当前位置: 仪器信息网 > 行业主题 > >

色谱苯系物分析

仪器信息网色谱苯系物分析专题为您提供2024年最新色谱苯系物分析价格报价、厂家品牌的相关信息, 包括色谱苯系物分析参数、型号等,不管是国产,还是进口品牌的色谱苯系物分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱苯系物分析相关的耗材配件、试剂标物,还有色谱苯系物分析相关的最新资讯、资料,以及色谱苯系物分析相关的解决方案。

色谱苯系物分析相关的资讯

  • 气相色谱-中红外同位素光谱联用技术分析水中苯系物单体碳同位素
    单体稳定碳同位素分析(C-CSIA)技术是示踪温室气体与环境有机污染物来源和过程的有力工具。目前,气相色谱-同位素比值质谱仪(GC-IRMS)是C-SIA的主流技术。近年来,光谱同位素分析技术进步飞速,且具有高效、便携、可现场布控、分析成本低等特点,在现场实时测量温室气体和二氧化碳地质封存场地逸散气体的同位素指纹方面优势明显。但是,该项技术目前主要应用于甲烷、乙烷、丙烷等小分子气体的碳同位素分析。适用于不同环境介质样品中各类化合物的碳同位素光谱分析技术仍缺乏方法优化和系统验证,主要技术难点是衔接混合样品的高效色谱分离和光谱同位素的同步分析。近期,中国科学院广州地球化学研究所有机地球化学国家重点实验室博士研究生张霁云及导师金彪、张干研究员、王强工程师与苏州冠德能源科技有限公司史哲工程师及齐鲁工业大学朱地教授联合攻关,采用气相色谱-中红外同位素光谱联用技术,在水中苯系物的单体碳同位素组成分析方面取得了突破。这项工作聚焦水中挥发性有机污染物的C-CSIA分析测试需求,联用气相色谱和中红外光谱,通过调节、优化气路设计以及光谱参数,采用固相微萃取(SPME)和预热顶空两种进样方式,实现了微克每升浓度级别水溶液样品中的苯、甲苯、乙苯、三甲基苯等物质的色谱分离与单体δ13C高精度分析。通过与GC-IRMS技术的分析结果对比表明此方法对于各目标单体的分析误差均在0.5‰以内。另外,我们应用这个方法观测到了页岩气水平钻井过程钻井液中三甲基苯的稳定碳同位素分馏。该方法稳定性强、精度高、并以氮气为载气降低了污染物C-CSIA的分析成本,更利于污染场地现场布控和现场测试(图1)。图1. 气相色谱-中红外同位素光谱联用方法建立、优化与页岩气开发场地应用图2. 测量系统构成与原理(左)及JAAS期刊封面(右)该项成果近期以主封面(Front Cover)文章发表在Journal of Analytical AtomicSpectrometry (JAAS) 杂志(图2),该研究获得国家重点研发计划“页岩气开采场地特征污染物筛查和污染防控”(2019YFC1805500)和中国科学院仪器研发攻关预研项目(282021000003)资助。
  • 色谱检测方法新标准来啦(七)——GB/T 39298-2020 再生水水质 苯系物的测定
    检测方法 气相色谱法仪器配置:吹扫捕集仪+GC主机+SPL+FID色 谱 柱:SH-Wax Cap. Column 30m x 0.32mm x 0.50um苯系物标准溶液中各组分气相色谱图 岛津推荐仪器 气相色谱仪:Nexis GC-2030Nexis GC-2030气相色谱仪配备了全新智能交互界面,仅需触屏即可完成仪器操作并可以实时了解仪器运行状态。创新ClickTek技术提升用户分析体验,使色谱柱的安装和仪器维护进入徒手时代。配备了先进的灵敏度检测器群,可以进行高可靠性和高精度的痕量分析。柱温箱功能全面优化,使用效率有显著提升的同时还使能耗有效降低。 扫码了解更多信息 气相色谱仪:GC-2010 ProGC-2010 Pro继承了高性能毛细柱气相色谱仪GC-2010Plus的基本性能。其良好的重现性确保其具备高可靠性。配备了高性能检测器使高灵敏度分析得以实现。同时,高速柱温箱冷却技术可大幅缩短分析时间,是一款高性价比气相色谱仪产品。 扫码了解更多信息吹扫捕集仪
  • 环糊精超交联聚合物纤维顶空固相微萃取-气相色谱-质谱法分析植物油中的邻苯二甲酸酯
    HS-TGA-101热重分析仪(TG、TGA)是在升温、恒温或降温过程中,观察样品的质量随温度或时间的变化,目的是研究材料的热稳定性和组份。广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控.环糊精超交联聚合物纤维顶空固相微萃取-气相色谱-质谱法分析植物油中的邻苯二甲酸酯【1、河南工业大学 2、宁夏计量质量检验检测科学研究院 张朋成 王媛 刘坤玲 孙亚明 何丽君】环糊精超交联聚合物纤维顶空固相微萃取-气相色谱-质谱法分析植物油中的邻苯二甲酸酯环糊精超交联聚合物纤维顶空固相微萃取-气相色谱-质谱法分析植物油中的邻苯二甲酸酯上海和晟 HS-TGA-101 热重分析仪
  • 德国CNW的苯系物分析专用wax柱促销
    苯系物的检测是环境监测中很常见的项目,其中分离的难点是乙基苯,对二甲苯和间二甲苯三个组分的分离。安谱公司提供的苯系物分析专用柱,针对用户不同的仪器,保证乙基苯,对二甲苯和间二甲苯三个组分良好的分离度,保证不同批次间分离效果的稳定性 色谱柱:CD-wax柱 规格:30m× 0.25mm× 0.25um 货号:GAEQ-103221# 促销价格:2500元 促销日期:2010-7-12至2010-11月30日
  • 【安捷伦】“拎包入住”式应用解决方案 | 轻松解决固定污染源中的苯系物检测/升级改造您的气相色谱仪
    “拎包入住”式应用解决方案轻松解决固定污染源中的苯系物检测/升级改造您的安捷伦气相色谱仪苯系物包括全部芳香族化合物,狭义上的特指包括BTEX在内的在人类生产生活环境中有一定分布并对人体造成危害的含苯环化合物。由于生产及生活污染,苯系物可在人类居住和生存环境中广泛检出,并对人体的血液、神经、生殖系统具有较强危害。因此很多国家把大气中苯系物的浓度作为大气环境常规监测的内容之一,并规定了严格的室内外空气质量标准和污染源排放标准。2022年7月14日我国首次发布了《固定污染源废气苯系物的测定气袋采样/直接进样-气相色谱法》(HJ1261-2022),并即将于2023年1月15日全面实施。标准采用直接进样结合毛细管色谱柱,用于固定污染源废气中苯、甲苯、乙苯、邻二甲苯、间二甲苯、对二甲苯、异丙苯和苯乙烯的测定,支撑《大气污染物综合排放标准》(GB16297-1996)等13项污染物排放标准实施。安捷伦自成立以来一直致力于可持续发展和环境保护,为环境检测提供了大气、水污染、土壤等众多应用解决方案,为环境监测单位和环境检测企业提供硬件设备、技术培训、应用支持和一站式应用解决方案服务。针对《固定污染源废气苯系物的测定气袋采样/直接进样-气相色谱法》(HJ1261-2022),安捷伦结合用户实际需求,定制专属的固定污染源废气中苯系物的测定应用解决方案,不论您是购买全新安捷伦8890/60系列气相色谱仪,还是基于原有安捷伦气相色谱仪进行升级改造+工厂级别的深度维护或翻新(原有仪器焕然一新),亦或单独进行升级改造,均能实现最快速的达到标准方法的检测要求。无论您原有的气相色谱是6890、7890、7820、8890、8860系列均可升级改造,并完全适用HJ1261-2022标准方法检测要求。(图二)标准色谱图安捷伦阀气体进样技术,拥有极好的准确性和重复性,并支持多种进样方式,无论是气体采样袋手动进样,还是气体自动进样器进样和在线监测连续进样,均能轻松实现。结合安捷伦专利技术聚乙二醇毛细管色谱柱,提供良好的乙苯、间对二甲苯分离效果和较好的保留时间重复性。工程师现场对方法调试、验证,并针对方法进行系统的操作培训,让您轻松应对全新标准。(图三)用户气体进样装置改造实例联系我们即可定制您的专属应用解决方案我们也提供专属GC升级改造方案进行PAMS和VOCs、温室气体、非甲烷总烃、CO2还原气分析、N2检测等各种应用升级改造检测方案关注安捷伦微信公众号,获取更多市场资讯
  • 冷杉精密仪器发布 冷杉 3100-05H 非甲烷总烃/苯系物 在线气相色谱仪新品
    n行业背景为改善环境空气质量,降低 PM2.5 污染浓度,大幅减少 PM2.5 前驱体—— VOCs 排放量,应采用先进的治理技术,较大限度降低 VOCs 排放总浓度,即污染物负荷。国家“十三五”规划将 VOCs 排放纳入总量控制指标,并提出在重点区域、重点行业推进 VOCs 控排和减排,确保到 2020 年全国 VOCs 排放总量下降 10% 以上。“十三五”规划则提出,到 2020 年重点行业VOCs排放应削减 30% 以上。VOCs种类较多,单独监测每种VOCs现有技术成本较高。因此《大气污染物综合排放标准》(GB16297-1996)中规定标准中使用“非甲烷总烃(NMHC)”作为挥发性有机物排放的综合控制指标。除此之外,还规定了苯、甲苯、二甲苯控制指标。苯系物作为活性较强的VOCs,是重点控制污染物。它不仅是臭氧的前体物,也是PM2.5的前体物,同时也是恶臭类的污染物(苯乙烯)。《大气污染物综合排放标准》规定了苯、甲苯、二甲苯的排放限值。而在《中华人民共和国环保税法》列出了部分苯系物,包括苯、甲苯、二甲苯、苯乙烯等。n产品概述冷杉 3100-05H 非甲烷总烃/苯系物在线气相色谱仪,采用无氮气场景设计,采三阀、四柱、双 FID 配置,且全程高温伴热,样品经定量环定量、三阀进样、四柱分离后,氢火焰离子化检测器(FID)检测,前FID测定样品样品中的总烃(THC)和甲烷(CH4)浓度,非甲烷总烃(NMHC)的浓度由差减法计算,后 FID 测定样品中苯系物各组分的浓度。适用于污染源中非甲烷总烃和苯、甲苯、乙苯、二甲苯、三甲苯等的含量监测。n产品特点?无氮气场景设计,真正意义的在线气相色谱仪,无需更换气源?运行稳定安全,实现无人值守,运维成本低 l自我保护功能,气源供应不足时,火焰自动熄灭,且关闭氢气和空气流量,防止泄露 l自动点火,开机、气源供应恢复或意外断电恢复后,自动点火并运行 l支持远程报警与远程诊断功能?仪器定性定量重复性好(≤1%),检出限低 lFID检测限低至 1.8×10-12 g/s l高稳定性温度控制系统:0.01 ℃ l高精度电子压力控制单元EPC(0.001psi),实现温度和压力补偿 ?软件操作简单,维护方便,支持定制服务n应用场景 固定污染源VOCs 监测;VOCs 处理设备;VOCs 监控点监测;其他 VOCs监测等场景n技术参数量程甲烷 0.01~10000 ppm;总烃 0.01~10000 ppm;非甲烷总烃 0.05~10000 ppm;苯 0.1~1000 ppm(可选)功率电源500 W;220 VAC 50 Hz分析周期2 min~20 min(可选)工作环境温度:5~35 ℃;湿度 20~95%RH检出限甲烷 50 ppb;总烃 50 ppb;非甲烷总烃 50 ppb;苯 50 ppb样气要求样气温度:环境温度 ~180 ℃;流速不低于 0.5 L/min 或压力不低于 0.1Mpa重复性2.0%F.S.(24h)仪器尺寸19 英寸标准机箱,高度 6U,633 mm×430 mm×266.7 mm (L*W*H)创新点:无氮气场景设计,真正意义的在线气相色谱仪,无需更换气源。 运行稳定安全,实现无人值守,运维成本低 自我保护功能,气源供应不足时,火焰自动熄灭,且关闭氢气和空气流量,防止泄露 自动点火,开机、气源供应恢复或意外断电恢复后,自动点火并运行 支持远程报警与远程诊断功能 仪器定性定量重复性好(≤ 1%),检出限低 FID检测限低至 1.8× 10-12 g/s。 高稳定性温度控制系统:0.01 ℃。 高精度电子压力控制单元EPC(0.001psi),实现温度和压力补偿 软件操作简单,维护方便,支持定制服务 冷杉 3100-05H 非甲烷总烃/苯系物 在线气相色谱仪
  • 赛默飞发布在线固相萃取—双三元液相色谱(DGLC-UV)分析水中9 种苯胺类化合物的解决方案
    2014年7月8日,上海 ——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布在线固相萃取——双三元液相色谱(DGLC-UV)分析水中9 种苯胺类化合物的解决方案。苯胺类化合物是一种重要的有机化工原料和化工产品。环境中所含的苯胺类化合物主要来自于各种化工、染料、制药等工业废水中,一般毒性较高,少量就能引起人体中毒,其对环境的污染一直被人们所关注,美国、日本等国把苯胺类列入主要监测项目或优先监测污染物的黑名单。在我国苯胺类化合物也被列为环境中的重点污染物,并制定了最高容许排放浓度。DGLC双三元液相色谱系统 由于水体中苯胺的含量一般比较低,因此目前常用的苯胺分析方法,如HPLC、GC 和分光光度法等,均需要对大体积的水样进行前处理,后进行检测,操作比较繁琐。《GB/T 5750.8-2006 生活饮用水标准检验方法有机物指标》中采用GC 和重氮偶合分光光度法测定生活饮用水及水源水中的苯胺,其中,GC 方法需前处理10L 水样,对水样中苯胺的最低检测限为20μg/L;分光光度法需处理25 mL 水样,最低检测限为80μg/L。《水和废水监测分析方法(第四版)》中采用分光光度法和HPLC 法分别测定了5 种苯胺类化合物,检测限为0.5 ~ 1.5μg/L。赛默飞新解决方案采用双三元在线固相萃取—液相色谱法,水样只需简单过滤,即可进样。本方法直接进样2.5 mL,检出限即可达0.05 ~ 0.2μg/L。下载应用文章请点击:http://www.instrument.com.cn/netshow/SH100650/down_331133.htm 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、 Life Technologies、 Fisher Scientific 和 Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com。赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。为了满足中国市场的需求,现有8家工厂分别在上海、北京、广州和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn。
  • 【行业应用】赛默飞发布气相色谱法测定涂料和胶黏剂中的苯系物及水分含量解决方案
