当前位置: 仪器信息网 > 行业主题 > >

质谱蛋白组分析

仪器信息网质谱蛋白组分析专题为您提供2024年最新质谱蛋白组分析价格报价、厂家品牌的相关信息, 包括质谱蛋白组分析参数、型号等,不管是国产,还是进口品牌的质谱蛋白组分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱蛋白组分析相关的耗材配件、试剂标物,还有质谱蛋白组分析相关的最新资讯、资料,以及质谱蛋白组分析相关的解决方案。

质谱蛋白组分析相关的资讯

  • 质谱革命:推动蛋白组学市场快速增长的黄金技术
    蛋白组学是当今生命科学和精准医学的研究热点,目前仍处于早期快速发展阶段。其发展轨迹与早期的基因组学相似,随着时间的推移,蛋白组学在研究和临床中的应用潜力将逐渐释放,有望接近基因组学的市场规模。当前,全球蛋白组学市场规模已达500亿美元,且呈现快速增长趋势。随着资本市场的关注,不断有新公司进入并获得融资,推动了新技术的不断涌现。 蛋白组学技术的扩展与应用 蛋白质组学技术已从最初的蛋白质定性鉴定扩展至多个领域,包括蛋白质定量表达分析、翻译后修饰鉴定和定量、蛋白质互作分析、蛋白质复合物成分解析、空间蛋白质组分析以及单细胞蛋白质组分析。这些技术不仅应用于基础科学研究,更在药物开发、临床医学和转化医学等领域展现出巨大潜力。这一切得益于质谱技术、蛋白质分离技术、生物化学技术和计算机技术的快速发展。 质谱技术:蛋白组学发展的关键 质谱技术是推动蛋白质组学发展的关键技术,特别是在生物标志物发现方面具有黄金标准地位。在全球范围内,只有少数制造商发明了能够区分小至单肽分子的复杂质谱技术,包括布鲁克公司(Bruker)、赛默飞公司(Thermo Fisher Scientific)、安捷伦公司(Agilent)、沃特世公司(Waters)和 Sciex 公司。其中,赛默飞世尔公司在蛋白组学研究质谱市场中拥有超过90%的市场份额,主要归功于其创新的Orbitrap系列。布鲁克公司的TimsTOF系列则是蛋白组学领域增长最快的质谱之一,从赛默飞公司那里获得了市场份额,以约30%的速度增长。质谱技术的持续创新将对蛋白组学的发展产生深远影响。然而,质谱技术的标准化和应用流程的复杂性,尤其是样品制备阶段的缺乏标准化,成为其进一步推广的瓶颈。正是在这一背景下,像Evosep等公司在液相色谱标准化方面取得了突破,逐步占据了60%以上的市场份额。这种创新反映了市场对流程效率提升的迫切需求。与此同时,新兴技术如Seer、Olink和Somalogic通过纳米粒子分离技术和适配体蛋白质检测技术,正在改变传统的蛋白质组学检测方式,显著提高了检测精度和通量。 蛋白组学的产业链 蛋白组学市场已形成涵盖上游质谱仪器和蛋白质组学试剂供应商、中游蛋白组学技术服务公司以及下游蛋白组学终端客户的完整产业链条: 颠覆性技术与企业的崛起 近年来,Seer、Olink、Somalogic、Nautilus和Quantum-Si等企业凭借其颠覆性技术,改变了传统的蛋白组学检测方式,极大地提升了检测的通量、准确性、特异性和敏感性:&bull Seer:发明了一种在液相色谱分离之前对蛋白质进行标准化消化和分离的工作流程。其专有的纳米粒子技术将蛋白质分成4组,增强了低丰度蛋白质的检测。&bull Olink:通过DNA编码连接到蛋白质上,实现蛋白质定量可通过基因测序的基础设施进行。其PEA(临位延伸分析)检测技术在qPCR仪器或Illumina的下一代测序仪上工作,提供高通量和特异性。&bull Somalogic:利用适配体进行蛋白质检测,其SomaScan平台可以识别并检测大量的蛋白质。该公司拥有一个由7000个独特适配体组成的文库,能够在48小时内从单个样品中识别7000种不同的蛋白质。&bull Nautilus:其技术利用专有仪器、流动池和试剂,对样品中95%的蛋白质组进行量化。设计了一个"超密集单分子蛋白质纳米阵列",实现了单分子分辨率。 国内市场的快速发展 在蛋白组学行业,欧美企业布局早,经过多年发展成熟后逐渐得到资本市场认可。包括Seer、Olink、Nautilius、Quantum-Si以及Somalogic在内的多家生物科技公司从2020年开始陆续上市。Seer、Olink、Somalogic是欧美三家蛋白质组学的标杆企业,Seer是其中最年轻的公司,但是为下一代蛋白质组学带来了创新技术和路径。与之相比,国内企业起步较晚,但发展迅速。景杰生物、中科新生命等专注于蛋白组学,而诺禾致源、华大基因、美吉生物、欧易生物等企业也同时提供蛋白组学服务。国内市场规模从2016年的1.2亿元增长到2020年的5.8亿元,年复合增长率高达49.1%,预计2025年将达到22.6亿元。(摘自弗若斯特沙利文分析)与此同时,随着精准医学和转化医学的快速发展,越来越多新发现蛋白质生物标志物的检测工作,将为蛋白质组分析带来巨大的市场需求。我们发现抗体-药物偶联物(ADC)药物正在快速发展,其结合了单克隆抗体的靶向能力和细胞毒性药物的强效性,成为癌症治疗领域的突破性疗法。在ADC药物的研发过程中,蛋白组学起到了至关重要的作用。(点击查看→ADC药物如何精准制导癌症治疗、质谱如何推进ADC药物研发)蛋白组学技术可用于鉴定和验证ADC的靶标蛋白,帮助研究人员筛选出最具潜力的治疗靶点。此外,蛋白组学在分析抗体与抗原的结合位点、优化抗体结构以提高药物效力和降低副作用方面也具有重要价值。总而言之,蛋白组学还是处于发展的黄金时代,质谱技术的不断进步将推动着整个行业的快速前进。随着多组学整合、人工智能赋能、空间蛋白质组学兴起和临床应用加速落地等趋势的出现,蛋白组学将在生命科学、精准医学和药物研发等领域发挥越来越重要的作用。在全球蛋白质组学有着千亿美元市场的机遇下,就需要加强核心技术研发,尤其是在质谱、单细胞和空间蛋白质组学等领域实现突破。同时,积极推动多组学整合,结合基因组学、代谢组学等数据,构建全面的生物学信息网络,深化对复杂疾病的理解。此外,深化国际合作与交流,吸收全球先进技术和经验,增强自身的创新能力,参与全球市场竞争,提升国际影响力。通过这些努力,中国企业将有望在全球蛋白组学市场中分得一杯羹,为生命科学和精准医学的发展做出更大贡献。
  • 质谱技术在靶向蛋白组学及脂质结构分析研究进展
    p style=" text-align: justify "   美国威斯康星大学麦迪逊分校的李灵军教授在《美国质谱学会杂志》上发表了题为& quot Faces of Mass Spectrometry”的文章。 /p p style=" text-align: justify text-indent: 2em " strong 进展1: /strong /p p   本月,李教授的团队在分析化学杂志上发表了一篇文章“HOTMAQ: A Multiplexed Absolute Quantification Method for Targeted Proteomics”。 /p p style=" text-align: center " img title=" 1111111.webp.jpg" alt=" 1111111.webp.jpg" src=" https://img1.17img.cn/17img/images/201902/uepic/04527389-10d7-4d2c-9392-40078abb0c71.jpg" / /p p style=" text-align: justify "   靶向蛋白组学中的绝对定量研究由于复杂背景下的低特异性、有限的分析通量及广泛的动态范围等诸多因素而具有挑战性。为解决这些问题,其课题组开发了一个混合offset-triggered多路复用绝对量化(HOTMAQ)方法。此方法结合了具有成本效益的质量差异和等压标签,能够在MS1前体扫描中同步构建内部标准曲线,在MS2水平上实时识别多肽,并在同步前体选择(SPS)-MS3光谱中对目标蛋白进行质量偏移触发的精确定量。这种方法将目标定量蛋白质组学的分析通量提高了12倍。采用HOTMAQ策略对临床前阿尔茨海默病候选蛋白生物标志物进行高精度验证。HOTMAQ的高通量和定量性能,加上样品的灵活性,使其广泛应用于靶向肽组学、蛋白质组学和磷蛋白组学的研究中。 /p p style=" text-align: justify text-indent: 2em " strong 进展2: /strong /p p style=" text-align: justify "   清华大学欧阳证和瑕瑜教授与普渡大学学者共同在《自然通讯》上发表“Online photochemical derivatization enables comprehensive mass spectrometric analyses of unsaturated phospholipid isomers” 文章。 /p p style=" text-align: center " img width=" 600" height=" 304" title=" 22222222.webp.jpg" style=" width: 600px height: 304px " alt=" 22222222.webp.jpg" src=" https://img1.17img.cn/17img/images/201902/uepic/f219c925-a096-478e-a956-d221f5b56fbd.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: justify "   质谱技术是脂质结构分析的主要工具,但如何在不饱和脂质中有效定位碳碳双键(C=C)以区分C=C位异构体仍是一个难题。本文通过Paterno-Buchi反应与液相色谱-串联质谱联用在线C=C衍生化,开发了大型的脂质分析平台。这为脂质C=C位异构体提供了丰富的信息,揭示了牛肝脏中200多种不饱和甘油磷脂的C=C位,鉴定出55组C=C位异构体。通过对乳腺癌患者和2型糖尿病患者血浆样本的分析,其课题组发现C=C同分异构体的比例受个体丰度的影响较小,这说明同分异构体比例可能用于脂类生物标志物的发现。 /p p & nbsp /p
  • 全球基因组学和蛋白组学分析仪器市场预测
    全球权威调研机构Technavio最新报告显示,预计在2013到2018年全球基因组学和蛋白组学分析仪器市场将保持7.83%的复合年增长率。   基因组学研究的是基因及其功能,蛋白质组学研究的是蛋白质组或组蛋白的结构和功能,两者均使用分子生物学和生物信息学的工具和技术。基因组学通过绘制基因和DNA序列来了解基因组的结构和功能。一个蛋白质组是一个基因组在特定时间内表达的一整套蛋白质。蛋白质组学主要涉及的是使用分子生物学、生物化学和遗传学来分析蛋白质,这些蛋白质是通过基因编码而来。蛋白质是所有细胞的主要组分,而且控制细胞的不同功能特性。基因组和蛋白质组结构或功能的缺陷可能导致疾病,因此基因组学和蛋白组学技术在科研、新药研发、疾病诊断中发挥着重要作用。这些应用都需要基因和蛋白缺陷的识别和研究,而基因组和蛋白质组的蛋白质分离、净化、识别、量化和分析都需要仪器、试剂和软件。基因组学和蛋白质组学用到多种分析仪器,但应用最广泛的是色谱系统、质谱系统、PCR系统和下一代测序系统。   目前,基因组学和蛋白组学领域的主要供应商有安捷伦、Bio-Rad、罗氏集团、Illumina、PE和赛默飞,其他比较优秀的供应商还有BD、布鲁克、GE医疗、JASCO、日本电子、Luminex、Qiagen NV、Rigaku Corp.、岛津、西格玛、Spectrolab Systems、Waters等。   这个市场发展的主要推动力为基因组学和蛋白组学技术的完善,主要挑战在于基因组学和蛋白组学知识的缺乏,主要趋势为聚焦于药物研发和疾病诊断。
  • 技术进步为质谱血浆蛋白组学带来了巨大飞跃
    近日美国质谱学会年会(ASMS)上发布的最新数据表明,新的仪器和工作流程极大地提高了基于质谱的血浆蛋白组学实验的覆盖深度和通量。这些进步可使质谱成为各应用领域中更有用的工具,包括血浆蛋白生物标志物的开发以及迄今由Olink和SomaLogic等亲和性平台主导的大规模人群研究。  血浆是一种易于获取和常用的样本来源,尤其是在临床工作和人群研究中。然而,由于血浆含有大量丰度较高的蛋白质和较宽的动态范围,传统的质谱蛋白质组学分析能力不足。对于细胞裂解物的分析,质谱工作流程可测量8000到12000个蛋白质,但对血浆,类似的工作流程只能测量500到1000个蛋白质。虽然可通过去除丰度较高的蛋白质或进行粗分离来改善这一情况,但这也会牺牲通量。  去年,瑞士蛋白质组学公司Biognosys在Journal of Proteome Research杂志上发表了一项研究,他们使用赛默飞的Orbitrap Exploris 480质谱仪,通过两小时的液相色谱梯度测量了180个去除了高丰度蛋白的血浆样品中的2732个蛋白质,这是未进行血浆分离处理情况下最高深度的血浆蛋白质组分析。  最近,蛋白质组学公司Seer推出了一种新的血浆蛋白组学解决方案。该公司的Proteograph系统使用一组纳米颗粒来富集血浆蛋白质,然后可以使用质谱等技术对其进行鉴定和定量分析。与传统的血浆蛋白组学方法相比,Seer系统在覆盖深度和通量上都有所提升。在一份发表于四月BioRxiv预印本的研究中,威尔康奈尔医学院-卡塔尔团队使用该系统分析了345个血浆样本,测量了大约3000种蛋白质,在其液相色谱-质谱法的运行时间下每天可分析大约10个样本。  根据以上数据,Biognosys分析和Seer系统的覆盖深度都接近于Olink的Explore平台,后者可以在血浆中测量大约3000种蛋白质,但它们仍远远落后于SomaLogic的SomaScan平台,后者可以在血浆中测量大约7000种蛋白质。在每周约70个样本的处理量上,Biognosys和Seer系统的通量仍然落后于Olink和SomaLogic平台,后者每周分别可以处理多达1000个和340个样本。  ASMS年会上,Thermo Fisher Scientific展示了使用Seer最新发布的Proteograph XT试剂盒在其新的Orbitrap Astral仪器上测量大约6000种蛋白质的数据,每天处理大约30个血浆样本。这些数据标志着血浆蛋白组学工作流程的重大进展,并表明在大规模血浆研究方面,结合Seer Proteograph等血浆富集技术的质谱法与基于亲和性的平台现在可能成为竞争对手。  剑桥大学临床医学院MRC流行病学单位的生物信息学家Maik Pietzner表示:“坦白说,我们没有预见到这么大的飞跃。”他和他的同事在大规模蛋白质基因组学研究中使用了SomaLogic的SomaScan和Olink的Explore。他指出,根据ASMS展示的数据,“看起来现在似乎变得可行了”,因为他们的研究需要1000个或更大的样本队列。  华盛顿大学基因科学教授Michael MacCoss还表示,质谱技术具备的覆盖深度和通量使其成为大规模人群研究的有用工具。他说:“像英国生物库(UK Biobank)或弗雷明汉心脏研究(Framingham Heart Study)这样的大型队列……这些样本的价值是巨大的,研究人员希望能够以最少的资源获取最多的信息,很多实验都使用了Olink或SomaLogic。”  如果质谱技术能够可靠地提供ASMS演示中展示的覆盖深度和通量,它可能成为亲和性平台的有力补充和竞争对手。许多蛋白质存在多种形式,或称为蛋白质变体,其变异包括氨基酸变异、截断或翻译后修饰等,这些变化会影响它们的功能,在亲和性平台上往往不清楚或不确定测量的是蛋白质的哪种变体。质谱方法更适合分析这些不同的蛋白质变体。  Olink总裁Carl Raimond表示,他认为质谱和亲和性平台是“绝对互补的”,并补充说“看到蛋白质分析领域有创新是非常好的”。然而,他表示在Olink占据领先地位的大规模人群研究中质谱技术近期可能无法成为竞争对手,他同时也质疑ASMS展示的令人印象深刻的数据在广泛应用时是否能够经受考验。他说:“细节决定成败。提出要求很容易,但真正能够实现或提出关于这一要求背后的问题则是完全不同的事情。”Raimond补充说,虽然质谱技术不断改进,但亲和性平台也将不断进步。Olink正在将其Explore平台扩展到约5,000种蛋白质靶点,而SomaLogic计划在今年年底前将SomaScan平台扩展到覆盖约10,000种蛋白质。Pietzner同样表示,虽然在ASMS上发布的数据令人兴奋,但他和他的同事们期待看到更广泛的数据,包括总体的蛋白质覆盖范围,不同蛋白质和肽段在样本中检出的一致性和重复性。他说,“亲和性方法已经应用于规模大于50,000的人群队列中,并带来了惊人的发现。我们需要进行头对头的比较以评估这些新的质谱技术是否能够实现类似的扩展。”  MacCoss表示,使用质谱进行此类研究的公司或研究人员需要提供数据,证明他们能够在每个样本中一致且可重复地测量一组核心蛋白。他说:“当人们使用Olink时会有一个清单,上面列出了每次都会测到的蛋白质。我们仍然需要这样做。我们仍然需要说,这是每次实验都会返回定量值的蛋白质列表……以及测量中获得高质量分析数值的蛋白。”  Pietzner表示,他和他的同事目前正在努力扩展他们的蛋白质基因组学研究以包括质谱技术。强生和强生制药公司的神经科学数据科学主管,以及英国生物库药物蛋白质组学项目(PPP)主席Christopher Whelan表示,目前一个规模最大的蛋白质基因组学人群研究项目正在实施基于质谱的蛋白质组学。  Seer本月宣布推出Seer技术访问中心,该中心将组合其XT试剂盒与Orbitrap Astral质谱仪,为没有质谱仪的用户提供蛋白质组学服务。  尽管到目前为止很难全面评估Thermo Fisher的Orbitrap Astral和Seer的Proteograph XT的性能,但一些早期用户表示其产生的结果很出色。  Cedars-Sinai精准生物标志物实验室主任Jennifer Van Eyk一直在使用Orbitrap Astral进行血浆蛋白质分析,在这方面它比先前的仪器有更强的能力。Van Eyk表示,在每天运行60个样本时,新仪器可测得的蛋白质数量是相同工作流程下使用Thermo Fisher的Exploris 480仪器的2到2.5倍。  她说:“我们不仅可以检测到更多蛋白质,而且可以定量更多蛋白质,并且这些蛋白质是可重复的,也就是说,如果我们运行一个样本五次,我们确实会五次都观察到同样的蛋白。这是一个很大的飞跃。”这台仪器最出色的或许是其高通量,Van Eyk表示,她和她的同事们每天可以运行多达180个的未去除高丰度蛋白的血浆样本并获得良好的数据和深度的覆盖。她说,“在每天运行180个样本的情况下,突然间你可以开始讨论运行10,000个样本,然后它就成为一个人群研究了。”Van Eyk和她的同事目前正在试验Seer Proteograph系统,以“充分测试”其性能,并评估是否要将其作为血浆蛋白质组学工作流程的一部分。  威斯康星大学麦迪逊分校的生物分子化学和化学教授Joshua Coon指出,他的实验室能够使用50分钟的液相色谱梯度在未处理的血浆中测量大约1,500种蛋白质,并且已经在该仪器上开发出了一种一分钟的直接注射方法,能够在每个样本中测量约200种蛋白质。  Coon还是SeerProteograph平台的用户,尽管他尚未将其与Orbitrap Astral结合使用。他的实验室一直在使用Seer XT试剂盒分析阿尔茨海默病患者的血浆样本以及长期新冠肺炎(long COVID)个体的样本。他说,尽管他的团队尚未开始处理大批量样本,但在初步工作中,实验室每个样本一致地测量到约3,000种蛋白质,这是不使用Seer系统时的五倍左右。他认为,当研究人员将工作流程应用于Orbitrap Astral系统时,这些数字还会进一步提高。  除了覆盖深度外,Coon表示,Proteograph对简化质谱样品制备非常有用。他说:“我没有完全认识到到它的自动化程度,它非常方便。现在主要的用户是一个一年级和二年级的研究生……所以他们必须快速学习。他们在处理样本、获得消化产物和肽段方面取得了很大的成功。当你有新人或者长时间不做该工作的人时,进行大规模蛋白质组学研究的样品制备将耗费整个实验一半以上的精力,只需使用该平台然后熟练掌握。”  尽管Seer Proteograph平台提供的覆盖深度使质谱血浆蛋白质组学在某些应用中与Olink和SomaLogic等亲和力平台更具竞争力,但Seer本身在血浆富集领域面临新的竞争。  在ASMS会议上,蛋白质组学样品制备公司PreOmics推出了其ENRICH-ist富集血浆和血清蛋白质的试剂盒。该试剂盒使用非功能化顺磁性微珠来富集低丰度蛋白质,据该公司称,与未去除高丰度以及未富集的血浆相比,用该试剂盒处理血浆可将蛋白质检出率从50%提升至100%。PreOmics首席执行官Garwin Pichler表示,微珠与缓冲液的结合可在去除高丰度蛋白的同时富集低丰度蛋白以提高覆盖深度。Biognosys推出了一种新的基于微珠的血浆蛋白质组富集试剂盒,作为其TrueDiscovery服务平台的一部分。据该公司称,这种试剂盒可以高通量定量人类血浆中约4,000种蛋白质。  此外,在本月,华盛顿大学研究人员领导的团队在BioRxiv预印本上发表了一篇论文,描述了一种使用ReSyn Biosciences的磁性微粒富集血浆蛋白质的方法,其通过结合血浆中的膜结合囊泡并分析相关蛋白质来提高覆盖深度。华大的MacCoss是这篇预印本的通讯作者,该预印本的第一作者Christine Wu也是该富集方法的主要开发者。他们能够在Orbitrap Astral上使用30分钟的液相色谱梯度稳定地定量约4,800种血浆蛋白质,每天可处理约40个样本。在使用一小时的液相色谱梯度时,他们能够测量5,000到6,000种蛋白质。MacCoss他们迄今没有过度挑战该方法的能力,所以这些数字是相对保守的。MacCoss表示,由于Seer公司的技术成本较高,研究人员对于血浆蛋白质组学富集的替代方法很感兴趣。他说:“Seer在制造这些产品方面做得很好,但成本是一个高门槛。”  维也纳分子病理研究所的蛋白质组学负责人Karl Mechtler表示,他与Seer的讨论中,每个样品的报价大约是600美元。他说:“如果我有100个样品,对于一个蛋白质组学实验室来说,这是一笔巨款。”他指出,对于一个典型的蛋白质组学实验室,一个合适的价格范围应该在每个样品25到50美元左右。Wu表示,使用华大的富集方法进行实验的每个样品成本低于5美元。PreOmics将ENRICH-ist试剂盒作为完整蛋白质组学样品准备工作流程的一部分销售,每个样品总共80美元。  在回答成本问题时,Seer公司董事长兼首席执行官Omid Farokhzad表示,他认为价格是“价值交换的问题”。他说:“并非所有内容都是等价的。问题在于,从Seer所提供的与其替代方案所提供的内容来说,价值交换是什么?”在血浆蛋白质组学领域最新的发展中,这个问题的答案似乎是一个不断变化的目标。
