当前位置: 仪器信息网 > 行业主题 > >

质谱理论分子量

仪器信息网质谱理论分子量专题为您提供2024年最新质谱理论分子量价格报价、厂家品牌的相关信息, 包括质谱理论分子量参数、型号等,不管是国产,还是进口品牌的质谱理论分子量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱理论分子量相关的耗材配件、试剂标物,还有质谱理论分子量相关的最新资讯、资料,以及质谱理论分子量相关的解决方案。

质谱理论分子量相关的资讯

  • 赛默飞:DMT+Orbitrap质谱 实现超大分子量的蛋白直接检测
    质谱仪器作为一种质量检测仪器,被应用到各个学科领域中,尤其是在化学化工、环境能源、医药、生命及材料科学等领域发挥着重要作用。在常规质谱分析中,被分析物质首先被离子化,随后各种离子被引入真空中的质量分析器,在分析器中的电场或磁场作用下,离子的运动特性随其质荷比不同而产生差异,因而造成时空上的分离,并由检测器依次检测出来。而在这种原理下,质谱仪测量的是离子的质荷比(m/z),而不是质量本身。利用质谱仪器对样品的分析过程中,样品的雾化过程十分关键。目前,常用的电喷雾技术原理是由John Fenn提出的电喷雾电离(ESI)技术,这一理论也获得了2002年的诺贝尔化学奖。通常对蛋白质这种大分子来说,ESI质谱中都会呈现多种价态的谱峰群,群落中的每一组为某个电荷态该蛋白质的各个同位素峰、盐峰以及加合物峰等。由于电荷态z通常是连续的整数分布(例如z = 11,12....21,22...),人们可以通过计算不同电荷数对应的群落m/z的间隔来推算各组的电荷数z,进而求出实际的质量m的分布,也可以使用软件进行解卷积得到m分布。这种分析手段对于分析分子量较小(分子量在5万以下)、简单纯净的蛋白样品还是很有效的。然而,在实际应用中对天然蛋白和病毒颗粒的分析却不那么简单。随着分子量上升,分子结构越来越复杂,各种翻译后修饰使被测蛋白的分子量出现差异化,很宽的质量分布(可达上千Da)使得不同价态的峰群连接在一起。如图1所示,这种缺少电荷状态以及同位素峰的“死亡驼峰”,我们很难通过解卷积的形式进行分析。并且,对于很多糖蛋白,分子量超过3、4万就出现峰群交叠,无法用解卷积软件来获得分子量的分布信息。因此,对于大生物分子的质谱分析,仅靠提高仪器的分辨率是无济于事的。在这种情况下,电荷检测质谱(CDMS)技术便成为了我们的“救命稻草”。电荷检测质谱(CDMS)通过同时测量单个离子的质荷比和电荷数,进而计算获得离子质量m。因此,相较于其他类型质谱,CDMS技术的关键是如何准确地测量单个离子的电荷。目前,电荷检测质谱技术还没有现成的商品化仪器,只有能够自己开发质谱仪器硬件,或自己改编FTMS软件的专家才能进行这样的实验。而在今年的ASMS会议上,赛默飞公司重磅推出了直接分析质谱技术(DMT),并将其结合在了Orbitrap上,这使得超大分子量的复杂蛋白的直接质谱检测成为了可能。直接分析质谱技术其原理是:在Orbitrap中检测来自离子沿中心电极的中心轴旋转的轴向频率,进而确定离子的m/z信息;与此同时,来自外电极上的感应电荷振幅也会被检测,从而确定离子的电荷z的信息。直接分析质谱技术模式为 Orbitrap 质量分析仪增加了电荷检测功能,能够同时测量数百个单个离子的质荷比 (m/z) 和电荷数 (z)。这使得 Orbitrap 质量分析仪可以直接计算分析物的质量,而不需要根据 m/z 去卷积。根据 m/z 去卷积的方法依赖于测量结果中已分辨的电荷状态和/或同位素分辨的信号。直接分析质谱技术模式提高了分辨率,并且扩展了动态范围,提高了可获得的质量测量结果的上限,同时由于单个离子测量的灵敏度较高,可以从浓度明显较低的样品中采集到更有价值的数据。
  • 分析利器丨MALDI-TOF 高效表征小分子化合物的分子量
    MALDI-TOF对小分子化合物分子量的快速确认小分子通常指分子量小于1000 Da(尤其小于400 Da)的有机化合物,包括天然产物(生物体合成)及各类人工合成的有机小分子。质谱技术由于可以精确测量各类化合物的质量,被广泛应用于小分子的分子量表征及结构鉴定工作。通常小分子分子量表征常用手段是LCMS,实则MALDI-TOF同样可以用于小分子化合物的分子量确认,且具有更高的效率。MALDI-TOF MS表征小分子分子量的方案特点:1快!每天可分析数千个样品2直接上样分析,无需样品分离3所需样品量较少,单次上样体积只需1 μL以内4除可溶性样品外,还能够分析难溶性样品MALDI-TOF分析小分子的工作流程小分子测试案例分享01各类化合物(原料、物料、产品)分子量及杂质检测在药品、化工品等产品生产过程中,对投入的原料、物料以及终产品进行分子量和杂质检测,是生产质量控制的重要内容。下图中,通过质谱信息可以直接了解寡核苷酸合成原料亚磷酰胺单体的分子量及杂质信息。寡核苷酸合成原料亚磷酰胺单体质谱图02小分子有机合成反应跟踪、产物确认在有机合成中,鉴定反应产物和了解反应进程极其重要。MALDI-TOF MS可以快速测量化合物进行半定量反应跟踪和产物确认。通过化合物单同位素峰的分布,还能轻松识别出溴和氯的存在与否。下图中原料双(氯甲基)苯的信号强度在反应18小时后降低,产物双(溴甲基)苯在反应18小时后强度增加。反应不同时间获得的反应产物的质谱图比较03有机功能材料合成确认有机功能材料包括有机光电材料、有机导电材料、有机磁性材料、有机催化材料等。MALDI-TOF MS可以快速进行有机功能材料的合成确认。下图中,通过样品同位素分布模式及质量数的实际检测结果与理论值的比较,可以准确判断产品合成是否成功。半导体材料及有机发光二极管材料的质谱图04难溶性颜料分子量分析颜料通常不溶于水和一般有机溶剂,常见的颜料包括无机颜料、偶氮颜料、钛菁颜料等。由于颜料的难溶解性,不能使用传统LCMS或GCMS方法进行分子量检测,而MALDI-TOF MS由于不需要分离,分析时不受溶解性限制,可以检测不溶性颜料的分子量,用于鉴别颜料种类或者颜料生产合成质控。难溶性颜料钛菁红的质谱图结语MALDI-TOF MS具有前处理简单、能够快速获取从低分子量到高分子量各类样品的分子量信息,无需分离、不受样品溶解性限制等优点,为医药行业药物发现、有机合成产物确认、化工领域颜料、乳化剂等各类化工产品分子量分析、有机功能材料的合成确认提供快速检测手段。撰稿人:顿俊玲本文内容非商业广告,仅供专业人士参考。
  • 基质升华重结晶法进行低分子量代谢产物质谱成像分析
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 自质谱成像技术于二十世纪80年代前半期诞生以来,至今为止不断持续着技术改革,并被广泛运用于以新药研究和代谢产物研究领域为首的众多领域中。如今仍以提升灵敏度和空间分辨率、重现性等为目标,不断进行着技术改良。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 同时,也开发出多种离子化所需的基质,如何从这些基质中选出适用于检测目标化合物的基质成为重点。 span style=" text-indent: 2em " 除基质选择外,其涂布方法也会对分析结果造成很大影响,因此,现有多个应用于检测目标化合物的基质涂布方法正在研究中。大致可分为喷雾法和升华法两种方法,两种涂布方法均有自己的优缺点,现阶段经常会同时使用两种方法。本公司开发了能控制基质膜厚的基质升华涂布装置iMLayer(图1),对涂布方法进行研究。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 我们针对以往难以重结晶的基质9AA,开发了升华后重结晶的方法,并在此进行报告。此外,还将对小鼠肝脏中低分子量代谢产物的MS成像结果示例进行介绍。 /p p style=" text-align: right text-indent: 2em line-height: 1.75em " ——R.Yamaguchi, E.Matsuo, T.Yamamoto /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 1、不同基质涂布方法对MS成像分析造成的影响 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 基质涂布方法对基质的结晶形成和MS成像分析造成的影响如表1所示。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 与升华法相比,通过喷雾法生成的基质的结晶较粗,并可能因样本中所含成分的渗漏导致空间分辨率降低。均匀性较差,基质溶液干燥后结晶时会依赖湿度和温度等周围环境,因此重现性也会变差。另一方面,样本中所含化合物的提取效果较好,可能提高检测灵敏度。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 相比之下,升华法具有结晶较细、难以渗漏、均匀性好、重现性良好的特点,是高空间分辨率成像所不可或缺的方法。但相对的,其样本中成分的提取效果不佳,在灵敏度上可能存在不利的一面。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 实际的测量灵敏度依赖于检测化合物的结构。例如,在分析磷脂质等时,采用升华法便具有足够的灵敏度,诸如胺碘酮等药物可以足够的灵敏度完成MS成像(参考应用文集B61)。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 另一方面,在检测小鼠肝脏等器官中含有的ADP 和ATP 等低分子量代谢产物时,通过升华法进行基质涂布,由于没有任何提取效果,无法得到足够的灵敏度。因此,绝大多数例子都是通过喷雾法涂布9AA来实施MS成像,但其空间分辨率相对较低。于是,我们对将DHB和CHCA上使用的升华后重结晶法涂布9AA所需的条件进行了研究。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/0178e2f4-5edd-42fd-ab37-3b27f1e3173b.jpg" title=" 微信截图_20200619165723.png" alt=" 微信截图_20200619165723.png" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 图1 基质升华装置iMLayer /p p style=" text-align: center " 表1 基质涂布方法对结晶形成和MS成像分析造成的影响 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/962223c2-c637-4894-9498-e953c6d6b688.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 2、基质升华后重结晶法 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 对9AA进行升华后重结晶。如图2所示,将含有5%甲醇的滤纸和升华处理后的样本放入相同容器中,于37℃的恒温环境下静置5分钟。此时,滤纸中的5%甲醇蒸发,渗入样本中,在提取样本中化合物的同时会使少许9AA结晶溶解。之后将其真空干燥器内干燥10分钟,使溶解的9AA进行重结晶。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/b1b946ad-81b9-4670-bd42-0b2b1b03f739.jpg" title=" 33333333333333.png" alt=" 33333333333333.png" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 图2 9AA升华后重结晶的方法 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/8767d240-e8eb-44fc-8470-cff5822571a1.jpg" title=" 444444444.png" alt=" 444444444.png" / /p p style=" text-align: center " 图3 成像质谱显微镜iMScopeTRIO /p p style=" text-align: center " 表2 iMScope i TRIO /i 测量参数 /p p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/69636f83-0667-4f8a-a02b-4d1c757bc977.jpg" title=" 55555555555.png" alt=" 55555555555.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 3、使用升华后重结晶法提高MS成像灵敏度 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 对9AA升华后重结晶的小鼠肝脏样本,使用成像质谱显微镜iMScope& nbsp i TRIO /i (图3),根据表2的参数进行质谱成像分析。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 对比升华法进行基质涂布样本与升华后重结晶样本的分析结果、比较其分析区域的平均质谱图(图4)。仅采用升华法时、能强烈检测到基质9AA的峰(m/z 385.14)(图4▼),基本上检测不到低分子量代谢产物的峰,但通过实施升华后重结晶,使来自低分子量代谢产物的峰强度增加(图4▼等),确认其提升检测灵敏度的效果。此外,其他多个低分子量代谢产物的MS图像,通过升华后重结晶的处理,能够获得更为清晰的MS图像(图5)。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 针对难以重结晶的9AA开发的升华后重结晶方法,充分利用升华法的优势成功实现了无损且高灵敏度的MS成像分析。 /p p span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/0bbf3127-6052-4b6a-af7e-a0c6fc57f542.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: center " 图4 质谱图(升华法和升华后重结晶法的比较) /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/de208828-8702-40d6-8202-037e64b3f190.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: center " 图5 MS图像(升华法和升华后重结晶法的比较) /p p br/ /p
  • 小身材大智慧丨检测器级MS助力寡核苷酸和多肽药物分子量测定
    导读随着生物医药技术的发展,越来越多的生物药陆续上市,如治疗慢性疾病的寡核苷酸药物Leqvio,“一年只需注射两针”就可以长效持久的降低血液中胆固醇含量,以及用于治疗II型糖尿病的多肽类药物Mounjaro。在寡核苷酸和多肽药物的质量控制中,分子量测定是定性表征中不可缺少的一部分,而单四极杆液质联用仪(LCMS)是测定分子量的利器。但与小分子药物相比,多肽和寡核苷酸药物极性和分子量均较大,在LCMS中带多电荷,所以分子量测定时可能会存在分子量测定范围窄、灵敏度低等问题。小身材大智慧 LCMS-2050岛津最新款单四极杆质谱仪LCMS-2050兼顾小型化和高性能,其离子源为加热型ESI/APCI(DUIS)源,使得寡核苷酸和多肽药物等分子量较大的极性化合物更容易电离,所以LCMS-2050具有分析灵敏度高,分子量测定范围广的特点。此外,岛津LabSolutions软件自带分子量解卷积功能,可以快速对多电荷质谱图进行解卷积,获得分子量相关信息。分子量测定案例分享寡核苷酸药物本方案中寡核苷酸药物为小干扰核苷酸(siRNA),是一类双链RNA分子(正义链和反义链),长度为20-25个碱基对。通过流动相的调整和质谱参数的优化,LCMS-2050(负模式)检测得到了siRNA多电荷质谱图,质荷比为600~1700。此时质谱图中无其他加和离子干扰,且高质荷比也有明显响应。通过岛津LabSolutions软件自带的多电荷解卷积功能,计算得到siRNA正义链电荷数量为4~11,分子量为6631.64 Da,反义链电荷数量为4~10,分子量为6637.66 Da,与理论值的偏差均小于0.4 Da。siRNA色谱图正义链质谱图正义链分子量解卷积结果反义链质谱图反义链分子量解卷积结果多肽药物此多肽药物为一种生长抑素,其理论分子量为1637. 72 Da。LCMS-2050(正模式)检测得到质荷比为546.76~1638.47,通过LabSolutions解卷积功能计算得到分子量为1637.45 Da,与理论值偏差为0.27 Da。多肽药物色谱图多肽药物质谱图多肽药物分子量解卷积结果结语岛津最新款单四极杆质谱仪LCMS-2050兼顾小型化与高性能,适用于多肽、寡核苷酸等化合物分子量测定,具有灵敏度高、分子量测定范围广的优势。了解更多详情,敬请下载《LCMS测定小干扰核苷酸siRNA分子量》《LCMS-2050在多肽分子量定性分析检测中的应用》本文内容非商业广告,仅供专业人士参考。
  • 国家市场监督管理总局关于对《蛋白质分子量测定 液相色谱-飞行时间质谱联用法》等225项拟立项国家标准项目公开征求意见的通知
    各有关单位:经研究,国家标准委决定对《焊缝无损检测 磁粉检测 验收等级》等225项拟立项国家标准项目公开征求意见,征求意见截止时间为2023年7月5日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001282,查询项目信息和反馈意见建议。2023年6月5日相关标准如下:#项目中文名称制修订截止日期1蛋白质分子量测定 液相色谱-飞行时间质谱联用法制定2023-07-052肝素酶活性的测定制定2023-07-053硫酸软骨素酶活性的测定制定2023-07-054葡萄糖氧化酶活性检测方法制定2023-07-055包装袋 试验条件 第1部分:纸袋制定2023-07-056产品几何技术规范(GPS) 坐标测量机(CMM)确定测量不确定度的技术第3部分:应用已校准工件或标准件修订2023-07-057产品召回 生产者安全管理韧性评价制定2023-07-058电梯、自动扶梯和自动人行道的电气要求 信息传输与控制安全制定2023-07-059电梯安全要求 第2部分:满足电梯基本安全要求的安全参数修订2023-07-0510工业废硫酸的处理处置规范修订2023-07-0511工作场所环境用气体探测器 第1部分:有毒气体探测器性能要求制定2023-07-0512工作场所环境用气体探测器 第2部分:有毒气体探测器的选型、安装、使用和维护制定2023-07-0513合格评定 管理体系审核认证机构要求 第 14 部分:文件管理体系审核与认证能力要求制定2023-07-0514化学品 快速雄激素干扰活性报告(READR)试验制定2023-07-0515化学品 水-沉积物系统中穗状狐尾藻毒性试验制定2023-07-0516化学品 液态粪肥中的厌氧转化试验制定2023-07-0517化学品 鱼类细胞系急性毒性:RTgill-W1细胞系试验制定2023-07-0518环境试验 第2部分:试验方法 试验:温度/湿度/静负载综合制定2023-07-0519家用燃气快速热水器 通用技术规范制定2023-07-0520腈水合酶纯度和活性的测定制定2023-07-0521跨境电子商务 海外仓服务质量评价指标制定2023-07-0522实验动物 动物模型鉴定与评价技术规范制定2023-07-0523塑料 丙烯腈-丁二烯-苯乙烯(ABS) 模塑和挤出材料 第1部分:命名系统和分类基础修订2023-07-0524塑料 聚醚醚酮(PEEK)模塑和挤出材料 第1部分:命名系统和分类基础制定2023-07-0525搪玻璃层试验方法 第6部分:高电压试验修订2023-07-0526无损检测仪器 超声检测设备的性能与检验 第1部分:仪器修订2023-07-0527无损检测仪器 超声检测设备的性能与检验 第2部分:探头修订2023-07-0528无损检测仪器 超声检测设备的性能与检验 第3部分:组合设备修订2023-07-0529项目、项目群和项目组合管理 项目管理指南修订2023-07-0530项目成本管理制定2023-07-0531消费品缺陷工程分析 危险温度点测量方法制定2023-07-0532消费品缺陷线索采集与评估规范制定2023-07-0533医疗器械 制造商的上市后监督制定2023-07-0534邮政业术语修订2023-07-0535真空技术 真空计 皮拉尼真空计的规范、校准和测量不确定度制定2023-07-05
  • 2016长春国际质谱研讨会:深谈质谱基础理论 聚焦生物样本分析
    p   span style=" FONT-FAMILY: times new roman"   strong 仪器信息网讯 /strong 2016长春国际质谱研讨会于2016年7月30日-31日在吉林大学召开( a title=" " href=" http://www.instrument.com.cn/news/20160730/197869.shtml" target=" _self" strong 相关新闻:2016长春国际质谱研讨会开幕 专家共贺吉林大学70周年庆 /strong /a )。探讨气体相离子化学、离子化和离子碎裂机理等质谱基础理论是此次研讨会的核心主题。来自美国、加拿大、 韩国、香港及国内高校、研究所的著名质谱理论和应用专家围绕17个分享报告展开了深入研讨。吉林大学化学学院的硕、博研究生们也参与到了本次活动的学习和交流中。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" IMG_0220_副本.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/e334e3ed-60ae-4ba0-8f8c-654b48cc8388.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" strong 研讨会现场 /strong /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" strong img title=" IMG_9990_副本.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/bffed2c5-4e13-4b27-b7e9-a46655acc265.jpg" / /strong /span /p p style=" TEXT-ALIGN: center" span style=" COLOR: rgb(0,32,96)" strong span style=" FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" 美国加利福尼亚大学Joseph A. Loo 报告题目《Native Mass Spectrometry and Top-Down MS for the Characterization of Protein Interaction》 /span /strong /span /p p span style=" FONT-FAMILY: times new roman"   采用ESI在非变形溶液条件下用质谱分析生物分子被称为“native”MS。Joseph认为自上而下质谱是分析蛋白序列的好方法。“我们用FT-ICR MS分析配体结合位点,得到大量数据信息用以分析大蛋白复杂化合物。我们团队通过ECD/FT-ICR MS研究在神经组织退化疾病如阿耳茨海默症、帕金森症中化合物分子的反应机理。除此之外,红外多光子解离(IRMPD)、紫外光解离(UVPD)、电子离子化解离(EID)等方法能够从不同侧面提供更全面的结构信息。” Native 自上而下MS分析得到了蛋白质的很多复杂信息,虽然膜蛋白的确给Native MS分析带来了不小的挑战,但FT-ICR MS的多种灵活使用方法使得膜蛋白精确分析问题得到了解决。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" IMG_0013_副本.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/2ca1f12f-0dd5-4193-8d8a-d872077a85f7.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" strong 美国北伊利诺伊大学Victor Ryzhov 报告题目《Metal ion complexes of amino acid and peptide radicals: Structure and reactivity》 /strong /span /p p span style=" FONT-FAMILY: times new roman"   蛋白质中的半胱氨酸能够从Cα获得氢原子的自由基的能力。由于移动质子的释放,使用金属离子作为电荷来源具有一定优势。Victor团队的研究,包含表征氨基酸和肽段中的金属离子对半胱氨酸自由基的阳离子化过程。复合物的反应过程通过离子分子反应(IMR)经四极杆串联离子阱质谱等仪器设备来监测。通过IMR和IRMPD分析,该团队的研究者发现了Cys自由基与Li+、NA+、K+的复合物。这些物质仍保留了硫基自由基,(N,O,S)可与金属离子配位。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" IMG_0042_副本.