手持简单显微镜

仪器信息网手持简单显微镜专题为您提供2024年最新手持简单显微镜价格报价、厂家品牌的相关信息, 包括手持简单显微镜参数、型号等,不管是国产,还是进口品牌的手持简单显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合手持简单显微镜相关的耗材配件、试剂标物,还有手持简单显微镜相关的最新资讯、资料,以及手持简单显微镜相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

手持简单显微镜相关的厂商

  • 400-878-6829
    帕克(Park)公司的创始人是世界上第一台原子力显微镜发明组的一员,1986年研制了世界首台商用原子力显微镜,一直致力于原子力显微镜技术的开发与应用,帕克(Park)在原子力显微镜的发展过程中一直占有重要的一席之地。本公司作为纳米显微镜和计量技术领域的领导革新者,一直致力于新兴技术的开发。我们的总部遍及中国大陆,宝岛台湾,韩国,美国,日本,新加坡和德国等地,我们为研究领域和工业界提供世界上最精确,最高效的原子力显微镜。我们的团队正在坚持不懈的努力,力求满足全球科学家和工程师们的需求。随着全球显微镜市场的迅速增长,我们将持续创新,不断开发新的系统和功能,确保我们的产品始终得到最有效最快捷的使用!Park产品主要有以下特点: 1.非接触工作模式:全球唯一一家真实实现非接触式测量模式的原子力显微镜厂家,非接触模式使原子力针尖磨损大大降低,延长了探针寿命,提高了测量图像的重复性; 2.高端平板扫描器:所有产品型号均采用的高端平板扫描器,远远优于传统的管式扫描器 3.全球最高的测量精度:Z轴精度可达0.02nm; 4.智能扫描Smartscan:仪器操作极其简单,可实现自动扫描,对操作者无特殊要求,并且有中文操作界面; 5.简单的换针方式:换针非常方便,采用磁拖直接吸上即可,不需调整激光光斑; 6.Park拥有全球最广泛的工作模式:可用于光学,电学,热学,力学,磁学,电化学等方面的研究与测试。
    留言咨询
  • 400-860-5168转3750
    企业概况英国工业显微镜有限公司是一家专业从事开发和生产人机工学的体视显微镜和非接触式测量系统的制造厂商。自1958年创立以来,英国Vision已成为世界上最具有创新活力的显微镜制造厂商,其分支机构遍及欧亚及北美。 世界各地的工程人员和科学家广泛地使用着我们的产品系统来从事他们在工业领域以及生物工程的日常的放大、检测和测量应用。迄今为止,已在全球各地安装 超过30万套设备系统。 英国Vision主要的生产基地设立在英国伦顿南部的沃京。商业运行及生产装配部门也设立在附近的厂房。英国Vision的北美生产分部设立在美国康州丹堡丽市,并在美国东岸和西岸的独立机构进行直销和分销网络运作。 本公司分别在日本、中国、法国、德国、意大利、以及比利时-荷兰-卢森堡经济联盟等国家建立了多个分支机构,此外加上由120多个拥有库存并经过专业技术培训的分销代理商所组成的服务网络,在所有其它发达国家里为企业提供解决问题的应用方案。同时我们根据发展,不断地扩大新代理的加盟机会。 出口和分销渠道英国Vision的产品出口占总产值的80%%以上,所以我们认识健全分销渠道的重要性。在1991 年,英国Vision荣获出口成就的英女皇奖。公司获得的其他荣誉还包括:1997年度科技创新的威尔士亲王奖和 1974 年度技术成就的英女皇奖。**的光学技术 英国Vision所拥有的世界**光学技术改变了在传统双目显微镜上安装目镜的必要。这些技术来源于采用英国Vision的高能光学(Dynascope)装置、扩大光瞳和宽阔成像光学系统、以及先进的人-机工学所带来的舒适使用、光学的清晰度、和减轻眼部疲劳。这一系列的功能改善了客户的生产效益和产品质量。Vision 的 Mantis 体视观察器在各行业得以广泛采用的实例可说明无目镜光学技术的优势效益。 在1994 年推出的第一代Mantis体视观察器主要是填补台式放大镜与显微镜之间的空白。 从此Mantis 就成了所有体视观察器的首选,超过13 万套的Mantis设备已在全球安装使用。 英国Vision的新一代Mantis系列产品于2005年开始在各行业里使用,它秉承原型产品的实用价值,并融合人机工学以进一步优化Mantis的设计。 产品研发近年来,大量的研发投入已成为取得 成功的关键,它确保了新产品和现有产品的持续的发展,以不断满足科学界和制造领域的需求。英国Vision不断地以研发新产品和新技术在光学革新和技术前沿引领全球。
    留言咨询
  • 原FEI公司,2016年被赛默飞世尔科技收购,成为赛默飞材料与结构分析(MSD) 电镜事业部,是显微镜和微量分析解决方案的创新者和供应商。 我们提供扫描电子显微镜SEM,透射电子显微镜TEM和双束-扫描电子显微镜DualBeam?FIB-SEM,结合先进的软件套件,运用最广泛的样本类型,通过将高分辨率成像与物理、元素、化学和电学分析相结合,使客户的问题变成有效可用的数据。更多信息可在公司官网上找到:http://thermofisher.com/EM 或扫描二维码,关注我们的微信公众号
    留言咨询