  • 质谱“跨界”医学 妙用蛋白组学分析——访威斯康星大学麦迪逊分校细胞与再生生物系及化学系葛瑛教授
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 仪器信息网讯 /strong & nbsp span style=" text-indent: 2em " 2020年,美国质谱学会(American Society for Mass Spectrometry, ASMS)将质谱界内“最高荣誉”之一的Biemann奖章授予了威斯康星大学麦迪逊分校的葛瑛教授 (https://labs.wisc.edu/gelab/),以表彰其应用基于高分辨率质谱的top-down蛋白质组学技术在心脏疾病研究领域所做出的重大贡献。该奖项是对质谱先驱—Klaus Biemann教授的纪念,表彰获奖者个人在其学术生涯的早期就在基础和应用质谱领域获得显著成就,因此该奖项的获得者均为中青年的杰出科学家。 strong Biemann奖章自1997年颁布以来共授予了24位科学家,作为2020年的奖项获得者,葛瑛教授既是该奖项自颁布以来的第七位女性科学家,也是该奖项历史上第三位获得此荣誉的华人学者。 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 葛瑛本科毕业于北京大学化学学院,毕业后赴美国康奈尔大学攻读博士学位。她基于top-down的蛋白质组学研究也起始于博士求学期间,彼时她师从Fred W. McLafferty,后者提出了著名的 strong 麦克拉弗蒂重排反应 /strong ,也被喻为质谱界泰斗。葛瑛在博士毕业后做出了一个与多数科研学者不同的抉择,她决定先加入美国惠氏制药(后并入辉瑞制药公司)从事药物研发工作,这段工作经历需要她与不同研究领域的工作者合作完成研究内容,也让她切身感受到了交叉学科研究模式的可行性和高效性,更为她日后赴任高校开启交叉学科的研究之路“凿”开了一道光。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 葛瑛团队突破了传统化学、生物学和医学的界限,利用高分辨质谱技术和top-down方法开展蛋白质组学研究,并通过新的方法策略获得了对心脏疾病等病理学研究的新颖洞见。仪器信息网近期采访了这位优秀的女性质谱工作者——威斯康星大学的葛瑛教授,与她进行了深入的交谈,探寻她光环加身的科研成果背后有何奥秘。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 450px " src=" https://img1.17img.cn/17img/images/202008/uepic/50b38277-e0d1-4e19-92d0-ffef8ecafdd6.jpg" title=" 葛瑛.jpg" alt=" 葛瑛.jpg" width=" 300" height=" 450" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 威斯康辛大学麦迪逊分校细胞与再生生物系及化学系教授 葛瑛 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 以质谱为中心的技术开发 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 翻译后修饰的蛋白质(PTMs)在许多关键细胞中发挥着重要作用,因此对蛋白质组进行全面的分析,对于解释分子作为一个系统如何相互作用,以及了解细胞系统在健康和疾病中的功能至关重要。当前蛋白质组学的质谱分析主要有bottom-up(自下而上)和top-down(自上而下)两种方法,Bottom-up是传统的手段,它将蛋白质的大片段混合物消化/酶解成小片段的肽后再进行分析,是在蛋白质组学的研究中广泛使用的一种质谱技术,但该方式无法取得与PTMs之间相关联系的信息。而Top-down技术则不再需要酶切的过程,可以直接对完整的蛋白——包括翻译后修饰蛋白以及其它一些大片段蛋白测序,而非仅仅针对多肽,这就使得与翻译后修饰相关的信息能最大程度的保存下来。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 基于top-down质谱技术的蛋白质组分析是表征完整蛋白质组的新兴手段,它可以对来自于全细胞或组织裂解液的复杂混合物中的完整蛋白进行快速、灵敏的分析,提供一个系统、定量的蛋白质评估。然而,由于蛋白质组的高度复杂性和动态性,蛋白质组学的分析依然面临着巨大的挑战。比如蛋白质难溶于水、新的蛋白分离纯化方法有待探索以及根据top-down获得的数据来确定蛋白特性和有效翻译后修饰蛋白质的计算机工具十分匮乏等。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 因此葛瑛团队就蛋白质组学分析面临的难题开展了系列研究,首先便是蛋白质溶解度的问题。在蛋白质的分析过程中,为了有效地从细胞或组织中提取蛋白质,提取缓冲液中通常含有表面活性剂,但是传统的表面活性剂与质谱不相容,它们通常存在极大的抑制蛋白质的质谱信号,因此在质谱分析前要先除去表面活性剂。基于此,葛瑛团队创造性地合成了可光降解的表面活性剂Azo,Azo的功能与常规表面活性剂非常相似,但却在表面活性剂分子的中间加入了可以通过简单紫外线照射被破坏的化学键。在进行质谱分析之前,可以通过暴露于光来裂解键,这样Azo就会分裂,仅留下蛋白质分子。葛瑛说到:“Azo能够对整个蛋白质进行有效的质谱分析,开辟了研究膜蛋白质的新道路。” /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 其次,针对完整蛋白质色谱分离法并不完善的问题,葛瑛团队发展了一种新型的多维色谱法——在线HIC/MS(疏水性相互作用色谱质谱)分析方法,用于在非变性模式下高分辨率分离完整蛋白,展示了该方法在Top-Dwon蛋白质组分析的潜力。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 不仅如此,针对难以使用质谱检测低丰度蛋白质等难题,葛瑛团队研发了新型纳米材料用于富集蛋白质,实现了利用top-down质谱法富集、鉴定、定量和表征完整的磷酸化蛋白。近日,葛瑛教授团队和威斯康星大学麦迪逊分校化学系金松教授团队合作的研究成果发表于自然子刊《自然· 通讯》,团队开发了基于纳米材料的蛋白质组学新方法,将功能化的超顺磁性纳米颗粒(NPs)与自上而下蛋白组学质谱分析结合,在有效地从血清中富集心脏肌钙蛋白I(cTnI)(cTnI是一种心脏疾病的生物标志物)的同时也能很好的去除血清白蛋白。该研究成果将在蛋白组学研究上得到广泛的应用,有助于揭示cTnI的分子指纹图谱,便于精准医疗研究。 a href=" https://www.nature.com/articles/s41467-020-17643-1" target=" _blank" style=" color: rgb(0, 32, 96) text-decoration: underline " span style=" color: rgb(0, 32, 96) " (原文链接:《Nanoproteomics enables proteoform-resolved analysis of low-abundance proteins in human serum span style=" color: rgb(0, 32, 96) text-indent: 2em " 》) /span /span /a /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 此外,对于top-down数据分析工具开发不足的问题,其团队开发了综合软件工具MASH Explorer软件,实现了不同质谱厂商的数据统一分析,并结合了多种用于反卷积和数据库搜索的算法,以进一步推动top-down蛋白质组学在生物医学研究中的发展。 span style=" color: rgb(0, 32, 96) " (软件免费下载 /span a href=" https://labs.wisc.edu/gelab/MASH_Explorer/index.htm" target=" _blank" style=" color: rgb(0, 32, 96) text-decoration: underline " span style=" color: rgb(0, 32, 96) " https://labs.wisc.edu/gelab/MASH_Explorer/index.htm /span /a span style=" color: rgb(0, 32, 96) " ) /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在不断钻研的基础上,葛瑛团队进一步将其开发的方法应用于生物医学等问题的研究上,比如在正常和患病条件下建立心脏肌丝蛋白修饰的图谱,探究其调节心脏和骨骼肌收缩力的功能结果,以及利用蛋白质组学和代谢组学等综合研究方法评估干细胞疗法治疗心力衰竭的功效,并了解心脏再生过程中的信号传导机制。她在心脏生物学领域取得了重要发现,例如,其团队确定了心肌肌钙蛋白I的磷酸化和肌动蛋白同工型转换是慢性心力衰竭的潜在生物标记。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 跨界要知己知彼 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 从上文不难看出,葛瑛的研究内容不仅跨越了化学、生物学和医学的传统界限,更创造性地将其在生物化学方面的专业知识与医学相结合,获得了对心脏疾病等病理学研究的新颖见解。“科学界越来越多的人认识到,一个领域内真正的突破,很多时候来自于这个领域之外,来自于其它领域科学家的研究成果。也就是人们经常所说的‘跨界’研究。” 葛瑛说道:“从另外一个‘视角’去解决问题,往往能得出意想不到的结果。” /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 交叉学科很热门,但研究难度也不小。如何克服跨领域探索的挑战?笔者向葛瑛抛去这个问题。结合其自身的经历,在跨领域的学习过程中葛瑛一直积极地、努力地保持着好奇心,在不同的专业领域积蓄知识和力量。葛瑛表示:“随着长期对一个研究方向的不断深入,自然需要不断扩展,我当时进行跨界研究的契机是在加入麦迪逊医学院组建蛋白质中心后,开始有很多机会与生物学家以及医生合作,这就需要我去学习更多的知识,包括阅读其他领域的文献,跨领域沟通研究等等。” /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " “另外,想要真正深入了解一个科研领域,也必须要找到对应的‘圈子’,并且要知己知彼。”葛瑛分享了一段故事:“当我准备利用系统生物学方法深入了解心脏病等研究时,我阅读了上千篇心脏医学的文章,去参加该领域的学术研讨会,不断地扩充我的知识,有一次在一场心脏学会研讨会上,我遇见该领域的一位‘大伽’,并主动上前与他交谈,过程中他提到看过我发表的关于心肌钙蛋白的文章,对我赞誉很高,借那次机会,他推荐了多位医学领域的学者给我认识,也为我后来进行跨界研究提供了资源和平台。这是我认为很重要的一点,跨界,你必须要知己知彼。当然我很幸运能够得到多个领域(质谱,蛋白质组学,色谱 和 心脏学会)的前辈和朋友们的大力支持, 非常感激。” /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 对科学研究来说,跨界是必然的,而当跨界研究的时候找到一个突破口也十分必要。葛瑛的团队是多元化的,既有生物学、化学方向的学生,也有医学方向的学生。围绕课题组的两大主要方向,技术开发和生物医学研究,化学系的学生以发展技术为中心,最终落地到应用上,而生物系的学生以研究一种疾病为中心展开课题。此外,课题组实验室的设置也同样多元化,一层楼里有化学实验室、生物工程实验室和临床实验室,这样的环境也为组内的学生提供了跨界沟通、交流和合作的机会与平台。“我们实验室已经不是单纯的化学实验室或生物实验室,某种意义上我们可以称为‘交叉研究中心’。” /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 采访的最后,葛瑛也表示,不管从事的是化学研究还是生物学研究,最终都是想要解决生命科学的问题,因此质谱技术也好,生物医学应用也好,团队都希望能更好地实现精准医学,最终造福人类。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " br/ /p p style=" text-align: right text-indent: 2em line-height: 1.75em " 采访编辑:万鑫 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 后记: /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 当下时代的科学研究已经不仅仅需要培养“标准型人才”,更多的创新成果和研究领域的成长点都发生在领域的边缘或几个不同领域的交界处,因此,越来越需要像葛瑛这样掌握各种知识的研究学者。与此同时,科研学者如果能够自由发挥,把自己培养成“非标准型人才”,也许更利于将来的创新研究。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family:楷体, 楷体_GB2312, SimKai" 点击图片了解葛瑛团队更多内容: a href=" https://labs.wisc.edu/gelab/" target=" _blank" style=" color: rgb(0, 32, 96) text-decoration: underline " span style=" color: rgb(0, 32, 96) " https://labs.wisc.edu/gelab/ /span /a /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family:楷体, 楷体_GB2312, SimKai" /span /p p style=" text-align: center" a href=" https://labs.wisc.edu/gelab/" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/a7c8ff9b-cf8b-40b8-bcf2-b2a9d68a1b5a.jpg" title=" 葛瑛团队.jpg" alt=" 葛瑛团队.jpg" / /a /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family:楷体, 楷体_GB2312, SimKai" /span br/ /p
  • 代谢组学、单细胞蛋白组学……ASMS2024上这些质谱新技术值得关注
    2024年6月2-6日,全球质谱领域最具影响力之一的专业盛会--第72届美国质谱年会(ASMS)在美国加州阿纳海姆会议成功召开,该盛会吸引了世界各地的质谱工作者汇聚一堂,共话质谱未来。此次大会盛况空前,举办了超70个分会议,约有6,800名科学家出席,并展示超3,400篇研究摘要。大会设有短期培训课程、墙报、分会场口头报告等,通过多种不同的形式,科学家们分享他们的最新研究成果,揭示质谱学的前沿技术和应用。同时仪器厂商也争相展示着最新的产品技术,仪器信息网在众多企业发布的新品中,总结了热门技术产品。会议现场&bull 赛默飞Stellar&trade 对Astral的定量补充本届大会上赛默飞带来了他们的最新仪器——一款能够执行靶向验证的质谱仪。这反映了整个行业正朝着靶向检测与验证这一趋势迈进。传统意义上,高分辨率质谱仪能揭示众多潜在生物标志物,但如何有效验证这些成千上万的候选标志物一直是难以逾越的障碍。赛默飞此次发布的全新产品Thermo Scientific&trade Stellar&trade 质谱仪,正是针对这一痛点的突破性解决方案,也是赛默飞创新的又一重大里程碑。Stellar质谱仪结合了两个质量分析器,一个四极质量分析器用于前体离子选择,以及超高速双压线性离子阱质量分析器。离子集中路由多极(ICRM)同时在两个离子阱中操控离子包。同步离子管理以高灵敏度、宽动态范围和增加特异性高达140的MS2数据,使科学家能够在更短的时间内自信地将更多的候选生物标志物转化为验证阶段。提供大规模定量性能:一个小时内可以稳定地定量近10,000种肽,实现有偏差的系统生物学分析;样本通量数据提高:绝对定量更多靶向化合物,以提高定量研究能力,样本通量提高4倍;将靶向定量推向单细胞水平:利用增强的灵敏度扩展靶向通路分析的范围,同时减少样本的缺失值;大幅缩减背景干扰,增强特异性:采用快速、灵敏的全扫描同步前体离子选择 (SPS) MS3 采集克服具有挑战性的背景基质干扰;提升实验室生产率:使用各种靶向和非靶向数据采集方案,加快靶向方法的创建和实施。&bull 岛津RX系列三款新品全面升级LCMS-TQ RX系列包括LCMS-8060RX、LCMS-8050RX和LCMS-8045RX三个型号,继承岛津三重四极杆液质联用仪UFMS的特点,同时提供更高的灵敏度、稳定性和可操作性。LCMS-TQ RX系列采用创新离子源设计,提高了数据可靠性。利用在分析前自动检查仪器状态、自动执行校准(调谐)的功能,以及将待机功耗降至更低的生态模式,实现高效的实验室操作和降低环境负荷。通过RX系列的导入,制药、环境、食品和科研领域等相关实验室工作效率将进一步提升。&bull 沃特世Xevo&trade MRT新一代多反射飞行时间质谱技术沃特世推出新款Xevo&trade MRT台式质谱仪(MS) ,是在先前推出的Waters SELECT SERIES&trade MRT 质谱仪 的技术基础之上,将多反射飞行时间(MRT)技术和混合四极杆飞行时间(QTof)技术的特性以及分辨率、速度的优势整合到了这款灵活的台式仪器中。 Waters Xevo MRT台式质谱仪在100 Hz下可提供100K FWHM的分辨率和亚ppm级质量精度。Waters Xevo&trade MRT质谱仪采用新一代多反射四极杆飞行时间技术,在不影响分析性能的前提下,实现了高分辨率和高速度的完美结合。与其他品牌的同类产品相比,该系统在上限运行时可提升高达6倍分辨率以及2倍的质量精度,有助于科学家用更短的时间处理更多的样品,更好地开展大型队列生物医学研究和流行病学研究。Waters Xevo&trade MRT能够提供完整的代谢组学、脂质组学和代谢物鉴定工作流程,用户可以方便灵活地使用沃特世软件、色谱柱和仪器开展高通量分离,并与第三方软件应用程序共享通用数据。&bull 安捷伦推出运用前沿GC/MS和LC/Q-TOF技术的新产品在第72届ASMS质谱与相关专题会议上推出两款新产品。一款是Agilent 7010D三重四极杆气质联用系统,这款以食品和环境为主要目标市场的系统,可在气相色谱-质谱联用分析中展现出色的精度和灵敏度。另一款为适用于6545XT AdvanceBio LC/Q-TOF系统的Agilent ExD池,旨在助力生物制药市场与生命科学研究。Agilent 7010D三重四极杆气质联用系统(7010D GC/TQ)Agilent 7010D 三重四极杆气质联用系统(7010D GC/TQ)配备全新的HES 2.0离子源,灵敏度可达阿克级。该系统内置SWARM自动调谐和早期维护反馈(EMF)等智能功能,有助于简化分析工作流程和减少计划外仪器停机。连接碰撞池的Agilent ExD池(适用于6545XT AdvanceBio LC/Q-TOF)适用于6545XT AdvanceBio LC/Q-TOF的Agilent ExD池可增加电子捕获解离(ECD)功能,助力肽和蛋白质表征。ECD特别适合用于研究大分子蛋白质、易损修饰和异构体残基——仅使用传统的碰撞诱导解离(CID)方法难以明确表征这些分析物。结合 6545XT 本身就有的完整蛋白质分析能力,ExD 池还适用于对较大的和高电荷的蛋白质(如抗体)以及小一些的亚基(如肽)执行“top to middle down”表征,由此生成的丰富谱图信息可使用 ExDViewer 软件进行可靠的解析。&bull SCIEX 7500+系统迄今为止SCIEX速度最快的三重四极杆质谱仪SCIEX推出了SCIEX 7500+系统,这是SCIEX定量产品组合中的最新款质谱仪,不仅可以覆盖日益复杂的基质样本,同时能确保仪器在更长时间内保持优异的性能状态。SCIEX 7500+ 系统SCIEX 7500+系统中Mass Guard技术是一项新的技术,包含主动过滤潜在污染离子的能力。它降低了仪器污染的风险和频率,特别是在处理复杂基质时,维持仪器最高灵敏度性能的时间,与现有SCIEX技术相比可提升两倍。进样组件DJet+完全可拆卸,允许前端维护,从而能够最大化系统的运行时间。SCIEX 7500+系统每秒可进行800次多反应监测(MRM),是迄今为止SCIEX速度最快的三重四极杆质谱仪。这一提升扩展了大列队化合物的应用范围和定量能力,能覆盖更多新的化合物,从而提高了实验室的整体工作效率。&bull 布鲁克新产品持续推动单细胞蛋白质组学发展在第72届ASMS会议上布鲁克宣布推出一款革命性的MALDI-TOF/TOF质谱仪,即neofleX&trade 空间成像质谱仪。neofleX&trade Imaging Profiler配备了布鲁克专利的smartbeam 3D激光器,确保了具有真实的“方形像素点”成像采集功能;配备了增强型检测器,可实现线性模式和反射模式下、持久稳定的数据采集性能。neofleX&trade 还提供TOF/TOF配置,该配置具有进一步优化设计的二级碎裂模块,能显著提高TOF/TOF的检测灵敏度、采集速度和序列覆盖度。布鲁克还宣布了一款SCiLS&trade 系列软件的扩展产品 - SCiLS&trade Scope 1.0,为neofleX&trade 结合靶标蛋白质成像的空间多组学成像流程而设计。SCiLS &trade Scope软件可处理来自靶向成像工作流程(如MALDI HiPLEX-IHC等)的OME-TIFF数据集。离子图像通过预先选定的通道色彩编码进行空间可视化分析,借助简单工具还可以实现快速图像处理和距离测量。布鲁克推出了全新的超高灵敏度 timsTOF Ultra 2 质谱系统,该系统大大提高了对微小细胞、亚细胞细胞器进行深度分析的灵敏度,并增加了样本进样量范围的灵活性。结合新的 Spectronaut® 19 软件和全新的 PreOmics ENRICHplus 试剂盒,布鲁克正在建立从超高灵敏度到大规模深度血浆蛋白质组学的4D-蛋白质组学新标准。&bull 国内厂商莱伯泰科、清谱科技精彩亮相在ASMS展会上,也出现了更多的国产质谱企业,莱伯泰科旗下子公司CDS携带蛋白组学样品前处理自动化平台以及最新发明的相关耗材产品精彩亮相,向世界展示了其在生命科学领域的创新实力。在本次ASMS中,CDS展示了MiniLab蛋白组学样品前处理自动化平台、6通道EZ-Trace固相萃取装置,以及基于Empore膜技术的最新E系列蛋白消解和脱盐产品。在展台上重点介绍了CDS新开发的蛋白组学样品前处理离心小柱的性能,其高肽容量和出色的高pH分馏效果让现场观众耳目一新。清谱科技也携带最新产品在#433展位与行业分享。清谱科技通过3个口头报告、18个墙报,展示分享团队近一年取得的创新技术成果及产品研发应用进展。
