当前位置: 仪器信息网 > 行业主题 > >

质谱代谢组定量

仪器信息网质谱代谢组定量专题为您提供2024年最新质谱代谢组定量价格报价、厂家品牌的相关信息, 包括质谱代谢组定量参数、型号等,不管是国产,还是进口品牌的质谱代谢组定量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱代谢组定量相关的耗材配件、试剂标物,还有质谱代谢组定量相关的最新资讯、资料,以及质谱代谢组定量相关的解决方案。

质谱代谢组定量相关的资讯

  • 代谢物QTOF定量?!可以和QQQ媲美的高分辨质谱!
    代谢表型分析在临床和流行病学研究方面都有着很大的帮助,通常使用质谱来完成这一工作,用于高通量和稳定的测量疾病相关的代谢物。传统的定量分析使用三重四级杆的方法,但这种方法缺乏发现新的代谢物的能力。因此,Jeremy K. Nicholson团队1于2021年在《Talanta》上发表了《Asimultaneous exploratory and quantitative amino acid and biogenic amine metabolic profiling platform for rapid disease phenotyping via UPLC-QToF-MS》,提出了一种基于高分辨质谱(HRMS)的工作流程,在定量34中氨基酸及其他生物胺类代谢物的同时,还可进行全扫对未知代谢物进行探索。本研究使用三种人类体液(血浆,血清和尿液)对比了高分辨QTOF和传统QQQ的定量结果,发现两者准确度和精密度相当,且线性良好。将该方法扩展应用于SARS-CoV-2阳性患者和健康组血浆样本的对比分析,QQQ和QTOF均可实现两类样本的正确分类。重要的是,QTOF的全扫描数据可回溯分析,对34个目标定量物质之外的其他的感兴趣的生物标志物进行定量分析。实验设计QQQ和QTOF使用同样的液相条件,QQQ使用MRM扫描模式,QTOF使用bbCID扫描模式。QTOF使用的为布鲁克的impact II。两种仪器对比时线性,精度度和准确性,特异性等计算判断方法依据FDA和EMA生物分析指南进行。日内稳定性通过在一天内多次重复分析不同浓度的QC样本进行,日间稳定性在三天内分析不同浓度的QC样本并进行对比。实际样本的对比,进行了两组实验。第一组比较了两种不同仪器平台,定量人体血浆,血清和尿液样本中34种目标代谢物的结果。第二组使用两种质谱分析SARS-CoV-2感染者和健康人群样本,并进行统计学分析。结论线性和特异性QTOF和QQQ均能在1-400umol/L范围内实现良好线性,相关系数大于0.99,残差小于15%。表明QTOF在所需浓度范围良好的定量能力。QQQ一般情况下,会选择一个定性离子和一个定量离子来确证目标化合物并进行定量。但当目标化合物有背景干扰时,可能需要改变其定性离子来确证化合物,或者在样本前处理/色谱分离过程除去干扰。但高分辨QTOF可以使用高精度的窄窗口实现化合物筛选和定量。下图给出了一个相关的例子,分析尿液中的精氨酸时QQQ受到背景杂质干扰,但QTOF并不会。准确度和精密度对比了两台QTOF,三台QQQ的日间和日内精密度。根据欧洲生物分析论坛关于血浆代谢物分析的提议,我们的检测验证的预定义接受标准是四个不同浓度的QC样本的三次重复的平均偏差和CV为20%。图2显示了对NISTSRM1950样本中部分氨基酸定量结果日间精密度的雷达图。不同平台仪器对比为了评估本研究中五台仪器上实际样品的定量结果之间的一致性,对12个血浆、血清和尿液样品的氨基酸定量结果进行了比较。图3所示的相关矩阵表明,两类仪器平台的实际血浆样品中氨基酸的计算浓度之间高度一致,相关系数0.849.PCA分析PCA是代谢分析中常用的分析方法,用于对大批量数据的统计学分析。这里,我们使用PCA对34种氨基酸及生物胺类化合物进行分析,这34种代谢物在之前的文章中被验证为SARS-CoV-2感染引起相关变化的代谢物。图4给出了QQQ和QTOF数据PCA的结果。两类仪器均可明显区分健康组和感染组。区分健康对照组和COVID-19感染者的能力证明了该方法对COVID-19进一步研究的价值。QTOF同时定性和定量分析使用QTOF相比于QQQ最大的优点是数据采集过程中能最大程度的保留样本的信息,尤其是在样本非常珍贵的情况下,只需一针进样,就可以同时进行定性和定量分析。不仅可以进行靶向分析,还可进行非靶向目标物的分析。非靶向的分析可通过MetaboScape软件实现。在刚才的样本分析中,QTOF的全扫共扫描到2700多个特征峰,而QQQ只能扫描目标的34个化合物。这2700个特征峰中,存在很多潜在的标志物,使用QTOF可以对这些标志物进行定性和定量。下图给出了分析的相关示例。参考文献Nicola Gray, Nathan G. Lawler, Rongchang Yang, Aude-Claire Morillon , Melvin C.L. Gay, Sze-How Bong, Elaine Holmes, Jeremy K. Nicholson, Luke Whiley. "A simultaneous exploratory and quantitative amino acid and biogenic amine metabolic profiling platform for rapid disease phenotyping via UPLC-QToF-MS", Talanta 223 (2021) 121872.
  • 基于液相色谱-质谱技术的代谢组学分析方法新进展
    第二十届全国色谱学术会议于4月19日在西安曲江国际学术会议中心顺利召开,来自于国内外上千名的专家学者汇聚于此分享着在色谱领域中最新的研究成果和进展。在此次会议上,来自于中国科学院大连化学物理研究所的许国旺研究员向到场的嘉宾和观众介绍了液相色谱-质谱联用技术在代谢组学中的最新研究进展,并与现场嘉宾和观众进行了交流。   许国旺谈到,代谢组学是通过考察生物体系受刺激或扰动前后代谢物谱及其动态变化来研究生物体系代谢网络的一种技术。根据研究目的不同,可以将代谢组学研究策略分为非靶向代谢组学和靶向代谢组学。通常非靶向方法主要用于代谢表型区分或差异代谢物发现的研究。从分析技术的角度来看,非靶向代谢组学是尽可能多地定性和相对定量生物体系中的代谢物, 最大程度反映总的代谢物信息。靶向代谢组学通常针对某个代谢通路或某些感兴趣的已知代谢物进行高灵敏度检测和准确定量分析,主要用于某些差异代谢物的验证等经典的靶向代谢组学LC-MS分析先由目标代谢物标样产生选择反应监测(SRM)/多反应监测( MRM) 离子对, 然后对样品中的目标代谢物进行靶向分析。 中国科学院大连化学物理研究所 许国旺研究员   近年来随着分析化学的发展,代谢组学技术也获得了蓬勃发展。核磁共振和质谱是代谢组学研究领域的最主流分析平台,与其他色谱-质谱联用技术相比,液相色谱-质谱联用技术更适合分析难挥发或热稳定性差的代谢物,同时LC既可以选择与飞行时间、四级杆-飞行时间、离子阱-飞行时间、静电轨道阱等高分辨质谱串联,以进行非靶向代谢组学分析,又可以与四级杆、三重四级杆或四级杆离子阱等质谱串联,利用选择反应监测或多反应监测检测模式进行靶向代谢组学分析。LC-MS技术的这种灵活性与普适性,使得它成为了代谢组学研究中功能最为常用的技术平台。   基于LC-MS的代谢组学技术研究近年来取得了突飞猛进的成果,但技术的发展永无止境,就基于LC-MS的代谢组学分析技术而言仍存在很多问题亟待解决,例如,生物样品中代谢物组成十分复杂,许多痕量代谢物有重要的生理功能和意义,但目前的方法难以检测或因其含量较小导致分析误差很大 代谢组学面对的是大样本分析预处理技术及分析方法的重现性和可靠性显得尤为重要 生物样本间的个体差异导致了不同的基质效应,如何在复杂生物基质条件下对代谢物进行准确的定量分析也是代谢组学面临的挑战之一。   随着各种质谱仪器灵敏度和分辨率性能的大幅度提升基于LC- MS技术的代谢组学能够获得的代谢特征也在快速增加,但是如何将这些代谢特征转变为有用的代谢信息依然是代谢组学研究工作者面临的挑战之一,可以预见未来将会有更多的新技术、新方法出现,以满足日益增长的代谢组学研究需求。