手持简单显微镜相关的仪器

  • 显微热台广泛用于图象表征各种热转变过程,能够直接观察晶体或液晶样品在加热或冷却过程中的晶态变化以及结晶过程中形状、结构、颜色以及大小和数量的变化。FP82显微热台测量放置于玻璃片中的试样,通过显微镜系统观察并摄录试样的变化过程。FP84显微DSC热台测量放置于石英玻璃或蓝宝石坩埚中的试样,在通过显微镜观察并摄录试样变化过程的图像的同时,测量热流变化,图像信息与DSC曲线互为补充,可更全面准确地解析样品在升降温过程中的转变。技术参数:FP82HT:温度范围:-60~375℃重复性:0.2℃可视范围 &Phi 2.5mm主要特点:成像技术 - 可以直观研究多晶态转变封闭的炉体设计 - 保证精确的温度控制高灵敏度 - 光学灵敏度不受加热或冷却速率的影响手持式交互控制 - 使用者可以控制温度程序同步显微成像与DSC测量 -提供了样品完整的热分析信息产品型号: FP84HT:温度范围:-60~375℃重复性:0.2℃可视范围 &Phi 2mmDSC传感器:Au-Ni,5对热电偶量热灵敏度:13mV/mW应用领域:晶体、多晶体、液晶、半结晶聚合物等。主要型号: FP90/FP82+显微镜、FP90/FP84+显微镜查看更多信息咨询电话:
    留言咨询
  • iMScope QT保留岛津质谱成像的高空间分辨率和光学显微镜融合特点的同时,连接 LCMS-9030,以MALDI-Q-TOF提高成像速度和灵敏度。iMScope QT还可以把显微镜-MALDI单元简单地分离和组装,实现了一台仪器多用途使用,从而完成定性,定量,定位的整体流程。iMScope QT 主要特点:显微镜观察和质谱成像分析的融合。高分辨率光学显微镜完美地融合在成像质谱仪,可对微小区域进行观察和分析,通过叠加光学显微镜图和质谱成像图,更准确地进行定位。高空间分辨率,高速,高精度,高效率的成像分析。使用5 μm空间分辨率,20,000 Hz的激光频率,结合LCMS-9030的快速检测系统,成像分析速度可达到50像素/秒,分析100 x 100像素的图像仅需数分钟即可完成。LCMS-9030高性能的MS/MS分析,可快速提供目标分子的结构信息和高特异性成像数据。一台质谱即可获得LC-MS的定性、定量信息和质谱成像的位置信息。iMScope QT成像单元和LCMS-9030质谱单元可以组装和分离,轻松实现质谱成像分析和LC-Q TOF定性定量分析的切换,同时满足定量成像分析的需求。?
    留言咨询
  • Mageye 磁光手持显微镜 400-860-5168转0579
    Mageye 磁光手持显微镜 灵敏的磁光磁场传感器使常规 USB 显微镜能够看到磁场, Mageye 也是一台真正的磁场相机,用于拍摄不同磁化样品上的杂散磁场的高分辨率图像。USB 接口允许系统在几乎所有环境中均可使用。此外,与软件的集成创造了多种评估可能性。产品应用:质量控制(如磁条卡、磁编码器、焊缝、磁带录音带、操纵序列号,以及偶极和多极磁铁 取证(例如,恢复和分析底盘和武器上的序列号)地质学(矿物和陨石研究)功能性:在磁光传感器中使用法拉第效应使用线性偏振光 (LED) 的内部区域照明根据局部施加的磁场旋转磁光传感器中光的偏振平面局部分析使用第二个偏振滤光片改变强度使用高分辨率数码相机(显微镜相机)记录磁光图像产品参数:磁场的直接可视化分析磁性材料的极性、均匀性、分布和磁化特性磁场范围 0.01 至 130kA/m(0.1 至 1,600 Oe)传感器尺寸:max 8x8mmUSB 2.0 接口便携式和使用方便
    留言咨询

