当前位置: 仪器信息网 > 行业主题 > >

纺织织物测试

仪器信息网纺织织物测试专题为您提供2024年最新纺织织物测试价格报价、厂家品牌的相关信息, 包括纺织织物测试参数、型号等,不管是国产,还是进口品牌的纺织织物测试您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纺织织物测试相关的耗材配件、试剂标物,还有纺织织物测试相关的最新资讯、资料,以及纺织织物测试相关的解决方案。

纺织织物测试相关的论坛

  • 纺织品尺寸稳定性测试织物熨烫与不熨烫之间有多大偏差?

    在测试纺织品尺寸稳定性时,发现织物经过熨烫和不熨烫有很大的差别,有时候和外部机构 沟通人家说经过熨烫了的?我一直搞不懂一般产品熨烫之后的尺寸稳定性能反映出产品的真实收缩情况吗?因为在熨烫过程中人为会有一个拉伸力的?

  • 纺织测试仪器简介

    纺织测试仪器简介及其分类 近十年来,我国制造业发展迅速,产业不断升级换代,产品质量、工艺水平、生产设备等一年上一个台阶。世界经济一体化的今天,企业发展朝着更加正规、产品质量更加稳定、生产工艺更加先进、标准规范更加严谨的道路前进。我国作为世界第一大纺织品生产国,出口国,国内厂家大大小小,林林总总,多如牛毛。工厂如何生产质量稳定,客户满意的产品?企业靠什么在市场竞争中不断发展?质量是先决条件。只有靠严格的质量管理、靠严谨的科学检测仪器才能保障质量、赢得市场。 纺织品的色牢度、印染、经纬密度、强力、张力、防水性能等等等等都有着相应的规定,达到一定的标准,才能进入门槛、开拓市场,使企业不断发展前进。常见的标准有AATCC,GB,ISO,JIS等。当前国内国际纺织测试仪器生产企业众多,各类测试仪器品种繁多、型号各异,可以基本满足当前各方面的纺织品测试要求。纺织是个大的行业,仪器仪表也是大的行业,但纺织测试仪器行业,市场总量有限,科技含量较高,就当前国内情况看,纺织品测试仪器行业已基本进入规范化发展阶段。纺织测试仪器主要包括以下几类:一、织物面料及辅料测试仪器克重仪、撞钮机、纺织天平、取样刀、裁切机、检针机、闪光测速仪、照布镜、织物密度仪、显微镜、织物强力拉力机、拉链疲劳测试仪、织物起毛起球仪、钮扣拉力试验机、沾水度测定仪、织物平磨仪、织物测厚仪、织物密度镜、织物撕裂仪等。二、印染色牢度烘箱测试仪器摩擦色牢度测试仪、耐洗色牢度试验机、染色牢度摩擦仪、耐汗渍色牢度测试仪、水平燃烧测试仪、垂直燃烧测试仪、45度燃烧测试仪、缩水率测试仪、Whirlpool洗衣机、Whirlpool干衣机等。三、纱线纤维棉麻皮毛测试仪器电子单纱强力机、缕纱测长仪、纱线捻度仪、手摇捻度仪、摇黑板机、纱线张力仪、单纤维强力机、全自动单纱强力机、条粗测长仪、棉纤维光电长度仪、便携式棉纤维气流仪、束纤维强伸度仪、罗拉伸长仪(含强伸器)、原棉杂质分析机、棉花分级室照明灯箱、原棉回潮率测定仪、纤维切断器、纤维切片器、纤维油脂快速抽取器等。四、通用纺织检测仪器及耗材等标准光源对色灯箱(VeriVide, GretaMacbeth, JAG等)、色差仪、烘箱、恒温恒湿箱,AATCC白棉布、欧标、美标伴洗布、JIS沾色、变色灰卡、美标九级比色卡、ISO/GB沾色、变色灰卡、纺织品标记笔、褪色笔、AATCC1993洗涤剂、1993 WOB洗涤剂、AATCC多纤维布、AATCC九级比色卡、AATCC变色灰卡、AATCC沾色灰卡、SDC皂粉、IEC(B)洗涤剂、IEC(A)洗涤剂、ECE(B)洗涤剂、

  • 【分享】织物抗起毛起球效果的评定与测试

    1. 织物的抗起毛起球能力可用各种测试仪器测试,如滚筒式(起球箱法)、旋叶式、刷磨式(如圆磨起球仪法与马丁台尔型磨损仪法)等,测试结果的分析法:(1)计数法:即规定面积中的起毛起球个数;(2)计量法:即称量织物上及落下的毛球重;(3)样照对比法:即将起球后的织物与标准样照进行对比,确定试样的起球程度,共分5级,级数越小,表示织物起球越严重;级数越大,表示抗起球性能越好;(4)用以纵坐标表示起球数、横坐标表示摩擦时间的起球曲线来分析起球程度及起球形成于脱落的速率。目前常用刷磨法测试以样照对比法评级,根据需要在各级之间还有半级的一档,具体操作为:织物经一定规格的尼龙刷平刷一定时间后观察其起毛情况,再与具有特定规格的2201全毛华达呢磨料互磨,以观察其起球情况。上述测试方法都是模拟服用过程而设计的,但是由于起毛起球过程以及服用情况的复杂性和多样性,使仪器测试结果与穿着效果往往不能吻合,因此,除了用仪器测试外,还应和试穿效果对照加以判定。2.国内纺织品起毛起球测试2.1 测试标准及条件目前国内对纺织品起毛起球测试方法的标准主要有三种:(1) GB/T4802.3—1997《织物起球试验方法——起球箱法》,测试条件,不受压力;(2) GB/T4802.2—1997《织物起球试验方法——马丁代尔法》,测试条件,受轻微压力;(3) GB/T4802.1—1997《织物起球试验方法——圆轨迹起球法》,测试条件,受轻微压力。2.2 测试仪器国内纺织品起毛起球测试仪器主要分为:起球箱起球仪、马丁代尔起球仪、圆轨迹起球仪三种。2.3 测试原理(1)起球箱法:在可旋转、内壁粗糙的滚箱内,织物包于芯棒上,在箱中翻滚一定的次数后,与标准实物样品或其照片对比评比;(2)马丁代尔法:织物在软垫条件下,经磨料研磨一定次数后与标准实物样品或其照片对其评级;(3)圆轨迹起球法:织物在软垫条件下,经尼龙刷摩擦规定次数后,在一定光照下与标准实物样品或其照片对比评级。3.国外纺织品起毛起球测试31测试标准国外纺织品起毛起球测试标准有很多,其常用标准有:美国试验与材料协会标准ASTM、日本工业标准、德国标准DIN、英国标准BS、国际标准ISO等。3.2 测试仪器国外的起球测试仪器主要有下列三大类:(1) 起球箱式:相当于国内起球箱式;(2) 乱翻式:即织物在圆滚筒内翻滚,无规则摩擦产生起毛起球现象;(3) 马丁代尔式:有测试摩擦及起球两个功能。对于纺织出口企业,面临贸易国的标准不同,对纺织品起毛起球问题测试实际困难更大。从多数纺织品进口国的测试方法来看,一般限于翻箱法和马丁代尔法,对于起毛起球性能要求高的纺织品采用后者测试为主,因为此法更接近于人们服用过程。随着纺织市场国际化,纺织企业应学会适应国外众多测试标准,包括纺织类针对起毛起球测试标准。

  • 纺织品耐水压性能测试

    纺织品耐水压性能测试日益受到重视。对于该非常规项目检测,本文从纺织品防水及拒水整理、拒水性测试方法和测试结果等作了较为全面的介绍和分析。   近年来,高密度的涤棉、春亚纺和锦涤桃皮绒等织物经涂层、防水、磨毛等特种整理加工,广泛应用于滑雪羽绒服、警用风雨衣、箱包及其他各种防雨用具,其需求量剧增。该类产品目前是非法定检验商品,但由于其使用条件、场合的特殊要求,对其防水性能,尤其是耐水压性能提出很高的要求。因此,近年来我出入境检验检疫局接受的纺织品耐水压检测比往年有大幅度增长。纺织品耐水压性能测试是非常规项目检测,但随着防水等特种整理纺织品市场需求的增长及外商对该类商品技术指标要求的提高,纺织品耐水压性能测试越来越受到重视。1 防水、拒水整理一般棉、粘胶、蚕丝和麻等较涤纶、锦纶、丙纶等纤维的吸水性强,若要求它们具有高度的防水性,以作各种防水用具,则必须经防水或拒水整理。防水实际上常将“拒水”的涵义包括在内。按整理后织物表面性能的不同,可加以区别,基本可分为两类:一类是防水但不透气的整理。它是在织物表面均匀涂布一层不透水、不溶于水的涂层,整理后使织物的孔隙堵塞,阻止水和空气通过织物,这种整理也称为涂层整理(防水整理)。如用聚氨酯树脂、聚丙烯醇树脂、橡胶、桐油等处理后,织物不但不透水和不透气,而且手感也较硬,故不宜作衣着用品,一般适用于工业用布或户外用品。另一类则是防水透气整理,也称拒水整理。这是指织物整理后,整理剂改变了纤维的表面性能,使纤维表面的亲水性转为疏水性,使织物不易被润湿,但仍能透气,手感柔软,常用于制作雨衣及其他衣着织物