  • 布鲁克:累计实现600台timsTOF质谱装机 蛋白组学是重要增长点
    近日,第四十一届J.P.摩根大会召开,会议上,多家科学仪器企业和诊断企业均分享了最新的业务情况,并对未来的行业发展重点进行了讨论。仪器信息网对部分科学仪器行业头部企业的业绩表现和战略重点进行了摘录,以飨读者。  布鲁克(BRUKER)  Bruker 首席执行官 Frank Laukien 表示,公司预计 2022年第四季度的有机收入将实现中高个位数增长,报告的收入将超过华尔街的普遍预期。分析师平均预计第四季度收入为 6.664 亿美元。 他补充说,公司预计 2023 年有机收入将实现3.6%的同比增长,收入约25亿美元。(数据未审计,仅供参考)  Laukien 强调,布鲁克的蛋白质组学业务是一个特别重要的增长动力,并预测“蛋白质组学将迎来一个非常重要的十年”。 他提到蛋白质组学在生物制药中的“作用越来越大”,并补充说生物制药研究现在占公司收入的 15% 到 16%,而过去几年里这一比例不到 10%。 过去一年,美国生物制药一直是布鲁克业务增长最快的部分,呈现两位数的高增长。 截至 2022 年底,布鲁克已安装了600 多台 timsTOF 质谱仪,这些仪器已成为蛋白质组学研究人员最喜欢的仪器。  Laukien 还强调了 Bruker 正在不断扩展其空间蛋白质组学产品组合,特别指出了其 Canopy Biosciences 子公司的 CellScape 空间单细胞蛋白质组学平台,以及去年与 AmberGen 合作推出的 MALDI HiPLEX-IHC 组织成像系统。 他介绍到,公司去年售出了 20 多套 HiPLEX-IHC 系统。  Laukien 还讨论了布鲁克对瑞士蛋白质组学公司 Biognosys 的投资,布鲁克最近收购了该公司 80% 以上的股份。 Bruker 正在为 Biognosys 提供资金以在美国开设一个实验室,这笔投资将帮助 Bruker 从研究人员和行业团体那里获得业务,他们可能不具备自己操作公司质谱仪的专业知识或人员。 Biognosys 目前的年收入约为 1500 万美元,布鲁克预计该公司未来几年将实现两位数的增长。  布鲁克2022年新产品新技术、市场动态大事记  2月,布鲁克推出首款基于timsTOF技术的MPP系统,丰富高通量药物筛选平台。其具有 MALDI 的极快速度和久经考验的稳健性,并且在 HTS 中首次利用了布鲁克创新的捕获离子迁移谱 (TIMS) 技术。TIMS 通过利用分子碰撞截面实现等压线甚至异构体的快速气相分离。这与常规的 50000 质量分辨率和 QTOF-MS 检测相结合,可在 HTS 速度下实现革命性水平的特异性测定。timsTOF MPP 具有双 MALDI / ESI 离子源和布鲁克专利的smartbeam 3D激光技术,可实现与 uHTS 兼容的速度和高通量,并提供独特的基于激光的后电离技术 (MALDI-2 )选项以扩大化合物检测空间。作为 timsTOF MPP 解决方案的一部分,新的 MALDI PharmaPulse 2023 软件支持用于高通量药物筛选的应用。其自动化接口可实现与来自不同供应商的通用调度软件包协同工作。此外,MPP 2023 可将数据和结果无缝传输到下游分析软件,例如 Genedata Screener。  4月,布鲁克宣布收购大气压DART(实时直接电离)技术的创新者IonSense公司,用于加快DART离子源技术的开发,以及加大在应用市场的应用开发投入,包括食品安全和法医学领域。  5月,继收购DART后,布鲁克又一大动作进军工业领域!布鲁克和TOFWERK AG宣布建立战略合作伙伴关系,以提供高速、超灵敏的应用和工业分析解决方案,同时布鲁克对TOFWERK注入了新资本。布鲁克最近收购的实时直接分析(DART)技术与TOF-MS技术融合产生的新型业务机会分析解决方案也在开发计划中。  6月,ASMS2022期间,布鲁克推出DART-EVOQ质谱组合产品,是一款结合了原位电离源(DART)的三重四极杆质谱仪。通过引入用于高通量定量的DART-EVOQ 三重四极杆质谱仪,将实验室内外的质谱分析能力扩展到点对点高效分析。DART-EVOQ 不需要色谱分离来进行食品/饮料、法医、工业、安全、环境和制药等领域的分析。  6月,布鲁克宣布了组织和肿瘤微环境(TME)空间多组学的重要创新。继布鲁克与 AmberGen 建立战略合作伙伴关系后,MALDI HiPLEX-IHC 质谱成像增强了关键性蛋白分析功能。布鲁克还宣布推出了用于 timsTOF fleX 系统的 smartbeam 3D MALDI 光源的 microGRID 模块。  6月,布鲁克公司推出新的 timsTOF HT 系统,进一步拓展了革命性的 4D-多组学 timsTOF 平台。timsTOF HT 采用新型第 4 代 TIMS(trapped ion mobility separation,捕集离子淌度分离)XR cell 和14 位 Digitizer,可实现更宽动态范围、更深的肽段覆盖率和更准确的定量分析。该系统在 4D 血浆、组织蛋白质组和表观蛋白质组学中表现出色。  2022年布鲁克在蛋白质组学、生物制药等领域进行了多项关键收购和商业投资,可以说是动作频频,基于此,2022年仪器信息网特别采访了布鲁克道尔顿中国区掌门人何磊,与他进行了深入的交谈。点击了解  不仅如此,2022年,布鲁克推出timsTOF HT(High Throughput)系统,直面蛋白成像的难题与挑战。可以说,布鲁克基于timsTOF持续进行着技术创新,并努力拓展蛋白质组学应用研究的边界。在此背景下,仪器信息网特别采访了布鲁克道尔顿中国区组学与制药应用经理刘先明,与他就timsTOF平台的里程碑产品技术、4D-蛋白质组学技术以及蛋白组学成像技术难点、未来发展趋势等话题进行了深入的交流。点击了解
  • 云检医学完成B1轮融资,推进质谱蛋白组学与大数据驱动开发平台
    云检医学集团(以下简称“云检医学”)宣布,阿斯利康中金医疗产业基金完成对公司B1轮的独家投资。本轮融资主要用于进一步扩充公司妇幼产品线及癌症检测产品研发管线,并持续推进各产品线在中美两地的注册生产、商业化落地和国际市场的开拓。云检医学是新一代基于蛋白和代谢组学标记物发现技术的平台公司。自2015年成立以来,公司建立了独特的由医学假设驱动,基于质谱蛋白组学与大数据驱动的分析平台,缩短了传统方法发现疾病标记物的周期,并根据标记物特点适配相应的临床诊断平台,实现了快速产品化的闭环路径。目前,公司正在中美日等地快速推进女性及孕期健康、儿童罕见疾病检测,癌症精准诊断和复发监测和代谢类疾病创新检测领域IVD/LDT产品的注册和商业化。云检医学的平台技术创新来源于斯坦福大学医学院背景的研发团队逾19年的积累。创始团队具有在药物开发、疾病生物标志物发现、临床转化和诊断、大数据疾病模型和数据安全等领域丰富的经验。目前,公司已在美国马里兰州、加州、上海、天津、成都等地建立中美双研发中心和GMP工厂,并在马里兰州拥有由美国病理学家学会和美国临床实验室委员会双认证的CAP/CLIA临床实验室。同时,天津云检医学检验实验室取得了国内医疗机构执业许可证,通过双盲对比实验,相关检测项目达到CAP 同等的检测质量水平。在刚刚结束的无锡太湖湾生命健康未来大会上,云检医学宣布与阿斯利康在蛋白质组学和代谢组学领域开展探索性研究合作,包括但不限于基于质谱靶向技术检测药物开发中常见的创新药物靶点。云检医学将为阿斯利康提供质谱驱动的创新药物开发伴随诊断检测,助力精准确定更有效的患者群体和优化临床试验方案。云检医学联合创始人兼首席执行官陈利民先生表示:“作为一家以创新为驱动内核的高科技企业,云检医学始终致力于严肃医疗领域为临床、为患者提供更好的医疗产品和服务。云检医学依托斯坦福大学团队的技术积累和在海外成功运营经验,已经构建了深厚的技术基础和丰富的产品管线,致力于在全球范围内提供妇幼及癌症筛查检测跟踪解决方案。站在新始点,云检医学不仅追求商业化的成果,更致力于探索和实践‘人工智能+多组学检测’的中国路线,让各管线产品融入‘健康中国行动’的大战略。衷心感谢阿斯利康对云检医学的信任和支持,我们希望与投资人以及合作伙伴携手前行,共同成长。”云检医学完成B1轮融资,推进质谱蛋白组学与大数据驱动开发平台阿斯利康中金医疗产业基金董事总经理,阿斯利康中国副总裁、战略合作与业务发展部负责人陈冰先生表示:“尽管质谱平台已在海外科研领域成功商用多年,其在中国临床诊断领域的应用大多限制在传统标志物,市场渗透率也受制复杂的前处理流程。云检医学基于其在组学数据和疾病模型领域的多年积累,搭建的‘质谱蛋白组学与大数据驱动的开发平台’使传统的科研型质谱平台重新焕发了生命力。云检医学美国研发团队已与阿斯利康全球转化医学团队多次合作,我们对公司与阿斯利康中国即将开展的探索性研究合作非常期待。“中金资本总裁,阿斯利康中金医疗产业基金执行事务合伙人委派代表单俊葆先生表示:“云检医学拥有先进的技术、强有力的团队和丰富的产品管线。公司发展至今,已有足够的能力为临床提供精准可及的多种解决方案。我们相信,在科学家团队的带领下,公司将持续引领‘人工智能+多组学检测’行业的发展,造福更多的肿瘤、妇幼等多疾病领域的患者。我们相信云检的国际视野,学术前瞻性,和研发实力将为临床源源不断输出更多更好的诊断工具,使更多患者受益。非常荣幸参与本轮融资,我们将充分调动基金的产融资源,全方位支持公司未来的发展。”关于阿斯利康中金医疗产业基金阿斯利康中金医疗产业基金是由阿斯利康与中金资本联合发起,专注于医疗健康产业投资的私募基金。融合阿斯利康全球的产业优势以及中金资本丰富的资本运作经验,基金聚焦于生物医药、医疗器械、诊断服务、数字医疗等投资领域,致力于汇聚产融资源,为企业及投资伙伴提供双向全周期赋能,共同助力中国医疗健康产业创新发展。
  • 880万!阜外华中心血管病医院国家区域医疗中心高分辨蛋白组质谱成像仪采购项目
    一、项目基本情况1、项目编号:豫财招标采购-2023-272、项目名称:阜外华中心血管病医院国家区域医疗中心设备(高分辨蛋白组质谱成像仪)采购项目3、采购方式:公开招标4、预算金额:8,800,000.00元最高限价:8800000元序号包号包名称包预算(元)包最高限价(元)1豫政采(2)20230060-1阜外华中心血管病医院国家区域医疗中心设备(高分辨蛋白组质谱成像仪)采购项目880000088000005、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等)5.1 采购货物名称及数量:高分辨蛋白组质谱成像仪 1台5.2 标包划分:一个标包5.3 采购货物技术性能指标:具体参数详见招标文件第五章“采购需求”5.4 核心产品:/5.5 采购范围:高分辨蛋白组质谱成像仪的供货、运输、保险、装卸、安装、检测、调试、试运行、验收交付、培训、技术支持、售后保修及相关伴随服务5.6 资金来源:财政资金,已落实5.7 交货期:20日历天5.8 交货地点:采购人指定地点6、合同履行期限:/7、本项目是否接受联合体投标:否8、是否接受进口产品:是9、是否专门面向中小企业:否二、获取招标文件1.时间:2023年02月13日 至 2023年02月17日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。)2.地点:河南省公共资源交易中心网站(http://www.hnggzy.net/)3.方式:投标人凭企业CA 数字证书登录河南省公共资源交易中心网站市场主体登录系统,并按网上提示自行下载投标项目所含格式(.hnzf)的招标文件。4.售价:0元三、投标截止时间及地点1.时间:2023年03月06日09时00分(北京时间)2.地点:通过“河南省公共资源交易中心(http://www.hnggzy.net/)”电子交易平台加密上传。逾期送达的投标文件,电子招标投标交易平台将予以拒收。四、开标时间及地点1.时间:2023年03月06日09时00分(北京时间)2.地点:河南省公共资源交易中心远程开标室(一)-2,郑州市经二路12号(经二路与纬四路向南50米路西)。五、发布公告的媒介及招标公告期限本次招标公告在《河南省政府采购网》、《中国政府采购网》、《河南省公共资源交易中心网》上发布, 招标公告期限为五个工作日。六、其他补充事宜无七、凡对本次招标提出询问,请按照以下方式联系1. 采购人信息名称:阜外华中心血管病医院地址:河南省郑州市郑东新区阜外大道1号联系人:何芸联系方式:0371-586800922.采购代理机构信息(如有)名称:河南省信人工程造价咨询有限公司地址:河南省郑州市金水区文化路9号永和国际1702室联系人:张振辉联系方式:0371-638991563.项目联系方式项目联系人:张振辉联系方式:0371-63899156
  • 1800万!中国医科大学附属第一医院单细胞蛋白组学质谱采购项目
    项目编号:JH22-210000-64371项目名称:中国医科大学附属第一医院单细胞蛋白组学质谱(国家医学检验临床医学研究中心)采购包组编号:001预算金额(元):18,000,000.00最高限价(元):18,000,000采购需求:查看合同履行期限:合同签订后1个月内到货。需落实的政府采购政策内容:对于中小微企业(含监狱企业)、促进残疾人就业的相关规定、对于节能产品、环境标志产品的相关规定等本项目(是/否)接受联合体投标:否中国医科大学附属第一医院单细胞蛋白组学质谱(国家医学检验临床医学研究中心)采购.doc
  • 1086万!长春中医药大学中医药蛋白组学分析检测平台建设采购项目
    一、项目基本情况项目编号:采购计划-[2024]-01439号项目名称:长春中医药大学中医药蛋白组学分析检测平台建设预算金额:1086.000000 万元(人民币)最高限价(如有):1086.000000 万元(人民币)采购需求:本项目主要采购四极杆超高静电场轨道阱超高分辨质谱仪及蛋白纯化系统等仪器设备,用于新药研发,代谢物鉴定、研究与疾病有关的标记物和蛋白组学、脂质组学、小分子和生物大分子的相互作用、快速纯化多种生物分子等,进行中医药生物组学分析检测平台建设。合同履行期限:自签订合同之日起,国产设备30天完成供货安装;进口设备90天内完成供货安装,任何迟交货将不予接受。本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年05月10日 至 2024年05月16日,每天上午9:00至12:00,下午12:00至15:00。(北京时间,法定节假日除外)地点:长春市绿园区皓月大路1888号(吾悦国际中心15栋1908室)方式:有兴趣的合格投标人,请携带营业执照副本、单位负责人授权书(含单位负责人及被授权人身份证明)的原件及加盖红章的复印件,于2024年5月10日起至2024年5月16日(法定节假日除外)北京时间每日9:00至15:00,在吉林省公诚采购建设招投标有限公司领购招标文件。售价:¥1000.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:长春中医药大学     地址:吉林省长春市净月国家高新技术产业开发区博硕路1035号        联系方式:曲婧 0431-86172126      2.采购代理机构信息名 称:吉林省公诚采购建设招投标有限公司            地 址:长春市绿园区皓月大路1888号(吾悦国际中心15栋1908室)            联系方式:李佳 18946768247            3.项目联系方式项目联系人:李佳电 话:  18004312825
  • Nature子刊:尹鹏团队发明质谱流式信号放大技术,大幅提高单细胞及空间蛋白表位分析灵敏度
    质谱流式细胞术可在数百万个单细胞中同时采样并量化分析50多种蛋白质或蛋白质修饰水平。应用质谱流式可从全新的角度判别细胞种类、细胞表型,评估其功能状态和异质性以研究疾病发生和发展的机制。然而,作为一种新兴单细胞蛋白组方法,质谱流式因其技术特性也存有一些功能上的不足之处。目前该技术最大的瓶颈在于其灵敏度的极限,在单细胞中的每种抗原表位需要累积上百个金属标签标记的抗体才可在质谱流式分析中检测到特异性信号。灵敏度不足的问题,使得一些在人类疾病中至关重要的低丰度蛋白,如大量的转录因子、一部分细胞表面受体蛋白以及某些与特定功能相关的磷酸化位点难以被准确分析。在对小体积细胞,例如免疫细胞和微生物细胞的研究中,质谱流式在技术上则更具挑战性。而之前在多个不同实验室进行的放大质谱流式信号的尝试由于信噪比低、放大效果不强、可控性差等问题并没有获得显著效果。如何在不影响信噪比的情况下对质谱流式进行信号放大是一直以来亟待解决的问题。2024年7月29日,哈佛大学Wyss研究所尹鹏教授团队(伦小康博士、盛宽玮博士为共同第一作者)等在 Nature Biotechnology 期刊发表了题为:Signal amplification by cyclic extension enables high-sensitivity single-cell mass cytometry 的研究论文。该研究开发了一种名为循环延伸扩增(Amplification by Cyclic Extension,ACE)的信号放大技术,通过设计DNA动态探针实现对质谱流式技术(mass cytometry)中抗原表位金属同位素标记信号的高效放大,解决了质谱流式分析中的灵敏度瓶颈问题。ACE技术可同时放大30种以上蛋白表位信号。应用在悬浮质谱流式和成像质谱流式(imaging mass cytometry或IMC)中,ACE皆可大幅提升低丰度蛋白信号检测的灵敏度及准确性。在这项最新研究中,研究团队运用独特的DNA动态探针设计方法,创立了单链DNA循环延伸信号放大(Amplification by Cyclic Primer Extension,ACE)技术,实现了同时对多通道抗原表位信号的高信噪比高效放大,并应用于质谱流式技术上以大幅提高其灵敏度。ACE利用超短DNA序列作为起始探针(initiator)标记抗体并对胞内靶蛋白进行染色(图1)。在低温条件下,反应体系内的延伸探针(extender,含有两个相邻的起始探针互补序列)可互补结合在起始探针上,体系中的DNA聚合酶应用延伸探针为模版延长起始探针。提高体系温度后,延伸探针从延长过起始探针上解离,此时一个反应循环结束。当体系温度再次降低时,下一个延伸循环开始,起始探针进一步被延长。通过对起始探针序列的温控循环延伸,ACE可快速复制金属检测探针(detector)结合位点,引入检测探针后,单个抗体所携带的金属同位素标记物数量大幅提升。为提升DNA结构的热稳定性,该团队又结合3-cyanovinylcarbazole phosphoramidite (CNVK) 紫外交联方法将携带金属标记的检测探针共价结合在延伸后的起始探针上,使得检测探针在质谱流式仪内高温环境中不易解离(图1)。线型ACE(linear ACE)信号放大技术可平均提升信号13倍(图2)。但当分析极低丰度蛋白的单细胞信号或微生物单细胞蛋白信号需要更强信号时,可在线型ACE基础上应用分支ACE(branching ACE)以达到对抗原信号的500倍以上的放大。为配合质谱流式多维度蛋白表位分析特点,该团队通过设计正交DNA探针序列实现了对33种蛋白表位互不干扰的同时信号放大。图1. ACE技术流程示意图图2. 应用ACE逐级提高质谱流式抗原表位信号ACE技术建立后,研究团队首先将其应用与分析上皮-间质转化(EMT)和间质-上皮转化(MET)过程中的分子调控机制。通过对32个上皮和间质标记物、信号分子和转录因子的单细胞分析,将单个小鼠乳腺癌细胞从上皮状态到间质状态再回到上皮状态的转化过程进行时间重构,精准的展示细胞如何通过调节关键转录因子如Zeb-1和Snail/Slug的数量变化来驱动了EMT和MET分子程序。在第二个应用中,团队聚焦于单个T细胞胞内磷酸化信号网络。由于T细胞体积较小,在单细胞分辨率下每种磷酸化位点的表位数量有限,所以此前针对单个T细胞信号网络反应异质性的研究一直较难开展。团队应用ACE同时放大T细胞受体(TCR)信号网络内的30种关键磷酸化位点(图3),研究样本中T细胞在受到外部信号刺激时的胞内磷酸化网络特异性激活状态是如何分别调控介导应激、炎症、细胞增殖等反应的。应用该技术,团队分析了“组织损伤诱导T细胞麻痹”的分子信号机理,利用从手术患者获取的“术后引流液”(POF)样本刺激T细胞,并捕捉TCR信号网络的动态特征,揭示出导致部分CD4+ T细胞停止分裂并引起免疫抑制的胞内信号网络变化。图3. 应用ACE技术分析T细胞胞内信号网络动态变化最后,团队使用ACE结合成像质谱流式(Imaging mass cytometry,IMC)对人体肾脏组织切片中的蛋白表位进行高维度空间分析。通过检查从一名多囊肾病患者获得的肾皮质切片并对经信号放大后的20种肾脏标记物的空间表位分析,团队发现了存在于肾皮质部位细胞和组织结构的新病理特征:与组织修复相关的干细胞标记物Nestin在肾小球中的不均匀表达可能意味着组织的不同部位可能同时经历不同的病理阶段。ACE质谱流式信号放大技术是单细胞蛋白分析中一项革命性的突破。这套独特的生物技术在生物医学的各个层面都有着广泛的应用前景,尤其可将单细胞高维蛋白表位定量分析扩展到之前由于技术限制而从未涉及到的低丰度蛋白组。另外,结合成像质谱流式IMC,可在未来实现基于ACE信号放大的超分辨率空间蛋白组学成像分析。