手持简单显微镜相关的资讯

  • 光学显微镜技术和应用简介
    自然界中一些最基本的过程发生在微观尺度上,远远超出了我们肉眼所能看到的极限,这推动了技术的发展,使我们能够超越这个极限。早在公元4世纪,人们发现了光学透镜的基本概念,并在13世纪,人们已经在使用玻璃镜片,以提高他们的视力和放大植物和昆虫等对象以便更好地了解他们。随着时间的推移,这些简单的放大镜发展成为先进的光学系统,被称为光学显微镜,使我们能够看到和理解超越我们感知极限的微观世界。今天,光学显微镜是许多科学和技术领域的核心技术,包括生命科学、生物学、材料科学、纳米技术、工业检测、法医学等等。在这篇文章中,我们将首先探讨光学显微镜的基本工作原理。在此基础上,我们将讨论当今常用的一些更高级的光学显微镜形式,并比较它们在不同应用中的优缺点。    什么是光学显微镜?  光学显微镜用于通过提供它们如何与可见光相互作用(例如,它们的吸收、反射和散射)的放大图像来使小结构样品可见。这有助于了解样品的外观和组成,但也使我们能够看到微观世界的过程,例如物质如何跨细胞膜扩散。  显微镜的部件以及光学显微镜的工作原理  从根本上说,显微镜包括两个子系统:一个用于照亮样品的照明系统和一个成像系统,该系统产生与样品相互作用的光的放大图像,然后可以通过眼睛或使用相机系统进行观察。  早期的显微镜使用包含阳光的照明系统,阳光通过镜子收集并反射到样品上。今天,大多数显微镜使用人造光源,如灯泡、发光二极管(LED)或激光器来制造更可靠和可控的照明系统,可以根据给定的应用进行定制。在这些系统中,通常使用聚光透镜收集来自光源的光,然后在聚焦到样品上之前对其进行整形和光学过滤。塑造光线对于实现高分辨率和对比度至关重要,通常包括控制被照亮的样品区域和光线照射到它的角度。照明光的光学过滤,使用修改其光谱和偏振的光学过滤器,可用于突出样品的某些特征。图1:复合显微镜的基本构造:来自光源的光使用镜子和聚光镜聚焦到样品(物体)上。来自样品的光被物镜收集,形成中间图像,该图像由目镜再次成像并传递到眼睛,眼睛看到样品的放大图像。  成像系统收集与样品相互作用的照明光,并产生可以查看的放大图像(如上图1)。这是使用两组主要的光学元件来实现的:首先,物镜从样品中收集尽可能多的光,其次,目镜将收集的光中传递到观察者的眼睛或相机系统。成像系统还可包括诸如选择来自样品的光的某些部分的孔和滤光器之类的元件,例如仅看到已从样品散射的光,或仅看到特定颜色或波长的光。与照明系统的情况一样,这种类型的过滤对于挑出某些感兴趣的特征非常有用,这些特征在对来自样本的所有光进行成像时会保持隐藏。  总的来说,照明和成像系统在光学显微镜的性能方面起着关键作用。为了在您的应用中充分利用光学显微镜,必须充分了解基本光学显微镜的工作原理以及当今存在的变化。  简单复合显微镜  单个镜头可以用作放大镜,当它靠近镜头时,它会增加物体的外观尺寸。透过放大镜看物体,我们看到物体的放大和虚像。这种效果用于简单的显微镜,它由单个镜头组成,该镜头对夹在框架中并从下方照明的样品进行成像,如下图2所示。这种类型的显微镜通常可以实现2-6倍的放大倍率,这足以研究相对较大的样本。然而,实现更高的放大倍率和更好的图像质量需要使用更多的光学元件,这导致了复合显微镜的发展(如下图3)。图2:通过创建靠近它的物体的放大虚拟图像,将单个镜头用作放大镜。图3:左:简单显微镜。右:复合显微镜。  在复合显微镜中,从底部照射样品以观察透射光,或从顶部照射样品以观察反射光。来自样品的光由一个由两个主要透镜组组成的光学系统收集:物镜和目镜,它们各自的功率倍增,以实现比简单显微镜更高的放大倍率。物镜收集来自样品的光,通常放大倍数为40-100倍。一些复合显微镜在称为“换镜转盘(nose piece)”的旋转转台上配备多个物镜,允许用户在不同的放大倍数之间进行选择。来自物镜的图像被目镜拾取,它再次放大图像并将其传递给用户的眼睛,典型的目镜放大率为10倍。  可以用标准光学显微镜观察到的最小特征尺寸由所使用的光学波长(λ)和显微镜物镜的分辨率决定,由其孔径数值(NA)定义,最大值为NA =1空中目标。定义可区分的最小特征尺寸(r)的分辨率极限由瑞利准则给出:  r=0.61×(λ/NA)  例如,使用波长为550nm的绿光和典型NA为0.7的物镜,标准光学显微镜可以分辨低至0.61×(550nm)/0.7≈480nm的特征,这足以观察细胞(通常为10µm大小),但不足以观察较小生物的细节,例如病毒(通常为250-400nm)。要对更小的特征成像,可以使用具有更高NA和更短波长的更先进和更昂贵的物镜,但这可能不适用于所有应用。  在标准复合显微镜(如下图4a)中,样品(通常在载玻片上)被固定在一个可以手动或电子移动以获得更高精度的载物台上,照明系统位于显微镜的下部,而成像系统高于样本。然而,显微镜主体通常也可以适应特定用途。例如,立体显微镜(如下图4b)的特点是两个目镜相互成一个小角度,让用户可以看到一个略有立体感的图像。在许多生物学应用中,使用倒置显微镜设计(如下图4c),其中照明系统和成像光学器件都在样品台下方,以便于将细胞培养容器等放置在样品台上。最后,比较显微镜(如下图4d)常用于法医。图4:复合显微镜。a)标准直立显微镜指示(1)目镜,(2)物镜转台、左轮手枪或旋转鼻镜(用于固定多个物镜),(3)物镜、调焦旋钮(用于移动载物台)(4)粗调,(5)微调,(6)载物台(固定样品),(7)光源(灯或镜子),(8)光阑和聚光镜,(9)机械载物台。b)立体显微镜。c)倒置显微镜。  光学显微镜的类型  下面,我们将介绍一些当今可用的不同类型的光学显微镜技术,讨论它们的主要操作原理以及每种技术的优缺点。  亮视野显微镜  亮视野显微镜(Brightfield microscopy,BFM)是最简单的光学显微镜形式,从上方或下方照射样品,收集透射或反射的光以形成可以查看的图像。图像中的对比度和颜色是因为吸收和反射在样品区域内变化而形成的。BFM是第一种开发的光学显微镜,它使用相对简单的光学装置,使早期科学家能够研究传输中的微生物和细胞。今天,它对于相同的目的仍然非常有用,并且还广泛用于研究其他部分透明的样品,例如透射模式下的薄材料(如下图5),或反射模式下的微电子和其他小结构。图5:亮视野显微镜。左图:透射模式-在显微镜下看到的石墨(深灰色)和石墨烯(最浅灰色)薄片。在这里,图像上看到的亮度差异与石墨层的厚度成正比。右图:反射模式-SiO2表面上的石墨烯和石墨薄片,小的表面污染物也是可见的。  暗视野显微镜  暗视野显微镜是一种仅收集被样品散射的光的技术。这是通过添加阻挡照明光直接成像的孔来实现的,这样只能看到被样品散射的照明光。通过这种方式,暗场显微镜突出显示散射光的小结构(如下图6),并且对于揭示BFM中不可见的特征非常有用,而无需以任何方式修改样品。然而,由于在最终图像中看到的唯一光是被散射的光,因此暗场图像可能非常暗并且需要高照明功率,这可能会损坏样品。  图6:亮视野和暗视野成像。a)亮视野照明下的聚合物微结构。b)与a)中结构相同的暗视野图像,突出显示边缘散射和表面污染。c)与a)和b)相似的结构,被直径为100-300nm的纳米晶体覆盖。仅观察到纳米晶体散射的光,而背景光被强烈抑制。  