当前位置: 仪器信息网 > 行业主题 > >

动态光散射粒度分析仪检定规程

仪器信息网动态光散射粒度分析仪检定规程专题为您提供2024年最新动态光散射粒度分析仪检定规程价格报价、厂家品牌的相关信息, 包括动态光散射粒度分析仪检定规程参数、型号等,不管是国产,还是进口品牌的动态光散射粒度分析仪检定规程您都可以在这里找到。 除此之外,仪器信息网还免费为您整合动态光散射粒度分析仪检定规程相关的耗材配件、试剂标物,还有动态光散射粒度分析仪检定规程相关的最新资讯、资料,以及动态光散射粒度分析仪检定规程相关的解决方案。

动态光散射粒度分析仪检定规程相关的资讯

  • 新品发布 | 安东帕 Litesizer DLS 700 动态光散射粒度分析仪
    新品发布Litesizer DLS 系列是安东帕公司的动态光散射粒度/Zeta 电位分析仪产品,用于表征从纳米到微米粒子的粒度、粒度分布、Zeta 电位、分子量、粒子浓度、透光率等特性,具有适用浓度范围宽、一键操作完成测试、功能全面等优点。在 Litesizer DLS 100 和Litesizer DLS 500 取得了优秀销售和应用成绩的基础上,安东帕推出了功能更为强大的Litesizer DLS 700。Litesizer DLS 700安东帕 Litesizer DLS 700动态光散射粒度分析仪携全新复杂基质测试方案登场:MAPS系统:复杂样品的简单方案PCON系统:样品中不同颗粒浓度及总浓度的直观表达MAPS多角度联合测试简单的单峰样品测试已无法满足日益多样的测试需求,Litesizer DLS 700 正式推出多峰样品的最佳测试方案:MAPS 系统拥有更高的分辨率,解决复杂样品的粒径问题;更准确的粒径分布结果;更优秀的分离度,粒径比例大于1:2 即能准确分辨。不同角度分管样品中不同大小颗粒的结果,将其连立计算,即可获得,不同大小颗粒的准确结果。实验分析NIST 标准物质:已知粒径分别为150nm和300nm(粒径大小比值为1:2),将两者混合,混合比为3:1用背散射角测量/MAPS 测量使用Maps进行三角度测量背散射角度测试显示单峰背散射测量只显示一个峰值无法将其分为双峰,MAPS 结果,准确的解出了两个峰值。Litesizer DLS 700 测试显示双峰PCON颗粒浓度测试借助 PCON 系统强大的功能,现在您可以更了解样品中颗粒的浓度。Litesizer 700 不单单提供样品中颗粒的总浓度,通过 MAPS 对样品进行解析,还可以确定不同大小颗粒各自的浓度。结果显示:峰大小、相应浓度、总浓度
  • 关注!国家标准《纳米技术 动态光散射法粒度分析仪技术要求》正式发布
    2024年7月24日,由国家纳米科学中心牵头,中国计量科学研究院 、北京信立方科技发展股份有限公司等单位参与起草的国家标准GB/T 44223-2024《纳米技术 动态光散射法粒度分析仪技术要求》正式发布,并于2025年2月1日起实施。该标准由TC279(全国纳米技术标准化技术委员会)归口 ,主管部门为中国科学院。随着纳米科技的迅速发展,纳米材料的粒度表征已经成为评估材料特性的关键指标之一。动态光散射法粒度分析仪凭借其卓越的测量能力,成为亚微米及纳米级颗粒粒度分析的常用仪器。然而,现有的标准和技术规范体系尚未覆盖该类仪器的技术要求指标,中国颗粒学会颗粒测试专业委员会、北京粉体技术协会相关专家在组织多次粒度仪量值比对活动的基础上,倡议提出制定针对动态光散射法粒度分析仪设备性能要求和评价的国家标准,以推动颗粒技术的标准化发展。该标准主要介绍了动态光散射法粒度分析仪的主要技术要求,以及仪器准确性、重复性的试验方法。标准主要起草单位包括国家纳米科学中心 、中国计量科学研究院 、北京市科学技术研究院分析测试研究所(北京市理化分析测试中心) 、珠海真理光学仪器有限公司 、丹东百特仪器有限公司 、华南师范大学 、济南微纳颗粒仪器股份有限公司 、珠海欧美克仪器有限公司 、合肥鸿蒙标准技术研究院有限公司 、广州特种承压设备检测研究院 、上海思百吉仪器系统有限公司 、冷能(广东)科技有限公司 、中国计量大学 、山东理工大学 、北京信立方科技发展股份有限公司 、成都精新粉体测试设备有限公司 、安泰科技股份有限公司 、安东帕(上海)商贸有限公司 、中国合格评定国家认可中心 、北京粉体技术协会 、中国颗粒学会 。为了帮助业内人士深刻理解这一重要标准,以标准规范纳米粒度仪的技术指标,接下来,本网将邀请标准主要起草人——国家纳米科学中心高级工程师朱晓阳对该标准进行深入解读,敬请期待。
  • 《氨基酸分析仪检定规程》宣贯会在西安成功举办
    2011年7月11日至14日,《氨基酸分析仪检定规程》宣贯会在西安飞鹿酒店成功举办,本次会议由全国物理化学计量技术委员会主办,天美(中国)科学仪器有限公司和日立高新技术公司协办。来自全国主要省市计量系统和部分日立氨基酸分析仪用户共计50多人参加了本次会议。 在会议上,全国物理化学计量技术委员会各位专家主要做了《氨基酸分析仪检定规程》内容讲解、《氨基酸分析仪检定规程》编制说明和《氨基酸分析仪检定规程》的不确定度评定等报告,使得与会者对检定规程的编制背景、目的、重要性及主要检定参数设置的意义有了更进一步的认识。 氨基酸分析仪检定规程起草人、全国物理化学计量技术委员会专家--马康做报告 氨基酸分析仪检定规程起草人、全国物理化学计量技术委员会专家&mdash 赵敏做报告 由全国物理化学计量技术委员会特邀的北京市营养源研究所唐华澄和叶颖慧两位专家做了《氨基酸分析仪和氨基酸分析系统的测试评价---L-8900和835型氨基酸分析仪的应用和体会》的报告,报告按照检定规程的要求,详尽的介绍了几个主要参数的比较,加深了与会者对氨基酸分析和检定规程的认识。 北京市营养源研究所叶颖慧专家做报告 作为《氨基酸分析仪检定规程》的参加起草单位和本次会议的协办单位,天美(中国)科学仪器有限公司在会议上主要做了《氨基酸分析仪原理和操作》、《氨基酸分析仪的应用技术》、《针对&ldquo 皮革奶&rdquo 的解决方案》的报告,日立高新技术公司做了《日立氨基酸分析系统---柱前衍生法和柱后衍生的介绍和比较》的报告,提供了日立LCU柱前衍生的应用研究以及L-8900的柱后衍生解决方案,开阔了与会者对氨基酸分析仪的认识。 氨基酸分析仪检定规程参加起草单位,天美(中国)科学仪器有限公司副总裁夏奕生做报告 在会议现场,天美公司利用放置在会场的L-8900型氨基酸分析仪为参会的各位专家演示了部分检定项目,使得各位专家对检定项目和检定过程有了更进一步的认识和理解。
  • 《通信用光谱分析仪检定规程》征求意见稿重磅发布
    p   基于快速、高通量、无损等特点,光谱分析技术已经成为企业提升产品品质、提高生产效益的最佳选择之一。如今,在环境、食品、医药、化工等领域,光谱仪的“身影”随处可见。未来,在物联网、大数据技术的加持下,光谱技术将实现突破性的进展,应用到更广阔的领域。 /p p   作为测量光信号光谱功率分布的计量器具,光谱分析仪更是被广泛应用于光通信、激光等领域。随着光通信科学及光通信产业的不断创新和发展,各种光谱分析类仪器的应用也越来越广泛,为光功率、光波长等产业关键参数提供准确测量支持,助力产业质量进一步提升。 /p p   需求引导市场,光谱分析仪的检定和测量也备受计量检定人员关注。6月14日,全国光学计量技术委员会发布了《通信用光谱分析仪检定规程》征求意见稿,并面向全国的计量机构、科研院所、企业单位等公开征求意见。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201806/insimg/6f8aab8d-cad8-469f-bfd6-7aa369df77f3.jpg" title=" 微信图片_20180625175124.png" / /p p   公告显示,中国计量科学研究院、国家通信计量站、陕西省计量科学研究院和无锡市计量测试院是检定规程的起草单位。据悉,本规程适用于通信用光谱分析仪的首次检定、后续检定和使用中检验。光谱分析仪的型式评价中对有关计量性能的要求可参照本规程执行。 /p p   为了确保规程的科学、有效、专业性,由JJF 1002《国家计量检定规程编写规则》、JJF 1001《通用计量名词术语》、JJF 1059《测量不确定度评定与表示》共同构成本检定规程修订工作的基础性系列规范。本规程编写还引用的文件有JJG 813-2013 光纤光功率计 IEC 62129-1-2016 Calibrationof wavelength/optical frequency measurement instruments. Part 1: Optical spectrum analyzers。 /p p   另外,本规程对JJG 1035-2008《通信用光谱分析仪检定规程》进行修订。与JJG 1035-2008相比,采用分束法测量波长示值误差,减小光源波长变化引入的测量不确定度 光谱分析仪的光功率示值与非线性检定直接参照JJG 813《光纤光功率计》执行 删除了偏振相关损耗的检定要求等。更多详情查看原文件。 /p p   计量是高质量发展的前提和支撑,计量标准建设是计量发展的关键保障。不久前,湖北省计量院收到了由国家质检总局颁发的通信用光谱分析仪检定装置计量标准考核证书,标志着该院可正式开展通信用光谱分析仪的检定工作。后期,将会有愈来愈多的地区加入规范通信用光谱分析仪的检定工作中。 /p p   客观来看,可见光谱、近红外光谱等技术让光通信和激光领域获益十足。近年来,愈来愈多的企业盯紧通信用光谱仪市场这份“大蛋糕”,在该领域动作颇多,“野心”尽显。为此各品牌光谱分析仪需要提前布局,为品牌发展孕育先机。 /p
  • 开元仪器开展煤工业分析仪检定规程课题研究
    日前,长沙开元仪器有限公司中心化验室迎来了全国计量系统知名专家——贵州省计量测试院毛文、吴鹏程一行,并与他们率领的课题组合作开展了煤的工业分析仪检定规程(地方标准)课题研究。   工业分析仪是用来测试煤和水煤浆等物质的水分、灰分、挥发分和固定碳成分的分析仪器。上世纪 90 年代,我公司通过引进、消化和吸收国外先进工业分析仪测定技术,开发出适合我国国情的全自动工业分析仪,逐步替代利用烘箱+马弗炉+电子天平等进行工业分析成分的传统人工测试方法。2005年,我公司以5E-MAG6600为样本,与湖北电科院共同起草制订了DL/T1030-2006《煤的工业分析 自动仪器法》,该行业标准的制定与实施为工业分析仪代替传统烘箱和马弗炉进行煤的工业分析成分仲裁奠定了基础。   据了解,目前国家对煤质分析仪器中的量热仪、元素分析仪等都制定了相应的检定规程,如:JJG672-2001《氧弹热量计检定规程》、JJG1006-2005《煤中全硫测定仪检定规程》等,但工业分析仪迟迟没有相应的检定标准,导致客户在工业分析仪交付、验收等环节无据可依,颇有争议。针对这种局面,全国物理化学计量委员会委员、贵州省计量测试研究院化学室毛文主任率先申请开展课题研究。毛文主任指出:开元仪器在煤质检测行业知名度很高,5E牌全自动工业分析仪有较高的市场占有率,产品具有良好的代表性,课题组故选择开元的产品作为样本之一,按照预先制订的课题方案和实验方法,采集实验数据,进行相关研究。   经过连续四昼夜的紧张工作,专家们针对全自动工业分析仪进行了严格的仪器控温精度检定、样品工业分析成分测定、结果误差分析等,取得了大量数据。课题组专家高度评价公司产品的优异性能,并对产品在本次试验过程中表现出的稳定性、可靠性和先进性表示赞赏。
  • 微纳受邀《粒度分析动态光散射法》国家标准宣贯会
    我国在纳米材料相关基础标准已发布实施多项,新技术转化的标准的宣贯工作迫在眉睫,为提高科研技术人员的研究分析能力,相互交流研究心得,同时为执行标准做好充分的准备,北京粉体技术协会、全国颗粒表征与分检及筛网标准化技术委员会、全国纳米技术标准化技术委员会于2013年11月26日在北京国家纳米科学中心联合举办纳米测试标准系列讲座。 作为中国颗粒测试技术的领航者的济南微纳颗粒仪器股份有限公司,被选为系列宣贯的第一讲。与会期间我司陈栋章总工将进行《粒度分析动态光散射法》GB/T 29022-2012/ISO 22412:2008的讲座。欢迎业内广大新老客户及关系单位届时参与此次盛会。济南微纳受邀参加此次会议力验证评定,是国家权威部门对微纳多年来不懈努力所取得成绩的认可。济南微纳将不负所望,秉承自身作为中国颗粒测试技术的领航者的职责,为广大用户提供优异的仪器与满意的服务,继续为中国粒度测试技术赶超世界一流水平做出不懈努力。
  • 3种色谱仪器新版计量检定规程解读
    质检总局近日发布公告,新版的《液相色谱仪》、《离子色谱仪》、《凝胶色谱仪》计量检定规程正式发布。3个新规程将于今年8月14日起实施,实施后将分别替代原有的3个旧规程。   全国物理化学计量技术委员会的何雅娟介绍,色谱仪的应用遍及工矿生产、环境保护、食品安全、医疗卫生、科学研究等诸多领域。为了仪器检测的准确可靠,仪器本身首先要测量准确,这就离不开对其进行计量检定。液相色谱仪的计量检定规程距离上次修订已经十多年 离子色谱仪和凝胶色谱仪的检定规程自实施至今,已经20年没有修订。随着科学的发展,仪器科学不断进步,运用最新检测原理的检测器不断被开发应用,色谱仪的检测范围不断扩大,检测精度不断提高。对这些科学仪器进行更准确、更全面、更科学地计量检定,确保其本身的量值准确,已经成为一项迫在眉睫的任务。   据介绍,本次修订,对近年来新出现并广泛运用的新设备提出了计量检定要求。例如,在液相色谱仪中,蒸发光检测器是近年来广泛运用的新型检测器。尤其是在我国药典将抗生素类药物的检测方法定为蒸发光散射法后,蒸发光检测器在制药和药检行业应用尤为广泛。制定旧版《液相色谱仪》计量检定规程时,还没有成熟的条件将蒸发光散射检测器的检定内容纳入规程中,而新规程的一项重要内容就是增加了蒸发光散射检测器的检定内容 在《离子色谱仪》检定规程的修订中,特意增加了紫外可见检测器和电化学检测器的相关内容。正是有了这些检测器的不断发展,离子色谱仪的检测范围才由最初只能检测部分离子强度高的离子,到现在还能检测I-、CN-、CrO4-、有机酸和糖类等弱离子。   旧版规程实施已近20年,很多技术指标已经与现在仪器发展不相适应。调整有关技术指标,成为本次规程修订的重要内容。例如,随着科技的发展,凝胶色谱仪的示差检测器和紫外检测器的信号稳定性和灵敏度都大大提升,原检定规程中对检测器基线的技术指标已大大落后于实际水平。修订后的检定规程对检测器基线检测结果进行了相关修订,使这些技术指标更加符合新版国际标准的要求。   检定色谱仪的主要标准器是各种标准物质,不同标准物质的选择可能会影响检定工作的效率和准确性,本次修订还对检定用标准物质进行了调整。2002年版的《液相色谱仪》检定规程中,荧光检测器检定用标准物质为硫酸奎宁/高氯酸水溶液。由于各种原因,检定中经常出现信号不理想等情况,导致检定不能顺利进行。本次修订将其改为萘/甲醇溶液,避免了上述问题的出现,同时还提高了检定效率 在1993年版的《凝胶色谱仪》检定规程中,对标准物质只是规定&ldquo 窄分布聚苯乙烯标准物质&rdquo ,但这样的规定导致对以水作为流动项的凝胶色谱仪无法进行检定。修订后的规程对标准物质的规定进行了补充,增加了葡聚糖标准物质,使检定规程可用于检定有机流动项和水流动项的凝胶色谱仪。
  • 关于联合开展 KLCS-2201“动态光散射法颗粒粒度检测”比对实验的通知