  • 纺织品黄变的原因、测试与解决方法

    纺织品黄变的原因、测试与解决方法

    [img=,640,297]https://ng1.17img.cn/bbsfiles/images/2022/12/202212011610428729_9767_1954597_3.png!w640x297.jpg[/img][size=14px][b]一、纺织品黄变产生的原因有哪些?[/b][/size][b][size=14px]1、光黄变:[/size][/b][size=14px][/size][size=14px]光黄变是指纺织服装由于太阳光或紫外光的照射, 引起分子氧化裂解反应而使得服装表面泛黄。光黄变在浅色服装、漂白处理织物、增白处理织物中最为常见。织物经光照后,光能传递到织物染料上,致使染料共轭体发生裂解,从而引起光褪色,织物表面呈现黄色。其中,可见光和紫外光分别是引起偶氮类染料和酞菁类染料上色织物褪色的主要因素。[/size][b][size=14px]2、酚黄变:[/size][/b][size=14px][/size][size=14px]酚黄变一般是由NOX和酚类化合物经接触转移引起的织物表面泛黄,主要反应物质通常是包装材料中含的抗氧化剂,例如丁基苯酚(BHT)。服装和鞋类在出厂后经过长时间的包装运输,包装材料中的BHT会和空气中的NOX发生反应,从而引起服装泛黄。[/size][b][size=14px]3、氧化黄变:[/size][/b][size=14px][/size][size=14px]氧化黄变是指织物受大气或其他物质氧化后产生的黄变。纺织服装在染色和后整理时通常使用还原性的染料或助剂,在与氧化性气体接触后,发生氧化还原作用而产生黄变。[/size][b][size=14px]4、增白剂黄变:[/size][/b][size=14px][/size][size=14px]增白剂黄变主要发生在浅色织物上,当服装表面的残留的增白剂因为长时间贮存而产生迁移,导致局部增白剂过量,而产生服装黄变。[/size][b][size=14px]5、柔软剂等整理剂黄变:[/size][/b][size=14px][/size][size=14px]服装在后整理过程使用的柔软助剂,在受到热、光照等条件作用时,其中的阳离子会发生氧化,导致织物柔软处理部位泛黄。[/size][size=14px][b]二、纺织品黄变测试标准有哪些?[/b][/size]1、由自然光照射引起的黄变测试方法:GB/T 8427—2008《纺织品 色牢度试验 耐人造光色牢度:氙弧》其测试原理是将试样与一组蓝色羊毛标样一起放箱体中,在人造光源下按照规定条件暴晒,最后将试样与蓝色羊毛标样进行变色评级,评定色牢度。2、由紫外光照射引起的黄变测试方法:GB/T 30669— 2014《纺织品 色牢度试验 耐光黄变色牢度》其测试原理是试样在紫外光下照射一定时间后,与未经照射的样品进行对比,用评定变色用灰色样卡评定变色等级。3、由酚类物质引起的黄变测试方法:GB/T 29778—2013《纺织品 色牢度试验 潜在酚黄变的评估》、SN/T2468—2010《进出口纺织品酚黄变试验方法》其测试原理是将各试样和控制织物夹在含有2,6二叔丁基4-硝基苯酚(BHT)的试纸中,置于玻璃板间并叠加在一起用不含BH的聚乙烯薄膜将其裹紧形成一个测试包,在规定的压力下,放入恒温箱或烘箱中一定时间。用评定沾色用灰色样卡评定试样的黄变级数,以此评估试样产生酚黄变的可能性。4、由氯漂引起的织物黄变测试方法:FZ/T 01078—2009《织物吸氯泛黄试验方法》其测试原理是将试样在洗衣机中经氯漂、清洗、晾干后,与原始样对比,以此评定试样泛黄等级。[img=,432,342]https://ng1.17img.cn/bbsfiles/images/2022/12/202212011611233527_3202_1954597_3.png!w432x342.jpg[/img][size=14px][b]三、如何预防纺织品黄变?[/b][/size]1、对于需要使用荧光增白剂的品种,选择对各种条件黄变小的增白剂。2、在面料后整理定型时,温度不宜太高,高温会使织物表面染料或助剂发生氧化裂解,进而引起织物泛黄。3、柔软剂等后整理助剂使用前测试黄变性能,选择低黄变的助剂型号。4、在包装贮存、运输过程中,采用BHT含量较低的包装材料,且尽量保持贮存、运输环境保持常温通风,避免产生酚黄变。5、根据不同黄变的原因使用抗黄变剂,一般分抗氧化黄变剂和抗酚黄变剂。[size=14px][b]来源:[/b][/size][size=14px][color=#000000][b]HQTS-QAI 检测 补充:染整百科[/b][/color][/size]

  • 纺织品和服装测试

    点击链接查看更多:[url]https://www.woyaoce.cn/service/info-4917.html[/url]华碧实验室专业的检测服务赢得了众多知名服装品牌、零售商和买家的认可。  我们涵盖的测试产品  纤维与纱线、织物面料、羽绒产品、成衣 、防晒衣服、功能性衣服、服装辅料  我们提供的测试项目  纤维成分分析、色牢度测试、尺寸变化率测试、强度测试、品质及燃烧测试、织物组织结构分析、环保纺织品检测、纤维及纱线测试、羽绒产品测试、其它测试。  纤维成分分析  纤维成份分析对于服装及家用纺织品来说具有严格要求,产品的特性主要体现在纤维的种类及其所含纤维成份的比重上。  护理标签指示  护理标签指示可为消费者进一步了解产品的特性,故我们提供的测试包括水洗色牢度或干洗色牢度、漂白色牢度、尺寸稳定性、外观保持度等,以验证标签的准确性。  色牢度测试  色牢度是体现产品质量的一个基本指标。染料脱色不仅影响衣物外观,并且会通过皮肤被人体吸收。基本的纺织品色牢度测试包括:耐洗牢度,耐水色牢度、耐汗渍色牢度、耐摩擦色牢度和耐日晒色牢度。  服装及家用纺织品的安全性,其中体现在产品的燃烧性能,尤其是对于儿童及睡衣类产品,是否符合燃烧法规规定,对于产品的销售是非常重要的。  性能测试  尺寸色牢度、稳定性、物理性能、化学性能等。

  • 纺织品和服装测试

    点击链接查看更多:[url]https://www.woyaoce.cn/service/info-4917.html[/url]  我们涵盖的测试产品  纤维与纱线、织物面料、羽绒产品、成衣 、防晒衣服、功能性衣服、服装辅料  我们提供的测试项目  纤维成分分析、色牢度测试、尺寸变化率测试、强度测试、品质及燃烧测试、织物组织结构分析、环保纺织品检测、纤维及纱线测试、羽绒产品测试、其它测试。  纤维成分分析  纤维成份分析对于服装及家用纺织品来说具有严格要求,产品的特性主要体现在纤维的种类及其所含纤维成份的比重上。  护理标签指示  护理标签指示可为消费者进一步了解产品的特性,故我们提供的测试包括水洗色牢度或干洗色牢度、漂白色牢度、尺寸稳定性、外观保持度等,以验证标签的准确性。  色牢度测试  色牢度是体现产品质量的一个基本指标。染料脱色不仅影响衣物外观,并且会通过皮肤被人体吸收。基本的纺织品色牢度测试包括:耐洗牢度,耐水色牢度、耐汗渍色牢度、耐摩擦色牢度和耐日晒色牢度。  服装及家用纺织品的安全性,其中体现在产品的燃烧性能,尤其是对于儿童及睡衣类产品,是否符合燃烧法规规定,对于产品的销售是非常重要的。  性能测试  尺寸色牢度、稳定性、物理性能、化学性能等。

  • 织物透湿性测试方法的比较

    摘要:测量织物透湿性的方法有多种,它们在测量原理、测试条件和测量参数方面不一样。为比较各方法的特点,采用5种测试方法用于评价6种不同织物的透湿性能。试验结果表明,采用干燥剂倒杯法测得的透湿量最高,其次分别为新测试方法、倒杯法、正杯法。另外,新测试方法和出汗防护热板仪、倒杯法及干燥剂倒杯法有很好的相关性,由于该方法具有测试时间短、重复性好、灵敏度高、所需试样小的特点,可用于对织物透湿性的日常质量控制。织物的透湿性是服装热舒适性评价的重要内容。人们较为熟悉的评价织物透湿性的测试方法是透湿杯法。透湿杯法可分为蒸发法和吸湿法。蒸发法和吸湿法又可分为正杯法和倒杯法。织物和服装生产厂家倾向于用透湿量来评价织物的透湿性,而研究人员和生理学家更喜欢用织物对蒸发传热的阻力评价水蒸气通过织物向环境转移的能力。织物的蒸发阻抗可用出汗防护热板仪来测定。为了测试蒸发阻抗,多孑L测试板和周围热护板被防水透湿薄膜所覆盖,蒸馏水从热板底部喂入,然后将试样放置在薄膜上,将热板加热到35℃,织物的蒸发阻抗通过保持热板在这一温度所需要的功率来表征一。上述各种测试方法由于测量原理不同,采用的测试条件(温度、湿度和风速)和测量参数不同,测得的结果也不一样。为此,本文对这些测试方法的测试结果进行比较,研究它们之间的相互关系。

  • 织物测试仪器 透气性测试仪测试原理及常规标准介绍

    透气性是指对于具有一定气体阻隔性能的材料进行特定的渗透性的检测,透气性作为物理性能检测的项目之一,用于检测的材料首先具有透气性能。常见的材料有纺织品、皮革、纸张、纸板、泡沫塑料、多空瓷砖等等。目前透气性测试仪主要分为两种测试原理的仪器:压差法和等圧法。其中最为广泛的是压差法,压差法透气性测试仪可检测的实验范围也比较广泛。今天主要介绍一下[b]测试原理及常规标准[/b]:纺织透气性测试仪的原理:样品通过设备的夹紧手柄固定在测试区域上, 通过按下夹紧手柄以开始进行测试,一个强有的吸泵便开始在一个圆形开口处通过可互换的测试头抽取空气。预设好的测试压力被自动启动并维持了数秒钟后;,受测试样的透气度就会以预设的测量单位显示出来。再按下夹紧手柄一秒钟后,测样品便被松开,抽吸泵关闭。常用标准:[align=left]AFNOR G 07-111法国标准协会 透气性测试[/align][align=left]ASTM D 737纺织织物透气率的标准试验方法[/align][align=left]ASTM D 3574软质多孔材料测试方法[/align][align=left]BS 5636英国标准 纺织品透气性的测定方法[/align][b]DIN 53887纺织物空气透气度的测定[/b][align=left]EDANA 140.1 欧洲用可弃和非织造布制造协会[/align][align=left]EN ISO 7231软质泡沫聚合材料.恒定压降下的空气流量评估方法[/align][align=left]EN ISO 9237纺织品.纤维织物透气性的测定[/align][align=left]JIS L 1096- A日本工业标准:一般织物试验方法[/align]TAPPI T 251多空纸,织物、手抄纸的透气性[align=left]GB/T5453纺织品 织物透气性的测定[/align][align=left]GB/T 22819高透气纸张透气性的测定[/align][align=left]仪器参数:[/align][align=left]测试单位: mm/s, cfm, cm3/cm2/s, l/m2/s, l/dm2/min,m3/m2/min, m3/m2/h, dm3/s[/align][align=left]测量精度: ± 2 % 显示值[/align][align=left]测试压力: 10~ 2,500 Pa[/align][align=left]测试面积: 20cm2 (标配),5, 25, 38, 50 and 100 cm2 (可选配)[/align]