  • 非变性质谱在生物制药完整蛋白分析中的应用
    p   何为非变性质谱?就是选用温和的溶液体系及质谱条件,使蛋白保持在非变性状态下被分析。听到这,有些小伙伴可能会一头雾水:师兄师姐教我处理蛋白质样品的时候,第一步就是要变性啊,怎么现在又不要变性了? /p p   在通常的蛋白质相关分析中,为了破坏蛋白质的三维立体空间结构,便于酶解等操作,会通过加热或是加入高浓度的变性试剂(如尿素、盐酸胍等),使蛋白质变性 另外,对于常用的分离手段——反相色谱来讲,其流动相的酸性pH条件与高有机相同样也会使蛋白质变性。当需要对蛋白质中的非共价结合进行研究时,为了避免非共价结合被强烈的变性条件所破坏,则需在非变性的液相-色谱条件下(通常为50mM醋酸铵,pH=7的中性体系)进行研究 另外,对于组成较为复杂的蛋白样品,在非变性条件下分析时,由于体系中质子数减少,所以蛋白电荷态数目也会相应减少,电荷态之间的相互重叠度也会下降,进而减少复杂组分之间的相互影响,从而能够得到复杂蛋白样品中每个组分的分子量信息(图1)。 /p p style=" TEXT-ALIGN: center" img title=" 图1_副本.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/56171fe8-be7c-4cc8-a672-814a9fe87e30.jpg" / /p p style=" TEXT-ALIGN: center"   strong 图1 /strong 同一样品分别于变性及非变性条件下进行分子量测定的原始谱图 /p p   目前, strong 非变性质谱技术主要应用在两个方面 /strong :一是 strong 生物制药领域 /strong ,通过打开单克隆抗体链间二硫键后在Cys位点上偶联小分子药物(Cys-ADC)的完整分子量分析,此类药物的链间仅靠非共价力结合,故变性条件下各条链会分离,无法测得其完整状态的分子量 另一应用方向为 strong 研究蛋白质多聚体 /strong ,非变性条件下不仅可以保持各个亚基间的非共价相互作用,同时由于中性条件更接近生理状态,得到的结果更具意义。 /p p   现在,非变性质谱与氢氘交换、X-ray衍射、核磁共振、冷冻电镜和cross-linking等技术联合使用、互为补充,已经越来越多的被应用在结构生物学、生物医药等领域的研究中。本期文章将会重点介绍非变性质谱在治疗性生物医药制品完整分子量测定中的研究,下期文章将会侧重介绍非变性质谱用于蛋白复合物的研究进展。 /p p span style=" COLOR: #002060" strong Orbitrap超高分辨质谱:非变性质谱研究的理想平台 /strong /span /p p   古人云:工欲善其事,必先利其器。要想研究做得好,趁手工具不可少!针对于非变性质谱研究中的需求,我们在Orbitrap质谱平台上对相关参数进行了优化,包括离子源区脱溶剂能量、质量范围的扩展以及高质荷比离子传输效率的优化等,使Orbitrap在固有的高分辨率、高质量精度及高灵敏度基础上,在非变性质谱领域也能有出色表现。 /p p style=" TEXT-ALIGN: center" img title=" 图2_副本.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/caeec8f3-896f-4e02-a44a-84aae9ecd287.jpg" / /p p style=" TEXT-ALIGN: center"    strong 图2 /strong Orbitrap质谱平台用于非变性质谱分析 /p p   上文中提到,在生物制药领域中,会通过分子工程设计,在单克隆抗体的特定氨基酸上通过化学反应,偶联上小分子治疗药物,通过单克隆抗体的靶向识别功能将小分子药物精确带至病变细胞处并释放,达到精确给药、减少毒副作用的目的,这类药物被称作抗体药物偶联物(Antibody Drug Conjugates,ADCs)。在这类药物中,通过将单抗链间二硫键打开从而在Cys位点上偶联药物的Cys-ADC,由于其链间仅靠非共价力结合,故需在非变性质谱条件下才能对其完整分子量进行测定(图3)。 /p p style=" TEXT-ALIGN: center" img title=" 图3_副本.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/270ff8dd-d5c1-442b-baf1-f287fcb557b9.jpg" / /p p style=" TEXT-ALIGN: center"   strong  图3 /strong Cys-ADC结构示意图 /p p style=" TEXT-ALIGN: center"   图4展示了使用非变性质谱平台对Cys-ADC进行完整分子量测量的结果。由图中不难发现,使用体积排阻色谱(SEC),可以将单克隆抗体与其他杂质分离开,而Orbitrap质谱平台能够得到基线分离、信噪比高的原始谱图。经数据处理软件解卷积处理后,可见偶联了0/2/4/6/8个小分子药物的簇峰分布,符合Cys-ADC的典型分布特征 解卷积后计算所得该ADC的药物/抗体比值(Drug to Antibody Ratio, DAR),与之前报道过的DAR值相符。 /p p style=" TEXT-ALIGN: center" img title=" 图4_副本.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/b494de8a-6ac5-42cf-ad12-d84637e32bef.jpg" / /p p style=" TEXT-ALIGN: center"    strong 图4 /strong 使用非变性质谱平台对Cys-ADC进行完整分子量测量。 /p p style=" TEXT-ALIGN: center"   (上),原始色谱/质谱图 (下),解卷积后谱图。 /p p   作为对照,在变性条件下也对同一个样品进行了分子量测定(图5),发现链间的非共价结合在强烈的变性条件下均被破坏,只能观察到部分ADC的分子量信息。该实验进一步说明了在非变性条件下对Cys-ADC进行分子量测定的必要性。 /p p style=" TEXT-ALIGN: center" img title=" 图5_副本.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/46b85220-b769-47dc-b534-f92c93b56cff.jpg" / /p p style=" TEXT-ALIGN: center"    strong 图5 /strong 变性质谱条件下对Cys-ADC进行分子量测量。 /p p style=" TEXT-ALIGN: center"   (上),原始色谱/质谱图 (下),解卷积后谱图。 /p p   对于常见的另外一种ADC——Lys-linked ADC,虽然其小分子药物与单克隆抗体是通过共价键相结合,但偶联上小分子药物后,ADC的复杂度大大增加,此时若在非变性条件下进行分子量测定,可以减少信号之间的干扰,得到更加准确的测量结果(图6)。 /p p style=" TEXT-ALIGN: center" img title=" 图6_20170406090915_副本.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/7c9e60f0-f01a-45eb-85eb-f9dceece9c46.jpg" / /p p style=" TEXT-ALIGN: center"   ▲非变性条件可减少复杂组分间信号重叠 /p p style=" TEXT-ALIGN: center" img title=" 非变性2_20170406090518_副本.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/e634be51-bf68-49f2-b7be-e205227a7242.jpg" / /p p style=" TEXT-ALIGN: center"   ▲非变性条件下Lys-ADC完整分子量测量结果 /p p style=" TEXT-ALIGN: center"    strong 图6 /strong 使用非变性质谱平台对Lys-ADC进行完整分子量测量。 /p p    strong 小结 /strong /p p   本期我们对非变性质谱技术的原理、适用范围进行了介绍,并以Cys-ADC与Lys-ADC样品的完整分子量测量为例展示了该方法的应用,不知道小伙伴们有没有对非变性质谱技术有个初步的了解呢?下期我们将会介绍该技术在蛋白复合物研究中的应用,各位看官走过路过不要错过,我们下期见! /p p   参考文献 /p p   [1] Dabaene et al., Anal Chem. 2014, Nov 4 86 (21):10674-83. /p p & nbsp /p
  • 南昌大学预算1730万采购4套代谢/蛋白组学研究质谱(附详细技术指标)
    p   日前, 江西省南昌大学食品学院发布发酵工程领域大型系列化研究设施(代谢组学研究质谱等)采购项目,预算1730万采购4套质谱系统,其中2套蛋白组学研究质谱,2套代谢组学研究质谱,并给出了详细的技术指标: /p p   项目编号:JXDY2020-G0067 /p p   项目名称:南昌大学食品学院发酵工程领域大型系列化研究设施(代谢组学研究质谱等)采购项目 /p p   预算金额:1730.0000000 万元(人民币) /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 103px " src=" https://img1.17img.cn/17img/images/202011/uepic/2a157889-5108-4b77-aaed-ddcd0f71e19d.jpg" title=" 微信图片_20201118100404.png" alt=" 微信图片_20201118100404.png" width=" 600" height=" 103" border=" 0" vspace=" 0" / /p p strong   技术要求 /strong /p p   strong  一、代谢组学研究质谱: /strong /p p   1.基本配置要求: /p p   1.1 四极杆-飞行时间质谱仪(配备独立 ESI、APCI 离子源):2套。 /p p   1.2系统软件:2套,包括:质谱采集分析软件、高通量定量模块软件,定性处理分析模块软 /p p   件,全景定量采集模块软件各两套。 /p p   1.3代谢组学软件:2套 /p p   1.4系统实时校正系统:2套。 /p p   1.5专业版 Microsoft Office 2016软件:2套。 /p p   1.6工作站电脑:2套,配置不低于:双核3.6G CPU,内存4GB,3× 1TB硬盘,DVD-RW,23″ /p p   液晶显示器,正版Windows10操作系统。 /p p   1.7数据分析处理服务器:2套,配置不低于Dual Intel Xeon Gold 6134 Processors,64GB /p p   DDR4 (8x8GB) 2666MHz RDIMM ECC RAM. 2x 3.5 2TB 7200rpm SATA HDD in one RAID1 Volume, /p p   8x DVD+/-RW Slimline。 /p p   1.8泵油 4 瓶。 /p p   1.9二元高压混合泵:2套。 /p p   1.10温控自动进样器:2台。 /p p   1.11控温柱温箱:2台。 /p p   1.12五通道在线脱气机:2 套。 /p p   1.13配套大型氮气发生器:1套。 /p p   1.14配套大型不间断电源:20KVA (含8小时电池、电池箱):1套。 /p p   1.15 C18 色谱柱:2根。 /p p   1.16 2 mL 样品瓶:200个。 /p p   1.17配套启动试剂及工具包:2套。 /p p   2.质谱联用仪要求技术指标: /p p   2.1 质谱主机:精确质量数四极杆-飞行时间质谱仪。 /p p   2.2质量范围(m/z):5-40000amu或更宽。 /p p   2.3分辨率:扫描速度& gt 60张谱图/秒时分辨率≥40000 FWHM。 /p p   2.4离子源: /p p   2.4.1清洗离子源时不影响系统真空。 /p p   2.4.2电喷雾源(ESI)。 /p p   2.4.3 ESI 源流速10 µ L~3mL/min,100%H2O无需分流。 /p p   2.4.4灵敏度:柱上 1 pg 利血平(m/z 609.2807),S/N& gt 2000:1。 /p p   2.4.5 离子源温度:≥700℃,保证最好的雾化效果,避免直接加热产生的热裂解。 /p p   大气压化学源(APCI)。 /p p   2.4.6 APCI 源流速 50 µ L-3mL/min,100%H2O 无需分流。 /p p   2.4.7 灵敏度:柱上 1 Pg 利血平(m/z 609.2807),S/N& gt 2000:1。 /p p   2.5质谱数据采集速度:大于60张谱图/秒同时同时仪器稳定性≤1ppm。 /p p   2.6检测器数据转换速率:& gt 25GHz。 /p p   2.7质量精确度:≤1 ppm。 /p p   2.8必须配离子聚焦装置(必须为iFunnel 离子聚焦装置或 StepWaveXS离子聚焦装置或S-lens离子聚焦装置或 Qjet 离子聚焦装置中的一种)。 /p p   2.9 DIA扫描速度& gt 80可变窗口,最窄2 Da。 /p p   2.10谱图内动态范围:& gt 105。 /p p   2.11检测器:高性能电子倍增器。 /p p   2.12工作流程:具有定性、定量和同时定性定量三种工作模式。 /p p   2.12.1完全定性分析:使用强大的信息关联数据采集模式(IDA)和高分辨、高准确质量数一级扫描和二级扫描模式,获得相应的高分辨准确质量数一级谱图和二级谱图,完成对未知物的鉴定。 /p p   2.12.2完全定量分析(高分辨 MRM 定量,MRMHR):高分辨 MRM 定量分析具有高选择性和数据可靠的特点,同一张质谱图中全质量范围都具有高分辨、准确质量质谱数据,可以用于高分辨质谱数据的定量分析。 /p p   2.12.3同时定性定量分析:一针进样,用高分辨一级质谱定量分析样品中的所有化合物,同时利用高分辨准确质量数二级质谱定性确证化合物。 /p p   2.13 质谱控制和数据分析软件。 /p p   2.13.1在一个窗口中,可以同时查看多个样本的谱图,比如通过重叠的色谱图或热流图(heat maps)进行快速简单的定性数据查看和比较。 /p p   2.13.2数据处理参数可用于大样本组,在数据处理和查看时节省时间。 /p p   2.13.3可以快速生成提取离子流色谱图,几秒钟内就可以给出几千个化合物的谱图,可用于筛查和确证。 /p p   2.13.4利用进样的 MS/MSALL 数据(所有产物的母离子),可对单张谱图独特的扫描类型产生的全部的碎片进行可视化,有助于快速理解常见的碎裂和中性丢失。 /p p   2.13.5分子式发现器和结构解析等独特的工具,可以在分子水平上详细研究和表征化合物。其主要特点是加入了同位素丰度比和质量精度来过滤元素组成,同时可通过不饱和度、N-规则等也可帮助正确解析化合物的分子式,方便快捷。 /p p   2.13.6定量软件和处理软件,可用于小分子和大分子肽类化合物,符合 GLP 的定量分析软件,内有多种不同的定量积分模式,帮助 您更合理的积分色谱峰,界面方便快捷。 /p p   2.13.7实时质量亏损触发的 IDA 功能,一级 MS 扫描可同时接 50 个以上 MS/MS 扫描,该扫描模式能够实时捕获获得母药代谢产物的一级质谱信号,进行重点关注 MSMS,获得最多的母药代谢产物,特别在蛋白和药物相互作用研究。 /p p   2.14具有智能动态背景扣除,数据采集过程中,仪器自动选择某一时间点上离子强度有显著变化的离子去进行MS/MS分析,从而避免收集与洗脱液、色谱柱等相关的背景离子,有效提高信息关联扫描的MS/MS谱图收集的效率和质量,能够很好的克服按强度低丰度化合物采集 /p p   不到MSMS的弊端。 /p p   2.15计算机工作站:商用电脑。 /p p   2.15.1 处理器规格:≥Intel 酷睿双核,主频≥3 GHz,高速缓存≥3 MB。 /p p   2.15.2 内存:≥8 GB,DDR3-1333,有可扩展空闲插槽。 /p p   2.15.3 显卡:独立显卡,显存≥1GB,具备 DVI 或 HDMI 输出接口。 /p p   2.15.4 硬盘:7200 rpm,容量≥4 TB,有可扩展空闲插槽。 /p p   2.15.5 I/O 接口:千兆网卡,USB3.0 接口。 /p p   2.15.6 显示器:尺寸≥21 英寸,最佳分辨率≥1920× 1080,具备 DVI或 HDMI 输入接口。 /p p   2.15.7 系统软件:正版 windows10专业版、工作站所需的支持软件。 /p p   2.15.8 Microsoft office 2016专业版操作软件。 /p p   2.16 计算服务器不低于此配置:Dual Intel Xeon Gold 6134 Processors. 64GB DDR4 (8x8GB) /p p   2666MHz RDIMM ECC RAM. 2x 3.5 2TB 7200rpm SATA HDD in one RAID1 Volume. 8x DVD+/-RW /p p   Slimline. /p p   3.高效液相色谱技术要求指标: /p p   3.1二元并联高压混合泵: /p p   3.1.1流量范围:0.001~5.000 mL/min,步进 0.001 mL/min。 /p p   3.1.2最大压力:18500 Psi 。 /p p   3.1.3流量准确度:& lt 0.5% 。 /p p   3.1.4流量精密度:& lt 0.05% 。 /p p   3.1.5梯度混合精确度:& lt 0.15% 。 /p p   3.1.6梯度混合类型:二元高压混合。 /p p   3.1.7滞后体积:≤150 μL。 /p p   3.2温控自动进样器: /p p   3.2.1样品位数:不少于 110 位,同时兼容孔板及常规样品瓶。 /p p   3.2.2进样体积:0.01~20μL。 /p p   3.2.3交叉污染:0.005%。 /p p   3.2.4进样精度:& lt 0.15% RSD。 /p p   3.2.5自动进样器还具有自动样品稀释。