当前位置: 仪器信息网 > 行业主题 > >

色谱龙停药方法

仪器信息网色谱龙停药方法专题为您提供2024年最新色谱龙停药方法价格报价、厂家品牌的相关信息, 包括色谱龙停药方法参数、型号等,不管是国产,还是进口品牌的色谱龙停药方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱龙停药方法相关的耗材配件、试剂标物,还有色谱龙停药方法相关的最新资讯、资料,以及色谱龙停药方法相关的解决方案。

色谱龙停药方法相关的论坛

  • 【2010药典方法应用】极限色谱柱分离头孢呋辛钠谱图!

    【2010药典方法应用】极限色谱柱分离头孢呋辛钠谱图!

    样品名称:头孢呋辛钠谱图提供者:珠海丽珠制药方法来源:2010年药典所用色谱柱:Ultimate XB-C8,5um,4.6*250mm标准品谱图及数据:http://ng1.17img.cn/bbsfiles/images/2010/06/201006021635_221858_1628076_3.jpg样品谱图及数据:http://ng1.17img.cn/bbsfiles/images/2010/06/201006021635_221857_1628076_3.jpg

  • 【金秋计划】基于超图的中药方剂超网络中药材群组信息挖掘

    中医药是中华文明的瑰宝[1],在中华民族数千年历史长河中提供了独特的医药理论和方法体系[2-3]。目前,对中医药的研究受到了越来越多的关注,即使是在人工智能等热门研究领域也涌现出相关的研究成果,如Liu等[4]提出了一种2阶段的迁移学习模型,从病历和中医文献资源中生成中医处方。 中药方剂是一个复杂系统,复杂网络是研究复杂系统的重要工具。在网络科学视域内,已有众多研究成果使用网络技术对中药方剂的配伍规律以及“病-症-药”关联关系进行分析,对于指导中药新方开发和临床诊治等具有重要意义。随着对中医药的深入研究,学者们发现方剂中的药与药、药与病症等存在大量模糊、非线性的关系,这种关系可以映射为复杂网络[5]。复杂网络是对实际复杂系统的抽象,用于刻画系统中个体间的相互作用关系,是研究复杂系统性质和功能的基础工具[6]。周雪忠等[7]利用复方药物配伍的无尺度网络规律,实现了基于图论网络分析的处方核心药物配伍知识发现;王世琤等[8]基于复杂网络技术和点式互信息分析慢性肾脏病本虚标实证中药配伍规律。复杂网络理论已广泛地应用于解决中医药领域中的诸多问题[9-11]。 药材群组是指2种及以上药材的组合。每个药材群组的药材组成不同,功能也不尽相同[12]。根据2种药材是否包含在同首方剂中的二元关联关系构建的普通复杂网络模型,难以直观地揭示多种方剂中存在的药材之间的高阶复杂关联关系,普通复杂网络不能全面刻画和揭示方剂网络中药材群组信息及其内在规律,基于超图的超网络方法的相关研究应运而生[13]。超图允许由多个节点组成更一般的交互[14],可以更好地描述中药方剂中存在的药材群组之间的高阶复杂关联关系。Estrada等[15]认为基于超图拓扑结构构建的网络为超网络(hypernetwork),超网络模型与之前研究过的大多数复杂网络具有相似的定性特征[16]。从理论上讲,超图可以推广一般图上的某些结论[17]。关于超网络的研究呈现出了快速发展的趋势,吸引了大量学者从交叉应用的角度展开深入研究。Johnson[18]认为超网络提供了一种表示多层次系统的新方法,其目标是整合它们的微观和宏观动态,如Pearcy等[19]将生物代谢中渗流过程的概念扩展到超网络,采用超网络的形式来研究细菌代谢超网络的鲁棒性;Pan等[20]将循环特征转移到超链接预测算法中,提出了一种基于循环的超链接预测方法。在中医药领域运用超网络理论和方法的研究处于探索阶段,不同于俞成诚等[21]构建的基于图的超网络(supernetwork)的分析方法,符康等[22]基于超图理论建立中医药方剂网络,对重要的单味药材或药对进行挖掘。 本研究运用基于超图的超网络对中药方剂中药材的多元关联进行建模,将药材映射为节点,方剂映射为超边,在保证节点同质性的同时,能有效地显示众多中药方剂中不同群组规模药材的高阶关联关系,有利于系统地识别出核心的药材群组及药材之间的相互作用模式,为中药方剂系统中的天然药材群组信息挖掘提供科学方法,以期为探究中药方剂作用机制及临床研发提供参考。 1 资料与方法 1.1 资料收集 本研究使用的数据来源于《实用中医三味药方》[23]和TCM-ID中医药信息数据库(https:// www.bidd.group/TCMID/);前者收集整理了中药方剂2 719首,后者收集整理来自包括《中国药典》、经典中药处方以及国家药品监督管理总局批准的中药方剂共计7 443首。 1.2 数据采集与规范 纳入中药方剂的基本信息包括方剂名称和组成药材。若含中药提取物则将该中药提取物转换成对应的中药名称。名称相同的方剂只保留1首。排除方药组成不完整或为单味药的方剂以及药味数大于15的方剂。参照《中国药典》2020年版[24]和全国中医药行业高等教育“十二五”规划教材《中药学》[25]对纳入处方药物名称及性味归经进行规范化处理。同一药物因习惯或地域不同具有多种名称者进行统一,如“法半夏”“制半夏”和“姜半夏”均统一为“半夏”。同种药材名称有差异的进行规范化处理,“白芍药”规范为“白芍”,“仙灵脾”规范为“淫羊藿”,“山茱萸”规范为“山萸肉”等。炮制前后功效无明显差异者仍用生药名称,如生附子、熟附子统称为“附子”;功效差异较大的则分别录入,如“生地黄”和“熟地黄”。 将规范后的数据进行编码并建立Excel表,即得到所构建的中药方剂超网络的关联矩阵。方剂数据库的收集和整理由2名研究人员共同完成,然后独立进行数据审核,保证不一致的数据记录占比控制在3%以下。根据研究计划和内容,对数据进行集成、清洗和预处理等。按数据的来源分别建立数据集1和数据集2。 1.3 中药方剂超网络模型构建 本研究对象是基于超图的中药方剂超网络,其拓扑结构采用了超图作为数学表示形式[17]。设节点集合,超边集合均是有限集合,且,,则称V和ε之间存在二元关系H,则H是一个超图。 为了说明中药方剂超网络的构建方法,本研究以5首中药方剂为例构建小规模的中药方剂超网络HL,如图1所示。这5首方剂的名称及其各自的组成药材分别为:(1)麻黄汤,由麻黄、桂枝、甘草、杏仁组成;(2)大陷胸丸,由葶苈子、芒硝、杏仁、大黄组成;(3)桂枝汤,由桂枝、炙甘草、白芍、生姜、大枣组成;(4)十枣汤方,由大枣、芫花、大戟、甘遂组成;(5)大陷胸汤,由芒硝、大黄、甘遂组成。将每一首中药方剂都作为1条超边(超边用封闭的曲线表示),将相应方剂中出现的每味药材作为节点,可得到图1中具有13个节点和5条超边的中药方剂超网络HL。其中,节点用符号v来表示,超边用符号E表示。 在图1所示的超网络中,超边E1、E2、E3、E4和E5分别表示麻黄汤、大陷胸丸、桂枝汤、十枣汤方和大陷胸汤。结合超图理论的基本知识,易知图1中每条超边的节点数和不同节点所属的超边数。然而,由于桂枝和甘草这2味药材同时出现在麻黄汤和桂枝汤中,意味着桂枝和甘草2个节点既存在于超边E1中,也存在于超边E3中;同理表示大黄和芒硝的2个不同节点既存在于超边E2中,也存在于超边E5中。超网络HL体现了药材群组信息,需要新的方法进行信息挖掘。 图片 1.4 超网络拓扑结构特征 在超网络中,节点超度表示该节点存在于多少条超边中,即其被包含的超边数目。在超网络的关联矩阵中,节点的超度也可通过统计相应行中非零元素的个数来计算。超度分布是节点超度的概率分布或频率分布,表示为超网络中超度的对应节点数量在整体节点总数中所占比例。为了分析中药方剂超网络中药材的组群信息,超网络中新的挖掘群体信息的概念介绍如下。 1.4.1 紧密相关集(tightly related set)[26] 设H=(V, ε)是具有m条超边的n阶超图,若存在超边Ei (i∈1, 2,…, m)使得集合F是Ei的非空子集,则称F是超图H的1个紧密相关集。超图H的所有紧密相关集组成的集合记为Φc(H)。特别地,当F的元素个数为t时,称其为超图H的t元紧密相关集,H的所有t元紧密相关集组成的集合记为Φt(H)。 图片 图片 1.5 数据分析 利用收集的中药方剂数据集,依据中药方剂超网络的构建方法,使用NumPy库处理多维数组和矩阵,得到对应超网络的关联矩阵。采用Python 3.10软件进行数据分析,分别对超度、超度分布、t元组度、t元组度分布,以及完全分布这些拓扑指标进行计算。将Pandas库导入Python 3.10中对计算结果进行处理,并运用Matplotlib库中的Pyplot模块创建静态、交互性的网络图,从而对结果进行可视化展示。 超图的特点是允许多个节点组成1条超边,从而形成更为丰富和复杂的关联结构,能为群组关系的描述提供最一般且无约束的数学表示[26]。组度可以反映超网络中小群体的局部特性,从而有利于挖掘出多种药材间潜在的、有价值的依赖关系。 2 结果 2.1 数据筛选结果 本研究创建2个数据集,共收集10 162首中药方剂数据,对数据进行清洗及规范化处理后最终得到9 234条有效数据。数据集基本指标统计如表1所示。 图片 2.2 均匀中药方剂超网络分析 由数据集1构建均匀中药方剂超网络Hsw。其中,以相关的1 404味药材作为节点,以这些药材组成的2 719首方剂为超边。因为每首方剂均含有3味药材,所以超网络Hsw是均匀的。 