    赛默飞世尔科技(以下简称:赛默飞)近日发布测量涂料和胶黏剂中的苯系物及水分含量的解决方案。整套方法定量准确,操作简单,重现性好,能够满足涂料和胶黏剂中苯系物和水分检测的需要。 苯系物(BTEX)是苯(benzene)、甲苯(toluene)、乙苯(ethylbenzene)和二甲苯(xylene)的统称,属于单环芳烃类物质。苯属于IARC(国际癌症研究机构)第一类致癌物;甲苯、乙苯、二甲苯在溶剂分类中属中等毒性溶剂;甲苯、二甲苯蒸气长期接触可影响肝、肾等的功能。 苯系物主要来源于装修用的油漆、涂料、粘合剂、橡胶、树脂、装饰板材等材料中。与此同时,油漆涂料中的苯系物对人们的身体健康也造成了严重的威胁。因此,世界各国对油漆涂料中的苯系物做了限量要求。我国对油漆涂料中的苯系物作了明确的限量要求,《GB 18582-2008 室内装饰装修材料内墙涂料中有害物质限量》中规定苯、甲苯、乙苯、二甲苯总和不超过300mg/kg。气相色谱技术是一种可定性、定量分离分析技术,因其分离效能高、分析速度快、选择性好等优点被广泛应用。 本方法依据国家标准方法《GB 18582-2008 室内装饰装修材料内墙涂料中有害物质限量》规定的方法,对涂料和胶黏剂中的苯系物和水分进行测定。涂料和胶黏剂样品中的苯系物经甲醇提取后,采用Thermo Scientific? TRACE? 1300 气相色谱检测,外标法定量。结果表明,七种苯系物的平均回收率为92.3-104.9%,3 次平行测定的RSD 值≤ 4.1%,方法测定低限为1.0-3.5 mg/kg。水分经二甲基甲酰胺提取后,采用TCD 检测器进行检测,操作简单,重复性好,准确性高,能够满足涂料和胶黏剂样品中的测定要求。 更多产品信息,请查看:https://www.thermofisher.com/order/catalog/product/14800300?CID=News20160315 应用文章下载链接: http://tools.thermofisher.com/content/sfs/brochures/AN_C_GC-52-%E6%B0%94%E7%9B%B8%E8%89%B2%E8%B0%B1%E6%B3%95%E6%B5%8B%E5%AE%9A%E6%B6%82%E6%96%99%E5%92%8C%E8%83%B6%E9%BB%8F%E5%89%82%E4%B8%AD%E7%9A%84%E8%8B%AF%E7%B3%BB%E7%89%A9%E5%8F%8A%E6%B0%B4%E5%88%86%E5%90%AB%E9%87%8F%20v1-.pdf---------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮 助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高 实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网 站:www.thermofisher.com 赛默飞世尔科技中国赛默 飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国 市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com请扫码关注:赛默飞世尔科技中国官方微信
  • 广西分析测试协会立项《酸笋及其制品中对甲苯酚的测定 顶空/气相色谱-质谱法》团体标准
    各相关单位:根据《中华人民共和国标准化法》、《团体标准管理规定》和《广西分析测试协会团体标准制修订工作程序》的有关规定,广西分析测试协会于2023年10月组织专家对《酸笋及其制品中对甲苯酚的测定 顶空/气相色谱-质谱法》团体标准进行了立项评审,经审查,上述申报的团体标准符合立项条件,现予立项。如有异议,请在公告之日起10个工作日(11月16日—11月29日)内实名以书面方式向我会秘书处反映,并请提供必要的证据材料和联系方式。联系地址:广西南宁市东葛路20-1号东葛大厦1102室电子邮箱:gxfxcsxh@163.com联 系 人:商榆 18677118331广西分析测试协会2023年11月15日广西分析测试协会关于《酸笋及其制品中对甲苯酚的测定 顶空气相色谱-质谱法》团体标准的立项通知.pdf
  • 关于征求《水质 苯系物的测定 气相色谱法》(征求意见稿)等9项国家环境保护标准意见的函
    环境保护部办公厅函 环办函〔2008〕186号 关于征求《水质 苯系物的测定 气相色谱法》(征求意见稿)等9项国家环境保护标准意见的函 .h1 { FONT-WEIGHT: bold TEXT-JUSTIFY: inter-ideograph FONT-SIZE: 22pt MARGIN: 17pt 0cm 16.5pt LINE-HEIGHT: 240% TEXT-ALIGN: justify } .h2 { FONT-WEIGHT: bold TEXT-JUSTIFY: inter-ideograph FONT-SIZE: 16pt MARGIN: 13pt 0cm LINE-HEIGHT: 173% TEXT-ALIGN: justify } .h3 { FONT-WEIGHT: bold TEXT-JUSTIFY: inter-ideograph FONT-SIZE: 16pt MARGIN: 13pt 0cm LINE-HEIGHT: 173% TEXT-ALIGN: justify } DIV.union { FONT-SIZE: 14px LINE-HEIGHT: 18px } DIV.union TD { FONT-SIZE: 14px LINE-HEIGHT: 18px }    各有关单位:    为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,提高环境管理水平,规范环境监测工作,我部决定修订《水质 苯系物的测定 气相色谱法》等9项国家环境保护标准。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究并提出书面意见,并于2008年6月10日前反馈我部。    联系人:环境保护部科技标准司 谷雪景    通信地址:北京市西直门内南小街115号    邮政编码:100035    联系电话:(010)66556214    传真:(010)66556213    附件:1.征求意见名单     2.《水质 苯系物的测定 气相色谱法》(征求意见稿)     3.《水质 苯系物的测定 气相色谱法》(征求意见稿)编制说明     4.《水质 多环芳烃类的测定 高效液相色谱法》(征求意见稿)     5.《水质 多环芳烃类的测定 高效液相色谱法》(征求意见稿)编制说明     6.《水质 氟化物的测定 茜素磺酸锆目视比色法》(征求意见稿)     7.《水质 氟化物的测定 茜素磺酸锆目视比色法》(征求意见稿)编制说明     8.《水质 氰化物的测定》(征求意见稿)      9.《水质 氰化物的测定》(征求意见稿)编制说明     10.《水质 总硝基化合物的测定 气相色谱法》(征求意见稿)     11.《水质 总硝基化合物的测定 气相色谱法》(征求意见稿)编制说明     12.《水质 梯恩梯、黑索今、地恩梯的测定 气相色谱法》(征求意见稿)     13.《水质 梯恩梯、黑索今、地恩梯的测定 气相色谱法》(征求意见稿)编制说明     14.《水质 梯恩梯的测定 分光光度法》(征求意见稿)     15.《水质 梯恩梯的测定 分光光度法》(征求意见稿)编制说明     16.《水质 银的测定 3,5-Br-PADAP分光光度法》(征求意见稿)     17.《水质 银的测定 3,5-Br-PADAP分光光度法》(征求意见稿)编制说明     18.《水质 银的测定 镉试剂2B分光光度法》(征求意见稿)     19.《水质 银的测定 镉试剂2B分光光度法》(征求意见稿)编制说明   二○○八年五月十三日 主题词:环保 标准 征求意见 函  附件一: 征求意见名单   水利部    住房和城乡建设部    卫生部    国家质量监督检验检疫总局    中国气象局    各省、自治区、直辖市环境保护局(厅)    各省、自治区、直辖市环境监测站(中心)    各环境保护重点城市环境监测站(中心)    新疆生产建设兵团环境监测中心站    中国环境科学研究院    环境保护部南京环境科学研究所    环境保护部华南环境科学研究所    中国环境监测总站    中日友好环境保护中心    中国环境科学学会    中国环境保护产业协会    环境保护部对外合作中心    环境保护部环境工程评估中心    环境保护部环境规划院    环境保护部环境标准研究所    环境保护部标准样品研究所    中国疾病预防控制中心    农业部环境保护科研监测所    中国科学院生态环境研究中心    中国城市规划设计研究院    中国林业科学研究院林业研究所    国家城市给水排水工程技术中心    长江流域水资源保护局    同济大学(环境学院)    天津化工研究设计院    中国气象科学院农气所    北京中兵北方环境科技发展有限责任公司    中国船舶重工集团公司第七一八研究所    上海交通大学    中国兵器装备集团公司    中国化工防治污染技术协会    中国轻工业清洁生产中心    中国皮革和制鞋工业研究院    华东理工大学    泰州市环境监测中心站    上海市浦东新区环境监测站
  • 宁夏化学分析测试协会批准发布《葡萄酒软木塞中愈创木酚、2,4,6-三氯苯甲醚和2,4,6-三溴苯甲醚的测定 气相色谱/质谱法》 等5项团体标准
    各有关单位:根据国家《团体标准管理规定》和《宁夏化学分析测试协会团体标准管理办法》,我协会对《葡萄酒软木塞中愈创木酚、2,4,6-三氯苯甲醚和2,4,6-三溴苯甲醚的测定 气相色谱/质谱法》等5项团体标准进行了评审,已经通过了专家审查,现予以发布,自2023年4月17日起正式实施,特此公告。序号标准号标准名称发布日期实施日期1T/NAIA 0199-2023葡萄酒软木塞中愈创木酚、2,4,6-三氯苯甲醚和2,4,6-三溴苯甲醚的测定 气相色谱/质谱法2023-04-102023-04-172T/NAIA 0200-2023葡萄酒中多种有机酸的测定 高效液相色谱法2023-04-102023-04-17 3 T/NAIA 0201-2023葡萄酒中甘油的测定 高效液相色谱法2023-04-102023-04-174T/NAIA 0202-2023枸杞中槲皮素和烟花苷的测定 高效液相色谱法2023-04-102023-04-175T/NAIA 0203-2023枸杞中芦丁、山奈酚和异鼠李素的测定 高效液相色谱-质谱法2023-04-102023-04-17宁夏化学分析测试协会2023年4月10日
  • 离子色谱分析氨基糖苷类药物及在各国药典中的应用
    离子色谱自上世纪70年代开始经过近40多年的发展,已成为色谱分析领域中十分重要的分支,被广泛应用于无机阴阳离子、有机酸、糖醇类化合物、氨基酸、氨基糖苷类抗生素等,具有方便快速、灵敏度高、选择性好、可同时分析多种化合物、样品用量少等优点。离子色谱的检测器主要有电化学检测器与光学检测器,在药品控制领域,应用得最多的为电化学检测器,包括电导检测器和安培检测器。电导检测器主要用于测定无机阴阳离子与部分极性有机物如羧酸等。安培检测器又可分为直流安培检测器与积分安培(包括脉冲安培)检测器,其中积分安培检测器主要用于测定糖类、氨基酸类及氨基糖苷类抗生素等。氨基糖苷类抗生素具有相似的化学结构与理化性质,都是以碱性环己多元醇为苷元,与氨基糖缩合成苷,是临床应用较早的一类抗生素。氨基糖苷类抗生素根据其来源可分为发酵与半合成2种,其中发酵来源的主要有链霉素、新霉素、卡那霉素、巴龙霉素、妥布霉素、庆大霉素、核糖霉素及大观霉素等;半合成是以发酵来源的抗生素为前体,再进行结构改造而得到,主要有阿米卡星、奈替米星、异帕米星及我国自主研发的依替米星等,具有更强的抗菌活性、低耐药性及低毒性等。氨基糖苷类抗生素结构中无紫外吸收基团,难以采用常规的高效液相色谱-紫外检测器控制质量,目前国内常用的分析方法为高效液相色谱-蒸发光散射检测法(HPLC-ELSD)。由于其结构中含有多个氨基(-NH2)与羟基(-OH),在强碱性溶液中易解离成阴离子,在一定电压下,可在金电极表面发生氧化反应,实现脉冲安培检测,因此国外药典中多采用离子色谱法检测该类药物。本文概述了本实验室近十几年来采用离子色谱法分析氨基糖苷类抗生素的实例,并简述离子色谱法在各国药典中控制该类药物的应用与发展趋势。1. 硫酸阿米卡星、硫酸阿米卡星注射液与注射用硫酸阿米卡星有关物质1.1 色谱条件YMC ODS-Aq C18(4.6mm×250mm, 5µm)色谱柱,流动相为1L无二氧化碳的去离子水中加三氟乙酸20mL,五氟丙酸300μL,七氟丁酸300μL,50%(V/V)氢氧化钠溶液8mL,用50%(V/V)氢氧化钠溶液调节pH为3.3,加乙腈10mL;流速1.0 mLmin-1;柱后加碱2.1%(V/V)氢氧化钠溶液,流速为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。1.2 结果硫酸阿米卡星与其杂质A、杂质B、杂质 C、杂质D、杂质E、杂质G、杂质H、杂质I均能分离,见图1。阿米卡星质量浓度在0.4985~9.969 µgmL-1范围内峰面积线性关系良好,阿米卡星峰检测限为2.0ng,定量限为5.0ng。供试品溶液中除辅料峰外,各杂质均以主成分自身对照法计算,其中杂质B校正因子为1.4,杂质C校正因子为1.3,杂质D校正因子为0.8,杂质E校正因子为1.2,杂质H校正因子为1.4,杂质I校正因子为0.6。结果8批次硫酸阿米卡星原料总杂质含量为1.2%~1.7%,77批次硫酸阿米卡星注射液总杂质含量为1.1%~2.3%,10批次注射用硫酸阿米卡星总杂质含量为1.2%~2.2%。1. 杂质I 2.杂质B 3.杂质G 4.杂质A 5.杂质C 6.杂质D 7.杂质E 8.杂质H图1 硫酸阿米卡星系统适用性色谱图中国药典2020年版(ChP2020)采用高效液相色谱紫外末端吸收法测定硫酸阿米卡星及其制剂的有关物质。英国药典2024年版(BP2024)与欧洲药典11.0版(EP11.0)均采用离子色谱法测定,流动相体系均为辛烷磺酸钠-无水硫酸钠-四氢呋喃,其中四氢呋喃是影响该方法测定的关键因素,同样纯度不同品牌、甚至同一品牌不同批号的的四氢呋喃都会影响该方法的重复性。此外,EP 11.0 与BP2024的方法还存在运行时间太长大于100min,三电位检测对金电极损耗较大,盐浓度较大对仪器损耗大等缺点。本实验室同样采用离子色谱法,用多氟烷酸体系代替辛烷磺酸钠体系,简化了流动相的配制,缩短了分析时间为35min,用四电位取代三电位保护了工作电极,检测的杂质数量与杂质总量均多于ChP2020的紫外末端吸收法,可用于硫酸阿米卡星及其制剂的有关物质控制。2. 硫酸庆大霉素注射液、硫酸庆大霉素片与硫酸庆大霉素颗粒2.1 色谱条件TSK-gel ODS-81Ts C18(4.6mm×250mm,5µm)色谱柱;流动相为0.7%三氟乙酸(含0.025%五氟丙酸,50%(V/V)氢氧化钠4ml,用50%(V/V)氢氧化钠调节pH值至2.6)-乙腈(97:3);流速为1.0mLmin-1;柱后加碱为2%(V/V)氢氧化钠溶液,流速为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(3mm),参比电极为Ag-AgCl复合电极,四电位检测:同前;柱温为35℃;进样量20µL。2.2 结果硫酸庆大霉素含有4个主组分,分别为C1、C1a、C2a、C2,还含有结构相似的小组分西索米星与小诺霉素。