自动进样器温控范围:5~40℃。 /p p   3.3 可冷却的柱温箱: /p p   3.3.1安全性能:具备防止误开门功能,在线监测泄露情况。 /p p   3.3.2柱温箱温控范围:5~100℃。温度稳定性:± 0.1℃。温度精度:± 0.1℃。 /p p strong   二、蛋白质组学研究质谱: /strong /p p   1.基本配置: /p p   1.1 四极杆-飞行时间质谱仪(配备独立 ESI、APCI 离子源):2套。 /p p   1.2系统软件:2套,包括:质谱采集分析软件、高通量定量模块软件,定性处理分析模块软件,全景定量采集模块软件各两套。 /p p   1.3蛋白质数据采集和分析软件:2套。 /p p   1.4系统实时校正系统:2套。 /p p   1.5专业版 Microsoft Office 软件:2套。 /p p   1.6工作站电脑2套,配置不低于:双核3.6G CPU,内存4GB,3× 1TB硬 盘,DVD-RW,23″ /p p   液晶显示器,正版windows10操作系统。 /p p   1.7数据分析处理服务器:2套,配置不低于Dual Intel Xeon Gold 6134 Processors,64GB DDR4 (8x8GB) 2666MHz RDIMM ECC RAM. 2x 3.5 2TB 7200rpm SATA HDD in one RAID1 Volume,8x DVD+/-RW Slimline。 /p p   1.8泵油:4瓶。 /p p   1.9二元纳升色谱泵:2套。 /p p   1.10自动进样器:2套。 /p p   1.11控温柱温箱:2套。 /p p   1.12微流组件:2 套。 /p p   1.13 上样泵:2套。 /p p   1.14配套大型氮气发生器:1套。 /p p   1.15配套大型不间断电源:20KVA (含8小时电池、电池箱):1套。 /p p   1.16配套启动试剂及工具包:2套。 /p p   2.质谱联用仪要求技术指标: /p p   2.1质谱主机:精确质量数四极杆-飞行时间质谱仪。 /p p   2.2质量范围(m/z):5-40000amu或更宽。 /p p   2.3分辨率:扫描速度& gt 60张谱图/秒时分辨率≥40000 FWHM。 /p p   2.4离子源:清洗离子源时不影响系统真空。 /p p   2.4.1电喷雾离子源(ESI): /p p   ESI 源流速10 µ L~3 mL/min,100%H2O 无需分流。 /p p   灵敏度:柱上 1 pg 利血平(m/z 609.2807),S/N& gt 2000:1。 /p p   离子源温度:≥700℃,保证最好的雾化效果,避免直接加热产生的热裂解。 /p p   2.4.2大气压化学离子源(APCI): /p p   APCI 源流速 50 µ L~3 mL/min,100%H2O 无需分流。 /p p   灵敏度:柱上 1 Pg 利血平(m/z 609.2807),S/N& gt 2000:1。 /p p   2.4.3微流离子源组件: /p p   微流离子源耐受流速范围1-200 µ L/min。 /p p   配套喷雾针1-50 µ L/min和喷雾针50-200 µ L/min。 /p p   2.5质谱数据采集速度:大于60张谱图/秒同时仪器稳定性≤1 ppm。 /p p   2.6检测器数据转换速率:& gt 30 GHz。 /p p   2.7质量精确度:≤1 ppm。 /p p   2.8必须配离子聚焦装置(必须为iFunnel 离子聚焦装置或 StepWaveXS离子聚焦装置或 /p p   S-lens离子聚焦装置或 Qjet 离子聚焦装置中的一种)。 /p p   2.9 DIA扫描速度& gt 80可变窗口,最窄2 Da。 /p p   2.10 谱图内动态范围:& gt 105。 /p p   2.11检测器:高性能电子倍增器。 /p p   2.12工作流程:具有定性、定量和同时定性定量三种工作模式。 /p p   2.12.1完全定性分析:使用强大的信息关联数据采集模式(IDA)和高分辨、高准确质量数一级扫描和二级扫描模式,获得相应的高分辨准确质量数一级谱图和二级谱图,完成对未知物的鉴定。 /p p   2.12.2完全定量分析(高分辨 MRM 定量,MRMHR):高分辨 MRM 定量分析具有高选择性和数据可靠的特点,同一张质谱图中全质量范围都具有高分辨、准确质量质谱数据,可以用于高分辨质谱数据的定量分析。 /p p   2.12.3同时定性定量分析:一针进样,用高分辨一级质谱定量分析样品中的所有化合物,同时利用高分辨准确质量数二级质谱定性确证化合物。 /p p   2.13 质谱控制和数据分析软件。 /p p   2.13.1在一个窗口中,可以同时查看多个样本的谱图,比如通过重叠的色谱图或热流图(heat maps)进行快速简单的定性数据查看和比较。 /p p   2.13.2数据处理参数可用于大样本组,在数据处理和查看时节省时间。 /p p   可以快速生成提取离子流色谱图,几秒钟内就可以给出几千个化合物的谱图,可用于筛查和确证。 /p p   2.13.3利用进样的 MS/MSALL数据(所有产物的母离子),可对单张谱图独特的扫描类型产生的全部的碎片进行可视化,有助于快速理解常见的碎裂和中性丢失。 /p p   2.13.4分子式发现器和结构解析等独特的工具,可以在分子水平上详细研究和表征化合物。其主要特点是加入了同位素丰度比和质量精度来过滤元素组成,同时可通过不饱和度、N-规则等也可帮助正确解析化合物的分子式,方便快捷。 /p p   2.13.5定量软件和处理软件,可用于小分子和大分子肽类化合物,符合GLP 的定量分析软件,内有多种不同的定量积分模式,帮助您更合理的积分色谱峰,界面方便快捷。 /p p   2.13.6实时质量亏损触发的 IDA 功能,一级 MS扫描可同时接 50 个以上MS/MS 扫描,该扫描模式能够实时捕获获得母药代谢产物的一级质谱信号,进行重点关注 MSMS,获得最多的母药代谢产物,特别在蛋白和药物相互作用研究。 /p p   2.14 具有智能动态背景扣除,数据采集过程中,仪器自动选择某一时间点上离子强度有显著变化的离子去进行MS/MS分析,从而避免收集与洗脱液、色谱柱等相关的背景离子,有效提高信息关联扫描的MS/MS谱图收集的效率和质量,能够很好的克服按强度低丰度化合物采集不到MSMS的弊端。 /p p   2.15计算机工作站:商用电脑。 /p p   2.15.1处理器规格:≥Intel 酷睿双核,主频≥3 GHz,高速缓存≥3 MB。 /p p   2.15.2 内存:≥8 GB,DDR3-1333,有可扩展空闲插槽。 /p p   2.15.3 显卡:独立显卡,显存≥1 GB,具备 DVI或 HDMI 输出接口。 /p p   2.15.4 硬盘:7200 rpm,容量≥4 TB,有可扩展空闲插槽。 /p p   2.15.5 I/O 接口:千兆网卡,USB3.0 接口。 /p p   2.15.6 显示器:尺寸≥21英寸,最佳分辨率≥1920× 1080,具备 DVI或HDMI 输入接口。 /p p   2.15.7 系统软件:正版 windows 10 专业版、工作站所需的支持软件。 /p p   2.15.8 Microsoft office 2016 专业版操作软件。 /p p   2.16 计算服务器不低于此配置:Dual Intel Xeon Gold 6134 Processors. 64GB DDR4 (8x8GB)2666MHz RDIMM ECC RAM. 2x 3.5 2TB 7200rpm SATA HDD in one RAID1 Volume. 8x DVD+/-RW& nbsp Slimline. /p p   3.二元纳升蛋白质分离系统技术要求指标: /p p   3.1二元高压纳流液相:采用先进的无分流模式提供恒定流量的流动相。 /p p   3.2最大耐压:≥10000 psi。 /p p   3.3具备纳流梯度泵,流速范围含有:100-1000 nL/min,1-50 μL/min,或具有更宽的流速范围。 /p p   3.4配备自动进样器、柱温箱、进样针。 /p p   3.5配备上样泵,或相关上样设计。 /p p   3.6微流1-10 μL /min模块,包括柱温箱加热模块,进样针等。 /p p   注:以上“技术部分”要求为实质性条款须完全响应,否则投标无效。 /p p br/ /p
  • 定量蛋白组方案升级——全新Velocity LFQ DIA 工作流程正式发布
    今天的蛋白组学研究中,研究人员们在转化研究,生物标志物发现,甚至单细胞分析等过程中,不止是追求简单的鉴定,更多的需要获取准确可靠的定量信息,用以理解生物学问题。 他们需要使用精确的定量检测方法来表征生物系统之间的差异,对大量样本进行高置信度、高通量的表征,验证生物学假说。在刚结束的USHUPO中,赛默飞正式推出了全新的Velocity LFQ DIA 工作流程。 该平台基于Thermo Scientific Orbitrap 超高分辨质谱仪、Thermo Scientific Vanquish NEO UHPLC 系统以及高效的 Thermo Scientific µ PAC UHPLC 色谱柱技术,具有优异的定量性能,蛋白组深度覆盖,并可轻松实现高通量分析,匹配今天研究人员们对定量蛋白组学研究的需求。 下面就由小编给大家介绍该平台的工作流程,并展示其在定量表征、蛋白组覆盖度和方法通量中的性能。WorkflowVelocity LFQ DIA 工作流程Velocity LFQ DIA 工作流程组成如图1 所示,包括Vanquish Neo UHPLC 系统和µ PAC Neo UHPLC 色谱柱用于色谱分离,Easy-Spray 纳升离子源和 Orbitrap Exploris 240/480 用于质谱数据采集,Spectronaut软件用于数据分析。图1. Velocity LFQ DIA 工作流程示意图(点击查看大图)色谱分离:大队列研究中需要有稳健的色谱设置(分离技术、色谱柱等),确保系统长期稳定运行。 Vanquish Neo UHPLC 系统可实现高重现性,并可进行多种类型的 LC-MS 实验。 新的色谱分离技术同样也可提高系统稳健性,例如基于微阵列的 µ PAC Neo 色谱柱,可提高分析灵敏度和保留时间稳定性 [1] 。质谱分析:除了稳健性和重复性之外,可靠的鉴定和定量在蛋白组学研究中十分重要。 Orbitrap 技术可提供高质量精度以及高分辨率,是复杂 DIA 扫描中可靠鉴定,以及准确、精确检测并分辨离子类型的关键因素。数据分析:DIA谱图中为混合母离子碎裂后所得的混合子离子谱图,通常需要使用谱图库方法进行解析。 但是,随着数据分析软件(例如,使用机器学习方法模拟预测获得高质量的谱图库)的发展,无需谱图库的方法成为了节约时间和成本的一种选择。Key WordsVelocity LFQ DIA 工作流程三个关键词:定量、覆盖度、通量为了深入展示 Velocity LFQ DIA的性能,我们建立一个稳健、高重现性的工作流程,可实现复杂样品中蛋白的准确鉴定和定量。 其中使用了两个不同的混合样品,包括两种蛋白组和三种蛋白组混合样品(图2),质谱数据采集使用OE240质谱仪。图2. Velocity LFQ DIA 工作流程性能展示所使用的的实验设计。 A,两种蛋白组混合样本,包括高含量的人类肽段背景(800 ng Hela 酶解肽段),低到中含量的 Ecoli肽段,比值为1:2:4:8; B,三种蛋白组混合样本,中等含量的人类肽段背景(325 ng Hela 酶解肽段),以及酵母和Ecoli肽段,比值分别为1:0.5和1:4。 这些混合样本分别模拟生物样本中的上调和下调蛋白表达情况。 (点击查看大图)01出色的定量性能分别对上述两种样本进行30min的LC-MS采样,数据采用Spectronaut16,directDIA的方式进行数据分析,肽段和蛋白的FDR均小于1%。Ecoli和hela的混合样本中,ecoli蛋白在4个样本中的3个不同比值均十分接近理论比值,且所有数据点在中位数附近分布很窄,展示了Velocity LFQ DIA工作流程的高定量准确性和精密度(图3A)。 此外,技术重复间肽段的 CV 值均小于 7%(图3B),说明该工作流程具有高定量精密度。图3. 工作流程的定量准确性和精密度展示,使用两个蛋白组混合样本。 A,Ecoli蛋白三个不同比值下的实际比值,以箱型图展示,橙色虚线为理论比值; B,4个不同比例下肽段丰度CV的小提琴图。 (点击查看大图)同时,使用Velocity LFQ DIA工作流程可获得约5个数量级的人类蛋白动态范围(图4A),有助于低丰度蛋白的发现。 在高含量的hela肽段背景下,使用该工作流程可发现很多细菌体内的重要蛋白,包括与转录翻译相关,以及人类干扰素诱导相关的ecoli蛋白。 另外,选取了Ecoli中十个丰度最低的蛋白,发现它们在不同样品间的实际比值依然十分接近理论比值(图4B),说明该工作流程即使在低丰度蛋白情况下仍可获得高定量准确性。图4. A,两个蛋白组混合样本的蛋白丰度分布; B,Ecoli中十个丰度最低蛋白的实际比值与理论比值偏差 (点击查看大图)在三个蛋白组混合样本中,Velocity LFQ DIA工作流程同样展示了出色的定量性能。 实际比值与理论比值之前偏差02深度蛋白组覆盖使用Spectronaut16的directDIA方法分析两个蛋白组样品,在不损失定量性能的同时,可获得深度蛋白组覆盖。 然后使用第三方软件DIA-NN [2] 分析相同的数据集,可获得与sp16类似的结果。 当使用Spectronaut17软件时,改善的directDIA+方法可提高30%的母离子鉴定,及10%的蛋白鉴定(图6),30min梯度内,不使用谱图库可获得接近7000个蛋白鉴定。 这表明Velocity LFQ DIA工作流程不仅可获得出色的定量性能,也可实现深度蛋白组覆盖,此外也说明了不使用谱图库可作为一种有效的DIA数据分析方法。 如果想进一步提高蛋白组覆盖深度,也可通过建立合适谱图库的方法实现。图6. 使用library free方法分析两个蛋白组样品可实现深度蛋白组覆盖。 柱状图比较了三个不同的软件(或版本)所得的蛋白和母离子数目,FDR03高通量流程在上述所展示的Velocity LFQ DIA工作流程中,有效梯度为30min,实际时长为每针39min,可提供每天分析 36个样品的通量。 另外,在一些大队列研究中,研究人员需要更高的分析通量。 在Velocity LFQ DIA工作流程中使用了Vanquish Neo液相,其使用灵活,且经过优化样品吸取、上样、色谱柱清洗和平衡等流程,可有效提高质谱利用率 [3] ,可方便研究人员根据项目需求,进一步提高样品通量。04工作流程稳健性为了验证Velocity LFQ DIA工作流程的稳健性,从一个持续两个月时间(使用同一根色谱柱)的项目中选取其中的一部分数据作为展示。 采用 200 ng Hela肽段,DDA实验作为系统性能的 QC,在两个月内间歇运行,梯度为67min,结果如图7所示。 由结果可知,肽段和蛋白的鉴定数字在整个500小时的项目中(总上样量约为130 µ g)保持一致(鉴定数字变化在5%以内)。 这说明了色谱柱,色谱分离以及质谱的稳健性,这对大队列研究十分重要,是获得良好数据的基础。图7. 两个月的使用时间内,肽段和蛋白鉴定的重现性。 在整个实验周期中,间歇运行DDA QC实验,数据分析使用CHIMERYS算法。 (点击查看大图)小结Velocity LFQ DIA工作流程结合了 Vanquish Neo 系统,µ PAC Neo色谱柱以及 Orbitrap 超高分辨质谱仪,是高通量非标蛋白组DIA鉴定和定量的一种理想工作流程。采用30min梯度的OE240方法展示了该工作流程的主要性能特点: 出色的定量深性能、蛋白组深度覆盖和分析高通量。Velocity LFQ DIA工作流程适用于需要高通量、稳健性、高准确性精密度定量性能和深度蛋白组覆盖的定量蛋白组学研究。
  • 4D-组学新时代!开启转化蛋白组学4D时代
    质谱稳定性和分析通量影响蛋白质组学向临床转化蛋白质组学技术是寻找疾病分子标志物和药物靶标最有效的方法之一,但受到质谱稳定性、定量重复性和分析通量的影响,蛋白质组学向临床转化一直面临挑战。在传统生物标志物的研究中,常采用三角形的研究策略(图2A),因为受到质谱稳定性和分析通量的影响,不管是在生物标志物早期发现过程还在中,还是在最终的确认过程,都无法进行大规模蛋白组学研究。随着样本制备、色谱分离和质谱技术的进步,临床蛋白组学渐渐开始走向大队列研究,矩形研究策略(图2B)则是趋势,尤其4D-蛋白质组学的出现,更是让蛋白质组学显现出了向临床转化的广阔前景。高通量分析加快蛋白质组学向临床转化为了应对大队列蛋白质组学挑战,开发扫描速度更快,灵敏更高的质谱仪是提升蛋白覆盖深度最有效的办法,提高质谱仪的稳定性是获得定量重复性的保障,保证蛋白覆盖度深度的前提下缩短色谱梯度是提高临床大队列样本分析通量的捷径。Max Plank生化研究所主任Matthias Mann博士联合布鲁克,共同研发的4D-蛋白质组学平台timsTOF Pro,让蛋白组学技术产生了革命性的变化,超过120 Hz的MS/MS扫描速度,出色的稳定性和灵敏度使其正成为临床高通量蛋白组学研究的理想平台。高通量dia-PASEF方案进一步增强4D-蛋白质组学为了进一步加快4D-蛋白质组学向临床转化,布鲁克在ASMS 2020发布了高通量dia-PASEF方案(图4),即将Evosep One LC与timsTOF Pro再次联合,最大程度发挥Evosep One LC快速分离和timsTOF Pro扫描速度和稳定性的优势。该方案目前有4种方法(图4B),分别采用4.8min、7.2min、14.4min和24min色谱方法,对应的每天可以分析300、200、100和60蛋白质组学样本,把蛋白组学分析通量提升到一个全新的高度。分析结果(图4C,4D)显示出此方案在保证分析通量的同时,蛋白覆盖深度也有很好的保证,4.8min的分析单针可以鉴定2158蛋白,24min可以得到与传统蛋白组学长梯度分析相当的结果。小结timsTOF Pro带来的采集速度与灵敏度的同时提升,使得其在短梯度下也能实现蛋白深度覆盖,结合其在大队列样本分析中展现出的卓越稳定性,相信基于4D质谱平台开发的高通量和高灵敏度临床蛋白组学方法,必将在生物医学基础研究和临床诊断中有着广阔的应用前景。伴随随着4D-蛋白质组学方案的不断完善,转化蛋白组学将进入全新时代,临床队列研究也必将从中获益。 参考文献:Stephanie Kaspar-Schoenefeld, et al., High throughput 4D-Proteomics – Application of dia-PASEF® and the Evosep One for short gradients. App Note LCMS-170Thomas Kosinski, et al., Maximized throughput and analytical depth for shotgun proteomics using PASEF on a TIMS equipped QTOF. ASMS 2018, TP 685Thomas Kosinski,et al., Short nanoLC gradients optimize throughput on a TIMS equipped QTOF with PASEF, ASMS 2019, TP 514.Philipp E Geyer, et al., Revisiting biomarker discovery by plasma proteomics, Mol Syst Biol. (2017) 13: 942
  • 赛默飞与西湖欧米携手推进临床蛋白组学快速发展
    近日,赛默飞与西湖欧米(杭州)生物科技有限公司(以下简称:西湖欧米)深化合作签约仪式在赛默飞客户体验中心举办。西湖欧米(杭州)生物科技有限公司于2020年7月创立,是一家专注于 AI 赋能的微观世界数据公司。西湖欧米致力于将蛋白质组大数据与人工智能相结合,基于生物质谱数字化技术,开发其他组学和蛋白质组学辅助临床诊断的新方法,助力精准医学和药物研发。 近年,随着蛋白组学的研究不断深入,越来越多的潜力标志物被不断发现,但是将潜在的标志物向临床转化时会碰到各种问题,比如稳定性,敏感度、特异性等,还需要通过大量的临床验证,建立合适的模型,临床案例积累,临床教育等工作,并且需要在严格的医学检测体系管理下的临床检测实验室进行高通量可靠的分析,从而真正给临床提供价值。此次合作,基于2021年西湖欧米和赛默飞“临床蛋白质组在转化医学中的应用领域”设立联合实验室并开展系列合作后,获得了一系列进展。此次合作将着重于合作转化,共同将临床真正受益的方案和产品推广到常规医学检测和治疗中。郭天南西湖欧米创始人“AI赋能的蛋白质组学可助力精准医学,为生命健康带来新的曙光。“工欲善其事,必先利其器”,在临床蛋白组学的发展道路上,精密的仪器设备、优秀的合作伙伴,以及创新、科学的思想,都是至关重要的。欧米和赛默飞的深入合作是强强联手,未来可期。”沈 严赛默飞色谱和质谱业务中国区商务副总裁“很高兴能和西湖欧米进一步深入合作,基于之前非常振奋人心的合作成果,此次合作将着眼于将成果进行转化,将科研,AI大数据与临床衔接,希望通过双方多个维度的合作能真正推出符合市场符合临床的产品,并给当代医疗提供实际的助力。”赛默飞代表在现场还表示,在国际上,我们已经看到不少研究机构和企业在临床蛋白组学转化的路上做出了一些创新和成绩,因此非常高兴能和国内的行业领导者西湖欧米进行深入合作,相信在不久的将来,通过合作能看到更多的蛋白组学应用于临床的成功案例,这将开启临床蛋白组学的一个新的篇章。 深化合作签约仪式后,双方进行了深度的讨论和交流。