2.2.1 超网络Hsw的组度分布规律分析 计算相关集的组度、组度分布和完全组度分布,然后在双对数坐标下对超网络节点组度分布进行可视化,最后用最小二乘法进行拟合。超网络Hsw的组度分布及线性拟合见图2,其中横坐标表示组度(一元组度即超度)频次的对数,纵坐标表示组度分布的对数。 图片 由图2-a可知,超网络Hsw的超度分布呈现出明显的幂律分布特性。由图2-b可知,超网络Hsw 的二元组度分布呈现出明显的幂律分布特性。由图2-c可知,均匀超网络Hsw的完全组度分布也呈现出明显的幂律分布特性。由图2中的3个线性拟合结果可以看出,超网络Hsw的3个不同类型的组度分布都可以用最小二乘法拟合出1条直线,意味着每个分布都具有长尾效应。说明只有少部分节点(集)的组度较大,而大部分节点(集)的组度相对较小,表现出无标度特性。 图片 2.2.2 超网络Hsw的高频药材群组分析 由组度分布规律研究结果可知,超网络Hsw规模不同的组度分布遵循幂律分布,是不均匀的。从而组度越大的药材集合在方剂超网络Hsw中的影响力越大。依据构建超网络Hsw的方法可知,组度即为对应药材群组被包含的方剂的首数。 本研究分别对影响力较大的不同规模的药材群组进行详细分析。超网络Hsw中超度排名前10的药材见图3,它们都是十分常见的中药材。甘草是超度最大的药材,超度为322,表明甘草出现在相应数据集的322首方剂中。甘草有清热解毒、去痰止咳、补脾益气、缓急止痛、调和诸药的功效[27],其种植和应用非常广泛。超度排名2~5名的依次为黄连、当归、大黄和人参。排名第10的黄柏的组度也高达86。 图片 组度≥7的25个二元药材群组的词云图见图4。排名第1的二元药材群组是{黄连,黄芩},组度为15,表明黄连和黄芩同时包含在15首方剂中,这2味药材配伍在相应方剂数据集中出现的频率最高。黄芩味苦、性寒;黄连性苦、性寒;2味药皆以清热燥湿、泻火解毒为主,常于方剂中配伍使用[28]。排名第2的二元药材群组是{干姜,附子},组度为14,表明干姜和附子同时包含在14首方剂中。干姜味辛,性温、大热,有辛散里寒、温助中阳的功效[29];附子辛热燥烈,补火散寒,有温通周身阳气的功效[30]。 它们常配伍使用,如含有这2味药材的方剂姜附汤,主要治疗脾虚腹胀、呕吐痰饮或食不进等症状[31]。排名第3的二元药材群组有{甘草,人参}和{大黄,甘草},组度均为13,表明这2对组合同时出现在13首方剂中。人参甘、微苦,有益气健脾、燮理药性的功效[29];大黄有下瘀血、调中化食及安和五脏的作用[32]。以甘草和人参为主的方剂温中丸,主要治疗中气虚热、不喜饮冷或肢体倦怠等症状[31]。以大黄和甘草为主的方剂大黄汤,主要治疗大便不畅或散风活血等症状[31]。 综上分析可知,黄芩和附子虽然是排名前2的二元药材群组的重要组成药材,但是这2味药都没有出现在超度排名前8的药材中。当归虽然是超度排名第3的药材,但是却没有出现在组度排名前3的二元药材群组中。 2.3 非均匀中药方剂超网络分析 由数据集2构建非均匀中药方剂超网络HTC,以相关的2 381味药材作为节点,以这些药材组成的6 515首方剂为超边。因每首方剂均含有的药材数量>1且<16,所以超网络HTC是非均匀的。通过计算可知,其超边的平均节点数为8.98。该数据集相较于数据集1规模更大。 2.3.1 超网络HTC组度分布规律分析 图5为非均匀超网络HTC在双对数坐标系下的组度分布和完全分布,以及用最小二乘法进行线性拟合的示意图。其中横坐标表示组度(一元组度即超度)频次的对数,纵坐标表示组度分布的对数。 图片 由图5-a可知,超网络HTC的超度分布呈现出明显的幂律分布特性。由图5-b~g可知,超网络HTC的二至七元组度分布也都呈现出明显的幂律分布特性。由图5-h可知,超网络HTC的完全分布也呈现出明显的幂律分布特性。由图5中的8个线性拟合结果可以看出,超网络HTC的8个不同类型的组度分布都可以用最小二乘法拟合出1条直线,且尾部节点分布较多,说明只有少部分节点(集)的组度较大,而大部分节点(集)的组度相对较小,表现出无标度特性。 图片 2.3.2 超网络HTC的高频药材群组分析 由组度分布规律结果可知,超网络HTC的规模不同的组度的分布遵循幂律分布,是不均匀的。从而组度越大的药材集合在方剂超网络HTC的中影响力越大。 本研究分别对影响力较大的不同规模的药材群组进行详细分析。非均匀超网络HTC中超度排名前20的药材见图6。其中,甘草是超度最大的药材,超度为2 353。超度排名2~5的依次为乳香、黄芩、川芎和牡蛎。排名第20的茴香的组度也高达238。 图片 组度排名前5的二至七元药材群组见表2。本研究分别对不同规模药材群组的组度排名第1的群组进行分析。组度排名第1的二元药材群组是{黄芩,甘草},组度为544,表明黄芩和甘草这2味药同时包含在544首方剂中。它们常搭配使用,如包含这2味药的清肺排毒汤具有抗和抗病毒等作用[33]。组度排名第1的三元药材群组是{黄连,黄芩,甘草},组度为187,表明黄连、黄芩和甘草这3味药同时包含在187首方剂中。它们常配伍使用,如含有这3味药的方剂甘草泻心汤主要治疗脾胃虚弱和呕吐等症[34]。组度排名第1的四元药材群组是{党参,白术,茯苓,甘草},组度为41,表明党参、白术、茯苓和甘草这4味药同时包含在41首方剂中。党参性甘,有补中益气等功效;白术味苦,性甘、温,归脾、胃经,具有健脾益气、燥湿利水之功效;茯苓药性甘淡平,有健脾宁心、利水渗湿等功效。它们常配伍使用,如含有这4味药的方剂八珍汤,主要治疗脾虚和腹泻等症状[31]。组度排名第1的五元药材群组是{白术,茯苓,甘草,生姜,大枣},组度为19,表明白术、茯苓、甘草、生姜和大枣这5味药同时包含在19首方剂中。生姜有解表散寒、温中止呕和温肺止咳的作用;大枣有补中益气和养血安神的作用。它们常配伍使用,如含有这5味药的方剂六君子汤,主要治疗气血两虚、神疲肢倦和食欲不振等症状[31]。组度排名第1的六元药材群组是{羌活,防风,苍术,白芷,黄芩,甘草},组度为12,表明羌活、防风、苍术、白芷、黄芩和甘草这6味药同时包含在12首方剂中。羌活和防风有解表散寒和祛风胜湿的作用;苍术有燥湿健脾和祛风散寒的作用;白芷有解表散寒、祛风止痛、通鼻窍和燥湿止带的作用。它们常配伍使用,如含有这6味药的方剂九味羌活汤,主要治疗感冒、发烧等症状[29]。组度排名第1的七元药材群组是{川芎,白芷,羌活,细辛,防风,薄荷,甘草},组度为10,表明这7味药材同时包含在10首方剂中。川芎有活血行气和祛风止痛的作用;细辛有解表散寒、祛风止痛和温肺化饮的作用;薄荷有疏散风热、清利头目、利咽透疹和疏肝行气的作用。它们常配伍使用。如含有这7味药的方剂金不换膏,有祛风散寒和活血止痛的功效[31]。 图片 为了直观地显示超网络HTC的药材群组的频数大小,使用词云技术展示不同规模药材群组的词云图。图7为组度大于169的28个二元药材群组词云图,图8为组度大于64的24个三元药材群组词云图。 图片 由上述分析可知,超度排名第2的乳香和第5的牡蛎,均没有出现在排名第1的二至七元药材群组中。超度排名第3的黄芩也没有出现在排名第1的四、五和七元药材群组中。川芎超度排名第4,但没有出现在二至五元药材群组排名前5的所有群组中。黄连超度排名第7,但是却出现在排名第2的二元药材群组中以及排名第1的三元药材群组中。 3 讨论 中医药全面振兴已成为国家战略,很多新的科学技术与方法已广泛地应用于中医药研究中,其中在中医药信息挖掘方面,复杂网络理论是分析和处理传统中药方剂数据的有效方法。方剂是依据病情在辨证立法的基础上遵循“君、臣、佐、使”的基本组织结构,选择合适的药物配伍而成,含有丰富的复杂性规律[35]。依据丰富的中医药数据进行信息挖掘,对于阐明方剂配伍的科学内涵、完善中药药性理论和指导中医药新方剂开发等具有深刻意义[36]。 本研究通过基于超图的超网络模型对方剂间多元的药材群组进行分析。在探索药材群组信息时,将每首方剂视为超边,每种药材视为节点,多种药材同时使用可以看作它们之间存在高阶交互进而构成核心药材群组。构建中药方剂超网络模型,能更好地理解中药方剂的配伍规律以及中药材之间的相互作用模式。 研究结果表明,通过基于超图的超网络方法建模,能够挖掘出中药方剂和药材之间更多的隐藏信息,特别是包含药材味数大于2的群组信息。构建均匀超网络模型结果显示,甘草是使用频率最高的单一药材,{黄连,黄芩}是最常用的二元药材群组。构建非均匀超网络模型结果同样显示甘草是最常用的单一药材,{黄芩,甘草}是最常用的二元药材群组,{黄连,黄芪,甘草}是最常用的三元药材群组,{党参,白术,茯苓,甘草}是使用最多的四元药材群组。通过在双对数坐标系下进行药材组群分布规律统计,可知2个超网络模型的组度分布均遵循幂律分布,具有无标度特性,意味着对应方剂数据库中出现频率越高的药材组群越重要。探究二元药材群组或三元药材群组乃至更多元的药材群组的配伍使用,对中药方剂的配伍规律和中药材属性的研究具有重要意义,可为遣药组方等提供理论参考,对于医生临床组方等也能起到辅助作用。 传统复杂网络方法在处理中药方剂时难以有效地捕捉到多个药材同时出现在方剂中的情况。超网络突破了描述点对关联的局限,能够有效地描述中药方剂这一现实复杂系统具有的高阶交互关系。运用超网络的理论和方法对中药方剂系统进行建模,通过拓扑特性研究对应超网络结构功能有利于挖掘中药方剂系统中的组群信息。本研究在处理高阶的复杂关联关系具有一定的系统性和普适性,可用于对中药方剂系统的深入研究。 暂无留言