相差显微镜  相差显微技术(Brightfield microscopy,PCM)是一种可视化由样品光路长度变化引起的光学相位变化的技术.这可以对在BFM中产生很少或没有对比度的透明样品进行成像,例如细胞(如下图7)。由于肉眼不易观察到光学相移,因此相差显微镜需要额外的光学组件,将样品引起的相移转换为最终图像中可见的亮度变化。这需要使用孔径和滤光片来操纵照明系统和成像系统。这些形状和选择性地相移来自样品的光(携带感兴趣的相位信息)和照明光,以便它们建设性地干涉眼睛或检测器以创建可见图像。图7:人类胚胎干细胞群落的相差显微图像。  微分干涉显微镜  与PCM类似,微分干涉显微镜(differential interference contrast microscopy,DICM)通过将由于样品光路长度变化引起的光学相位转换为可见对比度,从而使透明样品(例如活的未染色细胞)可视化。然而,与PCM相比,DICM可以实现更高分辨率的图像,并且减少了由PCM所需的光学器件引入的清晰度和图像伪影。在DICM ,照明光束被线性偏振器偏振,其偏振旋转,使其分裂成两个偏振光束,它们具有垂直偏振和小(通常低于1µm)间隔。穿过样品后,两束光束重新组合,从而相互干扰。这将创建一个对比度与图像成正比的图像差在两个偏振光束之间的光相位,因此命名为“差”干涉显微镜。DICM产生的图像出现与采样光束之间的位移方向相关的三维图像,这导致样品边缘具有亮区或暗区,具体取决于两者之间的光学相位差的符号(如下图8)。图8:微分干涉对比显微镜。左:DICM的原理图。右图:通过DICM成像的活体成年秀丽隐杆线虫(C.elegans)。  偏光显微镜  在偏振光显微镜中,样品用偏振光照射,光的检测也对偏振敏感。为了实现这一点,偏振器用于控制照明光偏振并将成像系统检测到的偏振限制为仅一种特定的偏振。通常,照明和检测偏振设置为垂直,以便强烈抑制不与样品相互作用的不需要的背景照明光。这种配置需要一个双折射样品,它引入了照明光偏振角的旋转,以便它可以被成像系统检测到,例如,观察晶体的双折射以及它们的厚度和折射率的变化(如下图9)。图9:偏光显微镜。橄榄石堆积物的显微照片,由具有不同双折射的晶体堆积而成。整个样品的厚度和折射率的变化会导致不同的颜色。  荧光显微镜  荧光显微镜用于对发出荧光的样品进行成像,也就是说,当用较短波长的光照射时,它们会发出长波长的光。示例包括固有荧光或已用荧光标记物标记的生物样品,以及单分子和其他纳米级荧光团。该技术采用了滤光片的组合,可阻挡短波长照明光,但让较长波长的样品荧光通过,因此最终图像仅显示样品的荧光部分(如下图10)。这允许从由许多其他非荧光颗粒组成的样品中挑出和可视化荧光颗粒或已被染料染色的感兴趣细胞的分布。同时,荧光显微镜还可以通过标记小于此限制的粒子来克服传统光学显微镜的分辨率限制。例如,可以用荧光标记标记病毒以显示其位置在生物样品的情况下,可以表达荧光蛋白,例如绿色荧光蛋白。结合各种新颖形式的样品照明,荧光显微镜的这一优势实现了“超分辨率”显微镜技术,打破了传统光学显微镜的分辨率限制。荧光显微镜的主要限制之一是光漂白,其中标记物或颗粒停止发出荧光,因为吸收照明光的过程最终会改变它们的结构,使它们不再发光。图10:荧光显微镜。左:工作原理-照明光由短通激发滤光片过滤,并由二向色镜反射到样品。来自样品的荧光通过二向色镜,并被发射滤光片额外过滤以去除图像中残留的激发光。右图:有机晶体中分子的荧光图像(晶体轮廓显示为黄色虚线)。由于来自其他分子和晶体材料的荧光,背景并不完全黑暗。  免疫荧光显微镜  免疫荧光显微镜是主要用于在微生物的细胞内的生物分子可视化的位置荧光显微镜的具体变化。在这里,用荧光标记物标记或固有荧光的抗体与感兴趣的生物分子结合,揭示它们的位置。(如下图11)图11:免疫荧光显微镜。肌动蛋白丝(紫色)、微管(黄色)和细胞核(绿色)的免疫荧光标记的两个间期细胞。  共聚焦显微镜  共聚焦显微镜是一种显微镜技术,它可以逐点成像来自样品的散射或荧光。不是一次对整个样品进行照明和成像,而是在样品区域上扫描源自点状光源的照明点,敏感检测器仅检测来自该点的光,从而产生2D图像。这种方法允许以高分辨率对弱信号样本进行成像,因为来自采样点之外的不需要的背景信号被有效抑制。在这里,所使用的波长和物镜在所有三个维度上都限制了成像光斑的大小。这允许通过将物镜移动到距样品不同的距离,在样品内的不同深度处制作2D图像。然后可以组合这些2D图像“切片”以创建样本的3D图像,这是所讨论的其他宽视场显微镜技术无法实现的,并且还允许以3D方式测量样品尺寸。这些优势的代价是无法一次性拍摄图像,而是必须逐点构建图像,这可能非常耗时并阻碍样本的实时成像(如下图12)。图12:单分子荧光的共聚焦荧光图像。小点对应于单个分子的荧光,而较大的点对应于分子簇。此处的荧光背景比简单的荧光显微镜图像弱得多,如亮点之间的暗区所见。  双光子显微镜  双光子显微镜(Two-photonmicroscopy,TPM)是荧光显微镜的一种变体,它使用双光子吸收来激发荧光,而不是单光子激发。在这里,通过吸收两个光子的组合来激发荧光,其能量大约是单个光子激发所需能量的一半。例如,在该方案中,通常由单个蓝色光子激发的荧光团可以被两个近红外光子激发。在TPM中,图像是逐点建立的,就像在共聚焦显微镜中一样,也就是说,双光子激发点在样品上扫描,样品荧光由灵敏的检测器检测。与传统荧光显微镜相比,激发和荧光能量的巨大差异导致了多重优势:首先,它允许使用更长的激发波长,在样品内散射较少,因此穿透更深,以允许在其表面下方对样品进行成像并创建3D样品图像。同时,由于激发能量低得多,光漂白大大减少,这对易碎样品很有用。激发点周围的荧光背景也大大减少,因为有效的双光子吸收仅发生在激发光束的焦点处,因此可以观察到来自样品小部分的荧光(如下图13)。  TPM的一个缺点是双光子吸收的概率远低于单光子吸收,因此需要高强度照明,如脉冲激光,才能达到实用的荧光信号强度。图13:双光子显微镜。花粉的薄光学切片,显示荧光主要来自外层。  光片显微镜  光片显微技术是荧光显微术的一种形式,其中样品被垂直于观察方向的薄“片”光照射,从而仅对样品的薄切片(通常为几微米)进行成像。通过在样品在光片中旋转的同时拍摄一系列图像,可以形成3D图像。这要求样品大部分是透明的,这就是为什么这种技术通常用于形成小型透明生物结构的3D图像,例如细胞、胚胎和生物体。(如下图14)图14:光片显微镜。左:工作原理。右:通过荧光成像用光片显微镜拍摄的小鼠大脑的荧光图像。  全内反射荧光显微镜  全内反射荧光(Totalinternal reflectionfluorescence microscopy ,TIRF)是一种荧光显微技术,可通过极薄(约100nm厚)的样品切片制作2D荧光图像。这是通过照明光的渐逝场激发样品的荧光来实现的,当它在两种不同折射率(n)的材料之间的边界处经历全内反射时就会发生这种情况。消逝场具有与照明光相同的波长,但与界面紧密结合。在TIRF显微镜中,激发光通常在载玻片(n=1.52)和样品分散的水介质(n=1.35)之间的界面处发生全内反射。渐逝场的强度随距离呈指数下降来自界面,这样在最终图像中只能观察到靠近界面的荧光团。