该方法可完全分离4个主组分,并可同时分离出22个有关物质。庆大霉素C1a、西索米星与小诺霉组分的检测限分别为5.3ng、3.5ng与8.0ng,定量限分别为17.8ng、11.6ng与26.7ng。ChP2020采用HPLC-ELSD法测定硫酸庆大霉素注射液的组分,而BP2024与EP11.0均采用离子色谱法测定硫酸庆大霉素原料的组分与有关物质,USP现行版采用离子色谱法测定其原料的组分,均未采用离子色谱法对硫酸庆大霉素注射液进行控制。本实验室对比了离子色谱法与HPLC-ELSD法同时测定硫酸庆大霉素注射液的有关物质,发现两种方法的分离效能相当,但采用离子色谱法时各组分的响应值随其电化学活性不同而差异明显,如西索米星的响应因子大于小诺霉素,在以西索米星为外标法进行有关物质测定时,结果小于HPLC-ELSD。 3 硫酸庆大霉素片组分与有关物质3.1 色谱条件Thermo AcclaimTMAmG C18(4.6mm×150mm, 3µm)色谱柱,流动相为0.7%三氟乙酸(含0.025%五氟丙酸,50%(V/V)氢氧化钠4mL,用50%(V/V)氢氧化钠溶液调节pH至2.6)-乙腈(96.5:3.5),流速1.0mLmin-1,柱后溶液为2%(V/V)的氢氧化钠溶液,柱后加碱为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。3.2 结果该方法中庆大霉素C1、C1a、C2a、C2分别在1.328~132.8µgmL-1、1.606~160.6µgmL-1、7.378~737.8µgmL-1、1.276~127.6µgmL-1浓度范围内线性关系良好,回收率为98.2%~101.8%。有关物质测定中,西索米星在2.632~52.64µgmL-1、小诺霉素在2.006~25.07µgmL-1浓度范围内线性关系良好,西索米星检测限为0.01µg,小诺霉素检测限为0.02µg,各杂质与庆大霉素各组分均能完全分离,见图2。156批次中148批次的硫酸庆大霉素片各C组分的绝对含量分别为C1a为26.3%~37.1%,C2+ C2a为41.8%~49.3%,C1为16.5%~22.2%,4个组分总含量为90.6%~105.0%。148批次的有关物质为小诺霉素1.8%~2.8%,西索米星为未检出~1.5%,其他最大单杂为 0.3%~0.9%,其他总杂为1.2%~4.2%。发现其余8批次样品组分与有关物质均不符合规定,原因为企业采用不符合标准规定的原料所致。1-5,7-8.未知杂质 6. 西索米星 9.小诺霉素图2 硫酸庆大霉素片有关物质典型色谱图ChP2020采用微生物检定法控制其含量,未控制有关物质。BP2024、EP11.0与USP现行版均未收载该品种。本实验室在参考国外药典离子色谱法测定其原料的基础上建立了硫酸庆大霉素片组分与有关物质的方法。方法对乙腈的比例进行了调整,工作电位由四电位取代三电位,可有效的分离硫酸庆大霉素片各组分与各杂质。4.硫酸庆大霉素颗粒组分与有关物质 4.1 色谱条件YMC-Pack Pro C18 RS(4.6×250mm,5μm)色谱柱,流动相为1.6%三氟乙酸(含0.05%五氟丙酸,50%(V/V)氢氧化钠8ml,用50%(V/V)氢氧化钠溶液调节pH值至2.6)-乙腈(94:6),流速1.0 mLmin-1,柱后加碱为2%(V/V)的氢氧化钠溶液,柱后加碱为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。4.2 结果硫酸庆大霉素颗粒的辅料主要为蔗糖,含量较高,与主成分的比例约为200:1,出峰时间约为5min。采用硫酸庆大霉素片的方法测定颗粒时,蔗糖的拖尾峰会导致前15min的基线抬高,严重干扰颗粒有关物质的测定。因此本实验室在硫酸庆大霉素方法的基础上增加了三氟乙酸、五氟丙酸与乙腈的比例,成功解决了蔗糖对硫酸庆大霉素颗粒有关物质测定的干扰。该方法中庆大霉素C1、C1a、C2a、C2分别在5.264~131.6µgmL-1、5.032~125.8µgmL-1、5.595~139.9µgmL-1、3.410~85.24µgmL-1浓度范围内线性关系良好,回收率为98.7%~100.8%。有关物质测定中,西索米星在1.987~39.74µgmL-1、小诺霉素在2.045~51.13µgmL-1浓度范围内线性关系良好,西索米星检测限为0.003µg,小诺霉素检测限为0.01µg,各杂质与庆大霉素各组分均能完全分离,见图3。1-14,16-18-未知杂质;15-西索米星;19-小诺霉素图3 硫酸庆大霉素颗粒有关物质典型色谱图5.盐酸大观霉素与注射用盐酸大观霉素有关物质 5.1 色谱条件采用离子色谱法及HPLC-ELSD法同时分析注射用盐酸大观霉素的有关物质。两法色谱柱均为Apollo C18 (250mm× 4.6mm,5µm),流动相均为0.1molL-1三氟乙酸溶液,柱温均为30℃,进样量均为20µL。离子色谱检测:柱后加减为21g/L氢氧化钠溶液,流速0.5mlmin-1,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。ELSD检测:漂移管温度110℃,载气流速2.6Lmin-1,增益1。5.2 结果ChP2020采用HPLC-ELSD法控制其原料,BP2024与EP11.0采用离子色谱法控制其原料。注射用盐酸大观霉素为无菌原料直接分装,本实验室参考国外药典方法测定了盐酸大观霉素及其制剂的有关物质,并同时与HPLC-ELSD方法进行比较。结果两种方法检测出的有关物质种类和数量基本一致,但离子色谱灵敏度比ELSD高,离子色谱检测限为2.4ng,ELSD为72.8ng。两种方法测定的31批次注射用盐酸大观霉素,杂质D与杂质E结果基本一致,但杂质A、4R-双氢大观霉素及总杂质结果差异较大,原因为杂质A、4R-双氢大观霉素杂质在两种检测器上响应不一致。因此采用离子色谱测定时需对杂质A与4R-双氢大观霉素杂质进行校正因子计算,按校正因子计算后的有关物质结果两种方法基本一致。6.青霉胺与青霉胺片含量与有关物质6.1 色谱条件Dikma Spursil C18(4.6mm×250mm,5µm)色谱柱;流动相为5.3g无水磷酸二氢钠-0.25g己烷磺酸钠,加去离子水1L溶解后,用磷酸调节pH值为2.85,加乙腈9ml;流速为1.0mLmin-1;柱后加碱为21gL-1氢氧化钠溶液,流速为0.3mLmin-1;脉冲积分安培电化学检测器,工作电极为金电极(1mm),参比电极为Ag-AgCl复合电极,六电位检测(T1为0~0.04s,E1为0.13V;T2为0.05~0.21s,E2为0.33V;T3为0.22~0.46s,E3为0.55V;T4为0.47~0.56s,E4为0.33V;T5为0.57~0.58s,E5为-2.0V;T6为0.59~0.60s,E6为0.93~0.13V);柱温为30℃;进样量20µL。6.2 结果含量测定方面,青霉胺浓度在49.88~199.5µgmL-1范围内线性关系良好,回收率为98.4%~101.5%,31批次青霉胺片含量为97.6%~101.5%。有关物质测定方面,各杂质与主成分青霉胺均能完全分离(见图4),青霉胺浓度在3.118~49.88µgmL-1,青霉胺二硫化物杂质浓度在1.616~19.39µgmL-1范围内线性关系均良好,青霉胺与青霉胺二硫化物杂质的检测限均为0.02µg;青霉胺二硫化物结果为0.4%~0.8%,最大单杂为0.9%~2.9%,其他总杂为2.4%~7.3%。1. EDTA 2.辅料3~8.未知杂质 9.青霉胺10.青霉胺二硫化物图5 青霉胺片有关物质典型色谱图ChP2020采用电位滴定法测定其含量,USP现行版采用HPLC法测定其含量,二者均未控制其有关物质。青霉胺虽不属于氨基糖苷类抗生素,但其结构中含有多个氨基与羧基,无共轭双键,同样可以采用离子色谱法测定。离子色谱法测定该品种的关键点为检测电位的选择,直接采用糖四电位时主成分响应很弱,采用仪器自带的六电位时峰型严重拖尾,因此本实验室采用循环伏安法分别对青霉胺与杂质青霉胺二硫化物进行扫描,确定了最佳的六电位波形,解决了主成分严重拖尾的问题。讨论讨论1: 操作过程中遇到的问题与解决方法离子色谱电化学检测在操作过程中常存在背景信号较高、基线噪音较大,重复性差等问题,导致试验耗时耗力,进展缓慢。如硫酸阿米卡星及其制剂测定过程中会出现响应信号下降的现象,原因为流动相中的三氟乙酸可使金电极表面钝化,使用一段时间后需用水擦拭金电极。硫酸庆大霉素制剂测定过程中,出现了背景信号缓慢增加,基线噪音增大的情况,使用一段时间后需用硝酸冲洗管路或打磨电极。为解决该问题,本实验室与离子色谱工程师们查找问题与原因,耗时近3年,终于初步解决了上述问题。首先,所有涉及的容器、试剂与过滤装置均应单独使用,试剂均应为高纯度试剂。其次,对仪器的部分管路用聚醚醚酮材料的管线取代原白色塑料管线,降低管路的透氧性。再次,仪器使用前分别用1.5molL-1的硝酸溶液、2.4gL-1的EDTA溶液、乙腈与去离子水依次冲洗管路。接着,使用时分别对流动相、柱后碱液的水离线脱气15min,除去溶解在其中的氧气,脱气完成后再用氮气或氦气保护。使用时所有的管路须充满液体,防止氧气进入系统中导致重复性降低。最后,更换了进样阀。初步解决了重复性差的问题,但测定时仍需要在碱液中加入一定浓度的EDTA,降低金属离子的影响。虽然重复性差的问题初步得到解决,但背景信号较高,剂型噪音较大等问题在日常操作中还存在着,还需要继续磨合。讨论2:各国药典中离子色谱法分析氨基糖苷类药物的情况(1)中国药典ChP2005年版在“附录V D 高效液相色谱法”检测器下提到了电化学检测器。从2010年版开始在附录中单独列出了“离子色谱法”,对离子色谱的色谱柱、洗脱液、检测器、测定法均进行了详细说明。直到2015年版才首次将该法收录至正文中,涉及的品种为硫酸依替米星,检测项目为有关物质与含量,同时还设有第二法为HPLC-ELSD法,二者选其一。现行2020年版药典仍沿用2015年版方法测定硫酸依替米星。收载的氨基糖苷类药物主要都采用HPLC-ELSD法。硫酸依替米星是我国自主研发的一种半合成氨基糖苷类抗菌药物,也是ChP 2020年版唯一一个采用离子色谱法安培检测器控制的品种。有关物质方法与含量测定方法均一致,为采用C18色谱柱,以0.2molL-1三氟醋酸溶液[含0.05%五氟丙酸、1.5gL-1无水硫酸钠、0.8%(V/V)的50%氢氧化钠溶液、用50%氢氧化钠溶液调节pH值至3.5]-乙腈(96:4)为流动相,四电位检测,柱后加碱(50%氢氧化钠溶液1→25),柱后流速为0.5mLmin-1。(2)国外药典美国药典USP25-NF20首次采用高容量的三乙胺阴离子交换色谱柱,以氢氧化钠为淋洗液测定了阿米卡星(包括硫酸阿米卡星及阿米卡星注射液)、卡那霉素(包括硫酸卡那霉素、卡那霉素注射液及硫酸卡那霉素胶囊)的含量。随后,USP27-NF22开始采用耐强酸、强碱和高浓度盐的聚苯乙烯-二乙烯基苯共聚物填料色谱柱代替传统的阴离子交换柱,并首次用四电位取代三电位测定了硫酸链霉素原料、硫酸链霉素注射液及注射用硫酸链霉素的含量。随着离子色谱不断发展,USP37-NF32及之后的版本用十八烷基键合硅胶代替了聚苯乙烯-二乙烯基苯共聚物色谱柱,流动相以烷基化有机酸如三氟乙酸、五氟丙酸等作为离子对试剂测定庆大霉素原料的组分。该方法采用柱后加碱的模式,较美国药典常用的氢氧化钠淋洗液体系更能避免空气中二氧化碳的影响,分析系统更稳定。BP从2002年版、EP从4.0版开始收载了硫酸新霉素的离子色谱方法,方法采用柱后加减模式测定了硫酸新霉素原料的有关物质。随后,BP2003年版、EP5.0版及之后的版本陆续将离子色谱法应用于奈替米星、妥布霉素、庆大霉素、大观霉素及阿米卡星等品种。方法的共同特点为采用耐强酸碱的聚苯乙烯-二乙烯基苯柱或耐酸的C18柱,以烷基磺酸盐或三氟乙酸等离子对试剂作为流动相,与氨基糖苷类药物形成离子对增强其保留,再加入少量的有机改进剂改善分离,三电位检测。直到BP2007年版、EP6.0版开始陆续采用更为普及的辛烷基键合硅胶或十八烷基键合硅胶色谱柱测定了盐酸大观霉素、硫酸庆大霉素、阿米卡星与硫酸阿米卡星等。其中从BP2011年版、EP7.0版开始,硫酸庆大霉素有关物质与组分方法中,流动相由烷基磺酸盐体系变更为三氟乙酸-五氟丙酸体系,减少了流动相中的盐在金电极表面沉积并使检测信号更稳定。发展趋势与展望中国药典是药品研制、生产、经营、使用和监督管理等均应遵循的法定依据,是我国保证药品质量的法典。中国药典具有使用范围广,权威性强的特点,因此其收载的质量标准应具有操作性强、重现性好、耐用性好、成本适中等特点。目前中国药典中采用离子色谱安培检测法测定的品种仅硫酸依替米星一个,而国外药典多采用安培检测法测定氨基糖苷类药物。离子色谱安培检测法在中国药典中发展缓慢的原因主要有2点:一是国内外离子色谱仪的普及率不同。国内制药企业规模参差不齐,离子色谱仪价格较高,仅一些规模较大的企业采购了离子色谱仪;而国外制药企业规模通常较大,大多有条件购买价格昂贵的仪器。二是国内外离子色谱仪使用情况不同。国内使用离子色谱电导检测比较多,而国外电导检测与安培检测发展基本持平。由于离子色谱安培检测器在分析无紫外吸收或紫外吸收较弱的药物方面具有一定的优势,无需衍生化可直接检测,灵敏度高、选择性好,具有一定的发展前景。而且目前国产离子色谱仪蓬勃发展,日趋成熟与稳定,为今后离子色谱在药物分析方面提供了更多的技术支持和选择性。但相关离子色谱生产企业也需解决操作过程中仪器存在的一些问题,如提高仪器的重复性和易操作性,使离子色谱在今后的应用更加深入和广泛。本文作者:李茜,王立萍,刘英*(河南省药品医疗器械检验院,郑州,450018)作者简介:李茜,女,副主任药师 研究方向:抗生素质量分析与质量控制*通讯作者:刘英,女,主任药师 研究方向:抗生素质量分析与质量控制
  • 孚禾发布Phxtec 200 Plus 便携式甲烷非甲烷总烃/苯系物分析仪新品