  • 【金秋计划】基于超图的中药方剂超网络中药材群组信息挖掘

    中医药是中华文明的瑰宝[1],在中华民族数千年历史长河中提供了独特的医药理论和方法体系[2-3]。目前,对中医药的研究受到了越来越多的关注,即使是在人工智能等热门研究领域也涌现出相关的研究成果,如Liu等[4]提出了一种2阶段的迁移学习模型,从病历和中医文献资源中生成中医处方。 中药方剂是一个复杂系统,复杂网络是研究复杂系统的重要工具。在网络科学视域内,已有众多研究成果使用网络技术对中药方剂的配伍规律以及“病-症-药”关联关系进行分析,对于指导中药新方开发和临床诊治等具有重要意义。随着对中医药的深入研究,学者们发现方剂中的药与药、药与病症等存在大量模糊、非线性的关系,这种关系可以映射为复杂网络[5]。复杂网络是对实际复杂系统的抽象,用于刻画系统中个体间的相互作用关系,是研究复杂系统性质和功能的基础工具[6]。周雪忠等[7]利用复方药物配伍的无尺度网络规律,实现了基于图论网络分析的处方核心药物配伍知识发现;王世琤等[8]基于复杂网络技术和点式互信息分析慢性肾脏病本虚标实证中药配伍规律。复杂网络理论已广泛地应用于解决中医药领域中的诸多问题[9-11]。 药材群组是指2种及以上药材的组合。每个药材群组的药材组成不同,功能也不尽相同[12]。根据2种药材是否包含在同首方剂中的二元关联关系构建的普通复杂网络模型,难以直观地揭示多种方剂中存在的药材之间的高阶复杂关联关系,普通复杂网络不能全面刻画和揭示方剂网络中药材群组信息及其内在规律,基于超图的超网络方法的相关研究应运而生[13]。超图允许由多个节点组成更一般的交互[14],可以更好地描述中药方剂中存在的药材群组之间的高阶复杂关联关系。Estrada等[15]认为基于超图拓扑结构构建的网络为超网络(hypernetwork),超网络模型与之前研究过的大多数复杂网络具有相似的定性特征[16]。从理论上讲,超图可以推广一般图上的某些结论[17]。关于超网络的研究呈现出了快速发展的趋势,吸引了大量学者从交叉应用的角度展开深入研究。Johnson[18]认为超网络提供了一种表示多层次系统的新方法,其目标是整合它们的微观和宏观动态,如Pearcy等[19]将生物代谢中渗流过程的概念扩展到超网络,采用超网络的形式来研究细菌代谢超网络的鲁棒性;Pan等[20]将循环特征转移到超链接预测算法中,提出了一种基于循环的超链接预测方法。在中医药领域运用超网络理论和方法的研究处于探索阶段,不同于俞成诚等[21]构建的基于图的超网络(supernetwork)的分析方法,符康等[22]基于超图理论建立中医药方剂网络,对重要的单味药材或药对进行挖掘。 本研究运用基于超图的超网络对中药方剂中药材的多元关联进行建模,将药材映射为节点,方剂映射为超边,在保证节点同质性的同时,能有效地显示众多中药方剂中不同群组规模药材的高阶关联关系,有利于系统地识别出核心的药材群组及药材之间的相互作用模式,为中药方剂系统中的天然药材群组信息挖掘提供科学方法,以期为探究中药方剂作用机制及临床研发提供参考。 1 资料与方法 1.1 资料收集 本研究使用的数据来源于《实用中医三味药方》[23]和TCM-ID中医药信息数据库(https:// www.bidd.group/TCMID/);前者收集整理了中药方剂2 719首,后者收集整理来自包括《中国药典》、经典中药处方以及国家药品监督管理总局批准的中药方剂共计7 443首。 1.2 数据采集与规范 纳入中药方剂的基本信息包括方剂名称和组成药材。若含中药提取物则将该中药提取物转换成对应的中药名称。名称相同的方剂只保留1首。排除方药组成不完整或为单味药的方剂以及药味数大于15的方剂。参照《中国药典》2020年版[24]和全国中医药行业高等教育“十二五”规划教材《中药学》[25]对纳入处方药物名称及性味归经进行规范化处理。同一药物因习惯或地域不同具有多种名称者进行统一,如“法半夏”“制半夏”和“姜半夏”均统一为“半夏”。同种药材名称有差异的进行规范化处理,“白芍药”规范为“白芍”,“仙灵脾”规范为“淫羊藿”,“山茱萸”规范为“山萸肉”等。炮制前后功效无明显差异者仍用生药名称,如生附子、熟附子统称为“附子”;功效差异较大的则分别录入,如“生地黄”和“熟地黄”。 将规范后的数据进行编码并建立Excel表,即得到所构建的中药方剂超网络的关联矩阵。方剂数据库的收集和整理由2名研究人员共同完成,然后独立进行数据审核,保证不一致的数据记录占比控制在3%以下。根据研究计划和内容,对数据进行集成、清洗和预处理等。按数据的来源分别建立数据集1和数据集2。 1.3 中药方剂超网络模型构建 本研究对象是基于超图的中药方剂超网络,其拓扑结构采用了超图作为数学表示形式[17]。设节点集合,超边集合均是有限集合,且,,则称V和ε之间存在二元关系H,则H是一个超图。 为了说明中药方剂超网络的构建方法,本研究以5首中药方剂为例构建小规模的中药方剂超网络HL,如图1所示。这5首方剂的名称及其各自的组成药材分别为:(1)麻黄汤,由麻黄、桂枝、甘草、杏仁组成;(2)大陷胸丸,由葶苈子、芒硝、杏仁、大黄组成;(3)桂枝汤,由桂枝、炙甘草、白芍、生姜、大枣组成;(4)十枣汤方,由大枣、芫花、大戟、甘遂组成;(5)大陷胸汤,由芒硝、大黄、甘遂组成。将每一首中药方剂都作为1条超边(超边用封闭的曲线表示),将相应方剂中出现的每味药材作为节点,可得到图1中具有13个节点和5条超边的中药方剂超网络HL。其中,节点用符号v来表示,超边用符号E表示。 图片 在图1所示的超网络中,超边E1、E2、E3、E4和E5分别表示麻黄汤、大陷胸丸、桂枝汤、十枣汤方和大陷胸汤。结合超图理论的基本知识,易知图1中每条超边的节点数和不同节点所属的超边数。然而,由于桂枝和甘草这2味药材同时出现在麻黄汤和桂枝汤中,意味着桂枝和甘草2个节点既存在于超边E1中,也存在于超边E3中;同理表示大黄和芒硝的2个不同节点既存在于超边E2中,也存在于超边E5中。超网络HL体现了药材群组信息,需要新的方法进行信息挖掘。 1.4 超网络拓扑结构特征 在超网络中,节点超度表示该节点存在于多少条超边中,即其被包含的超边数目。在超网络的关联矩阵中,节点的超度也可通过统计相应行中非零元素的个数来计算。超度分布是节点超度的概率分布或频率分布,表示为超网络中超度的对应节点数量在整体节点总数中所占比例。为了分析中药方剂超网络中药材的组群信息,超网络中新的挖掘群体信息的概念介绍如下。 1.4.1 紧密相关集(tightly related set)[26] 设H=(V, ε)是具有m条超边的n阶超图,若存在超边Ei (i∈1, 2,…, m)使得集合F是Ei的非空子集,则称F是超图H的1个紧密相关集。超图H的所有紧密相关集组成的集合记为Φc(H)。特别地,当F的元素个数为t时,称其为超图H的t元紧密相关集,H的所有t元紧密相关集组成的集合记为Φt(H)。 图片 1.5 数据分析 利用收集的中药方剂数据集,依据中药方剂超网络的构建方法,使用NumPy库处理多维数组和矩阵,得到对应超网络的关联矩阵。采用Python 3.10软件进行数据分析,分别对超度、超度分布、t元组度、t元组度分布,以及完全分布这些拓扑指标进行计算。将Pandas库导入Python 3.10中对计算结果进行处理,并运用Matplotlib库中的Pyplot模块创建静态、交互性的网络图,从而对结果进行可视化展示。 超图的特点是允许多个节点组成1条超边,从而形成更为丰富和复杂的关联结构,能为群组关系的描述提供最一般且无约束的数学表示[26]。组度可以反映超网络中小群体的局部特性,从而有利于挖掘出多种药材间潜在的、有价值的依赖关系。 2 结果 2.1 数据筛选结果 本研究创建2个数据集,共收集10 162首中药方剂数据,对数据进行清洗及规范化处理后最终得到9 234条有效数据。数据集基本指标统计如表1所示。 图片 2.2 均匀中药方剂超网络分析 由数据集1构建均匀中药方剂超网络Hsw。其中,以相关的1 404味药材作为节点,以这些药材组成的2 719首方剂为超边。因为每首方剂均含有3味药材,所以超网络Hsw是均匀的。 2.2.1 超网络Hsw的组度分布规律分析 计算相关集的组度、组度分布和完全组度分布,然后在双对数坐标下对超网络节点组度分布进行可视化,最后用最小二乘法进行拟合。超网络Hsw的组度分布及线性拟合见图2,其中横坐标表示组度(一元组度即超度)频次的对数,纵坐标表示组度分布的对数。 图片 由图2-a可知,超网络Hsw的超度分布呈现出明显的幂律分布特性。由图2-b可知,超网络Hsw的二元组度分布呈现出明显的幂律分布特性。由图2-c可知,均匀超网络Hsw的完全组度分布也呈现出明显的幂律分布特性。