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/7e41db80-fdce-4fc4-838f-610da3bae1c8.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman"   span style=" FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" strong 香港大学Ivan K. Chu 报告题目《Radical-Mediated Peptide Tyrosine Nitration: Fundamental, Bioanalytical and Neurodegenerative Proteomics》 /strong /span /span /p p span style=" FONT-FAMILY: times new roman"   经Ivan介绍, PTN是一种在活体硝化应激条件下蛋白质自由基介导翻译后修饰。团队对导致邻位酪氨酸硝化位点特异性的详细机理进行了研究探索。该团队通过一套包括离子化学、以MDLC-MS为基础的蛋白组学研究、MRI成像、免疫组学研究等在内的综合方法研究了自由介导酪氨酸硝化理论。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" IMG_0096_副本.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/41bd6ac4-f383-4b95-9d46-a77134855e8b.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman"   span style=" FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" strong 北京大学刘虎威教授 报告题目《Lithium-rich composite metal oxide used as SALDI-MS matrix for the determination of small biomolecules /strong /span 》 /span /p p span style=" FONT-FAMILY: times new roman"   刘虎威研究团队成功合成了分析生物小分子的富锂金属氧化物SALDI基质,并成功采用SALDI-MS分析了Li sub 1. /sub sub 2 /sub 、Mn sub 0.54 /sub 、Ni sub 0.18 /sub 、Co sub 0.13 /sub 、O sub 2 /sub 五种生物小分子。SALDI基质需要同时满足离子化辅助试剂和能量传导体的身份。该团队还通过SALDI和新基质研究了药物、低聚糖、脂类和肽等小分子生物物质,均得到了满意的信号。此方法快速简单,仅需将待测物与分析溶液混合,滴在MALDI靶板上测定即可。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" IMG_0103_副本.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/acf5c7dc-e183-4035-b20c-e336079261b5.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" strong span style=" FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" 东华理工大学Konstantin Chingin 报告题目《On the Preservation of Noncovalent Protein Complexes During Electrospray Ionization》 /span /strong /span /p p span style=" FONT-FAMILY: times new roman"   ESI-MS在蛋白质配合物的定量分析仍存在一定争议,使用ESI-MS和使用其他方法得到结果不同。同样蛋白配合物在实验室间得到的结果也常常不一致。Konstantin通过分析几种液滴离子化技术讨论了非共价键蛋白配合物的离子化过程。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" IMG_0114_副本.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/4199ed3a-3fb0-44aa-8e6a-08a53f89c7fe.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" strong span style=" FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" 南开大学孔祥蕾教授 报告题目《IRPD Spectroscopy of Metal Cationized Ions Generated by MALDI Source》 /span /strong /span /p p span style=" FONT-FAMILY: times new roman"   孔祥蕾教授介绍了一种MALDI与IRPD技术结合得到阳离子化金属离子IRPD信息的新方法。石墨烯是此方法中的MALDI基质。该方法与H/D交换结合,通过观察IR峰识别发色基团。研究发现,相比ESI方法产生的[Arg+Rb]+,该方法中产生的[Arg+Rb]+含更高的内能。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" IMG_0118_副本.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/88b28ef6-1a10-49d8-b90a-0a55cee71432.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" strong span style=" FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" 韩国延世大学Myeong Hee Moon 报告题目《Field-flow fraction with MS for Proteomic Analysis: Glycoproteins, Subcellular Organelles,& amp Exosomes》 /span /strong /span /p p span style=" FONT-FAMILY: times new roman"   FFF是一种可以分离以大小分类的物质的方法,包括蛋白质、DNA、细胞等在内的巨型生物分子的分离。FIFFF是FFF的一种变化形式。Myeong介绍了以颗粒大小分离糖蛋白的FIFFF法的应用,反应利用中空纤维酶反应器与nLC-ESI-MS/MS实现在线消化和定量。报告中还探讨了将该方法用于前列腺癌尿样的胞外体、细胞外分泌物分析。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" IMG_0126_副本.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/caa327cf-5945-4890-94aa-e9b79bf19b38.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" strong 南京大学刘震教授 报告题目《Molecularly Imprinted Materials-based Extraction: Ideal Partner of Mass Spectrometry for Efficient Identification of Targeted Proteins in Complex Biological Samples》 /strong /span /p p span style=" FONT-FAMILY: times new roman"   用质谱做蛋白质定量时,表面蛋白种类多,从而会大大影响目标蛋白的离子化效率,故采用质谱分析蛋白质时样品前处理过程非常重要。分子印迹方法在亲和分离、疾病诊断、化学传感等应用中非常受欢迎。刘震教授介绍了团队在含糖化合物印迹方面研究的几种新方法。这些方法能够通过分子印迹鉴别一类而非一种特定蛋白质。分子印迹材料可在特定蛋白样品处理时有效地吸附。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" IMG_0133_副本.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/b0101ddd-b807-483f-b4cb-d7a3d9e9625a.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" COLOR: rgb(0,32,96)" strong span style=" FONT-FAMILY: times new roman" 北京大学副教授白玉 报告题目《Metabolomic Analysis of Mouse Embryonic Fibroblast Cell in Response to Acute Starvation with and without Atg7》 /span /strong /span /p p span style=" FONT-FAMILY: times new roman"   Atg7(自噬相关蛋白质)在自噬过程中起着重要作用。Atg7在反应中的信号通路已经有研究阐明,而Atg7对细胞饥饿条件下代谢组学反应的影响尚不清楚。白玉副教授介绍了通过分析MEFs(鼠胚胎纤维源细胞)探索依靠Atg7的自噬代谢机理,并发现了30多种与细胞饥饿相关的代谢产物。该研究还表明,自噬的缺乏会引起TCA循环的钝化,这导致细胞会在突然饥饿情况下迅速衰亡。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" IMG_0140_副本.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/555c3154-06a7-409c-bb46-9948f25c19cd.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" COLOR: rgb(0,32,96)" strong span style=" FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" 中国科学院大连化学物理研究所许国旺教授 报告题目《LC-MS based Metabolomics Method for Large Scale Sample Analysis and Metabolite Identification》 /span /strong /span /p p span style=" FONT-FAMILY: times new roman"   UPLC-MS是当今最为普遍的代谢组学分析途径,但其常规分析的效率和重现性并不能满足分析需求。筛查中仅有1.8%的物质质谱信息能得到准确鉴定。面对这情况,许国旺团队开发了面对大规模代谢组学样品时,通过UPLC-MS的代谢组学综合分析方法,这其中包括前处理中去除蛋白质的方法。快速UPLC-MS分析方法每天能分析96个样品并得到大量的组学数据。分析得到的代谢组学数据库包括2000种常见代谢物的保留时间、MS和MS/MS信息,可用于代谢产物鉴定分析。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" IMG_0151_副本.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/afe72a17-191b-45b8-8b5d-a5fea2a7bbc5.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" strong span style=" FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" 中国科学院大连化学物理研究所张丽华教授 报告题目《Improved Accuracy, Coverage and Throughput for Proteome Quantification》 /span /strong /span /p p span style=" FONT-FAMILY: times new roman"   张丽华教授在报告中介绍了几种蛋白质组学研究中的定量新方法。免标记法蛋白组学定量中该团队在样品处理中采用辅助离子液过滤,并用C12Im-Cl代替SDS提取蛋白质,随后做变性、过滤烷化、消化和脱盐过程。由于 C12Im-Cl的提取效果、增溶效果和消化效果都优于SDS得到的蛋白质量和定量精确度都得到了明显提高,而前处理也更加省时。另外,在化学标记蛋白组学定量中,团队还分析了pLDL方法以及其在区分C sub 12 /sub /C sub 13 /sub 、 sub 1 /sub H/ sub 2 /sub H的微小区别时的定量情况。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" IMG_0216_副本.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/9d6b867a-a69b-4590-8162-912cb9c4eb2f.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" strong span style=" FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" 加拿大温莎大学K.W.Michael Siu 报告题目《Loss of Water from protonated Polyglycines》 /span /strong /span /p p span style=" FONT-FAMILY: times new roman"   Siu团队从多甘氨酸探索多肽质子化失水机理。试验将O18标记聚甘氨酸的特殊肽键替换为王(Wang)树脂。研究发现80%质子化的四甘氨酸从第一肽键失水。肽链增长会增加从第二肽键失水的可能。研究发现,从第二肽键失水的多肽失水产物是质子化唑,或将重排成唑结构。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" IMG_0224_副本.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/080b4693-205a-456c-9883-3175cd713000.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" strong 美国华盛顿大学Frantisek Turecek 报告题目《Gas-Phase Footprinting of Peptide Ions in Non-Covalent》 /strong /span /span /p p span style=" FONT-FAMILY: times new roman"   软电离使多原子离子能够从压缩相过渡到气态相,很多研究开始了通过MS、NMR等技术探索复合离子的3D结构。Franti?ek团队采用气体相印迹法分析由ESI得到的非共价肽-肽离子复合物。对光不稳定的Diazirine ring在355nm分解形成高活性碳烯中间物 ,作用于非共价复合物中的肽配合物形成共价键。 /span /p p style=" TEXT-ALIGN: center" img title=" IMG_0231_副本.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/0c9d2485-e6c2-4c59-a05c-8b042d87c26d.jpg" / /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" strong span style=" FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" 中国科学院武汉植物园郭明全研究员 报告题目《Biomarker Discovery: from proteins to & nbsp Endogenous Lipids》 /span /strong /span /p p    span style=" FONT-FAMILY: times new roman" 郭明全团队通过2-D & nbsp 凝胶电泳和LC-MS/MS等技术研究了HMSCs在电离辐射(IR)下的蛋白组/磷脂蛋白组变化。研究显示,IR对磷脂蛋白组带来了显著变化,研究还发现了一些潜在的蛋白标记物。另外,该团队还发展了基于MDME 结合UPLC-MS的新方法用于分析研究血浆中的内源性大麻素(eCBs)。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" /span img title=" IMG_0246_副本.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/1aa78873-e868-486c-9628-4234fc6fbe18.jpg" / /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" strong span style=" FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" 美国加利福尼亚大学Rachel R. Ogorzalek Loo 报告题目《Are High Charge States Destabilized by Like-Charge Repulsion or are Low Charge States Stabilized by Opposite-Charge Attraction (Salt Bridges)?》 /span /strong /span /p p span style=" FONT-FAMILY: times new roman"   碰撞活化非共价多聚体常会产生不对称解离,逐出单个亚单元,也因此承受电荷过剩。库伦排斥令亚单元带走更多的电荷。Rachel在报告中探讨了盐桥反应的衍生物以及用盐桥理论解释活化作用、解离作用和碰撞截面测量。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" IMG_0255_副本.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/1d7b0ca8-d235-4603-9157-bc0a0f2a89a3.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman"    /span span style=" FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" span style=" LINE-HEIGHT: 0px DISPLAY: none" id=" _baidu_bookmark_end_13" ? /span strong 吉林 /strong span style=" FONT-FAMILY: times new roman" strong 大 /strong /span /span span style=" FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" strong 学国新华教授 报告题目《Characteristic Peptide Fragment Ions Formed by Charge-Remote Fragmentation Pathways upon Low-energy CID》 /strong /span /p p span style=" FONT-FAMILY: times new roman"   国新华教授在报告中介绍了采用MS/MS分析b sub n /sub -44、cn、b sub 2 /sub +H2O等一系列特征离子。该团队对特征离子的形成机理做了深入研究,包括N端固定电荷、电荷态、氨基酸组成、碱金属离子等对反应的影响。该研究尝试了对含Thr/Ser肽中b sub n /sub +H2O的构想重组。N→O的酰基转化得到了脂质中间物,酯的产物进一步裂解促使b sub n /sub +H2O离子的形成。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" IMG_0171_副本.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/418217b8-3384-4595-8fe3-f4fd6cae9037.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" strong 赛默飞世尔科技工程师吴泽明 报告题目《Novel informatics tools for small molecule research with orbitrap Technology》 /strong /span /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" strong img title=" IMG_0258_副本.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/39938951-24b0-41f5-bd0c-ce9d18b0fa83.jpg" / /strong /span /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-FAMILY: times new roman COLOR: rgb(0,32,96)" strong 长春中医药大学刘淑莹教授总结致辞 /strong /span /span /p p span style=" FONT-FAMILY: times new roman"   经过两天的活跃讨论,此次研讨会的报告研讨阶段结束。刘淑莹教授在总结致辞中,介绍了目前中国中医药大学对人参生物活性物质的探索,也邀请到场嘉宾共同加入到人参成分质谱分析中来。刘淑莹教授代表本届研讨会组织委员会表示,此系列的研讨会将继续下去,也许在两年之后将举办下次活动。目前国内外使用质谱的人越来越多,而质谱操作者中大多数对质谱理论和研究机理并不了解。刘淑莹教授表示应鼓励质谱基础知识的传播,质谱机理的交流学习对提高质谱操作者的理论能力非常有帮助。至此,2016长春国际质谱研讨会圆满落幕。 /span /p p style=" TEXT-ALIGN: right" span style=" FONT-FAMILY: times new roman" 编辑:郭浩楠 /span br/ /p
  • 液相干货分享 | 如何正确测量聚合物的分子量
    当我们从上游厂家买回一批聚合物样品时,测得的分子量却与厂家提供的不同,那这是怎么回事呢?在弄清楚原因之前,不妨先来一起学习下凝胶渗透色谱/体积排阻色谱( GPC/SEC )的基本原理和应用。GPC 色谱柱为多孔填料,当样品与填料无吸附、排斥等相互作用时,分子体积越大的组分能够穿过的孔越少,行走的路程越短,也就越早从色谱柱中洗脱出来。图为 Agilent Infinity II 多检测器 GPC 系统图为 Agilent 高温 GPC系统 PL220根据 GPC 应用的方向,通常可以归纳为以下三种:样品前处理(去除大分子基质)组分分离定量聚合物分子量/结构检测表1. GPC 三种应用方向对比使用 GPC 来测量聚合物分子量和分子量分布,除了将不同聚合度的组分分离之外,我们还需要另外两点信息:不同保留时间流出组分的浓度和分子量。浓度的信息可以通过浓度型检测器得到,如示差折光检测器和紫外检测器。各保留时间流出组分的分子量信息的得到却不是特别容易,常规 GPC 是选用一组不同分子量的窄分子量分布标准品,来对色谱柱进行标注,得到保留时间 - 分子量的曲线,再由校正曲线来计算样品的分子量。常用的标准品种类很少,如果标准品和样品的化学结构、拓扑结构不同,得到的样品分子量就不是样品的绝对分子量,而是相对于标准品的相对分子量。图为常规 GPC 分子量计算原理示意图由此看来,标准品的选择是造成计算结果差异的可能原因之一。为了解决这部分带来的差异,确认与上游产家使用相同的标准品类型。当然如果上游厂家与我们都能得到样品的准确分子量,也可以减小数据的差异,普适校正是一种方式。普适校正就是通过 Mark-Houwink 方程和 Flory特性粘度理论,建立起分子量与分子体积的数学关系,从而建立保留时间 - 分子体积的曲线。说起来有些复杂,操作很简单,只需要在 GPC 软件输入样品和标样的两个参数 K,α 就可以了。但这种方法不适用于所有样品,比如不同支化程度的样品是无法查到其在不同溶剂/温度下的K,α。图为不同支化程度样品的合成(控制 AB2 单体加入量)还有一个更加直接得到绝对分子量的方式,就是使用静态激光光散射检测器,根据瑞利散射原理直接得到样品的绝对分子量;如果再搭配特性粘度检测器,可同时得到样品的特性粘度信息,建立 Mark-Houwink 曲线,用于判断样品的支化情况。图为不同支化程度样品通过 Agilent 激光光散射-示差-粘度三检测器联用 GPC 得到的 Mark-Houwink 曲线(蓝色、红色、绿色曲线对应样品的支化度依次增高) 除了标准品的选择以外,色谱柱的选择、校正曲线的拟合次数以及积分起终点的判断等都可能引起结果的差异。扫描下方二维码,关注“安捷伦视界”公众号,获取更多资讯。