    Phxtec 200 Plus Micro GC便携式甲烷非甲烷总烃/苯系物分析仪 简介Phxtec 200 Plus Micro GC便携式甲烷非甲烷总烃/苯系物分析仪是一款高度集成的GC-FID气相色谱仪。区别于实验室/在线通用改造色谱或拼凑色谱,Phxtec 200 Plus Micro GC是基于先进的新一代微型气相色谱平台开发的专用仪器,是市场上仅有的一款体积小于13, 000cm3的便携式甲烷非甲烷/苯系物分析仪(包括气瓶电池),分析速度快、灵敏度高,比市场上同类产品体积更小、耗气更少、重量更轻、续航更长,因此更适合于便携应用。产品依据中国国家标准的预处理方法,采集待测样品气进入便携式气相色谱仪,经过定量环定量、通过阀切换进入色谱柱分离,总烃、甲烷或特征因子依次到达氢火焰离子化检测器(FID)检测,分别测定多组组分浓度。最后由内置处理器计算得出准确的总烃、甲烷、非甲烷总烃及苯系物特征因子数值,符合《HJ 1012-2018 环境空气和废气 总烃、甲烷和非甲烷总烃便携式监测仪技术要求及检测方法》标准要求。 应用领域Phxtec 200 Plus Micro GC便携式甲烷非甲烷总烃/苯系物分析仪主要应用于固定污染源甲烷非甲烷总烃的现场比对测定和化工园区厂界中甲烷非甲烷总烃的现场检测,也可应用于汽车尾气排放检测,燃烧装置排放检测,油漆喷涂车间气体检测等。 产品特点1、 采用先进的新一代微型气相色谱技术,核心模块均为微型化设计,使得其在市场同类仪器中体积最小。其核心部分为微型GC-FID色谱分析模块,集成了进样、分离及检测所有功能,仪器尺寸为215(H)x178(W)x335(L)mm,体积仅为其他同类产品的50%。2、 微型电子气路控制(EPC)模块提供高达0.001psi的气路控制精度,并可对系统进行自动诊断如泄漏检查,提高仪器使用的可靠性和寿命。3、 高精度FID检测器提供高达30ppb的分析灵敏度,从容分析各种不同浓度的组分。4、 每个分析模块最多支持三个进样阀区,模块化设计可以迅速配置为多通道,一次进样同时测定所有组分。 5、 主控芯片采用新型高性能现场可编程门阵列(FPGA),进一步增强了运算性能。高度集成模块化设计易于增加分析通道、功能扩展和仪器维护。6、 可选内嵌式或分离式平板控制仪器。分离式屏幕可随意调节角度,更适合户外使用,有线连接避免现场恶劣环境对信号的干扰,相比无线连接更可靠和准确。7、 基于B/S架构的工作站适用于Windows、IOS、Android等各种操作系统的智能终端无线同步辅助控制,人机界面专为触摸应用设计,无需安装软件,自动更新版本。8、 通过Wi-Fi或4G联网后,可使用外部PDA、计算机、手机或平板等智能终端连接对仪器工作站进行操作。9、 通过Wi-Fi或4G联网后,使用工作站的远程诊断功能可以帮助维护、迅速排查故障,避免停机。10、内置多种环境传感器和GPS芯片,显示仪器当前环境温度、气压、经纬度和海拔等信息。11、内置电池通过BMS系统稳压输出给主机供电,自动检测和切换外部电源适配器或电池供电模式,并可设置电池低电量报警、强制自动关机等功能。主机底部可挂载外置电池仓用于采样探头供电,同时也可给主机内置电池充电。12、内置零级空气模块,使用环境空气为检测器提供源源不断的纯净助燃气。13、内置金属储氢模块,确保氢气使用更加安全。一次充气可以提供20小时的氢气续航能力,自动维护保养提高使用寿命。14、内置大容量高压载气气瓶,一次充气可以提供12小时的载气续航能力15、通过仪器后面板的电源或气路接口直接充电或充气,消除频繁拆装更换电池或高压气瓶带来的不便及安全隐患16、提手或背带设计,客户可以单人操作,完成进样、运行、分析和报告等所有操作,简单快捷。 微型EGC模块 微型FID检测器 主机工作站性能参数功能分析甲烷、总烃、非甲烷总烃、苯系物VOCs等尺寸215(H)x178(W)x335(L)mm整机重量≤9Kg(包括气瓶、电池)检测器高灵敏度FID检测器检测原理GC-FID,气相色谱分析温度控制最多4路,最高温度250℃,控制精度0.01℃电子气路控制最多4路,带温度压力补偿,压力控制精度0.001psi分析周期最小周期非甲烷总烃0.5min,苯系物2-10min可调线性范围0~20/50/150/500/5000/10000 mgC/m3(可定制) 最小检出限0.03 mgC/m3重复性≤0.5%准确度≤1%操作面板内嵌式或分离式平板电脑,同时支持其他无线终端如PDA、手机、电脑同步显示和控制电源BMS系统智能控制电源24V稳压输出,一次充电续航8小时气源内置固态储氢、空气除烃和高压气瓶,一次充气续航12小时充气接口1/8"Swagelok通信接口LAN,Wi-Fi,USB,AUX,4G探头最高温度200℃,电池、220V供电可选环境温度0~60℃环境湿度10~90%RH创新点:本产品基于先进的新一代微型气相色谱平台开发,区别于市场上几乎所有的拼凑色谱或改造色谱,独创的微型气相色谱技术将便携式甲烷非甲烷总烃/苯系物的产品体积缩小为市场上同类产品的一半,完全解决了各类产品目前体大笨重、功耗高、续航能力差的缺点,更适合于便携应用。 1. 仪器尺寸为210(H)x178(W)x325(L)mm,体积仅为其他同类产品的40-50%,是市场上唯一一款体积小于15,000cm3的便携式甲烷非甲烷/苯系物分析仪(包括内置气瓶电池)。 2. 微型化色谱技术的应用使功耗和气体消耗大大减小,功耗仅120W,氢气、空气、载气续航均超过10个小时,参数指标均为领先。 3. 仪器集成度更高更紧凑,所有部件均微型化全内置处理,外部仅预留充电、充气接口,无需频繁更换气瓶;仪器工作站采用B/S架构,可采用多种控制终端操作,更加人性化。 Phxtec 200 Plus 便携式甲烷非甲烷总烃/苯系物分析仪
  • 黄本立院士深度评析我国原子光谱分析——访厦门大学黄本立院士
    黄本立院士,1925年9月生于香港。60多年来,一直从事原子光谱分析研究,是国内外著名的原子光谱分析领域的学者,在其科研生涯中多项闪亮的“第一”一定程度上反映了我国原子光谱分析的发展历程:   1957年第一个创立一种可测定包括卤素在内的微量易挥发元素的新型双电弧光源,被国外学者誉为“最完善的”双电弧光源;   1960年在我国建立第一套原子吸收光谱装置并开展研究工作,发表了国内首批原子吸收论文;   1984年成为我国第一位以原子光谱分析为研究方向的博士生导师;   1988-1989年在国内首次以该研究方向招收一批从国外回来的博士后研究人员,中国一大批光谱分析的骨干师从于他;   1991年其小组建立了流动注射电化学氢化物发生法;   1993年成为我国第一位以原子光谱分析为研究方向的院士;   2000年发表了不用一氧化碳的镍蒸气发生法;   ……   黄本立院士主持、参加过多项国家、中科院、省市等重大研究项目,如,1985年主持“光谱感光板测光自动化”课题、1993年主持“ICP进样方法及其过程的研究”、1995年主持“流动注射在原子光谱分析中应用的技术、新方法” ……   黄本立院士多次荣获国家、省级先进工作者、优秀专家等称号。 黄本立院士   2010年6月22日,仪器信息网编辑来到厦门大学采访了黄本立院士,请黄本立院士回顾与展望了我国原子光谱分析技术及仪器的发展。 原子光谱分析:如何挑战发展“瓶颈”?   近年来,生命科学、分子生物学等领域的研究发展快速,基因组学、蛋白质组学等成为研究热点,于是,在分析界就有不少人转到这些热点上去。像原子光谱这样一些“传统”的技术似乎被冷落了,出现了“Atomic Spectroscopy:A dying horse?”、“原子吸收技术已经没什么可发展的了”、“原子荧光在国外很少人用”等诸如此类的论调。   生命科学离不开原子光谱分析   黄本立院士谈到,“其实,人体含有或摄取周期表上的大多数金属、非金属和气体元素,而这些元素对生命有何影响和如何实现这些影响却还远没有被完全了解,因而最近在生命科学‘omics’圈子里出现了‘金属组学’(metallomics)这个新成员。再如蛋白组学,大约30%的蛋白质含有金属,也要知道哪些蛋白质含有哪些金属、含有多少等。”   “而众所周知,原子光谱分析(广义的,包括光学光谱、X射线谱和质谱)则是检测几乎所有这些元素的最佳方法之一。因而我们今天还大谈原子光谱分析,并不是在这生命科学‘王国’的疆土里‘水土不服’、‘拉肚子’而说‘胡话’,而是原子光谱分析在这里大有用武之地。”   加强“联用技术”、“自身建设”   黄本立院士谈到如何突破原子光谱分析发展的“瓶颈”时说到,“由于进行原子光谱分析是要把样品气化、原子化、激发或离子化,然后令产生的辐射或离子进入仪器,才能进行检测;这样,除了能耐高温的简单分子如CN、NO、OH等之外,要获得较大分子的信息是很难的。这个问题对于只要测定元素成分和含量的分析如冶炼工业里的炉前分析、测定矿石中一些元素的含量等是算不了什么的,但是对大分子特别是生物分子的研究却是一个‘瓶颈’,甚至对元素的化合形态分析也是这样。”   “要克服这个‘瓶颈’,就要与其他分离方法如色谱、电泳等结合起来,这就是‘联用技术’。由于一般都把不同的方法用连字号(hyphen) 连接起来,所以它的英语名称就称为‘hyphenated technique’,例如HPLC-ICPAES、CE-AAS等。当然,原子光谱本身也要进行‘自身建设’。” 原子吸收:怎样突破技术“局限”?   黄本立院士介绍原子吸收发展历史时说到,“虽然原子吸收(AAS)的历史可以追溯到1814年Fraunhofer 研究太阳光谱中的多根暗线时,但是作为一种‘down to earth’的地球上使用的分析技术,它一般还是从20世纪50年代中Sir Alan Walsh发表的相关文章开始算。在这里必须指出,Wollaston在1802年就已经发现了太阳光谱中有几根暗带,他以为那是几种颜色的分界线。而Fraunhofer用的自制光谱仪比Wollaston所用的分辨率高很多,他发现了570多根暗线,并把它们用拉丁字母标示出来。而现代最先进的光谱仪可观察到数以千计的暗线。可见仪器对科学发展的重要性是怎么强调也不为过的。”   原子吸收:国产光谱仪器的“大佬”   “在AAS分析方面中国‘跟’得不算太慢,1966年我们科研小组在物理学报上发表了国内第一篇AAS研究论文,所用的仪器是自己在实验室里组装的。不久就出现了国内生产的火焰AAS仪器,包括国产空心阴极灯。从此在国内不少实验室中都可以看到国产AAS仪器的倩影。国产AAS仪器所占的国产光谱仪器市场份额,如果以台数算,很可能是‘大哥大’。”   “因为AAS仪器的价格相对便宜,并且完全能够满足一般行业的需求,适合中国国情,所以,中国用AAS仪器的人很多,并且国产原子吸收光谱仪器不但在国内有市场,还可以出口到第三世界国家。”   原子吸收“大有可为”   火焰原子吸收技术本身确有其局限性,例如,耐热(难熔)元素(refractory elements)形成氧化物或氢氧化物后,很难离解成原子,需要更高温度,一般要用国人不大愿意用的一氧化二氮–乙炔火焰,国内瑞利公司推出掺氧的空气-乙炔焰,这将是个突破性进展。所以,黄本立院士指出,原子吸收在突破其局限性方面仍“大有可为”:   1、“血铅仪”等专用仪器市场前景看好   原子吸收可针对环境、食品等样品中As、Cd、Pb等有害元素分析而设计成专用、现场、便携仪器。例如,2009年屡屡爆发的血铅超标事件,严重威胁着儿童的健康。政府非常重视环境重金属污染问题,对环保监测部门在硬件和软件方面提出更高的要求,相应的促进了对现场、快速检测仪器的需求,而原子吸收在这方面有独特的优势,所以原子吸收专用仪器的发展面临着巨大的市场机会。   2、“石墨炉”是目前原子吸收技术研究热点   “可以如此认为,我国火焰原子吸收光谱仪目前的技术水平已达到国外同类仪器的水平;但石墨炉原子吸收光谱仪的技术水平还与国际先进水平有一定差距。”   石墨炉原子吸收速度略慢、价格也相对较贵,但其检出限可与ICP/MS相媲美,而价格则相差一个数量级,所以,未来研究热点可能集中在降低石墨炉电源功率、研发新型石墨材料和新型石墨管以及背景扣除技术等方面。   3、“联用技术”是目前原子吸收应用热点   原子吸收光谱将所有的“东西”变成原子状态,这是其主要的特色,也是其局限性所在,需要与其它方法,如色谱、电泳、质谱等结合起来,即联用技术,原子吸收作为最后的检测技术。 我国ICP光谱:还有哪块“石头”没搬开?   虽然我国生产或正在研发ICP光谱仪的厂家很多,但可以说,我国ICP光谱仪技术水平与国外先进水平还有一定的差距,也存在产品质量不过关,对于造成此现象的原因,黄本立院士有何看法?对国产ICP光谱仪生产厂家又有何建议呢?   大型光栅,几乎都是进口的,使我国在这方面有所“欠缺”   光栅是光谱仪器的核心部件,光栅刻划集精密机械、光学技术等于一身。上世纪50年代后期,长春光机所就已经在王大珩先生倡导和领导下开始光栅刻划的研究工作,当时中国是世界上少有的进行光栅刻划研究的几个国家之一。说到这里,黄本立院士谈到,“这是我国光谱技术发展史上具有里程碑纪念意义的技术,是令人兴奋的事。可惜的是,目前,如中阶梯光栅等大型光栅以及全息光栅,我们自己没有,几乎都是进口的,使我国在这方面有所‘欠缺’。”   谈到ICP光谱仪的关键技术,黄本立院士还提到,我国新一代激发光源和离子化源研究工作有待加强,例如,辉光放电、强电流短脉冲等光源都可以进一步研发。   软件做不好,仪器做的再好,它的“亮点”也显现不出来   黄本立院士还着重强调,“我国光谱仪器的软件跟不上国际先进水平,尤其不能满足高级研发用户的需求。我国熟悉仪器技术、分析方法、甚至使用过这个仪器的软件开发的人才非常少。另外,部分中国用户也存在不是很成熟的问题,提出的要求不‘精确’也影响了我国分析仪器的研制。可以说,软件做不好,仪器做的再好,它的亮点也显现不出来。分析仪器软件开发需要继续下大功夫。”   样机是“雕刻”出来的、不是“制造”出来的   “仪器制造商‘搭建’的样机质量好,但大批量生产的商品机性能不稳定。”黄本立院士将其生动的形容为,“样机是‘雕刻’出来的、不是‘制造’出来的,大批量生产则行不通。因为‘搭建’样机,无论是材料还是各种部件,厂商都会采用最好的。   “而批量生产时,中国的工业制造水平、机械加工能力与国际先进水平还有一定差距,导致制造出来的商品机性能不够稳定。并且,发射光谱仪器的分辨率、通光本领等性能与原子吸收仪器相比,要高出很多。而质谱仪的性能就更不用说了。” 原子荧光:其“中国现象”可否复制?   中国开始原子荧光光谱法(AFS)的研究最早可以追溯到上世纪七十年代末,经过近三十年的艰苦奋斗,AFS已成为我国少数具有自主知识产权、技术水平超过进口的分析仪器。目前,在中国每年销售的原子荧光仪器总量大致在1500~2000台,其中,国产仪器所占市场份额超过90%。但也存在如何进一步发展等问题。我国原子荧光发展的经验及其对其它国产分析仪器的发展有何借鉴意义?   极具“中国特色”的原子荧光光谱仪   黄本立院士一直关注我国AFS的发展,据其介绍,在2006年国际分析科学大会(ICAS 2006,莫斯科)上,就曾做过题为“原子荧光的中国现象”的报告。在分析仪器市场当中,原子荧光光谱仪可以说是一款极具中国特色的分析仪器。   第一,国产AFS仪器具有完全的自主知识产权,与AFS技术相关的专利大部分为中国人所掌握;   第二,尤其在As、Hg、Se、Sb等元素的检测方面,AFS在仪器价格和使用成本上都大大优于ICP-MS等仪器,适合中国经济发展情况;   第三,中国有一批认真钻研、发展快速的AFS仪器生产企业,如,吉天、海光、瑞利等,他们不断进行技术创新,提高仪器的稳定性和可靠性;   第四,中国在AFS技术应用领域拓展方面做了大量有序的工作,已经建立了40多项相关的国家和行业标准,使得原子荧光在地质、冶金、食品、环境、电子产品等领域中得到了广泛应用。   而其他国家,例如美国环保总署只有一个与AFS相关的测汞标准,可以说,标准与分析仪器发展密切相关。例如,英国PSA公司也做AFS仪器,但其测定元素范围没有中国AFS仪器测定的多。   关于推进原子荧光国际化的两点建议   目前,我国AFS发展也存在着一个大问题,国内用的多,国外用的少,也就是说AFS仪器国际化发展还面临很多困难。