    全国纳米技术标准化技术委员会纳标委字〔2022〕15 号关于联合开展 KLCS-2201“动态光散射法颗粒粒度检测”比对实验的通知各有关单位:经国家标准化管理委员会批准,国家标准制定项目《纳米技术 动态光散射法粒度分析仪技术要求》于 2021 年正式立项,项目批准号 20212956-T-491。为了对标准制定过程中的相关技术参数进行验证,全国纳米技术标准化技术委员会秘书处与中国颗粒学会颗粒测试专业委员会、北京粉体技术协会联合组织开展 “动态光散射法颗粒粒度检测”比对实验,计划编号为“KLCS-2201”,现将具体要求通知如下:一、检测项目本次比对要求使用动态光散射法粒度分析仪测定颗粒的粒度。二、参加单位以能提供颗粒的粒度分析检测项目的单位为主,欢迎各实验室积极参加。三、组织实施本次比对由全国纳米技术标准化技术委员会、中国颗粒学会颗粒测试专委会和北京粉体技术协会联合组织,国家标准项目起草组负责比对实验的具体运作,包括编制作业指导书,制备、分发样品,回收和分析结果,起草结果报告等。四、时间安排2022 年 4 月正式启动;2022 年 5 月分发样品及作业指导书;2022 年 6 月结果回收分析;2022 年 8 月前完成实验结果报告。各参加单位应正确认识比对的目的和意义,客观真实反映检验能力和水平,确保计划取得实效。五、联系信息秘书处联系人:高洁,010-82545672,通信地址:北京市海淀区中关村北一条 11 号国家纳米科学中心;项目组联系人:朱晓阳,电话:13601393948,通信地址:北京市海淀区中关村北一条 11 号国家纳米科学中心;刘俊杰,电话:13661221655,通信地址:北京市朝阳区北三环东路 18 号中国计量科学研究院;高原,电话:13910812410,通信地址:海淀区西三环北路 27 号北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)。全国纳米技术标准化技术委员会中国颗粒学会颗粒测试专业委员会北京粉体技术协会二O二二年四月十八日
  • 《中国药典》粒度和粒度分布测定法增订动态光散射法、光阻法
    目前《中国药典》0982 粒度和粒度分布测定法仅收载了激光光散射法测定样品中的粒度分布,尚未收载动态光散射法和光阻法。各国药典均已收载动态光散射法和光阻法,且在《中国药典》丙泊酚乳状注射液、脂肪乳注射液(C14~24)等品种标准中已有应用。为此,《中国药典》增订上述两种方法,将进一步满足相关品种质量控制的需要。2023年12月12日,国家药典委员会将拟修订的《中国药典》0982粒度和粒度分布测定法第三法动态光散射法、第四法光阻法公示征求社会各界意见(详见附件),公示期自发布之日起三个月。第三法(光散射法)新增动态光散射法、新增第四法光阻法;第三法用于测定原料药、辅料和药物制剂粉末或颗粒的粒度分布,第四法用于测定乳状液体或混悬液的微米级粒子数量、粒度分布及体积占比。国家药典委员会截图本次标准草案的公示意味着动态光散射粒度仪(俗称纳米粒度仪)与光阻法颗粒计数器将被写进《中国药典》。动态光散射法当溶液或悬浮液中颗粒做布朗运动并被单色激光照射时,颗粒散射光强度的波动与颗粒的扩散系数有关。依据斯托克斯-爱因斯坦方程,通过分析检测到的散射光强度波动可以计算出颗粒的平均流体动力学粒径和粒度分布。平均流体动力学粒径反映粒度分布中值的流体动力学直径。平均粒径直接测定,既可以不计算粒度分布,也可以从光强加权分布、体积加权分布或数量加权分布,以及拟合(转换)的密度函数中计算得到。动态光散射的原始信号为光强加权光散射信号,得到光强加权调和平均粒径。很多仪器可通过对光强加权光散射信号的分析计算得到体积加权或数量加权的粒径结果。 在动态光散射的数据分析中,假设颗粒是均匀和球形的。本法测量范围为 1~1000nm。光阻法单色光束照射到颗粒后会由于光阻而产生光消减现象。应用基于光阻或光消减原理的单粒子光学传感技术进行测定。应用单粒子光学传感技术时,当单个粒子通过狭窄的光感区域阻挡了一部分入射光线,引起光强度瞬间降低,此信号的衰减幅度理论上与粒子横截面(假设横截面积小于传感区域的宽度),即粒子直径的平方成比例。用系列不同粒径的标准粒子与光消减信号之间建立校正曲线,当样品中颗粒通过光感区产生信号消减,可根据已建立的校正曲线计算出颗粒的粒度大小和加权体积。本法测量范围一般为 0.5~400μm,使用具有单粒子光学传感技术的仪器时,需知道重合限和最佳流速。重合限为传感器允许的最大微粒浓度(个/mL)。 上述两种方法的内容包括对仪器的一般要求和测定法,详见附件。附件 0982 粒度和粒度分布测定法第三法动态光散射法、第四法光阻法草案公示稿(第一次).pdf
  • 质检总局公布第二批部门计量检定规程清理结果
    2013年2月27日,质检总局公布第二批部门计量检定规程清理结果,本次清理范围涉及轻工、电子、化工、建材、民航等领域,涉及的仪器包括实验室、表面粗糙度仪等大量仪器。详情如下: 国家质量监督检验检疫总局《关于公布第二批部门计量检定规程清理结果的公告》(2013年第32号) 2013年第32号 质检总局关于公布第二批部门计量检定规程清理结果的公告   根据《中华人民共和国计量法》的规定,为进一步做好部门计量检定规程备案工作,质检总局组织有关单位对已备案的部门计量检定规程进行了集中清理,现将清理后的第二批现行有效的部门计量检定规程公布如下(见附件)。   附件:现行有效的部门计量检定规程(第二批) 现行有效的部门计量检定规程(第二批) 序号 规程编号 规程名称 主管部门 1 JJG(轻工) 2-89 自行车滑行道检定规程 工业和信息化部 2 JJG(轻工) 4-89 自行车车架精度检具检定规程 工业和信息化部 3 JJG(轻工) 5-89 自行车前后叉中心测量轴检定规程 工业和信息化部 4 JJG(轻工) 6-89 自行车车架中接头垂直度检具检定规程 工业和信息化部 5 JJG(轻工) 7-89 自行车前叉精度检具检定规程 工业和信息化部 6JJG(轻工) 8-89 自行车车把精度检具检定规程 工业和信息化部 7 JJG(轻工) 9-89 自行车车圈接口凹陷量检具检定规程 工业和信息化部 8 JJG(轻工)10-89 自行车窜动量调整架检定规程 工业和信息化部 9 JJG(轻工)11-89 自行车车轮静负荷能力试验台检定规程 工业和信息化部 10 JJG(轻工)12-89 自行车后轴身螺纹圆跳动量检具检定规程 工业和信息化部 11 JJG(轻工)13-89 自行车曲柄心轴检定规程 工业和信息化部 12 JJG(轻工)14-89 自行车飞轮心轴检定规程 工业和信息化部 13 JJG(轻工)15-89 自行车脚蹬轴冲击试验台检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 14 JJG(轻工)16-89自行车链条灵活性测量板检定规程 工业和信息化部 15 JJG(轻工)17-89 自行车轴挡碗耐磨试验机检定规程 工业和信息化部 16 JJG(轻工)18-89 自行车漆膜冲击器检定规程 工业和信息化部 17 JJG(轻工)20-89 自行车负荷试验砝码检定规程 工业和信息化部 18 JJG(轻工)21-89 自行车盐雾试验箱检定规程 工业和信息化部 19 JJG(轻工)22-89 自行车鞍座疲劳试验机检定规程 工业和信息化部 20 JJG(轻工)23-89 自行车车把鞍座夹紧力矩试验台检定规程 工业和信息化部 21 JJG(轻工)24-89 自行车车架前叉组合件落重试验机检定规程 工业和信息化部 22 JJG(轻工)25-89 自行车车架前叉组合件冲击试验机检定规程 工业和信息化部 23 JJG(轻工)26-89 自行车前后轴灵敏度光电计数器检定规程 工业和信息化部 24 JJG(轻工)28-89 自行车飞轮圆跳动量测试仪检定规程 工业和信息化部 25 JJG(轻工)29-89 自行车前后轴灵敏度试验检具检定规程 工业和信息化部 26 JJG(轻工)32-89 自行车轴脚蹬耐磨试验机检定规程 工业和信息化部 27 JJG(轻工)35-89 自行车外露突出物测试圆柱棒检定规程 工业和信息化部 28 JJG(轻工)36-89 自行车检测专用角度块检定规程 工业和信息化部 29 JJG(轻工)40-89 自行车道路试验障碍器检定规程 工业和信息化部 30 JJG(轻工)41-89 自行车车铃寿命试验机检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 31 JJG(轻工)45-89 自行车链条耐磨试验机检定规程 工业和信息化部 32 JJG(轻工)46-89 自行车脚蹬静态试验机检定规程 工业和信息化部 33 JJG(轻工)47-89 自行车脚蹬动态试验机检定规程 工业和信息化部 34 JJG(轻工)48-2000 反射光度计 工业和信息化部 35 JJG(轻工)49-2000 纸板压缩强度试验仪 工业和信息化部 36 JJG(轻工)50.1-2000 纸与纸板厚度测定仪 工业和信息化部 37 JJG(轻工)50.2-2000 瓦楞纸板厚度仪 工业和信息化部 38 JJG(轻工)50.3-2000 可变压力厚度仪 工业和信息化部 39 JJG(轻工)51-2000 纸与纸板透气度仪 工业和信息化部 40 JJG(轻工)52-2000 纸与纸板粗糙度测定仪 工业和信息化部 41 JJG(轻工)53-2000 纸浆打浆度测定仪 工业和信息化部 42 JJG(轻工)54.2-2000 纸与纸板定量测定仪 工业和信息化部 43 JJG(轻工)55-2000 纸与纸板吸收性测定仪 工业和信息化部 44 JJG(轻工)56-2000 纸板戳穿强度测定仪 工业和信息化部 45 JJG(轻工)57-2000 纸板挺度测定仪 工业和信息化部 46 JJG(轻工)58.1-2000 摆锤式纸张抗张力试验机 工业和信息化部 47 JJG(轻工)58.2-2000 卧式纸张抗张试验机 工业和信息化部 48 JJG(轻工)59-2000 MIT式耐折度仪检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 49 JJG(轻工)60-2000 肖伯尔式耐折度仪 工业和信息化部 50 JJG(轻工)61-2000 纸与纸板耐破度仪 工业和信息化部 51 JJG(轻工)62-2000 纸和纸板平滑度仪 工业和信息化部 52 JJG(轻工)63-2000 纸与纸板撕裂度仪 工业和信息化部 53 JJG(轻工)64-2000 柔软度仪 工业和信息化部 54 JJG(轻工)65-2000 纸张透油度测定仪 工业和信息化部 55 JJG(轻工)66-2000 纸张光泽度计 工业和信息化部 56 JJG(轻工)67-2000 IGT印刷适应性测定仪 工业和信息化部 57 JJG(轻工)68-2000 纸与纸板油墨吸收性试验仪 工业和信息化部 58 JJG(轻工)69-2000 纸与纸板葛尔莱式透气度仪 工业和信息化部 59 JJG(轻工)70-2000 佛格式纸与板耐磨试验仪 工业和信息化部 60 JJG(轻工)72-2000 实验室PFI磨浆机 工业和信息化部 61 JJG(轻工)73-2000 纸浆用毛细管粘度计 工业和信息化部 62 JJG(轻工)74-2000 实验室VALLEY打浆机 工业和信息化部 63 JJG(轻工)76-91 SCI.327石英晶体阻抗计SPM.327 PPM计数器检定规程 工业和信息化部 64 JJG(轻工)77-91 盐雾试验箱检定规程 工业和信息化部 65 JJG(轻工)78-91 Ω打印计时仪检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 66 JJG(轻工)79-91 钟表仪器校验仪检定规程 工业和信息化部 67 JJG(轻工)80-91 钟表用齿轮、宝石元件投影样板检定规程 工业和信息化部 68 JJG(轻工)81-91 机械钟表校验仪检定规程 工业和信息化部 69 JJG(轻工)82-91 石英钟表校验仪检定规程 工业和信息化部 70 JJG(轻工)83-91 石英钟表仪器精度校验仪检定规程 工业和信息化部 71 JJG(轻工)84-91 手表防水测试仪检定规程 工业和信息化部 72 JJG(轻工)85-91 手表防震试验仪检定规程 工业和信息化部 73 JJG(轻工)86-91 手表综合测试仪检定规程 工业和信息化部 74 JJG(轻工)87-92 便携式地毯测厚仪 工业和信息化部 75 JJG(轻工)88-92 数显式地毯测厚仪 工业和信息化部 76 JJG(轻工)89-92 地毯绒簇拔出力测试仪 工业和信息化部 77 JJG(轻工)90-92 地毯四足踩踏试验仪 工业和信息化部 78 JJG(轻工)91-92 地毯动态负载仪 工业和信息化部 79 JJG(轻工)92-92 地毯静态负载试验仪 工业和信息化部 80 JJG(轻工)93-92 YGW-872型地毯染色牢度摩擦仪 工业和信息化部 81 JJG(轻工)94-92 水平法地毯燃烧试验装置 工业和信息化部 82 JJG(轻工)95-92 FL-45°型燃烧仪 工业和信息化部 83 JJG(轻工)98-93 家用制冷器具检测装置Ⅱ检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 84 JJG(轻工)100-1993 单盘闪光音准仪检定规程 工业和信息化部 85 JJG(轻工)101-1993 十二盘闪光音准仪检定规程 工业和信息化部 86 JJG(轻工)102-1994 便携式数字显示音准仪检定规程 工业和信息化部 87 JJG(轻工)103-1995 便携式指针显示音准仪检定规程 工业和信息化部 88 JJG(轻工)105-94 制冷压缩机量热计(第二制冷剂量热器法)检定规程 工业和信息化部 89 JJG(轻工)106-94 卤素检漏仪检定规程 工业和信息化部 90 JJG(轻工)107-94 洗净率检测装置检定规程 工业和信息化部 91 JJG(轻工)108-96 翘曲度指示器检定规程 工业和信息化部 92 JJG(轻工)109-96 150mm平整度指示器检定规程 工业和信息化部 93 JJG(电子)01001-87 SCP-2型时畴测频器试行检定规程 工业和信息化部 94 JJG(电子)03001-87 521A型PAL矢量示波器试行检定规程 工业和信息化部 95 JJG(电子)04001-87 JS-2C型晶体管反向截止电流测试仪试行检定规程 工业和信息化部 96 JJG(电子)04002-87 BJ3030型高频小功率晶体管CCrbb,乘积测试仪试行检定规程 工业和信息化部 97 JJG(电子)04003-87 BJ2952A(JS-3A)型晶体管反向击穿电压测试仪试行检定规程 工业和信息化部 98 JJG(电子)04004-87 BJ2911(HQ-1B)型晶体管综合参数测试仪试行检定规程 工业和信息化部 99 JJG(电子)04006-87 BJ2913型场效应管参数测试仪试行检定规程 工业和信息化部 100 JJG(电子)04008-87 QE1A型双基极半导体管测试仪试行检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 101 JJG(电子)04009-87 BJ2983型晶体三级管正偏二次击穿测试仪试行检定规程 工业和信息化部 102 JJG(电子)04010-87 BJ2961型晶体管集成电路动态参数测试仪试行检定规程 工业和信息化部 103 JJG(电子)04011-87 QG21~QG25型高频小功率晶体管Ft测试仪试行检定规程 工业和信息化部 104 JJG(电子)04012-87 BJ3022(QJ30)型低频大功率晶体管Ft测试仪试行检定规程 工业和信息化部 105 JJG(电子)05006-87 1620型电容测量装置试行检定规程 工业和信息化部 106 JJG(电子)05007-87 HP4192A型低频阻抗分析仪试行检定规程 工业和信息化部 107 JJG(电子)09002-87 WILTRON6409射频分析仪试行检定规程 工业和信息化部 108 JJG(电子)12004-87 363型电视频道信号发生器试行检定规程 工业和信息化部 