  • 岛津超快速质谱助力靶向代谢组学研究
    靶向代谢组学中,通常需要同时检测多个目标组分,这对质谱数据的采集速度提出了很高的要求。 岛津超快速质谱(UFMS)拥有业内首屈一指采集速度。以LCMS-8050为例,其驻留时间(Dwell time≥0.8 ms)、切换时间(Pause time≥1 ms)、扫描速度(Scan speed≤30000 u/sec)、正负极切换速度(Polarity switching time=5 ms);并且具有触发子离子扫描功能,可以实现MRM定量的同时对目标组分进行子离子扫描定性分析。 以下图为例,假设一个峰宽6秒的UHPLC色谱峰用于定量分析,必须有20个采集点左右,峰型才足够平滑,峰面积和出峰时间的重复性才能达标。如此算来,每个采集点的循环时间(loop time)只有300 ms。在300ms的时间段内,需要进行所有目标组分的采集,如下AB正离子,CD负离子: 1.采集循环开始,切换时间内对质谱通道电压进行调整(为A离子对“铺路”);2.A母离子通过四级杆Q1、碰撞池内进行碰撞、四级杆Q3筛选子离子、最终到达检测器进行离子计数,这段时间总和即为驻留时间;3.为B离子重复以上过程,到此正离子采集完成;4.接着切换从离子源到质谱通道到检测器的电压为负,此为正负极切换时间;5.进入到C、D的采集过程,过程与AB一样;6.最后将电压切换为正,到此结束整个循环时间,开始下个采集点的循环时间。 这只是两个正离子和两个负离子的采集例子,如果采集目标组分数量急剧增加,在峰宽不变的情况下(即循环时间loop time不变),分到每个离子的驻留时间和切换时间将急剧减少,因此最小驻留时间和切换时间,直接决定了该质谱在所能同时采集的离子对数量,这对于靶向代谢组学或其他需要进行多目标物同时筛查的项目,至关重要! 图2. 质谱采集信号的过程,以及频率和点数的关系最后,举例说明岛津UFMS在靶向代谢组学中的一个应用实例:脂质组学属于代谢组学的一个分支。为进行靶向脂质组学研究,岛津公司利用超快速质谱适于多化合物同时检测的特性,推出了第三版脂质介质方法包:包含了主要脂类化合物如类花生酸、二十二碳六烯酸(DHA)和二十碳五烯酸(EPA)等多价不饱和脂肪酸代谢物,花生四烯酸乙醇胺(AEA)、血小板活化因子(PAF)等196种主要脂质介质及其相关物质的色谱、质谱条件(MRM通道)。 该方法只需20分钟的色谱分析便能获得这196种化合物的脂质介质的分析结果。此外,方法包中还根据出峰时间和结构特性,准备了18种氘代内标化合物的MRM通道。另外,该方法包可进行保留时间校正,可使用内标法进行半定量,所以可用于检索多变量解析时的标记物。下图显示了超快速质谱MRM模式中,196种脂质和18种内标同时分离所采集得到的色谱图。 图3. 脂质介质方法包用于196种脂质,18种内标的分离 撰稿人:钟启升
  • 基于纳升电喷雾质谱直接进样的代谢组学分析新方法
    色谱-质谱联用是目前代谢组学分析的主流方法,但是色谱分离速度限制了其在大规模样本分析中的应用。直接进样质谱(DI-MS)虽然通量高,但面临着离子抑制效应导致代谢物检测灵敏度降低、缺少色谱分离使得定性定量困难等挑战。因此,亟需发展与DI-MS相配的高灵敏度质谱数据采集技术和数据分析技术。   为此,科研人员提出一种基于纳升电喷雾直接进样高分辨质谱的非靶向代谢组学分析策略:将一级精确质量、同位素分布模式、二级质谱相似度、母离子和子离子强度相关性等结合,使代谢物的定性准确率高于94%;定量方面采用一级母离子结合二级特征碎片离子的方式来实现。此方法稳定可靠,2-3分钟可分析一个样品,适合于大规模样本的高通量代谢组学研究。   此外,传统的细胞代谢组学分析方法通常需要数百万个细胞,但许多稀有细胞如循环肿瘤细胞、原代肿瘤细胞、干细胞等,面临着细胞数不足的问题。科研人员在上述工作基础上,建立了基于毛细管微探针的细胞取样、96孔板脂质在线提取、nanoESI DI-HRMS拼接式质谱数据采集的新方法,实现了3分钟内从20个哺乳动物细胞中检测19类脂质、500多种脂质代谢物。该平台在生命科学和临床医学研究中具有应用潜力。   相关研究成果分别以Strategy for Nontargeted Metabolomics Annotation and Quantitation Using a High-resolution Spectral-Stitching Nanoelectrospray Direct-Infusion Mass Spectrometry with Data-Independent Acquisition和Lipid Profiling of 20 Mammalian Cells by Capillary Microsampling Combined with High-Resolution Spectral Stitching Nanoelectrospray Ionization Direct-Infusion Mass Spectrometry为题,发表在《分析化学》(Analytical Chemistry)上。研究工作得到国家重点研发计划、国家自然科学基金等的资助。图1.基于纳升电喷雾直接进样高分辨质谱的非靶向代谢组学分析策略图2.基于毛细管微探针的细胞取样、96孔板脂质在线提取、nanoESI DI-HRMS拼接式质谱数据采集的新方法
  • 布鲁克核磁 & 质谱网络研讨会 — 代谢组学专题
    布鲁克作为全球知名的仪器供应商,多年来一直专注于开发核磁和质谱技术在代谢组学研究中的应用,并不断取得突破性进展。此次,布鲁克核磁共振联合质谱部门将举办代谢组学行业专场网络研讨会。会中,布鲁克的技术专家们将为您带来核磁共振和质谱技术在行业的最新应用。您将了解到:核磁代谢组学方案疾病的发生必然导致机体出现病理生理异常,进而诱导体内代谢物水平发生变化。而代谢组学通过对体内复杂代谢物的动态变化进行分析,实现疾病的早期诊断和个性化治疗监控。本报告将分享Bruker Biospin最新发布的疾病诊断研究(IVDr)方案,包括一键式全自动地完成人体体液样本的NMR数据采集、谱图解析、代谢物定量以及疾病诊断分析。该报告将分享许多应用实例,敬请期待。质谱高通量代谢组学方案代谢组学是继基因组学、转录组学及蛋白质组学之后发展起来的一门新兴组学,主要的研究对象是脂质,氨基酸等小分子代谢物。代谢组学的研究通常会伴随快速稳定检测大批量样本的困扰,仪器的性能和结果的稳定性是保证此类研究质量的关键,布鲁克质谱以其优越的性能在高通量的样本分析方面表现出了极大的优势,为代谢组学的分析提供了稳定优异的分析平台。时间和地点:2020年5月27日,周三,下午14:30-16:00观看方式:点击观看演讲嘉宾:任萍萍博士布鲁克核磁高级应用科学家毕业于中科院武汉磁共振中心,在NMR及分析化学领域发表SCI十余篇,参编2019年科学出版社出版的分析检测类教材一部。樊朝阳布鲁克道尔顿应用工程师负责代谢组学质谱新技术的推广,有丰富的代谢组学质谱分析经验。
  • 超高分辨质谱助力组学发展|赛默飞助阵第二届全国代谢组学及蛋白质组学双星峰会