  • 破解国际难题!工程热物理所原创质谱定量分析理论实现气相组分产率实时原位检测
    p   利用气相组分的变化分析反应过程特征广泛应用于众多领域,如能源、材料、医药、化工等等,目前普遍采用的气相组分检测参数是“浓度”,然而其作为相对值,无法真实地反映出反应过程质量的动态变化 而物质质量的变化率(产率)虽能够客观代表反应动态特征,但实现多组分气体产率的同步实时精确检测一直是国际性技术难题。 /p p   研究所创新提出了质谱定量分析的多输入多输出非线性系统理论模型,发展为多组分气体产率的质谱定量测试分析方法-等效特征图谱法(ECSA)。该方法遵循质谱检测工作原理与气体流动过程特点,基于气体动力学、热力学、信号处理等多学科、领域的基础理论,通过建立气体流动、采样、电离、质量分析等多环节相耦合无量纲参数,自适应消除检测过程的温度依赖特性、压力变动造成的信号漂移,实现复杂多组分气体产率的同步原位检测。在国际上首次破解了质谱检测信号从理论上未能与气体参数建立定量物理关系的核心科学问题。 /p p   在研究活性焦的吸附与再生性能的典型应用实例中,通过吸附前、后活性焦的燃烧特性研究,利用吸附气体污染物组分的释放产率,可以准确定量获得活性焦自身吸附气相污染物的能力、确定再生工艺条件,检测结果实现了物料、组分、元素的质量三平衡,具有高度的重复性与再现性,充分体现了等效特征图谱法对气相组分产率实时分析的可靠性。 /p p   目前等效特征图谱法(ECSA)已经在能源、地质、医药、材料、环境、化工等多领域支持国内外的科学研究与技术发展,支持了中科院过程所的有机物质检测、中国医学科学院药物所的心脑血管药物及辅料分析、北京有色金属研究院的金属氢化物特性分析、北京化工大学的石墨烯催化特性研究等,相关成果已发表在Nature Chemistry、Carbon、Fuel、Fuel Processing Technology等国际期刊 并针对上百种气体已完成标定并形成标准的三维指纹信息图谱库,与国际知名设备企业如日本理学公司、德国耐驰公司等形成了良好的合作关系。 /p p style=" text-align: center " img width=" 500" height=" 276" title=" 质谱定量分析理论-等效特征图谱法ECSA模型.png" style=" width: 500px height: 276px max-height: 100% max-width: 100% " alt=" 质谱定量分析理论-等效特征图谱法ECSA模型.png" src=" https://img1.17img.cn/17img/images/202004/uepic/4cb3a8b9-6756-4c4b-8ba7-3636b9132754.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " 图1. 质谱定量分析理论-等效特征图谱法ECSA模型 /p p style=" text-align: center " img width=" 500" height=" 335" title=" 气相组分产率实时分析在活性焦的吸附特性与再生工艺条件研究中的应用.png" style=" width: 500px height: 335px max-height: 100% max-width: 100% " alt=" 气相组分产率实时分析在活性焦的吸附特性与再生工艺条件研究中的应用.png" src=" https://img1.17img.cn/17img/images/202004/uepic/513873ab-bb56-47f8-ada1-68bafbd277a5.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " 图2. 气相组分产率实时分析在活性焦的吸附特性与再生工艺条件研究中的应用 /p p    strong 背景资料: /strong /p p   热重质谱联用TG-MS: /p p   热重分析法(TG)是应用热天平在程序控制温度下,测量物质质量与温度关系的一种热分析技术,具有仪器操作简便、准确度高、灵敏快速以及试样微量化等优点,因此广泛应用于无机、有机、化工、冶金、医药、食品、能源及生物等领域。但热重分析法无法对体系在受热过程中逸出的挥发性组分加以检测,这给研究反应进程,解释反应机理带来了一定的困难。质谱具有灵敏度高,相应时间短等突出优点,在确定分子式方面具有独特的优势。通过TG-MS联用,可以扩大分析内容,是现代热分析仪器的发展趋势。 /p p   具体仪器信息请点击查看: a href=" https://www.instrument.com.cn/zc/68.html" target=" _self" 热分析联用仪专场 /a /p p   TG-MS系统的等效特征谱分析方法(ECSA): /p p   在ECSA中,对所有被测气体的特征光谱和相对灵敏度进行了标定。该方法有效地分离了质谱,消除了特征峰重叠时的质量分辨和温度依赖效应。在碳酸钙和碳酸钙分解的基础上,动态测定了实际气体流量和单个组分浓度,分析的逸出气体质量流量与ECSA和TG分析的实验数据吻合较好。 /p p   日本理学: /p p   理学公司的前身是理学电机制作所,创立于1923年,是世界上研制和生产X射线科学分析仪器的开拓者之一。1951年正式创立理学电机株式会社,十年后1962年又创立理学电机工业株式会社,此后又相继创立了理学计测株式会社、日本仪器株式会社、理学服务株式会社和株式会社理学等机构。半个多世纪以来,理学公司一直致力于研制和开发X射线科学分析仪器,并为世界科学分析仪器的发展做出了重要的贡献。 /p p   德国耐驰: /p p   德国耐驰仪器制造有限公司(NETZSCH Scientific Instruments Trading (Shanghai) Ltd.)是世界著名的分析仪器制造厂商之一,其产品主要包括热分析仪器、导热分析仪与树脂固化监测仪三大类。 在热分析仪器领域,耐驰公司拥有60余年的软、硬件研制及应用经验,其产品覆盖了热分析的各个分支领域。 /p p   相关文献: /p p   Equivalent characteristic spectrum analysis in TG–MS system, Thermochimica Acta 602 (2015) 15–21. /p p   Quantitative Study on Adsorption and Regeneration Characteristics of Activated Coke using Equivalent Characteristic Spectrum Analysis [J]. Ind. Eng. Chem. Res. 2019 58 5080-5086. /p p br/ /p
  • 干货分享:色谱图/质谱图傻傻分不清楚
    p   LC-MS/MS作为蛋白组学分析的主要手段,所分析的样品分子过于微小肉眼不可见,需要借助色谱图、质谱图判断其表现,但你看到文章里的质谱图是否感觉迷惑不解,甚至色谱图和质谱图傻傻分不清呢?文章返修编审让补充的有注释信息的二级质谱图究竟是个什么东东?今天小编带你一起解密。 /p p   我们常说的图谱分为两类,色谱图与质谱图。色谱图评价的是母离子在色谱上的表现,质谱图则是一级母离子和二级碎片子离子在质谱里的信号表现。这里小编跟你分享一个区分两种图谱的秘密,那便是看横坐标,横坐标是时间轴的为色谱图,横坐标是质荷比的那就是质谱图了,不管色谱图还是质谱图,纵坐标都是信号强度! /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/d2a264a0-7451-4f84-98dc-0b5062ac709e.jpg" title=" 1.jpg" / /p p   常见的色谱图有Basepeak图、TIC图、XIC图 质谱图经常提到的是一级质谱图,二级质谱图,b,y离子匹配图(有注释信息的二级质谱图),下面我们逐一看过来。 /p p    strong 【色谱图】 /strong /p p strong   Basepeak 图: /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/363edb6d-6fda-4948-81e5-4c0da2a627b5.jpg" title=" 2.jpg" / /p p   看到上图,做过LC-MS/MS实验的童鞋是不是有一种似曾相识的感觉?你肯定在哪里见过。 /p p   Basepeak图是色谱分离过程中将每个时间点质谱检测信号最强的肽段的强度值连续描绘得到的图谱。图中峰多信号强说明样品复杂度高量也足。由于上机的样品是蛋白质酶解后的肽段,所以如果你要问小编能否将鉴定到的蛋白质在basepeak图上标出来,答案是不能!!! /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/0e1dca0d-99a3-4c0d-83e6-259c06cc0fd8.jpg" title=" 3.jpg" / /p p strong   TIC图: /strong /p p   全称为Total ion chromatogram,即总离子流图,相比Basepeak图是用每个时间点质谱信号强度最高的母离子绘制的图谱,TIC是样品中所有离子的色谱图。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/8d76db07-faf1-4889-a7a7-d28156306780.jpg" title=" 4.jpg" / /p p strong   XIC图: /strong /p p   全称是Extracted ion chromatogram,即提取离子流色谱图,为某个特定母离子的色谱图,XIC图的峰面积可以用于蛋白定量分析。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/30b83abf-94dc-44f3-a7c4-305e22fc80fa.jpg" title=" 5.jpg" / /p p    strong 【质谱图】 /strong /p p   一级质谱图是一次质谱全扫描内所有母离子的信号分布图,二级质谱图是特定母离子在高能碎裂后产生的二级离子的信号分布图,样品经质谱鉴定后生成的质谱文件实质是数万张一级质谱图和二级质谱图的叠加。 /p p   原始二级质谱图,如下图(m/z=377.54),为实际检测到的二级离子的质荷比的分布图,只有一个个孤独的峰,代表一个个孤单的子离子,没有归属,只有将其大小与宗氏族谱(理论的肽段序列碎裂后生成的二级离子分布)匹配后,方能知道其名姓(肽段序列)。匹配后的图就是文章里提到的有注释信息的二级图,也叫做b,y离子匹配图。修饰组学及一段肽的蛋白发文章时可能会被要求提供b,y离子匹配图。 /p p style=" text-align: center " strong img src=" http://img1.17img.cn/17img/images/201706/insimg/741b86e1-6126-4e8e-a498-782c779009ae.jpg" title=" 6.jpg" / /strong br/ /p p style=" text-align: center "   B,y离子匹配图 /p p   将实际检测到的二级离子的质荷比分布与肽段序列断裂后理论形成的子离子匹配后的图谱。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/383ca26b-e241-4004-8430-5f9ab963f299.jpg" title=" 7.jpg" / /p p   肽段在能量作用下断裂后会生成一个个b,y离子对。左面的碎片为b离子,右边的碎片为y离子,以上图为例,KTQAASVEAVK理论生成的b,y离子对为: /p p   第一个氨基酸与第二个氨基酸中间断开(K|TQAASVEAVK),则生成b1=K(从左往右数1),y10=TQAASVEAVK(从右往左数10) /p p   第二个与第三个氨基酸中间断开(KT|QAASVEAVK),生成b2=KT,y9= QAASVEAVK 其他位置断开,依次类推……。 /p p   本肽段中如果第一个氨基酸K上发生了泛素化修饰(已经标红),我们应该如何找出该位点被修饰的证据呢?请往下看。(哎哎继续往下看,别走神儿!) /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/e98257d8-53f4-496b-9f0e-c37fb645c9ce.jpg" title=" 8.jpg" / /p p   肽段碎裂后检测的b3(KTQ),b4(KTQA)离子可能带有修饰集团,以b3为例,如果K上发生修饰,则b3的分子量应该比不带修饰的b3(KTQ)理论分子量(376.22-18.01(QA连接是脱了水的)=358.21)多一个修饰集团glygly-的分子量(114.04),即=358.21+114.04=472.25,而我们检测到的b3离子的分子量刚好为472.25,说明b3(KTQ)离子携带了泛素化修饰集团.因泛素化常发生在K上,推测应为K发生了泛素化修饰。 /p p br/ /p
  • 岛津特色质谱技术丨多维液相色谱质谱解决复杂体系分离难点
    药物分析方法开发共性难点岛津技术团队在与行业用户专家和用户交流中,收集以下共性难点反馈:1、基质化合物组成极性范围宽,色谱峰容量不够。2、中药基质复杂,在对特征峰鉴定时可能受到目标物附近其他峰干扰,影响鉴定准确度。3、聚合物杂质检测通常采用排阻色谱法,对聚合物杂质进行笼统的总量控制,定量不准确,且无法鉴定聚合物杂质的结构。4、采用HPLC-UV法进行杂质测定,但该方法无法将HPLC中使用的不挥发性流动相直接应用到LC/MS分析中,或者流动相与质谱不匹配。针对以上行业分析难点,岛津多年来持续致力于多维色谱质谱联用解决方案开发,将多类型色谱分离优势和质谱分析优势进行结合。岛津多维液相色谱质谱解决方案全二维液质联用系统&中心切割1二维液质联用系统Nexera-e 全二维液相色谱仪《中国药典》0512高效液相色谱法通则:二维液相色谱可以分为差异显著的两种主要类型:中心切割式二维色谱和全二维色谱。中心切割式二维色谱是通过接口将前一级色谱中某一(些)组分传递到后一级色谱中继续分离,面对复杂基质环境时,将一维目标峰切到二维进行更好的分析。全二维色谱是通过接口将前一级色谱中的全部组分连续地传递到后一级色谱中进行分离,如此两个独立的分离模式正交组合可实现尽可能高的峰容量。二维色谱可以是相同的分离模式和类型,也可以是不同的分离模式和类型,二维色谱可以和质谱联用。详情参考:https://www.shimadzu.com/an/products/liquid-chromatography/hplc-system/nexera-e/index.html2全谱二维液质联用系统极性覆盖范围宽:可一针实现宽极性多目标物的同时分析,可以胜任绝大多数分析项目中宽极性、多组分分析的要求。该系统和岛津最新推出的LCMS-9050高分辨质谱正负极离子同时采集功能结合,能得到4in1技术优势--相比岛津前一代方案,可以节省3/4的样品、分析时间,并减少3/4的质谱污染。3 SEC-RPLC-QTOF二维液相色谱-高分辨质谱为了解决前述聚合物杂质鉴定难题,岛津与北京新领先医药科技发展有限公司合作搭建了SEC-RPLC-QTOF二维液相色谱-高分辨质谱检测平台。基于该平台二维杂质动态上样、在线脱盐等技术,以及岛津高分辨质谱仪的高质量准确度和高质量稳定性等性能特点,目前双方的研发人员共同参与完成了十四种β-内酰胺类抗生素的聚合物杂质的全面解析,并建立质谱数据库。详情参考:https://mp.weixin.qq.com/s/etytDIXLjrICzsNfHOKgAw。4 Trap-Free 二维液质联用系统Trap-Free 2DLC系统是一套支持在线流动相转换的二维液相与色谱-质谱联用仪的组合系统,系统结构示意图见图 1。本系统的第一维液相色谱系统,可使用非挥发性流动相或者与质谱分析不匹配的流动相体系,通过系统中切换阀、程序命令的组合,对第一维液相色谱系统分离的组分进行分馏。本系统的第二维液相色谱系统,可以采用适合 LCMS 分析的液相色谱条件,针对分馏的组分,进行针对性的质量分析。详情参考:https://support.shimadzu.com.cn/pdfweb/web/viewer.html?file=https://support.shimadzu.com.cn/an/downa/AP_News_LCMS-QTOF-053.pdf全谱二维液相色谱与四极杆飞行时间质谱联用分析不同产地当归的活性成分a) 正模式火山图结果 b)负模式火山图结果根据多元统计分析OPLS-DA 结果的 VP 值,可以初步筛选出甘肃产当归和云南产当归的差异活性物质,进一步筛选则通过结合单变量统计火山图结果(P-value 与Fold change) 进行。最终正模式下筛选得到 1351 个差异物质,负模式下筛选得到1716 个差异物质。通过 MSDIAL软件,对化合物进行鉴定,共鉴定出 43种差异性化合物,包括藁苯内酯类有机酸类等天然活性物质,下表为部分差异性化合物鉴定结果表。详情参考:https://support.shimadzu.com.cn/pdfweb/web/viewer.html?file=https://support.shimadzu.com.cn/an/downa/AP_News_LCMS-QTOF-073.pdf岛津携手阳光诺和揭示头孢西丁钠新颖聚合方式图1 头孢西丁钠破坏样品检测色谱图本方案一维采用HPSEC系统,磷酸盐流动相定位头孢西丁钠中的聚合物杂质,然后采用阀切换技术,使用500 μL定量环将聚合物峰全部转移至二维反相色谱,脱盐、分离并质谱鉴定。其中聚合物C1分子量较2分子头孢西丁少2个H(Mr. 852.09),根据其同位素比例和特征碎片离子信息,推断其为一分子头孢西丁7-位侧链与另一分子头孢西丁7-位噻吩环联结形成的,该新颖聚合方式尚未见文献报道。本研究建立了注射用头孢西丁钠聚合物检测的反相色谱方法,并探索其用于日常检验的可能性。C1一级质谱图(A)和母离子m/z 870的二级质谱图(B)(ESI+)详情参考:《Characterization of polymerized impurities in cefoxitin sodium for injection by two-dimensional chromatography coupled with time-of-flight mass spectrometry》.https://doi.org/10.1016/j.talanta.2023.125378二维液相色谱联用四极杆飞行时间质谱仪对赤芍配方颗粒特征图谱2号峰鉴定配方颗粒特征图谱(1D) 配方颗粒特征图谱(2D)一维液相特征图谱中的2号特征峰切入至 50 μL定量环进行收集,再由二维流动相进行洗脱,该组分在二维液相上的保留时间为 35.267 min。采用岛津 2DLC+LCMS-QTOF对赤芍配方颗粒特征图谱中2号特征峰进行了高分辨质谱定性研究。经 MS1、MS2质谱图信息、相关文献信息以及标准品确认,最终鉴定2号特征峰为原花青素 B1。本研究为中药配方颗粒特征成分研究提供了思路,为赤芍中药配方颗粒特征图谱标准制定提供参考依据。Trap-Free 2D LC Q-TOF 定性分析宫缩抑制剂阿托西班中的多聚体杂质阿托西班二聚体的[M+3H]3+峰分子式预测结果 阿托西班二聚体解卷积分析结果阿托西班三聚体的[M+2H]2+峰分子式预测结果 阿托西班三聚体解卷积分析结果针对多肽药物中的由两个或多个多肽组成的稳定的多聚体杂质,可利用体积排阻色谱法(SEC)分离相关杂质。本案例采用岛津Trap-free 2DLC+LCMS-9030,既能避免SEC的色谱条件与质谱离子源不匹配,也能有效解决液相色谱分析浓度过高而导致的质谱信号饱的问题。结果显示阿托西班二聚体和三聚体的 MS1的离子质荷比同理论值均小于1mDa。使用 Insight Explore 软件中解卷积功能预测目标物的分子量,预测分子量和理论分子量的误差小于3ppm。详情参考:https://support.shimadzu.com.cn/pdfweb/web/viewer.html?file=https://support.shimadzu.com.cn/an/downa/AP_News_LCMS-QTOF-053.pdf注:本文中所用数据均为岛津实验室特定条件下的测试数据,结果可能随实际情况变动文中涉及最佳、最低类描述,限于实验组别对比结果。本文内容非商业广告,仅供专业人士参考。
  • 质谱技术的新方向—电荷检测质谱法(CDMS)
    电荷检测质谱法是通过同时测量单个离子的质荷比和电荷数,进而算得离子质量m的单粒子统计方法,在测定超大分子离子的质量分布方面有独特的优势。现有质谱仪在超大分子量测量方面面临的挑战在质谱仪中,被分析物质首先被离子化,随后各种离子被引入真空中的质量分析器,在分析器中的电场磁场作用下,离子的运动特性随其质荷比不同而产生差异,因而造成时空上的分离,并由检测器依次检测出来,因此形成质谱。所以,目前的质谱仪测量的是离子的质荷比(m/z),而不是质量本身。经过一个多世纪的发展,质谱仪从原先只能分析无机元素和小分子,逐步发展到能够分析有机物分子、生物大分子直至具备生命体特征的病毒颗粒。2002年诺贝尔化学奖之一授予了用电喷雾电离(ESI)进行蛋白质质谱分析的创始人John Fenn。在电喷雾质谱对蛋白质进行分析时,溶液中的蛋白质样品被传送到加有高压的毛细管尖端,强电场促使样品溶液喷雾,喷雾中的液滴通过蒸发,库仑爆炸等过程,形成带有多个电荷的蛋白质离子,被引入处于真空中的质谱分析器。每个离子所带的电荷数的多少,取决于分子的大小、分子在溶液中的几何构象(折叠或打开)以及电喷雾尖端处的电压和气流等参数。通常对蛋白质这种大分子来说,ESI质谱中都会呈现多种价态的谱峰群,群落中的每一组为某个电荷态该蛋白质的各个同位素峰、盐峰以及加合物峰等。由于电荷态z通常是连续的整数分布(例如z = 11,12....21,22...),人们可以通过计算不同电荷数对应的群落m/z的间隔来推算各组的电荷数z,进而求出实际的质量m的分布,也可以用电脑程序退卷积得到m分布。对于分析较小(分子量在5万以下)、较简单纯净的蛋白样品,退卷积还是很有效的。然而,在实际应用中对蛋白和蛋白组的分析,特别是对天然蛋白和病毒颗粒的分析却不那么简单。随着分子量上升,分子结构越来越复杂,各种翻译后修饰使被测蛋白的分子量出现差异化(heterogeneity),很宽的质量m分布(可达上千Da)使得不同价态的峰群连接在一起。图1中,用高分辨质谱仪对二种病毒壳体的质量进行测定,由于各种价态的质谱峰群连城一片,根本无法辨别谱峰,得到样品分子的质量。同时,实际样品也可能因处理不善或自然裂解,使谱图混杂着不同大小的分子离子,它们各自的价态z分布可能导致它们的峰群在m/z轴上交叠在一起。目前对于很多糖蛋白,分子量超过3、4万就出现峰群交叠,无法用退卷积软件来获得分子量的分布信息。事实说明,对于大生物分子的质谱分析,仅靠提高仪器的分辨率是无济于事的。图1 ESI质谱对大型病毒壳体质量测定的困难。(a,b)晶体结构效果图 (c,d) 的“高分辨”质谱分析图。(摘自:Kafader, J. O., Nature methods, 17(4), 391-394)糖蛋白是生物制品中比例最大的一类药物,其糖修饰对其功能非常关键,准确解析此类药物的糖修饰是药物研发、报批和质量监控的关键内容。但它们在ESI-MS的质谱中,看到的好像是一堆杂草,无法辨别有什么蛋白组分。将一个糖蛋白药物中的各组分进行高分辨检测,是当前生物质谱面临的巨大挑战。电荷检测质谱仪的提出与技术发展早在上世纪90年代,美国西北太平洋国家实验室R.D.Smith组的 Bruce, J. E等就提出可以在傅里叶变换质谱仪中同时测量单个离子的电荷和质荷比,从而算出离子的质量m。随后,美国劳伦斯伯克利国家实验室W. H. Benner 发明了一种线形的静电离子阱,并用其测量单个高价离子的电荷数和质荷比,进而得到单个事件中的离子质量m。只要连续不断地进行大量的单个离子测量,就可以把总离子事件统计出来,形成按质量分布的直方图,而这就是一张电荷检测质谱。图2,Benner小组采用的直线形静电离子阱进行CDMS测量的原理图CDMS技术的关键是如何准确地测量单个离子的电荷。测量中,离子在静电离子阱内进行周期性运动并在电极上感应出“镜像电荷”信号。通过对信号的傅里叶变换,得到离子信号的频率从而决定离子的质荷比,而由频谱峰的强度得到离子所带的电荷数。虽然单个离子的镜像电荷频谱的峰强度与离子的电荷数成正比,它也同时与离子在阱内的轨道形状、离子存活时间有关,而这些参量都存在不定性;并且由于镜像电荷信号强度极弱,回路中的电子噪声对精确测量镜像电荷产生很大的影响,因此早期的电荷测量的RMS误差达2.2e以上,由此计算出的质量精度只比凝胶电泳好一点。近年来随着人们对天然、复杂蛋白分析的需求日益显现,CDMS技术也进一步得到了发展。美国印第安纳大学Jarrold小组通过对线形静电离子阱分析器的不断改进,特别是采用了低温前级信号放大器等优化设计后,实现了最小RMS 0.2 e的电荷测量误差,测量的样品包括2 MDa以上的蛋白复合体(protein complex)和20 MDa以上的病毒外壳。在这个RMS误差下,通过电荷数取整可以大概率获得精准的电荷值,从而得到精准的质谱分布。图3给出了用普通ToF质谱仪和CDMS测量天然态丙酮酸激酶(PKn)多聚体的效果比较。