  • 【原创大赛】学习一下纺织品密度的测试

    【原创大赛】学习一下纺织品密度的测试

    学习一下纺织品密度的测试纺织品的纱织密度是衡量纺织品质量的一个重要方法,同样的材质,因纱织密度的不同,原料成本不一样,那么成品价格也随之差别较大,所以纱支密度是纺织品,甚至纺织品原料都需测试的项目,在很多人看来这个不难,甚至很简单,有一个密度镜就可以测试密度,如果再有个尺子和天平就可以测试纱支,很多非专业的人也能测试,所以就经常会看到纱厂,织布厂,染厂等等都有一些非专业人员在测试这项目,因为他们也不需要特别准确的值,有个大概的值,不影响纺织品销售时的报价就可以了,所以也就有了这个简单密度镜的‘横行’ http://ng1.17img.cn/bbsfiles/images/2013/09/201309231141_466413_2154459_3.jpg织物密度是指单位长度内纱线的根数,可分为经向密度和纬向密度,经纱排列根数叫经密,纬纱排列根数叫纬密数多,一般说,织物经密大于纬密,但大的程度不同,以华达呢的经密最大,可以大于纬密一倍左右。国家标准规定棉织物与毛织物均以公制密度表示。公制密度,是指在10厘米宽度内经纱或纬纱的根数。由于纱织密度能在一定程度上代表织物的质量,商家的宣传也就有以高支高密为嘘头,所以很多消费者在选购纺织用品时常常会被各种专业名词“搞晕”,比如什么叫“60×60纱”?纱支数、经纬密度又是什么意思?纱支是组成成品布的最基本单位,纱支的数字与其粗细成反比,数字越大越细,而相应的对原料的品质要求也更高。经纬密度是指每平方英寸中排列的经纱和纬纱的根数,如通常见到的“60×60/128×68”表示经纱、纬纱分别60支,经纬密度为128×68,这也是纺织品选购的一个重要技术指标,同样支数的织物密度越高越好,高支才能高密。纺织品密度测量包括拆纱点数法、密度镜计数法以及密度板法http://ng1.17img.cn/bbsfiles/images/2013/09/201309231146_466414_2154459_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/09/201309231150_466421_2154459_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/09/201309231155_466430_2154459_3.jpg① 拆纱法测试密度:一般要求较高,需要测试者有足够的耐心,以及非常标准的测量手法,一般适合高支高密,用密度镜很难测试的样品,并且拆纱法还可以测试线密度,密度镜是无法直接测试线密度,也就是纱支的② 密度镜法:原理就是放大镜,通过放大织物的纱线,来对织物经纬向分别计数,直接数出单位面积中有多少根纱线③ 密度板法:就是上图的经纬密度仪,根据织物的特性,用这样的密度仪分别测试织物经纬向的密度是非常快速的,但其缺点是有偏差,并且高密的无法测试,可以做个参考,适合一些织布厂和染厂的参考之用总结:密度国家相关要求是是指在10厘米宽度内经纱或纬纱的根数,但是现在国内纺织品行业通行的还是密度/英寸,即2.54厘米宽度内经纱或纬纱的根数,这个大家还是要注意一下密度测试仪构造比较简单,测试的方法也很简单,测试时我们只要够细心,耐心,基本上没有太大的问题,但是要注意的是,如果要精确的检测数值的话,也是要专业人士来进行测试的,一般第三方的报价密度测试也是100元左右,在物理测试项目上,这个价格还是比较贵的,线密度的价格在200元左右,从价格上来看,说明这个测试项目并不像我们想象的的那么简单,随意,任何的测试项目都需要我们一丝不苟的态度,密度测试也是一样。

  • 各类纺织品测试仪器点评

    纺织测试仪器是纺织生产发展的手段,由简单测试工具逐渐发展成为手动的机械式测试仪器,进而发展成为机电结合的现代化测试仪器。中国在春秋战国时期除用人的感官评定丝织物质量外,还用五色雉的羽毛作为评定织品染色的色泽标准。从周代起开始用尺测量织物的长度和宽度,并制订出公定标准。随着纺织技术的发展,要求有专门的仪器对产品进行检验,保证产品质量稳定。20世纪以来,纺织企业采用手动机械式仪器测试半制品和成品,一方面检验质量,另一方面成为控制纺织工艺生产正常化和标准化的工具。化学纤维出现以后,要求有更多的测试项目和仪器来反映产品的质量和特性。随着近代电子技术和计算机技术的迅速发展,现代纺织仪器有的采用直接数字显示,有的附有微处理计算系统,直接打印出测试结果的平均数和离散性指标,提高了试验效率,减少了人为误差。纺织测试仪器的种类很多,有机械性质测试仪器、外观质量测试仪器、织物风格测试仪器、物理性质测试仪器和工艺性质测试仪器等类。   机械性质测试仪器   测试纺织材料在机械外力作用下的各种性质,有拉伸性质测试仪器和耐磨性质测试仪器。  拉伸性质测试仪器   共有三种类型:  ①等速伸长型(CRE):试样在受拉过程中单位时间的变形率保持一定;  ②等加负荷型(CRL):试样受拉伸时的负荷增加率基本持一定;  ③等速牵引型(CRT):试样受下铗牵引时,上铗按材料的应力-应变特性同时有一不规则的位移。等速牵引型出现早应用广,属于机械式类型,常称为摆锤式强力机。利用适当的夹具和自动记录装置,可测试多项拉伸性能。但因摆锤惯性与单位时间的应变率随材料的应力-应变特性而变,仪器的精度较低,可比性较差。等加负荷型仪器中有代表性的是斜面式强力机,可用以测定纤维和纱线的拉伸性能。其中机电结合的斜面式强力机,能对10个管纱按规定的试验次数连续自动拉伸并调换管纱,同时还能画出断裂强力和断裂伸长的曲线图。仪器附有数据处理系统,能直接打印出试验结果。70年代末又研制出等速伸长型电子式全自动单纱强力仪,采用应变式传感测力,精度和自动化程度较高,惯性小,功能全。按容量不同分通用型和专用型两种。通用型仪器通过调换不同容量的传感器,可测定纤维、纱线、织物的各项拉伸性能、弹性和压缩性等。若配以适当附件还可进行剪切、弯曲和摩擦性能试验。这种仪器有时称为万能强力试验仪,能数字显示、自动数据处理和打印出试验结果。有的型号仪器还附有高低温试验装置。中国研制成功的台式单纤维电子强力仪属专用型,仪器最大容量为100克力,能数字显示和自动记录, 有的还能打印出拉伸性能的平均数和变异系数。80年代又制成全自动短纤维强力仪。用拉伸性质试验仪测试可获得多种测试结果,如断裂强力、断裂伸长、多次拉伸疲劳度、定负荷或定伸长弹性,以及织物的撕破强力、顶破强力、缝纫强力等。此外,利用记录图纸计算还可求得初始模量、断裂功等指标。

  • 深色织物是否不用测试耐酚黄变色牢度?

    深色织物是否不用测试耐酚黄变色牢度?

    标准原文GB/T 29778-2013 纺织品 色牢度试验 潜在酚黄变的评估[img=,690,225]https://ng1.17img.cn/bbsfiles/images/2024/01/202401311439492562_1798_6303856_3.png!w690x225.jpg[/img]范围里没有对颜色进行限制,那深色织物也适用。问题在于,白色或浅色织物黄变评级按标准要求使用沾色灰卡评级,但深色织物用沾色灰卡怎么评级?深色织物变黄,因为沾色灰卡比对的是白板,我难以目视比对。再加上样品本色是深色,对评级或多或少会有影响,是不是用变色灰卡更合适一些?或如本标题疑问一样,深色织物是否不用测试耐酚黄变色牢度,业内大家有做过深色织物的测试吗?

  • 织物透湿性测试新方法

    新型织物透湿性测试装置用防水透湿FE薄膜包覆透湿圆柱筒的底部,形成饱和水蒸气,使用干燥氮气流作为载体,将透过织物的水蒸气带走,通过测量出口氮气流的相对湿度来确定织物的透湿量。实验结果表明,这种测试方法能在5min内准确地评价织物透湿性,试样透湿量的变异系数小于1%。该方法具有测试时间短,重复性好,灵敏度高和成本低的特点,可用于纺织生产厂家对产品透湿性的日常质量控制。 织物透湿性是评价服装热湿舒适性的一个重要指标。在人体、服装、环境这一复杂系统中,人体的热湿舒适性取决于自身产生的热量和向环境散失的热量之间的平衡。人体除了通过传导、对流、辐射等方式向周围环境散热外,还通过人体皮肤表面汗液的蒸发散失热量。如果水蒸气能通过服装系统及时扩散到周围环境,人体才能感到舒适,如果服装阻碍水蒸气的通过,使人体皮肤与服装之间微气候中的湿度增大,水蒸气将积累到一定程度而冷凝成水,使人感到黏湿、发闷等。当人体进行剧烈活动或处于炎热环境中,汗液的蒸发成为人体散失热量的重要途径,此时更要求衣服具有足够的水蒸气传递能。