对此,黄本立院士对我国AFS仪器厂商的国际化发展提出了两点建议:   1、发展原子荧光专用仪器   首先要想办法让国外的分析界同行接受AFS,AFS在某些元素检测方面具有操作简单、快速以及测定结果准确等特点,因此可专注发展原子荧光专用仪器。例如,可根据欧盟RoHS指令要求测定的几个元素,发展专门测定某一种元素(例如汞)的AFS仪器。食品、电子产品、玩具等产品都需要此类仪器,相信此类仪器一定可以销售的好。   2、不要抱着氢化物发生、氢火焰“不放”   黄本立院士认为,目前我国的AFS仪器差不多全是基于氢化物发生和氢火焰上的,能测定的元素也就只能局限在“氢化物元素”(hydride forming elements)范围内。这是一个很大的局限性。是否可以考虑其它的原子化器和进样方式?黄本立院士以其所做的研究为例说到,他们用ICP为原子化器,以强流短脉冲为普通空心阴极灯供电为光源,测量铕的离子荧光,其灵敏度竟超过以激光为光源的灵敏度;这里虽然需要ICP原子化器,成本会升高,但我们可以想办法进行简化,例如降低功率等。 仪器人的“呼声”: 如何推进我国科学仪器自主研发?   年龄对一位科学家来说,意味的不是衰老,而是经验的丰富和资历的深厚。黄本立院士虽然已是85岁的高龄了,但他一直关心着我国科学仪器自主研发、科学仪器研制后备人才培养等问题。   仪器研制需专门投入,政府导向加大国产仪器支持力度   目前,发展科学仪器已经是国家战略发展的一种需要,国家对科学仪器越来越重视。在科学仪器自主研发的战略目标和资金投入方面,迫切需要国家与有关部门给予政策引导与具体支持,应该在不同部门设立不同层次、不同数量的科学仪器研发专项经费,大力支持一些重点项目。   近来,我国中西部地区药检、疾控部门大宗科学仪器招标的新闻不断,由此,黄本立院士指出,“招标中仪器的性能参数、指标等是否有必要列的那么高?国产仪器是否能满足需求?这种政府导向也是对国产仪器支持的一方面。”   奖励或提升体系、评价方法或机制,应按不同的学科设置不同的标准   “以分析化学为研究方向,发文章的顶级期刊的影响因子也不超过10,而其中进行分析仪器研发,因其所做的是实用性研究工作,更不易发表文章。这影响了中国进行分析化学、尤其是仪器研发人才的发展。”   “科研院校里奖励或提升体系、评价方法或机制,应该按照不同的学科设置不同的标准。”   科学仪器后备人才培养迫在眉睫:用仪器的人多,做仪器的人少,培养周期长   “在厦门大学召开的第27届化学会学术年会上,所做的与分析仪器研发有关的报告,都是一些熟悉的面孔,已经很久没有‘新人’出现了。” 黄本立院士谈到。   科学仪器研发所需的人才,既要求扎实的基础知识,又要求有跨学科的、较广泛的专业知识,必须专门培养。但这些年由于对科学仪器事业发展重视不够,有些高校把已经办了十几年的分析仪器专业撤销,或并入别的专业,我国已经多年没有系统的培养科学仪器研制人才了。   要发展我国独立自主的科学仪器事业,就需要合理规划学科布局,加强专业适用人才的培养。所培养的人才必须留得住。只有在全国形成振兴科学仪器事业的良好氛围,才能真正形成培养、留住人才和吸引国外人才的优势。 采访现场   黄本立院士兴致勃勃的与采访编辑畅谈了2个多小时,对于原子光谱仪器,如AAS、ICP、AFS,我国国产仪器技术与国际先进水平的差距以及未来研究热点、国产仪器厂商发展等进行了深刻评析,使编辑获益良多。  后记   60多年来,黄本立院士一如既往,一直奉献于原子光谱分析的研究,在原子发射、原子吸收、原子荧光和激光光谱分析的理论、方法、应用和仪器装置等方面为我国的原子光谱事业的开创、发展以及多层次人才的培养做出了重大的成绩和贡献。  85岁高龄的黄本立院士,仍然思维敏捷、精神矍铄,交谈过程中,爽朗的笑声一直不断,其温和、执着、严谨的态度,给编者留下了深刻印象。   对于毕生钟爱的原子光谱分析事业,黄本立院士最为关心的是我国原子光谱仪器的自主研发和未来发展前景,“不能总是‘小来小去’,要做大型的原子光谱,如ICP、ICP/MS等。但也不能全面铺开、大范围的撒钱,要有重点的支持几个项目。”   编辑:刘丰秋   附录:黄本立院士简介   黄本立,1925年9月生于香港,1945—1949年就学于广州岭南大学物理系。1950年在长春东北科学研究所(后为中国科学院长春应用化学研究所)参加工作,1984年获批为博士研究生导师,是我国以原子光谱为研究方向的第一位博士生导师。1986年调厦门大学任化学系教授至今,1993年当选为中国科学院院士。历任中科院长春分院及长春应用化学研究所学术委员会委员,东北大学、五邑大学名誉教授,吉林大学、浙江大学等兼职教授;中国化学会25届理事长,分析化学学科委员会主任;中国光谱学会副理事长,《光谱学与光谱分析》主编;《分析化学》、《化学进展》、《分析科学学报》等11种国内期刊顾问或编委,Spectrochimica Acta Part B等6种国际期刊顾问或编委;国家自然科学基金委分析与环境化学学科评审组成员,何梁何利基金科学奖学科(专业)组评审委员,中国人民政治协商会议福建省委员会常务委员。   60年来一直从事原子光谱分析研究,1957年提出的新型双电弧光源多次为国内外专著及论文所引用和一些实验室所采用,上世纪60年代初在我国首次建立原子吸收光谱装置并发表了国内首批原子吸收论文;所主持的“光谱感光板测光自动化”课题1985年获中科院重大科技成果二等奖,1975年起从事感耦等离子体(ICP)光谱分析研究,参加过多项获奖工作(中科院重大科技成果二等奖2次,国家科委及中科院科技进步二等奖一次,三等奖2次,吉林省重大科技成果二等奖一次),所研制的新型雾化-氢化物发生装置获中国专利。所主持的“ICP进样方法及其过程的研究”1993年获中科院长春分院自然科学奖三等奖,“流动注射在原子光谱分析中应用的技术、新方法”研究1995年获国家教委科技进步三等奖。1991年获厦门大学第七届“南强奖”个人一等奖。主持研究的强电流微秒脉冲供电(HCMP)空心阴极灯激发原子/离子荧光分析,改善了包括一些稀土元素在内的多种元素的检出限;HCMP技术获专利,并获福建省2001年科技进步一等奖。黄先生在国内外刊物上发表学术论文逾二百篇,主持或参与编著科技专著有“An Atlas of High Resolution Spectra of Rare Earth Elements for ICP-AES” (RSC, 2000) 等近十部。应邀作过国际会议大会报告9篇,特邀报告20篇。曾以学习会、培训班等方式为我国培养了大批光谱分析骨干和教学科研人才;培养研究生22名,指导博士后9名。1998年获“全国优秀教师”称号,2002年获“福建省优秀专家”称号,2003年获“福建省先进工作者”称号。2005年被授予“全国先进工作者”称号。
  • 【活动】网络讲座:《Dikma HPLC色谱柱及在食品安全与药物分析中应用》,欢
    仪器信息网网络讲堂迪马科技主题讲座 近年来,随着食品安全与药品研发检测力度的加大,高效液相色谱技术在食品、药品的分析检测中发挥越来越大的作用。如何选择一款高效,合适的液相色谱柱成为广大分析工作者的首要考虑的问题。本讲座将向您介绍迪马科技的多款液相色谱柱,重点就每款色谱柱的性能、特点、适合分析的化合物类型进行详细的讲解,同时会将迪马科技应用实验室所作的一些色谱柱在食品安全与药物检测方面的应用案例与您分享,希望能对您的分析工作带来帮助! 主讲人:陈治春 迪马科技培训讲师 分析化学硕士,2007年以来一直从事固相萃取等样品前处理技术、HPLC色谱柱技术的客户培训工作,培训用户涉及出入境检验检疫、质检、疾控、环境、科研院所、食品药品等系统,得到用户的广泛认可。 参会报名开课时间:2011年12月8日14:30 (教室于2011年12月8日14:00开放) 会议时长:2小时 报名条件:只要您是仪器信息网注册用户均可报名参加。 环境配置:只要您有电脑、外加一个耳麦就能参加。建议使用IE浏览器进入会场。 参加及审核人数限制:限制报名人数为120人 参加奖励:报名且参与讲座的人将每人奖励5--50分不等的奖励。 提问时间:现在就可以在此帖提问啦,截至2011年12月7日 报名页面:http://www.instrument.com.cn/webinar/meeting/meetingInfo.asp?infoID=311
  • 赛默飞推出色谱及痕量元素分析药物分析解决方案
    2014年6月26日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日推出色谱及痕量元素分析药物分析解决方案。全球范围内的制药行业正面临着严峻的挑战:许多常用的药品专利到期,而开发一种新的药物代价高昂、耗时长,且往往需测试超过10,000种化合物才有一种得到最终的上市批准;全球各地政府都在控制医疗成本;国际机构正在对风靡全球的生物制药寻求统一的监管控制等。在这些挑战之下,全球医药市场萎靡。 赛默飞了解制药行业各个环节的需求并可提供帮助。无论是新药的发现及开发,还是后期的制造、分析及控制,每个环节都可提供优质的技术和服务,提高您的工作效率并降低成本。我们拥有的分离和检测技术可为制药行业中遇到的各种复杂的分析难题提供全方位的解决方案。 赛默飞色谱以及痕量元素分析产品,将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为药物分析创造出全新的可能性,帮助客户解决在分析领域所遇到的复杂问题与挑战,促进制药行业发展,提高实验室生产力。色谱及痕量元素分析药物分析解决方案 制药行业全面解决方案 此次赛默飞推出的药物分析解决方案以产品为单位共分为五个章节:离子色谱、液相色谱、元素分析、气相/气质、加速溶剂萃取。每一章节均介绍了该类仪器的原理,赛默飞产品的特点和典型的应用案例。全文共呈现了约90个典型应用,涵盖了化药、中药、抗生素、生化药物、生物制品、药用辅料等几乎所有的药物种类;分析类型包括了有效成分、有关物质、降解产物、溶剂残留、有毒有害元素以及方法比较等方面,系统地展现了赛默飞在药物分析领域全面且无可挑剔的解决方案,是我们为制药行业提供的又一利器。下载色谱及痕量元素分析药物分析解决方案请点击:http://www.instrument.com.cn/netshow/SH100650/down_323500.htm 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、 Life Technologies、 Fisher Scientific 和 Unity Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com。赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。为了满足中国市场的需求,现有8家工厂分别在上海、北京、广州和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn。
  • 安捷伦高分辨气相色谱-质谱分析方案 | 针对持久性全氟化合物(PFAS)的分析
    什么是 PFAS?它具有哪些功能?又存在哪些危害?1PFAS 即全氟/多氟烷基类物质,是一系列人工合成的有机化合物,主要由碳原子和氟原子构成。2凭借其优异的高热稳定性和化学稳定性,PFAS 在纺织、表面活性剂、食品包装、不粘涂层、防水涂层和灭火泡沫等领域广泛使用。3“成也萧何,败也萧何”,PFAS 进入环境之后,由于极其稳定,几乎不被生物降解,它可在环境中持久存在。而作为一种典型的内分泌干扰物,极微量的 PFAS 暴露就可能带来健康风险;同时考虑到不同人的体质,其安全水平难以预测。已经成为重点关注的环境新污染物之一。PFAS 监测的难点是什么?1目标化合物的数量庞大,已经报告的超过 6000 多个;且标准品不易获得;2涵盖不同的挥发性、极性和官能团。无法使用一种设备或者一个方法分析所有化合物;3浓度低(通常为低 ppt 和亚 ppt 级),要求设备有较高检测灵敏度;虽然高倍富集可以提高检测灵敏度,但同样会带来严重干扰;4实际环境中存在的 PFAS 化合物的种类和含量尚不清楚。安捷伦 7250 气相色谱-高分辨质谱联用仪具有灵敏度高、扫描速率快,高分辨抗干扰,精确质量数采集定性准确的特点,非常适合环境样品当中挥发性和部分半挥发性 PFAS 化合物的检测。因此安捷伦公司与美国加州大学戴维斯分校用户合作建立了包含上百种不同类型的 PFAS 化合物的气质高分辨谱库,包含全氟烷基碘化物(PFAIs)、氟聚物碘化物(FTIs)、氟聚物醇(FTOHs)、含氟聚物烯烃(FTO)、含氟聚物丙烯酸酯(FTAC)、含氟聚物甲基丙烯酸酯(FTMAC)和全氟烷基羧酸(PFCAs)等(图 1)。除了化合物高分辨质谱图、每个碎片的精确质量数及对应化学组成,谱库当中还包括了每个化合物的分子式、结构式、特定分析条件下的保留时间等信息(图 2)。图 1. 不同类型 PFAS 化合物的高分辨质谱图 图 2. 谱库当中 PFAS 化合物的高分辨质谱图、分子式、结构式、保留时间等信息基于 PFAS 气质高分辨质谱库、7250 SureMass 算法和安捷伦未知物分析软件,对饮用水和土壤样品当中的 PFAS 化合物进行了检测。图 3 显示的是样品高分辨质谱图经解卷积后通过与高分辨质谱库比对和保留时间辅助确认,对样品当中包含的 PFAS 化合物进行准确定性的结果(分别以一个化合物示例)。图 3. A:土壤当中检测到乙基全氟丁基醚;B:饮用水当中检测到甲基全氟辛酸数据结果表明:7250 高分辨气质和 PFAS 化合物高分辨质谱库的配合使用相得益彰,能够显著降低对 PFAS 这类复杂化合物的分析难度,提高定性准确性,加快分析速度。结 语 在上述实验过程中,7250 工作的扫描范围是 50-1200m/z,在这样宽广的范围内采集的质谱数据的分辨率和准确性不会受到影响,方便对环境当中各种类型的污染物进行大范围的筛查检测。利用 7250 这一优势,除了 PFAS 化合物,上述水样当中还检测到了包括消毒副产品、个人护理产品中的化学品、药物、杀虫剂等环境污染物,真正体现了 7250 高分辨质谱“一网打尽”的强大能力。
  • 江桂斌研究员:高分辨色谱/高分辨质谱方法在持久性有机污染物分析中的应用