当3个以上四聚体组装在一起时,ToF质谱完全无法辨别其质量分布,而CDMS可以看到近10个四聚体组合的质量峰。图3.用常规ToF质谱(左)和用CDMS测量的丙酮酸激酶(PK)多聚体,使用相同样品和相同电喷雾条件。(摘自D. Keifer: Analyst, 2017,142,1654)目前,虽然用线形静电阱结合傅里叶变换可以得到较好的电荷测量精度,但该方法每次只能测一个离子,否则库伦相互作用会影响测量。在实际测试中,每次引入的离子数是随机分布的,需要用软件鉴别超过一个离子注入的事件,也要发现因为和残余气体碰撞而半路夭折的事件,并把这些“不良”记录剔除。考虑单次分析时间大约需要1s,得到一张良好统计的CDMS谱图需要几个小时甚至一天的数据积累。加利福尼亚大学E. Williams团队对线形静电离子阱分析器的设计和的数据处理方法进行了创新,能让宽能量范围的离子同时进入离子阱进行分析,避免了离子之间的空间电荷作用,可以在一个测量周期内测量10-20个离子,进而有望提高了检测效率。与此同时,其他尝试使用商业傅立叶FT质谱仪进行CDMS的研究团体也逐步浮现。美国西北大学Kelleher团队、荷兰乌得勒支大学的A.R.Heck团队先后使用热电公司的静电场轨道阱(Orbitrap) 系统,通过更新数据处理软件,对CDMS进行了应用研究。除了Orbitrap是成熟的商业化仪器这一优点外,轨道静电离子阱内的离子由于其轨道运动,导致电荷分布在中心电极周围,因此其空间电荷相互作用较小。Kelleher 在Nature Method上的论文声称,基于Orbitrap的CDMS可以同时分析100个离子。不过,在电荷测量精度上,Orbitrap-CDMS目前只达到RMS 1 e左右,较Jarrold的线形静电阱还有一定的差距,但Orbitrap对m/z的测量精度、分辨率远远超过ELIT,一定程度上帮助消除在多离子同时分析时可能出现的m/z相近离子的信号干涉效应。笔者在岛津公司的欧洲研发团队去年也在JASMS发表了用CDMS测量糖蛋白的尝试。该工作采用了一种盘状平面静电离子阱分析器,如图4,而这种分析器也能像Orbitrap那样获得超高分辨质谱。通过对测量硬件和软件进行改进,实现了CDMS实验。该报道给出了一种全新的CDMS数据处理方法,能够克服离子在分析过程中因碰撞夭折造成测量不准的问题,同时实验验证了该方法的有效性,还对多个离子同时分析时的信号干涉等问题提出分析和研判,为深入研究CDMS技术,消除造成电荷测量误差的障碍打下了基础。图4,用于CDMS 实验的平面静电离子阱系统 (A. Rusinov, L. Ding, JASMS, 32, 5, 2021)CDMS技术的应用现状目前,电荷检测质谱技术还处于早期发展阶段,还没有现成的商品仪器出售,只有能够自己开发质谱仪器硬件,或自己改编FTMS(含Orbitrap)软件的专家才能进行这样的实验。 今年初美国沃特世公司宣布成功收购专攻电荷检测质谱技术(CDMS)及服务的初创企业Megadalton Solutions Inc. Megadalton Solutions是由美国印第安纳大学的Martin Jarrold和David Clemmer两位教授于2018年创立,他们目前是研发的CDMS仪器最长久的团队并拥有最成熟的技术。沃特世曾于2021年将Megadalton的CDMS技术引进到了沃特世Immerse Cambridge创新和研究实验室,并应用于各项先进检测及研发工作。沃特世公司首席执行官Udit Batra博士表示要进一步开发Megadalton的CDMS技术并将其商业化。在国内,CDMS无论是仪器技术开发还是应用都属空白。虽然国内在复杂生物大分子结构与功能的研究、病毒载体空壳率监测方面对CDMS已经产生需求,但我们在高端质谱仪器研制方面远远落后于西方。CDMS在技术上是基于FTMS分析原理而演化产生的,但国内目前对FT类型的质谱仪器研究,除了少量理论分析与离子光学仿真工作外,还没有实质性的进展,也没有企业能够提供FTMS类商品仪器。针对这些需求,笔者打算在前期研究工作的基础上,研究开发静电离子阱分析器,并进一步结合开发CDMS特定的数据处理软件,建成一套拥有自主知识产权的新型质谱仪器。同时建立国内的研发应用合作机制,解决目前国内超大分子蛋白质生物药剂质量分析的问题。预测CDMS技术未来的市场空间如前所述,目前对复杂蛋白等大型生物分子进行质谱分析时,由于其分子量的差异性(heterogeneity), 存在着严重的多价态峰群重叠问题,导致无法通过质谱仪获得这些大分子在样品中的质量分布。而用电荷检测质谱仪,无需对电荷态退卷积,可以直接得到蛋白质、蛋白复合体、各种转译后修饰造成的特定质量分布图。因此,该仪器的发展在天然蛋白质、糖蛋白、病毒颗粒的成分和结构研究,抗原-抗体作用机理研究和疫苗研发方面有很大的未来市场空间,具体可以列举以下几个方面:(1)新型电荷检测质谱仪可实现复杂样品的蛋白离子精确分析,可时提供复杂样品中各蛋白分子的结构,密度分布等。(2)可直接测定糖蛋白及其它各种转译后修饰造成的特定质量分布图,为解释蛋白大分子及其转译后修饰分子量或结构表征变化信息等之间的关系,从而对糖蛋白相关的疾病诊断具有重要意义。(3)通过研究DNA等生物大分子离子的电荷分布,以及质量与电荷的关联,可以推断这些大分子的结构,比如它的聚合程度、纤维股数等。(4)在病毒研究中,可以用来确定病毒衣壳的蛋白复合体结构及其组装反应的过程,这将在抗病毒药物的研究中发挥作用。(5)在基因疗法研究和产品质控中,本项目研制的电荷检测质谱仪可以用来测定腺病毒载体的空壳率,检查载体内的基因完整度。推动现代临床医学的发展;(6)电荷检测质谱仪还可以用来测定纳米聚合物分子的聚合度和分散指数,推动材料科学的发展。值得关注的是新冠疫情给质谱分析带来了全新机遇,除了对新冠病毒本身的蛋白进行分析研究以外,也可以在灭活疫苗、病毒载体疫苗以及核酸疫苗产品的质量控制、效果评价、免疫机制研究以及载体类疫苗的体外模拟产物的评价等方面发挥优势。关于笔者:宁波大学材料科学与化学工程学院/质谱技术研究院 丁力1990年于复旦大学物理系获理学博士学位。先后工作于复旦大学材料科学系,以色列魏兹曼科学研究所,英国贝尔法斯特女王大学纯粹与应用物理系。1998年加入岛津欧洲研究所。2007年至2011年任岛津分析技术研发(上海)有限公司总经理。2011-2020年任岛津欧洲研究所高级研究员,研发二部经理。主要领导了多项质谱仪器的研发,是国际上数字离子阱质谱技术的创始人,在离子源,四极场离子阱,静电离子阱,飞行时间等分析器技术及其联用技术方面有很多创新和突破。发表论文、报告、专著一百余篇,有三十余项发明专利。领域:QIT、ToF、Quadrupole、MALDI、APMALDI、ESI、Digital Ion Trap、Linear Ion Trap、Electrostatic Ion Trap,FTMS、 CDMS、MSMS、ECD、Ambient Pressure Ion Sources 等。目前丁力在宁波大学组建团队,继续静电离子阱的设计和优化工作,已提出了静电“和谐阱”的设计概念,充分利用其高次谐波来提高质谱分析器的分辨本领。同时也在探索在国内实现这种精密分析器的加工和组装工艺,为下一步实现超高分辨质谱仪国产化做准备,也为在国内研制电荷检测质谱仪打好基础。
  • 使用BiopharmaLynx软件分析蛋白完整分子量
    贾伟 沃特世科技(上海)有限公司实验中心 对蛋白药的分子量进行测定,可以在完整蛋白水平,对其进行宏观表征,以初步确定蛋白的表达是否正确。BiopharmaLynxTM软件中,专门设计了对蛋白整体分子量测定及表征的多种功能,它具有以下特点。 ■ 通过原始质谱数据,计算出蛋白分子量。 ■ 自动标注蛋白的各种不同修饰形态。 ■ 以直观方式,比较样品与标品间差异。 ■ 自动计算蛋白质的各种修饰形式间的峰强度比例。 ■ 界面友好、直观,操作简单。 通过原始质谱数据,计算分子质量,是蛋白分子量测定的基本功能。图1中左上为免疫球蛋白IgG的原始质谱数据,右下为软件分析后,得出的IgG分子质量信息。通过BiopharmaLynx软件的自动计算功能,复杂的质谱数据成为了直观的分子量形式。图1中,绿底色图为标准品蛋白的分子质量分布数据,蓝底色图为样品蛋白的分子质量分布图。在BiopharmaLynx给出的结果中,IgG的具有多个分子质量形式,这是由于其含有多种糖基化修饰的原因。 图1. BiopharmaLynx软件的完整蛋白质量分析界面。 图中的紫色线条直观地显示出了样品蛋白与标品的质量分布差异差异。观察紫色线条形态可以发现,样品IgG具有更多的大分子量糖基化修饰形式,而标品蛋白中的小分子量糖型修饰较多。当将鼠标指针放置于峰尖时,将自动出现此处蛋白名称、修饰种类、峰强度、色谱保留时间等信息。通过以上两种信息,可以简单、直观地找到两者的差异之处了。 BiopharmaLynx软件可根据用户设置,对蛋白的不同修饰情况,自动标注。除内置的90种修饰外,用户还可根据需要自行创建修饰方式。特别是,考虑到生物蛋白药的一些具体情况,BiopharmaLynx内置了一些蛋白表达药品常见的蛋白改变修饰,如蛋白C端的Lysine缺失等(图2红色箭头指向)。这些细节设计,会帮助使用者极大地提高工作效率,节省精力。 图2. 使用BiopharmaLynx软件的修饰设置界面。 BiopharmaLynx软件对蛋白各种修饰间的比例也可以直观地给出初步分析结果(图3)。 作为一家在液相与质谱技术都占有领先优势的企业,沃特世更提供了全面的蛋白分子量分析方案,包括色谱柱、色谱梯度方法、质谱条件等一系列已优化完成的实验操作流程(图4)。使用此整体解决方案,仅仅使用0.5微克的IgG蛋白,在4分钟内,就可完成液质数据采集全过程。此方案也包括对还原后IgG的分析方法(图4右上)。 图4. 完整及还原后IgG质量测定解决方案示意图。 参考文献 (1) Rapid Profiling of Monoclonal Intact Antibodies by LC/ESI-TOF MS. Waters Application Note, 2007, 720002393 EN (2) Rapid Screening of Reduced Monoclonal Antibodies by LC/ESITOF MS. Waters Application Note, 2007, 720002394 EN (3) Characterization of an IgG1 Monoclonal Antibody and Related Sub-Structures by LC/ESI-TOF MS, 2007, 720002107 EN (4) Assessing the Quality and Precision of T herapeutic Antibody LC/MS Data Acquired and Processed using Automated Workflows. Poster presented at the ASMS meeting. 2008, 720002687 EN (5) Efficiently Comparing Batc hes of an Intact Monoclonal Antibody using t he Biop harma Lynx Software Package. Waters Application Note, 2008, 720002820 EN 联系方式: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • 高分辨非变性质谱绘制人血清蛋白全貌图
    大家好,本周为大家介绍的是一篇发表在Analytical Chemistry上的文章Charting the Proteoform Landscape of Serum Proteins in Individual Donors by High-Resolution Native Mass Spectrometry1,文章通讯作者是来自荷兰乌得勒支大学的Albert J. R. Heck教授。  血清中大多数蛋白都是糖基化蛋白,这些糖蛋白对疾病诊断有着重要意义,基于质谱的糖链释放后分析和糖肽分析是目前普遍使用的糖蛋白分析方法,但仍存在一些局限,例如可能遗漏同时发生的翻译后修饰、缺乏对O-糖的研究、遗漏某些糖肽覆盖不到的糖基化位点等。高分辨非变性质谱为完整糖蛋白的分析提供了新的思路,本文开发了一种基于离子交换色谱的分离纯化方法,能够从150μL血清中分离和分析20多种血清(糖)蛋白,质量范围在30-190 kDa之间。  图1为血清糖蛋白的分离和分析方法。150μL血清首先经过亲和柱以快速去除大量的白蛋白、IgG和血清转铁蛋白等,这一步骤使用的是作者内部制造的机器人,可以加快过柱子的速度。接着血清被送入离子交换(IEX)色谱,使用40分钟的梯度时,大多数蛋白在14-27分钟内洗脱,故作者在13-30分钟内每隔0.5分钟收集一次级分,并将每个级分缓冲液换为乙酸铵溶液,最后进行Thermo Exploris Orbitrap质谱仪分析。    图1.血清糖蛋白非变性质谱分析方法  作者使用该方法分离了大约24种血清蛋白,并在文中详细介绍了其中4种蛋白的分析过程:α-1抗胰蛋白酶、补体C3、血红素结合蛋白、铜蓝蛋白。  (1)α-1抗胰蛋白酶(A1AT)是一种丝氨酸蛋白酶抑制剂,在呼吸系统的功能中起重要作用,作者使用唾液酸酶和PNGase F确认了蛋白上的糖型,又通过TCEP的还原处理发现大部分血清样品的A1AT都是半胱氨酸化的,也确认了A1AT存在N端截短的特征,综上,作者共统计出了13个A1AT异质体。针对捐献者提供的血清,作者区分出了携带V237A和E400D突变的A1AT蛋白的供体。  (2)补体C3蛋白在免疫调节过程中发挥作用,在血清中浓度相对较高,分子量为187kDa。与该蛋白共流出的还有两种约137kDa和80kDa的蛋白,在唾液酸酶处理后,只有80kDa的蛋白质量减少很多,证明其存在唾液酸,而C3和137kDa蛋白的糖型上无唾液酸。通过对级分的糖肽分析确定N糖位点在Asn 63和Asn 917。137kDa蛋白鉴定为C3缺失α链后降解而成。  (3)血红素结合蛋白(HPX)在血清中的主要功能是结合和运输游离的血红素,进行血红素和铁的再循环。非变性质谱显示HPX质量范围在58-63 kDa,而蛋白质主链质量仅50 kDa。本文首次解析了血清HPX的蛋白型谱,证明了4-5个N-糖和1个O-聚糖的存在,共17种独特的糖型。  (4)铜蓝蛋白(CER)负责在人体内转运大部分的铜,分子量132kDa,每个CER分子可以携带6-7个铜离子。CER在非变性质谱检测后的分子量比理论质量多409±5Da,作者将其归为6个铜离子和1个钙离子的结合所致,并发现了CER完全去糖后失去结合金属离子的能力。    图2.绘制血清糖蛋白组的全貌图。观察到的血清蛋白质量范围为30-190 kDa,浓度范围为0.2-50g/L  总结:本文开发了一种从少量人血清中分离多种糖蛋白的方法,并通过高分辨非变性质谱表征了蛋白型谱,为蛋白全貌提供完整视图。该方法的优势在于非变性质谱需要的样品处理步骤少,最大程度的还原了蛋白的生理状态,劣势在于目前通过完整质量只解析了20余种蛋白中的8种,后续需要结合自下而上或自上而下的蛋白质组学方法进行辨别。在未来的研究中,作者建议联用分子排阻色谱和离子交换色谱,实现高通量在线血清蛋白分离分析。  撰稿:英语佳 编辑:李惠琳  原文:Charting the Proteoform Landscape of Serum Proteins in Individual Donors by High-Resolution Native Mass Spectrometry
  • 液质联用(农兽残分析)2017年最新技术提高速成班(理论+实操+技能证书)
    p   想要get鸡蛋中氟虫腈和果蔬中多农残检测的最新液质联用技术吗? br/   想要亲自上机操作,专家老师手把跟着你一起做分析吗? br/   想要拿个有关液质联用技术方面的技能结业证书吗? br/ br/   一切尽在“液质联用(农兽残分析)应用技术”专题培训班”:3天密集式培训,上千万的仪器设备全程学员开放,四位业内资深专家现场全程跟踪,20人小班授课,报名截止到9月30日! br/ br/    strong 培训背景: /strong br/   液质联用(LC-MS)亦称液相色谱-质谱联用技术,它以液相色谱作为分离系统,质谱为检测及定性、定量分析系统。样品经色谱分离后,进入质谱离子源被离子化,并由质量分析器将离子化后的待分析物按m/z分开,经检测器获得MS质谱图。 液质联用充分体现了色谱和质谱技术优势互补,将色谱对复杂样品的高分离能力,与MS具有的高灵敏度、高特异性、高选择性且可提供分子量与分子结构信息的优势结合起来,在农兽残分析、食品分析和环境分析等众多领域得到了广泛应用。 br/   应广大分析工作者需求,仪器信息网将联合中国检验检疫科学研究院于2017年10月18日-20日在北京举办液质联用(农兽残分析)应用技术培训班,集中讲解兽残的分析方法开发及应用技术,理论知识+上机实操授课模式。欢迎有志提高液质联用(LC-MS)分析技术水平的人员报名学习。 br/ strong br/   课程安排: br/ img title=" 01.png" src=" http://img1.17img.cn/17img/images/201709/insimg/bb4465eb-f0ee-4eaf-964d-ee7f86d0523b.jpg" / br/ /strong strong br/   培训费用: br/ /strong   每人3860元(含报名费、培训费、教材料费,培训期间每日午餐费、上机操作实验所用分析标准品、样品前处理柱、试剂耗材费用等),食宿可统一安排,费用自理。 br/ strong br/   优惠政策: br/ /strong   1、在校学生凭学生证件,每人2860元/人 br/   2、3-5人组团报名,3060元/人 br/   住宿协议酒店:中冀斯巴鲁大厦(标间380元/间 含早餐) br/   结业证书: br/   参加相关培训并通过考试的学员,可以获得:由信仪器信息网、检科院共同颁发授课老师签字的结业证书。该证书可作为有关单位专业技术人员能力评价、考核和任职的重要技术依据。 br/ strong br/   报名咨询: br/ /strong   联系人:李老师 15910410867 br/   电 话:010-51654077-8119 br/   传 真:010-82051730 br/   邮箱:liru@instrument.com.cn br/   上课地点:亦庄经济技术开发区荣华南路11号(中国检验检疫科学研究院农产品安全研究中心) /p
  • 脂溶性聚合物环氧树脂及甲基硅油分子量分布测定
    脂溶性聚合物环氧树脂及甲基硅油分子量分布测定刘兴国 熊亮 曹建明 金燕美丽而寒冷的冬天又到了,室外大雪纷飞,喜欢运动的小伙伴们由户外转战室内,场馆内羽毛球、乒乓球、篮球大战相继上演,运动的身姿和蓝绿色地面、明亮的篮板构成了一道道靓丽的风景线。你可知道这漂亮的场地和器材是用什么材料制造的吗?学化学的你可能回答:“有机材料。”其实这些都是聚合物材料,绿色和蓝色的防滑地面材料为环氧树脂,有机玻璃的篮板材料为聚甲基丙烯酸甲酯。这些均为脂溶性聚合物材料的产品,它们已渗透到日常生活和高端科技的方方面面,从每天要用到的塑料袋到航天材料都可看见它们的身影。 今天,飞飞给大家重点介绍两种脂溶性聚合物。一种是低分子型环氧树脂,是由双酚A和环氧丙烷在氢氧化钠作用下缩聚而成,室温下为黄色液体或半固体,耐热、耐化学药品、电气绝缘性好,广泛用于绝缘材料、玻璃钢、涂料等领域,是常用的基础化工材料。另外一种为甲基硅油,它具有突出的耐高低温性、极低的玻璃化温度、很低的溶解度参数和介电常数等,在织物整理剂、皮革涂饰剂、化妆品、涂料和光敏材料等领域广泛应用。 分子量分布是表征聚合物的重要指标,对聚合物材料的物理机械性能和成型加工性能影响显著。常用测定方法有:粘度法、激光光散射法、质谱法和体积排阻色谱法 (SEC法),其中凝胶渗透色谱法(GPC法)作为体积排阻色谱法的一类,方便快捷、设备普及,具有广泛适用性。通过本文,飞飞给大家介绍以聚苯乙烯为标样,GPC法测定低分子量环氧树脂以及甲基硅油分子量的方法,通过对分子量分布的准确控制可以很好地保证产品的质量。变色龙软件GPC扩展包可以非常方便地将采集的GPC数据进行处理,快速地得到分子量分布的信息,而且该扩展包完全免费。 本实验仪器配置如下:仪器:赛默飞 U3000高效液相色谱仪泵:ISO3100 Pump自动进样器:WPS 3000SL Autosampler柱温箱:TCC3000 Column Compartment检测器:ERC 521示差检测器变色龙色谱管理软件 Chromeleon CDS 7.2 1. 环氧树脂分子量测定双酚A型环氧树脂基本结构及以它为材料制造的体育馆环氧地坪见图1:图1 双酚A型环氧树脂基本结构及体育馆环氧地坪色谱条件如下:分析柱:TSKgel G2500HXL 300*7.8mm,P/N:0016135(适用分子量范围100-20000);TSKgel G3000HXL 300*7.8mm,P/N:0016136(适用分子量范围500-60000);TSKgel G5000HXL 300*7.8mm,P/N:0016138(适用分子量范围1000-4000000);三根色谱柱串联分析。柱温:25℃RI检测器:过滤常数:2s,温度:35℃流动相:四氢呋喃,流速1.0mL/min进样量:15µL 对照品为聚苯乙烯,分子量分别为162,370,580,935,1250,1890,3050和4910;称取适量对照品用四氢呋喃超声溶解,浓度0.02mg/mL。样品用四氢呋喃溶解,浓度0.1mg/mL,测定谱图见图2。 图2不同分子量聚苯乙烯对照品测定谱图注:580和370两个对照品出厂报告上polydispersity多分散系数分别为1.13和1.15,分子量集中度差,所以峰形呈现为多簇小峰。其余对照品多分散系数均小于1.05,峰形呈对称单峰。 校正曲线及相关系数如下: 图3 校正曲线校正曲线方程y=-0.0006x3+0.0502x2-1.5496x+20.4439,相关系数R=0.9998。不同厂家不同批次环氧树脂样品测定结果如下: 表1 环氧树脂样品测定结果样品名称 重均分子量Mw样品-1 387样品-2 401样品-3 396 2. 甲基硅油分子量测定测试甲基硅油的分子量及其分布,常用的GPC方法是采用甲苯或四氢呋喃作为流动相,但是由于甲苯属于管制类试剂,不易购买,因此飞飞采用四氢呋喃(THF)作为流动相来测定硅油的分子量及其分布,结果显示分离与色谱峰形均较好。对照品为聚苯乙烯,分子量分别为1210,2880,6540,22800,56600和129000;称取适量对照品用四氢呋喃超声溶解,浓度约1.0mg/mL。样品用四氢呋喃溶解,浓度1mg/mL。色谱条件如下:分析柱:Shodex KF-805L 8.0*300mm(适用分子量范围300-2000000);柱温:30℃RI检测器温度:31℃流动相:四氢呋喃,流速0.8mL/min进样量:100µL 对照品测定谱图及校正曲线如下:图4 对照品测定谱图及校正曲线 校正曲线方程y=-0.0182x3+0.5987x2-7.1522x+34.6655,相关系数R=0.9996。甲基硅油样品测定结果数均分子量为20727,重均分子量为36273,Z均分子量为59280,Z+1均分子量为91320。总结到这里,飞飞给大家介绍了采用U3000液相结合变色龙软件采集和处理数据,分析低分子量环氧树脂和甲基硅油分子量的方法,由于两者分子量范围差异较大,实验采用了两组不同分子量的聚苯乙烯标准品作为对照品。对于环氧树脂由于需要测定的是低分子量聚合物且对照品分子量接近,所以采用了三根截留分子量不同的凝胶柱串联进行测定,结果更为准确。变色龙GPC分子量计算扩展包功能强大,导入和使用方便,为广大变色龙工作站用户扩展使用GPC功能带来便利。本文介绍的为脂溶性聚合物的分子量测定,对于水溶性聚合物的分子量分布测定,飞飞这里有较多应用文章供大家参考,感兴趣的朋友可联系我索取,这里给大家提供一篇最常用的,右旋糖酐40的分子量分布测定,扫描以下二维码既可查阅。
  • MS新功能:Mass-it™提升质谱解析效率