由图2中的3个线性拟合结果可以看出,超网络Hsw的3个不同类型的组度分布都可以用最小二乘法拟合出1条直线,意味着每个分布都具有长尾效应。说明只有少部分节点(集)的组度较大,而大部分节点(集)的组度相对较小,表现出无标度特性。 2.2.2 超网络Hsw的高频药材群组分析 由组度分布规律研究结果可知,超网络Hsw规模不同的组度分布遵循幂律分布,是不均匀的。从而组度越大的药材集合在方剂超网络Hsw中的影响力越大。依据构建超网络Hsw的方法可知,组度即为对应药材群组被包含的方剂的首数。 本研究分别对影响力较大的不同规模的药材群组进行详细分析。超网络Hsw中超度排名前10的药材见图3,它们都是十分常见的中药材。甘草是超度最大的药材,超度为322,表明甘草出现在相应数据集的322首方剂中。甘草有清热解毒、去痰止咳、补脾益气、缓急止痛、调和诸药的功效[27],其种植和应用非常广泛。超度排名2~5名的依次为黄连、当归、大黄和人参。排名第10的黄柏的组度也高达86。 图片 组度≥7的25个二元药材群组的词云图见图4。排名第1的二元药材群组是{黄连,黄芩},组度为15,表明黄连和黄芩同时包含在15首方剂中,这2味药材配伍在相应方剂数据集中出现的频率最高。黄芩味苦、性寒;黄连性苦、性寒;2味药皆以清热燥湿、泻火解毒为主,常于方剂中配伍使用[28]。排名第2的二元药材群组是{干姜,附子},组度为14,表明干姜和附子同时包含在14首方剂中。干姜味辛,性温、大热,有辛散里寒、温助中阳的功效[29];附子辛热燥烈,补火散寒,有温通周身阳气的功效[30]。 图片 它们常配伍使用,如含有这2味药材的方剂姜附汤,主要治疗脾虚腹胀、呕吐痰饮或食不进等症状[31]。排名第3的二元药材群组有{甘草,人参}和{大黄,甘草},组度均为13,表明这2对组合同时出现在13首方剂中。人参甘、微苦,有益气健脾、燮理药性的功效[29];大黄有下瘀血、调中化食及安和五脏的作用[32]。以甘草和人参为主的方剂温中丸,主要治疗中气虚热、不喜饮冷或肢体倦怠等症状[31]。以大黄和甘草为主的方剂大黄汤,主要治疗大便不畅或散风活血等症状[31]。 综上分析可知,黄芩和附子虽然是排名前2的二元药材群组的重要组成药材,但是这2味药都没有出现在超度排名前8的药材中。当归虽然是超度排名第3的药材,但是却没有出现在组度排名前3的二元药材群组中。 2.3 非均匀中药方剂超网络分析 由数据集2构建非均匀中药方剂超网络HTC,以相关的2 381味药材作为节点,以这些药材组成的6 515首方剂为超边。因每首方剂均含有的药材数量>1且<16,所以超网络HTC是非均匀的。通过计算可知,其超边的平均节点数为8.98。该数据集相较于数据集1规模更大。 2.3.1 超网络HTC组度分布规律分析 图5为非均匀超网络HTC在双对数坐标系下的组度分布和完全分布,以及用最小二乘法进行线性拟合的示意图。其中横坐标表示组度(一元组度即超度)频次的对数,纵坐标表示组度分布的对数。 由图5-a可知,超网络HTC的超度分布呈现出明显的幂律分布特性。由图5-b~g可知,超网络HTC的二至七元组度分布也都呈现出明显的幂律分布特性。由图5-h可知,超网络HTC的完全分布也呈现出明显的幂律分布特性。由图5中的8个线性拟合结果可以看出,超网络HTC的8个不同类型的组度分布都可以用最小二乘法拟合出1条直线,且尾部节点分布较多,说明只有少部分节点(集)的组度较大,而大部分节点(集)的组度相对较小,表现出无标度特性。 图片 2.3.2 超网络HTC的高频药材群组分析 由组度分布规律结果可知,超网络HTC的规模不同的组度的分布遵循幂律分布,是不均匀的。从而组度越大的药材集合在方剂超网络HTC的中影响力越大。 本研究分别对影响力较大的不同规模的药材群组进行详细分析。非均匀超网络HTC中超度排名前20的药材见图6。其中,甘草是超度最大的药材,超度为2 353。超度排名2~5的依次为乳香、黄芩、川芎和牡蛎。排名第20的茴香的组度也高达238。 图片 组度排名前5的二至七元药材群组见表2。本研究分别对不同规模药材群组的组度排名第1的群组进行分析。组度排名第1的二元药材群组是{黄芩,甘草},组度为544,表明黄芩和甘草这2味药同时包含在544首方剂中。它们常搭配使用,如包含这2味药的清肺排毒汤具有抗炎和抗病毒等作用[33]。组度排名第1的三元药材群组是{黄连,黄芩,甘草},组度为187,表明黄连、黄芩和甘草这3味药同时包含在187首方剂中。它们常配伍使用,如含有这3味药的方剂甘草泻心汤主要治疗脾胃虚弱和呕吐等症[34]。组度排名第1的四元药材群组是{党参,白术,茯苓,甘草},组度为41,表明党参、白术、茯苓和甘草这4味药同时包含在41首方剂中。党参性甘,有补中益气等功效;白术味苦,性甘、温,归脾、胃经,具有健脾益气、燥湿利水之功效;茯苓药性甘淡平,有健脾宁心、利水渗湿等功效。它们常配伍使用,如含有这4味药的方剂八珍汤,主要治疗脾虚和腹泻等症状[31]。组度排名第1的五元药材群组是{白术,茯苓,甘草,生姜,大枣},组度为19,表明白术、茯苓、甘草、生姜和大枣这5味药同时包含在19首方剂中。生姜有解表散寒、温中止呕和温肺止咳的作用;大枣有补中益气和养血安神的作用。它们常配伍使用,如含有这5味药的方剂六君子汤,主要治疗气血两虚、神疲肢倦和食欲不振等症状[31]。组度排名第1的六元药材群组是{羌活,防风,苍术,白芷,黄芩,甘草},组度为12,表明羌活、防风、苍术、白芷、黄芩和甘草这6味药同时包含在12首方剂中。羌活和防风有解表散寒和祛风胜湿的作用;苍术有燥湿健脾和祛风散寒的作用;白芷有解表散寒、祛风止痛、通鼻窍和燥湿止带的作用。它们常配伍使用,如含有这6味药的方剂九味羌活汤,主要治疗感冒、发烧等症状[29]。组度排名第1的七元药材群组是{川芎,白芷,羌活,细辛,防风,薄荷,甘草},组度为10,表明这7味药材同时包含在10首方剂中。川芎有活血行气和祛风止痛的作用;细辛有解表散寒、祛风止痛和温肺化饮的作用;薄荷有疏散风热、清利头目、利咽透疹和疏肝行气的作用。它们常配伍使用。如含有这7味药的方剂金不换膏,有祛风散寒和活血止痛的功效[31]。 图片 为了直观地显示超网络HTC的药材群组的频数大小,使用词云技术展示不同规模药材群组的词云图。图7为组度大于169的28个二元药材群组词云图,图8为组度大于64的24个三元药材群组词云图。 由上述分析可知,超度排名第2的乳香和第5的牡蛎,均没有出现在排名第1的二至七元药材群组中。超度排名第3的黄芩也没有出现在排名第1的四、五和七元药材群组中。川芎超度排名第4,但没有出现在二至五元药材群组排名前5的所有群组中。黄连超度排名第7,但是却出现在排名第2的二元药材群组中以及排名第1的三元药材群组中。 图片 3 讨论 中医药全面振兴已成为国家战略,很多新的科学技术与方法已广泛地应用于中医药研究中,其中在中医药信息挖掘方面,复杂网络理论是分析和处理传统中药方剂数据的有效方法。方剂是依据病情在辨证立法的基础上遵循“君、臣、佐、使”的基本组织结构,选择合适的药物配伍而成,含有丰富的复杂性规律[35]。依据丰富的中医药数据进行信息挖掘,对于阐明方剂配伍的科学内涵、完善中药药性理论和指导中医药新方剂开发等具有深刻意义[36]。 本研究通过基于超图的超网络模型对方剂间多元的药材群组进行分析。在探索药材群组信息时,将每首方剂视为超边,每种药材视为节点,多种药材同时使用可以看作它们之间存在高阶交互进而构成核心药材群组。构建中药方剂超网络模型,能更好地理解中药方剂的配伍规律以及中药材之间的相互作用模式。 研究结果表明,通过基于超图的超网络方法建模,能够挖掘出中药方剂和药材之间更多的隐藏信息,特别是包含药材味数大于2的群组信息。构建均匀超网络模型结果显示,甘草是使用频率最高的单一药材,{黄连,黄芩}是最常用的二元药材群组。构建非均匀超网络模型结果同样显示甘草是最常用的单一药材,{黄芩,甘草}是最常用的二元药材群组,{黄连,黄芪,甘草}是最常用的三元药材群组,{党参,白术,茯苓,甘草}是使用最多的四元药材群组。通过在双对数坐标系下进行药材组群分布规律统计,可知2个超网络模型的组度分布均遵循幂律分布,具有无标度特性,意味着对应方剂数据库中出现频率越高的药材组群越重要。探究二元药材群组或三元药材群组乃至更多元的药材群组的配伍使用,对中药方剂的配伍规律和中药材属性的研究具有重要意义,可为遣药组方等提供理论参考,对于医生临床组方等也能起到辅助作用。 传统复杂网络方法在处理中药方剂时难以有效地捕捉到多个药材同时出现在方剂中的情况。超网络突破了描述点对关联的局限,能够有效地描述中药方剂这一现实复杂系统具有的高阶交互关系。运用超网络的理论和方法对中药方剂系统进行建模,通过拓扑特性研究对应超网络结构功能有利于挖掘中药方剂系统中的组群信息。本研究在处理高阶的复杂关联关系具有一定的系统性和普适性,可用于对中药方剂系统的深入研究。

