当前位置: 仪器信息网 > 行业主题 > >

质谱中碰撞能量

仪器信息网质谱中碰撞能量专题为您提供2024年最新质谱中碰撞能量价格报价、厂家品牌的相关信息, 包括质谱中碰撞能量参数、型号等,不管是国产,还是进口品牌的质谱中碰撞能量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱中碰撞能量相关的耗材配件、试剂标物,还有质谱中碰撞能量相关的最新资讯、资料,以及质谱中碰撞能量相关的解决方案。

质谱中碰撞能量相关的论坛

  • 二级质谱碰撞能量的选择

    有一个问题想跟大家讨论一下。我们实验室有一台varian 1200 的MS/MS. 在设定二级质谱参数时,有两个选项可以调节,从而改善方法。一个是反应室氩气的气压(单位是mTorr),一个是在方法里面改变碰撞能量 (单位是eV). 我理解氩气气压高但是不一定碰撞能量强。但是氩气气压高的话通过一级质谱的离子发生碰撞的几率就大,从而更有可能被打成碎片。这个跟提高碰撞能量感觉上有相似的效果。所以我想知道有没有哪位大侠有更好的理解。谢谢!

  • 为什么qtof的一级质谱也有碰撞能量的选项

    [font=&]新手求助[/font][font=&]安捷伦6530qtof, data acquisition b9.0 版本,一级质谱方法设置那里也有个colision energy大小的选项,[/font][font=&]碰撞能不是用来打碎分子采集二级质谱的吗?那么一级质谱这个设置的作用是什么,有必要设置吗[/font]

  • 急!关于碰撞能量CE的描述

    各位大虾,请教个问题。在写文章描述质谱方法时,碰撞能量collision energy(CE)描述为多少伏(V),还是多少电子伏(eV)?按道理能量应该是电子伏比较合适, 但是许多仪器工作站里其实是设置的电压,其实是多少伏特。

  • 【我们不一YOUNG】碰撞活化分解

    [font=&][size=15px]利用软电离技术(如电喷雾和快原子轰击)作为离子源时,所得到的质谱主要是准分子离子峰,碎片离子很少,因而也就没有结构信息。为了得到更多的信息,最好的办法是把准分子离子“打碎”之后测定其碎片离子。在串联质谱中采用碰撞活化分解(Collision activated dissociation, CAD)技术把离子“打碎”。[/size][/font][font=&][size=15px]碰撞活化分解也称为碰撞诱导分解(Collision Induced dissociation, CID),碰撞活化分解在碰撞室内进行,带有一定能量的离子进入碰撞室后,与室内情性气体的分子或原子发生碰撞,离子发生碎裂。为了使离子碰撞碎裂,必须使离子具有一定动能,对于磁式质谱仪,离子加速电压可以超过1000V,而对于四极杆,离子阱等,加速电压不超过100V,前者称为高能CAD,后者称为低能CID。二者得到的子离子谱是有差别的。[/size][/font]

  • 液质联用仪中碰撞气的作用

    [size=24px][font=宋体]碰撞气是[/font][font=宋体]液[/font][font=宋体]质[/font][font=宋体]联用仪[/font][font=宋体]中[/font][font=宋体]用于质谱端[/font][font=宋体]的一路气[/font][font=宋体]体[/font][font=宋体]。 [/font][font=宋体]以串联四级杆质谱为例,气路系统将[/font][font=宋体]其[/font][font=宋体]引入[/font][font=宋体]质谱碰撞池中,与来自于第一个四[/font][font=宋体]极[/font][font=宋体]杆筛选过滤后传输来的离子发生碰撞,离子被撞碎后,送到第三个四极杆。 碰撞气[/font][font=宋体]在碰碎离子过程中[/font][font=宋体]只传递动[/font][font=宋体]能[/font][font=宋体],不与[/font][font=宋体]其[/font][font=宋体]反应,因此一般采用高纯的惰性气体作为碰撞气[/font][font=宋体],如氩气、氮气[/font][font=宋体]。[/font][/size][font=&][/font]

  • 八极杆反应池的氦碰撞模式,高效消除ICP-MS干扰!