109 JJG(电子)12005-874001A型音频扫频信号发生器试行检定规程 工业和信息化部 110 JJG(电子)12009-87 MSG-2161型调频立体声/调频-调幅信号发生器试行检定规程 工业和信息化部 111 JJG(电子)12011-87 XT24型立体声信号发生器试行检定规程 工业和信息化部 112 JJG(电子)12012-87 SBUF型电视测试发射机试行检定规程 工业和信息化部 113 JJG(电子)12014-87 MDA-456型立体声解调器试行检定规程 工业和信息化部 114 JJG(电子)12015-87 811B型电视机测量滤波器试行检定规程 工业和信息化部 115 JJG(电子)12016-87 843型收音机录音机测量滤波器试行检定规程 工业和信息化部 116 JJG(电子)14002-87 HL-12A型雷达综合测试仪试行检定规程 工业和信息化部 117 JJG(电子)15001-87 HP8970A型噪声系数仪试行检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 118 JJG(电子)18002-87 2307型电平记录仪试行检定规程 工业和信息化部 119 JJG(电子)02001-88 2610型测量放大器试行检定规程 工业和信息化部 120 JJG(电子)02003-88 DO30-C型数字式三用表校验仪 工业和信息化部 121 JJG(电子)04013-88 BJ2912(QE7)型稳压二极管测试仪检定规程 工业和信息化部 122 JJG(电子)04014-88 晶体管特性图示仪试行检定规程 工业和信息化部 123 JJG(电子)04015-88 QZ3.QZ4型高频小功率晶体管NF测试仪检定规程 工业和信息化部 124 JJG(电子)04016-88 BJ2984(QR-3)型晶体三极管瞬态热阻测试仪试行检定规程 工业和信息化部 125 JJG(电子)04017-88 BJ2900型双极型晶体管反向截止电流计量标准仪器试行检定规程 工业和信息化部 126 JJG(电子)04018-88 BJ2901型双极型晶体管反向击穿电压计量标准仪器试行检定规程 工业和信息化部 127 JJG(电子)04019-88 BJ2920型双极型晶体管h21E、VBE(sat)、VCE(sat)计量标准仪试行检定规程 工业和信息化部 128 JJG(电子)05009-88 TS-109型电解电容器半自动分选仪试行检定规程 工业和信息化部 129 JJG(电子)05010-88 RT150/RT160型继电器测试仪器试行检定规程 工业和信息化部 130 JJG(电子)05011-88 WZC-1A型电位器综合测试仪试行检定规程 工业和信息化部 131 JJG(电子)05013-88 AV2551型电位器动态接触电阻变化测量仪试行检定规程 工业和信息化部 132 JJG(电子)05014-88 HP4274A.HP4275A型多频LCR表试行检定规程 工业和信息化部 133 JJG(电子)05015-88 HP4342A型Q表试行检定规程 工业和信息化部 134 JJG(电子)05016-88 HL2801型数字式自动Q表试行检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 135 JJG(电子)05017-88 HP4276A.HP4277A型LCZ表试行检定规程 工业和信息化部 136 JJG(电子)05020-88 GR1658型RLC数字电桥试行检定规程 工业和信息化部 137 JJG(电子)07001-88 HP8901A型调制度分析仪试行检定规程 工业和信息化部 138 JJG(电子)07002-88 MSW-721E型中频扫频仪试行检定规程 工业和信息化部 139 JJG(电子)07003-88 MSW-7124型调频调幅扫频仪试行检定规程 工业和信息化部 140 JJG(电子)09004-88 AV3611型自动标量网络分析仪试行检定规程 工业和信息化部 141 JJG(电子)11001-88 杂音仪试行检定规程 工业和信息化部 142JJG(电子)12018-88 ZN3991型双通道分离度计试行检定规程 工业和信息化部 143 JJG(电子)15003-88 3280型射频晶体标志信号发生器试行检定规程 工业和信息化部 144 JJG(电子)18003-88 261型微微安电流源试行检定规程 工业和信息化部 145 JJG(电子)01003-89 AD5121型数字群时延测量仪试行检定规程 工业和信息化部 146 JJG(电子)01004-89 AD5122型微波群时延测量仪试行检定规程 工业和信息化部 147 JJG(电子)02007-89 2627型前置放大器试行检定规程 工业和信息化部 148 JJG(电子)04021-89 BJ3110型MOS集成电路测试仪试行检定规程 工业和信息化部 149 JJG(电子)04022-89 QO1型高频小功率晶体三极管fT计量标准装置试行检定规程 工业和信息化部 150 JJG(电子)04023-89 BJ2970型大功率半导体三极管tf测试仪试行检定规程 工业和信息化部 151 JJG(电子)04026-89 BJ2985型晶体三极管维持电压测试仪试行检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 152 JJG(电子)04028-89 BJ3190型集成运算放大器测试仪试行检定规程 工业和信息化部 153 JJG(电子)08001-89 DB-1型电场标准装置试行检定规程 工业和信息化部 154 JJG(电子)11008-89 3764A型数字传输分析仪试行检定规程 工业和信息化部 155 JJG(电子)12019-89 ZW3765A型调频广播接收机和录音机测量滤波器试行检定规程 工业和信息化部 156 JJG(电子)12020-89 电视视频电平表试行检定规程 工业和信息化部 157 JJG(电子)12023-89 MDA-453型调频线性解调器试行检定规程 工业和信息化部 158 JJG(电子)12025-89 TA03BD型电视多伴音信号发生器试行检定规程工业和信息化部 159 JJG(电子)12028-89 4143型互易校准仪试行检定规程 工业和信息化部 160 JJG(电子)12033-89 电视视频电平标准装置试行检定规程 工业和信息化部 161 JJG(电子)03009-91 SQ-20型取样示波器试行检定规程 工业和信息化部 162 JJG(电子)04041-91 BJ-3192型集成运算放大器自动测试仪试行检定规程 工业和信息化部 163 JJG(电子)04043-91 CTG-1型高频C-V特性测试仪试行检定规程 工业和信息化部 164 JJG(电子)04044-91 YWS-2980A型整流二极管IFSM和I2t测试仪试行检定规程 工业和信息化部 165 JJG(电子)05038-91 715型电位器线性示波器试行检定规程 工业和信息化部 166 JJG(电子)05039-91 YY-2781型RLC三用表试行检定规程 工业和信息化部 167 JJG(电子)05041-91 CJ-2780型三用误差分选仪试行检定规程 工业和信息化部 168 JJG(电子)05044-91 HP-4272A型预置容量表试行检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 169 JJG(电子)05045-91 HP-4273A型预置容量表试行检定规程 工业和信息化部 170 JJG(电子)05046-91 GR-1687型LCR数字桥试行检定规程 工业和信息化部 171 JJG(电子)05048-91 DA-1型电气安全参数测试仪试行检定规程 工业和信息化部 172 JJG(电子)07008-91 SWOF型视频扫频频谱分析仪试行检定规程 工业和信息化部 173 JJG(电子)07009-91 HP-3577A型网络分析仪试行检定规程 工业和信息化部 174 JJG(电子)10002-91 射频通过式中功率计试行检定规程 工业和信息化部 175 JJG(电子)10003-91 射频终端式中功率计试行检定规程 工业和信息化部 176 JJG(电子)12034-91 1617型带通滤波器试行检定规程 工业和信息化部 177 JJG(电子)12035-91 2010型外差式分析仪试行检定规程 工业和信息化部 178 JJG(电子)12036-91 HY-6060型驻极体传声器测试仪试行检定规程 工业和信息化部 179 JJG(电子)12037-91 DF-5990A型扬声器谐振频率测量仪试行检定规程 工业和信息化部 180 JJG(电子)12038-91 MWS-672型抖晃校准仪试行检定规程 工业和信息化部 181 JJG(电子)15019-91 XT-22型梳状频率发生器试行检定规程 工业和信息化部 182 JJG(电子)18005-91 工作用热偶真空计试行检定规程 工业和信息化部 183 JJG(电子)18006-91 电阻真空计试行检定规程 工业和信息化部 184 JJG(电子)18007-91 QF-11601型低通滤波器试行检定规程 工业和信息化部 185 JJG(电子)12026-89 MR-611A VTR抖动测量仪试行检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 186 JJG(电子)12032-89 148型电视插入测试信号发生器试行检定规程 工业和信息化部 187 JJG(电子)18004-89 HP4140B型微微安电流表/直流电压源试行检定规程 工业和信息化部 188 JJG(电子)01007-95 AD5120A型射频群时延标准检定规程 工业和信息化部 189 JJG(电子)01008-95 AD5120B型视频群时延标准检定规程 工业和信息化部 190 JJG(电子)01009-95 AD5120C型低频群时延标准检定规程 工业和信息化部 191 JJG(电子)02008-95 DA24型有效值电压表检定规程 工业和信息化部192 JJG(电子)02009-95 模拟电子电压表检定规程 工业和信息化部 193 JJG(电子)02010-95 QF2280A型超高频数字毫伏表检定规程 工业和信息化部 194 JJG(电子)02011-95 HP8405型矢量电压表检定规程 工业和信息化部 195 JJG(电子)04045-95 JS-7B型晶体管测试仪检定规程 工业和信息化部 196 JJG(电子)04046-95 QC-13型场效应管跨导参数测试仪检定规程 工业和信息化部 197 JJG(电子)04047-95 QG-6、QG-16型高频小功率晶体管fT参数测试仪检定规程 工业和信息化部 198 JJG(电子)04048-95 QG-29型高频晶体管GP(KP)、F(NF)、AGC特性测试仪检定规程 工业和信息化部 199 JJG(电子)04052-95 PTQ-2型晶体管快速筛选仪检定规程 工业和信息化部 200 JJG(电子)04055-95 安全栅检定规程 工业和信息化部 269 JJG(化工)9-89 指示计检定规程 工业和信息化部 270 JJG(化工)10-89 Q型操作器检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 271 JJG(化工)11-89 气电转换器检定规程 工业和信息化部 272 JJG(化工)12-89 电气转换器检定规程 工业和信息化部 273 JJG(化工)13-89 信号转换器检定规程 工业和信息化部 274 JJG(化工)14-89 隔离器、反向器、升压器检定规程 工业和信息化部 275 JJG(化工)101-91 橡胶圆盘摆动硫化仪检定规程 工业和信息化部 276 JJG(化工)102-91 橡胶门尼粘度计检定规程
  • 邀请函 | 5月19日 粒度仪线上交流会:动态光散射(DLS)技术篇
    邀请函诚挚邀请您的莅临粒度仪用户交流会时间:2022年5月19日14:00-16:30APP:腾讯会议01诚邀您的莅临尊敬的客户:您好!首先感谢您一直以来对安东帕(Anton Paar)公司的支持和信任! 安东帕一直以来为广大客户提供最高品质和领先技术的纳米粒度仪,激光粒度仪, 并提供完善的技术支持和售后服务。如今,安东帕公司的纳米粒度仪,激光粒度仪系列已经全部推向市场。因疫情原因,线下用户培训会,均已暂停;为了满足客户对粒度仪的学习需求,我们将系列开展粒度仪相关知识的线上培训,本次培训主题为“动态光散射(DLS)技术篇”。我们将一如既往竭诚为您服务,为您提供全面和连续的支持,确保您对安东帕产品的满意!期待您的光临!02报名方式方式一丨扫描下方二维码方式二丨点击“阅读原文”报名03培训费用收费标准丨免费培训形式 | 线上直播04培训流程5月19日14:00-16:0014:00-15:00DLS理论基础15:00-16:00DLS数据分析16:00-16:30答疑安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 济南微纳创新基金项目“基于动态光散射原理的光子相关纳米粒度仪”完成验收
    2013年12月11日,山东省济南市科技局邀请有关专家组成验收组,对济南微纳颗粒仪器股份有限公司承担的科技型中小企业技术创新基金项目“基于动态光散射原理的光子相关纳米粒度仪”进行了验收。验收期间,专家组听取了有关报告,审查了相关资料,对项目开发的Winner801光子相关纳米粒度仪进行了现场考察,经山东省计量科学研究院测试,该项目主要性能指标优于粒度分析国家标准要求,用户使用效果良好。最终经质询、评议,鉴定委员会认为该项目成果整体达到国际先进水平。此次项目验收评定,是对微纳仪器综合性能的肯定,是国家权威部门对微纳多年来不懈努力所取得成绩的认可。济南微纳将不负所望,秉承自身作为中国颗粒测试技术的领航者的职责,为广大用户提供优异的仪器与满意的服务,继续为中国粒度测试技术赶超世界一流水平做出不懈努力。微纳销售热线0531-88873312
  • 贵州省市场监管局公布现行有效、废止的地方计量检定规程、校准规范