  • 【原创】7月18日液相色谱群友聚会-液相色谱学术沙龙-方法开发和仪器维护维修

    因7月10-12日赴青岛参加仪器仪表学会[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]专业委员会理事会议,活动改到7月18日,本活动由液相色谱爱好者自发组织,自愿演讲,没有报酬,不代表任何厂家。活动时间:2009年7月18日,9:30-16:30,星期六一天。 活动地点:上海市梅陇路130号 华东理工大学 实验十五楼7楼726会议室。参加人数:根据场地的大小,建议不超过35人。活动费用:这次不收费,但午餐费用自理,暂定10元/人。报 告 人: 恐龙、 amian、小k,spb_tang等。报告内容:(暂定,等补充) 恐龙:奶粉中三聚氰胺色谱分析方法的比对(采用离子对色谱、亲水色谱以及离子交换色谱三种不同的液相交换机理,比较各自方法的优缺点) 恐龙:实用HPLC方法的建立 amian:An Efficient Approach to Column Selection in HPLC Method Development spb_tang:液相色谱手性分离(手性化合物液相色谱分离的方法建立) 小K:液相色谱仪的维护和保养请准备参加的人员,在发帖处回复,同时发站内短信给我,姓名,电话,单位以及e-mail。同时提出对这次沙龙的要求。在确定日程后发通知给大家如有谁愿意进行上台交流的,请积极报名。

  • 【讨论】高效液相色谱仪在医药方面的应用

    高效液相色谱有四方面重要的作用。①分离分析药物的组分含量:由于一种药剂常含有多组分,色谱方法是既能分离又能定量的方法。如脂溶性维生素片,含有铬维生素,有C18柱及含1%碳酸铵的甲醇为流动相。一次即可将各维生素B6、D1、A、E同时分离并定出含量。又如止痛药或退烧药也可用此法分离并测得各组分的含量。 ②药物生产中进行中间控制:生产抗菌素时,首先要了解发酵液中的主体与付产物的存在情况。例如:青霉素、四环素、头孢子菌素、红霉素、柔红霉素、庆大霉素等的发酵产物,均可用C18柱和甲醇及缓冲液配制的流动相或用离子对法,分析主体及其收产物的含量。对普鲁卡因酰胺、茶碱等可进行主体含量的测定,对硝酸甘油可测定主体含量及其降解产物,以便保证药物的热量。 ③分析药物在体内的残量:这是近来研究新药效能很主要的内容之一,如冬凌草甲素是植物中的一组分,有抗癌效果,但是毒性大。测定其在血清中含量很重要,现在可用C18柱及甲醇水为流动相,测定处理后的血清样品,即可得到血中的含量。如磺胺类药品在血清及尿中含量也不允许太大,可用C18柱及酸性乙醇为流动相,测定含量后,则可估计最合适的用药剂量。又如四环素、巴比妥酸、止痛药、退烧药、护糖尿病的药物等,在血或尿中的含量都可用C18柱用甲醇、水为流动相来测定含量。因此,反相色谱法应用范围极广。 ④测定药物在各种器官中的代谢产物,特别是研究药物的代谢产物在血清中存在的情况。如测血清中的酮酸及戊二酸。测尿中代谢产物更为方便,不需要繁锁的预处理。因为研究尿中的组分能鉴别病人的代谢功能,对病理研究或监床诊断均具有重要的参考价值。