    仪器信息网讯,2009年11月7日,由中国质谱学会有机质谱专业委员会与中国分析测试协会联合举办的“2009年中国有机质谱年会”在北京成功召开,会议为期三天,出席会议人数达300人。仪器信息网作为特邀媒体也应邀参加。   此次质谱年会为与会代表准备了丰富的报告内容,内容涉及生命科学、医学、药学、环境科学中的质谱应用研究以及质谱仪器研发的新技术、新进展等。仪器信息网将进行系列报道。   中国科学院生态环境研究中心的江桂斌研究员一直从事持久性有机污染物的研究,并且首次发现了一些新的持久性有机污染物。此次江桂斌研究员就有机质谱在持久性有机污染物分析中的应用研究进行了介绍。 中国科学院生态环境研究中心的江桂斌研究员   持久性有机污染物(POPs)是一类半挥发性的物质,如二恶英(Dioxin)、多氯联苯(PCBs)和多溴联苯醚(PBDEs)等,其具有在环境中难降解、长距离迁移、具有生物累积和放大效应、毒性大等特点。基于以上原因,POPs已成为各国最为关注的环境问题之一,并且中国于2004年底正式加入《斯德哥尔摩公约》,履约工作对中国POPs研究提出了更多的挑战。   目前,在POPs的分析研究中,由于POPs物质分子量差别很小、含量非常低、基体复杂等,必须使用高分辨质谱进行研究。中国已经颁布的涉及高分辨质谱分析方法的国标有三项:GB/T 5009.205-2007、 HJ/T 365-2007 、HJ77.1-2008,分别适用于食品、危险性废弃物焚烧排放废气、水和废水中POPs检测。国内拥有高分辨质谱分析POPs的机构有13家:中科院水生生物研究所、深圳疾病预防控制中心、北京大学、上海疾病预防控制中心、中科院生态环境研究中心、中科院大连化物所、中科院广州地球化学研究所、浙江疾病预防控制中心、国家环境分析中心、中国检验检疫科学院、浙江大学、清华大学。江桂斌研究员表示,未来中国还将配备30个持久性有机污染物相关实验室,而其中的关键不在于资金,而在于此方面的人才。   在报告中,江桂斌研究员详细介绍了其实验室建立的高分辨色谱/质谱分析POPs的方法用于青藏高原POPs冷凝效应研究实例,证明了持久性有机污染物的长距离迁移性。   江桂斌研究员认为,在POPs的分析方面,今后的研究将集中在利用光谱、色谱、质谱等技术发现更多的污染物、复杂基体的分离、化合物不同结构/手性的分离鉴定、污染物小分子与生物分子的作用,污染源追踪等方面。
  • 水中有机挥发物在线采样-气相色谱分析装置研制
    table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr td width=" 132" p style=" line-height: 1.75em " 成果名称 /p /td td width=" 516" colspan=" 3" p style=" line-height: 1.75em " strong 水中有机挥发物在线采样-气相色谱分析装置 /strong /p /td /tr tr td width=" 132" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 516" colspan=" 3" p style=" line-height: 1.75em " 中国科学院大连化学物理研究所 /p /td /tr tr td width=" 132" p style=" line-height: 1.75em " 联系人 /p /td td width=" 168" p style=" line-height: 1.75em " 关亚风 /p /td td width=" 161" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 187" p style=" line-height: 1.75em " guanyafeng@dicp.ac.cn /p /td /tr tr td width=" 132" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 516" colspan=" 3" p style=" line-height: 1.75em " □正在研发 & nbsp □已有样机 □通过小试 □通过中试 √可以量产 /p /td /tr tr td width=" 132" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 516" colspan=" 3" p style=" line-height: 1.75em " √技术转让& nbsp & nbsp & nbsp □技术入股& nbsp & nbsp & nbsp □合作开发& nbsp & nbsp & nbsp □其他 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 成果简介: /strong /p p style=" line-height: 1.75em " /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201604/insimg/a7bda886-6144-4e85-8444-a349249e51ed.jpg" title=" 水中VOC.png" width=" 350" height=" 297" border=" 0" hspace=" 0" vspace=" 0" style=" width: 350px height: 297px " / span style=" line-height: 1.75em " & nbsp /span /p p style=" line-height: 1.75em " & nbsp & nbsp 水中有机物在线采样-气相色谱分析装置能够连续采集地表或地下水体中的沸点不高于180℃的有机污染物,富集并解析沸点(bp) -20° C≤ bp≤180 ° C的有机污染物,分离分析芳烃、酚、卤代烃和烃类有机污染物。 br/ & nbsp & nbsp & nbsp strong 主要技术指标: /strong br/ & nbsp & nbsp & nbsp 采样体积:100 mL br/ & nbsp & nbsp & nbsp 最低检测限:0.01 mg/L苯(水) br/ & nbsp & nbsp & nbsp 线性范围:不小于4个数量级 br/ & nbsp & nbsp & nbsp 分析周期:不大于30 min br/ & nbsp & nbsp & nbsp strong 技术特点: /strong br/ & nbsp & nbsp & nbsp 水中挥发性有机物通过膜渗透汽化,被吹扫气携带至吸附柱上富集;加热吸附柱使有机物解吸,并反吹至气相色谱进行分析。吸附柱可在载气下老化清洁,重复使用。 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 应用前景: /strong br/ & nbsp & nbsp & nbsp 用于环境领域在线水质监测,具有广阔的推广应用前景。 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 知识产权及项目获奖情况: /strong br/ & nbsp & nbsp & nbsp 授权发明专利1件:基于复合膜的水中挥发性有机物的分离装置,201120501703.4 /p /td /tr /tbody /table p br/ /p
  • 使用超高效聚合物色谱系统对低分子量聚合物进行快速高分辨率分析
    使用超高效聚合物色谱(APC)系统对低分子量聚合物进行快速高分辨率分析 Mia Summers和Michael O&rsquo Leary 沃特世公司(美国马萨诸塞州米尔福德) 应用优势 ■ 既能对聚合物进行快速表征又不会降低性能水平 ■ 与常规GPC分析相比,可提高对低分子量低聚物的分辨率 ■ 与常规GPC分析相比,可提高校准水平并由此对低分子量低聚物进行更准确的测定 ■ 可对聚合物进行快速监测,从而能提早发现产品开发过程中出现的变化 沃特世提供的解决方案 ACQUITY® 超高效聚合物色谱(APC&trade )系统 ACQUITY APC XT色谱柱 沃特世聚合物标准品 带有GPC选项的Empower® 3色谱数据软件关键词 聚合物、SEC、GPC、APC、聚合物表征、低分子量聚合物、低聚物、环氧树脂 引言 凝胶渗透色谱(GPC)是一种广泛认可并行之有效的聚合物表征方法。然而,尽管使用此技术可获得大量信息,但这类分析本身仍存在缺陷。色谱柱通常填充苯乙烯-二乙烯基苯,同时需要进行适当老化并应在低背压下运行以确保其长期稳定。填充颗粒通常较大(&ge 5 &mu m),分辨率一般会因此而受影响。填充较小颗粒(行校正。综合使用这些技术能够更稳定、更精确地测定低分子量聚合物样品的分子量参数。提早识别某种聚合物所出现的甚至比较细微的改变都能明显加快化学和生物材料应用中聚合物的开发速度。 实验 Alliance® GPC系统条件 检测器: 2414 RI (示差折光检测器) RI流通池: 35 ℃ 流动相: THF 流速: 1mL/min 色谱柱: Styragel 4e,2和0.5,7.8 x 300 mm(3根串联) 柱温: 35 ℃ 样品稀释剂: THF 进样量: 20 &mu L ACQUITY APC系统条件 检测器: ACQUITY RI(示差折光检测器)RI流通池: 35 ℃ 流动相: THF 流速: 1 mL/min 色谱柱: ACQUITY APC XT 200 Å 柱和两根45 Å 柱,4.6 x 150 mm(3根柱串联) 柱温: 35 ℃ 样品稀释剂: THF 进样量: 20 &mu L 数据管理 Empower 3色谱数据软件 样品 1 mg/mL的沃特世聚苯乙烯标准品(100K、10K和1K)环氧树脂(2 mg/mL) 结果与讨论 为了使用SEC对聚合物进行适当表征,重要的是要使用适当的标准品生成一条校准曲线以确定当前所用色谱柱的分离范围。使用常规GPC分析标准品和样品相当耗时,运行时间可长达1小时(或更长)。由于样品所产生的数据将与经校准的标准品进行比较以确定分子量,因此标准品分析结果的准确度对获得关于聚合物样品的准确结果而言具有至关重要的作用。除了GPC本身的运行时间较长之外,常规GPC系统的额外柱体积较大也会导致峰展宽,从而降低分辨率并由此降低校准数据点的准确度。与常规GPC系统相比,ACQUITY APC系统的扩散度更低,因此产生的峰展宽就更少,并且窄分布标准品的色谱峰也明显更清晰,如图1所示。此外,低扩散性APC系统与支持更高流速和背压的稳定的亚3 &mu m APC色谱柱柱技术相结合也能提高对1K聚苯乙烯标准品的分辨率,并使分析时间缩短至原来的1/5。 图1. 比较在常规GPC系统和ACQUITY APC系统中分析聚苯乙烯标准品(Mp:100K、10K和1K)的运行时间和分辨率 使用APC系统所提高的分辨率为确定1K聚苯乙烯标准品分子量增添了更多可识别的色谱峰。如图2所示,通过使用标准品供应商提供的数值或根据外部方法得出的标准品测定值而确定的分子量信息,更多的数据点由此可被添加到校准曲线上,从而为根据这条曲线所计算出的样品结果增加了可信度。 图2. 使用ACQUITY APC系统时,因对1K低分子量标准品的分辨率提高而在校准曲线上得出关于聚苯乙烯标准品(100K、10K和1K)的更多数据点 一般说来,需要运行一系列标准品以得出用来生成校准曲线的数据点。使用常规GPC时,平衡、配制并分析每种标准品可能需要数小时至数天的时间。因此,通常不进行校准并根据原有校准曲线确定分析结果。ACQUITY APC系统因其系统滞留体积低而使平衡速度明显加快,并且因在更高流速下使用更小的颗粒而使运行时间明显缩短。运行时间的缩短使得平衡和校准操作可在一小时内轻松完成。最后,得益于分辨率的提高,可能只需要配制并进样检测更少的标准品,就能获得一条可用来进行校准的稳定曲线。分析样品时,校准操作的稳定性提高使得对低分子量低聚物的分子量测定具有更高的可信度。 图3显示出一份环氧树脂样品相对于用聚苯乙烯标准品校准的分析结果。该结果表明使用三根ACQUITY APC XT 4.6 x 150 mm串联柱可在不到5分钟的运行时间内分辨出不同低聚物。 图3. 使用配有ACQUITY RI检测器的三根ACQUITY APC XT 4.6 x 150 mm串联柱对溶于四氢呋喃的一份环氧树脂样品进行分析。低分子量低聚物(显示为峰尖分子量)可在不到5分钟的时间内被分辨开来。 APC可缩短运行时间的特点有助于在工艺开发过程中进行反应监测。分辨率提高能够促进对合成应用或降解研究中可能出现的聚合物改变进行更快速的鉴别。通过监测各种分子量而提早发现工艺改变有助于更好地了解聚合物及其预期属性,从而可促进新型聚合物的开发并加快产品上市进程。 结论 由于超高效聚合物色谱系统的扩散度更低并能承受更高的背压以允许使用更小的杂化颗粒,因此该系统明显优于常规GPC系统。通过与最新的色谱柱技术相结合,APC系统与常规GPC相比也提高了对低分子量低聚物的分辨率。APC在性能方面的优点包括校准结果更可靠,这对生成用于聚合物表征的准确测定值而言是必不可少的。低分子量聚合物检测速度和分辨率的同时提高可在开发过程中实现对聚合物的快速且可靠的表征,从而促进对新型聚合物进行密切的上市跟踪。
  • 解读|GB/T 39560.12-2024 《电子电气产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》
    2024年6月29日,《电子电气产品中限用物质的限量要求》(GB/T 26572-2011)的《第1号修改单》获得正式批准。这一修改单扩大了中国RoHS限用物质的范围,新增了四种邻苯二甲酸酯类物质。受管控的限用物质总数增至10项,标志着中国在电子电气产品环保管理方面迈出了重要一步。该修改单预计将于2026年1月1日起正式实施。同时,第14号公告还批准发布了标准GB/T 39560.12-2024《电子电气产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》。这项标准作为中国RoHS检测邻苯类物质的方法,将于2024年10月1日开始实施。GB_T 39560_12-2024 《电子电气产品中某些物质的测定第12部分_气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》.pdf近日,GB/T 39560.12-2024全文也已公布,该标准规定了气相色谱-质谱法同时测定聚合物中多溴联苯、多溴二苯醚和邻苯二甲酸酯。目的在于确定一种适应于同时测定电子电气产品中多溴联苯、多溴二苯醚和邻苯二甲酸酯的技术方法。制定背景此次GB/T39560系列标准是为了适应产业对新种类有害物质限制的要求和新型检测技术发展,保持我国RoHS检测技术及结果国际一致。在推动实现中国RoHS与国际的对接互认,努力成为全球电器电子行业绿色发展的参与者、引领者的过程中起到了重要的作用。制定过程本文件等同采用IEC 62321-12:2023《电工产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》。本文件还做了下列编辑性修改:-为了与我国现有标准系列一致,将标准名称改为《电子电气产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多澳二苯醚和邻苯二甲酸酷》:更改了IEC原文的两误,将11.2e)中的“用5个校准点的结果(根据表5)”更改为“用5个校准点的结果(根据表6)”标准GB/T 39560.12-2024主要内容原理:聚合物中不同种类的化合物,如PBB、PBDE、BBP、DBP、DEHP和DIBP等,通过超声辅助同时萃取,然后采用气相色谱-质谱仪(GC-MS)的全扫描模式和(或)单(或“选择”)离子监测(SIM)模式进行定性和定量分析。仪器设备:分析天平、容量瓶、超声波清洗器、带有聚四氟乙烯螺帽的离心管、离心机、去活进样口衬管、铝箔、微升注射器或者自动移液管、巴斯德吸管、带100μL玻璃衬管和PTFE衬垫的1.5mL样品小瓶或根据分析系统选择合适的样品瓶(带棕色或琥珀色)、微型振荡器(已知的如漩涡器或漩涡混合器)、使用带毛细管柱连接质谱检测器(电子电离,EI)的气相色谱、对PBB、PBDE和邻苯二甲酸酷化合物有足够分离效率的约15m长的色谱柱、0.45m聚四氧乙滤膜、预清洗过的滤纸。试验过程:1、 制样:推荐使用液氮冷却的低温研磨,并通过500μm的筛子。否则样品切成小于1mm✖ 1mm。2、 制备储备液:PBB、PBDE、邻苯二甲酸酯、内标。3、 萃取:称取100mg±10mg样品加入4mL丙酮/正己烷于离心管中,再加入标记物(分析回收率),超声水浴提前15min,水浴温度不超过40℃。超声结束后5000r/min离心5mim,取上清液于25mL容量瓶,再次加入萃取重复2次后定容。4、加入内标,将内标储备液稀释后加入萃取液中测定。5、 GC-MS检测:优化特定的GC-MS系统可能需要不同的条件,以实现所有校准同系物的有效分离,并满足质量控制(QC)和检测限(LOD)的要求。 色谱柱:非极性(苯基亚芳基聚合物,相当于5%苯基-甲基聚硅氧烷)长度15m;内径0.25mm;膜厚度0.1μm。应尽量使用高温色谱柱。 进样系统:程序升温、冷柱、分流/不分流进样器或类似的进样系统。 进样衬管:4mm在底部带玻璃棉(去活)的单底锥形玻璃衬管。 载气:氦气 1.0mL/min,恒定流量。 柱温箱:100℃保持2min,20℃/min升至320℃保持3 min。 传输线温度:300℃。 离子源温度:230℃。 电离方法:电子电离(EI),70eV 驻留时间:在SIM模式下为50ms.6、标准曲线制定(难点)7、 分析物浓度计算。我们将陆续邀请多位权威标准制定专家深入阐释“中国RoHS升级解读”相关内容,敬请持续关注本话题的最新动态。