    上海 双星峰会2021年11月27-29日,第二届全国代谢组学及蛋白质组学双星峰会在上海隆重召开,此次会议汇集了近200位国内外相关领域的知名专家、学者以及临床疾病、中医药、肿瘤、植物等多个研究方向的研究人员积极参与,共同交流探讨基于质谱的蛋白组学及代谢组学在精zhun医学、创新药、植物生理、营养健康、环境和食品等转化应用,共商我国代谢组学和蛋白质组学在后疫情时代的研究与发展。为降低疫情影响,大会采取线上同步直播的方式,在线人数达到600人。在此次会议中,赛默飞质谱组学应用专家鼎力助阵,分享超高分辨质谱技术在组学研究中的应用及进展,助力组学研究发展。在本次大会主会场上,赛默飞质谱组学应用资shen工程师范自全报告了“组学前沿-超高分辨质谱技术在组学研究中的应用和进展”,引起大家高度关注。上世纪90年代初开展的人类基因组计划,在破译人类遗传信息密码的同时,为科研学者提供了大量的完整基因编码序列,从而奠定了大量、快速鉴定蛋白质序列的坚实基础。然而,蛋白质以及代谢物的数量远远超过基因组中基因数量——基因分析量在万级,而蛋白质分析量可能在十万-百万级。完整的组学分析对质谱的性能提出了非常高的技术需求。赛默飞Orbtrap超高分辨质谱技术具有超高分辨率、超高质量精度、超高的稳定性及灵敏度等性能优势,助力科学家进行高通量的蛋白质和代谢物的结构表征和定量分析。质谱技术作为蛋白质和小分子物质的主要检测手段,借助赛默飞Orbitrap高分辨率质谱凭借其高精zhun的定性、定量能力,助力蛋白质组学和代谢组学研究实现精确医疗研究。通过蛋白质组、代谢组、脂质组等多种组学的联合研究,为疾病致病机理发现、疾病的早期诊断及预后生物标志物、疾病分型以及新的治疗靶点研究提供理论依据。随着研究人员对蛋白质组学和代谢组学研究的深入,对样品中分子的空间分布情况及其相互作用的需求日益增加。质谱成像技术能够直观的检测样品中分子的空间分布信息,近年来受到了高度关注与广泛应用,成为与传统光学显微成像互为补充的新一代“分子成像显微镜”。基于Orbitrap的成像技术具有超高的质量及空间分辨率,ji致清晰的成像结果为多种应用领域提供全面丰富的多层次数据。例如在赛默飞质谱成像技术支持下,Spengler教授团队研发出低至1.4μm 空间分辨率的应用,小鼠脑组织成像结果更加清晰。这个水平的空间分辨率也使得单细胞质谱成像技术成为可能。在较大的组织甚至整体动物研究方面,国内学者采用自主研发的空气动力学气流辅助解吸电喷雾电离质谱成像技术,在大鼠脑、肾脏和人食道癌组织中观察到数千种代谢物,并且采用人工神经网络算法,突破了定量研究中的难题,为疾病研究提供了有力的分析工具。会场外赛默飞领xian的Orbitrap质谱技术在现场一众质谱厂商中尤显突出。展台上全方位展示了基于其超高分辨的静电场轨道阱(Orbitrap)质谱平台结合其功能强大的软件平台提供的蛋白质组学及代谢组学全流程的整体解决方案,助力科研超越。
  • “质谱在临床医学的应用”与“质谱在蛋白质组学/代谢组学的应用”-iCMS 2015
    p span style=" FONT-FAMILY: times new roman"    /span strong span style=" FONT-FAMILY: times new roman" 仪器信息网讯 /span /strong span style=" FONT-FAMILY: times new roman" 2015年11月19日,仪器信息网网络讲堂与中国化学会质谱分析专业委员会合作举办的& quot 第六届质谱网络会议(iConference on Mass Spectrometry,iCMS2015)继续进行。在本次会议前两日的 a title=" " href=" http://www.instrument.com.cn/news/20151117/177728.shtml" target=" _self" strong 质谱新技术专场 /strong /a 和 a title=" " href=" http://www.instrument.com.cn/news/20151118/177846.shtml" target=" _self" strong 质谱在药典中的解读及相关应用 /strong /a 之后,今日的报告主题为“质谱在临床医学的应用”和“质谱在蛋白质组学/代谢组学的应用”。本届质谱网络会议自11月17日开幕,为期四天,开设了质谱新技术、质谱在新版药典中的解读及相关应用、质谱在临床医学的应用、质谱在蛋白质组学/代谢组学的应用、质谱在环境检测中的应用及质谱在食品检测中的应用共六个专场,共邀请了30位质谱研发和应用专家做出报告并与参会者进行现场和在线沟通。来自高校、科研院所、医院、质检机构、企业分析测试中心、质谱仪器厂商等单位的专家和 /span span style=" FONT-FAMILY: times new roman" 一线用户参加了本次网络会议。 /span /p p style=" TEXT-ALIGN: left" span style=" FONT-FAMILY: times new roman"    span style=" FONT-FAMILY: times new roman COLOR: #7030a0" strong 质谱在临床医学的应用专场 /strong /span /span /p p span style=" FONT-FAMILY: times new roman"   共有3位质谱应用和临床医学专家围绕“质谱在临床医学的应用”展开了各自的报告。180余位参会者进入本会场听讲。 /span /p p span style=" FONT-FAMILY: times new roman"   中科院化学所活体分析化学重点实验室研究员聂宗秀远程分享了他在“活体质谱与成像”方面所做的研究工作。聂宗秀汇总了MALDI质谱进行小分子分析的几种新基质如多孔硅/微纳结构、纳米金、石墨烯等,并介绍了其研究团队将研究发现的几种耐盐小分子新基质用于人体代谢产物的分析。讲者又重点讲解了几种体内组织成像模型和用质谱成像法研究碳纳米材料在组织中的分布。碳纳米材料在生物医学中应用广泛,此研究可评价其在生物医学中的安全性,也有望成为药物代谢研究的良好途径。 /span /p p span style=" FONT-FAMILY: times new roman"   军事医学科学院疾病预防控制所研究员袁静远程为参会者带来了“蛋白质组-质谱技术在肠道微生物研究中的应用”。肠道菌群与人体健康息息相关。袁静从双歧杆菌的体内适应性、肠道重要致病菌的效应子作用及体内调控机制、肠道菌耐药性与致病机理、肠道菌群的宏基因组学四个方面阐述了肠道微生物菌群与健康的关系。 /span /p p span style=" FONT-FAMILY: times new roman"   首都医科大学附属北京同仁医院主任医师鲁辛辛远程分享了“MALDI-TOF在微生物鉴定中的应用”。鲁辛辛介绍了MALDI-TOF微生物鉴定原理和在微生物鉴定中的各类应用,如血培养报警直接鉴定、耐药性分析以及微生物同源分析等。重点讲解了MALDI-TOF在细菌鉴定中的方法步骤,直接靶点比有前处理的传统提取匹配效果更好。除此之外,讲者简述了弯曲菌、丝状真菌等微生物的MALDI鉴定方法。 /span /p p style=" TEXT-ALIGN: left" span style=" COLOR: #7030a0" strong span style=" FONT-FAMILY: times new roman COLOR: #7030a0" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 质谱在蛋白质组学/代谢组学的应用专场 /span /strong /span /p p span style=" FONT-FAMILY: times new roman"   共有4位质谱应用和临床医学专家围绕“质谱在蛋白质组学/代谢组学的应用”展开了各自的报告。近200位参会者进入本会场听讲。 /span /p p span style=" FONT-FAMILY: times new roman"   中科院上海生命科学院生化与细胞所研究员黄超兰远程为参会者带来了“质谱-蛋白组学技术在人体疾病研究中的应用”。全球有1亿7千万慢性丙肝(HCV)感染者,而不被诊断的HCV病人逐渐增多。从组学研究角度,通过蛋白质鉴定可以发现,在HCV感染的情况下PKM2 K455乙酰化水平将下降。另外,讲者还讲授了与上海中山医院的合作项目:从综合蛋白组学研究探讨疏风解毒胶囊在急性肺损伤中的作用机制。 /span /p p span style=" FONT-FAMILY: times new roman"   布鲁克· 道尔顿应用工程师刘东静在现场介绍了“布鲁克质谱技术在代谢组学中的特点及应用”。代谢组学的靶向代谢组学在对已发现的生物标记物定量分析中具有良好应用,如分析特定生化途径的代谢物 代谢组学的非靶向代谢组学对已知和未知化合物进行轮廓分析,对未知物的鉴定是代谢组学研究的瓶颈。布鲁克在代谢组学方面从非靶向到靶向有完备的产品线,向如NMR、LC-qTOF、GC-APCI、FT-MS、LC-TRAP、LC-TQ、GC-MS/MS等,其中QTOF产品具有强大的三维定性能力。