这也导致来自切片外区域的荧光背景的强烈抑制,这允许拾取微弱的荧光信号,例如在定位单个分子时。这使得TIRF非常适用于观察参与细胞间相互作用的荧光蛋白(如下图15)的微弱信号,但也需要将样品分散在水性介质中,这可能会限制可以测量的样品类型。图15:TIRF图像显示培养的视网膜色素上皮细胞中的蛋白质荧光。每个像素对应67nm。  膨胀显微镜  膨胀显微镜背后的基本概念是增加通常需要高分辨率显微镜的样品尺寸,以便可以使用标准显微镜技术(尤其是荧光显微镜)对其进行成像。这适用于保存的标本,例如生物分子、细胞、细菌和组织切片,可以使用下图16中所示的化学过程在所有维度(各向同性)均匀扩展多达50倍。扩展样本可以隔离感兴趣的个别特征通常是隐藏的,可以使它们透明,从而可以对它们的内部进行成像。图16:膨胀显微镜的样品制备。细胞首先被染色,然后连接到聚合物凝胶基质上。然后细胞结构本身被溶解(消化),使染色的部分随着凝胶各向同性地膨胀,从而使染色的结构更详细地成像。  光学显微镜中的卷积  除了使光学系统适应特定用例之外,现代光学显微镜还利用了数字图像处理,例如图像去卷积。该技术通过补偿光学系统本身固有的模糊,可以提高空间分辨率以及光学显微镜拍摄图像的定位精度。这种模糊可以在校准步骤中测量,然后可以用于对图像进行去卷积,从而减少模糊。通过将高性能光学元件与先进的图像处理相结合,数字显微镜可以突破分辨率的极限,以更深入地观察微观世界。(如下图17)图17:图像解卷积。左:原始荧光图像。右:解卷积后的图像,显示细节增加。  光学显微镜与电子显微镜  光学显微术通常使用可见光谱中的光波长,由于瑞利准则,其空间分辨率固有地限制为所用波长的大约一半(最多约为200nm)。然而,即使使用具有高NA和高级图像处理的物镜,也无法克服这一基本限制。相反,观察较小的结构需要使用较短波长的电磁辐射。这是电子显微镜的基本原理,其中使用电子而不是可见光照亮样品。电子具有比可见光短得多的相关波长,因此可以实现高达10000000倍的放大倍数,甚至可以分辨单个原子。(如下图18)  图18:同心聚合物结构中纳米晶体放大15000倍的扫描电子显微镜图像,即使是细微的细节,例如基材的孔隙,也能分辨出来。  总结与结论  光学显微镜是一种强大的工具,可用于检查各种应用中的小样本。通过调整用于特定用例的照明和成像技术,可以获得高分辨率图像,从而深入了解样品中的微观结构和过程。文中,我们讨论了各种光学显微镜技术的特点、优势和劣势,这些技术在光线照射和收集方式上有所不同。显微镜种类优点技术限制典型应用亮视野显微镜结构相对简单,光学元件很少低对比度、完全透明的物体不能直接成像,可能需要染色对彩色或染色样品和部分透明材料进行成像暗视野显微镜显示小结构和表面粗糙度,允许对未染色样品进行成像所需的高照明功率会损坏样品,只能看到散射图像特征细胞内颗粒成像,表面检测相差显微镜实现透明样品的成像复杂的光学设置,需要的高照明功率会损坏样品,通常图像较暗跟踪细胞运动,成像幼虫微分干涉对比显微镜比PCM更高的分辨率复杂的光学设置,需要的高照明功率会损坏样品,通常图像较暗活的、未染色的细胞和纳米颗粒的高分辨率成像偏光显微镜来自样品非双折射区域的强背景抑制,允许测量样品厚度和双折射需要双折射样品成像胶原蛋白,揭示晶体中的晶界荧光显微镜允许挑出样品中的单个荧光团和特定的感兴趣区域,可以克服分辨率限制需要荧光样品和灵敏的检测器,光漂白会减弱信号成像细胞成分、单分子、蛋白质免疫荧光显微镜使用抗体靶向可视化特定的生物分子大量样品制备,需要荧光样品,光漂白识别和跟踪细胞和蛋白质共聚焦显微镜低背景信号,可以创建3D图像成像速度慢,需要复杂的光学系统3D细胞成像,荧光信号较弱的成像样品,表面分析双光子显微镜样品穿透深度、背景信号低、光漂白少成像速度慢,需要复杂的光学系统和大功率照明神经科学,深层组织成像光片显微镜图像仅样品的极薄切片,可通过旋转样品创建3D图像成像速度慢,需要复杂的光学系统细胞和生物体的3D成像全内反射荧光显微镜强大的背景抑制,极精细的垂直切片成像仅限于样品的薄区域,需要复杂的光学系统,样品需要在水介质中单分子成像,成像分子运输膨胀显微镜提高标准荧光显微镜的有效分辨率需要对样品进行化学处理,不适用于活体样品生物样品的高分辨率成像  参考:  1. Rochow TG, Tucker PA. A Brief History of Microscopy. In: Introduction to Microscopy by Means of Light, Electrons, X Rays, or Acoustics. Springer US 1994:1-21. doi:10.1007/978-1-4899-1513-9_1  2. Smith WJ. Modern Optical Engineering: The Design of Optical Systems.
  • 胤煌科技发布显微镜不溶性微粒检测仪新品
    YH-MIP-0103型显微镜不溶性微粒检测仪检测介绍药典规定:按照中国药典0903章节的要求,不溶性微粒的检测有两个方法,光阻法不溶性微粒检查和显微镜不溶性微粒检查。随着光阻法收录入药典作为不溶性微粒检查的一个方法以来,由于其操作简单,检测速度快,无需制样等优点深受广大用户的喜爱,也便成了用户偏爱和较高一种的检查方法。而显微镜法不溶性微粒慢慢淡出人们视野。随着药学的发展,尤其是制剂学的飞速进步,各式新的剂型进入临床,如注射用乳剂,常见的有丙泊酚、中长链脂肪乳、三腔袋脂肪乳等,脂质体,混悬剂,滴眼剂,混悬剂,易产生气泡剂型等。此种注射剂剂型的特殊性,无法利用常用的光阻法检测不溶性微粒,因为其样品本身的不透明性、高粘度等原因,使得采用光阻法检测会产生假性结果,因为光阻法会将样品本身和气泡也作为颗粒计入。中国药典CP中规定所有的注射剂都要做不溶性微粒项目检查,故而显微镜法不溶性微粒检查设备是非常重要的选择。常规显微镜不溶性检查的缺陷常规显微镜不溶性微粒检查大家会采用一台简单显微镜,人工进行计数。此种操作的难点是:无法避免人为的原因导致计数的偏差,主观性太强;最重要的是人为计数对实验员眼睛的要求较高,用眼过度会造成视力过早下降,引起一些不必要的眼疾;操作不规范性,测试结果重复性差YH-MIP-0103系列显微镜不溶性微粒检测仪上海胤煌科技有限公司自主研发生产的全自动显微镜不溶性微粒检测仪YH-MIP-0103系列,从样品制备到测试完成有一套完整的方案。1)直接按照药典要求出具报告;2)全自动进行滤膜全扫描,并进行颗粒图片分析;3)可以区分颗粒性质,鉴别不溶性微粒的来源,是金属还是纤维;4)按照颗粒性质进行归类分析统计;5)光阻法检测不通过时,作为光阻法不溶性微粒的一个验证;显微镜不溶性微粒检测仪设备构成样品过滤装置,烘干装置,检测分析系统,电脑等。检测分析系统可以根据用户要求配置奥林巴斯体式显微镜、奥利巴斯金相显微镜、徕卡金相显微镜、尼康金相显微镜等。