    (转帖)摘要 由于 ICP-MS 具有多元素同时分析能力,操作简单,许多常规分析实验室采用它作为元素分析的主要技术。其中,新兴的ICP-MS 的碰撞/反应池 (CRC) 技术对一些特定的质谱干扰具有很好的消除性能,然而,就 CRC 技术的多元素同时分析能力而言,它仍仅仅是一种替补分析技术。本研究的工作应用Agilent 7500ce ICP-MS 碰撞/反应池的单一 He 气工作条件,同时有效消除难分析的基体复杂的样品中多种干扰,证明了其多元素同时分析的强大能力。前言 ICP-MS 是一个非常强有力的多元素分析技术,但长期研究也证明了它的确受到一些特定的质谱干扰,尤其是当样品基体复杂、类型多变时更成问题。ICP-MS中大多数 干扰是来源于等离子体中产生的分子(或多原子)离子与目标元素的名义质量相同而发生质谱重叠。常见于报道的干扰主要可分为两组:来源于等离子体本身和水的 干扰(基于等离子体的),如 40Ar,40Ar16O,和 40Ar38Ar 等;来源于样品基体组分的干扰(基于样品基体的),如 35Cl16O,和 32S34S 等。基于等离子体的多原子离子干扰是可预知的而且基本不发生改变,它与样品基体无关。而基于样品基体的多原子离子干扰很难预知,并且干扰大小和类型随着样品基体组分和它们的相对浓度的不同而变化。 碰撞反应池(CRC)技术的最新发展,使得在某些样品基体中以前被证明很难或无法检测的低浓度受干扰元素的分析取得重大改进。在 CRC ICP-MS 中,一般在反应池中压入一种反应气体与干扰物反应(称作反应模式)。反应模式有多种工作机理,其中某一种反应过程机理可使干扰粒子减弱,这取决于所选择的 气体类型和干扰类型。不过,在实际工作中,只使用高活性气体的“纯反应模式”的 CRC 系统一般仅应用于分析特定的目标元素,清除已知的特定一种干扰离子 。另一些仪器使用“更简单”或较少活性的反应池气体,如 H2 ,但是它主要用于消除基于等离子体本身的分子离子干扰,因为它与难消除的基于基体的分子离子反应慢或根本不反应。氦 (He) 碰撞模式 安捷伦八极杆反应池系统 (ORS) 引进了一个新的更强有力的 CRC 操作模式—He 碰撞模式。它可以用一种惰性气体碰撞消除所有多原子粒子。它的消除干扰的原理是基于干扰粒子与目标元素的直径大小,而不是它们与反应气的相对反应活性不 同。因为所有的多原子干扰都比同等质量的分析物离子直径大,它们较大的横截面意味着它们在碰撞池中与碰撞气有更多的碰撞几率,所以当它们通过加入气体的碰 撞池前进时将损失更多动能。当到达碰撞池出口处时,(由于它们与 He 碰撞池气的碰撞)大横截面的多原子粒子的离子能量都比分析物离子的离子能量明显低,这样,用一个适当的截止电压(形成势能壁垒)即可阻止它们离开碰撞池, 而只容许能量较高的分析物离子通过碰撞池到达分析器。这个分离过程叫做动能歧视效应(KED),这个简单但极为有效的方法比反应模式具有许多重要的分析优 点。