    为加强地方计量检定规程、校准规范的管理,根据《贵州省地方计量检定规程校准规范制修订办理程序》要求,省市场监管局对我省地方计量检定规程及校准规范进行了清理。经认真清理,《混凝土回弹仪标准装置检定规程》、《数据网络流量测试仪校准规范》、《烷基汞分析仪校准规范》等48件地方计量检定规程、校准规范(详见附件1)继续有效;《车用尿素溶液加注机校准规范》地方计量校准规范于2023年6月27日予以废止,《医用离心机校准规范》、《大量程电子数显千分指示表校准规范》地方计量校准规范于2023年6月7日予以废止(详见附件2)。现予以公告。2023年3月23日附件1:贵州省现行有效地方计量检定规程、校准规范目录序号规程、规范号地方计量检定规程、校准规范名称备注1JJG(黔)06-2003《电话计时计费装置检定规程》2JJG(黔)011-2011《混凝土回弹仪标准装置检定规程》3JJG(黔)16-2018《医用磁共振成像(MR)设备检定规程》4JJF(黔)20-2015《锚杆拉拔仪校准规范》5JJG(黔)22-2016《矿用二氧化碳检测报警仪检定规程》6JJG(黔)23-2016《矿用温度检测报警仪检定规程》7JJF(黔)25-2016《砖用卡尺校准规范》8JJF(黔)27-2017《导热系数测试仪》9JJG(黔)28-2018《彩色多普勒超声诊断仪检定规程》10JJF(黔)30-2018《麻醉机校准规范》11JJF(黔)31-2019《闯红灯自动记录系统校准规范》12JJG(黔)32-2019《机动车区间测速系统检定规程》13JJF(黔)32-2019《电能质量分析仪校准规范》14JJF(黔)35-2019《测桩荷载箱校准规范》15JJG(黔)33-2019《车用甲醇燃料加注机检定规程》16JJF(黔)36-2019《膜盒(片)式矿用差压检测仪校准规范》17JJF(黔)37-2020《水泥安定性试验用沸煮箱校准规范》18JJF(黔)38-2020《100G数据网络性能测试仪校准规范》19JJF(黔)39-2020《数据网络流量测试仪校准规范》20JJF(黔)40-2020《烷基汞分析仪校准规范》21JJF(黔)41-2020《氧气透过率测定仪校准规范》22JJF(黔)42-2020《气体透过量测定仪校准规范》23JJF(黔)44-2020《工频火花试验机校准规范》24JJF(黔)45-2020《交直流数字高压表校准规范》25JJF(黔)46-2020《静载试验仪校准规范》26JJF(黔)47-2020《违法停车计时器校准规范》27JJF(黔)13-2020《铜含量、铁含量分析仪校准规范》28JJF(黔)48-2021《钢直尺全自动检定仪校准规范》29JJF(黔)49-2021《滚筒反力式制动检验台动态制动力测量装置校准规范》30JJF(黔)50-2021《呼出气体酒精含量检测仪检定装置校准规范》31JJF(黔)51-2021《矿用瓦斯抽放多参数传感器校准规范》32JJF(黔)52-2021《矿用风速传感器校准规范》33JJF(黔)53-2021《矿用激光甲烷传感器校准规范》34JJF(黔)54-2021《矿用温湿度传感器校准规范》35JJF(黔)55-2021《电动颈腰椎牵引设备地方计量校准规范》36JJF(黔)56-2021《矿用液位传感器校准规范》37JJF(黔)57-2021《网络时间(NTP)服务器校准规范》38JJF(黔)58-2021《地质雷达校准规范》39JJF(黔)59-2021《微量进样器校准规范》40JJG(黔)35-2021《医用数字化移动式C形臂X射线辐射源检定规程》41JJF(黔)60-2021《荧光定量聚合酶联反应分析仪校准规范》42JJF(黔)61-2022《数字LCR测量仪校准规范》43JJF(黔)62-2022《电子厚度仪地方计量校准规范》44JJF(黔)63-2022《矿用粉尘浓度传感器校准规范》45JJF(黔)64-2022《烟草专用标准棒地方计量校准规范》46JJF(黔)65-2022《一氧化氮和二氧化氮检测仪校准规范》47JJF(黔)66-2022《卫星定位汽车行驶记录仪检定装置校准规范》48JJF(黔)67-2022《变比测试仪校准规范》附件2:贵州省废止地方计量检定规程、校准规范目录序号废止规程、规范号废止地方计量检定规程、校准规范名称废止原因1JJF(黔)33-2019《车用尿素溶液加注机校准规范》国家检定规程JJG 11911-2022《车用尿素加注机检定规程》已发布,于2023年6月27日实施。2JJF(黔)24-2016医用离心机校准规范国家校准规范JJF 2004-2022《医用离心机校准规范》已发布,于2023年6月7日实施。3JJF(黔)34-2019《大量程电子数显千分指示表校准规范》国家检定规程JJG 34-2022《指示表检定规程》已发布,于2023年6月7日实施。
  • 浙江发布《细颗粒物(PM2.5)自动监测仪检定规程》
    p   PM2.5自动监测仪是指采用微量振荡天平法或β射线法自动测量空气中细颗粒物(PM2.5)的质量浓度的仪器,用于测定大气环境。为规范行业标准,近日,浙江省质量技术监督局发布《细颗粒物(PM2.5)自动监测仪检定规程》地方计量技术规范征求意见稿。 /p p   浙江发布《细颗粒物(PM2.5)自动监测仪检定规程》 /p p   浙江省质量技术监督局发布《细颗粒物(PM2.5)自动监测仪检定规程》地方计量技术规范征求意见稿,并面向全国的计量技术机构、科研院所以及相关的行业企业征求意见。 /p p   该规程主要起草单位为浙江省计量科学研究院。该规程为首次发布,依据JJF 1002《国家计量检定规程编写规则》进行编写。 /p p   该规程适用于基于微量振荡天平法或β射线法,测量范围为(0~1000)μg/m3且标称采样流量为16.67 L/min 的细颗粒物(PM2.5)自动监测仪的首次检定、后续检定和使用中检查。 /p p   PM2.5自动监测仪(以下简称仪器)是指采用微量振荡天平法或β射线法自动测量空气中细颗粒物(PM2.5)的质量浓度的仪器,适用于公共场所环境及大气环境的测定,还可用于空气净化器净化效率的评价分析。 /p p   其工作原理为仪器以恒定流量抽取环境空气样品,样品采集系统将颗粒物进行切割分离并输送到测量系统,样品测量系统对PM2.5颗粒物样品进行测量,并进行对测量结果进行分析,最后由显示系统输出测量结果。 /p p   针对PM2.5自动监测仪的实际情况,该规程参考了GB/T 31159-2014《大气气溶胶观测术语》、HJ 653-2013《环境空气颗粒物(PM10和 PM2.5)连续自动监测系统技术要求及检测方法》和HJ 93-2013《环境空气颗粒物(PM10和PM2.5)采样器技术要求及检测方法》等标准相关内容。 /p p   此外,遵从JJF1071-2010《国家计量校准规范编写规则》的要求,此规范架构上包括封面、扉页、目录、引言、范围、引用文件、概述、计量特性、校准条件、校准项目和校准方法、校准结果表达、复校时间间隔、附录几个部分。 span style=" WHITE-SPACE: normal WORD-SPACING: 0px TEXT-TRANSFORM: none FLOAT: none COLOR: rgb(51,51,51) FONT: 12px 宋体, Tahoma, Arial, & #39 Microsoft Yahei& #39 DISPLAY: inline !important LETTER-SPACING: normal BACKGROUND-COLOR: rgb(255,255,255) TEXT-INDENT: 0px -webkit-text-stroke-width: 0px" /span     /p
  • 质检总局发布GC检定规程等26个国家计量技术规范
    日前,国家质检总局发布26项国家计量技术规范,包括气相色谱仪检定规程、原子吸收分光光度计型式评价大纲、色谱数据工作站校准规范、实验室pH(酸度)计型式评价大纲等。编 号名 称批准日期实施日期备注JJG1125-2016氯乙烯气体检测报警仪检定规程2016-06-272016-09-27JJG1126-2016高压介质损耗因数测试仪检定规程2016-06-272016-09-27JJF1560-2016多分量力传感器校准规范2016-06-272016-09-27JJF1561-2016齿轮测量中心校准规范2016-06-272016-09-27JJF1562-2016凝结核粒子计数器校准规范2016-06-272016-09-27JJF1563-2016色谱数据工作站校准规范2016-06-272016-09-27JJF1564-2016温湿度标准箱校准规范2016-06-272016-09-27JJF1565-2016重金属水质在线分析仪校准规范2016-06-272016-09-27JJF1566-2016运输包装件水平冲击试验系统校准规范2016-06-272016-09-27JJF1567-2016磷酸根分析仪校准规范2016-06-272016-09-27JJF1568-2016分光光度法流动分析仪校准规范2016-06-272016-09-27JJF1569-2016溴价、溴指数测定仪校准规范2016-06-272016-09-27JJF1570-2016现场动平衡测量分析仪校准规范2016-06-272016-09-27JJF1571-2016海水浊度测量仪校准规范2016-06-272016-09-27JJF1572-2016辐射热计校准规范2016-06-272016-09-27JJF1573-2016旋光仪及旋光糖量计型式评价大纲2016-06-272016-09-27JJF1574-2016原子吸收分光光度计型式评价大纲2016-06-272016-09-27JJF1575-2016实验室pH(酸度)计型式评价大纲2016-06-272016-09-27JJF1576-2016红外人体表面温度快速筛检仪型式评价大纲2016-06-272016-09-27JJF1577-2016红外耳温计型式评价大纲2016-06-272016-09-27JJG155-2016工作毛细管黏度计检定规程2016-06-272016-12-27代替 JJG155-1991JJG177-2016圆锥量规检定规程2016-06-272016-12-27代替 JJG177-2003JJG649-2016数字称重显示器(称重指示器)检定规程2016-06-272016-12-27代替 JJG649-1990JJG700-2016气相色谱仪检定规程2016-06-272016-12-27代替 JJG700-1999JJG761-2016电极式盐度计检定规程2016-06-272016-12-27代替 JJG761-1991JJG1022-2016甲醛气体检测仪检定规程2016-06-272016-12-27代替 JJG1022-2007
  • 激光粒度分析仪在水泥行业的应用
    p style=" text-indent: 2em " 现如今水泥厂都偏向于将水泥磨细来提高水泥强度,其实水泥石强度并不一定随水泥细度的增加、组分水化活性的提高而提高。但颗粒越细,水化活性越高;最初的强度发展速率随细度增加而增长。在规范中,水泥细度通常用筛余或比表面积来衡量。实际上除了进行上述指标的控制,对于细度而言粒度分布(水泥行业称“颗粒级配”,这里统称“粒度”或“粒度分布”)也是重要因素。 /p p style=" text-indent: 2em " 粒度分布是指组成水泥的所有颗粒中,不同粒径颗粒所占有的百分比。粒度分布的测定不仅是控制水泥颗粒细度的一种有效的方法,更重要的是它将对粉磨、分级等环节的优化提供准确的依据。水泥的粒度分布情况将极大地影响混凝土的强度。粒度分布的测量对最终产品的质量控制,以及在生产的过程中,如何使生产工艺最佳化,来提高产品的质量,同时在减少能耗,降低生产成本等方面均有极大的作用。 /p p style=" text-indent: 2em " 大量研究表明,在原料及烧成条件确定的情况下,粒度决定水泥性能,同时物料的颗粒分布也能用来判断粉磨系统的性能。水泥颗粒只有发生水化,才对强度有贡献,而水化过程对一个单独的水泥颗粒而言又是由表及里,渐进发生的,1微米以下细颗粒由于在和水的拌和过程中就完全水化,对强度没有贡献。其含量增加,说明存在过粉磨,浪费了粉磨能量;同时显著增加了拌和的需水量,降低了浇筑性能。因此,该组分颗粒应尽可能减少。1~3微米颗粒含量高,3天强度就高,同时需水量会相应增加,浇筑性能下降。因此,该组分颗粒在3天强度能满足要求的前提下,也应尽可能低。大颗粒水化的慢,在后期才能逐渐发挥作用,特大颗粒只有表层被水化,内核只起骨架作用,对强度没有贡献。浇筑28天后的水化深度约为5.46µ m。这就意味着大于两倍水化深度(约11µ m)的颗粒,总是有一部分内核未水化。未被水化的内核在混凝土中只起骨架作用,对胶凝没有贡献。16、32和64µ m颗粒的水化率分别为97%、72%和43%,因此通常认为3~32µ m颗粒对28天强度起主要作用。32µ m以上颗粒,尤其是65µ m以上颗粒水化率较低,是对熟料的浪费,应尽可能降低。3~16µ m颗粒含量越高,熟料的作用发挥得越彻底,相同条件下混合材添加量就可以越高。32µ m以上颗粒含量过高,泌水性会增大。混合材在粒度上如果能与熟料互补,形成最佳堆积,则混合材的添加不仅不会降低水泥强度,而且还能增加强度。而传统的细度和比表面积同水泥的性能的相关性并不理想。因此,在现代水泥生产中,测定水泥的颗粒分布对水泥性能(比如强度、流动性、混合材的掺加比例等)有强烈影响。 /p p style=" text-indent: 2em " 那么如何更好的测得水泥的粒度呢?现代比较流行的粒度测试仪器有:激光粒度仪、沉降粒度仪、电阻法颗粒计数器、显微颗粒图像分析仪以及纳米激光粒度仪等。其中用动态光散射原理的光子相关动态光散射仪的测量范围主要在亚微米和纳米级,显然不适合水泥的测量;沉降仪、电阻法计数器和图像仪的测量范围虽然主要在微米级,但它们的动态范围不够。所谓动态范围就是粒度仪器在一个量程内能测量的最大与最小粒径之比。前述三种仪器的动态范围均在20:1左右,而一个水泥样品的粒度分布范围大约在100:1左右,所以这三种仪器也难以满足水泥的粒度测试需要。激光粒度仪的动态范围可以达到1000:1以上,大于水泥的粒度分布范围;其次它在样品分散方式上还可用空气作为介质(干法分散),做到了既方便又低成本,测试速度快,测一个样品只需1min左右,而且测量的重复性好,D50的相对误差小于1%。因此激光粒度分析仪已逐渐成为水泥行业中一种日常的控制方式而得到广泛应用。 /p
  • 天美应邀参加原子吸收光谱仪鉴定规程宣贯会
    中国计量科学院受全国物理化学计量技术委员会的委托于2012年9月24-28日在黑龙江省哈尔滨市举办&ldquo 原子吸收分光光度计鉴定规程和原子荧光光度计鉴定规程宣贯暨分析技术交流会&rdquo 。来自全国各省市质检院所的一线鉴定员约60人参加了这次宣贯会。天美(中国)科学仪器有限公司的夏奕生副总裁应邀参加了这次会议;天美公司资深专家李梅介绍了原子吸收光谱的基本原理、背景校正技术、原子吸收光谱发展的新技术及应用原子吸收光谱的直接进样分析技术。参会的鉴定员们分组在Z-2010原子吸收分光光度计上完成了仪器计量鉴定指标的实际操作、火焰和石墨炉分析的全过程,并就分析中的各种常见问题进行了充分的讨论,使鉴定员们更加准确的理解和执行规程内容,促进规程及时得到推广和应用起到了很好的作用,到达了会议的预期目标。 公司介绍: 天美(中国)科学仪器有限公司(&ldquo 天美(中国)&rdquo )是天美(控股)有限公司(&ldquo 天美(控股)&rdquo )的全资子公司,从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。天美(中国)在北京、上海、等全国15个城市均设立办事处,为各地的客户提供便捷优质的服务。 天美(控股)是一家从事设计、研发、生产和分销的科学仪器综合解决方案的供应商。 继2004年於新加坡SGX主板上市后,2011年12月21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司 和美国IXRF等多家海外知名生产企业,加强了公司产品的多样化。 更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 世界首台动态三维彩色粒度粒形分析仪问世