  • 农药方法开发

    求助各位大侠分享一下食品中的农药残留检测如何做方法确认,不确定度等,现在手上有40多种农药标准品,gcmsd、gc各一台。

  • 北京哪里能做溴敌隆色谱

    新接手企业标准,需要做色谱图及相关数据,费用支持,请问在北京哪里有这样承接企业液相色谱检测的机构,(鼠药溴敌隆蜡块和麦粒)

  • 色谱方法验证审评指南[制药]

    色谱方法通常用于原料、药物、药物制剂和生物体液中化合物的定性和定量。涉及的成分包括手性的或非手性的药物、过程杂质、残留溶媒、附加剂如防腐剂、分解产物、从容器和密闭包装或制造过程中带入的可提取和可过滤的杂质、植物药中的农药和代谢物等。 试验方法的目的是得到可信赖的和准确的数据,无论是用于验收、出厂、稳定性或药物动力学研究。得到的数据用于药品开发或批准后的定性和定量,试验包括原料的验收、药物和药物制剂的出厂、过程检验(In- process testing)的质量保证和失效期的建立。 方法的验证是由药品的开发者或使用者来检验其方法是否达到预期的可靠性、准确度和精密度的过程。得到的数据成为方法的验证资料的一部分交给CDER.。 方法的验证对于完成机构满足档案要求不是一次性的,开发者和使用者都应验证其方法的耐用度或耐久性(ruggedness or robustness.),其他的分析者、用其它相当的仪器,在其它的日期或地点,在药品生产期限(有效期)全过程,方法都应能够重现。如果产生数据的方法是可靠的,那么所得到的验收、出厂、稳定性或药物动力学的数据就是可信赖的。验证的过程和方法的设计应在开发过程中重要的数据产生之前,如果方法改变了,还应该再验证。 . 色谱类型 色谱是一种技术,通过该技术,样品中的组分载入液相或[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]中,通过在固定相上由吸附—解吸附来完成。 A. 高效液相色谱 (HPLC) HPLC分离是基于在样品在流动相液体和固定相之间的不同分配。一般地说HPLC大体分为以下几种(未考虑其重要性顺序) 1. 手性液相色谱 2. 离子交换色谱 3. 离子对/亲和色谱 4. 正相色谱 5. 反相色谱 6. 分子排阻色谱 1. 手性液相色谱 分离光学异构体可在手性固定相上,用衍生化试剂或在非手性固定相上用流动相添加剂形成非对对映体来实现。用作杂质试验方法时,如果光学异构体杂质在光学异构体药物之前洗脱,要增加灵敏度。 2. 离子交换色谱 分离基于荷电功能团,样品负离子(X - )为阴离子,样品正离子((X + )为阳离子,一般用pH程序洗脱。   3. 离子对/亲和色谱 分离基于与目标样品的专一的化学相互作用。更普遍的反相型用缓冲液和加入的对离子(与被分离的样品荷相反电荷)分离。分离受pH、离子强度、温度、浓度和共存的有机溶剂类型的影响。亲和色谱,一般用于大分子,使用配合体(共价结合在固体基质上的生物活性分子),与其同类的抗原(分析介质)反应,生成可逆转的复合物,通过改变缓冲条件洗脱。 4. 正相色谱 正相色谱为用有机溶剂为流动相和极性的固定相。此时较小极性的组分比较大极性组分更快地洗脱。 5. 反相色谱 报给CDER的最通常的实验方法是反相HPLC方法, 最通常用紫外检测器。 反相色谱,一种键合相的色谱技术,用水作基本溶剂,选择性也受溶剂强度、柱温和pH的影响,一般来说较大极性比较小极性组分洗脱更快。 紫外检测器可以用于所有色谱,这类检测器要注意的是灯老化后的灵敏度降低,其灵敏度因(仪器)的设计和/或者制造厂家的不同有小的变异。需要指出,用紫外检检测器和反相HPLC组合得到的色谱图不一定能真实的反映事实,原因是: 极性比目标化合物大得多的化合物可能被掩盖(在溶剂前沿或死体积时同时洗脱)。 极性比目标化合物小得多的化合物洗脱出来晚,甚至保留在柱上。 紫外吸收系数较低和最大吸收不同的化合物在检测相对较低浓度的目标分析物时不能被检出,因为通常只有一个检测波长。 6. 排阻色谱 也叫凝胶渗漉(permeation)或滤过,分离基于化合物分子大小或水动力学(hydrodynamic)容积。比多孔柱填料孔径大得多的分子最先洗脱,小分子进入孔隙洗脱晚,其余的洗脱速率取决于其分子的相对大小。 B. [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url](GC) [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]基于挥发性样品由作为流动相的载气运载,通过色谱柱内的固定相时发生吸附和解吸附过程进行分离。 通常[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析的样品是低分子量化合物,这些化合物是易挥发的和高温时稳定的。在这一方面,药物和药物制剂中的残留溶剂适于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析。生成化学衍生物可达到易挥发和热稳定的目的。 常用的检测器是用于含碳化合物的火焰离子化检测器(FID),用于卤代化合物的电子捕获式检测器(ECD),用于含硫和含磷化合物的火焰光度检测器(FPD),以及用于含氮或磷化合物的氮磷检测器(NPD)。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]也能实现手性分离。填充柱迅速被毛细管取代来改进分离度和分析时间,在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]上分析物位置与HPLC一样,用保留时间(Rt)表示。 C. 薄层色谱(TLC) 薄层色谱是一种最简便普通的色谱技术,分离基于在一端浸于溶剂混合物(流动相)中的薄层板(固定相)上点的样品移动进行分离,整个系统在密封的缸中进行。 对于本身没有颜色的化合物,检出技术包括荧光、紫外和喷雾显色剂(通用的和专一的)。 分析物在薄层板上的位置用Rf值来表示,Rf值为化合物的移动距离与溶剂前沿的比值。 三种方法,[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]、液相和薄层中,薄层色谱是最普通的试验方法,因为薄层板上所有的组分都可用适宜的检测技术检出。然而通常不如HPLC那么准确和灵敏。虽然选用适宜的检测技术,TLC法能见到分析的“全图”(whole picture) ,但比HPLC分析变异较大。 . 参考标准品(对照品) 参考标准品为经充分鉴定的高纯度化合物,色谱方法更大程度上依赖参考标准品来提供准确的数据。因而参考标准品的质量和纯度是很重要的,有二类参考标准品,化学的和放射性的。后者应考虑放射标记纯度和化学纯度。 按照提交方法验证的样品和分析数据,指南中的二类化学参考标准品如下: USP / NF参考标准品,不需要鉴定。 非总目录标准品,应用合理方法制备,并经充分鉴定,以保证其鉴别、含量、质量和纯度达到最高。 应该指出 大多数USP / NF参考标准品未标示化合物纯度。 对非USP参考标准品,提出纯度的校正数应包括在试验方法的计算中。 提供的参考标准品中没有以下杂质,诸如合成过程的结构相似的杂质和其它的过程杂质,如重金属、残留溶剂、水分(结合的和非结合的)、植物来源制剂中的农药和分解产物等。 如果在方法中规定,用前参考标准品要干燥除去残留溶剂、非结合水分和有时是结合水(取决于干燥条件),对易潮解的化合物总是包括干燥步骤的。但另一方面干燥可能导致结晶水的损失或引起热敏感化合物的降解。 色谱方法用外标法和内标法进行定量。 A. 外标法 当参考标准品与样品在不同的色谱图上进行分析时,用外标法。定量基于样品的峰面积/高(HPLC或GC)或强度(TLC)与分析对象、参考标准品的比值。 更适合用外标法的样品如下: 1.样品具有单一的目标浓度和狭窄的浓度范围 ,例如验收和出厂检验。 2.简便的样品制备操作。 3. 增加走基线的时间,为检测可能的额外峰,如杂质试验。 B. 内标法 加入一种已知纯度并且在分析中不产生干扰的化合物至样品混合液中,定量基于被分析的化合物与内标的响应比值与参考标准品得到的比值进行比较。这一方法很少用于TLC。 更适合用内标法的样品如下: 1.复杂的样品制备过程,如多次提取。 2.低浓度的样品(灵敏度是确定的),如药代动力学的研究。 3.在样品分析中预计是很宽的浓度范围,如药物动力学研究。 虽然CDER不规定方法应该用内标或外标法用于定量,但一般的看法是用于验收、稳定性和TLC用外标法,对生物体液和GC用内标法。 工作浓度为方法中规定的被分析对象的目标浓度。保持样品浓度与标准的浓度相近可以改善方法的准确性。 建议 1.如果参考标准品的纯度校正因子已知,那么在计算中应该包括。 2.在方法中要规定标准品和样品的工作浓度。 . 药物和药物制剂HPLC验证的参数 虽然许多种HPLC都可采用,但最普遍上报的方法都是用紫外检测器的反相HPLC法,以此作为验证参数的例子。这一方法验证的规定可以扩展到其它检测器和其它色谱。对于验收、出厂或稳定性试验,准确性应最佳化,因为要表明实测值和真值的差异是最为关注的。 A. 准确性 准确性是衡量测量实验值和真值的接近程度。推荐药物和药物制剂的准确性研究在标示量的80%、100%和120%的水平上来进行的,这与“The Guideline for Submitting Samples and Analytical Data for method Validation”的规定是一致的。 对于药物制剂,准确性试验通常是将已知量的药物 [按重量或体积(溶于稀释剂)] 以分析对象检测浓度的线性范围量加到空白处方内来完成的。对于液体制剂,这是真实的回收率;而对于诸如片剂、栓剂、透皮吸收制剂等,这不能检测稀释剂中的赋形剂与活性成分间可能产生的作用。实际上要做一个已知活性药物量的单个剂量单位(single unit)来进行回收试验是困难的。准确性试验评价在赋形剂存在时,在分析药物制剂的色谱条件下,试验方法的专属性。但这只是样品制备过程和色谱过程中的回收率,而不是制造过程的影响。 在每个推荐检测浓度重复进样,其重复进样的RSD提供了分析方法的变动性,或是试验方法的精密程度。重复性的均值以标示量的%来表示,这表明