He 碰撞模式的优点:• 与反应池气相比,He 是惰性气体,因此不与样品基体反应,在碰撞池中不形成新的干扰物• 由于 He 是惰性气体,它不与分析物或内标离子反应并引起它们的信号损失• 所有干扰(基于等离子体本身的和基于样品基体的)均可被清除或极大减弱,因此有效干扰消除功能可以与多元素同时扫描或半定量分析功能相结合• 因为 He 碰撞模式不是仅针对某种特定的干扰,所以可以同时消除对同一个目标元素的多种可能的干扰(或同一基体产生的对多个元素的不同干扰) • 不需要预先知道样品基体情况,并且不需要建立特定的消除干扰方法;与此相反,应用强反应气体模式来消除干扰时,必须针对不同的目标元素,以及不同的样品基体分别建立不同的消除干扰的反应条件,使操作参数相当复杂 • He 碰撞模式可以应用于不同样品目标元素、不同样品基体,而却只采用相同的工作参数(如气体及流速)• 不用设置或优化碰撞池电压等参数• 不用建立干扰校正方程为什么其他 CRC-ICP-MS 不能使用 He 碰撞模式? 为了适当地消除干扰,He 碰撞模式需要采用动能歧视效应 (KED) 提供的高效率的目标元素/干扰离子的分离,这需要满足两个条件:第一,所有进入碰撞池的离子(初始离子)的能量必须受到严格的控制(动能基本相同并且不发 生能量扩散)。安捷伦独特的屏蔽炬 (Shield Torch) 接口确保进入碰撞池的离子能量扩散很窄 (1 eV);与其它类型的电子接地的等离子体设计(象平衡的、中心抽头的或交错的线圈)相比,屏蔽炬的物理接地原理提供了更好的初始离子能量控制。第二,在碰 撞池中,多原子粒子必须经历足够多次数的碰撞(以尽量降低动能),以便在碰撞池出口处与目标元素离子分开,在 Agilent ORS 碰撞池中(唯一使用八极杆碰撞池的 ICP-MS),这是通过采用八极杆进行离子聚焦与导引来实现的。使用八极杆碰撞池有两个主要好处:• 八极杆池的内径小。因此,碰撞池的入口和出口就小—所以碰撞池的工作压力比四极杆或六极杆碰撞池的操作压力高,增加了离子/气体的碰撞次数• 八极杆比六极杆和四极杆离子导引系统具有更好的聚焦效率。离子束紧密聚焦,确保了其在高碰撞池工作压力下仍然保持较好的离子传输效率,目标离子损失少,灵敏度高 只有 Agilent ORS 将屏蔽炬接口技术与八极杆碰撞池技术紧密相结合起来,所以只有 Agilent ORS 才可以有效地使用 He 碰撞模式。He 碰撞模式性能测试—最困难的基体情况设想 本试验制备了一个合成样品基体以产生多种常见的对多个目标元素的多种干扰,测试 He 碰撞模式消除所有的多原子粒子干扰的能力。表 1 列出了此样品基体中可能产生的各种多原子粒子干扰及受干扰的元素。实际上,在这一样品中,在中等质量数区域(从 50到 80 amu),几乎每个元素都会受到多种干扰。这使得复杂样品基体中的这些元素的准确测定对常规的 ICP-MS 极具挑战性,因为多种干扰同时存在的复杂性意味着数学校正将根本不可靠。这也同时说明为什么采用强反应气体的反应池对复杂样品基体中的多元素分析不适合; 因为每一个多原子离子干扰对任何给定的反应池气体都有不同的活性,所以没有一个单一反应气体对一批多原子离子同时是有效的。然而,表1 显示的每种干扰都是多原子的离子,因此采用 He碰撞 KED 模式的一套条件就可以有效地消除干扰。 本试验采集了两组质谱图来说明 He 碰撞模式消除多重干扰的能力:一个是无气体模式下采集,第二种是将 He 加入到碰撞池后采集。不用数据干扰校正或背景扣除等数学校正方法。最后,在该样品基体中加入5 ng/L(ppb)的多元素标准溶液,采集(加 He 时)质谱图,计算目标元素的回收率,同时验证目标同位素比与天然同位