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-FAMILY: times new roman COLOR: #0070c0 FONT-SIZE: 14px" strong img title=" IMG_7991_副本.jpg" src=" http://img1.17img.cn/17img/images/201511/insimg/ad06fe50-649f-42f4-adb7-21c74f65406c.jpg" / /strong /span /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-FAMILY: times new roman COLOR: #0070c0 FONT-SIZE: 14px" strong 布鲁克· 道尔顿应用工程师刘东静 /strong /span /span /p p span style=" FONT-FAMILY: times new roman"   北京依莎八方科技发展有限公司工程师夏小燕在现场介绍了“ROXY EC与质谱联用在代谢组学和蛋白组学中的应用”。连接在质谱前端的电化学反应系统ROXY EC在代谢组学研究中能实现快速分析,且能得到比原有方法更大的信息量,包括不稳定中间代谢产物信息。电化学合成法在药物代谢产物制备中具有简单、快速、廉价和环保的优势。在介绍EC/MS在蛋白组学中的应用时,讲者主要通过二硫键还原的例子说明此方法的快速、高效和可控的优势。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" IMG_7996_副本.jpg" src=" http://img1.17img.cn/17img/images/201511/insimg/8bb6df57-5636-4971-9a33-bd3a419ad38e.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-FAMILY: times new roman COLOR: #0070c0 FONT-SIZE: 14px" strong 北京依莎八方科技发展有限公司工程师夏小燕 /strong /span /span /p p span style=" FONT-FAMILY: times new roman"   中科院上海有机化学所研究员朱正江远程讲解了“基于LC-MS的代谢组学技术及其在临床诊断中的应用”。代谢组学具有发现疾病代谢途径、关联代谢途径与生物功能的作用。朱正江重点介绍了代谢组学在生物标志物临床研究中的应用。全自动样品处理系统和高灵敏度数据采集LCMS作为高效生物标志物研发平台对于代谢组学临床研究非常重要。朱正江用食管癌筛查实例说明代谢组学生物标志物研究能提高疾病筛查阳性率和揭示病程。 /span /p p span style=" FONT-FAMILY: times new roman"   SCIEX、力可、岛津、东西分析、布鲁克、赛默飞、安捷伦 、天瑞、依莎八方等质谱仪器公司给予本次网络会议大力支持。 /span /p p style=" TEXT-ALIGN: right" span style=" FONT-FAMILY: times new roman"   撰稿:郭浩楠 /span /p p span style=" FONT-FAMILY: times new roman"    /span /p p span style=" FONT-FAMILY: times new roman" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp span style=" FONT-FAMILY: times new roman COLOR: #0070c0" strong 关于质谱网络会议iCMS /strong /span /span /p p span style=" FONT-FAMILY: times new roman"   质谱网络会议(iConference on Mass Spectrometry,iCMS)是仪器信息网组织的质谱领域年度综合性网络会议,旨在向众多质谱从业人士提供一种便捷、有效的技术交流平台,足不出户即可听到高水平的质谱专业报告。自2010年至今,iCMS已成功举办五届,总计逾万人报名参会,先后邀请了国内外百余位质谱专家为大家呈现上百场高水平专业报告,并得到业内知名质谱公司参与支持。质谱网络会议(iCMS)自2014年起,在原来网上报名方式的基础上增加了微信报名方式,为广大网友参与会议提供了更加便捷的渠道。 /span /p p span style=" FONT-FAMILY: times new roman"    strong 其他专场报告: /strong /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" a title=" " href=" http://www.instrument.com.cn/news/20151117/177728.shtml" target=" _self" 质谱新技术专场报告 /a /span /p p style=" TEXT-ALIGN: center" a title=" " href=" http://www.instrument.com.cn/news/20151118/177846.shtml" target=" _self" span style=" FONT-FAMILY: times new roman" 质谱在新版药典中的解读及相关应用 /span /a /p p span style=" FONT-FAMILY: times new roman"    strong 其他专场报名入口: /strong /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman"    a title=" " href=" http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/1297" target=" _self" iCMS2015-质谱在环境检测中的应用 /a /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman"    a title=" " href=" http://www.instrument.com.cn/news/20151117/177728.shtml" target=" _self" iCMS2015-质谱在食品检测中的应用 /a /span /p p & nbsp /p
  • 代谢组学 | GC-Orbitrap/MS—— 小分子识别定量必备