    液相色谱通常使用紫外-可见光(UV-Vis)吸光度检测器或光电二极管阵列(PDA)检测器。然而,光吸收检测器不适合检测无紫外光吸收的化合物、低浓度存在的化合物或没有充分分离的化合物(共洗脱化合物)。对于此类化合物,质谱仪可以用作补充检测器。由于质谱仪基于不同的测定原理,因此可以测定无紫外吸收的化合物。此外,质谱仪可以提供有关化合物的质量信息,从而可以获得更准确的定性结果。LCMS-2050单四极杆质谱仪具有Mass-it&trade 功能,可以将质谱获得的化合物质量数(m/z)信息叠加到紫外色谱图上,以支持补充使用紫外检测器获得的定性分析结果。SPD-M40 PDA检测器(左)和 LCMS-2050 MS检测器(右)PART 1液相色谱(LC)工作原理液相色谱(LC)是一种使用检测器监测色谱柱分离化合物的分析技术。它可以提供有关样品中所含化合物的各种信息。根据定性信息(如化合物保留时间)和定量信息(如检测器信号强度)的组合,对样品进行定性和定量分析。如果使用光电二极管阵列(PDA)检测器,则可以同时分析多个波长,以获得每个单位时间的紫外吸收光谱。由于每种化合物都具有独特的紫外光谱,因此它们提高了识别化合物成分的能力(定性分析性能)。使用PDA检测器获得的LC分析结果如上图所示。254nm波长处吸光度的紫外色谱图包括4种化合物的峰。PART 2质谱(MS)工作原理质谱(MS)是连续电离化合物以获得化合物质量信息(m / z)的仪器。体积紧凑且操作简单的LCMS-2050是一款单四极杆型质谱检测器,可用作LC检测器,其操作方式与使用PDA检测器相同。PDA检测器扫描紫外波长,MS检测器扫描一系列m/z值,并将响应显示为质谱图。或者,可以指定某个m/z值并将响应强度绘制为时间的函数,以将数据显示为定量色谱图。使用MS检测器获得的TIC分析结果如上图所示。除了紫外色谱图上看到的4种化合物的峰以外,还有化合物A的峰。PART 3结合使用PDA和MS检测器,获得丰富信息下图中结合了从PDA检测器获得的的3D图形数据和从MS检测器获得的质谱数据。并列出了化合物信息(化合物名称和理论m/z值)和每种组分的质谱图。因此,结合使用PDA和MS检测器可以提供大量定性信息,这对于确定样品中包含的所有成分非常有用。通过MS检测器获得的信息,可以清楚的看到没有紫外吸收的化合物,以及没有充分分离的共流出化合物。从PDA检测器获得的3D数据和从MS检测器获得的质谱数据什么是Mass-it&trade 功能?Mass-it&trade 可以将从质谱检测器获得的化合物 m/z 信息自动叠加在相应的紫外色谱图中,从而提高紫外色谱图中化合物鉴定的可靠性和整体可见性。Mass-it&trade 功能的应用Mass-it&trade 可以将从质谱检测器获得的化合物 m/z 信息自动叠加在相应的紫外色谱图中,从而提高紫外色谱图中化合物鉴定的可靠性和整体可见性。01使用Mass-it&trade 功能检测无紫外线吸收的化合物在上述案例中,保留时间0.8min左右的苯海拉明在254nm处吸光度较低,PDA检测器未检出,但MS检测器检测到了峰。因此,使用Mass-it&trade 功能将m/z信息添加到紫外色谱图中,可以防止漏检无紫外吸收的化合物。02使用Mass-itTM功能检查合成产物的分子量在化学合成或药物发现研究中,使用紫外检测器定量分析目标物时,通常希望同时获得目标物的质量信息以验证合成路线是否正确。Mass-it&trade 对于这一类分析应用特别有帮助。下图显示了分析含有杂质的阿托伐他汀样品测定结果,主成分峰的保留时间约为10.6 min。Mass-it&trade 功能会自动将质谱图中获得的信息(m/z 559.3)添加到紫外色谱图中,从而一目了然地看到阿托伐他汀是主峰。m/z信息也可以添加到峰面积为主峰0.1%或更小的峰上,有助于分析杂质。03使用质谱功能检测共洗脱峰对于色谱柱无法完全分离的多种化合物,则它们在紫外色谱图中显示为一个峰(共洗脱峰)。如果这些化合物保留时间特别接近,则很难发现这是一个共洗脱峰。然而,共洗脱可以从质谱信息中确定。Mass-it&trade 功能通过在UV色谱图上显示从质谱获得的m/z信息,为发现共洗脱化合物提供支持。下图显示了7种药物同时分析的案例,其中劳拉西泮和奥沙西泮没有完全分离,该共洗脱峰的保留时间为4.9min。鉴于劳拉西泮和奥沙西泮分别在m/z 320.8和286.8处被检测到,Mass-it&trade 将m/z信息添加到同一位置的紫外色谱图中,并以黄色箭头标识,从而轻松发现共洗脱化合物。此外,岛津PDA检测器具有i-PDeA II功能,利用智能峰解卷积技术可以从未分离色谱峰中提取目标峰。同时使用i-PDeA II和Mass-it&trade 功能可以提供更可靠的分析结果。小结Mass-it&trade 功能通过在紫外色谱图上显示MS获得的m/z信息来帮助识别化合物。它对于检查合成化学品中的分子量或杂质分析特别有用。即使检测到没有紫外吸收的化合物,质量数信息也会显示在紫外色谱图上,这有助于防止忽略部分化合物。对于共洗脱的未充分分离色谱峰,质量数信息将显示在同一位置,以提示用户注意共洗脱化合物。本文内容非商业广告,仅供专业人士参考。
  • 汇集结构质谱尖兵,开拓蛋白质结构生物学的新天地——第十四届质谱网络会议报告推荐
    随着生命科学研究的深入开展,科学界对解析复杂生物大分子结构以揭示生命现象的渴望日益增加。在各种结构生物学技术快速发展的背景下,结构质谱技术凭借其独特的优势,日益成为连接静态结构与动态功能、实现从分子到细胞的跨尺度研究的重要手段。在12月12-15日即将召开的“第十四届质谱网络会(iCMS 2023)”同期,特别新增了“结构质谱新方法”主题专场,来自全国的顶尖科学家团队将汇聚一堂,围绕氢/重氢交换质谱、化学交联质谱、原位质谱等前沿技术,报告他们在蛋白质结构生物学研究中的最新进展。本次主题会议的召开,恰逢结构质谱技术发展的重要机遇,必将推动该领域技术的重要突破及交叉创新,开启生命科学研究的新篇章。热忱欢迎质谱界的科技工作者报名参会交流、了解前沿动态、开拓合作视野。部分报告预告如下,点击报名  》》》会议主持人:中山大学 教授 李惠琳中山大学药学院教授,博士生导师。主要从事生物质谱新技术的开发及应用,侧重于(1)开发整合结构质谱技术(包括native top-down MS, HDX-MS, CX-MS等),用于药物作用分子机制及蛋白复合物结构研究;(2)Middle-down/top-down蛋白质组学新技术的开发及应用。共发表SCI收录论文40篇,其中第一作者或通讯作者15篇,主要发表在Nat. Chem.、Anal. Chem.等期刊;2014年获得American Society of Mass Spectrometry Postdoctoral Career Development Award;2019年入选“珠江人才计划”青年拔尖人才;主持国家自然科学基金项目3项。报告人:香港理工大学 教授 姚钟平报告题目:氢氘交换质谱揭示β-内酰胺酶与抑制剂相互作用的动态构象复旦大学学士及硕士,香港科技大学博士,香港理工大学应用生物及化学科技学系教授。长期从事质谱、分析化学、化学生物学、组学的交叉学科研究,主要发展和应用质谱技术解决化学、生物、食品安全、信息科学等领域的基础和应用问题,在Nature Communications, PNAS, JACS等期刊发表论文100多篇。现任香港研究资助局专家委员会委员、深圳市中药药学及分子药理学重点实验室副主任、中国化学会有机分析专业委员会委员、Frontiers in Chemistry副主编以及Analytica Chimica Acta, Rapid Communications in Mass Spectrometry,《中国质谱学报》,《分析测试学报》等期刊编委。会上,姚钟平教授将作主题为《氢氘交换质谱揭示β-内酰胺酶与抑制剂相互作用的动态构象》的报告。利用氢氘交换质谱(HDX-MS)并结合原态离子迁移质谱(Native IM-MS)以及分子动态(MD)模拟,发现不同亚型的A型β-内酰胺酶在几个主要的结构域存在显著的动态构象差异。进一步研究了A型β-内酰胺酶与抑制蛋白结合界面的动态结构变化,结果揭示了H10区域是一个可调节β-内酰胺酶抑制作用的别构部位。报告人:浙江大学 研究员 周默为报告题目:非变性质谱剖析异质性蛋白复合体结构和功能信息浙江大学首位“求是实验岗”研究员,分析化学专业,长期从事前沿生物质谱技术和仪器的开发工作。2008年本科毕业于武汉大学,2013年博士毕业于美国俄亥俄州立大学,之后两站博士后分别在美国FDA和西北太平洋国家实验室PNNL。2018年成为PNNL的研究员开展独立研究,培养多名博士后和学生。2023年加入浙江大学。截至目前共发表60余篇学术论文,代表作包括在Angewandte Chemie, Nature Communications, Analytical Chemistry等期刊的论文。现任自上而下蛋白组协会(Consortium for Top Down Proteomics)的青年委员会主席,曾担任美国质谱协会(ASMS)的出版委员会委员、短课程讲师、评审委员等学术任职,努力推动新分析测试技术的开发和跨学科领域的应用研究。本次会议中,周默为研究员将为介绍题为《非变性质谱剖析异质性蛋白复合体结构和功能信息》的报告。精准表征生物大分子的微观结构对各类生物工程、生物医药领域的研究至关重要。由于大部分质谱检测到的分子量范围有限,在分析之前生物大分子需要先被剪切为分子量更小的片段。但是剪切和碎片化的过程中会丢失一些关键的结构信息。前沿质谱技术提高了仪器的分子量上限,使非变性条件“自上而下”研究完整的生物大分子更加容易。我将以具体案例,阐述自上而下非变性质谱技术在异质性蛋白质复合体结构和功能解析中的贡献,以及与其他方法的互补性。报告人:北京大学 研究员 王冠博报告题目:生物样本中蛋白高级结构的质谱分析北京大学生物医学前沿创新中心研究员。北京大学学士,美国马萨诸塞大学博士,曾于荷兰乌特勒支大学暨荷兰蛋白组学中心从事博士后研究;曾任南京师范大学教授、博士生导师。主要从事免疫反应相关蛋白质的高级结构及相互作用研究,以生物质谱为核心工具,结合新型分析设备研发,应用于生物物理学、蛋白质药物分析等领域。长年与国际药企合作研发新型药物表征技术并应用于新药研发。获国际国内授权专利,出版《Mass Spectrometry in Biopharmaceutical Analysis》等专著、译著、合著多部。任中国生物化学与分子生物学会蛋白质组学专业分会委员、国际学术组织Consortium for Top-Down Proteomics青委会委员。本次会议中,王冠博研究员将围绕生物样本中蛋白高级结构的质谱分析主题分享报告。生物质谱已成为蛋白质多次结构表征的重要工具。为将蛋白结构质谱技术的应用拓展至生物样本乃至临床样本中,我们针对背景基质复杂、糖基化等修饰异质性高、超大分子量颗粒结构层次多样等问题,以非变性质谱等质谱手段为核心工具开发了一系列组合策略,提供生物样本乃至临床样本中的蛋白高级结构和相互作用关系信息。报告人:中国科学院大连化学物理研究所 研究员 王方军报告题目:高能紫外激光解离-串联质谱仪器研发和应用2011年于中科院大连化物所获博士学位,师从邹汉法研究员。研究工作致力于生物大分子质谱新仪器、新方法及其在生命健康领域的应用研究,搭建了世界首台50-150 nm可调波长极紫外激光超快解离-串联质谱;提出了位点光解离碎片产率和原位化学标记效率定量表征蛋白质结构变化的两种质谱分析新原理,实现亚微克蛋白质复合物序列和结构变化单氨基酸位点分辨表征;发展了蛋白质-纳米材料界面相互作用精细结构的质谱分析新方法等。在Nat. Protoc.,J. Am. Chem. Soc.,Cell Chem. Biol.,Chem. Sci.,Anal. Chem.等期刊发表论文130余篇,他引5000余次。本次会议中,王方军研究员将分享题为《高能紫外激光解离-串联质谱仪器研发和应用》的报告。高能/真空紫外激光解离是表征生物大分子序列和动态结构的前沿结构质谱表征技术,但相关仪器和理论都亟待发展。报告人将介绍近年来自主研发的皮秒脉冲极紫外激光解离装置和蛋白质原位光化学标记仪器的原理、主要参数、与商品化质谱对比、及在蛋白质瞬态结构表征、蛋白-蛋白识别和相互作用机制分析等方面的应用情况。报告人:中国科学院大连化学物理研究所 研究员 赵群报告题目:活细胞内蛋白质原位构象和相互作用规模化解析新方法研究中国科学院大连化学物理研究所研究员,博士生导师。本科毕业于西北大学化学基地班。同年进入大连化学物理研究所攻读博士学位,师从张玉奎院士和张丽华研究员,2014年获得理学博士学位。毕业后留所工作至今,主要从事蛋白质组定性定量及相互作用分析新技术研究,共发表学术论文62篇,其中近五年以通讯/第一作者(含共同)在Nat. Commun., Angew. Chem. Int. Ed.,Anal. Chem.等SCI期刊发表论文23篇;已获20项发明专利授权。作为课题负责人承担国家重点研发计划,作为项目负责人承担国家自然科学基金面上基金等,2023年获国家自然科学基金优秀青年基金支持;2018年入选大连市科技之星,2020年入选中国科学院青年促进会会员,2023年获中国化学会菁青化学新锐奖;兼任《色谱》青年编委、中国化工学会理事、中国蛋白质组学会青年委员、中科院青促会沈阳分会委员等。本次会议中,赵群研究员将围绕题为《活细胞内蛋白质原位构象和相互作用规模化解析新方法研究》的报告。作为生命活动的执行者,蛋白质通过相互作用形成复合体等形式行使其特定的生物学功能。不同于细胞外的离体环境,细胞内的限域效应、拥挤效应和细胞器微环境等对于维持蛋白质复合体的结构和功能起着至关重要的作用。因此,实现细胞内蛋白质相互作用的精准解析对于深入研究其生物学功能,进而理解生命现象本质具有重要意义。近年来,化学交联质谱技术已逐渐成为蛋白质复合物解析的重要手段。它是利用化学交联剂将空间距离足够接近的蛋白质内/间的氨基酸以共价键连接起来,再利用质谱对交联肽段进行鉴定,进而实现蛋白质相互作用的组成、界面和位点的解析。现有化学交联技术主要用于解析体外表达纯化的或细胞裂解液中的蛋白质复合物,而在细胞内蛋白质复合物的原位构像解析方面仍处于起步阶段。 针对上述问题,我们团队发展了一系列新型高生物兼容性的可透膜多功能化学交联剂,实现了活细胞内蛋白质复合物构像的原位交联捕获;建立了多种高选择性的低丰度交联肽段的富集方法和高可信度的交联肽段鉴定方法,显著提高了原位交联信息的鉴定灵敏度、覆盖度和准确度;进而,通过靶向富集特定亚细胞器内的交联蛋白质复合物,实现了亚细胞器空间分辨的蛋白质相互作用精准解析;在上述基础上,利用基于化学交联距离约束的分子动力学技术获得了蛋白质复合物的动态系综构像,实现了活细胞微环境下蛋白质复合物组成、相互作用界面及作用位点的规模化精准解析,为规模化地揭示蛋白质复合物功能状态下的结构调控机制提供了重要的技术支撑。为了分享质谱技术及应用的最新进展,促进各相关单位的交流与合作, 仪器信息网与北美华人质谱学会(CASMS)将于2023年12月12-15日联合举办第十四届质谱网络会议(iCMS2023)  。以上仅是部分报告嘉宾的分享预告,更多精彩内容请参加会议页面:https://www.instrument.com.cn/webinar/meetings/iCMS2023/ (点击下图去报名)》》》
  • Bruker第600台Autoflex Speed TOF/TOF 落户河南大学 助力质谱成像的研究
    近日,布鲁克公司的全球第600台Autoflex Speed TOF/TOF 正式落户河南大学的植物逆境生物学重点实验室。刚落户的Bruker Autoflex Speed TOF/TOF助力相关技术的开发和研究,将被重点应用于植物成像,并且将利用质谱对蛋白的修饰和结合实验室在成像方面的优势做一些新的实验方法的开发。布鲁克的质谱将在一些利用传统实验室方法难以解决的问题上提供全新的思路和解决方案,实验室还可以利用布鲁克公司搭建的质谱平台做一些方法开发,这将为其科学研究带来巨大帮助。河南大学植物逆境生物学重点实验室始建于1990年,2005年3月成为河南省省级重点实验室,2005年7月成为教育部重点实验室,专门针对国际农业科技发展前沿并结合国家需求与黄淮海区域特点,开展与旱地农业生产实践相关的重大基础理论和技术开发研究。 作为拥有行业领先的质谱技术的制造厂商,布鲁克公司FLEX系列MALDI-TOF和MALDI-TOF/TOF是领导市场的技术平台,旗下包括microflex, autoflex, ultrafleXtreme以及rapifleX产品。创新、易用的MALDI-TOF和TOF/TOF技术不仅适用于传统的MALDI 应用领域(如可靠和详尽的蛋白质/多肽的表征,聚合物分析等),也适合于尖端科研(如高分辨MALDI质谱组织成像,多聚糖分析,高通量微生物快速鉴定等)。其无与伦比的灵敏性和可靠性可使研究者们利用其在蛋白质组学和MALDI成像方面有所突破。Bruker autoflex系列质谱具有多种配置选择, 可最大程度满足用户的实际应用需求,此系列包括autoflex speed L,线性模式,具有显著的动态范围且适合于高质量端分子量(大于15kDa)样品分析和MALDI组织成像应用;还具备反射模式的autoflex speed LRF,适合于分子量小于5000Da的样品的精确分子量测定;autoflex speed TOF/TOF还具备MS/MS二级质谱的功能,可用于样品表征。此外,布鲁克在今年的ASMS上新发布基于Rapiflex MALDI的成像解决方案 MALDI Tissuetyper。布鲁克始终致力于提供各种质谱技术解决方案,应对您在分析研究中所面临的挑战 Bruker MALDI 产品系列的主要优势及应用: 1. Smartbeam-II激光技术专门为MALDI设计,频率在1到2,000 Hz范围内可调的。Smartbeam-II 专利技术是由布鲁克公司独家开发、生产和维护,能大大提高MALDI 性能,可进行蛋白组织成像、天然蛋白分析、生物或寡核苷酸的质控,LC-MALDI的蛋白质组分析等。2. 新型独特的激光-红外自清洗MALDI源,可获得长时间稳定的高性能。3. 宽带质量分辨率高达40,000,可进行精准的蛋白质组学分析,经由Bruker独特的PAN技术,可获得跨越宽阔质量范围的高分辨率。 关于布鲁克公司 (Bruker)布鲁克公司作为全球领先的分析仪器公司之一,自成立五十多年以来,我们始终坚持一个理念:面对当今的分析需求,开发尖端技术和最全面的解决方案。今天,遍布几大洲 90 多个地点的数千名员工同时在为这个信念努力工作。作为质谱技术的领导者,布鲁克公司质谱部门为您提供各种类型的先进质谱系统。我们服务的客户群分布广泛,包括制药、生物科技、蛋白质组学和分子诊断等领域里的生产企业、学术研究单位和政府机构等。我们还开发了微生物鉴定、农残筛查、毒物检测等一系列解决方案和软件产品,以最大化满足科研、工业生产及检测等领域快速增长的需要。欲了解更多信息,请登录www.bruker.com 或联系服务热线: 8008190181 4006198961
  • 国产离子源技术新进展在美国质谱年会受到关注
    浙江好创生物技术有限公司董事长朱一心在2015年美国质谱年会(ASMS 2015)上发布了有关电喷雾离子源(ESI)带电机理,相关的论文在ASMS上作为墙报展示。由于这套理论与传统ESI带电理论有所不同,引起了强烈的反响。仪器信息网编辑将发布的内容整理,供国内感兴趣的专家学者参阅。  当前,蛋白质组学研究中最大的技术瓶颈之一就是生物质谱的离子源技术,因为现有离子源对离子的利用效率极低。  事实上,自从80年代中期John B. Fenn 将电喷雾离子源应用于大分子质谱分析以来,全世界成千上万的科学家涌入了这一研究领域。快30年过去了,对于电喷雾离子源机理,还是停留在两个模式:Ion Evaporation Model (IEM) 离子蒸发,与Charged Residue Model (CRM) 电荷残留机理。这两个模式所描述的都是带电液滴离开Taylor Cone 以后的单分子气相电荷的形成过程(如图1所示),至今也无法解释以下两个问题:  1、为什么电喷雾离子源中存在多电荷离子?  2、为什么电喷雾离子源存在离子抑制现象?图1 电喷雾离子源机理  有些学者认为多余的电荷是来自于液滴(Droplets that contain an excess of positive and negative charge detach from its tip.)  根据电磁场理论,介质在电场中,正负电荷是以成对的形式存在的,不可能形成正、负分离。在电极的同一端更不可能产生正、负离子分离的现象。图2 离子源机理实验图  下面是朱一心研究团队的实验过程。首先将离子源全封闭起来。图2中,瓶子 1、2、3 可以加上不同的液体或气体,作为辅助液气,控制泰勒锥周围的离子化气氛。图3 离子源离子化室内充满空气和氮气时的离子图  当离子源离子化室(Chamber)充满空气时,肽段离子信号如图3左所示,肽段离子信号非常强。  将离子源离子化室(Chamber)充满氮气,并且控制其质谱仪的真空度与离子源离子化室暴露大气时一样,如图3右所示,质谱仪无法检测到肽段离子信号。  这样我们可以直观的推断(M+H)+ 中的正氢离子并非来自于 Tip 中的液体(流动相)。图4 Air气氛状态下,咖啡因的溶剂为D2O和H2O的谱图  还有实验也能说明氢离子不是来自于流动相。分别用水(H2O)和氘水(D2O)溶解咖啡因,在没有辅助液体的时候,离子化室充满空气时,得到如图4所示的图谱,图中可见,上下图谱完全一致,这就说明了氢离子不是来自于流动相(Solvent)。如果是自于流动相,那么在用氘水(D2O)溶解咖啡因的质谱图中的主峰应该是(M+2)=196.17,而不应该与用水(H2O)溶解样品时得到的主峰一样(M+1)=195.17。咖啡因的结构如下图,它没有OH键,所以无法产生氢氘交换,最适合我们的实验。咖啡因(Caffeine),分 子 式:C8H10N4O2, 分 子 量:194.19  那氢离子到底来自于哪里呢?看了下面实验就知道了。  在上面的实验中的辅助气中加以D2O为辅助液体以后,得到了完全一致的谱图,主峰均为(M+2)=196.26如图5所示。图5 Air+D2O 气氛状态下,咖啡因的溶剂为D2O和H2O的谱图  从咖啡因的分子式可以判断,它100%无法进行氢氘交换。所以用氘水溶解样品,咖啡因的分子式不发生变化,在高电场中被电场极化的分子式与水溶解的咖啡因一致,分子量没有发生变化,还是M,吸附上一个氢离子以后形成(M+H)+ 正离子。加以氘水(D2O)辅助蒸汽以后,在泰勒锥(Taylor Cone)周围产生氘离子(D+),所以极化后的分子吸附一个氘离子(D+),形成(M+D)+ 正离子。这一实验就证明了氘离子((D+),是来自于泰勒锥以外的。  如果用传统的电喷雾理论,在这一实验中,用水(H2O)溶解咖啡因时,是永远见不到(M+2)+ =196.26的离子峰的。  这三个实验可以说明,电喷雾离子源使分子带电的过程其实是场致水分子电离后产生氢离子,极性分子在高电场中的极化,极化后的分子与氢离子又产生了静电吸附,从而形成多电荷分子离子。  图6 电喷雾离子源机理  如图6所示,电喷雾发射针处于正电压,在尖端表面形成一个稳定的Taylor Cone,因为Taylor cone 的曲率半径很小,在纳米数量级,尖端表面的电场很强,将刚刚离开Taylor Cone 的极性分子极化,形成长条形的不稳定极性分子 同时将尖端表面的水分子场蒸发,形成氢离子,氢离子被长条形的极性分子的负端吸附,从而形成了多电荷离子。  同时可见,当两个极性分子同时出现在Taylor Cone 附近,氢离子被极性大的分子吸附,从而出现了离子抑制现象。  美国康奈尔大学化学与化学生物学荣誉教授Fred Mclafferty(右)与朱一心先生探讨技术问题  赛默飞世尔R&D Director Jean-Jacques(右),与朱一心先生探讨技术问题
  • 沃特世推出更快速可靠的自动化解决方案,助力生物药物分子量和纯度分析
    沃特世公司(纽约证券交易所代码:WAT)近日推出全新软件和分析柱产品,旨在助力生物分子药物发现和开发。使用waters_connect平台新增的Waters Intact Mass应用程序,科学家们能够在BioAccord LC-MS系统上快速确认合成或重组工艺生成的生物分子和杂质分子量,其分析速度可达市场上其他产品的近两倍 i。图. Waters BioAccord LC-MS系统的完整分子量分析在几分钟内为生物工艺工程师提供有关药物和工艺质量的关键信息沃特世公司高级副总裁Jon Pratt表示:“采集生物分子的质量数和纯度数据相当耗时。复杂的质谱数据需要由具备一定技能水平的人员来分析,因此这项工作通常会交给远程专业分析实验室。借助这款新的Waters Intact Mass应用程序,生物工程师和生物化学家使用简单的技术就可以加快药物发现和开发,在几分钟或几小时内即可自行生成质量数确认数据,不再需要花费长达数天乃至数周的时间。”完整分子量分析是在蛋白质、肽、寡聚核苷酸治疗药物和偶联药物等生物药物开发的各个阶段都会开展的一项常规分析。在药物发现的早期阶段,生物化学家每周需要分析数百甚至数千个不同的样品。为了加快分析速度,Waters Intact Mass应用程序提供了一套快速可靠的自动化解决方案,旨在助力新型生物治疗药物的质量数确认和纯度测定。这款应用程序特有的智能自动解卷积功能让用户在减少指令输入的情况下,在采集样品数据后几分钟内即可完成处理。沃特世推出MaxPeak Premier BEH C4 300Å蛋白分析专用柱,助力完整蛋白和亚基分析与Intact Mass应用程序一同推出的还有全新分析柱系列,将在完整生物分子及其亚基分析中发挥关键作用。用于BioAccord LC-MS系统的ACQUITY Premier和XBridge Premier BEH C4 300Å蛋白分析专用柱采用MaxPeak高性能表面(HPS)技术,能阻止样品中的磷酸化和羧基化分子被LC系统和色谱柱的金属表面吸附,进而避免样品分析物损失。得益于此,低浓度完整分子量分析的灵敏度可提高达3倍,磷酸化蛋白完整分子分析和低浓度单克隆抗体亚基分析的灵敏度则可提高达2倍ii 。目前,新购BioAccord LC-MS系统的waters_connect平台已预置Intact Mass应用程序,已安装的系统可通过版本升级获取此应用程序。沃特世现已面向全球供应MaxPeak Premier BEH C4 300Å蛋白分析专用柱。其他参考资料- 阅读博客文章:Automating Intact Mass Deconvolution: It' s About Time(《完整分子量的自动化解卷积:时机已到》)- 阅读沃特世应用纪要:Intact Mass - A Versatile waters_connect Application for Rapid Mass Confirmation and Purity Assessment of Biotherapeutics(《Intact Mass - 用于生物治疗药物快速质量数确认和纯度评估的多功能waters_connect应用程序》)- 欢迎您通过www.waters.com关注和联系沃特世。关于沃特世公司(www.waters.com)沃特世公司(纽约证券交易所代码:WAT)是全球知名的专业测量仪器公司,作为色谱、质谱和热分析创新技术的先驱,沃特世服务生命科学、材料科学和食品科学等领域已有逾60年历史。公司在全球35个国家和地区直接运营,下设14个生产基地,拥有约7,400名员工,旗下产品销往100多个国家和地区。关于沃特世中国自上世纪80年代进入中国以来,沃特世的规模与实力与日俱增,在大陆及香港、台湾均设有运营中心,拥有近700名本地员工,并在上海、北京、广州、成都设立实验中心和培训中心。自2003年成立沃特世科技(上海)有限公司以来,今天的中国已成为沃特世全球营收仅次于美国的第二大市场。作为分析科学家的理想合作伙伴,沃特世始终坚持提高本地技术能力、支持本地技术人才培育,并推动制药、食品安全、健康科学、环境保护等相关行业标准和法规的建立和完善。凭借出众的人才与全球布局,沃特世已经为其商业合作伙伴创造了显著的价值,并致力于满足广大中国消费者对更美好生活的需求。 i“两倍”估计值基于96个样品的分析,比较了Waters BioAccord系统配合Intact Mass运行“并行采集和处理”工作流程与市场上其他产品运行“先采集后处理”工作流程的速度。 ii基于MaxPeak Premier BEH C4 300Å蛋白分析专用柱与ACQUITY 300Å蛋白分析专用不锈钢柱的比较结果。