  • 色谱仪器发展助力药物分析技术“绿色化”
    p   20世纪90年代,“绿色化学”概念首次进入人们视线,“绿色分析化学”作为绿色化学的一个方面,旨在通过运用新的分析技术或者改进旧方法,有效减少危险化学品的使用和有害废弃物对环境的污染。常规 a title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " href=" http://www.instrument.com.cn/application/industry-S22.html" target=" _self" span style=" color: rgb(255, 0, 0) " strong 药物分析 /strong /span /a 中的色谱法需大量使用有机溶剂,导致产生大量挥发性废弃物,对环境有害。作者就药物分析常用的方法绿色化进展进行了论述,其中着重讨论了色谱技术的绿色进展。 /p p   常规HPLC每日流出的流动相超过1L,作为流动相的溶剂通常是挥发性有机化合物,在环境中分散污染,甚至具有毒性。人们逐渐考虑从绿色的角度减少溶剂的用量。 /p p   首先是样品制备的绿色化。为样品制备带来绿色的技术通常有固相萃取(SPE)及超临界流体萃取(SPME),其中普遍应用的SPE具有溶剂消耗少、制备时间短及可实现自动化的优点。 /p p   再则是尽可能的减少分析时间,这样可直接减少溶剂的消耗量,具体措施一是提高洗脱液入口压力或升高柱温 二是使用整体柱以增加柱渗透压 三是通过UPLC与更小粒径填料色谱柱相配合。 /p p   最有前景的减少溶剂用量的方法则是仪器的小型化。虽然直接缩短柱长是小型化的最直接方式,但通常会降低分离效能。微流色谱属于色谱小型化的另一种方法,其特点是流动相流速以& amp #181L/min为单位,使得在24小时的分析中,仅产生小于10mL的废液。使用微流色谱的另一优点是减少了固定性填料用量,配合使用灵敏度高的检测器(如MS)可大大提升这种方法的灵敏度。 /p p   常规HPLC中最常用的溶剂之一为乙腈,其毒性高、处理成本高,并不是一种绿色溶剂。乙醇与乙腈虽具有类似的物理性质,但其粘度很高,并不适用于常规液相色谱系统(40MPa)。随着仪器技术的发展,高效液相色谱仪的使用压力可大于100MPa,粘度不再是一个关键问题。 /p p   对于高温HPLC,用纯热水作为洗脱液代替常规流动相被称为“亚临界水色谱法(SWC)”,纯水作为流动相,使色谱与FID等检测器的联用具备了可能性 另外一些化合物的热流出与MS检测器具有兼容性。 /p p   使GC更环保的一种方法是快速毛细管技术,可通过缩短柱长并减小柱内径的方式实现。在实现超快程序升温方面,低热量技术(LTM)则可通过降低功耗及增加柱加热速度来减少色谱时间。而采用电阻加热的覆镍熔融二氧化硅柱则可快速加热及冷却,更适合快速GC和便携式仪器分析。另外,多维GC新技术的开发,可更好的分离复杂样品组分,而并不使用更多的时间。 /p p   新型分析仪器、样品制备技术等方面的新发展可进一步增强分析技术的绿色分量,鉴于绿色药物分析技术旨在显著减少溶剂、试剂和能量的消耗并节省分析时间,将分析人员和研究者的风险及对环境的破坏最小化,自动化、快速化、简易化、小型化及在线化的分析系统将会是下一步药物分析技术绿色革命的重点目标。 /p p br/ /p
  • 296.8万!宜春市袁州生态环境局挥发性有机物在线气相色谱质谱分析仪系统及运维服务采购项目结果公示
    一、项目编号:阳乐-YZ2021-002二、项目名称:宜春市袁州生态环境局挥发性有机物在线气相色谱质谱分析仪系统及运维服务采购项目三、中标(成交)信息:供应商名称:江西迈翰环保科技有限公司供应商联系人:焦彬供应商联系电话:0791-88356039供应商地址:江西省南昌市东湖区中大路 289 号中标(成交)金额(元)\(%):2968000.00四、主要标的信息:名称品牌规格型号数量单价宜春市袁州生态环境局挥发性有机物在线气相色谱质谱分析仪系统及运维服务采购项目谱育科技、智翔宇EXPEC2000(规格MS型)等12968000.0五、评审专家名单:张欠涛(组长),黄招光,万翔,付光辉,钟莉(业主评委)六、代理服务收费标准及金额:36648.00 元七、公告期限:自本公告发布之日起1个工作日。八、其他补充事宜:如对本结果有异议的,可自本公告期限届满之日起七个工作日内,以书面形式向采购人、采购代理机构提出质疑,逾期不再受理。九、凡对本次公告内容提出询问,请按以下方式联系:1.采购人信息名称:宜春市袁州生态环境局地址:宜春市袁州大厦7楼联系方式:189795397702.采购代理机构信息名称:江西省阳乐招标代理有限公司地址:江西省宜春市袁州区新康府街道馨苑社区办公楼2楼联系方式:158795020113.项目联系方式项目联系人:钟莉电话:18979539770
  • 生态环境部发布《土壤和沉积物 13种苯胺类和2种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法》等5项国家生态环境标准
    为支撑相关水污染物排放标准、土壤风险管控标准实施与重点流域水生态监测,服务固体废物处理处置,近日,生态环境部发布《土壤和沉积物 13种苯胺类和2种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法》(HJ 1210-2021)、《固体废物 无机元素的测定 波长色散X射线荧光光谱法》(HJ 1211-2021)、《水质 可吸附有机卤素(AOX)的测定 微库仑法》(HJ 1214-2021)、《水质 浮游植物的测定 滤膜-显微镜计数法》(HJ 1215-2021)、《水质 浮游植物的测定 0.1 ml计数框-显微镜计数法》(HJ 1216-2021)等5项国家生态环境标准。  《土壤和沉积物 13种苯胺类和2种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法》(HJ 1210-2021)为首次发布,适用于土壤和沉积物中13种苯胺类和2种联苯胺类化合物的测定,支撑《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)等土壤风险管控标准实施。本标准的发布实施填补了我国土壤和沉积物中苯胺类和联苯胺类化合物监测分析方法标准的空白,可为建设用地土壤风险管控、土壤污染修复提供监测技术支撑。  《固体废物 无机元素的测定 波长色散X射线荧光光谱法》(HJ 1211-2021)为首次发布,适用于污泥、污染土壤、粉煤灰、烟尘、尾矿废石和冶炼炉渣等固体废物中16种无机元素和7种氧化物的测定,支撑《农用污泥污染物控制标准》(GB 4284-2018)、《水泥窑协同处置固体废物环境保护技术规范》(HJ 662-2013)等标准实施。与已有固体废物无机元素的监测分析方法标准相比,本标准适用范围增加了污泥、污染土壤等介质,前处理方法简单、分析速度快,有助于提高分析效率。  《水质 可吸附有机卤素(AOX)的测定 微库仑法》(HJ 1214-2021)为首次发布,适用于地表水、地下水、生活污水和工业废水中可吸附有机卤素(AOX)的测定,支撑《污水综合排放标准》(GB 8978-1996)等实施。与《水质 可吸附有机卤素(AOX)的测定 微库仑法》(GB/T 15959-1995)相比,本标准调整了适用范围,细化了校准、样品测定和结果表示等内容,增加了干扰和消除、质量保证与质量控制等内容,更好地满足生态环境监测实际工作需要。  《水质 浮游植物的测定 滤膜-显微镜计数法》(HJ 1215-2021)、《水质 浮游植物的测定 0.1 ml计数框-显微镜计数法》(HJ 1216-2021)均为首次发布,适用于地表水中浮游植物的测定。浮游植物是水生生物的组成部分,作为一个重要的营养级代表,是水生态监测中不可缺少的内容。浮游植物密度也是地表水水质表征、水华预警等的重要指标之一。上述两项标准作为地表水中浮游植物的监测方法,可为开展水生态监测,服务流域生态环境保护工作提供支撑。  上述五项标准的发布实施,进一步完善了生态环境监测标准体系,将为规范开展生态环境监测工作,为深入打好污染防治攻坚战提供相关监测方法支撑。
  • 新到货二手仪器DFS-高分辨气相色谱质谱仪-二噁英采样与分析配备
    21年5月5日新到货二手仪器DFS-高分辨气相色谱质谱仪 +Trace 1310,双GC DFS-高分辨气相色谱质谱仪 +双GC Trace 1310,二噁英检测,兴奋剂检测必备,质谱仲裁法,NIST基础图库,这台热电磁质谱机有着拿手绝活。DFS-高分辨气相色谱质谱仪应用双聚焦扇形磁场(GC-DFS-HRMS)具有超过60000 (10%峰谷定义)的zui大分辨率,扫描质量范围为m/z2-1200,动态定量范围达106(5fg-5ng),精确质量数小于2ppm (电场扫描),主要用于常规含氯二噁英分析,是多种法规列入的二噁英定量分析“黄金法则”仪器,DFS-高分辨气相色谱质谱仪仪器还可用于定性定量分析其他环境污染物,如溴代二噁英、溴氯混合取代二噁英、多氯联苯、多溴联苯醚、多溴联苯、氯代萘等,能提供优越的分析精确度和精密度,以及极高的灵敏度。二噁英采样与分析配备赛默飞的双气相色谱DFS-高分辨气相色谱质谱仪,配备自动进样器、电子轰击离子源(EI)及化学电离源(CI)等,可进行常规含氯二噁英、含溴及溴氯混合取代非常规二噁英以及类二噁英多氯联苯的分析,主要应用于环境污染领域的研究。实验室拥有两台气相色谱双聚焦扇形磁场高分辨质谱DFS-高分辨气相色谱质谱仪(GC-HRMS, DFS和MAT95-XP),超净前处理,配备烟气采样器在内的各种环境采样设备,可进行大气、烟气、水、土壤等环境介质中的二噁英采样与分析。
  • 宁夏化学分析测试协会发布《水质 八氯联苯(PCB194)的测定 液液萃取/气相色谱-质谱法》等2项团体标准征求意见稿
    各相关单位:按照宁夏化学分析测试协会团体标准工作程序,标准起草组已完成《水质 八氯联苯(PCB194)的测定 液液萃取/气相色谱-质谱法》 和《水质 九氯联苯(PCB206)的测定 液液萃取/气相色谱-质谱法》2项团体标准征求意见稿的编制工作。现按照我协会《团体标准制修订程序》要求,公开征求意见。请有关单位及专家提出宝贵意见,并将征求意见表(附件)于2024年7月2日前反馈给秘书处。联系人:张小飞 电 话:13995098931邮箱:1904691657@qq.com 关于团标征求意见函 -6.2.pdf团标表格7-专家意见表.doc水质 八氯联苯(PCB194)的测定-文本.pdf水质 九氯联苯(PCB206)的测定-文本.pdf
  • 专家解读|GB/T 39560.12-2024 电子电气产品中某些物质的测定 第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯
    多溴联苯、多溴二苯醚是一种新型持久性有机污染物,在环境及生物体内普遍存在且污染呈增长趋势,并对动物及人类健康造成潜在的危害,已对其进行严格管控。而邻苯二甲酸酯作为塑料产品中的增塑剂,被广泛应用于玩具、食品包装材料、医用血袋和胶管、乙烯地板和壁纸、清洁剂、润滑油、个人护理用品等产品中,因其给环境和健康带来严重危害同样已被社会广泛关注,并加以限制。电子电气产品作为人们日常生活必不可少的一部分,产品中所含有害物质对环境和人体健康的影响备受关注,国内外均出台了相关政策对其加以管控,比较典型的就是欧盟RoHS法规,其2.0版本中对多溴联苯、多溴二苯醚以及四种邻苯二甲酸酯物质进行了规定,要求出口到欧盟地区的电子电气产品均应执行法规要求。此外,为贯彻落实我国《“十四五”工业绿色发展规划》中有关推动生产过程清洁化转型,减少有害物质源头使用的重要工作,2024年6月29日GB/T 26572-2011《电子电气产品中限用物质的限量要求》国家标准第1号修改单正式发布,其规定的有害物质限量要求与欧盟RoHS法规管控物质完成一致,这也标志着中国RoHS正式与国际接轨。该修改单中明确规定,电子电气产品有害物质检测方法标准全部更新为GB/T 39560系列,而本标准作为GB/T 39560系列标准的第12部分,同样适用,并将于2024年10月1日开始实施,以此确保我国RoHS检测技术及结果与国际一致。GB_T 39560_12-2024 《电子电气产品中某些物质的测定第12部分_气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》.pdf一、制定背景 电子电气产品生产和销售企业,为应对欧盟RoHS法规以及我国《电器电子产品有害物质限制使用管理办法》要求,对产品中的限用物质进行检测,以确保符合性。由于法规要求不断更新,且所测试的有机类化合物相对复杂,导致目前所用的检测方法较多,出现同一样品按照不同项目多次处理和测定的情况,花费大量的检测时间和成本。根据有机物萃取和GC-MS检测技术原理,将不同类型的有机化合物通过方法优化,取得同时萃取和检测的方法,从而减少检测时间和技术成本,在确保满足法规要求的同时,为企业及第三方检测机构提供一套更科学、可靠的技术方法,对于保障电子电气产品的安全性和环保性具有重要意义。二、制定过程本标准等同采用IEC62321-12的标准,该国际标准同样为工业和信息化部电子第五研究所牵头制订,本标准在采纳该标准的同时,依托行业发展的战略背景,集合了国内电子电气行业一批权威的科研院所、检测平台、仪器生产厂家以及生产企业代表等22家单位,积极投身标准的制定当中。编制组历时3年对标准技术内容进行了充分而详实的论证,解决了多个技术难点,最终确保标准的实用性,并在相关领域得到推广应用。三、主要内容本标准详细规定了电子电气产品聚合物中PBB、PBDE以及四种邻苯的测试方法,包括适用范围、测定原理、样品制备、仪器参数、校准、质量控制以及附录参考文件等。1. 适用范围:本标准适用于电子电气产品聚合物中多溴联苯(PBB)、多溴二苯醚(PBDE)和四种邻苯二甲酸酯(邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二正丁酯(DBP)、邻苯二甲酸丁基苄酯(BBP)、邻苯二甲酸二(2-乙基己基)酯(DEHP))的测定。并已经通过测试聚丙烯(PP)、聚氯乙烯(PVC)、丙烯腈-丁二烯-苯乙烯(ABS)、丙烯酸橡胶(ACM)、聚苯乙烯(PS)、聚氨酯(PU)和聚乙烯(PE)等材料的评估。测定范围为25 mg/kg至2000 mg/kg。2. 测定原理本标准采用超声波辅助萃取方法,将聚合物样品中的PBB、PBDE和邻苯二甲酸酯萃取出来,然后采用GC-MS进行定性和定量分析。GC-MS可以同时进行多种化合物的分析,灵敏度高,准确性好,是测定PBB、PBDE和邻苯二甲酸酯的理想方法。3. 样品制备本标准在储备溶液准备中,给出了建议使用的标记物、内标物、储备液浓度以及储存条件等信息。在分析的一般说明中将可能影响分析过程的空白值以及外界环境影响因素等进行了阐述说明。样品制备是分析过程中至关重要的一步。本标准规定了样品的研磨、筛分和萃取等步骤。样品应研磨并通过500μm的筛子,或者切成小于1x1 mm的碎片。样品制备的粒径对于萃取效果影响较大,因此标准中对于样品的粒径大小进行了限值,以确保达到最佳的萃取效果。称取100 mg ± 10 mg样品,用预先清洗过的滤纸包裹后置于离心管中,用4mL丙酮/正己烷浸没样品,加入25μL标记物(1000μg/mL),使用超声波辅助萃取方法,将PBB、PBDE和邻苯二甲酸酯从样品中萃取出来。萃取完成的样品进行离心,转移上清液于25mL容量瓶中,重复两次以上萃取步骤,最终将三次萃取离心的上清液全部转移至25mL容量瓶中,定容至标记处,加入内标物后完成样品制备。标记物主要用于指示样品回收率效果,因此在样品制备的前端就应加入,伴随样品处理的全过程,以此进行监控。标准中同样规定了超声的萃取时间以及水浴温度等条件,试剂的选取以及萃取时间和温度的设置对于样品提取效果极为重要,能以最短的时间达到最佳的效果。需要注意的是,萃取过程中,超声浴中的水位应高于管内的萃取液位,并且由于有机溶剂在密封管中的挥发,水浴温度过高可能会造成危险。在操作过程中应关注温度变化,确保试验安全。4. 仪器参数GC-MS的仪器参数对分析结果的准确性和可靠性至关重要。本标准给出了GC-MS的仪器的推荐参数,包括色谱柱类型、进样方式、载气流速、柱温箱温度、传输线温度、离子源温度、电离方法和驻留时间等。这些参数可以根据不同的仪器和分析要求进行调整,同时给出对应目标物的定性与定量离子参考。5. 校准校准是定量分析的基础。本标准规定了使用标准物质溶液进行校准的方法。通过绘制校准曲线,可以建立分析物浓度和仪器响应之间的关系,从而进行定量分析。本标准对校准曲线的具体绘制方法以及推荐选择的浓度点进行了规定,包括标记物以及内标物溶液的配制方法,同时给出校准曲线的线性回归方程以及各参数的意义。需要注意,样品和标准溶液使用的溶剂应该相同,以避免任何潜在的溶剂影响。所有校准溶液在使用前应储存在低于-10℃的温度下。每个校准曲线的线性回归拟合的相对标准偏差(RSD)应小于或等于线性校准函数的 15%。校准曲线绘制过程中应尽可能采用线性回归校准。在不能达到线性回归符合的要求(小于或等于15%的相对标准偏差(RSD)),如果其它统计处理方式(例如相关系数或曲线达到 0.995 或更好)证明可接受,也可使用多项式拟合。此外,在建立十溴二苯醚的校准曲线时,标准中给出校准范围的建议调整要求。6. 计算根据拟合的线性方程进行样品浓度计算,当使用线性回归不能满足曲线的相对标准偏差要求时,可以使用多项式(例如二次)回归,但要满足所有的质量控制要求。如果样品中每种同系物的浓度超出各自的曲线线性范围,需对样品进行稀释,应尽量使其浓度在校准范围的中间部分。样品中的多溴二苯醚总量和多溴联苯总量不仅局限于校准溶液中的标准物质,除此之外的其他可经过确证的多溴二苯醚和多溴联苯物质也应算入总量。7. 质量控制本标准规定了严格的质量控制措施,通过分辨率对仪器进行监控,通过空白试验、基体加标、分析连续校准核查标准物(CCC)、标记物回收率、检出限以及定量限等指标对整个分析方法的过程进行质量监控,并详细阐述了实施过程,当上述所述质控内容不能满足标准中规定的要求时,所得的结果是不可信的,需要对各个环节进行逐一排查确认后,重新进行测试,从而确保分析结果的可靠性和准确性。8. 附录附录中对不同萃取剂的萃取效率实例、不同循环次数的萃取效率实例、气相色谱质谱图、各目标化合物的质谱图、国际实验室间比对12(IIS12)的统计结果进行了展示,对过程操作给予指导。以上为本标准的所有解读内容,通过本次标准解读,对标准的内涵和实施要求有了更深入的了解。这一标准的实施将极大提高检测技术的准确性和可靠性,促进相关行业的持续发展。本标准的制定和实施不仅符合国内市场的需求,更是我们接轨国际标准、参与国际竞争的重要步骤。其有助于提升我国产品在国际市场上的信誉度和竞争力,促进国际贸易的便利化。(作者:工业和信息化部电子第五研究所环境与绿色发展中心环境技术部部长/高级工程师 丑天姝)丑天姝,高级工程师,现任工业和信息化部电子第五研究所环境与绿色发展中心环境技术部部长。主要从事毒害物质检测、绿色供应链管理、环境地球化学、环境分析等相关研究。主要承担工信部高质量发展专项“高效液相色谱-高分辨离子淌度质谱联用仪”项目、“第二次全国污染源普查工业污染源产排污系数核算项目”、肇庆市科技项目“典型工业污泥低温干化关键技术研发与应用示范”、增城区科技项目“田螺废弃物中芳香基硫酸酯酶的提取及其应用研究”以及“增城市基本农田(菜地)土壤环境质量调查研究”等各类课题项目14项,参与制修订国际标准2项、国家及行业标准8项;发表论文6篇,获得专利3件;出版著作1部。
  • 超高效液相色谱/电喷雾串联质谱(UPLC/MS/MS)分析16种磺酰脲除草剂
    超高效液相色谱/电喷雾串联质谱(UPLC/MS/MS)分析16种磺酰脲除草剂 蔡麒、黄静、Yap Swee Lee 沃特世科技(上海)有限公司 介绍 磺酰脲类除草剂品种的开发始于70年代末期。1978年Levitt 等报道,氯磺隆(chlorsulfuron)以极低用量进行苗前土壤处理或苗后茎叶处理,可有效地防治麦类与亚麻田大多数杂草。紧接着开发出甲磺隆,随后又开发出甲嘧磺隆、氯嘧磺隆、苯磺隆、阔叶散、苄嘧磺隆等一系列品种。磺酰脲类除草剂由芳香基、磺酰脲桥和杂环三部分组成,在每一组分上取代基的微小变化都会导致生物活性和选择性的极大变化。 磺酰脲类除草剂的活性极高,属于超高效除草剂。这类除草剂用量很低,其用药量由传统除草剂的公斤级降为以克为单位。此类除草剂发展极快,已在各种作物地使用,有些已成为一些作物田的当家除草剂品种。而且,新的品种还在不断地商品化。 随着除草剂的大量应用和新品种的不断开发,带来了相应的环保问题。主要表现为除草剂的毒性问题、残留问题、生态问题、环境污染等问题。由于磺酰脲类农药的高效性,微量即可产生良好除草效果,但若使用不当就会对环境和其他作物产生危害。有些磺酰脲类除草剂的品种,如氯嘧磺隆、绿磺隆、甲磺隆、胺苯磺隆等在土壤中主要通过酸催化的水解作用及微生物降解而消失,土壤的温度、pH值、湿度、有机质含量对水解作用及微生物降解均有很大影响。 本文介绍了使用沃特世公司超高效液相色谱(UPLC® )和串联质谱(MS/MS)分析16中磺酰脲除草剂的分析方法。 2004年沃特世(Waters® )推出的ACQUITY UPLC® ,使用了具有1.7&mu m 颗粒粒径固定相的色谱柱,可以在高压下使用(最大压力 15,000 psi)。高压与极细颗粒的结合提供了快速、高分离度的分离,提高了灵敏度,减少了基质干扰。 2008年沃特世推出的Xevo TQ MS是新一代的串联四极杆质谱,改进了离子源的设计,改善了离子化效率,提高了灵敏度。Xevo TQ MS由于采用了专利的Scanwave技术和MS、MS/MS快速切换技术,大大改善了传统四极杆在进行MS Scan和Daughter Scan灵敏度低的问题,并且增加了实验选择性。 使用UPLC/Xevo TQ MS分析16种磺酰脲除草剂方法仅需要6分钟,而常规HPLC分析时间需要超过40多分钟的,因此UPLC更快的运行速度不仅提高了仪器的高通量,也减少了方法的开发时间。 超高效液相色谱ACQUITY UPLC 以及新一代串联四极杆质谱仪Xevo TQ MS 实验部分 色谱条件 系统: ACQUITY UPLC 超高效液相色谱系统 色谱柱: ACQUITY UPLC BEH C18,1.7um, 2.1x50mm P/N: 186002577 流动相A: 10mM AcNH4&bull H2O (含0.1%甲酸) 流动相B: 乙腈(含0.1%甲酸) 流速: 0.5mL/min 柱温: 35 ˚ C 进样体积: 5 µ L 分析总周期: 6 min UPLC梯度 质谱条件 MS系统: Xevo TQ MS 串联四极杆质谱仪 离子化模式: ESI+ 毛细管电压: 1.0Kv 源温度: 150 ˚ C 雾化气温度: 450 ˚ C 雾化气流速: 800L/h 锥孔气流速: 50L/h 碰撞气流速: 0.18ml/min 多反应监测条件如表1所示 表1:ES+模式下16种磺酰脲除草剂MRM离子对参数 结果和讨论 图1给出了16种磺酰脲除草剂在UPLC中的分离色谱图。6分钟可以完成16种磺酰脲除草剂的分析,与普通 HPLC 40min-50min 的分析时间相比,缩短了将近7倍,大大增加了实验室样品的通量,同时节约了试剂成本和人力成本。分析时间大大缩短的同时,仍然保留了高效的分离能力。从TIC色谱图上可以得到14种基线分离的色谱峰,另外两种由于极性相似度非常高,没有基线分离,但是通过质谱MRM通道可以完全分开,因此本方法在寻求快速分析的同时,兼顾了色谱分离的要求,降低基质影响的效果。 图1:16种磺酰脲除草剂TIC图 图2,图3给出了具有代表性的卞嘧磺隆(Bensulfuron)和环氧嘧磺隆(Oxasulfuron)在浓度范围1-200ng/mL的标准曲线,本标准曲线是用溶剂空白以及相应浓度标准检测绘制的。图 2. 卞嘧磺隆(Bensulfuron)标准曲线 表 3. 环氧嘧磺隆(Oxasulfuron)标准曲线 表2给出的是16种磺酰脲除草剂1ppb的信噪比(Peak to Peak)和 1,5,10,50,200ng/ml的线性相关系数。 表2. 磺酰脲除草剂的1ppb信噪比和线性相关系数 图4给出的是最低检测限浓度(0.01ng/ml)附近的化合物谱图。从分析结果来看,仪器的标准检测限除苯磺隆外基本可以达到0.01ng/mL甚至更低。 图4. 16种磺酰脲除草剂0.01mg/mL谱图 结论 ACQUITY UPLC系统提高了磺酰脲除草剂分析的选择性和灵敏度,同时运行时间显著缩短。现在科学工作者们已经跨越了传统HPLC限制的障碍,可以使用UPLC将分离化学延伸和扩展到更多应用中。
  • 宁夏化学分析测试协会批准发布《水质 八氯联苯(PCB194)的测定 液液萃取/气相色谱-质谱法》等2项团体标准
    各有关单位:根据国家《团体标准管理规定》和《宁夏化学分析测试协会团体标准管理办法》,我协会对《水质 八氯联苯(PCB194)的测定 液液萃取/气相色谱-质谱法》和《水质 九氯联苯(PCB206)的测定 液液萃取/气相色谱-质谱法》2项团体标准进行了评审,已经通过了专家审查,现予以发布,自2024年6月30日起正式实施,特此公告。 2024协会团体标准公告-6.28.pdf
  • 安捷伦科技新增C3和二苯基固定相的亚2µ m蛋白质分析生物色谱柱以提供更多选择性和
    安捷伦科技新增C3和二苯基固定相的亚2µ m蛋白质分析生物色谱柱以提供更多选择性和更好峰形 2012 年 2 月 6 日,安捷伦科技公司(纽约证交所:A)宣布了其用于反相液相色谱仪的孔径 300 Å 、亚 2 µ m 填料色谱柱系列迎来了新成员:超高压快速高分离度 ZORBAX 300SB-C3 和 300-二苯基 1.8 µ m 色谱柱。 这两种色谱柱的加入实现了超高效液相色谱(UHPLC)的反相生物分子分离。C3固定相能够为大分子蛋白质分离(包括抗体在内)提供更多选择性和更好的峰形,回收率也更高而 二苯基固定相通过一级结构中的芳香族氨基酸的pi-pi 相互作用带来更多选择性。 安捷伦产品经理 Linda Lloyd 说道:“安捷伦现有的亚 2 µ m 宽孔径生物色谱柱能够全面满足反相液相色谱系统的需求新型 1.8 µ m 色谱柱进一步扩展了 ZORBAX C18、C8 和 C3 固定相系列,这三种固定相已有 3.5 和 5 µ m 两种规格的填料。我们非常高兴能够为 UHPLC 用户带来更准确的鉴定和更快的分析速度。” 该款粒径 1.8 µ m,孔径 300Å 的色谱柱将 UHPLC 特有的效率、分离度和强大的定量功能在反相液相色谱蛋白质分离上发挥到极致。此外,该色谱柱在高达 1200 bar 的压力下同样稳定安捷伦的 C18、C8 和 C3 色谱柱采用成熟的 StableBond 技术,加上封端的联苯和 Pursuit 色谱柱的化学性质,当采用三氟乙酸或甲酸流动相改性剂时能够得到对称峰形,即使在低 pH 条件下亦是如此。丝毫无损色谱柱寿命。 目前,全套 ZORBAX 超高压快速高分离度色谱柱系列包括用于小分子应用的 13 种固定相(包括 HILIC)以及用于大分子分离的四种固定相。如此广的选择范围使得色谱分析人员能够选择最适合的色谱柱来优化 UHPLC 分离。此外,RRHD 高达 1200 bar 的稳定性也提供了更灵活的流速和流动相选择。 要了解更多信息,请访问:www.agilent.com/chem/biohplcproteins。 关于安捷伦科技 安捷伦科技公司(纽约证交所:A) 是全球领先的测量公司,同时也是通信、电子、生命科学和化学分析领域的技术领导者公司的 18,700 名员工为 100 多个国家的客户提供服务在 2011 财政年度,安捷伦的业务净收入为 66 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制