  • 关于二级质谱SRM中的scan event

    在SRM的一个segment 中可以设定多个scan event,是不是同一个scan event 只能设定一种碰撞能量,要是想设定不同的只能再增加scan event重新设定? 质谱每完成一次扫描,就会出一个点,足够多的点连起来就成了一个峰型比较好的曲线,我想问下,是不是质谱每完成一次扫描(即出一个点),所有的scan event都会按照设定的好的扫描条件扫描一次(每次设定的可能碰撞能量各不相同)?还是说出一个点只是扫描其中的某一个 scan event?设定的scan event 那么短,怎么在这么短的时间内,改变碰撞能量呢?

  • 关于安捷伦三重四级杆碰撞气的困惑

    各位大侠,想知道碰撞气的能量(CE值)是如何施加的,看文献中CE值都是以电压作为单位,但是我想碰撞气是氦气分子,即使有电场也不会加速,能量是哪来的呢?还有Scan和SIM模式下,书中说通碰撞气,但不施加碰撞能量,这里又搞不懂了,既然不用碰撞作用,为什么还要开碰撞气呢

  • 日冕物质抛射之间碰撞可能是超弹性碰撞

    新发现对保障航空航天安全具重要意义2012年10月12日 来源: 中国科技网 作者: 杨保国 吴长锋 最新发现与创新 中国科技网讯 中国科技大学地球和空间科学学院、中科院近地空间环境重点实验室汪毓明教授领导的日地物理研究组与在美科学家合作,利用美国国家航空航天局的日地关系观测卫星(STEREO)的数据,首次发现行星际空间中最大的等离子体团——日冕物质抛射之间的碰撞可能是超弹性碰撞。国际著名学术期刊《自然-物理》10月7日在线发表了这一研究成果。 日冕物质抛射,是太阳大气中最剧烈的爆发现象之一,其速度可高达每秒数千公里,携带的能量相当于数亿颗大型原子弹同时爆炸产生的能量,是灾害性空间天气事件的最重要的驱动源。在太阳活动峰年期间,平均每天有4—5次日冕物质抛射。通常情况下,固体之间的碰撞处在完全弹性和完全非弹性之间,碰撞之后,系统的总动能保持不变或减少。而对于液体和气体,它们之间的碰撞则是扩散和相互渗透的过程。日冕物质抛射是气体状态,它们之间的碰撞是否跟普通气体一样?中国科大申成龙和汪毓明等人通过对STEREO卫星观测到的一次日冕物质抛射碰撞事件的细致分析,发现日冕物质抛射之间的碰撞类似于弹性球之间的碰撞,在碰撞过程中,它们的方向和速度发生了明显的改变。而令人惊奇的是,碰撞之后系统总动能增加了7%,碰撞过程的弹性系数达到5.4,明显高于完全弹性碰撞的系数1。该研究表明,通过碰撞挤压,日冕物质抛射内部的热能和磁能会被进一步激发转换成动能。 该研究首次发现了日冕物质抛射之间的超弹性碰撞现象,对磁化等离子体团的碰撞过程、日冕物质抛射的动力学研究,以及对建立更为准确的空间天气预报模式以保障航空航天安全等具有重要意义。(杨保国 记者 吴长锋) 《科技日报》(2012-10-12 一版)

  • 小弟有个关于碰撞产生能量如何分配的小实验,各位老大帮着看看

    小弟有个关于碰撞产生能量如何分配的小实验,各位老大帮着看看

    小弟我设计了个小实验,但是没有相关设备,所以只能画个示意图,请老大们帮着看看。这实验不是化学实验,是个小物理实验。先上图http://ng1.17img.cn/bbsfiles/images/2014/07/201407311426_508579_2843976_3.jpg这是一个碰撞实验。有两对铁块,第一对都是100公斤重,每边施加200公斤重的力让他们相撞。然后读取压力感应器1,2的数值。我认为1,2应该是一样的。现在问题是下面那次碰撞一边是100公斤铁块,另外一边是50公斤铁块。但是50公斤铁块的前面放了几个鸡蛋,鸡蛋会在碰撞的时候破碎,鸡蛋重量忽略不计。仍然以每边200公斤的力量推动铁块相撞,请问:1这时候压力感应器3和4的数值是否相等?2如果不相等,请问是谁大?3这是基于什么原理呢?4如果把4的铁块也做成100公斤重,只是前面多了几个鸡蛋的话,压力指示器的度数又会有什么变化呢?3,4是否相等?谁大?小弟不胜感激啊!

  • 碰撞池的CID了解多少

    [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]MS用MRM模式时,会设置碰撞池的碰撞气和碰撞能量,具体的反应机理是怎样呢?设想:1.母离子和碰撞气反复碰撞,给母离子储备势能,断裂阈值达到后,会产生产物离子2.碰撞能量是施加给母离子还是碰撞气?欢迎大家分享经验!

  • 【分享】八极杆碰撞反应池-电感耦合等离子体质谱仪器及应用技术ppt

    现在的ICP MS大多带有碰撞反应池,主要用H2, He作为气源,单独或者同时使用,降低干扰,提高检出溶液浓度,使用它可以测定Si, As, 以及高浓度的K Ca Na Mg等元素。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=124719]八极杆碰撞反应池-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱仪[/color][/url]器及应用技术[/url]

  • 碰撞解离模式CID下,碰撞能是指啥呢?

    碰撞解离模式CID下,碰撞能是指啥呢?