  • QuanID突破微生物质谱鉴定的局限性
    近日,国家卫健委对《临床微生物检验基本技术要求》卫生标准征求意见。该征求意见稿规定了临床微生物学(细菌学、真菌学)检验基本技术的要求,适用于开展临床微生物学检验的各级医疗机构及其临床微生物学实验室。小融了解到,征求意见稿中对微生物鉴定技术进行了规范,其中就包括基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)鉴定技术。征求意见稿首先对MALDI-TOF MS技术鉴定微生物给予了肯定,指出MALDI-TOF MS鉴定系统扩展了对常见菌、苛养菌、厌氧菌、丝状真菌以及分枝杆菌、奴卡菌等难鉴定微生物的鉴定谱,目前数据库可鉴定300多个属2000余种菌,远高于自动化、半自动化鉴定系统及手工鉴定方法。然而,并没有一种鉴定方法是完美的,每种方法都有自身的局限性。征求意见稿也指出了MALDI-TOF MS鉴定技术的局限性,即系统数据库的完整程度,包括覆盖的菌种数、每种菌所用的建库菌株数量和来源、以及图谱采集的质量,都会造成鉴定性能的差异,导致对大肠埃希氏菌和志贺氏菌属、沙门氏菌属、肺炎链球菌和缓症链球菌群等等给出错误的鉴定结果。图片来源于:国家卫健委,《临床微生物检验基本技术要求》征求意见稿有这样的局限性,MALDI-TOF MS技术用于微生物鉴定,还香吗?别慌,新一代的MALDI-TOF MS来破局!硬件加持,QuanID微生物质谱更准确融智生物致力于将高端生命科学仪器推向临床实际应用中,研发的新一代宽谱定量飞行时间质谱平台QuanTOF(新一代MALDI-TOF MS),采用了自主知识产权的离子源与探测器电耦合技术,结合更高频率、更高精度的半导体激光解析电离系统及全新设计的混合探测器,实现了MALDI-TOF MS革命性的技术创新。QuanTOF在世界上首次实现在宽质量范围内(10-1000,000Da)保持较高分辨率和灵敏度(中国分析测试协会2019年验证结果,10fmol信噪比大于200,BSA),全扫描范围内的高重现性,使得其可满足定量应用,且定量精度达95%以上,远高于传统MALDI-TOF MS仪器。也就是说,在硬件方面,QuanTOF质谱平台的强大性能决定了以此为依托的QuanID微生物质谱系统鉴定结果的高准确性。QuanTOF新一代宽谱定量飞行时间质谱平台数据库出击,QuanID微生物质谱更强大当然了,对于微生物质谱的鉴定结果起到决定性作用的非数据库莫属。传统微生物质谱系统的建库方法是将收集来的菌株进行筛选,用不同培养基进行培养后,上机采集质谱图,建立微生物数据库。这种建库方法选取蛋白质作为建库依据,容易受细菌培养条件的影响,增加了菌库的不确定性。最准确的细菌鉴定方法是基因测序,然后和Gene bank进行比对鉴定。但这种方法耗时、耗财、耗力。QuanID微生物质谱数据库采用正向建库、反向验证的方法进行数据库的建设。先进行基因组测序,然后翻译成蛋白信息,挑选保守稳定的核糖体蛋白和一些对鉴定有意义的结构蛋白,得到其氨基酸序列,计算氨基酸理论分子量,从而建好数据库;最后用质谱采集标准菌株获得的蛋白谱进行数据库验证。QuanID微生物质谱数据库建库步骤QuanID建库方法考虑了生成蛋白过程中氨基酸的各种修饰(如甲基化、乙酰化等),得到的数据库鉴定结果更准确,而且省去了测序的时间和成本。第三方的验证结果表明,QuanID微生物质谱在种水平和属水平鉴定准确率上均优于国际同类产品。微生物质谱鉴定产品间比较,种水平和属水平准确率统计截止到目前,QuanID微生物质谱数据库可对超过500属、4500余种的微生物进行鉴定(可扩展);拥有一级、二级两个数据库,独有的二级库可对基因型相近的难分辨微生物(如:大肠杆菌和志贺氏菌等)做出准确鉴定,目前已涵盖100多种相似病原体。另外,融智生物还与国内知名菌种保藏机构合作,不断对中国特有的微生物质谱数据库进行完善。以志贺氏菌为例,同类仪器检出结果均报为大肠埃希氏菌,融智生物QuanID 数据库可以直接鉴定到种水平。QuanID微生物质谱系统给出的志贺氏菌鉴定结果QuanID微生物质谱系统给出的大肠埃希氏菌鉴定结果MALDI-TOF MS微生物鉴定方法已经越来越被广泛接受,这也间接说明了其在微生物鉴定方面的巨大优势。虽然微生物质谱技术有其自身的局限性,但是相信随着质谱技术的进步以及微生物数据库的不断完善,其局限性也会趋于消弥。
  • 2022原位质谱网络研讨会明日开幕附日程
    2022年,原位质谱和原位检测迈入4.0黄金时代!快捷、灵敏地检出并有效监控有毒有害物质的污染迁徙,或准确、高效定位核心营养及病变成分的分布变化,仍然是全球分析检测人的崇高责任和远大目标。缘由新冠爆发,核酸检测已人尽皆知;更多物种的分析检测,仍属局内人员的专业领地,尚非公众常识。即便是与国计民生的方方面面紧密关联的食品安检或临床检验,因所采用的检验设备异常昂贵或技术储备高企,还普遍停留在高能低效和聚集在大学研究院等象牙塔级别的中心实验室来完成。原位电离质谱(Ambient Ionization Mass Spectrometry,简称 AIMS)技术作为质谱学和分析科学领域的重大变革,近十年来始终引领行业大潮,盘踞头条,在临床检验、生命科学和分析测试各个行业快速下沉,突破传统技术瓶颈,逐步形成行业新趋势和新标准,契合时空多组学发展大势和地标特优大数据开发,推动着质谱快检技术的进步和创新,助力实现应检尽检、早查预警和诊疗前移,大大降低社会运营成本和化学危害风险。“探寻风味密码”、“揭示病理变化”… … AIMS 原位质谱既保持了质谱系统后端质量分析器的灵准特点,又增加了原位电离特有的快与广谱的优势,实现样品的应检快检全检,大数据捕获因而更加精准高效。经十多年积淀,原位质谱分析检测方案已演化为一支最有活力和潜力的分析科学生力军。因其特有的原位、无损、实时、快速、低耗和易上手等优点,原本高门槛的质谱技术为各行业快速熟悉、接纳、和喜爱;应用场景也由初期的刑侦司法理化物证分析,演绎至食药分析、材料表征、商贸检疫、农渔环监、物种识别、风味剖析、烟酒茶检、医药临检、卫检疾控、组学研究、生产质控、成像研究、疾病筛查和手术监控等领域。基于此,华质泰科(华质生物)与仪器信息网将于2022年8月24日联合举办“2022原位质谱网络主题研讨会”,聚焦精准食药检测、风味聚类溯源、生命组学成像和现场环境毒检等国际应用热点场景和原位质谱技术前沿。特邀演讲嘉宾多为一线知名科学家,长期浸润于质谱学前沿和分析应用高地,学术造诣与行业实践高度结合,其成果分享将为国内各行各业深挖检测分析新技术和促进环球产业合作提供重要的窗口和契机。诚挚邀请您莅临这一网络盛会,与同僚共享共鸣,推动实时科学与先进分析检测技术的高水平发展!扫码报名 / 会议网址David D.Y. Chen 陈大勇 教授南京师范大学,加拿大英属哥伦比亚大学主持人简介:David D.Y. Chen 陈大勇,教授,博士生导师,南京师范大学,加拿大英属哥伦比亚大学。本科毕业于厦门大学、博士毕业于艾伯特大学。1993年在艾伯塔大学医学微生物学与传染病学系从事博士后研究。1999年任职加拿大 UBC 至今,2013年起聘任南京师范大学教授。专注于研究分离、纯化、质谱新方法和新技术,开发新装备及其在生物医学中的应用。David D. Y. Chen 是国际上分析化学领域的知名学者,在国际分析化学的权威性杂志上发表研究论文100多篇,被引用3900余次,H-index 为36 (Google Scholar Citations)。先后获得了英国皇家化学会的分析方法奖;加拿大化学会的分析科学 W.A.E. McBryde 奖章;不列颠哥伦比亚大学的最高自然科学和工程学奖-CharlesMcDowell 金奖和加拿大化学会分析化学杰出贡献奖(Maxxam Award)。演讲嘉宾蔡宗苇 教授,香港浸会大学Prof. Zongwei CaiHong Kong Baptist UniversityAmbient Ionization Mass Spectrometry Imaging in Research of Environmental Toxicology大气压电离质谱成像在环境毒理研究中应用简介:蔡宗苇教授1982年毕业于厦门大学化学系,获得理学学士学位,1990年获得德国马尔堡大学博士学位。1991-1993年在美国 Nebraska 大学担任博士后,1994-1996年任研究助理教授。1996-2000年,蔡教授在 GSK 工作,领导一个质谱组,从事药物代谢和药代动力学研究。现任香港浸会大学化学系讲座教授,二噁英分析实验室主任,环境与生物分析国家重点实验室主任。蔡宗苇教授从事质谱化学分析的基础理论及其在环境、生物、药物和痕量有机污染物的应用,目前主要研究与环境污染物相关的人体健康和疾病,已在国际学术刊物上发表论文600多篇。他的研究小组配备了一系列先进的质谱仪,用于药物代谢、蛋白质组学和代谢组学等研究。Brian Musselman 博士美国 IonSense 技术顾问主持人Pulsing Ambient Ionization Mass Detection for High Throughput DART-based Analysis脉冲式原位电离质谱用于高通量 DART 分析简介:Brian D.Musselman 博士,美国 IonSense 技术顾问。质谱发明家、质谱工业资深顾问。曾任 JOEL (美国) 质谱产品、应用、市场部高级经理,AB SCIEX 生物质谱市场高级总监,IonSense 总裁兼首席执行官。曾获 Pittcon’ 97 ESI-TOF 质谱发明银奖,IR100’ 94 台式高分辨 GCMate 质谱发明奖。曾任美国质谱学会 ASMS 副总裁,ALA 委员,ABRF 委员和财经主席。Terry Bates美国康奈尔大学 Gavin Sacks 组SPMESH DART-MS: super-rapid, robust, repeatable, and quantitative analysis of volatile odorants挥发性气味剂的超快、皮实耐用、可重复定量的增强型筛网顶空吸附富集结合 DART 原位质谱分析方法摘要:食品和饮料行业经常对气味挥发物进行针对性的分析。例如,在某些葡萄品种中,3-异丁基-2-甲氧基吡嗪(IBMP,青椒味)可作为葡萄品质的标志;而愈创木酚和甲酚等挥发性酚类可作为葡萄生长在野火附近的“烟味”标志。由于这些气味剂在复杂基质中以痕量水平存在(mg/kg 至 ng/kg),常规分析方法提取复杂,步骤耗时缓慢,且通量较低(单个样品需 15 分钟或更长),不适合在收获期间短时内分析大量样品。为解决这个问题,开发了一种新优化的 SPMESH-DART-MS 方法,用于快速分析多个加州商业葡萄园的酿酒葡萄(赤霞珠,300份样品)中的 IBMP。SPMESH 方法能够达到亚 ng/L (亚 ppb)的检测限,每个样品所需的时间 1 分钟,并且与 SPME-GCMS 显示出良好的相关性 (R2=0.84)。目前正在进行的工作是扩大目标挥发物的检测范围(包括酚类和醛类)。简介:Terry Bates,康奈尔大学 Gavin Sacks 博士实验室博士生,并担任系课程开发委员会、教师高管招聘委员会、康奈尔大学本科研究委员会的博士代表、以及众多本科生和硕士级实验室成员的导师。主要研究分析风味化学,致力于开发新的提取方式和高通量分析方法,对痕量挥发性气味进行法分析,包括对葡萄种群的挥发性化合物分析,鉴定新番茄品系中的异味等。在攻读博士学位之前,Terry 在丹佛大学获得了分子生物学学士学位,并在康奈尔大学获得了化学硕士学位。Gavin Sacks 实验室关注研究收获前后的环境因素对农产品感官特性的影响(风味、颜色),特别是葡萄酒和果汁。该实验室在开发利用快速灵敏的原位质谱新技术和应用于风味化合物的表征分析方面处于领先地位。Benjamin Draper 博士/创始科学家美国 Megadalton Analysis of Gene Therapy Vectors by Charge Detection Mass Spectrometry基因治疗载体的电荷检测质谱分析 CDMS by LESA-MS摘要:质谱已成为表征生物大分子的最有力的分析技术。非变性电喷雾电离(Native ESI)是电离生物药的首选方法,但其对分子量特大的分析物的分析存在瓶颈和局限。因质量异质性,大多数常规质谱仪无法分辨超过100万分子量(Da)的生物大分子的电荷状态。我们提出了一种全新的基于 LESA 的电荷检测质谱(CDMS)技术。CDMS 的质量测定能力远超100万分子量(Da)。因可直接测量单个离子的质荷比及电荷数,生物大分子质量的直接测定便成为了可能。很多超出传统质谱能力的检测需求,可以通过 CDMS 来实现。本文专注于基因治疗载体和从十万到超过几百万分子量的大型寡核苷酸的分析应用。简介:Benjamin Draper 于2018年在印第安纳大学 Martin Jarrold 的领导下完成了他的博士研究工作——电荷检测质谱(CDMS)的开发。作为博士研究工作的一部分,他简化了 CDMS 数据采集和分析,以实现100倍的加速,从而可以进行实时数据分析。这彻底改变了 CDMS,为分析包括下一代疫苗在内的各种高分子量样品打开了窗口。Benjamin 还对灵敏度的提高做出了贡献,使得 CDMS 对百万道尔顿分子量的样品能达到飞摩尔级的灵敏度,并因此大大缩短了测量所需的时间。目前 Benjamin 负责 Megadalton Solution 的分析开发,重点关注 AAV 等基因治疗载体。Ronald Emmons 博士美国托莱多大学Solid Phase Microextraction Hyphenated to Direct Analysis in Real Time: Robust Quantitation in Minutes固相微萃取与实时直接分析 DART 相结合:分秒实现皮实稳定的定量摘要:原位质谱(AIMS)尤其是 DART 技术的出现使得各个领域对更快、更皮实耐用的分析需求日增。此前,人们多着眼于它优秀的快筛定性能力,忽视了其同样卓越的定量表现。定量的主要障碍是如何提高样品均一性、减少离子化基质效应和稳定电离环境。前置固相微萃取(SPME)是规避这些问题的理想选择之一;SPME 可预浓缩分析物,可直接与 DART 源串联。利用改进型、大体积的 SPME-Arrow 和热解吸装置(TDU)对农药和药物定量,富集充分,解吸附彻底,不受现场环境干扰。样品自制备到完成 DART-MS 分析共需3.5分钟,大多数化合物的线性动态范围(LDR)为2.5 - 500 μg/L,日间重复性好(<10%)。用于分析饮用水和鱼类组织难以降解具有生物链聚集毒性的全氟和多氟烷基(PFAS)化合物的灵敏度达到了优异的 ppt 级别。简介:Emanuela Gionfriddo 博士,美国托莱多大学助理教授。2013年获得意大利卡拉布里大学分析化学博士学位。2014年,在加拿大滑铁卢大学 Pawliszyn 教授团队担任博士后研究员和负责工业重点分析实验室(InFAReL)气相色谱。Gionfrido 博士发表论文50多篇,1项基于 PTFE 的 SPME 涂层专利,托莱多大学 Nina McClelland 博士水化学和环境分析实验室的创始成员之一,被任命为俄亥俄州总检察长 Yost 环境顾问委员会成员。Ronald V. Emmons,美国托莱多大学化学系 Emanuela Gionfriddo 实验室在读博士,主导多个关于 DART-MS 与 SPME 结合的研究项目,有效地预富集和定量环境污染物。研究领域:环境化学、微萃取技术、生物相容性萃取;探索开发不断出现的新型快速分析技术与质谱仪直接耦合方法及应用,使用绿色提取方法分析复杂的生物和环境样品。Laure Menin 博士/平台负责人瑞士联邦理工学院SICRIT® Exploris™ Orbitrap setup: a Smart tool for a Mass Spectrometry facility to expand its range of covered applications新一代轨道阱质谱鼻 SICRIT-Exploris: 助力质谱中心提能增效移星换斗的智能装备摘要:瑞士联邦理工(洛桑)(EPFL)化学科学与工程研究所(ISIC MSEAP)的质谱分析平台为瑞士的100多个实验室提供分析测试服务,涵盖了从有机小分子到生物大分子及金属的广泛应用。除最常用的电离技术(ESI、APCI、APPI、MALDI、EI/CI 和 ICP)外,冷喷雾电离(CSI)还允许分析敏感的超分子结构。电子轰击 EI 电离常搭配低分辨率 GC-MS,高分辨率质谱通常搭配电喷雾等(ESI-APCI/APPI-FTMS);业界不太投资高分辨质谱搭配电子轰击源(EI-HRMS)。我们平台的 Orbitrap 搭配 SICRIT 在线软电离质谱鼻(Plasmion),可直接引入气味儿样品或 GC 馏分,便捷灵敏,分子离子信号完整,指征简单。使用该 SICRIT-Orbitrap 技术已完成300多个用户的样本分析测试服务,部分成果将予以示例和讨论。简介:Laure Menin 1997年获得生物化学、微生物学和细胞生物学博士学位。曾在法国和瑞士的不同公司担任项目经理,如 Entomed SA、Geneprot 从事大规模蛋白质组学领域,Atheris 实验室从事药物发现和有毒动物毒液的肽组学分析。自2008年以来,Laure Menin 一直在管理瑞士联邦理工学院化学科学与工程研究所(ISIC MSEAP)的质谱设备。该平台配备了10套质谱,拥有自上而下蛋白质组学以及蛋白质复合物分析方面的强大专业知识,为 EPFL 研究小组、外部学者以及行业外部客户提供科学支持。Gilles Frache 博士/首席工程师卢森堡科学技术研究所(LIST)Atmospheric Pressure MALDI coupled to Orbitrap(s), principle and applications大气压基质辅助激光解吸电离源耦合轨道阱的原理及应用摘要:近年人们对质谱成像(MSI)的兴趣日增,其生物医学应用也在逐步开发。然而,基于真空 MALDI 的 MSI(基质辅助激光解吸电离质谱成像)在对生物分子辨别的准确性和空间分布的分辨率方面有待提升。本报告主要分享大气压基质辅助激光解吸电离源(AP-MALDI)耦合高分辨轨道阱(Orbitrap)质谱的质谱成像技术(MSI),及其在生物分子辨别的准确度和空间分布定位的分辨率方面的显著优势。首先,AP-MALDI 源偶联最新一代轨道阱高分辨质谱仪(Orbitrap Exploris 480)与其前代相比,在灵敏度上有提升。其次,应用场景涵盖聚合物、多肽、和生物组织切片的脂质成像分布。采用了全自动基质喷涂仪(SunChrom)进行基质喷涂。使用多重软件工具实现了数据可视化与图像解析。两代轨道阱质谱仪的灵敏度确有代差;靶点空间分辨率都达到了10μm甚至更低。该技术在非靶向标志物的质谱成像应用方面,具有高灵敏度、高图像采集速度、及高空间分辨率的发展潜力。AP-MALDI(MassTech)偶联轨道阱高分辨质谱成像技术可成为传统的 MALDI-MS 的替代方案;该项技术具备独特的几分钟内将搭载液相 LC 的轨道阱谱仪(即LC/MS 模式)快速变为为搭载原位成像源的高清高敏质谱成像(即 MSI 模式)的能力。最新一代轨道阱质谱仪性能的提升也为 MSI 技术的发展和应用打开了更加广阔的前景。简介:Gilles Frache 博士,卢森堡科学技术研究所材料研究与技术表征平台首席工程师。化学及分子物理化学硕士、法国梅兹大学博士,博士后。自2008年起,肩负起卢森堡科学技术学院材料研究与技术表征平台的分子分析和质谱成像团队负责人。专注于利用色谱,质谱分析以及利用质谱成像技术在有机材料及生命科学领域的研究。在欧洲建立了 AP/MALDI 质谱成像演示实验室并且利用多种质谱成像技术包括 AP/MALDI-MS 和 TOF SIMS 方法应用于皮肤质谱成像。Peter Verhaert 教授/创始人比利时 ProteoFormiXAP-MALDI MS Histochemistry for disease biomarker discovery in patient samples archived at tissue banks大气压基质辅助激光解析电离 AP/MALDI 组化方法用于自组织银行存档的患者样本中发现疾病生物标志物摘要:直接运用分子成像技术(MSI)在病人或供体材料上发现高度符合医疗需求的疾病候选生物标志物。以福尔马林固定-石蜡包埋(FFPE)组织切片作为样本,在识别生物标志物的同时,标记其在组织切片上的分布位点。类比免疫组化法,可将该成像方法称之为质谱组化法(MSHC)。借助 MSHC,我们研究了世界各地生物样本库中保存的大量的人体健康和疾病组织,其中包括现代医院病理留存样本以及世界著名研究机构的科研样本。通过绘制所有 FFPE 待检生物分子(肽、神经递质、代谢物)的指纹和分布,我们编制了《人体福尔马林固定 - 石蜡包埋生物分子图谱》。该方法优点除了 FFPE 的样品量足够大,其稳定性足够好以外,MSHC 的另一优点是它完全为非靶向和无需标记的技术,可直接将所有的现存组织病理学知识与新颖生物分子信息相关联。所用设备为高分辨质谱(LTQ Orbitrap Velos)偶联高分辨 AP-MALDI (ng) UHR。组织切片 5μm 厚,平铺在常用显微镜载玻片上,以自动喷涂装置喷涂 MALDI 基质如二羟基苯甲酸。利用生物样本库中的人类 "模型 "组织切片来衡量 MSHC 的性能,结果显示 MSHC 可轻松实现 10~20μm 的横向分辨率,分辨率可低至 ~5μm,对生物分子包括神经肽、生物胺和代谢产物的成像,准确度较高。借用 HistoSnap 软件及高性能质谱成像软件平台 Mozaic(瑞士 SpectroSwiss)对各种尚无生物标志物报道的疾患者的活检和尸检样本进行了高达几个 GB 的数据采集和整合,建立了人类下丘脑核神经分泌肽的单细胞分辨率的 MSHC 空间“组学”技术。热忱欢迎意向合作者加入这一“智人生物分子 FFPE 组织图谱”项目。简介:Peter D.E.M. Verhaert,教授兼 ProteoFormiX BV 创始 CEO & CSO(强生创新中心)。1987年,比利时鲁汶大学生物学博士(比较神经生物学);1988年,加拿大滑铁卢大学生物化学与毒理学博士后;1989-1999年,比利时鲁汶大学比较生理学系研究教授;1998年,比利时 Sabattical Innogenetics NV;2000-2004年,荷兰 Oss Organon NV 高级研究员;2005-2016年,荷兰代尔夫特理工大学生物分析技术与创新肽生物学教授;2017年至今,比利时 Proteformix BV 创始人兼首席执行官。主要从事自上而下蛋白质组学、肽组学和质谱成像(MS 组织化学)及在神经退行性疾病和癌症中的应用,是肽组学和自上而下蛋白质组学的先驱(自2000年起);欧洲药物蛋白质组学实验室联合创始人和前主席(2000-2005年);EUPA Open Proteomics 主编(2013-2016)。Jan-Christoph Wolf 博士/CEO德国 Plasmion Recent advances in SICRIT applications from liquid chromatography to Hydrogen-GC在线软电离质谱鼻 SICRIT 最新进展:从偶联液相 LC 到承接氢气 GC 馏分简介:Jan-Christoph Wolf 博士,曾在瑞士苏黎世联邦理工学院 ETH Zurich(2013-2015年,师从 Renato Zenobi 教授)和德国慕尼黑工业大学分析化学系(2010-2013年)从事博士后研究工作,项目有化学战剂现场检测,柴油机微粒过滤器中硝基多环芳烃的形成,柴油机排气中颗粒数的测定,气溶胶化学,仪器方法发展等。目前是德国 Plasmion 联合创始人兼首席执行官,是质谱电离新方法(即原位质谱)领域的领先专家。Rian L Griffiths 博士/研究员诺丁汉大学药学院Probing Interspecies Microbial Metabolites via LESA-MS通过 LESA-MS 探秘微生物代谢助力感染医学诊疗摘要:在医疗、保健、工业和环境设施中普遍存在的多种微生物的生物膜基本已具有抗菌素耐药性。微生物通过产生群体感应信号分子(QSSM)来协调生物行为。通过液质 LC-MS 分析囊性纤维化患者的血浆,已经确定了肺感染的 QSSMs生物标志物。铜绿假单胞菌(PA)有三个群体感应(QS)系统,其中一个就是基于假单胞菌的喹诺酮信号系统(pqs),而先前已有研究证实它会受到金黄色葡萄球菌(SA)和白色念珠菌(CA)的影响。液滴萃取表面分析质谱(LESA-MS)允许快速直接的表面分析,已在 PA、SA 和分枝杆菌的蛋白质和脂类研究中得到应用,而 QSSMs 以及绿脓菌素等代谢产物以前就在唾液中被检到过。所以,本工作旨在探索 PA、SA 和 CA 生物膜中 QSSMs 扩散和分泌的差异以及它们在不同组合中的差异。采用 LESA-MS 可直接对不同微生物的培养基采样,研究代谢产物扩散和分泌,推断出与感染相关的代谢差异,检出了从 PA 扩散而来的烷基喹诺酮(AQ)QSSMs 与主动分泌的毒力因子(绿脓菌素)。通过子离子扫描 MSMS 鉴定了 AQ 的同分异构体,研究了 SA 或 CA 或两者组合培养的 PA 的混合生物膜的外源代谢物。本文展示了 LESA-MS 新方法;设想若代谢产物可无创自唾液获取,那么,通过代谢物的直接原位分析就能快速鉴定感染性病原体,从而快速确定相应的诊疗方案。此探索在临床医学及感染研究方面将有长远的重要意义。简介:Rian Griffiths 2010年毕业于伯明翰大学化学系,获理学硕士学位;在 Josephine Bunch 教授的指导下继续攻读博士学位,研究通过 MALDI-MS 控制复杂生物样品中脂质复合物形成的途径,2015年获伯明翰大学分析化学博士。2014-2018年,在 Helen Cooper 教授的实验室(伯明翰大学生物科学学院),开发了液体萃取表面分析(LESA)质谱法,用于直接分析变性和折叠的完整蛋白,以及来自生物样品如干血斑和薄组织切片的非共价蛋白复合物。2019年,Rian Griffiths 在诺丁汉大学 Morgan Alexander 教授的实验室担任研究员。2019年10月,成为独立的 Anne McLaren 研究员。Griffiths 博士拥有广泛的表面采样质谱和成像经验,包括基质辅助激光解吸/电离(MALDI)、液体萃取表面分析(LESA)、Flowprobe 和二次离子质谱(SIMS)。她的研究包括小分子代谢物、脂质、完整蛋白质和非共价蛋白质复合物的分析。8月24日/周三 9:00-17:30报名及会议网址:https://www.instrument.com.cn/webinar/meetings/aims2022/
