缺陷是由不同文献提供的光谱跃迁基本数据有时差别较大,由此测得的Texe和ne亦相差甚远。② 测量氢谱线Hβ 486.32 nm或Ar谱线的Stark变宽计算等离子体ne,再依据Saha方程、理想气体状态方程和电荷中性假设计算对应的Te(LTE),这种方法的特点是无论等离子体是否处于LTE体系,同等离子体某一空间位置相对应,利用Hβ或Ar谱线的Stark变宽测量的ne具有确定的单一值,因而获得了广泛应用[5]。③ 利用激光Thomson散射光谱测量等离子体Te和ne。黄茅等[6]对该法作了报道,最近又利用激光Thomson散射和Rayligh散射比较了27 MHz和40 MHz Ar ICP的气体温度(Tg)、Texc、Te和ne[7]。作者[8]曾应用方法②研究了有机溶剂与水溶液引入Ar-ICP引起ne和Te轴向变化,实验表明有机ICP只有相对水溶液ICP在较高的射频功率和较低的载气流量参数下操作,才能保证有机-ICP具有与水溶液ICP相当的ne和Te,此时有机ICP的优异分析性能才能表现出来。  ICP放电特征表现为偏离LTE状态已获得共识。主要特征是等离子体各种温度不一致(TeTionTexcTg)以及各电离状态和能级状态布居相对LTE状态(按Saha方程和Boltzmam方程计算)为过布居或欠布居[9,10]。ICP放电局部偏离热平衡程度随等离子体工作参数(主要是射频功率、观察高度和载气流量)而变,但在常规Ar-ICP分析操作条件下,等离子体放电偏离LTE状态不太明显,基本属于部分局部热平衡(PLTE)[11,12],Blades等[13]利用Sr、Ca、Mg、Cd、Zn五种元素比较了用以估计ICP偏离LTE程度的非平衡参数br[12]对射频功率的依赖关系,以及射频功率对元素实验电离度αexp和LTE电离度αLTE的影响,实验证实ICP放电表现为PLTE性质。艾军等[14]也利用上述五种元素的不同离子线和原子线对进行了比较研究,结果与文献[13]一致。孙大海等[15]研究了等离子体操作条件对αexp和αLTE的影响,证实ICP放电是偏离LTE的。郑建国等[16]应用Monte Carlo模拟方法研究了ICP-AES的电离和激发过程。有关ICP放电激发-电离模型,陈新坤[17]已作了详细论述。  近年来,ICP-AES有关基体效应和干扰校正的研究取得了可喜的成果。Karen等[18]报道了等离子体发射光谱中易电离元素对溶液和悬浮[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]量传输效率的影响。Dubuisson等[19]比较了轴向观测和径向观测ICP-AES的信背比和基体效应。徐方平等[20]提出用t检验法对干扰因子lg(Ix′/Ix)进行统计处理,以判断ICP-AES中的非光谱干扰。杨金夫等[21]研究了不同电离电位的基体元素K、Na、La、Y和Mg对17种分析元素谱线强度的影响,实验表明其影响程度与谱线激发电位及基体元素电离电位有定量的相关关系。罗建波等[22]比较了ICP-AES流动注射、气动及蠕动泵进样的酸效应和化学干扰的特点和程度。  计算机技术和化学计量学在ICP-AES中的应用,对光谱分析专家系统的开发和光谱干扰校正发挥了重要作用。张卓勇等[23]报道了ICP-AES分析信号系统的开发应用。应海等[24]介绍了ICP-AES初级专家系统中谱线模拟的理论基础,模拟了Ca、Mg和Al在LTE和non-LTE情况下的离子线,与LTE条件下的结果相比,在non-LTE条件下的结果更接近实际扫描谱图。   有关ICP-AES光谱干扰校正方法研究的报道很多,例如Boumans[25]提出干扰系数校正法,在此基础上改进的多组分线性校正法[26]、正交多相式校正法[27]、逐步逼近干扰系数校正法[28]、相互干扰系数校正法[29]。