    原创 飞飞 赛默飞色谱与质谱中国关注我们,更多干货和惊喜好礼李丕 邢江涛代谢组学旨在对给定生物学背景下的所有代谢物(小分子)进行识别和定量。质谱法是对小分子进行准确分析的最强大工具之一,可以检测成百上千种代谢物。然而,由于数据库覆盖范围有限及代谢组的复杂性,通常只有不到30%的化合物被鉴定,而未注释的峰很可能是感兴趣化合物。因此未知物识别一直是代谢组学研究中最耗时的步骤,依赖质谱专家对数据进行劳动密集型的手动注释。本文将从分辨率和质量精度、同位素过滤、CI确认、灵敏度、动态范围、解析软件这6个维度讨论GC-Orbitrap/MS在代谢组学中小分子识别和定量的表现。01未知物注释—— HRAM近十年来随着 GC-Orbitrap/MS 高分辨气质系统的兴起,整个代谢组进入快速注释的新时代。这得益于GC-Orbitrap/MS超高分辨率(高达240K)和亚ppm质量精度的优点。采集样本生成高分辨质谱数据,然后利用离子质量亏损递推计算出未知峰所有可能的分子式。分辨率是分离两个m/z相近离子的能力,质量精度是实测值和理论值的偏差。分辨率和质量精度越高,满足筛选条件的分子式越少,越容易得到正确注释。(点击查看大图)(点击查看大图)Misra使用 GC-Orbitrap/MS 分析了标准参考物质 NIST SRM 1950 混合血浆参考样品,以评估该平台对常规发现代谢组学在代谢物注释和定量方面的适用性[1]。该研究分别通过EI、PCI 和 NCI 模式自信地鉴定了 263、93 和 65 种代谢物(代谢组学标准倡议MSI置信水平 2),其中 270 种代谢物 (64%) 使用内部谱库进行了验证。另外,与使用相同 NIST SRM 1950 血浆样品的已发表的基于LC-MS 的工作相比,两个平台只有 17% 的代谢物重叠,说明了血浆代谢组学研究中使用GC-Orbitrap/MS 平台的互补性和必要性。02未知物注释——同位素模式过滤在高m/z区域,仅靠高质量精度不足以排除足够多的候选物,因为高m/z区域存在更多化学上可能的分子式。研究表明同位素模式正交过滤可以排除95%的错误候选物。Qiu使用加标的同位素比率离群值分析 (IROA) 进行未知代谢物注释[2],并证明使用该工作流程生成化学式的可靠性更高。本质上,IROA 工作流程使用两种不同的 13C 富集碳源(随机 95% 12C 和 95% 13C)以产生镜像同位素峰对,二者的质量差异揭示了碳链长度 (n),从而有助于鉴定内源性代谢物。通过GC-Orbitrap/MS数据可以识别 244 个 IROA 峰对,平均质量偏差为1.48 ppm,这显着提高了 IROA 的检测能力(Qiu 之前的工作使用其他类型的高分辨质谱,仅得到 126 个 IROA 峰对,平均质量偏差为 32.2 ppm)。 (点击查看大图)03未知物注释——EI+CI互补元素组成的计算需要丰富的分子离子。EI谱图通常分子离子丰度低或缺失,因此需要使用 CI软电离获得分子离子信息。很多研究都使用GC-Orbitrap/MS 结合CI电离为显著失调的未知物生成可能的分子式,此处不赘述。Misra在其研究论文中对GC-Orbitrap/MS轻松切换EI/CI源的功能给予了中肯评价。他提到,对于我们的高分辨 GC-Orbitrap/MS 仪器,EI 和 CI 之间的切换很容易,一个制备好的样品可以依次运行 EI-MS、PCI-MS/MS 和 NCI-MS分析。赛默飞具有独特的VPI技术,可以在不破坏质谱真空的情况下2分钟之内切换EI源和CI源,5分钟内更换色谱柱,消除宕机时间,轻松实现EI/PCI联合定性或双柱RI定性。更有EI/CI混合离子源,一个离子源实现三种电离模式。(点击查看大图)04高灵敏度——小样本量发现更多标志物研究表明,GC-Orbitrap/MS在代谢组学中的灵敏度和发现标志物的数量远远高于四极杆质谱[3]。若要在两种仪器得到的响应强度相近的TIC,需要在 四极杆质谱上注入浓度高 8 倍的样品。以相同参数对数据进行峰拾取、分组、过滤后,分别剩下 114 个(四极杆)和 339 个化合物(GC-Orbitrap/MS)——这是 3 倍的差异。这表明GC-Orbitrap/MS的灵敏度更高,使用更小的样本量即可增加代谢覆盖率。可用样本量对于环境样本或可扩展培养的生物体不是问题,但可能是人类或动物研究的限制因素。更重要的是,在样品浓度降低 8 倍的情况下,GC-Orbitrap/MS 仍检测生成了几乎 3 倍的代谢物。比较两种仪器中显著失调的化合物,有趣的是,两个数据集的重要化合物只有 28% 重叠。在四极杆数据集中发现缺失46个失调化合物,而 GC-Orbitrap/MS 数据集仅缺失9个失调化合物。四极杆缺失的化合物中, 4个由于解卷积错误而缺失;12个由于p 值或倍数变化不符合重要化合物的阈值标准而缺失;29个因检测到的碎片太少缺失。由此可见,GC-Orbitrap/MS 可以检测到更多的化合物,因为它的检测限较低。此外,GC-Orbitrap/MS缺失的9种化合物中有2个被排除是因为它们存在于培养基空白中;2个解卷积错误缺失,5个因 p 值或倍数变化不符合重要化合物的阈值标准。(点击查看大图)05动态范围代谢组学的一个关键挑战是生物样品中代谢物浓度的动态范围较大,跨越4-6 个数量级。对于传统光电倍增器式质谱检测器,很容易导致饱和。GC-Orbitrap/MS是一种新型高分辨质谱仪,动态范围高达6个数量级。因此GC-Orbitrap/MS允许引入更多的样品,从而获得更多的低丰度代谢物。在Qiu的研究中,GC-Orbitrap/MS 具有更宽的动态范围,因此可以检测到更多的 IROA 峰对,结合GC-Orbitrap/MS的高分辨率,共同提高了分子式的可靠性。(点击查看大图)呼吸气检测可以揭示人体的挥发性代谢组,是疾病早期诊断和精准医学的有效工具。Boyle采用热脱附(TD)与 GC-Orbitrap/MS 联用搭建Breath Biopsy呼吸活检平台(Owlstone Medical),将呼吸样本收集、热解吸和测量联系起来,以提供呼吸样本的综合概况。GC-Orbitrap/MS 高分辨率质谱仪与呼吸活检结合使用的主要优势在于动态范围宽、质量分辨率高和质量准确度高,可实现低浓度和高浓度下的检测和定量以及快速可靠的化合物鉴定。同一呼吸样本中可能含有非常高和超痕量(飞克)水平的化合物,因此获取广泛丰度范围内的高质量数据至关重要。超过6个数量级动态范围使 GC-Orbitrap/MS 轻松胜任呼吸活检(见下图)。(点击查看大图)另外,呼吸分析通常受到样本数量的限制,因此必须从单一分析中收集定量和定性信息。GC-Orbitrap/MS能够进行平行的靶向和非靶向分析,从而研究已知和潜在的新型生物标志物。06软件软件与仪器本身同样重要,是成功鉴定化合物的基石之一。质谱硬件当下处于非常先进的阶段,结构解析的最终成功在于如何深度利用数据。这就要求开发更好的软件程序,以及评估HRAM MS数据的复杂工具。GC-Orbitrap/MS配套赛默飞专业的数据解卷积、大队列的组学分析、和化合物质谱裂解软件。组学分析软件Compound Discoverer内置高效靶向和非靶向分析工作流,帮助用户最大化从代谢组学样本中获得的代谢覆盖率和未知物质注释方面的信息,并可进行分子网络、代谢通路分析。质谱裂解软件Mass Frontier包含3万多个裂解方案,其中包含十余万个反应和相关结构。可以执行直接分子搜索、子结构搜索、相似性搜索和名称搜索,并且所有关联的元数据都可以电子方式搜索,可用于开发计算机碎片预测。Mass Frontier质谱裂解软件一瞥(从手绘到电子检索预测)(点击查看大图)总结在代谢组学领域,GC-Orbitrap/MS被积极用于捕获各种生物学背景的挥发性、非极性和极性(衍生)小分子。短短几年,大量研究工作使用 GC-Orbitrap/MS生成了令人兴奋的高通量和高质量的数据,涵盖基础研究到应用研究领域。通过靶向和非靶向工作流程,GC-Orbitrap/MS有望提供高质量的数据集,以应对各种研究挑战。如需合作转载本文,请文末留言。
  • 代谢组学、单细胞蛋白组学……ASMS2024上这些质谱新技术值得关注
    2024年6月2-6日,全球质谱领域最具影响力之一的专业盛会--第72届美国质谱年会(ASMS)在美国加州阿纳海姆会议成功召开,该盛会吸引了世界各地的质谱工作者汇聚一堂,共话质谱未来。此次大会盛况空前,举办了超70个分会议,约有6,800名科学家出席,并展示超3,400篇研究摘要。大会设有短期培训课程、墙报、分会场口头报告等,通过多种不同的形式,科学家们分享他们的最新研究成果,揭示质谱学的前沿技术和应用。同时仪器厂商也争相展示着最新的产品技术,仪器信息网在众多企业发布的新品中,总结了热门技术产品。会议现场&bull 赛默飞Stellar&trade 对Astral的定量补充本届大会上赛默飞带来了他们的最新仪器——一款能够执行靶向验证的质谱仪。这反映了整个行业正朝着靶向检测与验证这一趋势迈进。传统意义上,高分辨率质谱仪能揭示众多潜在生物标志物,但如何有效验证这些成千上万的候选标志物一直是难以逾越的障碍。赛默飞此次发布的全新产品Thermo Scientific&trade Stellar&trade 质谱仪,正是针对这一痛点的突破性解决方案,也是赛默飞创新的又一重大里程碑。Stellar质谱仪结合了两个质量分析器,一个四极质量分析器用于前体离子选择,以及超高速双压线性离子阱质量分析器。