  • 基于微液滴可裂解标签的解吸电喷雾电离质谱成像表征功能生物大分子
    近日,斯坦福大学化学系Richard N.Zare教授课题组在Angewandte Chemie上发表了题为“Immuno-Desorption Electrospray Ionization Mass Spectrometry Imaging Identifies Functional Macromolecules by Using Microdroplet-Cleavable Mass Tags”的研究论文。  解吸电喷雾电离质谱成像 (DESI-MSI) 是在常压敞开式环境下,利用电喷雾液滴对生物组织成分软电离,并将其引入质谱进行检测与可视化的一种分析技术。自DESI-MSI技术发展至今,已广泛应用于体内药物分析、临床分子诊断、空间代谢组学等生物医药研究领域,其可检测分子主要涵盖有机合成药物、内源性代谢物和脂质等分子量低于1000的小分子化合物。  靶点研究是药物研发的重中之重,包括在疾病发生发展进程中起关键调控作用的酶、受体、转运体、离子通道等生物大分子。这些药物靶点是参与信号通路及代谢通路调控等功能的重要执行者,且与药物治疗或毒副作用有直接关联。阐明药物干预下靶点及其信号通路分子在体内分布与变化,对预测候选药物的分子靶向性、评价药效与毒性、深入理解药物作用分子机制等至关重要。然而由于上述功能生物大分子的超高分子量、低丰度和低电离效率,直接对组织样本进行蛋白质成像目前仍然是对DESI-MSI的一大挑战。  基于免疫识别与分子标签的成像策略为DESI-MSI实现生物大分子的检测提供了一种切实可行的思路。标签分子及其裂解方式的设计是其中的核心技术问题。根据已知的微液滴化学研究报道,DESI在正模式高压电下产生的微米级水相液滴,在其气-液界面富含高浓度的质子,因此可以加速酸催化有机反应的进程。本研究设计合成了一系列苯硼酸类标签分子,在碱性条件下,将其与抗体非识别区人工修饰侧链上的半乳糖胺通过苯硼酸酯键共价结合。利用酸性电喷雾溶剂可在微秒时间内快速将苯硼酸酯键断裂的特性,实现了标签分子的在线原位释放,使得DESI-MSI 在单张组织切片上定位多个不同的功能生物大分子成为可能,实现了基于DESI质谱成像的多重免疫组化检测,本研究将这种方法被命名为“immuno-DESI-MSI”。  苯硼酸类标签分子硼元素的引入,不仅实现了pH调控的可逆结合/释放,还使标签分子离子在质谱中具有可辨识的独特同位素分布模式(M+1基峰)。标签分子含有叔胺及季胺基团,因此具有极高的解吸电离效率,此外,标签分子中具有高度共轭的刚性平面结构,因此具有荧光发射特性,使得合成的标签分子-抗体探针,具有组织微区域可分辨的质谱成像和细胞分辨的荧光显微成像双重功能。通过常规DESI-MSI与immuno-DESI-MSI图像配准,即可关联药物、靶点、信号通路、酶以及下游代谢通路多个层次的空间关联信息。作为概念验证,本研究最后选取拉帕替尼为受试药物,探究了其对于药物靶点EGFR及其信号通路相关分子的抑制作用以及下游代谢层面的影响。  图1. 设计的标签分子及探针结构和immuno-DESI-MSI的一般工作流程  图 2. 免疫荧光显微镜成像 和 immuno-DESI-MSI 的交叉验证  图3. EGFR通路中6个大分子的immuno-DESI-MSI图像及其与抗EGFR药物拉帕替尼的空间相关性分析  图 4. 由immuno-DESI-MSI 获得的药物、靶点、信号通路和代谢组信息用于药物作用分子机制分析  作者简介  本研究的通讯作者为斯坦福大学化学系理查德杰尔(Richard N.Zare)教授,国际知名物理化学和分析化学家,中国科学院外籍院士,美国国家科学院院士,美国艺术与科学院院士,英国皇家学会外籍院士,欧洲科学院院士,瑞典皇家工程科学院外籍院士,发展中国家科学院院士。主要研究方向包括激光化学、微液滴化学、质谱分析等,目前重点聚焦于微液滴化学的理化性质与基础理论研究,以及微液滴在材料、合成、催化、生物医学诊断等领域的应用。本研究的第一作者宋肖炜,2017年毕业于中国医学科学院/北京协和医学院药物研究所,师从再帕尔教授,获药物分析学博士学位,研究方向为定量质谱成像分析方法及其在药物研发中的应用。2017年9月-2022年6月在复旦大学化学流动站开展博士后工作,期间于2020年1月起在斯坦福大学交流访问和继续博士后工作,主要方向为微液滴化学与常压原位电离质谱分析新方法研究。在PNAS、J. Am. Chem. Soc.、Angewandte、Anal. Chem.、EBiomedicine等综合性期刊、化学、分析化学、质谱分析或生物医学类期刊以第一作者及通讯作者发表论文18篇,申请国家专利6项,主持国家自然科学基金青年基金项目1项、中国博士后基金面上项目1项。  原文链接:https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202216969
  • 氢氘交换结合单细胞纳喷雾高分辨质谱提高细胞代谢物鉴定效率
    大家好,本周为大家分享一篇发表在Anal. Chem.上的文章,Hydrogen/Deuterium Exchange Aiding Metabolite Identification in Single-Cell Nanospray High-Resolution Mass Spectrometry Analysis1。该文章的作者是中国地质大学(武汉)的彭月娥老师。在生物医药研究中,从单细胞水平进行代谢物的分析可以揭示细胞异质性。但由于样本量较小、代谢转化率快、浓度范围广以及分子结构多样,单细胞中代谢物的准确识别和定量具有挑战性。毛细管微采样电喷雾电离质谱(Capillary microsampling ESI-MS)以及单细胞质谱(single-cell MS)技术的使得单细胞代谢物分析得以发展。但目前其常规实验方案是没有与色谱(LC)耦联的,单靠一级谱图精确质量、二级碎裂谱图以及目前已知代谢物谱图数据库对于鉴定的准确性仍是有局限的。氢氘交换(HDX)技术可以用于氘代小分子中含氢的官能团(-OH、 -COOH、 -NH和-SH)从而起到区分作用。本文将HDX与nanospray 高分辨质谱(nanospray HRMS)结合起来提高Allium cepa L.细胞中的代谢物鉴定效率。图1. 实验装置。(a)微采样系统。(b)捕捉细胞时的电镜图。(c)HDX nanospray离子源。(d)源内HDX原理。图2. 鉴定流程实验装置如图1所示,用于提取细胞代谢物并在喷雾时进行HDX反应。鉴定流程如图2所示。作者首先用[(H3PO4)n-H]-评价了该体系的氘代能力,如图3,最终确定该体系能够使可氘代化合物发生80-83%的氘代。图3. [(H3PO4)n-H]-的氘代谱图如图4是该方法的应用实例。对于洋葱细胞样品中代谢物的谱图,作者首先用多个商业化软件进行了初次匹配。接着通过匹配其发生的氘代数从而进行进一步确证。例如一级谱图中观测到的m/z 178.0530一物质,软件给出该分子量对应元素组成只有C6H11O3NS这一选项。氘代后的谱图显示该物质含有3个不稳定H。562个备选化合物中只有65个符合该特点。通过碎裂模拟发现其中只有27个物质的二级谱图与该峰的二级谱图能够匹配。通过寻找碎片离子不稳定H将可能化合物数量又降至了25。只通过MS法几乎无法区分立体异构体,因此忽略备选化合物中的立体异构体,将备选数量降至11。通过调研文献,并利用标准物参考中确定,该物质极可能是isoalliin。图4. Isoalliin的鉴定流程基于该鉴定作者接下来分析了单细胞中isoalliin的分解途径。据报道isoalliin首先降解为sulfenic acid,然后降解为propanethial S-oxide。但sulfenic acid和propanethial S-oxide属于同分异构体(C3H6OS),且sulfenic acid是瞬时存在的,因而常规的LC-MS流程很难鉴定区分。通过HDX nanospray HRMS,作者发现细胞中C3H6OS的不稳定H在喷雾后10~15min间从2个变为了1个(图6)。Sulfenic acid中理论不稳定H为2,propanethial S-oxide中理论不稳定H为1。这表明sulfenic acid转化成了propanethial S-oxide,时间尺度是15min左右。图5. C3H6OS采样10min后(a)和采样15min后(b)的HDX分布。(c)C3H6OS 氘代数随时间变化。本研究整合HDX与单细胞HRMS法,提高了单细胞代谢物分析的准确度,并利用HDX特性分析了物质在单细胞水平的代谢过程,为细胞代谢过程中生化反应的监测提供了新方法。撰稿:罗宇翔编辑:李惠琳原文:Hydrogen/Deuterium Exchange Aiding Metabolite Identification in Single-Cell Nanospray High-Resolution Mass Spectrometry Analysis李惠琳课题组网址:https://www.x-mol.com/groups/li_huilin参考文献1. Osipenko, S. Zherebker, A. Rumiantseva, L. Kovaleva, O. Nikolaev, E. N. Kostyukevich, Y., Oxygen Isotope Exchange Reaction for Untargeted LC-MS Analysis. J. Am. Soc. Mass Spectrom. 2022, 33 (2), 390-398.
  • Orbitrap高分辨质谱助力mRNA疫苗表征
    今日看点mRNA疫苗在新冠疫情中得到了广泛关注,Moderna及Pfizer/BioNTech的mRNA疫苗获得FDA的紧急使用授权,掀起新一轮的mRNA疫苗研发热潮。与依靠抗原或减毒病毒刺激免疫系统产生免疫反应的传统疫苗不同,mRNA疫苗本身并不含有抗原,而是以编码抗原的mRNA为主要成分。这些编码抗原的mRNA能在细胞内被翻译为抗原蛋白,从而引发免疫反应。相比传统疫苗,mRNA疫苗成本低、研发灵活性高、生产效率高,且具有相对较高的安全性,应用前景广阔[1]。对于此类新型疫苗,需严格的质量控制以确保产品的安全性尤为重要。其质量属性包括稳定性、完整性、纯度和同质性等。如图1所示,从mRNA构造、体外翻译及转染,到体内免疫,色谱、质谱、qPCR、电泳等多种表征手段被用于质量评估[2]。其中高分辨质谱技术对于mRNA的深入表征(加帽效率、修饰、测序等)、杂质分析(siRNA、DNA、宿主残留蛋白)有着重要应用。图1:mRNA疫苗的质量控制和基于细胞的功能评估的工具(点击查看大图)01mRNA的加帽反应效率评估mRNA前体的加工包括了在其5' 端加上7-甲基鸟苷(m7G),称之为“帽”。这种加帽步骤可增加mRNA稳定性,使其避免被核糖核酸酶降解。加帽步骤会产生多种结构(如图2a),最常见的被称为“Cap0结构”(只含m7G),即鸟嘌呤环上的N-7位置甲基化;而如果下游邻位核苷酸上的核糖也被甲基化,则为“Cap1”,再下游的则为Cap2”(甲基化均发生在核糖的2' 羟基上)。在脱磷酸的过程中,也会产生单磷酸、双磷酸、三磷酸等多种相关杂质。图2a.加帽反应(点击查看大图)Oribitrap高分辨质谱由于其高分辨率、高灵敏度及高质量精度可以准确地对mRNA加帽效率进行评估。全长的mRNA直接通过LC-MS分析往往由于分子量太大而无法得到精确表征,通常会使用RNAse酶切结合磁珠分离的方法获得5’端的加帽短链,如图2b所示[3]。图2b.mRNA分离纯化步骤(点击查看大图)RNAseH酶切及磁珠纯化分离后,所得的5’端mRNA酶解片段经过Orbitrap高分辨质谱分析,结果检测到未加帽组分、加帽1组分及少量在第二个A酶切位点得到的加帽1组分,包括单磷酸、二磷酸及三磷酸修饰杂质,且得到同位素基线分离的高质量谱图(如图3a、3b所示)。图3a.5’端mRNA 酶解片段TIC及质谱图(点击查看大图)图3b.5’端mRNA 酶解片段理论及实测质量(点击查看大图)通过加入内标未加帽三磷酸mRNA,确认了质谱定量方法的可行性及准确性。对各加帽组分及未加帽组分形态进行质谱峰面积定量,从而得到5’加帽比例(图3c)。图3c.质谱非标定量法计算mRNA加帽比例(点击查看大图)MRM方法用于mRNA加帽定量分析质谱MRM方法可用于组织及细胞培养基中的mRNA加帽修饰检测,具有高通量及高灵敏等优势。组织或细胞培养基中的mRNA经过nucleaseP1酶解及磁珠纯化,可得到加帽二核苷酸,(m7)GpppN(m)[4]。对11个帽二核苷酸修饰变异体建立MRM方法(图4a),可实现每种变异体的色谱分离及质谱定量(图4b)。图4a.MRM质谱方法参数(点击查看大图)图4b.11个帽二核苷酸修饰变异体的提取离子流图(点击查看大图)其中,对于m7GpppG及GpppGm形式的同分异构体,在液相及一级质谱上均无法分辨,而m7GpppG的特征子离子m/z635.9可将其区别于GpppGm,从而建立MRM方法定量分析,且方法灵敏度高(图5)。图5:(a)连续稀释的合成帽二核苷酸的峰面积测量;(b)连续稀释的合成帽二核苷酸GpppA的峰面积;(c) m7GpppG和GpppGm子离子信息;(d)连续稀释的合成帽二核苷酸m7GpppG的峰面积;(e)补偿m7GpppG和GpppGm的共享离子.(点击查看大图)该方法可快速准确定量细胞中存在的mRNA帽结构,评估不同的加帽结构形态在不同组织或细胞中的含量变化(图6)。Orbitrap的定量能力可与三重四极杆相媲美,其PRM定量灵敏度高、准确性好,也可用于mRNA帽结构的定量分析中。图6:从小鼠肝脏、活化的CD8T细胞、心脏和大脑分离的mRNA帽二核苷酸的丰度(点击查看大图)02mRNA末端多聚腺苷酸Poly A 尾检测真核mRNA通常在其3' 末端带有一段多聚腺苷酸尾(PolyA tail),根据种类的不同,其长度可能在20到200多个碱基之间变化。PolyA tai会被多聚腺苷酸结合蛋白(poly(A)+ tail-binding protein,PABP)辨识并保护住,因此在mRNA的翻译和稳定性中也起着重要的调节作用。通常是在体外转录过程中直接从编码DNA模板或通过使用polyA聚合酶将最jia长度的polyA添加到mRNA中。PolyA的提纯方法类似5’加帽核酸片段,具体步骤可参考文献[5]。纯化后的polyA通常是含有不同长度腺苷酸的混合物,随着碱基个数的增加,HPLC液相方法的分辨率很难将不同长度的polyA完全分开,而Orbitrap高分辨质谱可以准确对其长度分布进行表征和相对定量。图7a.不同碱基长度的PolyA色谱图(b)理论100-merPloy A质谱解卷积结果(点击查看大图)相比二代测序,高分辨质谱作为互补表征技术,能够快速准确地分析RNA序列,同时对于翻译后修饰的种类、位点及含量进行深入表征。此外,也能对RNA代谢产物进行定性及定量分析。
  • 国家市场监督管理总局发布《多糖分子量及分子量分布的测定 高效凝胶渗透色谱-激光光散射法》等223项拟立项国家标准项目公开征求意见稿
    各有关单位:经研究,现对《电化学储能系统火灾监测预警系统通用技术要求》等223项拟立项国家标准项目公开征求意见,征求意见截止时间为2024年4月10日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001651,查询项目信息和反馈意见建议。2024年3月11日 相关标准如下:#项目中文名称制修订截止日期1地理标志产品质量要求 安吉白茶修订2024-04-102地理标志产品质量要求 坦洋工夫茶修订2024-04-103地理标志产品质量要求 武夷岩茶修订2024-04-104地理标志产品质量要求 政和白茶修订2024-04-105多糖分子量及分子量分布的测定 高效凝胶渗透色谱-激光光散射法制定2024-04-106标准数字化平台 第1部分:系统架构制定2024-04-107标准知识图谱 第1部分:实现指南制定2024-04-108蛋白检测 CRISPR Cas12a蛋白反式切割活性检测方法制定2024-04-109工业品电商平台供应商能力建设指南 总则制定2024-04-1010医疗装备运维服务 第1部分:通用要求制定2024-04-1011制药装备 生物反应器通用技术要求制定2024-04-1012智能消费品安全 第1部分 危害(源)识别制定2024-04-1013智能消费品安全 第2部分 风险评估制定2024-04-1014智能消费品安全 第3部分:风险控制制定2024-04-1015重组蛋白试剂 亲和力测定方法制定2024-04-10
  • 使用超高效聚合物色谱系统对低分子量聚合物进行快速高分辨率分析
    使用超高效聚合物色谱(APC)系统对低分子量聚合物进行快速高分辨率分析 Mia Summers和Michael O&rsquo Leary 沃特世公司(美国马萨诸塞州米尔福德) 应用优势 ■ 既能对聚合物进行快速表征又不会降低性能水平 ■ 与常规GPC分析相比,可提高对低分子量低聚物的分辨率 ■ 与常规GPC分析相比,可提高校准水平并由此对低分子量低聚物进行更准确的测定 ■ 可对聚合物进行快速监测,从而能提早发现产品开发过程中出现的变化 沃特世提供的解决方案 ACQUITY® 超高效聚合物色谱(APC&trade )系统 ACQUITY APC XT色谱柱 沃特世聚合物标准品 带有GPC选项的Empower® 3色谱数据软件关键词 聚合物、SEC、GPC、APC、聚合物表征、低分子量聚合物、低聚物、环氧树脂 引言 凝胶渗透色谱(GPC)是一种广泛认可并行之有效的聚合物表征方法。然而,尽管使用此技术可获得大量信息,但这类分析本身仍存在缺陷。色谱柱通常填充苯乙烯-二乙烯基苯,同时需要进行适当老化并应在低背压下运行以确保其长期稳定。填充颗粒通常较大(&ge 5 &mu m),分辨率一般会因此而受影响。填充较小颗粒(行校正。综合使用这些技术能够更稳定、更精确地测定低分子量聚合物样品的分子量参数。提早识别某种聚合物所出现的甚至比较细微的改变都能明显加快化学和生物材料应用中聚合物的开发速度。 实验 Alliance® GPC系统条件 检测器: 2414 RI (示差折光检测器) RI流通池: 35 ℃ 流动相: THF 流速: 1mL/min 色谱柱: Styragel 4e,2和0.5,7.8 x 300 mm(3根串联) 柱温: 35 ℃ 样品稀释剂: THF 进样量: 20 &mu L ACQUITY APC系统条件 检测器: ACQUITY RI(示差折光检测器)RI流通池: 35 ℃ 流动相: THF 流速: 1 mL/min 色谱柱: ACQUITY APC XT 200 Å 柱和两根45 Å 柱,4.6 x 150 mm(3根柱串联) 柱温: 35 ℃ 样品稀释剂: THF 进样量: 20 &mu L 数据管理 Empower 3色谱数据软件 样品 1 mg/mL的沃特世聚苯乙烯标准品(100K、10K和1K)环氧树脂(2 mg/mL) 结果与讨论 为了使用SEC对聚合物进行适当表征,重要的是要使用适当的标准品生成一条校准曲线以确定当前所用色谱柱的分离范围。使用常规GPC分析标准品和样品相当耗时,运行时间可长达1小时(或更长)。由于样品所产生的数据将与经校准的标准品进行比较以确定分子量,因此标准品分析结果的准确度对获得关于聚合物样品的准确结果而言具有至关重要的作用。除了GPC本身的运行时间较长之外,常规GPC系统的额外柱体积较大也会导致峰展宽,从而降低分辨率并由此降低校准数据点的准确度。与常规GPC系统相比,ACQUITY APC系统的扩散度更低,因此产生的峰展宽就更少,并且窄分布标准品的色谱峰也明显更清晰,如图1所示。此外,低扩散性APC系统与支持更高流速和背压的稳定的亚3 &mu m APC色谱柱柱技术相结合也能提高对1K聚苯乙烯标准品的分辨率,并使分析时间缩短至原来的1/5。 图1. 比较在常规GPC系统和ACQUITY APC系统中分析聚苯乙烯标准品(Mp:100K、10K和1K)的运行时间和分辨率 使用APC系统所提高的分辨率为确定1K聚苯乙烯标准品分子量增添了更多可识别的色谱峰。如图2所示,通过使用标准品供应商提供的数值或根据外部方法得出的标准品测定值而确定的分子量信息,更多的数据点由此可被添加到校准曲线上,从而为根据这条曲线所计算出的样品结果增加了可信度。 图2. 使用ACQUITY APC系统时,因对1K低分子量标准品的分辨率提高而在校准曲线上得出关于聚苯乙烯标准品(100K、10K和1K)的更多数据点 一般说来,需要运行一系列标准品以得出用来生成校准曲线的数据点。使用常规GPC时,平衡、配制并分析每种标准品可能需要数小时至数天的时间。因此,通常不进行校准并根据原有校准曲线确定分析结果。ACQUITY APC系统因其系统滞留体积低而使平衡速度明显加快,并且因在更高流速下使用更小的颗粒而使运行时间明显缩短。运行时间的缩短使得平衡和校准操作可在一小时内轻松完成。最后,得益于分辨率的提高,可能只需要配制并进样检测更少的标准品,就能获得一条可用来进行校准的稳定曲线。分析样品时,校准操作的稳定性提高使得对低分子量低聚物的分子量测定具有更高的可信度。 图3显示出一份环氧树脂样品相对于用聚苯乙烯标准品校准的分析结果。该结果表明使用三根ACQUITY APC XT 4.6 x 150 mm串联柱可在不到5分钟的运行时间内分辨出不同低聚物。 图3. 使用配有ACQUITY RI检测器的三根ACQUITY APC XT 4.6 x 150 mm串联柱对溶于四氢呋喃的一份环氧树脂样品进行分析。低分子量低聚物(显示为峰尖分子量)可在不到5分钟的时间内被分辨开来。 APC可缩短运行时间的特点有助于在工艺开发过程中进行反应监测。分辨率提高能够促进对合成应用或降解研究中可能出现的聚合物改变进行更快速的鉴别。通过监测各种分子量而提早发现工艺改变有助于更好地了解聚合物及其预期属性,从而可促进新型聚合物的开发并加快产品上市进程。 结论 由于超高效聚合物色谱系统的扩散度更低并能承受更高的背压以允许使用更小的杂化颗粒,因此该系统明显优于常规GPC系统。通过与最新的色谱柱技术相结合,APC系统与常规GPC相比也提高了对低分子量低聚物的分辨率。APC在性能方面的优点包括校准结果更可靠,这对生成用于聚合物表征的准确测定值而言是必不可少的。低分子量聚合物检测速度和分辨率的同时提高可在开发过程中实现对聚合物的快速且可靠的表征,从而促进对新型聚合物进行密切的上市跟踪。
  • 理论+实战案例+大咖教学 揭开质谱技术在内分泌代谢病领域应用的神秘面纱