    如下图片,有两个疑惑:1.部分干扰离子的键能为啥是个范围呢?2.如何理解下图中的碰撞能?是否为氦气与对应干扰离子碰撞时传输的能量呢?谢谢。http://ng1.17img.cn/bbsfiles/images/2017/10/2015030817021576_01_1699201_3.jpg

  • 碰撞池与反应池

    碰撞/反应池基本上有桶状的池体构成,两端留有空以方便粒子进出。池体内维持比周围真空腔内的压力稍高的增压状态。池内装有多级杆,也有池内装有离子透镜。池体一般位于离子透镜和主分析器之间。池中常用的气体有强反应气,如CH4,NH3,弱反应气H2,碰撞气he,xe,混合气体如H2/He或NH3/he(以he为主)。碰撞/反应池常常用反应池或碰撞池命名,用来强调和区分池体内进行化学反应过程特征。另一种对两种池体结构的主要不同处的论述是他们对排斥不希望的副反应产物离子的手段不同,一个利用质量歧视效应,另一个利用能量歧视效应。反应池内一般使用四级杆,此使用可变的带通,强调有一定的化学反应专一性。池内增压较高,离子动能较弱。使用强反应气NH3CH4或弱反应气H2O2。碰撞池池体内一般使用高级多级杆(六级杆或八级杆),强调对正离子的高功率引导功能,强调池体的动能歧视功能,一般增压较小。常使用的气体为碰撞气体He,及弱反应气体和混合气体。当前强反应气体混合气体被用于碰撞池后,使严格按池体内的化学反应过程来定义的池体命名方式模糊起来。

  • 【已解决】关于液质的碰撞气collision gas的问题

    今天看了Agilent的[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]资料因为只用过6300,知道用高纯He作碰撞气。今天看了6410QQQ和6210TOF的资料,发现,1、6210没有碰撞气,那是不是,样品的质谱图除在在离子源中产生的碎片,就没有其他碎片离子峰了?2、6410用高纯N2作碰撞气,为什么不用高纯He,是因为价格问题?还是别的?碰撞气只是在Q2中?Q2不是也由电极棒组成吗,怎样拢住碰撞气?3、没看6100的资料,大胆猜想一下,应该没有碰撞气吧?请专家指教!谢谢!

  • LC-MSMS 碰撞池没通气

    背景:十一放假回来开机,我休假,同事开的机。然后她忘记开氮气了,也就是碰撞气,但是仪器调谐过了,还走了样品,一切正常。一周后仪器报错提示没开碰撞气。仪器型号液相1260,质谱6460。讨论:1。没开碰撞气,走MRM模式,子离子是怎么打碎的?2。仪器会有什么损伤?大牛们,帮忙解答一下,我怎么都想不通啊!

  • 质谱试验参数名词解释 求助 谢谢

    质谱试验参数名词解释 求助 谢谢

    http://ng1.17img.cn/bbsfiles/images/2011/12/201112012024_334685_1929069_3.jpg看文献遇到“ESI源,喷雾电压4.00kV,金属毛细管温度180度,毛细管电压19V,管透镜电压4.5V,工作气为氮气,样品以5ul/min速度连续注入电喷雾源。源内碰撞诱导解离(CID)能量为25%,50%。源内离子阱内MSMS的碰撞能量为23%, MS3的碰撞能量为22%,MS4的碰撞能量为25%。扫描范围200-600 m/z。”“源内碰撞诱导解离(CID)能量为25%,50%”是什么意思?怎么会有25%,50%同时出现,都代表什么意思?“源内离子阱内MSMS的碰撞能量为23%, MS3的碰撞能量为22%,MS4的碰撞能量为25%。”是什么意思,做串联质谱实验前碰撞能量就能设定好百分含量吗?求助大侠们解释下,质谱门外汉,或推荐下一两篇相关文献,不胜感激~

  • 求三氯杀螨醇的质谱条件

    RT:求三氯杀螨醇的质谱条件(离子对及碰撞能量)我在7890-7000的仪器上面出两个峰,一个在12.83,一个在19分多钟。提取色谱图有两个峰!进混标,只有12分多的峰,响应还不高!