离子集中路由多极(ICRM)同时在两个离子阱中操控离子包。同步离子管理以高灵敏度、宽动态范围和增加特异性高达140的MS2数据,使科学家能够在更短的时间内自信地将更多的候选生物标志物转化为验证阶段。提供大规模定量性能:一个小时内可以稳定地定量近10,000种肽,实现有偏差的系统生物学分析;样本通量数据提高:绝对定量更多靶向化合物,以提高定量研究能力,样本通量提高4倍;将靶向定量推向单细胞水平:利用增强的灵敏度扩展靶向通路分析的范围,同时减少样本的缺失值;大幅缩减背景干扰,增强特异性:采用快速、灵敏的全扫描同步前体离子选择 (SPS) MS3 采集克服具有挑战性的背景基质干扰;提升实验室生产率:使用各种靶向和非靶向数据采集方案,加快靶向方法的创建和实施。&bull 岛津RX系列三款新品全面升级LCMS-TQ RX系列包括LCMS-8060RX、LCMS-8050RX和LCMS-8045RX三个型号,继承岛津三重四极杆液质联用仪UFMS的特点,同时提供更高的灵敏度、稳定性和可操作性。LCMS-TQ RX系列采用创新离子源设计,提高了数据可靠性。利用在分析前自动检查仪器状态、自动执行校准(调谐)的功能,以及将待机功耗降至更低的生态模式,实现高效的实验室操作和降低环境负荷。通过RX系列的导入,制药、环境、食品和科研领域等相关实验室工作效率将进一步提升。&bull 沃特世Xevo&trade MRT新一代多反射飞行时间质谱技术沃特世推出新款Xevo&trade MRT台式质谱仪(MS) ,是在先前推出的Waters SELECT SERIES&trade MRT 质谱仪 的技术基础之上,将多反射飞行时间(MRT)技术和混合四极杆飞行时间(QTof)技术的特性以及分辨率、速度的优势整合到了这款灵活的台式仪器中。 Waters Xevo MRT台式质谱仪在100 Hz下可提供100K FWHM的分辨率和亚ppm级质量精度。Waters Xevo&trade MRT质谱仪采用新一代多反射四极杆飞行时间技术,在不影响分析性能的前提下,实现了高分辨率和高速度的完美结合。与其他品牌的同类产品相比,该系统在上限运行时可提升高达6倍分辨率以及2倍的质量精度,有助于科学家用更短的时间处理更多的样品,更好地开展大型队列生物医学研究和流行病学研究。Waters Xevo&trade MRT能够提供完整的代谢组学、脂质组学和代谢物鉴定工作流程,用户可以方便灵活地使用沃特世软件、色谱柱和仪器开展高通量分离,并与第三方软件应用程序共享通用数据。&bull 安捷伦推出运用前沿GC/MS和LC/Q-TOF技术的新产品在第72届ASMS质谱与相关专题会议上推出两款新产品。一款是Agilent 7010D三重四极杆气质联用系统,这款以食品和环境为主要目标市场的系统,可在气相色谱-质谱联用分析中展现出色的精度和灵敏度。另一款为适用于6545XT AdvanceBio LC/Q-TOF系统的Agilent ExD池,旨在助力生物制药市场与生命科学研究。Agilent 7010D三重四极杆气质联用系统(7010D GC/TQ)Agilent 7010D 三重四极杆气质联用系统(7010D GC/TQ)配备全新的HES 2.0离子源,灵敏度可达阿克级。该系统内置SWARM自动调谐和早期维护反馈(EMF)等智能功能,有助于简化分析工作流程和减少计划外仪器停机。连接碰撞池的Agilent ExD池(适用于6545XT AdvanceBio LC/Q-TOF)适用于6545XT AdvanceBio LC/Q-TOF的Agilent ExD池可增加电子捕获解离(ECD)功能,助力肽和蛋白质表征。ECD特别适合用于研究大分子蛋白质、易损修饰和异构体残基——仅使用传统的碰撞诱导解离(CID)方法难以明确表征这些分析物。结合 6545XT 本身就有的完整蛋白质分析能力,ExD 池还适用于对较大的和高电荷的蛋白质(如抗体)以及小一些的亚基(如肽)执行“top to middle down”表征,由此生成的丰富谱图信息可使用 ExDViewer 软件进行可靠的解析。&bull SCIEX 7500+系统迄今为止SCIEX速度最快的三重四极杆质谱仪SCIEX推出了SCIEX 7500+系统,这是SCIEX定量产品组合中的最新款质谱仪,不仅可以覆盖日益复杂的基质样本,同时能确保仪器在更长时间内保持优异的性能状态。SCIEX 7500+ 系统SCIEX 7500+系统中Mass Guard技术是一项新的技术,包含主动过滤潜在污染离子的能力。它降低了仪器污染的风险和频率,特别是在处理复杂基质时,维持仪器最高灵敏度性能的时间,与现有SCIEX技术相比可提升两倍。进样组件DJet+完全可拆卸,允许前端维护,从而能够最大化系统的运行时间。SCIEX 7500+系统每秒可进行800次多反应监测(MRM),是迄今为止SCIEX速度最快的三重四极杆质谱仪。这一提升扩展了大列队化合物的应用范围和定量能力,能覆盖更多新的化合物,从而提高了实验室的整体工作效率。&bull 布鲁克新产品持续推动单细胞蛋白质组学发展在第72届ASMS会议上布鲁克宣布推出一款革命性的MALDI-TOF/TOF质谱仪,即neofleX&trade 空间成像质谱仪。neofleX&trade Imaging Profiler配备了布鲁克专利的smartbeam 3D激光器,确保了具有真实的“方形像素点”成像采集功能;配备了增强型检测器,可实现线性模式和反射模式下、持久稳定的数据采集性能。neofleX&trade 还提供TOF/TOF配置,该配置具有进一步优化设计的二级碎裂模块,能显著提高TOF/TOF的检测灵敏度、采集速度和序列覆盖度。布鲁克还宣布了一款SCiLS&trade 系列软件的扩展产品 - SCiLS&trade Scope 1.0,为neofleX&trade 结合靶标蛋白质成像的空间多组学成像流程而设计。SCiLS &trade Scope软件可处理来自靶向成像工作流程(如MALDI HiPLEX-IHC等)的OME-TIFF数据集。离子图像通过预先选定的通道色彩编码进行空间可视化分析,借助简单工具还可以实现快速图像处理和距离测量。布鲁克推出了全新的超高灵敏度 timsTOF Ultra 2 质谱系统,该系统大大提高了对微小细胞、亚细胞细胞器进行深度分析的灵敏度,并增加了样本进样量范围的灵活性。结合新的 Spectronaut® 19 软件和全新的 PreOmics ENRICHplus 试剂盒,布鲁克正在建立从超高灵敏度到大规模深度血浆蛋白质组学的4D-蛋白质组学新标准。&bull 国内厂商莱伯泰科、清谱科技精彩亮相在ASMS展会上,也出现了更多的国产质谱企业,莱伯泰科旗下子公司CDS携带蛋白组学样品前处理自动化平台以及最新发明的相关耗材产品精彩亮相,向世界展示了其在生命科学领域的创新实力。在本次ASMS中,CDS展示了MiniLab蛋白组学样品前处理自动化平台、6通道EZ-Trace固相萃取装置,以及基于Empore膜技术的最新E系列蛋白消解和脱盐产品。在展台上重点介绍了CDS新开发的蛋白组学样品前处理离心小柱的性能,其高肽容量和出色的高pH分馏效果让现场观众耳目一新。清谱科技也携带最新产品在#433展位与行业分享。清谱科技通过3个口头报告、18个墙报,展示分享团队近一年取得的创新技术成果及产品研发应用进展。
  • 科研人员利用质谱等技术发布首个水稻全景定量蛋白质组图谱
    记者30日从中国农业科学院获悉,该院生物技术研究所联合国内多家单位共同绘制了水稻全景定量蛋白质组图谱。相关研究成果日前发表在国际期刊《自然植物》上。中国农业科学院 图一直以来,受限于蛋白质组技术的覆盖度和精度,人们对作物定量蛋白质组以及蛋白质表达的调控机制理解还不够深入。蛋白质是作物实现各种生物学功能的主要执行者,构建全景定量蛋白质图谱在阐释植物生长发育、逆境响应及代谢调控等方面具有重要意义。论文通讯作者、中国农业科学院生物技术研究所研究员梁哲告诉记者,科研人员利用质谱等技术,量化了水稻主要组织中超过15000个基因的蛋白质水平,鉴定了8964个蛋白质,并为另外7077个蛋白编码基因提供了蛋白质水平证据,从而绘制出水稻全景定量蛋白质组图谱。“本研究成功绘制了迄今为止首个作物全景定量蛋白质组图谱。此前的植物基因表达调控研究主要聚焦在基因组至转录组层面,建立了中心法则(生物体内遗传信息的流动方向)中转录本(RNA)到蛋白质这一关键环节的多组学研究策略。此次研究发现,蛋白质的表达量不仅受到转录过程的影响,还受到转录后修饰的调控。这一研究为水稻的基因功能研究提供了重要的蛋白表达量资源,为基于多组学数据的作物智能设计育种提供了新思路。另外,研究运用的定量蛋白质组的方法也给其他作物蛋白质组的深入研究提供了借鉴。”梁哲说。