  • 虾青素全反式、9-顺式、13-顺式几何异构体的液相色谱分离方法

    一种新颖的虾青素全反式、9-顺式和13-顺式异构体的高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url](HPLC)分析鉴定方法。方法采用碘诱导全反式虾青素异构化,在曝光20 min后,分别对碘液体积分数为5%~50%的10个虾青素样品溶液进行HPLC分析鉴定。虾青素全反式、9-顺式和13-顺式异构体获得良好分离,出峰顺序为全反式、9-顺式、13-顺式。异构化实验结果表明碘液体积分数为15%的虾青素溶液经曝光后全反式、9-顺式、13-顺式异构体的质量分数分别为对照品的68.5%、2 436.7%和632.4%,为本实验的最佳比例。该方法在虾青素及其顺反异构体定量分析方面提供一定技术和数据支撑,为虾青素制品在食品和医药方向的发展提供了理论依据。详见[font=&][color=#666666]10.13400/j.cnki.cjmd.2022.05.005[/color][/font]

  • 【分享】H中国化学界药学界人物---黄鸣龙

    黄鸣龙(1898—1979),1898年8月6日出生于江苏省扬州市。1920年,浙江医药专科学校毕业,即赴瑞士,在苏黎世大学学习。1922年去德国在柏林大学深造,1924年,获哲学博士学位。同年回国后,历任浙江省卫生试验所化验室主任、卫生署技正与化学科主任、浙江省立医药专科学校药科教授等职。1934年,再度赴德国,先在柏林用了一年时间补做有机合成和分析方面的实验,并学习有关的新技术,后于1935年入德国维次堡大学化学研究所进修,在著名生物碱化学专家Bruchausen教授指导下,研究中药延胡索、细辛的有效化学成分。1938—1940年,黄鸣龙先在德国先灵药厂研究甾体化学合成,后又在英国密得塞斯医院的医学院生物化学研究所研究女性激素。在改造胆甾醇结构合成女性激素时,他们首先发现了甾体化合物中双烯酮-酚的移位反应。  1940年,黄鸣龙取道英国返回祖国,在昆明中央研究院化学研究所任研究员,并在西南联合大学兼任教授。在当时科研条件极差、实验设备与化学试剂奇缺的情况下,他仍能想方设法就地取材。他从药房买回驱蛔虫药山道年,用仅有的盐酸、氢氧化钠、酒精等试剂,在频繁的空袭警报的干扰下,进行了山道年及其一类物的立体化学的研究,发现了变质山道年的四个立体异构体可在酸碱作用下成圈地转变,并由此推断出山道年和四个变质山道年的相对构型。这一发现,为以后国内外解决山道年及其一类物的绝对构型和全合成提供了理论依据。   1945年,黄鸣龙应美国著名的甾体化学家L.F.Fieser教授的邀请去哈佛大学化学系做研究工作。一次在做Kishner-Wolff还原反应时,出现了意外情况,但黄鸣龙并未弃之不顾,而是继续做下去,结果得到出乎意外的好产率。于是,他仔细分析原因,又通过一系列反应条件中的实验,终于对羰基还原为次甲基的方法进行了创造性的改进。现此法简称黄鸣龙还原法,在国际上已广泛采用,并被写入各国有机化学教科书中。此方法的发现虽有其偶然性,但与黄鸣龙一贯严格的科学态度和严谨的治学精神是分不开的。1949—1952年黄鸣龙在美国默克药厂从事副肾皮激素人工合成的研究。1952年10月,他携妻女及一些仪器,经过许多周折和风险,终于离美绕道欧洲回到了祖国。  黄鸣龙回国后在军事医学科学院任化学系主任,继续从事甾体激素的合成研究和甾体植物资源的调查。1956年,他领导的研究室转到中国科学院上海有机化学研究所。在研究工作中,黄鸣龙十分重视理论联系实际,他说:“一方面,科学院应该做基础性的科研工作,我们不应目光短浅,忽视暂时应用价值不显著的学术性研究。但另一方面,对于国家急需的建设项目,我们应根据自己所长协助有关部门共同解决,不可偏废,更不应将此两者相互对立起来。”他还以甾体化学研究为例,说明联系实际还可以发现许多新的研究课题,从而促进理论的进展和科学水平的提高。1958年,在他领导下研究以国产薯蓣皂甙元为原料合成可的松的先进方法获得成功,并协助工业部门很快投入了生产,使这项国家原来安排在第三个五年计划进行的项目提前数年实现了。我国的甾体激素药物也从进口一跃而为出口。1959年10月,醋酸可的松获国家创造发明奖。与此同时,他还亲自开课,系统地讲授甾体化学,培养出一批熟悉甾体化学的专门人才。  1964年,黄鸣龙出席第三届人大会议,周恩来总理在政府工作报告中展示的“四化”宏图,使他受到很大鼓舞,当听到有关计划生育工作的重要性时,就联想到不久前国外文献上有关甾体激素可作为口服避孕药的研究报道,决心在计划生育科研方面做出新的贡献。考虑到这是一个多学科的综合性课题,需要组织全国范围内的大协作,黄鸣龙向国家科委提出了组织全国范围大协作的建议。这一建议受到国家科委领导的重视,于1965年成立了国家科委计划生育专业组,黄鸣龙任副组长。该项工作进展非常迅速,不到一年时间,几种主要的甾体避孕药很快投入了生产,并陆续在全国推广使用。  黄鸣龙数十年如一日忘我战斗在科研第一线,为我国社会主义建设事业做出了重大贡献,并培养了大批科研骨干。他发表研究论文近百篇,综述和专论近40篇。1955年,他当选为中国科学院数理化学部委员,并曾当选为第三届全国人民代表大会代表,第二、第三、第五届全国政协委员,荣获1978年全国科学大会的先进代表称号。黄鸣龙是中国药学会第十四、第十六届副理事长,中国药学会上海分会第四届名誉理事长,中国化学会理事,曾任国际四面体杂志顾问编辑。 黄鸣龙教授治学有术,育人有方,他平易近人,诲人不倦,对青年科技人员,既严格要求,又具体指导,并根据我国的实际情况,特别重视基本实验技术和外文的训练。  黄鸣龙经常说:“所有各门实验科学欲求深入必须做研究工作,欲做研究工作必须在基本操作上有充分经验,否则因操作上失误便得不到正确的结果,头脑中对各种基本操作方法不熟悉,遇到特殊变化和困难,便不能随机应变利用不同方法解决不同的问题,于是工作便不能得到结果。”跟他做研究工作的许多同志,在开始做研究工作前,几乎都做过几十个他所规定的有机化学基本反应。他还亲自讲授化学德语,说:“科学不能割断历史,科学工作者非参考前人文献不可,因此也非学外文不可。”跟他工作的许多同志的德文是他亲自教的。   黄鸣龙教授还经常结合自己的经验,指出一个科学工作者应有的精神和态度,他曾在1956年以“如何向科学进军”为题向青年科学工作者讲述自己的经验:(1)先探后进。做研究工作,都必须先作试探性试验,即须先做极小量或极小规模的试验,观其结果如何。这样,往往可免去浪费及祸患。(2)坚持唯物。科学是积累起来的,我们虽做创造性工作,但是研究的问题不应是凭空想出来的,而是经过熟悉前人工作,钻研前人报告而得来的,所用研究方法不能异想天开,而须合乎科学上共认的规律,所得结果,不要下结论太早,必须从各方面用种种实验加以证明,然后再作推断。(3)不怕麻烦。做研究工作绝不能怕麻烦,工作中所观察到的变化或所得到的数据,非随时进行记录不可,万不要自信记忆力强,工作中观察到的现象及得到的数据,对于以后工作的计划、结果的预测以及结果的讨论都可作为依据,如有遗忘则影响工作效率;而且工作的步骤、现象及数据,在发表时都须详细报告,如记录不好,则工作非重做不可。(4)不要依赖别人。研究工作者,尤其是初做研究工作者,不要靠旁人代劳,因为实验中的现象及操作情况都可作为推论和判别成败原因的依据,如果你失去观察机会,未了解经过情况,必然会影响你的工作效果和推断能力。  为了帮助青年科技人员学习和应用有机化学中的新技术,他先后编写过有关甾体化学的红外光谱、核磁、质谱、旋光谱和构象分析等讲义和书籍,并以学术报告形式亲自讲授。他讲课的艺术性很高,能生动活泼、深入浅出地将疑难问题讲得十分清楚。他不仅指导科研人员如何做好研究工作,而且还现身说法地帮助青年科技人员掌握宣读研究论文进行学术报告的要领。  30多年来,黄鸣龙教授为培养科研工作者,手脑并举,言传身教,付出了辛勤劳动,花费了大量心血。在他身患重病期间,仍然不断关心我国科学事业的发展及鼓励科研人员努力攀登科学高峰。(作者:周维善)