  • 沃特世11月3日"食品过敏原分析:非靶向组学研究和靶向蛋白组学分析"网络讲座即将启动
    日期: 2017年11月3日时间: 14:00 – 16:00地点: 网络讲座语言: English 食物过敏原是食物中可能导致体内异常免疫反应的成分,通常是相对分子量为10000?70000的蛋白质或糖蛋白。食物过敏研究是蛋白质组学在食品科学领域的重要应用。食物过敏会导致皮肤发红和肿胀,甚至休克死亡,这是一个需要高度关注的问题。 曼彻斯特大学的Clare Mills教授是这个领域非常活跃的学者。她与当地医院建立了良好的合作关系,通过大量的临床样本分析,从食物过敏原标志物的发现、鉴定到其对人体的影响开展了广泛的研究。 在研究中,她使用高水平的离子淌度质谱系统发现食物过敏原标志物,进一步开发了可应用于食品过敏原监测和常规检测的高灵敏度LC / MS(串联四极杆质谱)检测方法。 在本讲座中,Mills教授将以花生为代表与您分享研究思路和成果。 主讲人:Clare Mills博士 曼彻斯特大学,炎症与修复研究所,曼彻斯特生物技术研究所,曼彻斯特健康科学学术研究所分子变态学教授 Mills教授目前在曼彻斯特大学从事分子过敏原研究,并领导欧盟综合项目iFAAM和EuroPrevall。 Mills教授运用分子科学研究过敏原,更好地诊断和治疗食物过敏症。 登录沃特世官网并搜索“食品过敏原分析:非靶向组学研究和靶向蛋白组学分析”即可进行注册报名。 此网络讲座免费报名参加。您只需要使用一台链接网络的电脑即可参加,如果您需要在讲座中加入讨论或语音提问,请您提前准备好麦克风。收到您的注册信息后我们会筛选并在讲座前一天通过电子邮件给您发送讲座登录链接。如有任何问题请拨打电话:021-61562642或发送邮件至minxing_guo@waters.com,谢谢。
  • Scientific Reports:使用单外泌体表征分析技术与蛋白组学检测乏氧状态的肾细胞癌外泌体
    肾细胞癌(RCC)是常见的一种肾脏癌症。RCC现在仍然缺少有效的医学诊断指标,已经成为RCC治疗方法开发的大挑战。外泌体是一种潜在的癌症诊断指标,细胞分泌的外泌体的组成会因细胞的生理状态不同而发生变化。肿瘤内乏氧是癌症发生、发展及扩散的一个关键因素。研究表明,处于乏氧状态的细胞分泌的外泌体会影响癌细胞的增殖、扩散以及肿瘤血管生成,且与外泌体的内容物有关。外泌体内容物的表型可以通过蛋白组学和转录组学方法检测,但这些方法过于繁琐,难以用于医学诊断。单个外泌体表型分析是将免疫学与光学结合的一种新技术。该技术先利用免疫识别将特定的外泌体进行捕获分离,然后再对目标外泌体的表面标志物及内容物(如携带的蛋白质、RNA、DNA及细胞因子)进行定量分析,从而更加全面地反映外泌体的特性。该技术在短短两年时间,备受广大科研工作者的关注。本文将为大家分享使用单外泌体表征分析技术与蛋白组学检测乏氧状态的肾细胞癌外泌体,以供参考。研究人员先分离了鼠RCC细胞的细胞培养上清液,使用基于单个外泌体表型分析技术的全自动外泌体荧光检测分析系统Exoview检测了在乏氧和正常状态下分泌的外泌体中CD81和CD9亚群的含量。图1结果表明,乏氧状态下分泌的含CD81与含CD9外泌体均为正常状态下的3.1-3.6倍。图1 ExoView检测乏氧与正常RCC细胞外泌体表型接下来使用Western Blot检测上清液以及不同纯化方法获得的外泌体的蛋白含量。由图2结果可知,WB无法检测到上清液(左列)中的蛋白,而Exo-spin排阻色谱法(中列)和梯度超速离心法(右列)获得的外泌体中,乏氧RCC的CD81和CD9低于正常组,与Exoview的结果相一致。 图2 Western Blot检测不同纯化方法获得的外泌体的蛋白含量确定了不同状态条件下细胞分泌的外泌体表面标志物有差别后,研究人员使用了SERS,TG-RS(图3)和TG-SERS(图4)检测不同纯化方法获得的外泌体的谱线。由谱线可知,TG-RS和TG-SERS法检测Exo-spin法纯化的外泌体,可以分辨出乏氧和正常外泌体的不同谱峰。后,研究人员使用质谱检测了Exo-spin法纯化的外泌体。蛋白组学分析结果表明,乏氧外泌体的CD9的表达量高于正常,这与Exoview和WB结果一致。图3 TG-RS与一般SERS检测不同纯化方法获得的外泌体的谱线图4 TG-SERS检测Exo-spin法纯化获得的外泌体的谱线本研究的TG-RS结果中,不同纯化方法的结果也有不同,这既说明了TG-RS方法检测的高灵敏度,也说明纯化确实影响了外泌体样品的组成。Exoview使用细胞上清液或其他体液的原液直接进行检测,通过芯片上的抗体特异性结合外泌体,可以排除杂质的影响,无需对样品进行纯化,而WB等方法由于浓度限制无法直接检测。也说明,Exoview可以作为一种标准的外泌体表型检测方法,作为其他检测和诊断方法开发的有效参照。作为外泌体表征分析的倡导者,美国NanoView Biosciences于2018年推出了全自动外泌体荧光检测分析系统ExoView,该系统一经推出,便引起了外泌体领域科研工作者的广泛关注,凭借其稳定、出色的性能,短短几年在全球已有近百个客户,发表文献100多篇。ExoView的表征,能够帮助科学家更深入地了解外泌体与疾病之间的关系,助力疾病诊断和新药开发。参考文献: [1] Samoylenko, A., Kögler, M., Zhyvolozhnyi, A., Makieieva, O., Bart, G., Andoh, S. S., ... & Hiltunen, J. (2021). Time-gated Raman spectroscopy and proteomics analyses of hypoxic and normoxic renal carcinoma extracellular vesicles. Scientific reports, 11(1), 1-14.全自动外泌体荧光检测分析系统(ExoView R100)简介Nanoview所开发的全自动外泌体荧光检测分析系统(ExoView R100)采用单粒子干涉反射成像传感器(SP-IRIS)技术,是一款无需纯化的全自动的新型外泌体表征设备。该设备能够提供全方位的外泌体表征信息,包括颗粒大小、计数、表型与生物标志物共定位等,提供多层次和全面的外泌体测量解决方案。为了更好的服务中国客户,Quantum Design中国子公司在北京建立了专业的客户服务中心,正式推出专业的全方位外泌体表征测试服务,您只需要少量样品即可获得全方位的外泌体表征数据。欢迎各位老师垂询:010-85120280。前10名订购服务的老师,可享受8折优惠!扫描上方二维码,即刻订购吧!
  • MALDI-TOF质谱再次鉴定出新型变异血红蛋白(hemoglobin variant)
    近日,北京大学深圳医院检验科纪玲博士团队使用融智生物的QuanTOF质谱平台再次发现新型变异血红蛋白(hemoglobin variant),即Hb-柳州,这是该团队继Hb-辽宁后发现的又一种新型变异血红蛋白。相关研究结果已经发表在Scandinavian Journal of Clinical and Laboratory Investigation上,在此,小融将此篇文献进行解读分享给大家,供参考。血红蛋白(Hb)是由两对α和β珠蛋白链组成的多肽四聚体。血红蛋白变异是最常见的遗传性单基因疾病之一,以血红蛋白结构缺陷为特征。迄今为止,已有超过1350种主要由α-或β-珠蛋白基因突变引起的变异血红蛋白被记录在案,每种变体都具有特定的生物学特性。虽然大多数Hb变异杂合子是无症状的,但一些复合杂合子或纯合子会产生显著的临床症状。因此,对Hb进行产前基因鉴定和咨询具有重要意义。目前,检测血红蛋白组分及其糖化形式的最常用方法是基于阳离子交换高效液相色谱(HPLC)或毛细管电泳(CE)技术。此外,质谱(MS)已被用于分析血红蛋白变异。本文报道了用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)测定HbA1c时发现的一种新的变异血红蛋白,而基于 HPLC和CE技术的HbA1c检测程序未能确定其存在。一位来自广西柳州的23岁妇女来我院做例行检查。她的血糖结果为3.99 mmol/L(参考区间:3.90–6.10 mmol/L)。HbA1c分析最初由Variant II Turbo 2.0进行,与正常对照组相比,在展开色谱图右侧观察到异常凸起。因此,我们进一步检测了残留样本,发现了一个新的Hb变异体,用病人的出生地把它命名为Hb-柳州。使用HPLC系统、硼酸盐亲和层析系统、CE系统(HbA1c程序)和MALDI-TOF MS系统(QuanTOF,融智生物)重新分析HbA1c,用CE系统的Hb程序进行Hb分析。图. 糖化血红蛋白和血红蛋白分析。通过Variant II Turbo 2.0(A),HPLC系统(B),和CE系统(HbA1c程序)(C)检测糖化血红蛋白。血红蛋白分析是通过CE系统的Hb程序(D)。如上图所示,HbA1c结果分别为4.8%(29 mmol/mol,Variant II Turbo 2.0)、4.7%(28 mmol/mol,硼酸盐亲和层析系统)、4.2%(22 mmol/mol,HPLC系统)和4.6%(27 mmol/mol,CE系统)。上述HbA1c技术均未检测到异常峰值。血红蛋白分析也显示97.7%HbA和2.3%HbA2没有异常。图. MALDI-TOF MS(QuanTOF)血红蛋白分析。(A)非变异样品的质谱图显示α-链(15127 Da)、β-链(15868 Da)以及相应的糖基化α-链(15289 Da)和糖基化β-链(16030 Da)。(B) Hb-柳州的质谱图显示一个变异的α-链峰(15155Da)。QuanTOF检测的HbA1c值为4.8%(29 mmol/mol)。同时,在质谱图中发现了质量为15155da的变异链,变异链占总α链的26.4%。基因分析证实了QuanTOF的检测结果。通过Sanger测序发现在HBA1基因上存在一个新的杂合突变[HBA1:C.182A→G],该突变导致密码子60处的编码从赖氨酸(分子量:146 Da)改变为精氨酸(分子量:174Da)。该结果与QuanTOF的检测结果一致。图.Hb-柳州Sanger序列测定结果。箭头表示杂合突变[HBA1:C.182A→G] 在HBA1基因中。该研究发现了一个新的变异株Hb-柳州,用MALDI-TOF MS代替传统的阳离子交换HPLC和CE的HbA1c检测方法,可以很容易地鉴别出是否存在Hb-柳州。研究结果表明,阳离子交换HPLC和CE法在检测新的血红蛋白变异方面面临挑战。然而,MALDI-TOF MS通过正常和变异链之间足够的质量差可以检测到变异链,可以作为鉴别和定量变异血红蛋白(hemoglobin variant)的选择方法。参考文献:Anping Xu, Weidong Chen, Weijie Xie & Ling Ji (2020): Identification of a new hemoglobin variant Hb Liuzhou [HBA1:C.182A→G] by MALDI-TOF mass spectrometry during HbA1c measurement, Scandinavian Journal of Clinical and Laboratory Investigation, DOI:10.1080/00365513.2020.1783698
  • SYNAPT系列高分辨质谱又一力作 | 南开李功玉团队:助力微小差异蛋白构象高效解析
    研究背景蛋白质分子在真实生命条件下的结构和功能特性往往受多种环境因子调控,包括配体分子、缓冲条件以及各种类型翻译后修饰等。作为一种常见的翻译后修饰,蛋白不稳定聚糖修饰,例如糖基化中的唾液酸化修饰,在各种生物过程中发挥着至关重要的作用。然而,由于天然可变性和环境敏感性,在完整蛋白水平研究唾液酸化修饰的构效关系一直缺乏合适的结构分析手段。论文简介近日,南开大学李功玉课题组(研究方向:大分子结构质谱分析)与福州大学李金宇课题组(研究方向:计算化学生物学与药物化学)合作,发展《糖型分辨去折叠离子淌度质谱》方法,利用课题组自主开发的《结构质谱指引下的分子动力学模拟》技术,成功揭示了唾液酸化修饰与糖蛋白构象稳定性之间的复杂关系(Chem. Sci. 2024, DOI: 10.1039/D4SC03672G)。该研究通过对唾液酸化模式、化学计量学信息及其对构象稳定性影响的综合分析,系统阐明唾液酸化调节蛋白质动态三维结构的分子机制,为蛋白低丰度翻译后修饰结构的快速高效解析提供一种新思路。该工作是李功玉课题组在《构象分辨质谱分析》领域的应用方法学拓展与深化,通过发展全离子去折叠、非变性离子淌度质谱和全原子分子动力学模拟技术,使构象分辨质谱分析从小肽(Angew. Chem. Int. Ed. 2023, e202314578 Chem. Sci. 2023, 5936-5944 Anal. Chem. 2023, 2221-2228)跨越至大蛋白(Chem. Sci. 2024, DOI: 10.1039/D4SC03672G Anal. Chem. 2023, 10895-10902 Anal. Chem. 2022, 2142-2153),成功实现微小差异的蛋白动态构象的快速高效分辨分析,有效提高了结构质谱解析气相蛋白动态构象的结构分辨率(Nat. Commun. 2019, 10, 5038),属于化学测量学领域质谱分析方向的前沿研究课题。研究亮点开发了一种糖型分辨蛋白构象去折叠策略,通过课题组前期报道的全离子去折叠 (AIU) 与非变性离子淌度质谱 ( Native IM-MS ) 联用技术,实现了对不同糖型蛋白质构象的稳定性快速分析和动态去折叠过程的可视化追踪(Chem. Sci. 2024, DOI: 10.1039/D4SC03672G)。通过自主构建的定量分析构象参数,定量揭示唾液酸化对蛋白构象稳定性的调控作用,首次发现唾液酸化可以稳定蛋白质构象,并限制其动态构象转变(Chem. Sci. 2024, DOI: 10.1039/D4SC03672G)。将课题组前期(Chem. Sci. 2023, 5936-5944)提出的《结构质谱指引下的分子动力学模拟》新思路,首次拓展至大蛋白( 80 kDa)结构解析。利用这种独创结构质谱解析平台,课题组近期成功解析蛋白气相去折叠的新型分子机制(Chin. Chem. Lett. 2024, in press),发现富含片层的结构域优先去折叠,并观察到 β-片层到 α-螺旋的动态转变,同时证明 α-螺旋比 β-片层具有更高的稳定性。该方法具有较强的广泛适用性,未来可应用于几乎所有蛋白体系。研究内容首先,为了表征不同胎球蛋白的唾液酸化模式,作者进行了基于 EThcD 的自下而上的糖蛋白质组学实验,图 1b 总结了牛胎球蛋白(bFT)和人胎球蛋白(hFT)的位点特异性糖基化模式。值得注意的是,具有两个唾液酸的糖型在 bFT 中占主导地位,而具有一个唾液酸的糖型在 hFT 中最为丰富(图 1c)。图1. bFT 和 hFT 的糖基化模式为了探究完整蛋白质结构与特定糖型之间的联系,作者开发了一种糖型分辨去折叠策略,该方法结合了非变性离子淌度质谱(Native IM-MS)与全离子去折叠(AIU)技术。通过优化转移池电压, hFT 的氧鎓离子和主要蛋白形式(电荷状态 12+ 、 13+ 和 14+)都得到了很好的分离,通过糖型分辨去折叠实验确定的糖型也与糖蛋白组分析一致(图 2b)。为了更加直观地比较蛋白质构象,作者为每种糖蛋白生成了 AIU 指纹图谱。实验结果表明,随着唾液酸数量的增加,第二个构象与第三个构象之间的 CCS 值差异逐渐缩小。此外,三唾液酸化的 hFT 具有四个构象,而其他唾液酸形式则具有五个构象,由此说明唾液酸的数量可能与胎球蛋白的构象灵活性有关(图 2c)。图2. 糖型分辨全离子去折叠可视化图谱为了进一步阐明唾液酸化诱导的蛋白质结构变化,作者量化了一系列的构象参数,包括 CCS 、 AIU50 等。第一个构象转变(T1)的 AIU50 值随着唾液酸个数增加而升高(图 3b 和 3f),这意味着唾液酸化会稳定糖蛋白结构,作者推测这可能是通过促进唾液酸和蛋白质结构域之间的额外静电相互作用和氢键作用实现的。值得注意的是,在 hFT 的第二个转变(T2)中观察到了相反的趋势,作者推测可能是唾液酸化在一定程度上促进了蛋白质的构象灵活性(图 3f)。之后,作者利用展开曲线来量化去折叠比例,并绘制了关于唾液酸化构象稳定性和动态转换的图谱。通过监测 CCS 变化百分比与碰撞电压的关系,绘制了展开曲线(图 3c 和 3g)。展开曲线显示,随着唾液酸数量的增加,去折叠起始能量逐渐增加,这表明存在明显的依赖唾液酸数量的展开趋势。同时,糖型分辨去折叠策略放大了构象差异, bFT 和 hFT 的 RMSD 分别为 5.9%~20.8% 和 7.7%~20.9% (图 3d 和 3h)。这些发现凸显了基于 AIU 方法在表征由不稳定的聚糖修饰诱导的细微构象变化方面的优势。图3. 糖型分辨去折叠定量分析胎球蛋白构象稳定性最后,为了研究唾液酸化与蛋白质结构之间的相互作用,作者使用唾液酸水解酶对 bFT 进行消化,同时通过分子动力学模拟进一步阐明了气相中 Asn99 和 Asn156 唾液酸化对蛋白动态构象变化的影响。唾液酸化与去唾液酸化牛胎球蛋白的 MD 结果都表现出四个构象,且具有可接受的 CCS 误差(图 4d)。唾液酸化亚型(646.8 K)的熔解温度(Tm)高于去唾液酸化亚型(642.1 K),表明唾液酸化有助于维持蛋白质构象(图 4e)。对去折叠中间体中 α-helix 和 β-sheet 结构占比的分析表明,唾液酸化有利于维持 bFT 中二级结构的适当折叠(图 4f)。加热过程中的代表性展开特征(图 4g )表明唾液酸化聚糖可以包裹并紧实蛋白质结构。综上,作者认为末端唾液酸化稳定了胎球蛋白构象并限制了其动态结构波动。图4. 唾液酸化对胎球蛋白构象的稳定作用该研究为深入理解蛋白质不稳定聚糖修饰的结构和功能提供了新的见解,为疾病诊断和治疗提供了新的理论基础。同时,该研究也为开发新的蛋白质结构解析方法提供了新的思路。相关研究成果以“Sialylation-induced stabilization of dynamic glycoprotein conformations unveiled by time-aligned parallel unfolding and glycan releasing mass spectrometry”(《构象分辨质谱助力微小差异蛋白构象高效解析》)为题在线发表于化学领域重要期刊、英国皇家化学会旗舰期刊 Chemical Science 上。 南开大学化学学院 2022 级硕士研究生王雅梅、科研助理贾翼菲以及南通大学刘以畅博士为该文共同一作。李功玉研究员和李金宇教授为本文共同通讯作者。美国威斯康星大学麦迪逊分校李灵军教授和刘源博士对本项目提供了重要的技术支持。本文主要质谱数据均采集于天津《物质绿色创造与制造海河实验室》结构质谱分析平台。本研究工作获国家重点研发计划、国家高层次人才计划、国家自然科学基金和中央高校基本科研业务费等项目资助。另附:南开大学李功玉课题组(详细信息请参考课题组主页:李功玉课题组 ( x-mol.com ))常年招聘科研助理和师资博士后,欢迎对大分子结构质谱感兴趣的同仁联系(ligongyu@nankai.edu.cn),重点引进具有有机合成化学、计算化学、细胞生物学和蛋白质组学等背景的相关研究方向人才。论文信息Sialylation-induced stabilization of dynamic glycoprotein conformations unveiled by time-aligned parallel unfolding and glycan releasing mass spectrometryYifei Jia, Yichang Liu, Yamei Wang, Jinyu Li* and Gongyu Li*Chem. Sci., 2024https://doi.org/10.1039/D4SC03672G作者简介 王雅梅 硕士研究生南开大学本文第一作者,2022 年本科毕业于南京师范大学,同年保送至南开大学化学学院攻读硕士学位(导师:李功玉研究员),研究课题主要聚焦疾病相关蛋白的结构质谱解析新方法开发。 刘以畅 讲师 南通大学 本文共同第一作者,2022 年于福州大学获物理化学博士学位(导师:李金宇教授),现任南通大学药学院讲师,研究方向为计算化学生物学与药物化学。 李功玉 研究员南开大学本文通讯作者,南开大学化学学院,特聘研究员、博士生导师。国家高层次青年人才计划入选者、国家重点研发计划青年项目首席科学家。2017 年博士毕业于中国科学技术大学化学系,随后在密西根大学和威斯康星大学麦迪逊分校完成博士后研究,于 2021 年 2 月加入南开大学化学学院,研究方向为大分子结构质谱分析。 李金宇 教授福州大学本文共同通讯作者,教授、博士生导师,福州大学化学学院院长助理。2011 年于荷兰阿姆斯特丹大学和法国里昂高等师范学院获化学与材料学双硕士,2015 年于德国亚琛工业大学医学院获生物学博士学位,同年于德国于利希研究中心先进模拟研究院从事博士后研究,2016 年加入福州大学化学学院、生物药光动力治疗技术国家地方联合工程研究中心。研究方向为蛋白质计算化学生物学理论方法开发与应用。本文说明了离子淌度技术在蛋白构象研究中的重要作用。沃特世一直致力于不断开发创新质谱相关技术,如特色离子淌度技术、特色成像技术等,同时以“助力客户成功”为使命,期待更多的用户合作及科学成果!