  • 质谱常见问题8

    8、串联质谱如何定量?答:串联质谱定量时,是以后面产生的碎片峰(子离子)定量。但是这一子离子是由母离子在碰撞室产生的特征性碎片,所以用MRM定量灵敏度会比用SIM定量好很多。建立方法的步骤是:用一定溶度的标准品溶液(1-10 ug/mL)调谐化合物的yi级质谱条件,找到母离子的zui佳质谱条件。然后对母离子进行打碎,优化碰撞能量,得到其特征性的子离子。zui后利用该质谱条件和该母离子-子离子对进行定量。

  • 【我们不一YOUNG】质谱有哪几种离子源

    [align=center][/align][font=Tahoma, Helvetica, SimSun, sans-serif][size=18px][color=#444444]质谱仪常用的离子源有五种,分别是电子轰击源(EI)、化学电离源(CI)、电喷雾电离源(ESI)、大气压化学电离源(APCI)和基质辅助激光解吸电离源(MALDI)。1、电子轰击源(EI)原理:EI源是用在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱上的,是一种“硬电离”。EI源主要由电离室(离子盒)、灯丝、离子聚焦透镜和一对磁极组成。其主要的工作原理是灯丝发射出具备70eV能量的电子,经聚焦并在磁场作用下穿过离子化室到达收集极。此时进入离子化室的样品分子在一定能量电子的作用下发生电离,内能较大的离子在与中性分子(如He)碰撞时能够自发裂解产生更多的碎片离子。所有的离子被聚焦、加速聚焦成离子束进入质量分析器。优势:对于大部分有机物来说,EI源的这种硬电离方式不仅可以看到母离子,而且可以看到很多碎片离子,便于进行结构解析。而且标准谱库就是利用EI源在70eV的碰撞能量下轰击已知的纯有机化合物,电离后分子离子进一步破碎产生丰富的碎片离子,形成具有丰富“指纹”信息的标准质谱图,这些标准质谱图存储起来成为标准谱库。我们在相同的碰撞能量下进行实验获得的质谱可以与标准谱库进行对比进而对化合物进行定性分析。劣势:当样品分子稳定性不高时,分子离子峰的强度弱,甚至没有分子离子峰。当样品不能气化或遇热分解时,则更看不见分子离子峰。适用物质:可挥发的,热稳定的,沸点一般不超过500℃,分子量一般小于1,000的有机物。2、化学电离源(CI)这是一种软电离技术,是分子和离子反应的研究结果在分析化学中的直接应用。CI源始于20世纪50年代,产生的碎片很少,在分析化学中具有巨大的潜力。在化学电离过程中,电子首先轰击试剂气体以生成试剂离子。样品分子随后通过分子和离子反应途径被试剂离子电离。20世纪70年代被认为是化学电离发展的一个里程碑。当时,研究人员解决了化学电离需要在真空环境下工作这一缺点,使化学电离可以在大气条件下工作。大气化学电离从电晕放电提供能量,不需要真空环境,这大大增加了化学电离应用的范围,化学电离已被广泛应用于质谱技术中。3、电喷雾离子源(ESI)ESI源一般是用于[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]质谱联用仪器中,这种电离方式基本不产生碎片峰,故称为软电离。其主要的工作原理是:包裹着样品的溶剂进入电喷雾探头,通过加着高压的毛细管,高电压使得液体表面带上电荷,溶剂被周围加热的氮气气化从而挥发,随着溶剂蒸发,溶剂表面的库伦排斥力越来越大,引起液滴爆炸,最后生成单个离子进入质量分析器。优势:由于是软电离的方式,因此适合做分子量确认。对于分子量大,稳定性差的化合物,也不会在电离过程中发生分解;可以生成多电荷离子,例如,一个分子量为10,000Da的分子若带有10个电荷,则其质荷比只有1,000Da,进入了一般质量分析器可以分析的范围之内。劣势:ESI源要求待测样品在溶液中必须能够形成离子;流动相中缓冲盐的种类和浓度对灵敏度均有显著影响,因此流动相的选择非常重要;基质抑制现象较为明显。适用物质:它适合于分析极性、难挥发的化合物,可用于热不稳定化合物的分析。4、大气压化学电离源(APCI)原理:APCI源是介于ESI源和EI源之间的一种离子源,主要应用于[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]质谱联用仪中,其也是产生(M+H)+或(M-H)-等准分子离子峰,几乎不产生碎片。其主要的工作原理是:样品流经热喷雾器,加热器辅助样品分子快速蒸发。电晕针持续放电使得源内O2或N2分子电离,O2或N2离子将电荷转移给溶剂分子,溶剂离子将电荷转移给目标分子,最终目标离子进入质量分析器。优势:有些分析物由于结构和极性方面的原因,用ESI源不能产生足够强的离子,可以采用APCI方式增加离子产率,可以认为APCI是ESI的补充。用这种电离源得到的质谱很少有碎片离子,主要是准分子离子。劣势:APCI主要产生的是单电荷离子,所以分析的化合物分子量一般小于2,000Da。适用物质:中等极性或低极性的小分子化合物,样品要有一定的挥发性,热稳定性,要能够进行气态离子化。5、基质辅助激光解吸电离源(MALDI)MALDI是一种质谱软电离技术,MALDI使用激光能量吸收基质以最小碎片化的方式从大分子中产生离子。对于热敏化合物,如果将它们快速加热,就可以防止它们被热分解。MALDI技术与此原理类似:在一个很小的区域中,在很短的时间间隔(ns数量级)中,激光向目标上的分析物提供高强度脉冲能量,使其在瞬间解吸并电离,而不会产生热分解。MALDI是一种用于直接蒸发和电离非挥发性样品的质谱电离方法,但其电离机理尚不清晰。优势:MALDI被广泛用于测量生物大分子的分子量,例如多肽、蛋白质、核酸、聚合物的分子量分布以及低聚物分析。MALDI质谱具有灵敏度高、适用范围广、操作简单的特点。适用物质:大分子、高极性、不易挥发、热不稳定的样品。[/color][/size][/font]