  • 许国旺研究员课题组建立一种高覆盖的代谢组和脂质组的定量分析方法
    近日,许国旺研究员课题组在代谢组学定量分析方面取得新进展,建立了适用于代谢组和脂质组交替定量分析的双反相液相色谱-质谱新方法(RPLC/RPLC-MRM-MS),可定量分析超过1,000个代谢物和脂质。代谢组学在精准医疗中发挥着越来越重要的作用。然而,代谢组学在精准医疗研究的应用需要大规模定量数据的支持。目前,仍然缺乏高覆盖度的代谢组靶向定量分析方法。针对上述问题,研究团队首先开发了包含397个代谢物MRM离子对和1,080个脂质MRM离子对的双液相色谱-质谱(RPLC/RPLC-MRM-MS)交替分析方法。然后利用221个标准品定量分析了超过1,000个代谢物和脂质,包括胺、氨基酸、苯衍生物、肽、核酸碱基及其相关物质、胆汁酸、羧酸、脂肪酸、激素、吲哚等代谢物的绝对定量,以及肉碱、溶血磷脂酰胆碱、溶血磷脂酰乙醇胺、自由脂肪酸、鞘磷脂、磷脂酰胆碱、磷脂酰乙醇胺和甘油三酯等的半定量。与Biocrates MxP Quant 500试剂盒相比,建立的交替RPLC/RPLC-MRM-MS方法可定量的代谢物数量提高了约1倍。该交替RPLC/RPLC-MRM-MS定量方法为大规模临床样本高覆盖定量数据的获取提供了可靠的分析平台,并将在健康人群代谢物的基准浓度测定中发挥积极的作用。相关研究成果以“Comprehensive Metabolite Quantitative Assay Based on Alternate Metabolomics and Lipidomics Analyses”为题,于近日发表在《分析化学学报》(ANALYTICA CHIMICA ACTA)上。该工作的第一作者是许国旺研究员课题组博士研究生吕王洁,通讯作者为赵欣捷副研究员和许国旺研究员。以上工作得到了国家自然科学基金、大连市重点基金、大连化物所创新基金等项目的资助。(文/图吕王洁)文章链接:https://www.sciencedirect.com/science/article/abs/pii/S0003267022005505
  • 葛瑛团队成果|通过平行代谢物提取和高分辨率质谱对人体心脏组织进行全面的代谢组学分析
    大家好,本周为大家分享一篇发表在Anal. Chem.上的文章:Comprehensive Metabolomic Analysis of Human Heart Tissue Enabled by Parallel Metabolite Extraction and High-Resolution Mass Spectrometry[1],文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授。  心脏收缩需要持续的能量供应。作为一种“代谢杂食动物”,心脏利用多种代谢底物,如脂肪酸、碳水化合物、脂质和氨基酸等,来满足其高能量需求。然而,由于代谢物在极性尺度上具有广泛的覆盖范围,这使得它的提取和检测变得困难。因此,迫切需要对心脏的代谢产物进行全面的组学分析。本研究结合了平行代谢物提取和互补高分辨质谱检测的方法,对人类心脏进行了系统性代谢学分析。作者首先用六种提取方法获得了健康供体心脏组织的代谢物,包括三种单相提取,两次双相提取和一次三相提取,可以充分覆盖不同极性范围的代谢物。其中,单相的提取溶剂分别是100% 甲醇、80% MeOH 和乙腈/异丙醇/水(3:3:2),双相使用了Matyash和Bligh & Dyer法去萃取极性和非极性相,而三相则是进一步将非极性相分离成极性和中性脂质相,极性物质依然保留在水相中。紧接着,作者使用了两种互补的质谱平台进行代谢物检测:超高分辨傅里叶变换离子回旋共振质谱的直接进样(DI-FTICR)和高分辨率液相色谱四极杆飞行时间串联质谱(LC-Q-TOF-MS/MS)。总的实验流程如图1所示。这里总共鉴定到了1340种心脏代谢物,它们具有广泛的极性范围。本工作强调了平行提取和互补质谱检测技术在人类心脏代谢组研究中的重要性,其可作为帮助选择适当的提取和MS方法以研究特定类别代谢物的指南。    图1. 平行代谢物提取和高分辨率质谱检测的实验流程图。  为了捕获不同极性的代谢物,作者使用了六种提取方法获得了心脏组织的代谢物。单相法具有操作简便和通量较高的特点,但提取效率仍待提高。相对于单相法,多相提取可以覆盖更广泛极性范围的代谢物,但也需要注意一些代谢物可能在多相中分布,这会给检测和定量带来困难。比如,脂肪酰基链较短的酰基肉碱主要在极性相中存在,而较长链(C10)的酰基肉碱主要在非极性相中存在。DI-FTICR评估了六种提取方法的重现性,结果发现乙腈/异丙醇/水(3:3:2)在单相法中的重现性最好,两种双相法的重现性类似,但低相的Pearson相关性较低,说明了代谢物在跨相运动中有一定潜在困难。研究也发现不同提取方法均具有各自的提取特征,尤其在三相法中可以观察到更多的特征,它在极性相、极性脂质相和非极性脂质相中分别观察到了2275、541 和 443 个独特的SmartFormula注释。图2展示了六种方法通过DI-FTICR得到的代谢物SmartFormula注释,其中最大的三个交叉区域分别是六种方法共享、三相法特有和乙腈/异丙醇/水(3:3:2)特有的,分别有1287个、1010和703个,且发现多相提取的重叠度会更高。虽然在三相提取中可以获得更多的代谢特征,但该方法的重现性也最低。故对于发现代谢组学实验,Matyash提取法会更具优势,因为它可以鉴定到较多的已知代谢物,且重现性会更好。图2. 六种提取方法间代谢物SmartFormula注释的重叠情况(DI-FTICR)。  借助DI-FTICR平台,总共鉴定到9644个代谢特征,其中可以7156和1107个可以分配到SmartFormula注释和准确质量数。DI-FTICR在代谢物检测和鉴定方面具有强大优势,它可以给出准确的同位素分布,如图3B~3D所示。但需要注意的是,由于缺乏前端色谱分离,DI-FTICR对于异构体的分离检测能力有限,以及缺乏高通量的MS/MS分析。因此,作者利用LC-Q-TOF-MS/MS补齐了DI-FTICR检测平台的缺点。在LC-Q-TOF-MS/MS分析中,总共鉴定到21428个代谢特征,其中285个可通过比对二级谱图数据库来匹配确定。图4是鉴定到的代谢物和脂质。尽管与图3B~3C的酰基链组成相同,但在图4B~4C中可以通过观察酰基链的碎裂谱图得到脂质的酰基链信息。这说明LC-Q-TOF-MS/MS平台在获取更详细的酰基链信息方面的优势,但对于双键定位以及 sn1 和 sn2 定位等信息,还需要额外的实验去确定(如:衍生化和离子淌度)。此外,仪器参数设置也会影响到二级匹配评分。总的来说,相对单一的质谱检测平台,使用DI-FTICR MS和LC-Q-TOF-MS/MS平台可以增加心脏代谢组的覆盖范围。图3.使用LC-Q-TOF-MS/MS鉴定代谢物。(A)代表性的MS 谱图(100% MeOH),标注了SmartFormula注释和准确质量数,叠加实验质谱图(黑色)与理论质谱图(红色)以比较同位素分布 (C~D)FAHFA(40:5)、DG(32:0)和N-palmitoyl glutamic acid。图4.使用LC-Q-TOF-MS/MS鉴定代谢物,比较实验串联质谱图(黑色)与数据库质谱图(红色)。(A~D)N-acetyl-β-glucosaminylamine、DG(16:0_16:0)、FAHFA(18:1_22:4)和TG(18:1_18:1_18:2)。  使用多种提取和检测方法,本研究总共鉴定到了1340种心脏代谢物。