显微镜不溶性微粒检测仪应用领域应用范围:乳剂、脂质体、滴眼剂、混悬剂、易产生气泡剂型、粘度大制剂等执行标准:中国药典CP,美国药典USP 788、USP 789,欧洲药典 EP,英国药典 BP2013,日本药典JP等YH-MIP-0103系统介绍:组成:显微镜颗粒分析系统既可以观察颗粒形貌,还可以得到粒度分布、数量、大小、平均长径比以及长径比分布等,为科研、生产领域增添了一种新的粒度测试手段;该系统包括光学显微镜、数字CCD 摄像头、图像处理与分析软件、电脑、打印机等部分组成;是传统显微测量方法与现代图像处理技术结合的产品;软件:测试软件具有操作员管理系统、测试标准、零件测试模板、图像存储、颗粒追踪、报告输出、清洁度分析等功能;全面自动标准选择、颗粒尺寸设定、颗粒计数,或按用户设定范围计数,自动显示分析结果,并按照相关标准确定产品等级;专业软件控制分析过程,手动对焦,手动光强,自动扫描,自动摄入,自动分析;专用数字摄像机将显微镜的图像拍摄及扫描;全自动膜片扫描系统,无缝拼接, 数字化显微镜分析系统;数据传输:R232 接口数据传输方式将颗粒图像传输到分析系统; 颗粒图像分析软件及平台对图像进行处理与分析;显示器及打印机输出分析结果;特点:直观、形象、准确、测试范围宽以及自动识别、自动统计、自动标定等特点; 避免激光法的产品缺陷,扩展检测范围;YH-MIP-0103系统介绍:胤煌科技为您奉献的专门高性价比实验室显微镜。可以轻松地根据需要进行明场、暗场、相衬、荧光、偏光等多种观察;还可以连接照相机、数码摄像头,与电脑联机工作。1)物镜:独立校正光学系统,物镜拥有更高的数值孔径,成像更加平坦,清晰范围可达视场边缘。5X、10X、20X、30X、40X、50X、80X、100X 等可根据要求选配、经过防霉处理;2)目镜:高眼点,屈光度可调。10X 目镜视场范围有 20mm 和 22mm 两种配置。经过防霉处理;3)阿贝聚光镜:数值孔径 NA1.25,中心可调,带相衬板插孔,配孔径光阑调节装置,聚光镜孔径光阑采用与物镜色圈相同颜色的标记,方便您的使用;4)暗场聚光镜:专门用于暗场观察,安装方便;5)偏光装置:加配起偏器和验片器,您便可以轻松进行简易偏光观察;6)多功能转盘式相衬聚光镜:数值孔径 NA1.25,配置多功能相衬聚光镜,您可以配合 10X-100X 相衬物镜进行相衬观察,配合 10X-40X 物镜进行暗场观察,也可以明场观察;7)内倾式转换器:方便您放置切片,变换物镜进行观察;8)机械载物台:平台尺寸大于 100*100mm,可容纳 2*50mm 快切片,配切片定位夹;X/Y 方向移动范围大于 50*50mm。低位同轴移动手轮;9)无导轨机械载物台:平台尺寸大于 100*100mm,可容纳 2*50mm 快切片,配切片定位夹;X/Y 方向移动范围大于 50*50mm,低位同轴移动手轮,调节手轮可以根据您的用手习惯任意安装在载物台的左手或右手一侧;10)电动载物台:平台行程:大于 80*70mm;行程:2000μm;定位精度:≤±5μm;典型分辨率: 单步 0.625μm;11)观察筒:双目或三目铰链式观察筒;三目分光比 20/80,可以轻松与数码摄像头或照相机连接工作;视场较高可配置到 22mm;有 48-75mm和 52-75mm 两种不同的双目瞳孔,调节距分别适用于亚洲和欧美人士使用,您可以根据自己双目距离作出灵活的选择;12)粗微动手轮高度可调:根据您手形的大小,粗微动手轮高度可调,为您的手臂带来轻松和舒适;13)照明系统:6V/20W、6V/30W 卤素灯或者 LED 多种光源可供选择。抽屉式的灯座设计让您只需简单地拔出、插入便可方便地更换灯泡;14)高效率的独立散热系统:即使在 6V/30W 卤素灯 48 小时不间断照明的环境下,机身也不会烫手,完全解决了长期困扰研究人员的机身发烫问题;15)增高器:果您体型高大,可选配增高器,保证您观察时的坐姿更加舒适;16)搬运把手:保证您移动显微镜时轻松安全;YH-MINP-0103产品配置 显微镜不溶性微粒检测仪技术参数测试范围: 1 μm - 500 μm放大倍数:40X-l000X 倍比较大分辨:0.1 μm显微镜误差:0.02(不包含样品制备因素造成的误差)重复性误差: 93%软件运行环境:Windows 2000、Windows XP接口方式:RS232 或 USB 方式供货期:30 个工作日精 确 度:95%(按中国药典 2010 版校准)YH-MIP-0103分析过程: YH-MIP-0103系统介绍:美国药典 USP 788、USP 789、USP35-NF30、USP32-NF27;欧洲药典 EP6.0、EP7.0、EP7.8、EP8.0;英国药典 BP2013、BP2012、2010、2009;日本药典 JP16、JP15、JP14;印度药典 IP2010 版;WHO 国际药典 IntPh 第四版;中国药典 2010 年、2015 年;GB8368 输液器具;ISO21510;ISO11171 等。GB/T 11446.9-2013 电子级水中微粒的仪器测试方法。可根据客户要求,植入相应“光阻法颗粒度”测试和评判标准。 创新点:显微镜不溶性微粒检测仪 全自动进行滤膜全扫描,并进行颗粒图片分析,可以区分颗粒性质,鉴别不溶性微粒的来源,是金属还是纤维按照颗粒性质进行归类分析统计,检测分析系统可按客户要求配置奥林巴斯体式显微镜、奥林巴斯金相显微镜等 显微镜不溶性微粒检测仪
  • Anyty(艾尼提)便携显微镜成为工业检测重要工具
    一直以来,工厂在产品检测、品质控制环节,涉及到微小物体或要检测产品的局部微小的细节,或检测要求精度较高,都要用到显微镜放大观察。而随着科技的发展,尤其是便携式显微镜的成熟和发展,以其小巧轻便、操作简单等优势在工业检测方面得到广泛应用,成为工业检测重要工具。 Anyty[艾尼提]便携式显微镜3R-WM401WIFI检测刀具 显微镜是工业检测重要仪器,在工业上观测材料、品质检测等,为提示工业制造精度具有很大的帮助。不过随着市场经济的发展,在工业产品质量控制与检测中,需要在生产环节各个节点进行品质抽检等,因此传统的显微镜存在移动不便、操作困难等弊端。 另外,品质检测人员要在普通显微镜的强光下,用显微镜的目镜观察细节,这样时间长了,不但会影响员工的用眼健康,品质检测人员流失严重,耗费大量的员工培训和管理的时间和精力,而且造成品质控制不严,影响公司的产品品质和客户信誉,从而严重影响公司的发展。 Anyty[艾尼提]便携式显微镜3R-MSBTVTY检测零部件 在这样的市场环境下,此类问题亟待解决。依托光电技术不断发展,便携式显微镜应运而生。 当前针对工业检测等方面,3R公司推出了一系列高清晰的不同规格类型的Anyty[艾尼提]便携式显微镜方案,有手持的,有直接带显示屏的,也有无线WiFi的等,当前已在工厂产品检测及品质控制等方面得到广泛应用,有效的弥补了传统显微镜的一些问题。 相比于传统显微镜,Anyty[艾尼提]便携式显微镜优势明细,小巧便携,非常适合不同的工作现场;而且具体一键自动对焦,操作简单,容易上手;自带屏幕,可进行精准测量,可拍照录像,对数据进行采集储存,便于生产检测报告等,成为工业检测重要工具。 Anyty[艾尼提]便携式显微镜3R-MSA600S筛网检测 总而言之,Anyty[艾尼提]便携式显微镜在工业检测领域广泛应用,并且能够针对不同用户提供个性化解决方案,为企业制造水平的提升提供重要产品支持和技术支持。