  • 薄织物和隔热材料的热阻及热导率测试中存在的问题

    薄织物和隔热材料的热阻及热导率测试中存在的问题

    [color=#ff0000]摘要:薄的织物和隔热材料的逐渐广泛应用,使得现有各种测试方法已经无法满足这些材料导热系数和热阻准确测试的要求。本文详细介绍了现阶段对这些低导热薄材料热导率测试中存在的错误现象,从测试方法方面分析造成这些问题的原因,为今后准确测量提供参考和借鉴。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#ff0000][b]一、问题案例[/b][/color][/size]隔热材料作为有效阻断热量散失材料在各个领域发挥着重要重要,特别是在服装行业,薄的隔热织物越来越得到了重视和发展,为人体保温抗寒提供了更轻便和更舒适的面料。随着低导热薄织物的出现和技术发展,对薄织物的隔热性能,如导热系数和热阻,就提出了严峻的挑战,现有的各种测试方法都无法满足准确测量要求。如国内某机构研制开发了一种新型隔热面料,开发目的是设法采用纳米孔技术来大幅度降低面料的导热系数。面料的厚度为0.75±0.1mm,重量为48±2g/㎡,体积密度为65±11kg/m3,孔隙率为96%以上,闭孔率为95%以上,孔径30~190微米,壁厚为20~180纳米,面料如图1所示。此面料经不同检测机构采用多种测试方法进行了测试评价,导热系数测试结果如图2所示。[align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,373]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061135481562_7545_3384_3.jpg!w600x407.jpg[/img][/color][/align][align=center][color=#ff0000]图1 新型隔热面料[/color][/align][align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,221]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061136137426_2566_3384_3.jpg!w600x242.jpg[/img][/color][/align][align=center][color=#ff0000]图2 隔热面料导热系数测试结果汇总[/color][/align]从上述多种测试方法的导热系数测试结果可以看出,结果之间相差巨大,甚至出现了数量级的差别。特别是由纺织行业权威检测机构得到的超低导热系数测试结果(0.00824W/mK),严重误导了织物的提供方,织物提供方对这测试结果也表示怀疑,但检测机构也无法对测试的准确性进行核实。如图2所示,该薄织物还采用其他测试方法进行了导热系数测试,尽管没有出现太离谱的测试结果,但测试结果之间还是相差较大,测试结果显示出的是完全不同的隔热能力。鉴于上述混乱的导热系数测试结果,此织物的研发生产机构只能在官网上声明“导热系数是某某材料的核心数据。现有测试仪器和方法,无法测试出材料导热系数的绝对值。使用不同测试方法,供应用单位参考”。这是一个非常典型的无法得到准确测试结果的案例,此现象在纺织行业普遍存在。为彻底解决此问题,本文将针对薄织物的导热系数测试,从测试方法方面分析造成测量不准确的原因,为今后进一步开展新型测试方法研究提供参考和借鉴。[size=18px][color=#ff0000][b]二、薄织物和隔热材料导热系数测试方法分析[/b][/color][/size]在图2所示的导热系数测试结果中,几乎用到了现有的大多数标准测试方法,下面将对现有的已经和可能用于薄织物和隔热材料导热系数测量的各种测试方法进行分析。导热系数测试方法主要分为稳态法和瞬态法两大类,本文分析的具体路线是从稳态法和瞬态法的源头开始,然后延伸到相应的拓展方法,以期对多个测试方法的整体轮廓有一个清晰的概念。[color=#ff0000][size=16px][b]2.1 导热系数和热阻测试稳态法[/b][/size]2.1.1 稳态护热板法和稳态热流计法[/color]对于隔热材料导热系数测试,普遍采用的测试方法是经典的稳态护热板法(GB/T 10294)。稳态护热板法作为一种绝对法具有最高的测试精度,并同时用来校准相对测试方法稳态热流计法(GB/T 10295),其测量原理如图3所示。[align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,358]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061136309581_831_3384_3.png!w600x391.jpg[/img][/color][/align][align=center][color=#ff0000]图3 稳态护热板法测量原理示意图[/color][/align]为保证测量准确性,GB/T 10294标准文本做出明确规定,规定试件热阻不应小于0.1 m2K/W,规定用此来确定试件最小厚度。如果按照此规定,对于上述薄织物的0.75mm厚度,薄织物相应的导热系数不应大于0.0075W/mK才能符合规定。对于试件最小厚度做出规定,是因为试件太薄后试件内部热流分布不均匀和热场变形,并会造成试件上的温差很小,相应的温度传感器测量精度会在小温差测量上产生很大误差。由此,在标准文本中指出:当试件热阻低于0.1m2K/W时,表面温度的测量需要使用特殊的方法。冷板、中心量热计和护热板的表面应机械加工或切削平整、平行且不能有应力,同时它们的温度均匀性要求很高。这些要求在现实中很难实现或实现造价很高,因此对于厚度小于1mm的薄织物和隔热材料,稳态护热板法并不适合,很难满足导热系数准确测量的要求。对于稳态热流法导热系数测试,相应标准GB/T 10295给出了相同的最小热阻0.1m2K/W规定,同样需要按照此规定来确定试件最小厚度。由此可见,稳态热流计法同样存在温差测量不准确等一系列很难克服的问题,对于厚度小于1mm的薄织物和隔热材料,热流计法同样不适用。当然,在不得已的情况下,可以将多层薄织物叠加成厚试件以增大被测试件热阻来测量薄织物的导热系数。这种多层叠加形式在理论上确实能够测量导热系数,但最大问题是叠加过程中会在被测试件中产生空气隙而引入接触热阻,从而使得被测试件的热阻值变大,导致导热系数测试结果偏小,所以一般情况下不推荐采用多层叠加形式进行稳态法测量,除非被测试件比较柔软。[color=#ff0000]2.1.2 纺织品蒸发热板法[/color]纺织品蒸发热板法是一种上述稳态护热板法的一种变形,其基本原理完全基于稳态护热板法,不同之处是将图3稳态护热板法中的试件用空气层和被测试件来代替,以模拟人体散热和外部空气散热条件。 纺织品蒸发热板法目前执行的标准为GB/T 11048-2018,在具体测试中,通过从测定试件加上空气层的热阻值中减去空气层的热阻值得出所测材料的热阻值。需要特别注意的是,蒸发热板法中的热阻值与稳态护热板法中的热阻值并不能等效,这主要是因为以下不同:(1)蒸发热板法在测试热阻时,试件冷面处于空气对流传热环境;而稳态护热板法测试热阻时,试件冷面处于与冷板的导热传热环境。两种测试方法尽管原理相同,但边界条件和物理意义完全不同,蒸发热板法测试的是模拟环境下的等效热阻,稳态护热板法测试的是纯热传导环境下的导热热阻,在稳态护热板法中,根据此导热热阻和试件厚度,可以准确得到导热系数。(2)蒸发热板法中被测试件是平放在中心量热计上,试件靠自身重量与量热计接触。而稳态护热板法中试件通过上面的冷板加载一定的力与量热计接触,两者所形成的热接触效果完全不同,稳态护热板法中的接触热阻更小,即蒸发热板法中得到的试件热阻含有较大的接触热阻。(3)在蒸发热板法标准GB/T 11048中,只涉及了织物热阻的测量,并未涉及通过厚度和测量得到的热阻来计算获得织物的导热系数。这基本就意味着蒸发热板法不能用来测量导热系数。(4)另外,在蒸发热板法标准GB/T 11048中,规定可测量的最小热阻不能小于2m2K/W,与稳态护热板法和热流计法规定的0.1m2K/W最小热阻相比高了20倍,即蒸发热板法比较适合较大热阻的测量。根据上述分析,我们再来看图2得到的导热系数测试结果,就明显存在以下两大问题:(1)图2中的导热系数测量是依据GB/T 11048-2008,在此版本的蒸发热板法中,规定的热导率为热传导、热辐射和热对流的总和,是存在着三种传热形式的等效热导率,不能用此等效热导率与图2中的其他方法获得的纯导热传热过程的热导率相比较。(2)如果按照图2中的0.00824W/mK导热系数计算结果和0.75mm厚度可以反推出实际测量的热阻值,可得到热阻值为0.09m2K/W。显然此热阻值要远小于GB/T 11048-2008和GB/T 11048-2018中规定的最小可测热阻2m2K/W。从上述分析基本可以得出结论,即蒸发热板法不适合测量薄织物的热阻,更不适合测量纯导热性质的导热系数,这也是GB/T 11048-2018不再提热导率这个参数的主要原因。另外,检测机构出具图2所示的检测结果,也说明相关检测人员对标准方法GB/T 11048的适用范围还缺乏了解。[color=#ff0000]2.1.3 恒定热流法[/color]恒定热流法是上述稳态热流计法的一种变形,其测量原理与稳态热流计法完全相同,同样采用了热流计来测量流经试件厚度方向上的热流密度,不同之处在于采用了独特的技术手段来测量薄试件厚度方向上的小温差,并且可以加载压力以保证较小的接触热阻和准确控制试件厚度。恒定热流计法的相应标准为ASTM D5470,这种方法普遍用于薄型导热胶垫和固态电绝缘板材的导热系数和热阻测量。根据测量原理,恒定热流法应该比较适合薄织物和隔热材料的热导率和热阻的测量,但在具体测试过程中流经薄试件的热流密度很小,这就对热流密度测量精度提出了很高要求,现有执行标准ASTM D5470的测试仪器还无法实现如此小热流的准确测量,需要研发测量精度更高的测试设备以满足低导热薄片样品的测试要求。[color=#ff0000][b]2.2 导热系数测试瞬态法[/b]2.2.1 瞬态平面热源法(HOT DISK法)[/color]在图2所示的薄织物导热系数测试案例中,显示了采用瞬态平面热源法(HOT DISK法)的测试结果。已经有很多研究并报道了这种方法在低导热系数测试中存在测试结果偏高很多的现象,这方面的详细介绍及其解决方案可在网上搜索上海依阳编写的《气凝胶隔热材料超低导热系数测试中存在的问题及解决方案》应用报告。在瞬态平面热源法导热系数测试中,最大的问题是测量准确性无法进行考核。在稳态护热板法和热流计法中可以采用不同厚度标准参考材料来考核热阻的测量精度,而在HOT DISK法中只能测量热导率而无法测量热阻,那么对于导热系数低于标准参考材料数值0.03W/mK的低导热材料,就根本无法考核其测量的准确性。总之,瞬态平面热源法(HOT DISK法)也不适合测试低导热系数的薄织物和隔热材料。[color=#ff0000]2.2.2 闪光法[/color]闪光法作为一种应用最为普遍的绝对法,广泛用于各种固体材料的热扩散系数测量。但闪光法对于薄织物和隔热材料并不适用,主要原因如下:(1)对于低导热的薄织物和隔热材料,隔热性能比较好,热阻比较大,闪光信号很难传输到样品背面,信噪比较差,测量误差较大。(2)薄织物和隔热材料,多为多孔材料且透光,闪光加热很容易穿透被测试件。如果对试件表面进行遮光处理,遮挡涂层很容易进入试件孔隙而改变试件的导热系数。[size=18px][color=#ff0000][b]三、结论和今后工作[/b][/color][/size]通过上述薄织物和隔热材料测试案例和现有各种测试方法的分析,可以得出以下结论:(1)现有的各种导热系数测试方法,不论是稳态法还是瞬态法,都无法满足薄织物和隔热材料导热系数准确测试的需求。各种测试方法都有各自的局限性,没有一种完全适合低导热系数薄试件的测试方法。特别是目前用于纺织品热阻测量的GB/T 11048-2018测试方法,还存在很多问题,其中测量的热阻值应为等效热阻,是多种传热机理的复合作用结果,这很容易误导纺织品的开发人员。有关GB/T 11048-2018测试方法的更详尽研究分析,将在后续专文进行论述。(2)由于缺乏准确的测试方法,给新型织物材料的研究和研制带来的不便和困难,无法通过准确的热导率和热阻测量来调整材料的相应工艺。(3)对于薄织物和隔热材料的热导率测试,需要解决小温差和低热流密度精密测量难题,需要解决材料透光性的影响,这些都是今后工作的主要内容。(4)现有大多数采用稳态法的热阻和热导率测试仪器,所要求的样品尺寸太大,如大多采用面积为300mm×300mm的样品。对于薄织物和隔热材料的热导率测试,如果要实现高精度测量,如此大的样品尺寸势必会增大测试仪器的护热、机加工和热应力变形等方面的技术难度和造价。因此,对于厚度小于1mm的被测样品,完全可以采用小尺寸样品,如50mm×50mm,同样可以保证稳态下的一维热流。(5)对于难度最大的小温差准确测量,可以借鉴闪光法而避开热导率的直接测量,可通过测量热扩散率来间接获得热导率,热扩散率的测量则可以采用频域技术,通过频域技术可以非常准确的将温差信号转换为频域信号。这可能将是今后的一个重要研究方向。(6)另外,表征薄织物的热性能参数中,除了导热系数和热阻之外,还涉及到人体触摸织物的冷感或热感表征参数:吸热系数。最好有新型测试方法能将这些热性能参数进行整体考虑和测试,为织物热性能提供完整的准确测试评价。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 织物湿摩擦测试中不同含水率测试比对