  • 非变性质谱技术融合结构生物学和组成蛋白组学
    大家好,本周为大家分享一篇发表在Accounts of Chemical Research上的综述,Native Mass Spectrometry at the Convergence of Structural Biology and Compositional Proteomics [1],文章的通讯作者是美国西北大学的Neil L. Kelleher教授。生命活动由一系列生物大分子相互作用驱动,这些相互作用距今已进化了数十亿年。正如乙酰化和磷酸化等共价修饰可以改变蛋白质的功能一样,与金属、小分子和其他蛋白质的非共价相互作用也可以改变蛋白质的功能。然而,传统的蛋白质组学方法会分离非共价相互作用并使蛋白质变性,导致许多蛋白质水平的生物学信息尚未被发现或仅靠推断获取。就在过去的几年中,质谱(MS)技术不断发展,目前已具备维持内源性蛋白复合物完整组成并表征其特征的能力。采用非变性质谱(Native Top-Down MS, nTDMS)激活蛋白复合体,可以释放部分或全部亚基,通过与中性气体或固体表面碰撞,在进一步表征之前分离。亚单位质量、母离子质量和活化亚单位的碎片离子可以拼凑出复合物的精确分子组成,包括蛋白质修饰在内的相互作用也能被阐明,并与人类疾病状态下的功能障碍联系起来。在本综述中,作者详述了nTDMS技术目前的发展和未来在表征更大的生物复合体方面所面临的挑战。目前,nTDMS可以靶向内源性核小体复合物,而病毒颗粒、外泌体和高密度脂蛋白颗粒表征或将在未来几年内得到深度解析。为充分解决这类大小为兆到千兆道尔顿级别的复合物的表征,未来的工作将主要集中于非变性分离、单离子质谱(Single ion mass spectrometry)和新的数据类型。为了实现这一目标,Kelleher教授课题组近年来发展了一系列策略,概括为以下几个方面(1)靶向非变性质谱表征整个核小体(图1);(2)非靶向蛋白质组学深度解析内源性蛋白质复合物;(3)单分子质谱(Single molecule MS)。其中提到,阻止对非变性蛋白质进行整体表征最大的障碍之一可能是分子量分布于100 kDa到1 MDa的复合物的分辨率较差。而电荷检测MS通过直接测量离子电荷提供大型复合物的分子分布。此外有研究表明,通过对单分辨离子进行centroiding和rebinning,Orbitrap仪器的有效分辨率可以在电荷检测工作流程之上大大提高。在这种被称为“单离子质谱法(Individual Ion Mass Spectrometry, I2MS)”的技术中,可以同时检测数千个单离子,并允许在复杂混合物中分配约500种proteoforms的质量(前提是它们先前已被表征并且在数据库中可查找)。I2MS可用于分析病毒样颗粒和AAVs(图2)。图1. 核小体表征图2. 病毒颗粒检测未来随着技术的发展和创新,nTDMS都将扩展到研究极其稀缺和高度异质的生物复合物,了解蛋白质间的相互作用以及它们是如何出错的(例如错误折叠,在功能失调的化学计量和组成中形成复合物)。这些将不仅为疾病治疗的发展提供信息,还将深化我们在分子水平上对生命的理解。撰稿:张颖编辑:李惠琳原文:Native Mass Spectrometry at the Convergence of Structural Biology and Compositional Proteomics
  • “技”往开来 -- 浅谈4D-蛋白组学技术发展史(一)
    截至目前,人类蛋白质组计划收录的质谱数据可覆盖人类约90%的蛋白,同比可映射至其他物种的蛋白。尽管如此,复杂体系单针蛋白组学鉴定深度依旧受限于液相分离能力、质谱扫描速度和灵敏度等因素。近些年,基于离子大小和结构在气相中进行分离的技术成为质谱领域的关注焦点。该技术不仅在高效性和便捷性上点燃了大众对离子淌度的兴趣,更因其能结合传统液相 (LC) 和质谱 (MS) 的技术优势而备受瞩目。为了能将基于新型捕集离子淌度的4D-蛋白质组学技术讲清楚,我们将通过一系列的文章,携各位共同回顾捕集离子淌度结合飞行时间质谱的发展历程和前沿的进展。01TIMS和PASEF技术的发展离子淌度谱 (Ion mobility spectrometry, IMS) 是通过额外加入一维离子淌度从而将离子根据大小和形状在气相中分离。传统漂移IMS中离子受弱电场中惰性缓冲气体阻尼效应,与惰性气体分子的碰撞会延缓运动。离子穿过漂移管的迁移时间由离子与缓冲气体的碰撞频率决定。因此离子迁移时间与结构、大小、质荷比及缓冲气体性质相关,根据迁移时间即可换算出离子碰撞截面积值 (Collision cross sections,CCS),CCS值小的离子相较于CCS值大的离子能够更早的到达检测器。自1960年代起,IMS和MS检测器实现耦合,随后各种IMS方法被研发出来并不断更新。这其中包括漂移时间淌度谱(DIMS)、行波离子淌度谱(TWIMS)和捕集离子淌度谱(TIMS)等。尽管IMS在毫秒级的分析时间尺度增加了其在蛋白组学研究中的应用潜力,但仪器和数据的复杂度高及灵敏度低限制了IMS的广泛应用。目前,布鲁克专注于TIMS (trapped ion mobility spectrometry, TIMS) 和PASEF (parallel accumulation-serial fragmentation, PASEF) 联合技术。尽管从离子淌度发展的悠久历史来看,TIMS和PASEF兴起于十年前,属于相对新颖的技术,但新一代技术能够大幅增加离子传输效率和扫描速度,具有应用于蛋白质组学研究的无限潜力。2011年TIMS的推出 (Fernandez-Lima,et al. 2011) 颠覆了传统IMS技术,用气体吹动离子逆电场迁移并根据离子淌度将其分批释放。这种设计使离子淌度分辨率可不受设备物理尺寸限制大幅提升从而实现空间紧凑设计,也可在比常规低一个数量级的电压下运行。目前商业配置的设备拥有双TIMS配置,第一个TIMS具有10cm的离子通道主要用于离子捕集,而与其串联的第二个TIMS负责离子的分批释放。由于双TIMS能够将离子捕集和释放周期形成闭环,从而提升离子利用率至100%。在100ms极短时间内TIMS可对特定淌度区间的离子富集并将其压缩至1~2ms半峰宽的淌度峰,这就为TIMS结合TOF质量分析器实现快速检测提供了可能性。impact II平台配备了一个TIMS,成为新一代timsTOF仪器的前身。02TIMS和PASEF技术原理TIMS将离子捕获在一个电动通道中,通道从入口到出口充斥着2~3 mbar的气流 (图二A)。气流对各离子产生的吹力会因其空间横截面积产生差异,横截面积越大则受到的吹力越大。这种气流吹力促使离子往前运动,而沿通道增强的直流电场阻力方向则恰好相反,当受到的气体吹力和反向电场力相等时,离子将会稳定淌度管在这一特定位置,即离子被捕集住。由于相同离子淌度离子会稳定在相同位置上,这就使得在离子源区域和传输过程中呈现发散状态的离子实现时间和空间上的聚焦,有利于提高仪器灵敏度和扫描速度。分析过程中,通过逐渐降低电场强度将离子在淌度维度上逐级洗脱,离子受到气体推力不变,而随着电场力下降,离子就由大到小分批释放。电场强度的调节是通过保持出口电压不变,以恒定的用户定义的频率增加通道入口电压来实现。在相同累积时间的情况下,单TIMS会损失超过一半的离子,因为离子在释放的时候需要阻止离子源过来的离子进入淌度管,以免打乱其中离子分布稳态,而离子源端离子是持续存在的。因此,Silveira等人提出增加为双TIMS设计解决了该问题,该设计将整个通道分区为离子捕获区、离子传输区和TIMS分析区三个区域 (图二B)。这种双TIMS的配置将离子累积和释放划分在不同区域完成,也使得累积和释放能够实现时间上的并行。离子在捕获区被捕获累积,随后通过一步简单的传递将其转移至分析区进行离子淌度分析。同一时间,捕获区会再次被下一批离子填满,从而实现离子零浪费 (Silveira et al. 2017)。近些年,串联TIMS成为了发展趋势。PASEF的设计理念是利用离子累积和释放同步进行来提高MS/MS实验的效率。多肽离子通过捕集型离子淌度分析器进行分离,洗脱(~100ms)并在QTOF中检测,生成TIMS MS热图。在PASEF方法中,离子在淌度分析器中的分离和四级杆隔离同步进行,四级杆能快速切换到下一个母离子。timsTOF Pro采用了一种先进的分段四极质量过滤器,以提高离子传输和隔离效率。由于其超快的质量轴切换时间(034D-蛋白质组学的诞生2018年12月01日,德国Max Plank Institute生化研究所的 Matthias Mann团队在新一期的《Molecular Cellular Proteomics》上在线发表了研究论文《Online Parallel Accumulation–Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer》,文章中对timsTOF Pro平台在蛋白质组学分析中的表现进行了详细评估,也让4D-蛋白质组学正式进入大众视野,超快的灵敏度、超高的采集速度和超好的稳定性,让人们印象深刻。离子淌度首次被引入到大规模蛋白质组学分析,这使得蛋白质组学进入了4D新时代。4D-蛋白质组学是在3D分离即保留时间(retention time)、质荷比(m/z)、离子强度(intensity)这三个维度的基础之上增加了第四个维度,离子淌度(mobility)的分离(图5),进而大幅度的提高峰容量、扫描速度和检测灵敏度,带来蛋白质组学在鉴定深度、检测周期、定量准确性等性能的全面提升。相信到这里,大家对4D-蛋白质组学技术研发背景有了一个全面的了解。小编在这里也提前做一个预告,在的面的几期,我们将进一步对全4D的采集模式(dda-PASEF® ,dia-PASEFF® ,prm-PASEF® )及其应用优势、4D-数据处理等方面进行详细的讲解。参考文献 Florian Meier, et al., Online Parallel Accumulation–Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Molecular & Cellular Proteomics, 2018Florian Meier, et al.,Trapped Ion Mobility Spectrometry and Parallel Accumulation-Serial Fragmentation in Proteomics. Molecular & Cellular Proteomics, 2021Fernandez-Lima, et al., Gas-phase separation using a trapped ion mobility spectrometer. Int.J. Ion Mobil. Spectrom. 2011
  • “技”往开来 -- 浅谈4D-蛋白组学技术发展史(一)
    截至目前,人类蛋白质组计划收录的质谱数据可覆盖人类约90%的蛋白,同比可映射至其他物种的蛋白。尽管如此,复杂体系单针蛋白组学鉴定深度依旧受限于液相分离能力、质谱扫描速度和灵敏度等因素。近些年,基于离子大小和结构在气相中进行分离的技术成为质谱领域的关注焦点。该技术不仅在高效性和便捷性上点燃了大众对离子淌度的兴趣,更因其能结合传统液相 (LC) 和质谱 (MS) 的技术优势而备受瞩目。为了能将基于新型捕集离子淌度的4D-蛋白质组学技术讲清楚,我们将通过一系列的文章,携各位共同回顾捕集离子淌度结合飞行时间质谱的发展历程和最新的进展。01TIMS和PASEF技术的发展离子淌度谱 (Ion mobility spectrometry, IMS) 是通过额外加入一维离子淌度从而将离子根据大小和形状在气相中分离。传统漂移IMS中离子受弱电场中惰性缓冲气体阻尼效应,与惰性气体分子的碰撞会延缓运动。离子穿过漂移管的迁移时间由离子与缓冲气体的碰撞频率决定。因此离子迁移时间与结构、大小、质荷比及缓冲气体性质相关,根据迁移时间即可换算出离子碰撞截面积值 (Collision cross sections,CCS),CCS值小的离子相较于CCS值大的离子能够更早的到达检测器。自1960年代起,IMS和MS检测器实现耦合,随后各种IMS方法被研发出来并不断更新。这其中包括漂移时间淌度谱(DIMS)、行波离子淌度谱(TWIMS)和捕集离子淌度谱(TIMS)等。尽管IMS在毫秒级的分析时间尺度增加了其在蛋白组学研究中的应用潜力,但仪器和数据的复杂度高及灵敏度低限制了IMS的广泛应用。目前,布鲁克专注于TIMS (trapped ion mobility spectrometry, TIMS) 和PASEF (parallel accumulation-serial fragmentation, PASEF) 联合技术。尽管从离子淌度发展的悠久历史来看,TIMS和PASEF兴起于十年前,属于相对新颖的技术,但新一代技术能够大幅增加离子传输效率和扫描速度,具有应用于蛋白质组学研究的无限潜力。2011年TIMS的推出 (Fernandez-Lima,et al. 2011) 颠覆了传统IMS技术,用气体吹动离子逆电场迁移并根据离子淌度将其分批释放。这种设计使离子淌度分辨率可不受设备物理尺寸限制大幅提升从而实现空间紧凑设计,也可在比常规低一个数量级的电压下运行。目前商业配置的设备拥有双TIMS配置,第一个TIMS具有10cm的离子通道主要用于离子捕集,而与其串联的第二个TIMS负责离子的分批释放。由于双TIMS能够将离子捕集和释放周期形成闭环,从而提升离子利用率至100%。在100ms极短时间内TIMS可对特定淌度区间的离子富集并将其压缩至1~2ms半峰宽的淌度峰,这就为TIMS结合TOF质量分析器实现快速检测提供了可能性。impact II平台配备了一个TIMS,成为新一代timsTOF仪器的前身。02TIMS和PASEF技术原理TIMS将离子捕获在一个电动通道中,通道从入口到出口充斥着2~3 mbar的气流 (图二A)。气流对各离子产生的吹力会因其空间横截面积产生差异,横截面积越大则受到的吹力越大。这种气流吹力促使离子往前运动,而沿通道增强的直流电场阻力方向则恰好相反,当受到的气体吹力和反向电场力相等时,离子将会稳定淌度管在这一特定位置,即离子被捕集住。由于相同离子淌度离子会稳定在相同位置上,这就使得在离子源区域和传输过程中呈现发散状态的离子实现时间和空间上的聚焦,有利于提高仪器灵敏度和扫描速度。分析过程中,通过逐渐降低电场强度将离子在淌度维度上逐级洗脱,离子受到气体推力不变,而随着电场力下降,离子就由大到小分批释放。电场强度的调节是通过保持出口电压不变,以恒定的用户定义的频率增加通道入口电压来实现。在相同累积时间的情况下,单TIMS会损失超过一半的离子,因为离子在释放的时候需要阻止离子源过来的离子进入淌度管,以免打乱其中离子分布稳态,而离子源端离子是持续存在的。因此,Silveira等人提出增加为双TIMS设计解决了该问题,该设计将整个通道分区为离子捕获区、离子传输区和TIMS分析区三个区域 (图二B)。这种双TIMS的配置将离子累积和释放划分在不同区域完成,也使得累积和释放能够实现时间上的并行。离子在捕获区被捕获累积,随后通过一步简单的传递将其转移至分析区进行离子淌度分析。同一时间,捕获区会再次被下一批离子填满,从而实现离子零浪费 (Silveira et al. 2017)。近些年,串联TIMS成为了发展趋势。PASEF的设计理念是利用离子累积和释放同步进行来提高MS/MS实验的效率。多肽离子通过捕集型离子淌度分析器进行分离,洗脱(~100ms)并在QTOF中检测,生成TIMS MS热图。在PASEF方法中,离子在淌度分析器中的分离和四级杆隔离同步进行,四级杆能快速切换到下一个母离子。timsTOF Pro采用了一种先进的分段四极质量过滤器,以提高离子传输和隔离效率。由于其超快的质量轴切换时间(034D-蛋白质组学的诞生2018年12月01日,德国Max Plank Institute生化研究所的 Matthias Mann团队在新一期的《Molecular Cellular Proteomics》上在线发表了研究论文《Online Parallel Accumulation–Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer》,文章中对timsTOF Pro平台在蛋白质组学分析中的表现进行了详细评估,也让4D-蛋白质组学正式进入大众视野,超快的灵敏度、超高的采集速度和超好的稳定性,让人们印象深刻。离子淌度首次被引入到大规模蛋白质组学分析,这使得蛋白质组学进入了4D新时代。4D-蛋白质组学是在3D分离即保留时间(retention time)、质荷比(m/z)、离子强度(intensity)这三个维度的基础之上增加了第四个维度,离子淌度(mobility)的分离(图5),进而大幅度的提高峰容量、扫描速度和检测灵敏度,带来蛋白质组学在鉴定深度、检测周期、定量准确性等性能的全面提升。相信到这里,大家对4D-蛋白质组学技术研发背景有了一个全面的了解。小编在这里也提前做一个预告,在的面的几期,我们将进一步对全4D的采集模式(dda-PASEF® ,dia-PASEFF® ,prm-PASEF® )及其应用优势、4D-数据处理等方面进行详细的讲解。参考文献 Florian Meier, et al., Online Parallel Accumulation–Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Molecular & Cellular Proteomics, 2018Florian Meier, et al.,Trapped Ion Mobility Spectrometry and Parallel Accumulation-Serial Fragmentation in Proteomics. Molecular & Cellular Proteomics, 2021Fernandez-Lima, et al., Gas-phase separation using a trapped ion mobility spectrometer. Int.J. Ion Mobil. Spectrom. 2011