    世界首台动态三维彩色粒度粒形分析仪发布会在中国上海举行   仪器信息网讯 2014年10月14日上午,值第十二届中国国际粉体加工/散料输送展览会(IPB 2014)之际, 美国康塔仪器公司在上海国际展览中心举办了新闻发布会,宣布世界首台动态三维彩色粒度粒形分析仪MORPHO 3D问世。 新闻发布会现场   过去,观察样品颗粒的全貌是依靠显微镜,对极少量颗粒进行拍照存档,但如何对颗粒的粒形进行科学的定量,一直是困扰科学家的课题。近年来,随着微电子技术渗入到各个科学领域,图像法粒度粒形分析仪应运而生,因其测量的随机性、统计性和直观性等特点,被公认为是测定结果与实际粒度分布吻合最好的测试技术。   然而,常规的图像法粒度粒形分析仪只能测得颗粒的长度和宽度,不能测量厚度,已无法满足日新月异的工业科技对同样粒径的颗粒进行属性区分要求。   鉴于此,比利时欧奇奥(Occhio)仪器公司经过十余年探索,成功推出了世界首台动态三维彩色粒度粒形分析仪MORPHO 3D,不仅可实现颗粒长度、宽度和厚度的三维测量,还可进行彩色成像。 欧奇奥公司海外销售总监杰罗姆&bull 萨巴蒂尔(Jerome SABATHIER)   杰罗姆&bull 萨巴蒂尔介绍说,MORPHO 3D突破性地采用了两部呈90度角的相机由样品正上方和左侧采集数据的技术,以及欧奇奥专利皮带输送技术,首次实现了颗粒三维信息的真实获取,再结合欧奇奥公司的&ldquo 骄子&rdquo (Callisto)3D彩色分析软件,可用于分析非球形颗粒如小球、谷物、药片、玉米、化肥、大米等的粒度及厚度 其彩色分析功能还可以呈现颗粒颜色,并根据颗粒的不同颜色分析每种颗粒群所占比例。同时,其新型及独特的样品分散器能够将一个个颗粒完全分散开,从而保证颗粒之间无干扰采集数据 样品传送带可以将颗粒保持在同一位置,从而得到真实颗粒粒度及厚度即颗粒的三维数据。 MORPHO 3D动态三维彩色粒度粒形分析仪 从左到右依次为:3D成像分析仪原型机、专利螺旋式干法分散器、动态粒度粒形实时显示   作为欧奇奥公司的战略合作伙伴和中国总代理,美国康塔仪器公司特别将这款创新型颗粒粒度粒形分析仪推向中国市场,希望能够为中国客户打造出材料颗粒特性表征现代化与全方位解决之道。 美国康塔仪器公司中国区经理、首席代表杨正红   杨正红表示:&ldquo 正如上世纪90年代末激光粒度分析仪逐渐取代沉降法分析一样,颗粒分析领域正在迎来一个新的时代。目前,国内的混凝土等行业对3D分析有着迫切的需求,因此,MORPHO 3D可以适时、及时地满足这种需求,我们希望越来越多的科研人员和工程师能够关注到MORPHO 3D动态三维彩色粒度粒形分析仪。&rdquo 由MORPHO 3D 捕捉到的颗粒成像效果   会上,与会者对MORPHO 3D动态三维彩色粒度粒形分析仪产生了极大的兴趣,纷纷就该新品的性能特点与应用领域提问,杰罗姆&bull 萨巴蒂尔现场回答了与会者的疑问。   后记:   会后,美国康塔仪器公司中国区经理、首席代表杨正红受仪器信息网编辑邀请,专门撰写了一篇内容详实的图像颗粒测试技术约稿,内容包括不同颗粒测试方法的优缺点、图像颗粒分析法发展历史与优势,以及MORPHO 3D的性能特点及应用领域等。在此,仪器信息网特别将约稿全文呈上,以飨读者。   点击下载:杨正红-图像颗粒测试技术约稿全文 编辑:刘玉兰
  • 全自动激光粒度仪散射理论的应用
    由于运用光散射参数的组合不同,形成了众多基于散射的颗粒粒径测量理论,米氏散射理论,夫朗和费衍射,衍射式散射,全散射,角散射等,不同理论的运用形成了多种粒度测试仪器共存的现状。   米氏理论是对均质的球形颗粒在平行单色光照射下的电磁方程的精确解,它适用于一切大小和不同折射率的球形颗粒。而夫朗和费衍射理论只是经典米氏理论的一个近似或一个特例,仅当颗粒直径与入射光波长相比很大时才能适用。这就决定了基于夫朗和费衍射理论的激光粒度仪的测量下限不能很小。正因如此,应用经典米氏散射理论的激光粒度仪以其适用范围广,在小粒径范围测量的极高精度,受到了广泛认可。
  • 江苏省四个计量仪器检定规程通过审核
    12月5日,常州市计量所起草的《高锰酸盐指数在线自动监测仪检定规程》、《总有机碳(TOC)在线自动监测仪检定规程》、《总磷在线自动监测仪检定规程》、《氨氮在线自动监测仪检定规程》等四个江苏省地方计量检定规程通过专家组审核。   专家组由全国物理化学计量技术委员会在线理化分析仪器分技术委员会主任委员赵峰、委员蔡冶强、方静等10位专家组成。专家组听取了规程起草组的汇报,审查有关材料,经质询和讨论,一致认为规程(送审稿)资料齐全,基本符合相关要求,要求规程起草组按照专家组提出的修改意见认真修改形成《报批稿》,12月10日前送江苏省质监局报批。
  • 质检总局发布多项仪器校准规范/检定规程
    p   日前,质检总局发布《动态压力标准器检定规程》等58个国家计量技术规范,其中涉及多项仪器校准规范/检定规程,如平板电泳仪校准规范、PM2.5质量浓度测量仪校准规范、流式细胞仪校准规范、全自动微生物定量分析仪校准规范、汽车排放气体测试仪检定规程、光栅式测微仪校准规范等。 /p p   详细内容如下: /p table cellspacing=" 0" cellpadding=" 0" width=" 600" border=" 1" tbody tr class=" firstRow" td width=" 19%" p style=" TEXT-ALIGN: center" 编号 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 名称 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 批准日期 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 实施日期 /p /td td width=" 19%" p style=" TEXT-ALIGN: center" 备注 /p /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJG1142-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 动态压力标准器检定规程 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJG1143-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 非接触式眼压计检定规程 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJG1144-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 重力加速度式波浪浮标检定规程 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJG1145-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 医用乳腺X射线辐射源检定规程 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJG1146-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 工作扭矩仪检定规程 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1648-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 管道消声器测试系统校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1649-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 超声骨密度仪校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1650-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 超声探伤仪换能器声场特性校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1651-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 20Hz~100kHz水下噪声源校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1652-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 标准撞击器校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1653-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 电容式工程测量传声器校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1654-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 平板电泳仪校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1655-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 太阳电池校准规范:光谱响应度 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1656-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 磁力式磁强计校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1657-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 落锤式冲击力标准装置校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1658-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 电压失压计时器校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1659-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" PM2.5质量浓度测量仪校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1660-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 宽波段辐照计校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1661-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 微弱紫外辐照计校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1662-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 时钟测试仪校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1663-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 激光测微仪校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1664-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 温度显示仪校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1665-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 流式细胞仪校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1666-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 全自动微生物定量分析仪校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1667-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 工频谐波测量仪器校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1668-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 塑料管材耐压试验机校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1669-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 三轴转台校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1670-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 质量法油耗仪校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1671-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 机动车驻车制动性能测试装置校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1672-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 电快速瞬变脉冲群模拟器校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1673-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 电压暂降、短时中断和电压变化试验发生器校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1674-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 苯气体检测报警器校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1675-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 惯性技术计量术语及定义技术规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1676-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 无源医用冷藏箱温度参数校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1677-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 频率分配放大器校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1678-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 射频和微波功率放大器校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1679-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" ZigBee综合测试仪校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-2-20 /p /td td width=" 19%" /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1680-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 定向耦合器及驻波比电桥校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-5-20 /p /td td width=" 19%" p style=" TEXT-ALIGN: center" 代替JJG796-1992 /p /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1681-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 声级计型式评价大纲 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-5-20 /p /td td width=" 19%" p style=" TEXT-ALIGN: center" 代替JJG188-2002 br/ & nbsp & nbsp & nbsp 型式评价部分 /p /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJG188-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 声级计检定规程 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-5-20 /p /td td width=" 19%" p style=" TEXT-ALIGN: center" 代替JJG188-2002 br/ & nbsp & nbsp & nbsp 检定部分 /p /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJG277-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 标准声源检定规程 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-5-20 /p /td td width=" 19%" p style=" TEXT-ALIGN: center" 代替 br/ & nbsp & nbsp & nbsp JJG277-1998 /p /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJG991-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 测听设备 耳声阻抗/导纳测量仪器检定规程 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-5-20 /p /td td width=" 19%" p style=" TEXT-ALIGN: center" 代替JJG991-2004 /p /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJG798-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 骨振器测量用力耦合器检定规程 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-5-20 /p /td td width=" 19%" p style=" TEXT-ALIGN: center" 代替JJG798-1992 /p /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJG340-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 1Hz~2kHz标准水听器检定规程(密闭腔比较法) /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-5-20 /p /td td width=" 19%" p style=" TEXT-ALIGN: center" 代替JJG340-1999 /p /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJG482-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 实验室标准传声器检定规程(自由场互易法) /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-5-20 /p /td td width=" 19%" p style=" TEXT-ALIGN: center" 代替JJG482-2005 /p /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJG920-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 漫透射视觉密度计检定规程 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-5-20 /p /td td width=" 19%" p style=" TEXT-ALIGN: center" 代替JJG920-1996 /p /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJG62-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 塞尺检定规程 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-5-20 /p /td td width=" 19%" p style=" TEXT-ALIGN: center" 代替JJG62-2007 /p /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJG1020-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 平板式制动检验台检定规程 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-5-20 /p /td td width=" 19%" p style=" TEXT-ALIGN: center" 代替 br/ & nbsp & nbsp & nbsp JJG1020-2007 /p /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJG688-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 汽车排放气体测试仪检定规程 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-5-20 /p /td td width=" 19%" p style=" TEXT-ALIGN: center" 代替 br/ & nbsp & nbsp & nbsp JJG688-2007 /p /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJG185-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 500Hz~1MHz标准水听器检定规程(自由场比较法) /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-5-20 /p /td td width=" 19%" p style=" TEXT-ALIGN: center" 代替 br/ & nbsp & nbsp & nbsp JJG185-2005 /p /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJG1045-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 泥浆密度计检定规程 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-5-20 /p /td td width=" 19%" p style=" TEXT-ALIGN: center" 代替 br/ & nbsp & nbsp & nbsp JJG1045-2008 /p /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJG502-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 合成信号发生器检定规程 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-5-20 /p /td td width=" 19%" p style=" TEXT-ALIGN: center" 代替 br/ & nbsp & nbsp & nbsp JJG502-2004 /p /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJG961-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 医用诊断螺旋计算机断层摄影装置(CT)X射线辐射源检定规程 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-5-20 /p /td td width=" 19%" p style=" TEXT-ALIGN: center" 替代JJG961-2001 br/ & nbsp & nbsp & nbsp JJG1026-2007 /p /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1237-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" SDH/PDH传输分析仪校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-5-20 /p /td td width=" 19%" p style=" TEXT-ALIGN: center" 代替JJF1237-2010 /p /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1174-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 矢量信号发生器校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-5-20 /p /td td width=" 19%" p style=" TEXT-ALIGN: center" 代替JJF1174-2007 /p /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1682-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 光栅式测微仪校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-5-20 /p /td td width=" 19%" p style=" TEXT-ALIGN: center" 代替JJG989-2004 /p /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1683-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 抖晃仪校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-5-20 /p /td td width=" 19%" p style=" TEXT-ALIGN: center" 代替 br/ & nbsp & nbsp & nbsp JJG47-1990 /p /td /tr tr td width=" 19%" p style=" TEXT-ALIGN: center" JJF1684-2017 /p /td td width=" 27%" p style=" TEXT-ALIGN: center" 轴承圆锥滚子直径、角度和直线度比较测量仪校准规范 /p /td td width=" 17%" p style=" TEXT-ALIGN: center" 2017-11-20 /p /td td width=" 16%" p style=" TEXT-ALIGN: center" 2018-5-20 /p /td td width=" 19%" p style=" TEXT-ALIGN: center" 代替 br/ & nbsp & nbsp & nbsp JJG380-1995 /p /td /tr /tbody /table p & nbsp /p
  • 动态光散射技术入门及仪器采购指南