    织物湿摩擦测试中不同含水率测试比对

    织物湿摩擦测试中不同含水率测试比对织物摩擦测试是纺织品测试中一个非常重要测试项目,也能很直观的反映出纺织品的内在质量,随着现在的纺织品花色越来越多,色牢度的检测也就更为重要,摩擦色牢度就是模拟在使用过程中摩擦沾色的情况摩擦色牢度属于纺织品检测中的物理检测项目,检测较简单,但在实际的检测过程中,并不是想象的那么简单,就是一个摩擦色牢度湿摩擦就让我为难,甚至烦躁!纺织品湿摩擦有一个含水率的要求为95%-100%,看似很好控制,其实不然,因为摩擦布重量很轻,在0.26G左右,湿摩擦测试的小白布要求要含湿均匀,还要保证含水率在95%-100%,确实很难控制,那么我想到能不能试验一下含水率到底对其测试结果影响大不大,能不能把湿摩擦的含水率范围扩大一些呢!接下来我就对其进行了测试对比!过程如下1.引用标准GB/T3920-2008《纺织品色牢度试验,耐摩擦色牢度》2.设备和材料3.1耐摩擦色牢度试验仪3.2标准棉摩擦布尺寸3.3耐水细砂纸4.仪器准备 4.1打开电源开关,电源指示灯亮,显示窗显示000,微机默认次数值为10次。在这种状态下可改变默认值次数。5.试样准备5.1取样:在温度20±1℃、湿度65%±2%的 标准大气下调湿4小时以上的试样上进行取样,共五个试样,每个试样取样三份,对单个颜色分别进行评定,并区分经向和纬向,分别进行试验。5.2摩擦布:棉的梭织小白布,尺寸6.测试程序6.1干摩擦:摩擦布的经向与摩擦头的运动方向一致,然后裹在摩擦头上并用夹头夹紧,松开支承,放下包裹试布的摩擦头,按启动按钮,摩擦头在电机的驱动下经过减速器,由曲柄连杆带动摩擦头以1秒/次的速度作往复摩擦循环,摩擦结束后松开试样,取下摩擦布,并去除摩擦布上可能影响评级的任何多余纤维。6.2湿摩擦:称量调湿后的摩擦布,将其完全浸入蒸馏水中,重新称量摩擦布以确保其含水率达到90%,100,110%三种含水率;将试样置于标准衬垫上并铺平整,转动手柄偏心夹紧试样。将摩擦布平放在摩擦头上,使摩擦布的经向与摩擦头的运动方向一致,然后裹在摩擦头上并用夹头夹紧,松开支承,放下包裹试布的摩擦头,按启动按钮,摩擦头在电机的驱动下经过减速器,由曲柄连杆带动摩擦头以1秒/次的速度作往复摩擦循环,摩擦结束后松开试样,取下摩擦布。6.3如果摩擦布上有沾色不均匀或有晕圈现象,此次摩擦无效,必须进行重新测试6.4干燥:将湿摩擦布在室温下晾干http://ng1.17img.cn/bbsfiles/images/2014/06/201406191517_502528_2154459_3.jpg小结:1.摩擦色牢度的湿摩擦测试中,摩擦小白布的含水率对测试结果理论上肯定有影响,因为摩擦的原理就是在一定摩擦力下进行标准摩擦试验,含水率高的摩擦布反而在理论上减少了摩擦力,测试结果就比较好,但也有特殊的情况2.在此次实验中,轻微的水分偏差,对其这几个样品没有影响,在以后的时间内可以找更多的标准样品进行对比测试,希望能找到相关性,使摩擦色牢度检测更加方便,易于控制

  • 纺织品液态水份管理测试的原理解读

    液态水分管理测试仪(MMT)主要测试汗液在布料中的吸收扩散性能,面料对汗液的吸收和扩散直接影响到服装穿着的舒适性能,为提高服装的舒适度(尤其是运动服面料),测试面料的液态水分管理能力至关重要,有助于纺织品的吸湿速干性能的评估和对材料性能的改善。液态水分管理测试仪使用于测量液体在针织及梭织面料中的整体动态表现,通过测试吸收速度(织物正面与背面的水分吸收时间)、单向传递能力(液体在织物两个面吸收扩散的差异性)、扩散/干燥速度(液体在织物两个面的扩散速度)。液态水分管理测试仪包括带有多个探针的上下同心液体感应器,上感应器中的输液管将模拟人体汗液的固定浓度盐水均匀滴到布料上面,感应器探针测试不同环之间的电阻,以电阻的变化反映液体在布料的吸收和扩散情况,从而得到面料对汗液吸收扩散的能力。    液态水分管理测试仪的应用范围:  世界各地的实验室已广泛采用了液态水分管理测试仪。大多数用户来自运动用品行业,他们是织物制造商或零售商。在向最终用户展示他们织物的性能时,他们发现了液态水分管理测试仪的重大效用。来自医用袜类、纸巾、妇女用巾及床垫布行业的人员对液态水分管理测试仪也产生了浓厚的兴趣。虽然他们并非来自衣物制造行业,但他们发现液态水分管理测试仪所提供的数据对他们的成功也起着重要的作用。  各行业标准组织也对液态水分管理测试仪怀有兴趣。美国纺织化学师与染色师协会(AATCC)及美国试验与材料协会(ASTM)在它们最近出版的《液态水分管理技术补充》一书中,描述了液态水分管理测试仪的应用。    织物液态水分管理测试仪工作原理  织物的液态水分管理特性取决于它们的阻水性、拒水性、水吸收能力、纤维与纱的毛细作用及纤维与纱的几何形状与内部构造。液态水分管理测试仪可以测量织物的吸水性、穿透性与渗透时间,能客观地评估织物的三维湿度扩散及转移特性。  仪器由两个上下同心的感应器组成。首先用固定的压力将试样水平固定在感应器之间,然后将标准测试溶液输送到试样表面进行测试。电脑可以动态记录上下感应器的电阻变化。    液态水分管理测试原理为:  织物试样水平放置,液态水与其浸水面接触后,会发生液态水沿织物的浸水面扩散,并从织物的浸水面向渗透面传递,同时在织物的参透面扩散,含水量的变化过程是时间的函数。当试样浸水面滴入测试液后,利用与试样紧密接触的传感器,测定液态水动态传递状况,计算得出一系列的性能指标,以此来评估纺织品的吸湿速干、排汗等性能。    工作原理:  液态水分管理测试仪的使用快速而简单。将试样放入仪器中,接触皮肤的一面向上,将一定量的生理盐水倒在织物接触皮肤一侧的中心位置,模拟人体排出汗液的过程。试样两面的传感器分别测量它们在各个环形内(直径分别为5mm, 10mm, 15mm, 20mm, 25mm及 30mm)的导水性能。在测试进行 2 分钟的循环后,织物的湿润度及导水性增加。通过一系列的计算,测试者可以得到接触皮肤侧织物的润湿时间、吸水速率、浸湿半径及扩散速度等的精确读数,以及累积单向传递能力与织物的整体液态水分管理能力(OMMC)。    液态水分管理:  传输指数及整体液态水分管理能力吸引了众多技术织物制造商的关注。研究表明,使用这些数字及由液态水分管理测试仪提供的“指纹”,用户可以将织物分为 7 个级别:防水、拒水、慢速吸收/慢速干燥、快速吸收/慢速干燥、快速吸收/快速干燥、水分穿透及液态水分管理。根据织物的最终应用将织物进行分类后,用户可以通过由液态水分管理测试仪测得的指数对不同的织物进行比较。此时,人们就知道了哪种织物是最终使用环境要求的最佳织物,而不必进行繁琐的生理测试了。 更多关于:[url=http://www.njsycsy.com/ytsfgl/ytsfgl-112.html][b]MMT液态水分管理测试仪[/b][/url]

  • 纺织产品力学拉伸性能测试分享~

    下面将分享如何实现GB/T 3923要求的力学性能测试http://simg.instrument.com.cn/bbs/images/default/em09502.gif1.GB/T3923.1纺织品 织物拉伸性能 第1部分: 断裂强力和断裂伸长率的测定 条样法2.GB/T3923.2纺织品 织物拉伸性能 第2部分: 断裂强力和断裂伸长率的测定 抓样法 标准机器配置:Model 5965 Materials Testing System2701-065 Automatic Air Control Kit2712-045 Pneumatic Side Action Grips. Capacity: 5kN2702-300 Jaw Faces, Rubber Coated, 25mm wide x 25mm high2702-309 Jaw Faces, Rubber Coated, 75mm wide x 25mm high GB/T3923.1纺织品 织物拉伸性能 第1部分: 断裂强力和断裂伸长率的测定 条样法试验条件:试样尺寸: 50×350 mm试样数量: 经/纬 5/5拉伸隔距: 200 mm夹持片尺寸: 25×75 mm拉伸速度 : 100 mm/min预张力: 2/5/10 N隔距(mm)织物断裂伸长率 拉伸速度(mm/min)织物单位面积质量 预张力 (%) (g/cm2) (N)200 <820 ≤200 2200 8~75[co

  • 一文读懂织物强力机进行美标ASTM织物强力测试(D45035条样 D5034抓样 D2261舌形 D5587梯形等)