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 为进一步搭建起临床医生与临床质谱检验工作者之间沟通的桥梁,共同探讨和推进质谱技术在临床检验中的应用,2018年11月2-3日,由中华医学电子音像出版社、《中华临床实验室管理电子杂志》编委会主办,金域医学承办的“临床色谱质谱技术发展研讨会暨中美内分泌代谢病高峰论坛”在金域医学广州国际生物岛总部召开。 br/ /p p style=" line-height: 1.5em "   本次研讨会由国际、国内权威临床专家和临床质谱技术应用大咖授课,深入解读了质谱技术在内分泌代谢病领域的应用及进展,临床质谱实验室质量管理的重要性及关键点。同时,开办了业内首创的临床质谱技术应用troubleshooting研讨会,针对质谱技术临床检测方法开发与应用过程中的重点、难点问题,以实际应用案例展开深入研讨。 /p p style=" text-align: center line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201811/uepic/bf95c541-6fac-4e24-920a-09895e732a1a.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center line-height: 1.5em "   临床色谱质谱技术发展研讨会暨中美内分泌代谢病高峰论坛 /p p style=" line-height: 1.5em "    span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(128, 100, 162) font-size: 24px " strong span style=" color: rgb(128, 100, 162) font-family: 楷体, 楷体_GB2312, SimKai " 质谱技术为遗传代谢病诊疗带来变革 /span /strong /span /p p style=" line-height: 1.5em "   本次研讨会特别邀请到全球新生儿质谱筛查发明人、串联质谱技术国际知名专家、杜克医学中心儿科学名誉教授David S. Millington进行现场授课。 /p p style=" text-align: center line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201811/uepic/d2a7d236-eea4-43a5-b0d9-8572fbb12a38.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center line-height: 1.5em "   David S. Millington进行现场授课 /p p style=" line-height: 1.5em "   Millington教授表示,自1963年美国Guthrie医生首次发明用细菌抑制法(BIA)检测苯丙酮尿症(PKU),拉开新生儿筛查序幕后,成千上万的PKU患儿得到了及时诊疗,而可筛查的遗传代谢病种类也逐渐增加到数十种,如先天性甲状腺功能减低症、半乳糖血症、先天性肾上腺皮质增生症等。美国也将新生儿筛查和长期治疗视为一种公共卫生责任。 /p p style=" line-height: 1.5em "   随着技术的驱动,1990年,任职美国杜克大学的Millington教授提出了利用串联质谱技术进行新生儿筛查,通过检测血液样品中各种氨基酸、酰基肉碱的浓度来诊断多种氨基酸、有机酸、脂肪酸氧化代谢异常疾病,为新生儿遗传代谢病筛查领域带来了革命性的突破。 /p p style=" text-align: center line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201811/uepic/a6cf6468-0ab8-49ab-998e-277004a41759.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center line-height: 1.5em "   韩连书教授 /p p style=" line-height: 1.5em "   上海交通大学医学院附属新华医院、上海市儿科医学研究所韩连书教授表示,串联质谱技术具有特异性强、准确度高、高通量、快速的优点,检测病种多,可在2分钟内检测出45种遗传代谢病,是新生儿遗传代谢病筛查的优选技术,适合大规模遗传代谢病筛查和临床疑似患儿的诊断性检测。而且由于串联质谱同时检测100余种氨基酸和酰基肉碱指标,通过计算指标间的比值还可提高相关疾病的诊断准确性,显著降低假阳性率和假阴性率。 /p p style=" line-height: 1.5em "   近年来,串联质谱技术已在发达国家和地区成为新生儿遗传代谢病筛查的常规方法。而国内则是从2002年开始,串联质谱技术才逐渐被用于新生儿遗传代谢病筛查。截至目前,已有少数第三方医学实验室和大型筛查中心或医院有不同程度的应用。 /p p style=" text-align: center line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201811/uepic/c690967f-f186-49dc-aa59-c9de424dc7ae.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center line-height: 1.5em "   研讨会现场 /p p style=" line-height: 1.5em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 20px color: rgb(128, 100, 162) " strong   span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(128, 100, 162) font-size: 24px " 未来趋势将应用于临床内分泌检测 /span /strong /span /p p style=" line-height: 1.5em "   值得注意的是,最早主要用于遗传代谢病筛查的质谱技术,如今在临床上已服务于多个疾病领域。金域医学集团实验室管理中心总经理程雅婷表示,目前,在美国,临床质谱技术应用已经发展得相对成熟,服务于临床检测的项目已达400余项,涉及新生儿筛查、滥用药物监测、、类固醇激素检测(内分泌)、维生素族检测以及微生物鉴定等领域,但国内则仍处于起步阶段,仅可提供80余项检测项目。“而从目前趋势来看,质谱技术在国内的应用范围从最早的新生儿筛查,营养与毒性元素分析,药物浓度监测,到微生物鉴定,已经逐步发展到2012年开始应用于临床内分泌检测。” /p p style=" line-height: 1.5em "   据悉,激素的检测在内分泌疾病诊疗中扮演着重要角色,质谱技术作为激素检测领域非常有价值的检验技术,因其高特异性、高灵敏度、一次可检测多种化合物等特点,很大程度上弥补内分泌类固醇激素检测中,低浓度化合物检测困难和测不准的难题,为疾病的诊断提供更精准、更全面的信息,在改进或改变某些内分泌疾病的临床诊疗和管理路径上,发挥着核心的作用。 /p p style=" line-height: 1.5em "   “类固醇激素的准确测定对内分泌疾病的诊断和预后评估具有重要意义,国外现在已将质谱技术作为内分泌类固醇激素类物质检测的首选方法。”美国阿克伦儿童医院临床实验室主任、美国临床化学学会(AACC)临床转化科学分会主席王思合博士说。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/c36d876c-b032-43cf-bd64-cfc13cccb8ab.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" line-height: 1.5em text-align: center " 王思合博士 /p p style=" line-height: 1.5em "    span style=" color: rgb(128, 100, 162) font-size: 24px font-family: 楷体, 楷体_GB2312, SimKai " strong 金域医学探索临床质谱应用已十余年 /strong /span /p p style=" line-height: 1.5em "   作为本次会议的承办方,金域医学就是国内率先探索质谱技术临床应用的医学检验机构之一,从2004年开始对标国际,在国内率先建设了临床质谱批量化检测实验室,将色谱质谱技术应用于临床诊断,有着十多年质谱技术临床检测方法和应用的经验,并积极参与许多质量管理、标准制定、临床指南与共识的制定。 /p p style=" line-height: 1.5em "   金域医学还是全国较早开展临床质谱遗传代谢病检测的医学检验机构之一,2010年就建立了拥有高效液相色谱串联质谱、气相色谱质谱、酶学检测、传统测序及高通量测序等技术的遗传代谢性疾病一体化检验技术平台,可对 200余种遗传代谢性疾病提供包括常规生化检验、特殊生化检验、酶活性检验、基因检测在内的全方位实验室诊断依据,帮助临床医生和病人及早明确病因并采取及时有效的治疗手段。2011-2016年间金域医学积累了覆盖全国不同地域、不同民族,涵盖不同年龄段的110万遗传代谢病质谱检测大数据,揭示了新生儿筛查及临床患儿疾病的地域分布及年龄分布等差异。 /p p style=" line-height: 1.5em "   近年来,随着质谱技术在内分泌疾病领域诊疗中发挥着越来越核心的作用,金域医学也开发了较为齐全的内分泌检测项目。今年9月,金域医学还成为了国家心血管病中心高血压专病医联体的一员,一起打造高血压专病医联体标准化公共检测服务平台,利用覆盖全国的质谱技术平台为医联体成员提供全面的疑难高血压筛查检测和报告解读。 /p p style=" line-height: 1.5em "   程雅婷表示,受技术普及度和临床认识度的限制,质谱技术在临床疾病诊疗中的重要作用与价值,仍没有得到足够重视,发展缓慢。由于临床色谱质谱技术开发及应用高度复杂,国内开发的机构较少,而且对人员专业能力要求高,专业技术人员匮乏,方法建立和性能评价经验缺乏,才促使金域医学承办此次的研讨会。“金域希望通过搭建这样一个互相学习交流的平台,与临床医生、全国检验医学界及相关行业的同行共享质谱技术的新应用,共同推动质谱技术临床应用与发展。” /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/e4011ebf-642b-4064-a202-807fb34b8f15.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" line-height: 1.5em text-align: center " 大会合影 /p p style=" line-height: 1.5em "    /p
  • “做中国的飞行时间质谱仪”——访上海大学环境与化学工程学院周振研究员
    『编者加注:飞行时间(Time of Flight, TOF)质谱仪的原理:由离子源产生的离子经加速后进入无场漂移管,以恒定的速度飞向离子接收器;离子到达接收器所用的飞行时间和离子的质荷比(m/z)相关;通过测量各种离子到达飞行管的飞行时间,就可以得到离子的m/z值。飞行时间质谱仪具有可检测分子量范围大、扫描速度快、仪器结构简单等优点。』   第一次见到周振博士是2008年9月26日在嘉兴召开的第六届分析仪器发展与创新论坛暨第一届中国科学仪器南湖论坛上,他在“国产质谱研发与产业化”的会议上做了题为“飞行时间质谱的研制”的报告,给与会者留下了深刻的印象。   周振博士从事质谱仪器的研究十几年,目前担任上海大学研究员。在德国吉森大学读物理学博士期间,得到了无网反射飞行时间检测器发明人H. Wollnik教授和垂直引入式飞行时间检测器发明人A. Dodonov教授的指导,并于2000年成功研制了分辨率达20000的高分辨垂直引入式飞行时间质谱仪,技术指标为当时国际同类仪器的最高水平。2000年开始,周振博士往返于欧美与中国,与志同道合的朋友一起,希望把这一技术在中国实现产业化。      上海大学环境与化学工程学院周振研究员   2004年周振博士全职回国,创办了广州禾信分析仪器有限公司,开展飞行时间质谱仪的开发和产业化工作,同时被聘为中科院广州地球化学研究所的研究员,潜心于飞行时间质谱分析器的研究,2006年研制成功国内首台分辨率达10000的大气压基体辅助激光解析离子源高分辨飞行时间质谱仪,获得了2008年度广东省科学技术一等奖 2007年完成小型化的分辨率达2000的飞行时间质谱分析器 取得了3项国家发明专利。现主持国家863项目、广东省科技攻关重点项目和粤港关键领域重点突破项目等。   Instrument:周老师,您好!非常感谢您接受仪器信息网的采访。据了解,您在质谱仪相关技术方面做了很多工作,涉及离子源、真空接口、以及质谱整机的系统化等,请您给介绍一下相关情况。   周振研究员:从1991年我就已经开始从事质谱仪方面的研究了,硕士毕业论文做的是电子轰击源扇形磁式质谱仪的研究,博士毕业论文是做辉光放电飞行时间质谱仪器和电喷雾飞行时间质谱仪器的研究,一直以来都是在做整机工作。   质谱的关键部件是离子源和质量分析器 在我所做的工作中,涉及扇形磁式质谱仪、飞行时间质谱仪、Penning(超导)离子阱等质量分析器,研制过辉光放电离子源(GD)、电子轰击源(EI)、电喷雾(ESI)、大气压基体辅助激光解析离子源(APMALDI)、气溶胶电离(A-TOFMS)等离子源,当然还有与质谱相关的四极杆真空接口等重要电子离子光学部件。   目前,我主要的研究方向是“垂直引入式飞行时间质谱分析器的理论和实践”,同俄罗斯质谱研发科学家一直保持着紧密的合作关系。这里要强调的一点是我们目前只专心做飞行时间质谱仪及其相关设备 科学仪器研发是多学科的高度集成,尤其是质谱仪器,它的一个离子源、一个质量检测器、甚至一个零部件就够一个人钻研一辈子,希望我们尽快能把这个分析器做好,做精。   Instrument:请您介绍一下2001-2004年期间您在德国重离子加速中心和美国阿岗国家实验室所做的一些工作。   周振研究员:我在这两个实验室的主要工作包括:射频四极杆离子传输器和分子离子反应器、高分辨飞行时间质谱分析器、Canadian Penning Trap(CPT)等。      周振研究员与俄罗斯科学家垂直引入式飞行时间检测器发明人A. Dodonov教授一起在吉森大学调试仪器   研制多台高分辨飞行时间质谱仪,用于德国重离子加速中心、俄罗斯科学院和美国橡树岭国家实验室等单位 参与了在天体物理中具有重大意义的64Ge、68Se、108Sb、22Mg等同位素的质量精确测量(世界首次的质量直接测量) 参与研制了一种新型四极杆分子离子反应器,可用于蛋白质,多肽的氨基酸序列测试 与美国橡树岭国家实验室合作制成首个负离子冷却装置,此装置可以将高达40keV能量的负离子束相空间减少10倍以上,以提高离子传输效率。      在美国Argonne国家实验室庆贺CPT小组在国际上第一次完成22Mg精确质量测量   科学研究的确需要很好的配套服务,像德国吉森大学物理研究所这样的科研机构,有很强的电子和机械队伍,有好的想法很容易付诸实施,我们在这方面落后的太多了。   Instrument:请您谈谈飞行时间质谱在质谱家族中的地位及其发展前景?与四级杆质谱相比,飞行时间质谱有哪些自己的特点?   周振研究员:飞行时间(TOF)和四级杆(Q)都是非常重要的质量分析器。第一台飞行时间质谱仪的发明要早于四级杆质谱仪。但由于当时基础技术不过关,比如快电子和大面积的离子探测器技术等,导致飞行时间质谱的总体性能指标一直停留在一个很低的水平,而四极杆一出现就达到了一个较高的水平,所以目前四级杆用的比较多有一定的历史原因。   近些年来,随着技术的不断发展,TOF有了较大的技术进步和市场增长。特别是当涉及高检测速度和大分子量、高精度方面的测定,首选是TOF。当然,四极杆技术进步也很快,其分辨率和质量上限都在提高。比如串级四极杆定量能力强、检测限很好。串级四极杆一般由三个四极杆相串连,各个四极杆起不同的作用,比如过滤噪声、产生子离子等功能。串级四极杆是实验室仪器,十分娇贵、复杂,对操作人员素质要求较高,而且价格都在200万元以上。   与普通单极四极杆相比,TOF在定量、检测限方面基本相当, TOF在一些行业应用领域,如一般的气体检测需求,已经完全能够达到要求。如果从国产化的角度看,实现核心技术完全国产化,价格便宜,维护方便,将更易于普及。针对在工业质谱领域的应用,我根据自己的理解,把Q与TOF的性能指标和生产难度大概作一下对比,如表1和表2所示:   表1 飞行时间(TOF)和四级杆(Q)检测器主要技术指标比较   表2 飞行时间(TOF)和四级杆(Q)检测器生产难度比较   Instrument:目前,飞行时间质谱的具体应用领域有哪些?您所研制的飞行时间质谱的应用定位方面又是如何规划的?   周振研究员:飞行时间质谱仪器主要有三种特殊应用。利用其大质量上限,可以做大分子的检测,如与MALDI相连 利用其高质量检测精度,如Q-Star这一类型的仪器是做分子式判定的最好工具之一 利用其快速特点,如作为高效毛细管电泳,全二维气相色谱的检测器。其他领域的应用TOF与Q相似,但还没有Q广。   目前我们做的仪器还不能与国外进口仪器竞争,因此主要是定位在中低端应用客户,比如工业应用。我们拟先完成气体实时在线监测仪的产业化,应用于环保和工业领域,获得一定经验后再做气相色谱的检测器,最后再考虑与MALDI、ESI等离子源联用,做高端应用的质谱仪器。   另外,在防恐、军事等方面的应用将是一个重点,由于进口的限制问题,只能靠自主研发,希望我们也能在这方面为国家做些贡献。   Instrument:请谈谈广州禾信分析仪器有限公司的成立背景、以及目前发展情况?   周振研究员:质谱仪的应用范围非常广,涉及食品、环境、人类健康、药物、国家安全、和其他与分析测试相关的领域,而我们国家的中高端质谱完全依赖进口。我们掌握了TOF的核心技术,在这样的形势与背景下,我们的目的非常明确:质谱仪器,非做不可 并且根据自身的优势,目前只做飞行时间质谱仪器,并一定要把它做好。   广州禾信分析仪器有限公司成立至今,投入了大量的研发经费,承担了国家、广东省、广州市、广州开发区的一些重大科研项目。近期即将获得一些风险投资,这将为公司的发展增添更强大的动力。公司的定位是飞行时间质谱分析器及相关技术开发和生产的专业公司,目前有研发人员15人,配合生产的人员10多人。      广州禾信分析仪器有限公司去踏青   目前,已完成EITOF500型TOF分析器产品样机、2000 ESI/TOFMS实验室样机(小型化)、手提式飞行时间质谱分析器等的研发。其中EITOF分析仪正在北京钢铁研究总院进行测试,将用于冶金行业的气体在线分析。这些质谱仪器拥有完全自主知识产权,已申请多项专利。     EITOF500型TOF分析器产品样机参加广东省产学研展   在市场方面,公司目前的定位是针对专业市场、中低端用户做市场,不与国际成熟产品竞争,尽量不与国内其他同行竞争。计划用1年的时间,实现产品投放市场;几年后达到批量销售的目标 同时与相关同行广泛合作,实现共赢。   Instrument:您在回国创业过程中所面临的最大的困难是什么?   周振研究员:资金缺乏是我们所面临的最大问题,前面也提到过,很多投资企业或投资人根本就不知道质谱为何物。另外,作为一个新的企业,从国家层面上申请经费也有一定困难。相关专家曾经到我们公司来调研,认为有研制大型仪器的条件和经验,因此得到了广东省政府的支持。现在我们只能埋头苦干,要用事实来证明我们是有能力做成这件事情的。   在人员方面面临的问题也很大,尤其是目前国内能从事质谱研究的专业人才奇缺,完全要靠自己培养。在仪器设计和精加工方面,能满足要求的人员也非常缺乏。国内基础工业相对落后,导致在电子、机械零配件选用方面还不能完全满足设计要求,需要花大量的时间做筛选工作。相关人员还没有深刻意识到精密分析仪器的生产制造其质量控制的重要性,这方面的工作,不仅仅是靠钱就能解决的,需要花时间进行团队培养。   比如,虽然我曾在实验室成功研制出了20000以上高分辨率的飞行时间检测器,但是我们目前主推样机的分辨率定位是2000。其主要原因,一方面高性能的TOFMS需要的成本更高,产业化过程中要投入大量的资金,我们还不具备与国际高端仪器面对面竞争的实力 另一方面我们所定位的专业市场,对性能指标的要求不是很高,而高端的产品还有待其他条件的进一步成熟。   飞行时间质谱仪器属于大型仪器,技术上的高端仪器,涉及多方面的理论、专业技术以及复杂的工艺细节等,需要丰富的整机研制经验,只能说我选择了一个做高难度产品的道路。我想质谱仪的技术含量高应该是我们国家一直没有实现有冲击力产品的一个主要原因。   Instrument:请谈谈国内分析仪器企业如何才能与跨国公司同台竞争?   周振研究员:国内少数分析仪器企业做的不错,但是更多的企业首先面临的问题是如何生存。在我们目前还很弱小的情况下,想成为能生产具有自主知识产权产品的企业,只能踏踏实实一步一步地走,认认真真一个一个地出每一个产品,深入研究相关行业需求,或直接走专用仪器的路线,避免与跨国公司的直接竞争。   另外,国家对分析仪器企业的要求最好与其他行业区别对待。比如科技创新方面,分析仪器企业属于高科技企业,就我们现在的水平,大部分的仪器能够消化吸收国外先进技术就算是很好了,慎提世界首创、国际一流等指标。我个人认为我们目前即使有什么创新,可能也只是在枝节上的,因为在质谱领域,大的革新几乎都是可以获得诺贝尔奖的。不能盲目冒进,只能一点点攻关。国家在研发、采购政策能方面加以支持也很重要,因为我们与国外公司相比太弱小了,竞争管理机制也不完善。   当然,在总体上,我们是乐观的,我们面对的市场很大。“千人千山千担柴”,一个人不可能把所有的事情都做完,也不要担心别人可能在做同样的事,发展好自己的团队最重要。   Instrument:对我国仪器研发人才的培养您有什么建议?   周振研究员:首先,要大力培养仪器人才。我们国家的科学仪器要想得到更好的发展,系统地培养科学仪器研发人才至关重要,而且我们现在比西方其他国家已经晚了很多年了。早在80年代,天津大学和厦门大学就已经建立起了分析仪器专业,由于种种原因现在都已经不一样了。我想尽自己的能力,从质谱仪器入手,着手进行分析仪器后备人才的培养工作。   我们正与上海大学一起建立紧密的产学研用合作关系,以上海大学作为新技术、新应用的研发平台,为解决国民经济中的重大问题提供理论和技术基础,培养专业人才。如果进一步能在上海大学重新开启分析仪器学科,那么意义更加重大,具体事宜正在筹划之中。   其次,作为一个企业要千方百计地吸引并留住人才。我们辛辛苦苦培养的优秀人才学成之后到外企工作去了,有关部门也早已意识到这个问题。希望能够采取灵活的措施,提供宽松的科研环境,鼓励这些优秀的人才回国创业。      周振研究员的研发团队召开技术研讨会   采访即将结束时,周振研究员向我们表示,要特别感谢傅家谟院士。当年参加广州留学生交流会的初次见面,傅家谟院士就给予他足够的信任与厚望,“两天内就决定了一个大型仪器的开发”,直接促成了广东省第一台飞行时间质谱仪器的研制成功,“也使我义无反顾地回国创业。同时也十分感谢863、广东省科技厅和广州市科技局开放、创新的态度”。   采访手记   质谱仪已经深入地渗透到了各行各业,成为保障人类健康、促进环境安全,以及探索未知世界不可或缺的工具,其重要性已得到了广泛认同。但我国的质谱仪一直存在核心技术不足、“空心化”现象,国内逐年扩大的质谱仪市场一直被国外公司垄断。面对我国经济、社会发展的需求,迫切需要研发具有自主知识产权的质谱仪器。   在与周振研究员交谈中,给笔者印象最深的是“执著、专注”,对飞行时间质谱研发工作的无比热情,十几年如一日、专心做这一件事情,就是为了心中那份梦想:“做中国的飞行时间质谱仪”。我们衷心期待周振研究员能够实现自己的梦想,为我国的国产质谱事业贡献力量。   采访编辑:刘向东   附录:周振研究员简介.doc
  • 【热点应用】高级多检测器GPC测量低分子量样品
    高级多检测器GPC测量低分子量样品凝胶渗透色谱(GPC)是测量天然和合成聚合物分子量和分子量分布的常见工具。先进的光散射检测器,越来越多地被用来克服传统GPC测量的局限性,准确提供绝对分子量以及分子尺寸。由于样品的光散射(Rθ)灵敏度会受到聚合物的分子量Mw、浓度(C)和折光指数增量(dn/dc)的影响,所以对于低分子量聚合物而言,准确测定分子量对大多数GPC/SEC系统来说是一个挑战。例如,PLGA等药物递送聚合物的dn/dc通常很低,而环氧树脂、多元醇等分子量可能极低。马尔文帕纳科最新GPC系统OMNISEC可用于克服测量低分子量聚合物测定的困难,这要归功于光散射和示差检测器灵敏度的提高。借助OMNISEC光散射灵敏度,您可以:以更高的准确度测量较低分子量的样品。可以较低样品浓度测量珍贵样品。以更高的准确度和灵敏度测量具有低dn/dc的样品。对环氧树脂、多元醇和PLGA样品的分析清楚地表明,先进的检测技术现在可以轻松地应用于低分子量等聚合物的表征。 环氧树脂双酚A用于生产双酚A二缩水甘油醚等环氧树脂,是一种低分子量样品,我们可以用OMNISEC在正常浓度下成功测量。在图1中,对浓度为3 mg/ml的双酚A(分子量为228 g/mol)进行分析,显示出示差RI检测器和光散射检测器LS都具有良好信噪比的信号响应。(图1)图1:双酚A(分子量228 g/mol)在THF中运行的多检测器色谱图(RI和RALS检测器)。样品浓度为3 mg/ml。用OMNISEC系统分析分子量为340g/mol的双酚A二缩水甘油醚,得到的色谱图(图2)显示了清晰的峰和良好的信号响应,尽管聚合物的分子量很低。图2:双酚A二缩水甘油醚(分子量340g/mol)在四氢呋喃中的多检测器色谱图(RI、RALS和粘度计检测器)。样品浓度为5 mg/ml。多元醇多元醇是具有多个羟基官能团的材料,通常用作合成其他聚合物(如聚氨酯)的反应物,或在食品工业中使用多元醇作为糖的替代品。了解这些材料的分子量分布对于监测它们在不同应用环境中使用是至关重要的。本文采用聚乙二醇(PEO)和聚丙二醇(PPG)为例进行分析。图3显示了极低分子量PEO的OMNISEC色谱图和结果。在RALS探测器中观察到良好的信噪比,使得对聚合物的全面表征成为可能。图3:多检测器SEC色谱图(RI、RALS和粘度计检测器)。分子量为196g/mo的聚乙二醇。样品浓度为3.9 mg/ml。在图4和表1中,您可以看到PPG的分析,它在THF具有非常低的dn/dc(0.045ml/g)。所有的检测器都有很好的响应,并且多次注射之间有很好的重复性。图4:聚丙二醇在THF中的多检测器色谱图(RI、RALS和粘度计检测器)。样品浓度为6 mg/ml。表1:三个聚丙二醇样品重复注射的分子量数据。样品浓度为6 mg/ml。聚乳酸-羟基乙酸 PLGA聚乳酸-羟基乙酸(PLGA)是一种生物相容性和生物可降解性聚合物,最常用于药物输送和组织工程应用。在药物输送应用中,PLGA用于配制药物和蛋白质在体内的受控输送装置。这些PLGA设备的工作方式是,当PLGA在体内降解时,它会释放与之相关的药物分子。PLGA给药装置的物理性能可以通过控制药物浓度、PLGA分子量以及组成PLGA的聚乳酸和乙醇酸的比例来调节。然而,由于PLGA在THF中的dn/dc非常低,约为0.05ml/g,因此SEC对PLGA的表征历来是非常困难的。如图5所示,使用OMNISEC系统在THF中按SEC分析PLGA 50:50后,每个检测器均可获得良好的信号响应和完整的样品表征。图5:PLGA 50:50多检测器SEC色谱图(RI、RALS、LALS和粘度检测器)。样品浓度为3.028 mg/ml。结论:与传统GPC相比,OMNISEC系统具有高灵敏度,因此可以在正常浓度下测量低dn\dc和低分子量样品,如环氧树脂、多元醇和PLGA,并具有极好的重复性。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制