    作者:马尔文仪器公司纳米颗粒及分子鉴定产品营销经理 Stephen Ball   动态光散射(DLS)是一项用于蛋白质、胶体和分散体的极具价值的粒度测量技术,其应用范围可轻松扩展到1 nm以下。本文中,马尔文仪器公司产品营销经理Stephen Ball将向您介绍DLS的工作原理,并就购买光散射系统时的关注事项为您并提供一些专业建议。   通过观察散射光,可以测定粒子分散体系或分子溶液的特性,如粒度、分子量和zeta电位。光散射系统充分挖掘利用这些特性之间关联,并在近几十年间经过不断完善,目前已经能为常规实验室应用提供高度自动化的检测。利用光散射仪器的检测快速而高效,可用来表征分散体系、胶体和蛋白质。   理论上,光散射仪器中使用的各种技术看起来可能很相似,但它们的功能和检测结果却在实际应用中千差万别,从而对仪器的寿命期价值产生显著影响。光散射系统中的组件和设计的差异也会导致数据质量及仪器适用范围产生很大的差异。例如,某些光散射系统可通过测量蛋白质电泳迁移率对蛋白质电荷以及粒度进行测定,从而成为生物制药应用中高效的选择方案。   撰写本文的目的在于为考虑采用动态光散射DLS技术的读者提供一个入门指南。本文将考察DLS的主要用途、应用领域,尤其会侧重系统设计中对于特定性能的重要性,从而为那些正为自身需求而关注DLS技术的用户提供背景信息和理论支持。   了解基本知识   当我们要开始对一种新的分析技术进行评估时,第一个重要步骤就是要了解它的基本工作原理。DLS的优势之一是它操作非常简单,而这直接源于它的测量原理。   由于热能,溶剂分子不断运动,和悬浮的颗粒物产生碰撞,使得分散体或溶液中的小颗粒做无规则的布朗运动。可以通过观测散射光随时间的波动性得到颗粒布朗运动的速度,这种技术被称为光子相关光谱法(PCS)或准弹性光散射法(QELS),但现在通常称作动态光散射法(DLS)。   斯托克斯 - 爱因斯坦方程定义了颗粒布朗运动速度与颗粒大小之间的关系:      其中,D = 扩散速度, k = 波尔兹曼常数,T = 绝对温度,h = 粘度,DH = 流体力学直径   上述关系式清楚地表示了在样品温度和连续相粘度已知的情况下,如何根据扩散速度测定粒径。尽管必须是控制检测温度,但很多商用仪器还是会对温度进行测量 而对于许多分散剂,尤其是水而言,粘度是已知的。在很多情况下,DLS实验所需的补充信息也仅仅是粘度测量。   DLS的优势   DLS固有的操作简便性意味着操作者无需具备很强的专业知识就能得到详尽而有用的数据,这个优点在最新的高度自动化系统中表现得尤为明显&mdash &mdash 一般分析只需要几秒钟的时间,并且分散剂的选择余地比较大,不管是水性还是非水性的,只要它们呈透明状并且不太粘稠,就都可以使用。这种测试方法所需的样品量也很小,最少时只需要几微升即可,这一点对于涉及宝贵的样品的早期研究而言是极具吸引力的。   实际上,DLS法在测量0.1 nm ~ 10 µ m范围的粒径时十分出色。它在测量小颗粒方面的能力尤为突出,对于绝大多数待测体系提供2nm及以上的准确、可重复的数据。从理论上讲,检测低密度分子的粒径仅仅受到仪器灵敏度的限制,但对致密颗粒而言,沉降是可能导致分析不准确的一个潜在问题。例如,对于密度为10g/ml的颗粒,最大检测粒径通常会限制在大约100nm以内。   无论是稀释样品还是混浊样品都可以用DLS法来进行测量,可分析的浓度范围最低可至0.1ppm,最高可达40%w/v。不过,由于样品浓度会大大影响其外观尺寸,因此当粒子含量较高时对样品的制备需要加倍小心。   上述适用的粒径和浓度范围以及该测量技术的高重现性(粒径20nm时可达到+/- 0.1nm),使得DLS这种测量方法具有广泛的适用性。比如,它特别适合检测平均粒径的细微变化,这种变化可能会反映出胶体样品的稳定性 它也可以测得少量聚集体的出现。上述这些现象很有可能是某种样本解体的前兆,当用于药物的蛋白质研究时,这类情况的出现有可能对药物性能产生不利甚至有害的影响。   DLS法的局限性   DLS方法的大多数局限性可以或已经通过对实验操作过程进行改进,或对DLS技术进行改进来加以克服 但在区分仪器类型,尤其是对于那些要求异常苛刻的应用而言,它的局限性仍然值得我们加以关注。一般来说,DLS使用过程中遇到的大多数问题是出于以下原因:   &diams 存在较大的颗粒   超出仪器最高量程范围的颗粒应该事先被过滤掉。或者,如果大颗粒的存在量极少也可以通过软件进行处理。   &diams 沉淀   这种现象在较为致密的颗粒中尤其比较容易出现。提高分散液密度是比较有效的抑制方法(比如在系统中加入蔗糖),但这种方法仅适用于密度不高于1.05 g/ml的样品体系。   &diams 分辨率较低   DLS不属于高分辨率的技术。当样品的粒度分布排列十分密集,且存在三种以上的粒度分布差异时,DLS 将无法对多重分散样品进行精确表征。在这种情况下,建议最好在测量之前对样品进行分离 而在测量方法上,则需要将DLS与制备技术如凝胶渗透法或尺寸排除色谱法(GPC / SEC)和(或)流场分离技术(FFF)联合使用。   &diams 多重光散射   多重散射是指从一个颗粒发出的散射光在到达探测器之前又会被其它粒子再次散射,在较致密的样品中,这种现象会使粒径计算的精确度受到影响。背散射检测器以大于90° 的角度进行测量,大大抑制了这一现象,从而扩大了该技术的测量范围。   &diams 分散剂的选择   虽然大多数分散剂都适用于DLS,但如果分散剂粘度大于100mPa.s,往往会影响测量的可靠性,另外分散剂对光的吸收也会对检测产生干扰。比如有色样品的散射光强度可能会有所降低。一种可行的解决方案是根据系统的灵敏度,采用不同的激光波长进行分析或对样品进行稀释。样品中的荧光也会对信噪比造成影响,但可以通过使用窄带滤波器来解决,以排除荧光杂散光的影响。   界定DLS检测仪的特性   上述的讨论是在对DLS仪器的界定特征进行检验的背景下展开的。对于任何分析技术,灵敏度都是最基本的要素,对于DLS系统,这方面的性能是由光学硬件和相应的设置来确定的。稀释度较高时,具有优越光学设置的系统能对较小的颗粒进行可靠测量,但对于在这些功能方面要求不高的应用而言,替代方案可能会更为经济。光学设置的主要元件包括:   &diams 激光源   具有低噪特性的稳定激光源最为合适,如某些氦氖气体激光器。也可以使用某些特定的固态激光器,但价格要贵得多 低成本的固态激光器使测量结果的精度和可重现性受到极大影响。   &diams 光学设置   光学设置的核心是进行测量的散射角。测量角固定于90o 时,可使系统简便而经济高效,为许多应用(见图1)提供合适的灵敏度级别。这类系统已得到广泛使用。   当实验需要灵敏度更高,或样品浓度更高时,最好选择较大的测量角度。例如马尔文仪器公司Zetasizer Nano系列激光粒度仪,采用非侵入式背散射检测器 (NIBS),将测量角度调到175o(参见图1),扩大了颗粒粒度与浓度的测量范围。由于入射光无需通过整个样品,因此显著减少了多重散射引起的测量不准确性,同样也排除了大灰尘颗粒的影响。   在上述两种类型的设置中采用了光纤光学收集组件,其提供的信噪比优于传统的相应部件,从而大大提高了数据质量。   &diams 检测器   检测器有两种类型:一种是便宜、灵敏度较低的光电倍增管PMT,另一种是较昂贵的、性能更好的雪崩光电二极管检测器(APD)。后者宣称效率高达65%,远远优于替代产品PMT4-20%的效率,从而使数据收集最大化,测量速度更快、质量更高。   要获得精确的DLS测量,另一项基本要求是必须对温度进行很好的控制。如同分散剂粘度一样,颗粒的布朗运动也直接和温度相关,因此温度控制较差造成的影响非常严重。例如,在环境温度下对水性体系进行测量,1oC的温度误差将导致2.4%的检测结果偏差,超过ISO13321 [1] 标准规定的+/-2% 或更新的 ISO 22412[2] 标准规定的范围。对于使用的各类比色皿,DLS仪器温度控制的合理目标是 +/-0.2oC。   比起在检测仪外部连接水浴装置,内置温度控制器在使用上更加方便,在测量精度、稳定性和重现性方面也更加可取。此外,具有高性能控制系统的仪器,既能进行快速的系统预热,又能迅速调整温度,从而对温度变化所产生的影响(如蛋白质热不稳定性)进行研究。   日常使用   当选择仪器时,评估整体性能特点尤为重要。然而,如果每天使用一个不太符合操作要求的系统所造成的不便会令人非常烦恼,甚至不想再去用它。因此,当需要在最终几个备选仪器之间进行选择时,以下几个问题是值得考虑一番的:   &diams 我最重要的需求是什么:速度还是准确性?   &diams 我的样品粒径的范围?   &diams 我要测量的样品属于什么类型,比如是否有毒?或者具有特别强的腐蚀性?   &diams 今后仪器的操作者是专家还是新手?他们具备多少关于光散射的专业知识?   速度与准确性   DLS测量通常成批进行,样品通常不同、且体积较小。测量时间一般按照能达到要求的重复性水平设置,但一般不大会超过几分钟。不过,分析效率可能因样品制备和系统清洗要求而有所不同,不同系统的使用方便性也会有较大的差异。如果DLS系统被用作 GPC/SEC 检测器,系统将设置为流体工作模式。由于样品流经仪器,为达到必要的精度,测量必须在短短几秒钟之内完成。   具有良好测试速度和准确性的仪器通常都价格较高,但考虑使用寿命期的成本更为重要。考虑到因不能满足重复性标准而进行反复实验所花费的时间和成本,以及因仪器装备不能满足常规实验室使用要求而造成的分析效率下降等因素,更昂贵一些的系统也许更能体现物有所值。   适用于各种样品类型的比色皿   大多数光散射系统在批量样品分析期间使用各种比色皿池或比色皿来盛放样品。它们通常是塑料(通常是聚苯乙烯)、玻璃或石英材质的,但大小各不相同。样品的最小用量取决于光学设置,通常为2-3 ml。不过,如果不考虑任何样品回收要求,也有一些系统测量只需要2µ l的样品用量。   一次性塑料比色皿无需清洗,消除了交叉污染的风险,特别适用于盛放有毒材料 有些比色皿只有50 &mu L大小。采用比色皿可以避免产生&lsquo 非比色皿&rsquo 系统(即把样品直接放在玻璃片上进行测量)因清洗不彻底而导致测量不准确的问题。石英比色皿具有更佳的测量质量,尤其是用于低浓度或小粒径样品时,这是因为石英材料具有优异的光学特性和抗划伤性。   减轻分析负担   光散射通常只是许多研究人员在实验室中常规使用的多种技术之一。仪器操作者可能不是光散射方面的专家,因而仪器操作的简便性是很有帮助的。   一些DLS系统在数据收集过程中即对数据进行评估,剔除因大颗粒存在而被污染的结果。这类些系统有助于提高样品制备的速度和容许范围。粒径大于10微米的颗粒主要发生向前散射,因此含背散射检测器的仪器对这些颗粒的存在不太敏感。测量浓度范围宽的系统尽可能降低了样品稀释的需求,进一步提高了测量效率。   大多数现代化测量系统在数据采集过程中都无需操作员干预,从而减少了分析师的工作量,并提高测量的可重复性。但是有些比较复杂的样本可能需要采用特殊方法进行测量,因此应在标准操作程序(SOPs) 中包含这些特殊方法,从而确保应用的标准化。   虽然自动测量现在已很普遍,但在内置数据分析支持程度方面,不同仪器之间的差异很大。如果是给非专业人员使用的光散射测量系统,那么含有内置数据分析和专家意见的先进软件将极富价值,就好像在电话另一端有一位可靠的、活生生的专家一样。   总结   DLS是一项比较成熟的技术,可为各种类型的样品进行粒径和分子尺寸测量。因此,在选择仪器时,必须将系统能力与用户要求紧密联系起来,使两者相匹配。光散射系统在测量粒径的同时,还可以测量分子量、蛋白质电荷和Zeta电位,甚至还能具有微流变学测量功能。   不同系统之间的灵敏度有很大差别,如同在高浓度下也能进行测量一样,也可对各种大小的颗粒或分子进行有效的测量。与那些90o 度探测器相比,背散射仪器具有很实际的优势。   除了性能以外,还有其它因素也会影响仪器使用寿命期内的价值,包括易于清洁 能获得的支持以及友好的用户软件界面。无论是什么规格的仪器,最好的建议是在购买前进行测试,看看你能否轻松得到有用的数据。DLS问世已经多年,因此不论你的用途是什么,你都可以期望拥有一套有使用针对性的、富有成效并且易于操作的测量系统。   结束   参考文献:   [1] ISO 13321 (1996) 粒度分析 - 光子相关光谱。   [2] ISO 22412 (2008) 粒度分析 - 动态光散射   [3] GPC / SEC静态光散射技术说明,(马尔文仪器公司白皮书)。下载网址:www.malvern.com/slsforgpc   [4] www.malvern.com/aurora   图片   图1:DLS系统的关键组件包括(1)激光器,(2)测量单元,(3)检测器,(4)衰减器,(5)相关器和(6)数据处理PC。探测器可置于90° 或更大的角度,例如这里所显示的NIBS检测器设置在175° 。   图2:在悬浮液稳定性研究中采用Zeta电位对粒子之间斥力进行量化   laser:激光器   attenuator:衰减器   detector:检测器   digital signal processor 数字信号处理器   correlator:相关器   Electrical double layer:双电层   Stern layer:严密电位层   Diffuse layer:扩散层   Negatively charged particle:带负电荷的颗粒   Slipping plane:滑动面   Surface potential:表面电位  Zeta potential:Zeta电位   Distance from particle surface:到颗粒表面的距离
  • 光散射法在难溶性药物粒度检测中的应用
    p style=" text-indent: 2em " 编者按:药品安全需要一致性的保障!在药物研究行业,仿制药的一致性评价试点工作早在2012年就已开展。现如今,该项工作早就由业界“雷声大雨点小”的评价,转入了如火如荼的燎原之势。根据国家《关于改革药品医疗器械审评审批制度的意见》 ,《国家基本药物目录》中自2007年10月1日前批准上市的化学药品仿制药口服固体制剂的质量一致性评价工作,将在2018年底迎来截止日期。 /p p style=" text-indent: 2em " 作为仿制药一致性评价中必须考察的一部分,原料药的粒度控制与检测也随着这股东风,越来越受到业内的重视。而对于药物检测,特别是难溶性药物的粒度检测来说,光散射法无疑是重要手段,江苏省苏州工业园区食品药品监督管理局专家关玉晶等的条分缕析,将带我们走入光散射法在难溶性药物粒度检测中的应用天地…… /p p style=" text-indent: 2em " strong 专家观点: /strong /p p style=" text-indent: 2em " 药物粒度的测定方法有显微镜法、筛分法、光散射法等。对于原料药的粒度测定首选光散射法,是中国药典规定方法之一。采用的仪器为激光粒度仪,通常由激光光源、透镜、颗粒分散装置、检测器、控制系统构成,具有测量速度快、测试精度高、可测粒径范围宽等优点。其测定的理论依据是米氏散射理论和弗朗霍夫近似理论,将样品分散到分散介质中,用单色光束照射颗粒样品,即发生散射现象,散射光的能量分布与颗粒的大小有关,通过测量散射光的能量分布,即可计算出颗粒的粒度分布。 /p p style=" text-indent: 2em " 光散射测定法光散射测定法有两种,即湿法测定和干法测定,根据样品的性状和溶解性能不同进行选择。湿法测定用于测定不溶于分散介质的混悬样品,测定时使用较少的样品就能取得较好的分散效果,测定结果准确、重现性好。干法测定用于测定水溶性或无合适分散介质的固态样品,方便快捷,但测定时使用样品量大,重现性稍差,尤其是粘性物料测定结果误差较大。难溶性药物的粒度测定常选择湿法测定。 /p p style=" text-indent: 2em " 在用激光粒度仪进行粒度测定时需设定的主要仪器参数有分散介质折射率、样品折射率、样品吸收率。对于较大颗粒,使用弗朗霍夫近似理论,可不考虑样品折射率,对于较小颗粒,选择米氏散射理论,需提供分散介质与样品的折射率。分散介质的折射率可通过文献查得,水的折射率为 1. 33,乙醇的折射率为 1. 36。待测样品的折射率需要根据具体情况决定,如表面粗糙度、颜色、透明度、成分等进行选择输入,并结合粒度分布图形、数据拟合、残差值综合判断,选择与实际折射率一致或者接近的输入折射率,待测样品输入折射率与实际折射率偏差直接影响测量结果的准确性与可靠性。样品的吸收率体现了其吸收光量的特性,可通过在显微镜下,对处于悬浮介质中的物质进行观察而近似估算,样品的吸收率在 0 到 1 之间,晶体粉末为 0. 01、浅色粉末为 0. 1、深色粉末或金属粉末为 1。 /p p style=" text-indent: 2em " 对于湿法测定,选择适宜的分散介质,制备具有稳定的分散体系的样品是获得准确结果的关键,需保证颗粒之间的分散性并且在测定过程中颗粒不进一步破裂或溶解。将药物加入分散介质中,通过超声、搅拌等物理分散的方法使药物形成稳定的分散体系,如需要可加入少量的化学分散剂或表面活性剂,如六偏磷酸钠、吐温、十二烷基硫酸钠等,以消除样品的聚集及电荷效应。需确定的因素有分散介质的种类、药物分散浓度、外力因素等。选择分散介质需要满足以下条件:①液体与颗粒无反应,②颗粒在液体中无溶解和膨胀,③液体在激光波长下应是可透过(不吸收)的,④液体与颗粒的折射率不同。 /p p style=" text-indent: 2em " 常用的分散介质有水、乙醇、丙三醇水溶液、乙醇和丙三醇混合液等。