    [size=14px][b]导读[/b][/size] 通过评估材料的性能并确保它们可以被接受用于适当的最终用途来确保产品质量,各种纺织品、纱线、线、织物、羊毛、棉花和其他动植物衍生纤维通常需要进行测试。这篇文章将介绍一部分ASTM标准中用于测试织物的机械测试方法,并介绍测试标准以及推荐的设备[size=15px]。[/size] 本文根据中英文标准及资料仔细对照编写,码字不易,欢迎各位交流,留言,讨论。[size=14px][color=#ff0000][back=#e0effc][/back][/color][/size][color=#ff0000] 文字较多,建议收藏,有需要时可以方便查询。[/color][size=15px] 通过评估材料的性能并确保它们可以被接受用于适当的最终用途来确保产品质量,各种纺织品、纱线、线、织物、羊毛、棉花和其他动植物衍生纤维通常需要进行测试。这篇文章将介绍一部分ASTM标准中用于测试织物的机械测试方法,并介绍测试标准以及推荐的设备。[/size][size=15px][color=#ff0000]1、拉伸试验(Tension Testing)[/color][/size][size=15px] 拉伸试验是分析织物材料机械性能的最常用测试方法。尽管施加力的方向始终处于拉伸方向,但有不同拉伸测试方法可用于提供不同的,与最终产品使用最相关的数据。[/size][size=15px] 条样拉伸试验是一种拉伸试验,其中试样的整个宽度(常规50mm)被夹在织物强力机(万能试验机)的拉伸钳口中。在此测试过程中,对织物试样施加拉力,直到其破裂。要分析的机械性能包括断裂时的力以及最大力和/或断裂时的伸长率(以百分比表示)。[/size][size=15px]运行条样拉伸试验可以适用的测试标准包括:[/size][size=15px]ASTM D751 – 涂层织物的标准测试方法(断裂强度,程序 B)[/size][size=15px]ASTM D5035 – 纺织织物断裂力和伸长率的标准测试方法(条样法)[/size][size=15px]ASTM D751 – Standard Test Methods for Coated Fabrics (Breaking Strength, Procedure B)[/size][size=15px]ASTM D5035 – Standard Test Method for Breaking Force and Elongation of Textile Fabrics (Strip Method)[/size][align=center][img=,303,728]https://ng1.17img.cn/bbsfiles/images/2024/05/202405070942217933_1262_1954597_3.jpg!w303x728.jpg[/img][/align][size=15px][/size][size=15px][color=#ff0000]2、抓样拉伸试验(Grab test )[/color][/size][size=15px] 抓样拉伸试验也是一种拉伸试验,其中试样(100mm宽)宽度的中心部分被夹在抓样钳口(有效夹持面积25×25mm)中。由于样品的抓取方式,消除了可能导致织物数据不准确的[color=var(--weui-LINK)]边缘效应[i][/i][/color]。与条样测试方法类似,对织物试样施加拉力,直到破裂并记录最大力。最常使用抓样法测试的织物试样是机织和无纺布纺织织物。[/size][size=15px]运行抓样拉伸试验可以适用的测试标准包括:[/size][size=15px]ASTM D751 – 涂层织物的标准测试方法(断裂强度,程序 A)[/size][size=15px]ASTM D1683 用于机织服装面料接缝[/size][size=15px]ASTM D2208 用于柔软、板面、绒面革或压花皮革[/size][size=15px]ASTM D5034 – 纺织织物断裂强度和伸长率的标准测试方法(抓取测试)[/size][size=15px]ISO 13934-2- 纺织品 织物的拉伸性能第二部分 :抓样法断裂强力的测定[/size][size=15px]ASTM D751 – Standard Test Methods for Coated Fabrics (Breaking Strength, Procedure A)[/size][size=15px]ASTM D1683 for woven apparel fabric seams[/size][size=15px]ASTM D2208 for soft, boarded, sueded, or embossed leather[/size][size=15px]ASTM D5034 – Standard Test Method for Breaking Strength and Elongation of Textile Fabrics (Grab Test)[/size][size=15px]ISO 13934-2 - Tensile properties of fabrics Part 2: Determination of maximum force using the grab method[/size][size=15px]请注意,由于被测织物的有效宽度,运行条形法和抓取法后记录的最大力可能不同。[/size][align=center][img=,341,715]https://ng1.17img.cn/bbsfiles/images/2024/05/202405070942578842_108_1954597_3.jpg!w341x715.jpg[/img][/align][size=15px][color=#ff0000]3、舌型撕裂试验(Tongue tear Method)[/color][/size][size=15px] 撕裂强度是材料在引发撕裂后承受传播撕裂所需的撕裂力的能力,舌型撕裂法通常用于测量织物试样的撕裂力和撕裂强度。ASTM D2261 概述的这种方法需要特定的样品制备,其中矩形织物样品被切割成两端的两个舌型部分,然后放在上下夹具上。一旦施加拉力,织物试样将沿着试样之间的中线撕裂。使用舌型撕裂法进行测试的织物包括由[color=var(--weui-LINK)]醋酸纤维[i][/i][/color]、腈纶、棉、亚麻、尼龙、烯烃、聚酯、人造丝、丝绸和羊毛制成的织物。[/size][size=15px]ASTM D2261-13(2017)e1 单缝法织物舌型撕破强力测试方法(CRE型)[/size][size=15px]ASTM D2261-13(2017)e1 Standard Test Method for Tearing Strength of Fabrics by the Tongue (Single Rip) Procedure (Constant-Rate-of-Extension Tensile Testing Machine)[/size][align=center][img=,355,716]https://ng1.17img.cn/bbsfiles/images/2024/05/202405070943306674_3927_1954597_3.jpg!w355x716.jpg[/img][/align][size=15px][color=#ff0000]4、梯形撕裂试验(Trapezoidal tear)[/color][/size][size=15px] 梯形撕裂是另一种撕裂强度测试,它使用准备夹持部分为等腰梯形的样品,一侧有一个小切口。当测试开始并施加力时,梯形撕裂沿合理定义的路线产生张力,使撕裂在试样的宽度上传播。该测试方法适用于大多数织物,例如机织织物、气囊织物、毯子、针织、分层和绒毛织物。有关按照梯形撕裂法进行织物强度测试的更多信息,请参阅 ASTM D5587。[/size][size=15px]ASTM D5587-15(2024) 梯形法织物撕破强力测试方法[/size][size=15px]ASTM D5587-15(2024) Standard Test Method for Tearing Strength of Fabrics by Trapezoid Procedure[/size][align=center][img=,662,756]https://ng1.17img.cn/bbsfiles/images/2024/05/202405070944081878_8408_1954597_3.jpg!w662x756.jpg[/img][/align][size=15px][color=#ff0000]5、接缝强度试验(Seam strength)[/color][/size][size=15px] 接缝强度是构成织物的连接接缝的强度。抓样试验法和条样试验法可用于测量织物试样的接缝强度。ASTM D4884 是推荐用于测量[color=var(--weui-LINK)]土工布[i][/i][/color]接缝强度的测试方法。ASTM D751 包括有关接缝强度测试和附着力涂层测试的特定部分,如下所述。[/size][size=15px]ASTM D4884/D4884M-22 [font=-apple-system, BlinkMacSystemFont, &][color=#191b1f]土工织物缝合线或热粘合缝合线强度的标准试验方法[/color][/font][/size][size=15px]ASTM D1683-04 机织物缝线断裂强力测试方法[/size][size=15px]ASTM D751-19 涂层织物测试方法[/size][size=15px]ASTM D751-19 Standard Test Methods for Coated Fabrics[/size][size=15px]ASTM D1683-04 Standard Test Method for Failure in Sewn Seams of Woven Apparel Fabrics[/size][size=15px]ASTM D4884/D4884M-22 [/size][size=15px]Standard Test Method for Strength of Sewn or Bonded Seams of Geotextiles[/size][size=15px][/size][size=15px][/size][align=center][img=,632,661]https://ng1.17img.cn/bbsfiles/images/2024/05/202405070944354245_4216_1954597_3.jpg!w632x661.jpg[/img][/align][size=15px][color=#ff0000]6、附着力涂层测试(Adhesion coating testing)[/color][/size][size=15px] 附着力涂层测试适用于涂有粘合剂涂层化合物的织物,在粘合剂和织物材料之间形成化学键。涂层化合物和织物材料之间产生的粘合强度可以通过运行附着力涂层测试来测量。如果附着力不够强,接缝强度会降低。如果附着力太强,可能会出现问题,因为撕裂强度会受到影响。概述特定织物结构的最低要求标准的标准可用于确保接缝和撕裂强度都是可接受的。[/size][size=15px]ASTM D751 是测试涂层织物粘合强度的最常见测试标准。在将试样放入夹具钳口之前,该测试需要将粘合剂层与基材分离至少 3 英寸。然后将织物试样安装在上夹具上,并将剥离层放置在下夹具的钳口之间。[/size][align=center][img=,669,530]https://ng1.17img.cn/bbsfiles/images/2024/05/202405070944597856_8994_1954597_3.jpg!w669x530.jpg[/img][/align][size=15px][color=#ff0000]7、刺破/顶破测试(Puncture/Burst Testing)[/color][/size][size=15px]织物试样的刺破测试通过测量穿透试样所需的力来确定材料的强度。通过使用刺破夹具来模拟真实场景中与锋利物体的接触。刺破夹具通常用于拉伸方向,但也可用于压缩方向。为了计算试样的抗穿刺性,首先将试样拉伸并放置在刺破夹具的环夹机构上。然后由刺破顶杆施加载荷,直到试样破裂。[/size][size=15px]ASTM D751、ASTM D3787 和 ASTM D4833 等测试标准 通常规定对被测试样施加力的穿刺探针的直径。刺破夹具配有用于顶破测试的小直径和大直径的锋利刺破顶杆。[/size][size=15px]ASTM D4833/D4833M-07(2020) 土工织物刺破测试方法[/size][size=15px]ASTM D3787-16(2020) 织物钢球顶破强力测试方法(CRT型)[/size][size=15px]ASTM D3787-16(2020) Standard Test Method for Bursting Strength of Textiles—Constant-Rate-of-Traverse (CRT) Ball Burst Test[/size][size=15px]ASTM D4833/D4833M-07(2020) Standard Test Method for Index Puncture Resistance of Geomembranes and Related Products[/size][align=center][img=,457,839]https://ng1.17img.cn/bbsfiles/images/2024/05/202405070945314130_3427_1954597_3.jpg!w457x839.jpg[/img][/align][size=15px][color=#ff0000]8、剪切试验(Shear testing )[/color][/size][size=15px]剪切测试主要用于分析纺织品的悬垂性、柔韧性和处理性,这些纺织品显示出各种复杂的变形,例如机织织物。根据织物材料的不同,纺织织物可能表现出各向异性行为,并且在不同方向上具有不同的强度值,从而影响各个方向的弯曲和拉伸性能。[/size][size=15px]建议将±45 度离轴拉力试验用于机织织物复合材料的剪切表征。在施加载荷之前,用应变片制备试样,一个垂直于试样长度,一个平行于试样长度,另一个离轴45度,以确定离轴弹性模量、离轴泊松比和剪切耦合比。[/size][size=15px]剪切试验的三种主要方法如下图所示:[/size][align=center][img=,690,353]https://ng1.17img.cn/bbsfiles/images/2024/05/202405070945585368_1053_1954597_3.jpg!w690x353.jpg[/img][/align][size=15px][/size][size=15px][color=#ff0000]织物强度测试的推荐设备[/color][/size][size=15px]1、主机:CRE型织物强力机,推荐配备交流伺服电机确保速度稳定性。[/size][size=15px]2、夹具:配备气动夹具足以应对大部分纺织品测试,气动夹具可更换钳口设计成本其实低于多套手动夹具。[/size][size=15px]3、传感器:配备高精度传感器保证力值示值误差≤1%(实际目前大部分厂家是做到示值误差≤0.5%,即0.5级)。[/size][size=15px]4、取样器:在试样的制备阶段可能需要试样切割模具以保证取样的准确性,切割模具是按照测试标准中规定的特定样品尺寸制造的。来源自:云享测试服务微信平台公众号[/size]