手持简单显微镜相关的方案

手持简单显微镜相关的资料

手持简单显微镜相关的试剂

手持简单显微镜相关的论坛

  • 手持数码显微镜有哪些特点

    手持数码显微镜有哪些特点?手持式数码显微镜也叫便携式数码显微镜,顾名思义是一种小巧便携的微型显微镜产品,显微镜可以将显微镜看到的实物图像通过数模转换,使其成像在显微镜自带的屏幕上或计算机上。从而,我们可以对微观领域的研究从传统的普通的双眼观察到通过显示器上再现,从而提高了工作效率。手持式显微镜深受消费者的喜爱,它的轻巧便捷是其它显微镜无法超越的,相对于传统光学显微镜它可以提供完美的解决方案让检测工作现场化,高效化。那么,手持数码显微镜有哪些特点?第一、体积小,便于携带,特别适合移动检测、现场检测,大小重量只有普通光学显微镜的1/10,突破传统显微镜使用空间的局限性。第二、观测物体可以将显微放大的图像直接显示在屏幕上,便于观察,而且可以实时拍照、录像,记录检测数据,极大的提高了检测效率。第三、在显微图像软件处理上,可以根据使用需求实现画面反色、黑白、倒置、对比等画面调节功能,同时还可以对显微图像进行数据测量(长度、角度、直径等),最高精度达0.001mm。第四、手持式显微镜可以连接多种显示设备(电视、电脑、投影),便于多人同时分享、讨论,数码教学等。第五、提供多种供电选择,电脑USB供电、干电池供电、锂电池供电,真正实现随时随地,现场检测!第六、根据观察物体及使用环境的的不同,可以提供多种光源(荧光、红外等),最大限度满足使用需求!文章转载于网络更多文章资讯:奥林巴斯显微镜(http://www.microimaging.com.cn/)

  • 相差显微镜简单介绍

    相差显微镜:利用光的衍射和干涉现象将透过标本的光线光程差或相位差转换成肉眼可分辨的振幅差显微镜。提高了密度不同物质图像的明暗区别,可用于观察未经染色的细胞结构。 相差显微镜是荷兰科学家Zernike于1935年发明的,用于观察未染色标本的显微镜。活细胞和未染色的生物标本,因细胞各部细微结构的折射率和厚度的不同,光波通过时,波长和振幅并不发生变化,仅相位发生变化(振幅差),这种振幅差人眼无法观察。而相差显微镜通过改变这种相位差,并利用光的衍射和干涉现象,把相差变为振幅差来观察活细胞和未染色的标本。相差显微镜和普通显微镜的区别是:用环状光阑代替可变光阑, 用带相板的物镜代替普通物镜,并带有一个合轴用的望远镜。相衬显微镜,又称相差显微镜或位相显微镜。