考虑到实验成本、环境危害、操作方便等因素,分散介质首选水。为减少分散介质中杂质颗粒对样品测定的影响,分散介质应选择高纯度的溶剂且在使用前应过滤处理。药物分散浓度需满足仪器灵敏度要求并使粒子保持单个原始态。浓度过高可能产生多重散射,浓度过低可能信噪比太低难以代表真实物质的颗粒分布。一般情况下,待测样品粒径越小光散射性越强,分散浓度略低。激光功率越强则仪器的散射光信号越强,分散浓度越低。药物分散的浓度常根据检测器遮光度来确定,湿法测定所需的供试品量通常应达到检测器遮光度范围的 8 ~ 20%。在合适浓度范围内,测量结果基本保持稳定。分散体系在分散后易发生再凝结,其体系的稳定性一方面取决于样品颗粒及分散液体的特性,另一方面取决于外力因素,如超声搅拌等机械处理方法、表面活性剂、添加离子化合物、分散体系的 pH 值等。超声波是打开凝结的最佳方式。样品分散的好坏可以通过改变分散能量是否引起粒度分布变化来确定,当样品分散较好时,测定过程中粒度分布不会发生明显改变。 /p p style=" text-indent: 2em " 样品的粒度需要满足以下几个方面的因素: /p p style=" text-indent: 2em " (1)精密度:精密度要求根据样品的用途、物料特点及粒度分布不同而确定。一般情况下,取一批原料药样品,重复测定 6 次,统计 6 次测定结果的 RSD,D 50 的 RSD 不大于 10%,D 10 、D 90 的 RSD 不大于 15%,对于粒径小于 10μm 的样品,RSD 可增加至 2 倍。 /p p style=" text-indent: 2em " (2)重现性:不同时间、不同分析人员取同一批原料药样品,用同样的方法重复测定 6 次,统计 6 次测定结果的 RSD,要求与精密度相同。 /p p style=" text-indent: 2em " (3)溶液稳定性考察:将样品液放置一定时间,取不同时间点的样品进行测定,统计测定结果的 RSD,要求与精密度相同。 /p p style=" text-indent: 2em " (4) 准确度:将测定结果与显微镜法所得到的结果进行比较,验证结果准确性。 /p p style=" text-indent: 2em " (5)耐用性:在分析方法开发时就应考虑,考察测定条件有小的变动时,测定结果不受影响的程度,以满足样品日常检验需要。湿法测定常需考虑的测定条件有超声(或搅拌)强度及时间、测量时间、平衡时间等。超声强度和时间应保证样品稳定分散又不得发生溶解和破裂。搅拌速度应适中,转速过快易产生气泡被当作颗粒测量使结果出现第二峰值,转速过慢大颗粒容易沉底结果不具有代表性,搅拌时间过长易导致颗粒溶胀或溶解。在保证测量结果准确性的基础上尽量缩短测量时间和平衡时间。 /p p style=" text-indent: 2em " 对于原料药粒度标准的制定是测量原料药粒度的重要一环,制定原料药的粒度标准限度需综合考虑制剂的生产工艺、体外溶出、体内吸收等因素。原料药粒度越小,流动性越差,物料粘着性增加,混料时原料药不易混匀,从而影响制剂外观及含量均匀度。在研究中,应以休止角、外观、混合均匀性、含量均匀度等为考察指标,研究粒度分布对其造成的影响,确定符合产品要求的粒度范围。另外,需结合药物自身特性,如刺激性的药物,粒径愈小,刺激性愈大 稳定性差的药物,粒子越小,分解速度越快。原料药粒径减小,粒子比表面积增大,溶解性增强,药物能较好地分散溶解在胃肠道内,易于吸收,生物利用度高,但并不是原料的粒径越小越好,过度微粉化可能会导致过细的粉末形成静电堆积,在颗粒周围形成一层气泡囊,阻碍水分进入颗粒,从而阻碍药物的溶出。 /p p style=" text-indent: 2em " 在仿制药体外研究中,需测定不同粒径的原料药的溶解度,找出具有区分能力的溶出条件,考察粒径大小对溶出度的影响,通过比较自制品与原研品的溶出曲线确定原料药粒度范围。进一步根据生物等效性研究结果判断粒度范围的合理性,必要时进行调整。在确定粒度测定方法及限度后,制定质量标准时方法描述要详尽,需规定参数设置、样品制备方法、分散条件等,以保证在标准的执行过程中的方法重现性和测定结果准确性。粒度分布的限度以 D 50 、D 90 或(和)D 10 来表示。 /p p style=" text-indent: 2em " 讨论粒度研究是保证药品安全有效的基础,在研究中应确保测定结果的准确性。光散射法是原料药粒度测定的理想方法,在测定过程中要全面考虑测定因素对结果的影响,还需注意仪器校正、粒子形状、取样代表性、环境等因素。研究者在药物开发过程中,应进行详细的研究,准确的测定原料药的粒度并考察其对制剂的影响,确定符合产品特性的粒度分布范围,制得符合临床需求的药品。 /p
  • 覆膜电极溶解氧测定仪检定规程实施
    近日,国家质检总局2008年第143号文件,批准JJG291-2008《覆膜电极溶解氧测定仪检定规程》等8个国家计量技术法规发布实施。它们是: 编号   名称   批准日期   实施日期   备注   JJG291-2008   覆膜电极溶解氧测定仪检定规程    2008年12月23日     2009年06月23日    代替JJG291-1999   JJG440-2008   工频单相相位表检定规程    2008年12月22日     2009年06月22日    代替JJG440-1986   JJG589-2008   医用电子加速器辐射源检定规程    2008年12月22日     2009年06月22日    代替JJG589-2001   JJG701-2008   熔点测定仪检定规程    2008年12月22日     2009年06月22日    代替JJG701-1990 JJG463-1996   JJG915-2008   一氧化碳检测报警器检定规程    2008年12月22日     2009年06月22日    代替JJG915-1996   JJG1045-2008   泥浆密度计检定规程    2008年12月22日     2009年03月22日        JJG1046-2008   方形角尺检定规程    2008年12月23日     2009年03月22日        JJF1214-2008   长度基线场校准规范    2008年12月23日     2009年03月23日
  • 《数字水准仪检定规程》等标准发布
    各省、自治区、直辖市测绘行政主管部门,国务院有关部门,局所属有关单位,《测绘成果质量监督抽查与数据认定规定》、《全球导航卫星系统(GNSS)测量型接收机RTK检定规程》、《数字水准仪检定规程》、《因瓦条码水准标尺检定规程》4项推荐性测绘行业标准和《可量测实景影像》测绘行业标准化指导性技术文件已经通过国家测绘局批准,并予以发布,自2009年7月1日起实施。   测绘行业标准名称和编号如下:   一、《测绘成果质量监督抽查与数据认定规定》,编号为CH/T 1018—2009。   二、《全球导航卫星系统(GNSS)测量型接收机RTK检定规程》,编号为CH/T 8018—2009。   三、《数字水准仪检定规程》,编号为CH/T 8019—2009。   四、《因瓦条码水准标尺检定规程》,编号为CH/T 8020—2009。   五、测绘行业标准化指导性技术文件名称和编号:《可量测实景影像》,编号为CH/Z 1002—2009。   国家测绘局   二〇〇九年六月九日
  • 激光粒度分析仪在色釉料中的应用
    激光粒度分析仪在色釉料中的应用 色釉料是陶瓷制品的&ldquo 行头&rdquo ,直接关系到陶瓷产品的&ldquo 卖相&rdquo 。随着我国陶瓷产品产量和质量的迅速提高,色釉料行业在最近10多年也迅速发展壮大,现已成为陶瓷产业的重要分支。从形貌上看,色釉料是一种粉体,其粒度分布直接影响呈色特征和呈色强度,必须准确测定并加以严格控制。目前最先进的测试仪器是激光粒度分析仪,由于其具有测量范围宽、重复性好、速度快、操作容易等显著优点,非常适合色釉料行业的使用。 激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向性,所以一束平行的激光在没有阻碍的无限空间中将会照射到无限远的地方,并且在传播过程中很少有发散的现象。激光粒度仪的原理和结构决定了其的性能特点:1、能给出详尽的粒度分布数据,这些数据对确定色釉料颗粒的平均大小、均匀性、配料是非常有用的。2、测量范围大,能覆盖色釉料的整个粒度范围。3、测量速度快。4、重复性好、操作方便。总体来说,激光粒度仪是迄今为止最适合色釉料行业使用的粒度测试仪器。 济南微纳颗粒仪器股份有限公司是一家专注颗粒测试的企业,研究颗粒检测技术已有30多年的历史。对于陶瓷行业的检测提供了完善的服务。以坚实的质量与优质的服务实践着。在陶瓷行业受到广大客户们的一致好评。微纳在以永不停歇的脚步与客户共创美好未来。 ---------------中国颗粒测试技术的领航者--------------- 济南微纳颗粒仪器股份有限公司是专门研发、生产、销售颗粒测试相关仪器设备的高科技企业。主要产品激光粒度仪,粒度仪,粒度分析仪,激光粒度分析仪,纳米激光粒度仪,颗粒图像分析仪,喷雾激光粒度仪等。 销售热线:0531-88873312 公司网站:http://www.jnwinner.com 联系地址:济南市高新区大学科技园北区F座东二单元
  • 液相色谱仪等11个检定规程发布
    2月26日,国家质量监督检验检疫总局发布《液相色谱仪检定规程》、《离子色谱检定规程》等11个国家计量技术法规,其中6个法规新发布,5个法规替代原有法规。   全文如下:   根据《中华人民共和国计量法》有关规定,现批准JJF1447-2014《衍射时差法超声探伤仪校准规范》等11个国家计量技术法规发布实施。   特此公告。                 质检总局               2014年2月26日
  • 贝克曼库尔特推出全新一代激光衍射粒度分析仪
    LS 13 320 XR ——提供快速、准确和可再现的颗粒粒度分析
    中国,上海 —— 2018年10月讯 ——贝克曼库尔特生命科学事业部推出新一代激光衍射粒度分析仪LS 13 320 XR,以满足制药和工业领域质量控制和研究应用的严苛要求。贝克曼库尔特公司已有数十年颗粒表征分析的历史。作为颗粒产品的重要一员,多波长PIDS专利技术(专利号:4953978;5104221)的激光衍射粒度分析仪LS系列一直是业内的翘楚。新一代LS 13 320 XR是一款全自动、高准确性、高分辨率、高重现性以及操作极简的干湿两用粒度分析仪。其采用专利设计的X型对数排布的检测器阵列,可准确记录散射光强信号,获得真实准确的粒度分布。而132枚检测器更能清晰地区分不同粒度等级间散射光强谱图的差异,无需预估样品峰型,无需选择分析模型,便可轻松准确分析多峰样品,粒径测量范围从10 纳米至3,500 微米。在亚微米范围,为了从根本上解决传统方法对亚微米颗粒光强谱图差异区分差的难点,LS 13 320 XR采用偏振光强度差散射(PIDS)专利技术来分析多波长和多偏振下的样品,不仅可以真正实现小至10纳米的颗粒测量,而且还可以直接检测亚微米范围内的多峰分布,获得亚微米范围内更高的分辨率和准确性。ADAPT操作软件,不仅界面更加直观,而且增加了触摸屏技术,非常易于使用,无需操作经验,简单三步轻松获得准确的数据。醒目的导航轮,仅需一步便可完成数据的显示和导出。而为了更迅速的了解样品质量情况,软件可自动对测量结果标注绿色或红色,实现自动合格/不合格管理,直接质控。新一代激光衍射粒度分析仪LS 13 320 XR满足对于粒度测试的需求,适用于各种应用环境,从食品饮料质量控制、工业制造到小分子和生物制药应用领域。贝克曼库尔特生命科学事业部颗粒特性高级市场经理Dave Dunham表示:“在各种严苛环境下,LS 13 320 XR都能为客户提供灵活且优异的性能,我们对其检测结果的准确性和再现性以及最终产品的一致性信心十足!”*本产品仅用于科研,不用于临床诊断。关于贝克曼库尔特生命科学事业部贝克曼库尔特生命科学事业部一直致力于改善全世界人类的健康。贝克曼库尔特公司为广大科研、商业实验室的生命科学研究工作者们提供先进的仪器系统、试剂和完善的技术服务与支持,不断促进生物学科研的新技术发展。贝克曼库尔特公司不仅在离心机和流式细胞仪的行业位于前列,而且长期以来一直是生命科学仪器和解决方案的创新者,其产品主要用于前沿的重要研究领域,包括基因组学、蛋白质组学等。欲了解更多信息,敬请访问贝克曼库尔特全球网站www.BeckmanCoulter.com和中文官方网站www.beckmancoulter.cn。© 2018 Beckman Coulter, Inc. 保留所有权利。贝克曼库尔特、个性化标识和贝克曼库尔特产品以及服务标记均系贝克曼库尔特公司在美国和其他国家的商标或注册商标。
  • 贵州市场监管局清理部分地方计量检定规程及校准规范
    为加强地方计量检定规程、校准规范的管理,根据《贵州省地方计量检定规程校准规范制修订办理程序》要求,贵州省市场监管局对贵州省地方计量检定规程及校准规范进行了清理。   经认真清理,《混凝土回弹仪标准装置检定规程》、《数据网络流量测试仪校准规范》、《烷基汞分析仪校准规范》等48件地方计量检定规程、校准规范继续有效;《车用尿素溶液加注机校准规范》地方计量校准规范于2023年6月27日予以废止,《医用离心机校准规范》、《大量程电子数显千分指示表校准规范》地方计量校准规范于2023年6月7日予以废止。 贵州省现行有效地方计量检定规程、校准规范目录
  • 岛津推出激光粒度分析仪应用数据集册
    颗粒的粒度粒形是决定物料性能的重要参数之一,食品、医药、化工和电池等众多行业对颗粒的粒度粒形都有严格要求。有效地测量与控制颗粒粒度及其分布,对提高产品质量、降低能源消耗、控制环境污染、保护人类的健康等具有重要意义。激光粒度分析仪,是指以激光作为探测光源的粒度分析仪器,通过颗粒的衍射或散射光的空间分布(散射谱)来分析颗粒大小,已成为当今最流行的粒度测量仪器之一。 近年来,各种原辅料颗粒的粒度粒形也逐渐成为生产工艺过程中关注的重要参数之一,颗粒的粒径会直接或间接影响成品的质量和性能。有效准确地测量与控制颗粒粒度及其分布,对提高产品质量、降低能源消耗、控制环境污染、保护人类的健康等具有重要意义。目前国内外的使用激光粒度仪测试粒径分布的方法标准相对较少,当前的主要方法标准有: 岛津公司针对近年来激光粒度仪需求量日益增加的市场趋势,使用岛津不同型号激光粒度仪分别开展了粉体材料,医药研发和食品安全等相关领域的应用方法开发,并精心汇编了《岛津激光粒度分析仪应用数据集册》,应用报告题目如下: 1.岛津激光粒度仪系列产品介绍2.激光粒度仪在粉体材料中的应用 激光粒度测试中折射率的选择技巧SALD测定金属硅粉的粒径分布SALD测定磷酸铁锂的粒径分布SALD-2300测定二氧化钛粉末样品的粒径分布SALD-2300测定聚苯乙烯粉末树脂的粒径分布SALD-2300测定氧化铝浆料样品的粒径分布SALD-2300测定氧化锌固废粉末的粒径分布SALD-2300测定环氧树脂粉末的粒径分布激光粒度仪在涂料行业中的应用激光粒度仪在卫生陶瓷洁具行业的应用3.激光粒度仪在医药研发中的应用 干法激光粒度在制药行业的应用干法激光粒度仪在注射剂一致性评价中的应用SALD-2300测定原料药盐酸万古霉素样品的粒径分布SALD-2300测定药用辅料药吡哌酸样品的粒径分布Aggregates Sizer在疫苗聚集体评价系统中的应用4.激光粒度仪在食品安全中的应用 干法激光粒度在乳制品行业中的应用SALD-2300测定牛乳样品的粒径分布
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制