  • 【求助】混纺织物标准

    1、混纺织物中的“丝/化纤”应该参考哪些标准进行检测?2、本色棉维混纺布的检测标准?3、印染棉维混纺布的检测标准?注:求非通用检测标准

  • 织物接触冷暖感测试评价技术研究现状

    织物接触冷暖感测试评价技术研究现状

    [color=#cc0000]摘要:本文对目前织物冷暖感测试方法的研究现状进行综述,介绍了最大热流和吸热系数测试方法和仪器,分析各种测试方法的特点,并提出改进意见,以开展相应国产化测试仪器的研究和开发。  [/color][color=#cc0000]关键词:冷暖感、导热系数、吸热系数、织物、蓄热系数、热逸散系数[/color][align=center][img=织物接触冷暖感测试评价技术,690,325]https://ng1.17img.cn/bbsfiles/images/2019/01/201901162131221607_2636_3384_3.png!w690x325.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000][b]1. 引言[/b][/color]  织物冷暖感(或热舒适)是织物与人体皮肤接触后织物给皮肤的温度刺激在人大脑中形成的关于冷和暖的判断。当织物与皮肤接触瞬间,由于存在温差,织物与皮肤之间会发生热交换,使皮肤的温度升高或降低。织物与皮肤之间的热交换形式主要为热传导,织物内部的热辐射和自然对流影响很小,可忽略不计。通常情况下(除环境温度高于皮肤温度外),皮肤温度高于环境温度,因此织物与皮肤接触后往往使皮肤温度下降,如果温度下降(或上升)的量超过一定限度,就会使人产生不舒适感。从物理意义而言,冷暖感的强弱,取决于织物和人体接触过程中织物导走或保有人体热量的多少。  织物与皮肤接触瞬间,二者之间存在温差,有明显的传热传质变化。影响皮肤温度及其变化的物理参数主要有:皮肤温度、温度变化速率、温度变化量、环境温度和时间等。织物的冷暖感可以用不同的物理参数进行描述,常用的有导热系数、吸热系数、人体与织物接触时由人体通过织物流向环境的最大瞬态热流。  本文对目前织物冷暖感测试技术的研究现状进行综述,分析各种测试方法的特点,并提出改进意见,以开展相应国产化测试仪器的研究和开发。[b][color=#cc0000]2. 测试方法[/color][/b]  织物的冷暖感常用最大瞬态热流法、吸热系数法和导热系数法来进行评价,但最大瞬态热流和吸热系数测试中都包含了导热系数这个参数。因此目前冷暖感的各种测试评价方法主要集中在最大瞬态热流和吸热系数的测试方面。[color=#cc0000]2.1. 最大热流法(Q-max Method)[/color]  最大热流法是日本学者Kawabata根据瞬态热传导理论提出的一种织物接触冷暖感测试评价方法,最大热流法的基本原理是在模拟人体皮肤接触织物的瞬态传热过程中对热流变化曲线进行实时测量。如图2-1所示,在测量之前,首先将样品放在温度保持恒定的样品座上,并将由良导热体制成的热板温度升高到比样品高约5~10℃。测量时将热板放置在样品的上表面,热量从温度高的热板流向样品,记录和测量热板温度和接触面上热流密度随时间的变化曲线。[align=center][color=#cc0000][img=,690,230]https://ng1.17img.cn/bbsfiles/images/2019/01/201901162132495694_4159_3384_3.png!w690x230.jpg[/img][/color][/align][align=center][color=#cc0000]图2-1 最大热流法测量原理和测试模型[/color][/align]  目前国内外普遍用来测量织物热性能的仪器是日本KATO TEKKO公司生产的KES-F7 Thermo LABO型热性能测试仪器,如图2-2所示。对于织物接触冷暖感的测试,此仪器所采用的方法就是上述最大热流法。由于KES-F7型测试仪只考虑热板初始温度比样品表面温度高的情况,因此测出的最大热流密度实际上是相对冷暖感,大的热流密度值对应冷感,小的热流密度值对应暖感。[align=center][color=#cc0000][img=,690,466]https://ng1.17img.cn/bbsfiles/images/2019/01/201901162135395707_2074_3384_3.jpg!w690x466.jpg[/img][/color][/align][align=center][color=#cc0000]图2-2 KES-F7型热物理性能测试仪[/color][/align]  如图2-3所示,KES-F7型冷暖感测试仪由以下三个基本部分及其控制系统构成:  (1)T. Box(Temperature Detecting Box, 温度测试以及蓄热板)  (2)B. T. Box(Bottom Temperature Box, 热源台)  (3)Thermo Cool(恒温台)[align=center][color=#cc0000][img=,690,457]https://ng1.17img.cn/bbsfiles/images/2019/01/201901162136193576_9190_3384_3.png!w690x457.jpg[/img][/color][/align][align=center][color=#cc0000]图2-3 KES-F7 Thermo LABO接触冷暖感测试仪[/color][/align]  KES-F7型热性能测试仪具有以下三种测试能力:[color=#cc0000]2.1.1. Q-max测试(冷暖感测试)[/color]  如图2-4(a)所示,将样品放置在恒温台上,并将蓄热板放置在热源台上进行蓄热,然后将蓄热板快速放置在样品表面上。蓄积的热量立即移动至低温侧的样品上,此时测试出的热流峰值为Q-max值,测试过程可在1分以内完成。[align=center][color=#cc0000][img=,690,473]https://ng1.17img.cn/bbsfiles/images/2019/01/201901162136380354_6647_3384_3.png!w690x473.jpg[/img][/color][/align][align=center][color=#cc0000]图2-4 冷暖感测试仪操作示意图[/color][/align][color=#cc0000]2.1.2. 稳态导热系数和热扩散系数测试[/color]  如图2-4(b)所示,首先将恒温台设置为室温,将50 mm×50 mm的样品放置在上面,再将热源台的热板紧贴试样放置在上面。在热源台以及护环的温度达到稳定后,通过测量稳态热流既可得到稳态导热系数,测试过程可在2~3分以内完成。  通过达到稳定前的动态热流和温度变化曲线,并结合特定边界条件,还可以实现对热扩散系数的测量。  通过上述测量的导热系数和热扩散系数,如果知道样品的密度,则可以计算得到样品的比热容。  由此可见,KES-F7型热性能测试仪是一个非常经典的瞬态热物理性能测试仪器,通过测试模型和相应的边界条件,可以对样品厚度方向的热物理性能参数进行测量,即KES-F7型热性能测试仪的热性能测试带有明确的方向性。[color=#cc0000]2.1.3. 保温性能测试[/color]  将上述冷暖感测试仪结合风洞来进行织物的保温性能测试,如图2-5所示。  将样品(100 mm×100 mm以上、最大200 mm×20 mm)和样品安装框一起固定至100 mm×100 mm热源台上进行测试。通常风洞内的空气温度与室温相同,热源台温度为比室温高10℃。当热源台温度以及热流值稳定时,测量热流值就可计算得到保温性能,测试通常在2~5分钟内完成。在具体测试中,还可使用各种测试方法,例如Wet法、Space法和Wet Space法等。[align=center][img=,643,800]https://ng1.17img.cn/bbsfiles/images/2019/01/201901162136585934_7979_3384_3.png!w643x800.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图2-5 织物保温性能测试仪[/color][/align][color=#cc0000]2.1.4. 测试标准[/color]  尽管最大热流法测试技术已经开发了近30年,但一直没有形成国际化的标准测试方法,具体原因将在后续进行分析。基于最大热流法,目前已经建立了相应标准测试方法的国家和地区只有大陆和台湾,如国家标准GB/T 35263-2017《纺织品接触瞬间凉感性能的检测和评价》,以及台湾纺织产业综合研究所制定的《织物瞬间凉感验证规范》(FTTS-FA-019)产业标准。[color=#cc0000]2.2. 吸热系数法(Thermal Absorptivity Method)[/color]  由于人体皮肤在接触织物时的瞬态传热过程中,动态热传递会受到织物的导热系数、比热容和密度的影响。类似上述最大热流法原理和基于瞬态热传递,捷克学者Hes提出了另外一种表征织物冷暖感的参数——吸热系数。吸热系数的定义为:[align=center]b=( [i]λ ρ c[/i] )^0.5   [/align]  式中:[i]λ [/i]代表织物的导热系数;[i]ρ[/i] 代表织物的密度;[i]c[/i] 代表织物的比热容。由此可知,织物的热吸收能力与其导热系数、密度和比热容有关,反映织物和人体接触时织物从人体吸收热量的能力。  为了测试织物的吸热系数,Hes基于瞬态热传导理论开发了相应的测试仪器Alambeta,Alambeta仪器可快速测量瞬态和稳态热物理特性(隔热和热接触特性),也能测量样品厚度。该仪器由两个测量头组成,测试样品放置在两个测量头之间,如图2-6所示,两个测量头都配有热电偶和热流传感器。通过合适的冷却装置将底部测量头调节到环境温度,将顶部测量头调节到受控的恒定温差,热流传感器作用在两个测量头的接触面上。当顶部测量头下降接触被测样品时,可以测量流经样品的上下表面热流。Alambeta仪器可测量多个参数,主要包括导热系数、热扩散系数、吸热系数、热阻、最大热流与静态热流密度之比以及接触点处的静态热流密度,该仪器还可以用来测定织物的厚度。[align=center][color=#cc0000][img=,687,632]https://ng1.17img.cn/bbsfiles/images/2019/01/201901162137266204_8528_3384_3.png!w687x632.jpg[/img][/color][/align][align=center][color=#cc0000]图2-6 Alambeta测试仪结构示意图[/color][/align]  吸热系数(thermal absorptivity)也常称之为蓄热系数或热逸散系数(thermal effusivity),针对织物的吸热系数等热物理性能参数,2016年美国推出了ASTM D7984“采用改进型瞬态平面热源(MTPS)仪器测量织物吸热系数的标准试验方法”。  ASTM D7984改进型瞬态平面热源法是基于经典的瞬态平面热源法,将瞬态平面热源法中双样品夹持薄膜探头的测试结构改变为单样品测试形式,将另外一个样品用已知热物理性能的材料代替,并与薄膜探头集成为一个测试探头,同样可以实现瞬态平面热源法的大部分测试功能,可以实现对吸热系数和导热系数的测量,但无法直接测量最大热流密度。  执行ASTM D7984标准的典型测试仪器为加拿大C-Therm公司的TCi仪器,如图2-7所示。与瞬态平面热源法一样,TCi仪器测试过程中是给探头中的加热元件施加固定量的热能(已知电流),给被测样品提供少量热量。该热量导致样品表面温度升高1~1.5℃,接触面处的温度升高引起传感器元件的电压变化,根据温度升高的多少和快慢来测量吸热系数和导热系数。[align=center][img=,690,436]https://ng1.17img.cn/bbsfiles/images/2019/01/201901162137462214_3758_3384_3.png!w690x436.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图2-7 改进型瞬态平面热源仪器。(A)TCi仪器和测量探头,(B压缩测试附件[/color][/align][color=#cc0000][b]3. 分析和结论[/b][/color]  综上所述,上述各种测试方法具有以下特点:  (1)KES-F7和Alambeta仪器中的最大热流法测量实际上都是非常主观的相对测试仪器,织物冷暖感的最大热流取决于测试仪器和设定参数,最典型的如蓄热板的材质和尺寸,不同材质和尺寸的蓄热板代表不同的蓄热量,相应的就会得出不同的最大热流值。另外,热源台和恒温台的不同温度设定也会得到不同的测量结果。这也就是说最大热流值并不能代表织物自身的热物理性能,这也是造成三十多年来最大热流法一直无法形成标准测试方法的主要原因。  (2)KES-F7和Alambeta仪器都是瞬态热物理性能测试方法的典型应用,其最大特点就是通过一维传热测试模型和相应的边界条件,可以对样品厚度方向的热物理性能参数进行测量。改进型瞬态平面热源法是基于三维传热模型,测试的是样品整体的热物理性能,因此无法进行方向性的测试评价,而织物的各向异性特征非常明显。  (3)KES-F7和Alambeta仪器的测试模型都是基于等温或绝热边界条件,这与同样基于瞬态传热理论的闪光法非常相似,不同之处只是加载到样品前表面的热信号形状不同。在闪光法中,样品绝热边界条件通过空气或真空环境来实现,而在KES-F7和Alambeta仪器对织物的测试则只能采用低导热隔热材料,由此给导热系数和热扩散系数测量带来了较大测量误差(10%),而闪光法测量误差一般小于3%。这种较大的测量误差很容易将织物结构和纤维等的变化所带来的影响掩盖掉,不利于织物的研究、生产和评价。因此,如何使得测量装置更准确的符合测试模型边界条件要求,提供更准确的测试评价,将是下一步研究工作的重点。  (4)与其他测试方法一样,ASTM D7984标准方法也对边界条件有严格的要求,其中一个重要边界条件是加载到样品上的热量只能在样品内部传递,即瞬态平面热源法(包括改进型)测试模型中相对于加热量和加热时间而言要求样品是半无限大。对于很多较薄的织物则不能满足这种边界条件,由此使得测量结果的误差往往会非常巨大。因为这个原因,ASTM D7984标准方法比较适合最大热流密度比较小的保暖性织物的测试评价,而对于最大热流密度较大的轻薄凉爽型织物的测量则会误差较大。为了尝试解决使用ASTM D7984标准方法中存在的这个问题,TCi仪器采用将样品放置在探头之上,依靠样品另一侧的空气作为绝热边界条件,但这又带来了织物样品与探头表面接触不良的问题,测试结果中会包含很大的接触热阻。总之,对于织物这类较薄的材料,采用改进型的瞬态平面热源法进行测试非常勉强,这与经典的瞬态平面热源法一样,对薄膜热物性测试的可靠性很低。正因为如此,瞬态平面热源法测试仪器厂家HOT DISK公司为了解决较薄材料的测试,专门又开发了新的测试方法。  (5)ASTM D7984标准方法的最大问题是无法直接测量最大热流,需要测量一系列其他热性能参数并进行复杂的计算才能得到最大热流。但无论是瞬态平面热源法还是改进型的瞬态平面热源法,在热扩散系数和比热容测试中都存在较大的系统误差,这势必会对最大热流的计算结果带来较大的误差积累。  (6)对于织物热性能的上述测试方法,都存在的一个问题就是测量准确性的考核评价,缺乏稳定可靠的标准材料。在这方面美国ASTM已经开始着手开始进行相应的工作,并组织进行多个实验室的对比测试。  通过对上述两种织物接触冷暖感测试评价方法的介绍和分析,可以看出这两种测试方法都是基于人体皮肤接触织物时的瞬态传热进行测量。尽管两种方法测试的参数和物理意义都不同,但基于瞬态传热方式,最大热流密度和吸热系数这两个参数具有内在的关联性。后续我们将对这种内在关联性进行分析研究,并研究相应的测试方法和仪器,来同时满足上述两种测试方法。  下一步的研究重点还包括以下两方面内容:  (1)测试边界条件的保证:在最大热流法和吸热系数法测试中,边界条件包括等温边界条件和绝热边界条件两种。下一步工作重点是在硬件上如何更完美的实现这些边界条件要求,从而保证测量准确性和可靠性。  (2)仪器测量准确性考核:测量准确性考核从三方面进行,首先是采用数值模拟计算的方法对最大热流法测量准确性进行检验考核,第二是与其他热物性测试方法进行对比来考核导热系数、热扩散系数和吸热系数测量的准确性,第三是采用已知热性能的固体薄片材料(或标准材料)来进行考核。[color=#cc0000][b]4. 参考文献[/b][/color]  略[align=center]=======================================================================[/align]