  • 三重串联四极杆气相色谱 /质谱联用测定蔬菜和茶叶中 49 种农药残留的方法优化

    三重串联四极杆气相色谱 /质谱联用测定蔬菜和茶叶中 49 种农药残留的方法优化

    [align=left][font='times new roman'][size=16px]三重串联四极杆[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url] /质谱联用测定蔬菜和茶叶中 49 种农药残留[/size][/font][size=16px]的方法优化[/size][/align][align=left][font='times new roman'][size=16px]以前样品经提取、净化后,用[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]进行定性定量分析。或者用GC-FPD检测器测定有机磷,GC-NPD检测器测定氨基甲酸酯和有机磷,用GC-ECD检测器测定有机氯和拟除虫菊酯。一般需分组,如无[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url],对检出峰重叠的农药要求双柱定性。GC和[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]检出限一般为几个到几十个μg/kg。[/size][/font][/align][align=left][font='times new roman'][size=16px]三重串联四极杆QQQ :第一质量分析器(Q1、四极杆1)选择某一质核比的离子进入碰撞池(Q2、六极杆2),被选择的离子在池里与碰撞气体(氮气)碰撞,经过碰撞诱导解离(CID)产生的子离子(碎片)由第二个质量分析器(Q3、四极杆3)进行扫描分析。[/size][/font][/align][align=left][font='times new roman'][size=16px]单四极杆质谱中,离子监测模式(SIM)只监测保留时间范围内的少数几个离子,和全扫描模式有相同的杂质干扰,GC-QQQ可以大幅度降低甚至消解影响SIM方法准确度和检测限的基质干扰, MRM的检测是基于次级“碎片离子”,由第一个四极杆Q1产生的分析物的母离子在Q2经六级杆碰撞解离而产生,与SIM比有同样的选择性,但能保证至少有一个是由母离子特有而非干扰物产生的,基线漂移明显减少。在Q1的质谱过滤过程中,样品中所有低质荷比的离子都被过滤掉,产生的唯一“碎片离子”在“零噪声”中进行检测,得到“干净”的色谱图,对复杂的基体样品也能很好的定量。使得MRM检测限更低。图[/size][/font][size=16px]1[/size][font='times new roman'][size=16px]~[/size][/font][size=16px]2[/size][font='times new roman'][size=16px]为蔬菜和茶叶色谱图。茶叶提取物是最复杂基体样品之一,然而GC/MS/MS的提取离子流图却很“干净”,对复杂的基体样品也能很好的定量。[/size][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310310826220157_7469_4033901_3.png[/img][/align][font='times new roman'][size=12px]图[/size][/font][size=12px]1[/size][font='times new roman'][size=12px] 含有10ppb β-六六六的蔬菜加标样品GC/MS/MS提取离子流图和MRM transition离子图[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310310826222061_4447_4033901_3.png[/img][font='times new roman'][size=12px]图[/size][/font][size=12px]2[/size][font='times new roman'][size=12px] 含有10ppb杀螟硫磷绿茶样品GC/MS/MS提取离子流图和MRM transition离子图[/size][/font][align=left][font='times new roman'][size=16px]质谱条件的优化 [/size][/font][font='times new roman'][size=16px]:[/size][/font][font='times new roman'][size=16px]为获得最佳的质谱条件保证农药定性、定量的准确性,对分析物的母离子、子离子以及碰撞能量等一系列质谱参数进行优化。[/size][/font][/align][align=left][font='times new roman'][size=16px]首先进行全扫描,得到母离子和保留时间。取适宜浓度的标液在扫描范围50D~600D进行。