手持简单显微镜相关的耗材

  • 显微镜载物台
    显微镜载物台由中国领先的进口精密仪器和实验室仪器旗舰型服务商-孚光精仪进口销售!孚光精仪精通光学,服务科学,欢迎垂询!显微镜载物台能够完美地解决现有显微镜载物台的尺寸与实验要求不符的问题显微镜载物台适合所有商用显微镜载物台适配器显微镜载物台使用方便显微镜载物台操作简单显微镜载物台精度高显微镜载物台具有多种不同的类型供选择显微镜载物台轴整体式设计,结构紧凑显微镜载物台高品质滚珠螺杆驱动显微镜载物台重复性高,动力稳且大手动载物台运动舒适显微镜载物台 徕卡Leica DMIRB 型 显微镜载物台适合奥林巴斯IMT2,IX50,IX70,IX71,IX81型号 显微镜载物台适合ZeissIM35,Axiovert (Zeiss part451740)同时适合Ludl, Prior, ASI品牌显微镜载物台和欧洲进口的显微镜载物台,能够完美地解决现有显微镜载物台的尺寸与实验要求不符的问题。我们提供适合所有商用显微镜载物台适
  • 病理显微镜配件
    病理切片显微镜配件为欧洲原产,创立了进口病理显微镜世界级标准,进口病理显微镜高端具有无限远矫正光学技术,为用于提供高标准的丰富的对比度和清晰的图像.病理切片显微镜配件为欧洲原产,创立了进口病理显微镜世界级别新标准,进口病理显微镜高端无限远矫正光学技术,为用于提供高标准的丰富的对比度和清晰的图像,而且还把Infinitive ICO2 Plan 物镜列为标准配件供用户使用。双目病理切片显微镜是我们奥地利生命科学显微镜中病理切片显微镜的一种,秉承欧洲精密光学高端设计和制造优势, 具有绝佳的光学性能和性价比,非常适合 各种医院,医学院校和研究所以及各种医疗机构的使用。病理切片显微镜显配件特色:3年保质期 Pure ICO2 Plan infinity optics 4/10/40物镜先进的LED光源系统人体工程学免疲劳观察镜筒智能感应节能系统,自动熄灯聚焦自动停止功能适合佩戴眼镜工作者使用,不需要额外眼罩非机架式载物台进口病理显微镜高科技紧凑设计多系统聚光病理切片显微镜配件参数镜体: MCX51型镜体 203x145mm 带有LED 照明系统, 适合电源为110-220VAC,50/60HZ. 具有智能感应系统,15分钟不用就自动关闭照明系统,全面节能。四孔转角物镜转盘:显微镜聚焦:具有低位聚焦(low position), 粗调聚焦(coaxial coarse )以及校准的微调聚焦功能,总体聚焦范围20mm, 具有安全自动聚焦停止功能和装置。观察镜筒: ARCTYPE型双目型, 头部30度倾斜, 360度可旋转,瞳距48-75mm可调,固定于镜体上。载物台:非机架式双层机械载物台,150x133mm尺寸,行程范围:76x30mm (X-Y), 载物台可上下移动20mm,单手操作样品架 (specimen holder) ,固定于显微镜镜体上。多系统聚光器(Multisystem-Condenser): Abbe明视场聚光器孔径虹膜N.A 1.25, 快速使用技术,对于不同物镜快速达到最佳照明状态。目镜 (Eyepieces, 2pcs): 3WF 10x18Widefield, 适合戴眼镜用户使用,不需要额外的眼罩。无限远光学矫正技术ICO2 Plan 4/0.10, WD 23.5mm, CC 0.17ICO2 Plan 10/0.25, WD 10.0 mm, CC 0.17ICO2 Plan 40/0.65, WD 0.54 mm, CC 0.17病理切片显微镜可选附件---相衬配件Brightfield and Phase Contrast 10/40Brightfield, Darkfield and Phase Contrast 10/40进口病理显微镜加热台我们针对特殊样品(如活细胞)需要稳定的温度,我们特意设计了显微镜的加热台或显微镜温控台,与我们的显微镜精密匹配。病理切片显微镜配件显著的产品优势:先进的LED光学光源系统:我们的进口病理显微镜采用具有世界一流水平的全新LED光照系统,确保以超低功耗高亮度均匀照明整个目标样品. 这种LED光源节能,以更低能耗提供更高亮度的照明,而且照明的均匀度大幅度提高。 ARC型镜筒:这个系列的病理切片显微镜创立了“输入工作”的新标准,使用双目Arctype tube技术,从而为目镜提供两个不同的位置,全面照顾到身高不同的用户,实现人体工程学姿势长时间工作而不感到劳累。 瞳距48-75mm可调,屈光度可调,每个用户都能找到自己最佳的使用状态; 目镜设计适合佩戴眼镜的用户,不需要佩戴额外的眼罩即可使用。 智能感应(smart sense)技术--节能利器:病理切片显微镜具有全新超高灵敏度智能感应系统, 安装于显微镜底座的前部,15分钟没有使用,该感应系统将自动光比显微镜照明光源,全面节能并提高照明效率。 四孔物镜转换器 Quadruple nosepiece: 采用转角物镜转换器,转为4个物镜的使用而设计,并具有后视功能,为载物台上提供更多空间,观测样品视场大大优化,操作更为舒服而简单。病理显微镜载物台-stage: 独具奥地利专利技术的“玻璃覆盖”技术,采用可更换,超硬,防划,耐腐蚀的玻璃覆盖载物台,保护载物台免受刻划、磨损、腐蚀。病理显微镜多系统聚光器-Multisystem-Condenser: 采用Abbe明视场聚光器,孔径虹膜NA 1.25.,对于不同数值的物镜,确保快速呈现最佳观测结果,并且支持显微镜升级到各种暗视场/明视场,明视场/相衬等配置。进口病理显微镜零部件固定设计: 这是显著以特色之一,为显微镜各个部件提供了保安系统,观察镜筒,物镜,目镜,载物台,聚光器固定到显微镜镜体上,确保所有零部件不分离而丢失. 抗真菌处理--适合恶劣工作环境: 可以再温度较高,湿度较大的气候或环境中工作,采用特殊的抗真菌处理,确保光学系统不受损坏,图片保持明亮而清晰。进口病理显微镜便携实用: 采用了“节省空间“的理念设计, 适合小空间工作实用。而超轻的重量又适合运输、携带和存储。
  • 显微镜适配圈
    显微镜适配圈升级你现有的徕卡EZ4体视显微镜,所用的适配圈近似方形。我们购置荧光套装,首先要选择适配圈ring adapter,共有三种:标准型(至67mm),超大型(至84mm),Leica EZ4型。当然,假如是Leica EZ4体视显微镜,荧光套装配置选择起来就非常简单。首先,选择Leica EZ4型适配圈,进一步的选择与一般的体视显微镜相同,这里就不赘述,参阅体视显微镜荧光适配器。经常有人问到:你们的荧光适配器能与我手头的体视显微镜匹配吗?实际的情况是几乎完美的匹配一切体视显微镜,这是因为荧光适配器系统与我们的显微镜接触的是适配圈,它附着在物镜下面的环形灯部位,带有定位螺丝钉的适配圈内径67mm,实际上直径50mm的圆筒都可以固定,弹性范围很大。如果你手头的体视显微镜实在很老,有着大的镜筒或者不规则的形状,也可以来信告诉我们。下面部分型号的体视显微镜已知可以与荧光适配器匹配使用,如果你有补充,请来信告知我们,我们可以将之加入下表,可以方便他人的选择。Fisher Stereomaster Zoom 12-562-1Leica M3CMZ6MZ8MZ12S4S6ES8Meiji EMZMotic SMZ168Nikon SMZ-1BSMZ-2BSMZ-2TSMZ-10ASMZ445SMZ645SMZ745SMZ660SMZ800SMZ1000SMZ1500Olympus SZ40SZ51SZ61SZX7SZX10SZX12SZX16VWRVistavisionZeiss Discovery V8Stemi 2000SV6SV11货号产品描述SFAZ-AD Leica EZ4 Adapter only,适配圈SFA-ADMicroscope Mounting Adapter:standard size fits up to 67mmSFA-XL-ADOversize Adapter:fits up to 84mm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制