  • 【分享】织物缩水率测试方法

    一、实验目的与要求通过试验,测试织物缩水处理前后的尺寸变化,求得织物缩水率。掌握织物缩水率的测试方法,并了解织物产生收缩的原因。二、实验仪器与用具试验仪器为水箱、M988型织物缩水机、钢尺、缝线、铅笔等用具。三、试样机织物和针织物各两块。四、实验方法与程序(一) 机织物缩水率的测试1.试验仪器与用具:使用的仪器为水箱一只,底部为半圆形,上面为400×315mm的长方形,容积为45L,内装撑拌轮,直径为156mm,速度为 ,使用的工具为量尺等。2.试样准备:取样数量:每批取3块试样,试样尺寸为经向55cm,纬向全幅。试样标记:先将试样沿经向两端各剪去2.5cm,取中间50cm,纬向全幅。再在试样中间均匀量取3个点,然后按经纬3个位置正确而平直地用铅笔画T字形,T形仔细缝纫,作标记,或用不褪色的笔正确画“T”形,※精确测量3个T形记号之间的经、纬向距离(精确到0.1cm).3.操作步骤:(1)将清水加入水箱至规定标记(约45L)并加热使水温为 。(2)展开准备好的样布,置于水箱中(一般每次可放置4—6块,视织物厚薄而异)。加盖封闭保温,开动电动机,使搅拌轮转动。样布随着水浪回转翻滚,薄织物连续搅动15min,厚织物连续搅动20min,准时取出布样。(3)将取出的样本,放入水池中轻轻地整理平整,沿经向叠成四折,用手轻轻压去水分(不得绞拧),将样布展开,平摊在金属网上,在无张力的情况下,保持经纬向垂直,然后把金属网移入温度为的烘箱内烘干。取出样布冷却30min后,分别测量试验后的经纬向之间距离。测量时,应尽量沿纱线方向量,不能歪斜。如发现试样上有折叠痕迹,可用手沿量尺寸方向轻轻摸平,但不能用力过大,以免产生误差。(4)试样结果计算:织物缩水率按下式计缩水率=                   式中: —试验前的实测距离(cm);—试验后的实测距离(cm)。

  • 最全面的纺织品测试项目简介【权威SGS检测】

    纺织品检测==========纺织品作为时尚产品的代表,虽然凭借时尚的概念可以轻易引起不理性的消费,但产品的质量、各项性能和遵守相关法规也是产品成功的重要因素。【织物可燃性测试项目】1. 普通织物的燃烧性能ASTM D1230, US CPSC 16 CFR PART 1610 ,CAN/CGSB-4.2 No. 27.52. 布料的燃烧速率(45度角)JIS L 1091 Method C, FTMS-191 Method 59083. 布料易燃性ISO 6941 EN 11034. 英国睡衣安全测试BS 5722,BS 5438 ,SI 1985 No. 20435. 澳洲儿童睡衣AS/NZS 12496. 瑞典成衣燃烧性能KOVFS 1985:57. 儿童睡衣DOC FF 3 US CPSC 16 CFR Part 1615,DOC FF 5 US CPSC 16 CFR Part 16168. 儿童睡衣燃烧性能EN 148789. 家具填充物防火测试California Technical Bulletin 11710. 英国家具(防火及安全)条例SI 1988 No. 1324 ,BS 5852-2:1979, BS 5852-2:198211.家具—装潢家具可燃性的评价EN 1021-1, 212.地毯表面燃烧测试DOC FF 1 US CPSC 16 CFR Part 1630,DOC FF 2 US CPSC 16 CFR Part 163113.帐篷CPAI 8414.毛毯ASTM D415115.汽车座垫防火测试FMVSS 302 ,GB 841016.汽车内饰防火测试ECE 44-Annex 417.美国带垫家具行动委员会UFAC Test Standard18.床上用品燃烧性能BS EN ISO 12952-1, 2 ,EN ISO 12952-1, 2 ,NF EN ISO 12952-1, 219.表面燃烧BS 456920.非家用的衬垫类家具的阻燃性测试BS 7176:200721.窗帘及帘用织物的防火测试BS 5867:200822.防护衣防火测试BS EN ISO 15025:2002, BS EN 531 Code Letter A23.聚乙烯塑料膜的燃烧测试CPSC 16 CFR 161124.美国加州床上用品填充物的阻燃测试California Technical Bulletin 604 (Draft)25.睡袋的阻燃测试CPAI 75 ,ASTM F 195526.窗帘的防火性EN 1101 ,EN 110227.纺织品垂直方向试样易点燃性的测定ISO 6940, GB/T 874628.纺织品燃烧性能垂直方向火焰蔓延性能的测定ASTM D6413, GB/T 545629.服装织物燃烧性能测定EN 110330.纺织品和薄膜的燃烧性能测试(窗帘)NFPA 701:198931.帐篷织物燃烧性能测试 BS 6341【成分分析测试】纤维分析:ISO 1833 ISO 5088 ASTM D 276 ASTM D629 AATCC 20 BS 4407纤维直径:ASTM D2130 ISO 137PH值酸碱度:AATCC 81 ISO 3071 BS 1413 EN 1413 ISO 4045 BS 1309 BS 3266水份含量:ASTM D2654 ASTM D1576 可萃取物:BS 3477 BS 3582 ISO 4048 ASTM D3495充填物及杂质含量:AATCC 97 BS 4032棉丝光处理:AATCC 89甲醛含量:AATCC 112 ISO 14184 -1-2 BS 6806 BS 14184-1 EN 14184-1 AATCC 94防紫外光系数:AATCC 183紫外线穿透率:BS 7914 BS 13758-1 EN 13758-1 EN 13758-2 镍释放度: EN 1811 EN 12472BHT含量: ASTM D4526-96紫外光暴晒下劣化效果:EN 14362-1 EN 14362-2

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制