这类干扰校正方法最大的缺点是针对不同物料的样品分析,必须预先通过繁杂的实验建立相应的干扰系数表,而且要求实验条件十分稳定。Saxbery等[30]提出的广义标准加入法和梁红健等[31]的正交试验-广义标准加入法具有可同时校正光谱干扰和避免基体差异引起的非光谱干扰的优点,但在实际应用中仍存在需要预先了解样品基体性质,标准加入次数多而麻烦,以及不适宜于多元素分析等缺点。导数光谱法[32]也可用于校正ICP-AES背景干扰和谱线重叠干扰,而且能减小干扰物等效浓度,从而改善真实检出限。但是该法对谱线重叠十分严重以及带有测量噪声的背景而引起光谱干扰校正效果较差。计算机差谱法[33]是通过对存储在计算机内的谱图进行适度的差减处理,即从待测组分和干扰组分混合谱图中适度差去干扰组分的谱图达到消除光谱干扰的目的。为了获得良好的差减效果,该法要求对操作参数波动所产生的影响进行校正,同时要求信号强度与浓度之间有良好的线性关系。智能化方法校正ICP-AES光谱干扰的报道有计算机模拟光谱谱线干扰[34]和重叠谱线分离法[35]。这两种方法都是基于谱线展宽原理,谱线展宽有Gaussian分布和Lorentziam分布两种形式,当谱线重叠时,强度有加和性。因此,任何实际的光谱干扰图形均可分解为若干个Gaussian曲线、Lorentziam曲线与一个直流背景值的迭加,或者说通过它们可以模拟出光谱干扰的谱图。重叠谱线分离法正好相反,它是将分析物信号根据待测组分和干扰组分各自谱线系数关系将其分离。由于这两种方法都要求给出适宜的函数模型、光谱跃迁参数值和最优化实验条件,而各元素的光谱跃迁参数值至今尚不完善,且不同文献提供的数值存在一定差异,以及实验条件波动可能导致ICP放电强度与设定的计算强度有较大的偏差,因此这两种方法目前在实际分析中受到一定限制。应用化学计量学方法校正ICP-AES光谱干扰主要有因子分析法[36]、人工神经网络法[37]、Kalman滤波法[38]以及改进的自适应Kalman滤波法[39]、加权增量Kalman滤波法[40]以及导数光谱Kalman滤波法[41]等。这些方法原则上都能校正谱线重叠干扰和背景干扰,其效果随参数选择而异,并受波长定位精度的影响。因子分析法是一种多元统计的数学方法,基于原始数据的相关关系,借助数学方法将一组包含众多关系复杂的变量分解为少数变量(因子)。当待测组分与干扰组分间存在较强交互作用时,分析结果对原始数据中的实验误差十分敏感。合适的因子分析不仅对原变量信息无损失,而且还可以找到能反映表面现象的本质联系和影响观测数据的主要因素。神经网络法是通过模拟人脑的神经网络来处理信息,对处理多组分光谱分析中因果关系不明确、推理规则不确定的复杂非线性问题有独到之处,具有容错能力强,预测速度快等特点。但是应用该法效果的好坏其网络参数的选择起着重要作用,而网络参数的优化和选择,目前尚无系统的理论指导。Kalman滤波法是一种应用较广泛的校正ICP-AES光谱干扰的化学计量学方法,其基本思想是进行一次观测可得出未知参数的统计值,而当得到新的观测数据后,基于此数据和前一时刻的统计值,按递推公式可算出新的估计值。随着观测数据的不断获得,同时又不断舍弃前一时刻的观测数据,从而大大减少计算量和贮存量,实现实时处理。与离峰分析法相比较,该法由于能提供模型或结果可靠的信息,为消除波长定位误差,改善真实检出限提供了可能,背景和谱线重叠干扰都严重的多组分分析,也可获得准确的分析结果。作者十分同意Boumans[42]的看法:ICP-AES干扰校正的出路在于充分发挥计算机的能力,化学计量学的运用可能导致该领域的重要突破。不过ICP-AES中复杂样品的基体干扰特征千差万别,在应用计算机和数学

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制