  • 蛋白组学研究发现癌症早期诊断新标记物
    胰腺癌的早期症状相对不明显,经常导致癌细胞扩散到其他器官之后才被发现。为了改善胰腺癌病人的预后,开发早期胰腺癌检测方法变得非常重要。为了实现这一目标,来自日本的科学家们在血液中发现了一些蛋白能够加强对胰腺癌的检测。结合传统的生物标记物,能够实现对早期阶段胰腺癌的诊断,这在之前是非常困难的。  为了发现可以用于胰腺癌检测的生物标记物,研究人员决定对已经报道过在胰腺癌组织中高表达的基因进行分析。随后他们利用两种类型的蛋白质组学方法检测了大量临床样本,分析候选基因表达的蛋白在胰腺癌病人和健康人血液中的变化情况。最终在130个候选蛋白中找到23个变化显着的蛋白质。  研究人员使用质谱技术和定量蛋白组学技术对这些胰腺癌候选标记物进行了证实。为了更加高效地对大量临床样本进行分析,他们还开发了一种自动分析系统,对65名健康人和38名早期胰腺癌患者血浆中的候选蛋白进行了比对,发现IGFBP2和IGFBP3这两种蛋白在早期胰腺癌患者体内存在显着变化。除此之外,研究人员借助这两个生物标记物在15名病人中诊断出12名早期胰腺癌患者,这些病人在用另外一种叫做CA19-9的标记物进行诊断时呈阴性结果。  研究人员还发现IGFBP2和IGFBP3对于胃癌,胆囊癌,结直肠癌,十二指肠癌以及肝细胞癌的筛查也十分有效。  癌症早发现能够为实现手术完全治愈癌症提供更好的机会,因此研究人员希望这些诊断标记物的发现能够帮助提高病人的预后。相关研究结果发表在国际学术期刊PLOS ONE上。
  • 空间蛋白组学技术——肿瘤微环境研究利器
    过去,受制于传统的研究方法,科研工作者很难对肿瘤微环境这样的复杂整体系统进行深入的研究和分析。要么选择包含空间信息的低通量标记技术,例如免疫荧光标记,要么选择高通量的蛋白标记,例如流式细胞技术,但是没有办法获得空间信息。近年来,新型的空间蛋白组学技术,则能两者兼顾,获得数十上百种蛋白标记的单细胞水平的空间表达,从而能更好的帮助科研工作者揭示复杂系统在疾病发生发展中的作用,其中最为显著的是推进了科研工作者对于免疫系统及其在癌症中作用的理解。图一为冰冻切片的HER2+乳腺癌患者样本,扫描视野大约15 mm2,共标记了21种蛋白。如图所示,大多数肿瘤细胞(Pan-CK+)都同时表达HER2,表明该样本是一例上皮来源的恶性肿瘤组织。然而,在样本上同样发现了保有相对正常组织结构的正常上皮(Pan-CK+/HER2-)区域。图1:HER2+乳腺癌组织的免疫多标记染色图1A:Pan-CK+/HER2- 图1B:Pan-CK+/HER2+所有的21种蛋白标记(用不同颜色区分),可以对样本的不同区域进行细胞表型分析,图2为细胞密度相对较低的区域,便于区分各个标记蛋白。我们可以看到,单个肿瘤细胞会表达Pan-CK,EpCAM,HER2蛋白。图2:21-plex超多标记的组织切片成像通过单细胞分辨率的图像数据,再借由AI的全自动细胞分割,并定量分析各个蛋白的表达,从而进行细胞表型的分选(图3),同时也可以获得各类细胞的表达占比情况(图4)。图3:细胞表型分析散点图图4:各类细胞的表达占比在非小细胞肺癌的肿瘤免疫学研究中,科研工作者同样利用单细胞空间蛋白组学技术,通过26-plex的蛋白标记,量化了样本中三十多类细胞的表型及亚型。从而揭示了非小细胞肺癌中免疫细胞侵润的异质性,并进行了量化分析。图表1:26种生物标记物列表图5:肺癌样本的局部视野及细胞表型如图5所示,肿瘤基质和肿瘤细胞附近有明显的髓样细胞浸润,而T细胞主要在肿瘤区域外聚集。 进一步的细胞定量分析发现,被认为在许多癌症中发挥促肿瘤作用的髓样细胞,具有高表达量。随后的空间分析,对肿瘤微环境中的T细胞和髓样细胞群进行了定量研究(图6),揭示了该细胞及其相关细胞类型的分布密度。图6:T细胞及髓样细胞的空间分析空间蛋白组学的应用,保留了组织形态和结构,又能一次性进行多种生物标记,从而能在分析复杂系统的细胞表型的同时,获得各类细胞的空间信息,更为深入的研究免疫系统及其在疾病中的作用。如图7展示的全视野的石蜡阑尾组织样本的成像,用14种生物标记物标记了免疫细胞及上皮细胞。之后分别对淋巴结(图7A)和粘膜上皮(图7B)这两个特定结构进行细胞表型分析。图7:石蜡阑尾组织样本的全视野超多标记成像图7A:淋巴结局部视野 图7B:粘膜上皮局部视野针对粘膜上皮区域和富含免疫细胞的淋巴结结构,对细胞数量及类型做了定量和表型分析(图表2),全面的揭示了临床组织样本不同区域和结构的免疫微环境差异。图表2:组织特异性的细胞量化和表型分析除了石蜡和冰冻组织样本,超多标记技术还可以应用于多种特殊的液体样本,例如脑脊液,痰液(图8)/支气管肺泡灌洗液(BAL)或者是用于循环肿瘤细胞的检测。不同于传统的流式细胞技术的样本需要即时处理,并且实验也需要一次性完成的特点,新型的空间蛋白组学技术,能够保存长达2年的样本活性,期间可以进行反复的标记和成像。这一特性为稀有样本和复杂实验,提供了强大的助力。图8:对保存9天的人痰液细胞进行的六色免疫多标记成像过去,受制于传统的研究方法,科研工作者很难对肿瘤微环境这样的复杂整体系统进行深入的研究和分析。要么选择包含空间信息的低通量标记技术,例如免疫荧光标记,要么选择高通量的蛋白标记,例如流式细胞技术,但是没有办法获得空间信息。近年来,新型的空间蛋白组学技术,则能两者兼顾,获得数十上百种蛋白标记的单细胞水平的空间表达,从而能更好的帮助科研工作者揭示复杂系统在疾病发生发展中的作用,其中最为显著的是推进了科研工作者对于免疫系统及其在癌症中作用的理解。图一为冰冻切片的HER2+乳腺癌患者样本,扫描视野大约15 mm2,共标记了21种蛋白。如图所示,大多数肿瘤细胞(Pan-CK+)都同时表达HER2,表明该样本是一例上皮来源的恶性肿瘤组织。然而,在样本上同样发现了保有相对正常组织结构的正常上皮(Pan-CK+/HER2-)区域。图1:HER2+乳腺癌组织的免疫多标记染色图1A:Pan-CK+/HER2- 图1B:Pan-CK+/HER2+所有的21种蛋白标记(用不同颜色区分),可以对样本的不同区域进行细胞表型分析,图2为细胞密度相对较低的区域,便于区分各个标记蛋白。我们可以看到,单个肿瘤细胞会表达Pan-CK,EpCAM,HER2蛋白。图2:21-plex超多标记的组织切片成像通过单细胞分辨率的图像数据,再借由AI的全自动细胞分割,并定量分析各个蛋白的表达,从而进行细胞表型的分选(图3),同时也可以获得各类细胞的表达占比情况(图4)。图3:细胞表型分析散点图图4:各类细胞的表达占比在非小细胞肺癌的肿瘤免疫学研究中,科研工作者同样利用单细胞空间蛋白组学技术,通过26-plex的蛋白标记,量化了样本中三十多类细胞的表型及亚型。从而揭示了非小细胞肺癌中免疫细胞侵润的异质性,并进行了量化分析。图表1:26种生物标记物列表图5:肺癌样本的局部视野及细胞表型如图5所示,肿瘤基质和肿瘤细胞附近有明显的髓样细胞浸润,而T细胞主要在肿瘤区域外聚集。 进一步的细胞定量分析发现,被认为在许多癌症中发挥促肿瘤作用的髓样细胞,具有高表达量。随后的空间分析,对肿瘤微环境中的T细胞和髓样细胞群进行了定量研究(图6),揭示了该细胞及其相关细胞类型的分布密度。图6:T细胞及髓样细胞的空间分析空间蛋白组学的应用,保留了组织形态和结构,又能一次性进行多种生物标记,从而能在分析复杂系统的细胞表型的同时,获得各类细胞的空间信息,更为深入的研究免疫系统及其在疾病中的作用。如图7展示的全视野的石蜡阑尾组织样本的成像,用14种生物标记物标记了免疫细胞及上皮细胞。之后分别对淋巴结(图7A)和粘膜上皮(图7B)这两个特定结构进行细胞表型分析。图7:石蜡阑尾组织样本的全视野超多标记成像图7A:淋巴结局部视野 图7B:粘膜上皮局部视野针对粘膜上皮区域和富含免疫细胞的淋巴结结构,对细胞数量及类型做了定量和表型分析(图表2),全面的揭示了临床组织样本不同区域和结构的免疫微环境差异。图表2:组织特异性的细胞量化和表型分析除了石蜡和冰冻组织样本,超多标记技术还可以应用于多种特殊的液体样本,例如脑脊液,痰液(图8)/支气管肺泡灌洗液(BAL)或者是用于循环肿瘤细胞的检测。不同于传统的流式细胞技术的样本需要即时处理,并且实验也需要一次性完成的特点,新型的空间蛋白组学技术,能够保存长达2年的样本活性,期间可以进行反复的标记和成像。这一特性为稀有样本和复杂实验,提供了强大的助力。图8:对保存9天的人痰液细胞进行的六色免疫多标记成像
  • 赛默飞携手西湖欧米助力AI赋能蛋白组学临床发展
    4月13日,赛默飞世尔科技(中国)有限公司(简称:赛默飞)与西湖欧米深化合作签约仪式在赛默飞客户体验中心举行,双方正式进入携手助力AI赋能蛋白组学临床发展的新篇章。赛默飞色谱和质谱业务中国区商务运营副总裁沈严和西湖欧米创始人郭天南博士分别代表双方签约,双方团队共同参与了此次签约仪式。此次合作深化着重于临床质谱检测方法的开发、应用软件开发等,未来合作方向包括但不限于检测用试剂耗材研发生产,以及相关领域的教育培训和技术推广等,以期共同将临床真正受益的方案和产品推广到常规医学检测和治疗中。随后,双方就未来的研究合作展开了深入讨论。未来,西湖欧米与赛默飞将从多维度合作开展基于IA+蛋白质组学研究,助力蛋白组学技术的临床应用和精准医学的高质量发展。
  • 1300万!中国科学院分子植物科学卓越创新中心单细胞原位空间蛋白组表型分析系统采购项目
    一、项目基本情况项目编号:OITC-G230302470项目名称:中国科学院分子植物科学卓越创新中心单细胞原位空间蛋白组表型分析系统采购项目预算金额:1300.000000 万元(人民币)最高限价(如有):1300.000000 万元(人民币)采购需求:包号货物名称数量(台/套)是否允许采购进口产品采购预算(人民币)1单细胞原位空间蛋白组表型分析系统1套是 1300万元合同履行期限:详见采购需求本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年12月01日 至 2023年12月08日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com方式:登录“东方招标”平台www.oitccas.com注册并购买售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院分子植物科学卓越创新中心     地址:上海市枫林路300号        联系方式:021-64318161/010-68290551      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:杨帆 陈小舫 赵倩,021-64318161/010-68290551            3.项目联系方式项目联系人:杨帆 陈小舫 赵倩电 话:  021-64318161/010-68290551
  • 赛默飞世尔与医科院基础所联合成立临床蛋白组学合作实验室
    2010年12 月9日 ,中国北京&mdash &mdash 中国医学科学院基础医学研究所与全球科学服务领域的领导者赛默飞世尔科技临床蛋白组学合作实验室揭牌仪式在基础所新科研楼举行,合作实验室的成立标志着双方将在临床蛋白组学领域展开全面合作,通过赛默飞世尔科技分析设备及技术支持以期帮助医科院在临床蛋白组学方面的研究工作取得更大的进展。 医科学院基础所党委书记兼所长王恒女士,副所长朱大海先生、中心实验室主任郑直先生等多位领导和赛默飞世尔科技科学仪器事业部中国区商务运营总监裴立文先生、科学仪器事业部市场部经理王勇为博士、仪器事业部生命科学质谱北区销售经理熊先宝先生等参加了揭牌仪式。 朱大海副所长发表讲话 首先,朱大海先生发表了即兴讲话,希望通过与赛默飞世尔科技的合作将基础所临床蛋白组学方面的研究切实向前推进,希望依托赛默飞世尔科技的技术支持,将仪器的作用充分发挥出来为基础所的科研工作做出贡献,并对双方的合作表示期待。 裴立文先生随后发表讲话,简单介绍了公司的架构、历史、品牌及产品,并对基础所的科研水平表示赞赏,对于合作实验室的成立,赛默飞世尔科技会一如既往的提供高品质的产品及技术服务,富于经验的优秀应用团队和售后团队会竭诚保障基础所的研发工作顺利进行,希望通过双方在蛋白组学领域相互学习、分享经验与技术,达到共赢。 裴立文先生致辞 郑直先生为大家介绍了中心实验室的工作业务情况和以后的发展方向,也提出希望能够通过与赛默飞世尔科技的合作能够将中心实验室的作用充分发挥出来,并希望获得赛默飞世尔科技的多方面支持。 郑直主任做中心实验室简介 王勇为博士最后为大家介绍了赛默飞世尔科技的品牌和在蛋白组学领域的一流技术,以及从样品前处理到得到最终结果的全面解决方案,重点介绍了赛默飞世尔科技LTQ-Orbitrap质谱仪在综合定量蛋白组学领域所能发挥的重大作用,分享了成功的案例。 赛默飞世尔王勇为博士为大家做公司及产品介绍 最后,王恒所长与裴立文先生共同签署了蛋白组学合作实验室协议,并为合作实验室揭牌,合作实验室正式成立。 揭牌仪式 如想了解赛默飞世尔生命科学领域更多信息, 可拨打服务电话:800-810-5118,400-650-5118(手机),发邮件至sales.china@thermofisher.com ,或浏览我们的网站www.thermo.com.cn。 关于Thermo Fisher Scientific(赛默飞世尔科技) 赛默飞世尔科技 (Thermo Fisher Scientific)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约3万5千人,在全球范围内服务超过35万家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域所遇到的从常规测试到复杂研发的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健、科学研究、安全和教育领域的客户提供一系列实验室装备、化学药品及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科学研究的飞速发展不断改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。更多信息,请浏览公司网站:www.thermofisher.com (英文) 或www.thermo.com.cn (中文)。
  • 蛋白质组学分析代表企业Seer:Proteograph XT试剂盒结合赛默飞Orbitrap Astral识别超1万种蛋白
    蛋白质组学的发展方兴未艾,是后基因组时代重点关注的热点领域,新思路,新技术层出不穷,应用领域和场景不断拓展。Seer公司就是在这种大背景下诞生的一家科技新锐,其提供的Proteograph™XT平台利用经过特殊制作的纳米粒子磁珠,在跨数十个数量级丰度之间,非特异性地结合各类蛋白,无需额外去除高丰度蛋白,再利用高性能的质谱技术,达到高精度测量。在兼顾深度,增强蛋白组分析通量的情况下,实现对大规模血液蛋白的可重复性定量分析,创造了无偏差高通量探寻生物标记物的机会。在近期召开的JPM Healthcare 2024期间,Seer公司董事长兼CEO Omid Farokhzad说,Seer相信即将发布的使用其Proteograph产品组合的学术出版物将有助于推动对该平台的兴趣,并最终推动销售。然而,这个过程需要时间。Seer公司总裁兼CFO David Horn指出,关于2024年,他说公司对前景保持“相对谨慎的态度。”“外面仍有一些宏观不确定性,”Horn说。“而且......我认为我们正处于真正展示该平台所支持的生物学见解积累的阶段。”Seer的技术利用纳米粒子富集等离子样品进行蛋白质组分析,这是2023年等离子蛋白质组学取得重大进展的重要组成部分。在2023年的美国质谱学会年会上,赛默飞使用Seer的新Proteograph XT试剂盒在其Orbitrap Astral仪器上检测了近6000种等离子蛋白。在2024年的JP Morgan会议上,Farokhzad展示了一项涉及2500个样本的研究数据,显示Proteograph XT与Orbitrap Astral的组合总共识别出10000多种蛋白。他补充说,到目前为止,约50%的Seer客户已从原来的Proteograph转向XT。尽管取得这些进步,Seer公司Proteograph系统的销售速度在2023年比预期慢。6月,Seer公司启动了Seer技术访问中心(STAC)服务业务,研究人员可以通过该中心使用Orbitrap Astral上的Proteograph XT。到目前为止,STAC计划已经为48个研究组织提供服务,包括6家大型制药公司,Farokhzad说。(延伸阅读:赛默飞宣布与Seer扩大合作)最后,Seer认为Proteograph销售增长取决于论文发表展示该技术应用效果的数据。Farokhzad强调了该公司预计将在今年的同行评议出版物中发表的几篇使用Seer技术的预印本,包括诊断公司PrognomiQ的工作。推荐文章:1. 从JPM2024看科学仪器市场机会——重点趋势关键词盘点2. JPM亮点|赛默飞CEO看好这两类仪器与这一市场前景3. JPM2024亮点|布鲁克2023年营收涨13%,中国投资蛋白质组学推动增长  4. 14国科学家齐聚广州,为了这个蛋白质组学计划!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制