  • 3.3 高效液相色谱法测定人血浆中扎来普隆的浓度

    3.3  高效液相色谱法测定人血浆中扎来普隆的浓度

    作者:李国成   伍俊妍   廖日房   杨   鸿(中山大学第二附属医院药剂科 ,广东 广州 510120)摘要:目的 :建立测定人血浆中扎来普隆浓度的高效液相色谱法。方法 :以美国迪马公司钻石C1 8反相柱 ( 15 0mm× 4.6mm ,5μm)为色谱柱 ,流动相为 ψ(乙腈 ∶冰乙酸∶三乙胺 ∶水 ) =5 0 ∶ 0 .2 5∶ 0 .0 2 5 ∶49.72 5 ,流速为 1.0mL/min ,荧光激发波长 3 45nm ,发射波长 460nm ,以乙酸乙酯为提取剂。结果 :扎来普隆高 ( 10 0 .0ng/mL)、中 ( 5 0 .0ng/mL)、低 ( 5 .0ng/mL)三种浓度的平均回收率分别为 96.9%、95 .4%、96.0 %,日内、日间差RSD均低于 8%;分析方法的最低检测浓度为 0 .5ng/mL。线性范围为 :1.0~ 10 0 .0ng/mL。结论 :该方法灵敏、准确、简单、快速 ,可用于临床血浓监测和药动学研究。谱图:http://ng1.17img.cn/bbsfiles/images/2012/07/201207161415_377863_1606903_3.jpg

  • 2011年7月29日第2次离子色谱沙龙开始正式报名

    2011年7月29日第二次离子色谱学术沙龙为了给广大离子色谱工作者一个学术交流的平台,特组织此次活动,邀请了众多离子色谱高手参与。希望广大离子色谱爱好者踊跃参加,并积极参与发言。发言结束后,现场交流讨论并参观专业离子色谱实验室。 活动时间:2011年07月29日,星期五,9:30-16:30。活动地点:梅陇路130号,华东理工大学 实验十五楼7楼会议室。参加人数:根据场地的大小,人数不超过30人。活动费用:免费,午餐自理。 联系方式:021-64250782,18917100782,18917102812此次会议的主要内容是离子色谱柱的应用研究。报告人:施超欧,刘肖,叶明立,程鹏,丁卉,贺伟等交通:上海火车南站或上海南站汽车站:南出口,从石龙路走到老沪闵路,步行10分钟左右,到学校东门。前行50米过左边第一座桥,前行右边第三幢7层楼房,材料学院的实验楼。上海火车站或长途客运总站:乘1或3号地铁到上海南站,南广场出口,后同上。上海虹桥火车站或虹桥机场或虹桥汽车站:地铁10号线到虹桥路站换3号线到上海南站,后同上。浦东机场:乘机场7线到上海南站,后同上。或者乘2号线到人民广场换1号线到上海南站。请准备参加的人员登记,满员后将不接纳。发邮件给我(40005964@qq.com)详细说明姓名,电话,QQ,单位以及e-mail。并希望提出对这次沙龙的要求。我会给参加者确认,截止日期2011年7月25日。此次会议的主要内容是离子色谱柱的应用研究。想参加离子色谱培训的朋友请联系本人。

  • 【转帖】新药方法验证

    在新药研发中,方法验证是很重要的方面,大家可以看看以下的帖字,会对你有所帮助,有问题也可以在下面跟帖,我们会尽量帮你解决.[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=50436]分析方法验证资料----中文4个(包括药典附录),英文6个[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=50437]美国FDA分析方法验证指南中英文对照-----对方法学研究很有参考价值![/url]

  • 【分享】什么是高速逆流色谱

    高速逆流色谱原理 高速逆流色谱技术(HSCCC)是一种不用任何同态载体的液.液色谱技术,其原理是基于组分在旋转螺旋管内的相对移动而互不混溶的两相溶剂间分布不同而获得分离,其分离效率和速度可以与HPLC相媲美。HSCCC分离效率高,产品纯度高;不存在载体对样品的吸附和污染;制备量大和溶剂消耗少;操作简单,能从极复杂的混合物中分离出特定的组分。 HSCCC应用于天然产物的分离可实现:(1)制备高纯度的药用成分对照品和必需控制的杂质成分;(2)配合活性跟踪与入药部位的设计,逐级分离制备活性部位或活性成分;(3)中药材和中药方剂指纹的建立,提供更丰富的信息和数据;(4)进行中试批量生产和工业生产。如中科院工程研究所探索了利用HSCCC制订中药指纹图谱的方法,以丹参原药材为模式植物,初步建立了丹参的HSCCC指纹图谱。该技术有望成为中药有效成分质量标准研究的一种新方法及中药生产的一种新型分离技术 转自:百度知道

  • 【转帖】药典液相色谱方法的调整

    药典液相色谱方法的调整 • 根据药典附录“液相色谱法”规定,可调整适当参数 ---调整目的:满足系统适用性的要求 ---系统适用性的要求 ---HPLC方法调整的考虑因素 05版药典的系统适用性要求1、理论塔板数: ----反映整个色谱系统的状态 填料状态 管线连接 ----有不同的计算方法 主要是峰宽取值方法不同 不同计算方法计算结果有差异 ----影响因素: 被测组分的保留时间、进样量等 积分参数 系统死体积 测定色谱方法、样品与计算方法保持恒定,以便比较 05版药典的系统适用性要求 2、分离度: ---影响因素: * 影响柱效的因素 色谱柱尺寸 填料性能 进样量 * 影响分离选择性的因素 流动相组成 色谱柱品牌 柱温 * 柱外体积 ---有不同的计算方法,结果有差异 05版药典的系统适用性要求3、重复性(进样精密度): * 外标法:对照品溶液(n:5) 峰面积RSD:2.0% * 内标法:相当于80%,100%,120%的对照品溶液,加入规定量内标 溶液,分别至少进样2次,计算平均校正因子([font=Times New Roman

  • 【转帖】药典液相色谱方法的调整

    药典液相色谱方法的调整 • 根据药典附录“液相色谱法”规定,可调整适当参数 ---调整目的:满足系统适用性的要求 ---系统适用性的要求 ---HPLC方法调整的考虑因素 05版药典的系统适用性要求1、理论塔板数: ----反映整个色谱系统的状态 填料状态 管线连接 ----有不同的计算方法 主要是峰宽取值方法不同 不同计算方法计算结果有差异 ----影响因素: 被测组分的保留时间、进样量等 积分参数 系统死体积 测定色谱方法、样品与计算方法保持恒定,以便比较 05版药典的系统适用性要求 2、分离度: ---影响因素: * 影响柱效的因素 色谱柱尺寸 填料性能 进样量 * 影响分离选择性的因素 流动相组成 色谱柱品牌 柱温 * 柱外体积 ---有不同的计算方法,结果有差异 05版药典的系统适用性要求3、重复性(进样精密度): * 外标法:对照品溶液(n:5) 峰面积RSD:2.0% * 内标法:相当于80%,100%,120%的对照品溶液,加入规定量内标 溶液,分别至少进样2次,计算平均校正因子([font=Times New Roman

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制