母离子选择应选高的质量数(定性)、高的丰度(灵敏度)。第二步做产物离子扫描(production scan)选择子离子和碰撞能量(collision energy)。分时间段,5~40 V范围内,以5V为跨度,对已选母离子进行碰撞能量的优化,子离子必须有足够的丰度,可以用于痕量分析,灵敏度好,选择性要高,不要选择会被干扰的子离子,根据欧盟法规,至少需要一个母离子和两个子离子以满足4点鉴定法。见图[/size][/font][size=16px]3[/size][font='times new roman'][size=16px]~[/size][/font][size=16px]5[/size][font='times new roman'][size=16px]。第三步多反应监测MRM的运用。[/size][/font][/align][img]" style="max-width: 100% max-height: 100% [/img][font='times new roman'][size=12px]图[/size][/font][size=12px]3[/size][font='times new roman'][size=12px] [/size][/font][font='times new roman'][size=12px]母离子在不同的碰撞能量(5~20V)下的碎片[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]图[/size][/font][img]" style="max-width: 100% max-height: 100% [/img][font='times new roman'][size=12px]图[/size][/font][size=12px]4[/size][font='times new roman'][size=12px] 母离子在不同的碰撞能量(5~40V)下的碎片离子叠加质谱图[/size][/font][align=center][img]" style="max-width: 100% max-height: 100% [/img][/align][align=center][font='times new roman'][size=12px]图[/size][/font][size=12px]5[/size][font='times new roman'][size=12px] 农药混合标准MRM28min~29.2min色谱放大图(亚胺硫磷)[/size][/font][/align][align=left][font='times new roman'][size=16px]通过对柱温(程序升温)、载气流速、进样口以及质谱参数等条件的优化,[/size][/font][font='times new roman'][size=16px]蔬菜和茶叶中[/size][/font][font='times new roman'][size=16px]氨基甲酸酯、有机磷以及有机氯和拟除虫菊酯4大类49种农药分离效果、峰形、耗用时间的综合情况最好,总时间为37.867 min,能获得理想的最低检出限,可以满足实际测试的要求。总离子流图(TIC)见图[/size][/font][font='times new roman'][size=16px]6[/size][/font][font='times new roman'][size=16px]。[/size][/font][/align][align=left][img]" style="max-width: 100% max-height: 100% [/img][/align][align=left][font='times new roman'][size=12px]图[/size][/font][font='times new roman'][size=12px]6 [/size][/font][font='times new roman'][size=12px] [/size][/font][font='times new roman'][size=12px]农药混合标准(10μg/kg)的GC/MS/MS总离子流图[/size][/font][/align]

  • 要不要配带碰撞池的质谱呢? 新兵求助

    各位老师,打算上[font=宋体, sans-serif][color=#333333][size=12px][url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICPMS[/color][/url],但是很纠结啊!到底要不要带碰撞反应池的呢? 主要是做食品和药品这方面的活儿。 了解了一下各个厂家的情况,都是说贵的带,便宜的不带反应池。这个要不要带啊?价钱开始差了不少啊。看周边的单位,也是有带的,有不带的! 想求助在用这仪器的前辈,要还是不要? 有多大影响?[/size][/color][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制