每种提取方法都贡献了唯一检测到的代谢物。相较于提取效果最好的单一方法,平行提取可以检测到额外的350种代谢物。单相法可以鉴定到更多与二级谱图相匹配的代谢物,而多相法可以得到更多具有准确质量数的代谢物(图5A)。如图5B所示,三相法富集到的代谢物种类最多,包含甘油磷酸乙醇胺(PE)、脂肪酸和偶联物、三酰基甘油、脂肪酸酯和其他代谢物。此外,Matyash法可以鉴定到更多的氨基酸、甘油磷酸甘油和甘油磷酸丝氨酸,B&D法可以鉴定到更多的甘油磷酸胆碱(PC)、和磷磷脂,而100% MeOH鉴定最多的则是甘油磷酸盐。图5.已鉴定的人类心脏代谢物汇总。(A)各种提取方法中的准确质量注释、MS/MS注释和唯一检测到的代谢物 (B)各种提取方法中前10的代谢物种类。  最后,作者进一步表征了所有代谢物的化合物分类和通路富集,如图6所示。实验观察到很多代谢物归属于脂质和类脂分子,其中主要是PC、PE和脂肪酸,而非脂质化合物主要是有机酸及其衍生物(图6A)。通路分析也检测到了与心脏代谢过程相关的重要通路,包括嘌呤代谢和甘油磷脂代谢,如图6B所示。这里以嘌呤代谢(与多种心脏病变相关)为例,展示了平行提取在提高代谢物覆盖率方面的优势。在嘌呤代谢过程中,只有IDP仅在单一提取方法中观察到,而许多代谢物均在所有六种提取方法中都被检测到(图6C)。值得注意的是,B&D提取法在该过程中观察到了最多的代谢物,而100% MeOH富集的最少。上述结果为选择适当的用于分析人类心脏代谢物的提取方法提供了重要见解。图6.已鉴定的人类心脏代谢物的化合物分类和通路富集。(A)化合物分类 (B)所有已鉴定代谢物的通路分析汇总,每个圆圈的颜色和大小分别基于p值和通路影响值(红色表示影响大,黄色则相反) (C)嘌呤代谢过程,颜色表示鉴定代谢物的提取方法。  总的来说,本研究利用六种平行代谢物提取的方法和两种基于质谱检测平台,对人类心脏进行了全面的代谢组学分析,总共鉴定到1340种心脏代谢物,这代表了迄今为止对人类心脏代谢组学的最深度覆盖。研究发现三相法最适合脂质的提取,它获得的极性代谢物的数量与Matyash法相似,但其实验重现性也最低。因此,提取方法的选择应当取决于感兴趣的待分析物。但对于非靶向研究,作者建议使用Matyash提取法,以实现代谢组覆盖率和重现性的最佳平衡。尽管本研究目前还存在一定的局限性,比如,平行提取样品量较大和分析时间较长,但其为选择适当的提取和质谱检测平台去分析不同类型的心脏代谢物提供了宝贵经验,有助于人类心脏代谢组学的全面分析。  撰稿:陈昌明编辑:李惠琳文章引用:Comprehensive Metabolomic Analysis of Human Heart Tissue Enabled by Parallel Metabolite Extraction and High-Resolution Mass Spectrometry
  • 大连化物所提出基于纳升电喷雾质谱直接进样的稳定同位素示踪代谢组学新方法
    近日,大连化物所生物分子高分辨分离分析及代谢组学研究组(1808组)许国旺研究员团队在稳定同位素示踪代谢组学新方法研究方面取得新进展,将纳升电喷雾直接进样的高分辨质谱用于稳定同位素示踪代谢组学分析,实现了少量细胞的稳定同位素标记代谢物的高灵敏高通量示踪。稳定同位素示踪代谢组学(Stable Isotope-Resolved Metabolomics,SIRM)能提供代谢物合成、转化和分解的动态过程,是癌症代谢重编程研究的有力工具。常用的基于色谱-质谱联用的SIRM分析方法对细胞和培养基需求量大,不适用于珍稀细胞的分析,而且同位素标样用量大耗费高。将纳升电喷雾直接进样的高分辨质谱用于SIRM分析,可减少细胞和稳定同位素试剂的用量。然而,由于缺少色谱分离且存在复杂的不同同位素标记形式的代谢物,数据提取十分困难,使得代谢物的定性定量变成了难题遇到障碍。针对上述难题,该团队依据代谢物及其同位素标记形式之间特有的精确质量数偏移和二级谱图相似性,提出了一种基于直接进样质谱的二级离子筛选策略,用于目标代谢物及其同位素标记形式的准确定性定量。该策略主要包括:二级离子的精确质量数匹配、假阳性筛选、二级离子分组。筛选出的二级离子与标准数据库匹配后,可用于代谢物的准确定性定量。该方法一次分析仅需一万个细胞,100微升培养基和2-3分钟的分析时间,可用于珍稀细胞的高通量SIRM分析。相关工作以“Novel Stable Isotope-Resolved Metabolomics Method for a Small Number of Cells Using Chip-Based Nanoelectrospray Mass Spectrometry”为题,发表在《分析化学》(Analytical Chemistry)上。该工作的第一作者是于迪博士,通讯作者为周丽娜和许国旺。上述工作得到了国家重点研发计划、国家自然科学基金、大连化物所创新基金等项目的资助。(文/图 于迪)文章链接:https://doi.org/10.1021/acs.analchem.1c01507
  • 利用MALDI质谱成像技术揭示牡丹和芍药根的空间代谢组
    关键词:MALDI-MSI 质谱成像、Paeonia suffruticosa 牡丹、Paeonia lactiflora 芍药、Monoterpene glycoside 单萜苷、Spatial distribution 空间分布01 前言 芍药属植物具有较高的观赏价值和经济价值,以及重要的药用价值,引起园艺学家、植物学家和草药学家的极大关注。芍药属植物约有35种,其中牡丹 (Paeonia suffruticosa,PS)和芍药(Paeonia lactiflora ,PL)是两种主要的东方药草。牡丹和芍药同属,外形也极为相似,从植株形态上进行区分:牡丹,是小灌木,有木芍药之称;而芍药是多年生草本植物。在中国、日本和韩国,牡丹皮(牡丹的干燥根皮)和白芍(芍药的根部)是具有镇痛和抗炎活性的重要中药。尽管 PS 和 PL 的植物化学和药理作用的相似性和差异性已经被广泛研究,但其空间代谢组的比较几乎没有报道。空间代谢组学是代谢组学研究发展中的一个分支,它提供了组织结构和个体代谢物之间的直接联系。阐明PS和PL的空间代谢组差异在植物分类和药用植物质量控制等领域具有重要意义。02 摘要 2021年4月,中国药科大学天然药物与中药学院国家重点实验室李萍教授、李彬教授在 New Phytologist 期刊上发表了题目为:“Unveiling spatial metabolome of Paeonia suffruticosa and Paeonia lactiflora roots using MALDI MS imaging”的研究论文,本研究结合多基质和正负离子检测模式,对牡丹和芍药的根切片进行了高质量分辨率基质辅助激光解吸电离质谱成像(MALDI MSI)和 AP-SMALDI 串联质谱(MS/MS)成像,系统地研究了单萜糖苷类和丹皮酚苷类、单宁类、黄酮类、糖类、脂类等多种代谢产物的空间分布。利用 Li DHB 基质的串联质谱成像技术来准确区分芍药苷和芍药内酯苷两种结构异构体的组织分布。此外,参与没食子单宁生物合成途径的主要中间产物在根部成功定位和显示。03 结果 3.1MALDI MSI的PS和PL根代谢产物的原位分析采用高分辨率 MALDI MSI 和 MALDI MS/MS Imaging 相结合的方法,获得了 PS 和 PL 根横截面的综合代谢产物分布图,并进一步用 LC-MS/MS 进行了验证。代表性部位的质谱图从根的四个区域获得,包括木栓层、皮层、韧皮部和木质部(图1)。在正离子模式下,使用 DHB 基质,检测到两种主要特定类别的次级代谢物单萜糖苷类(monoterpene glycosides,MGs)和没食子单宁(gallotannins)。在 PS 和 PL 中均观察到共同的代谢物 MGs,如芍药苷/芍药内酯苷(m/z 519.1263,结构异构体)、氧化芍药苷(m/z 535.1212)、苯甲酰芍药苷(m/z 623.1525)、牡丹皮苷 A(m/z 653.1631)、牡丹皮苷 B/J(m/z 669.1580)、牡丹皮苷 E(m/z 565.1318)和苯甲酰氧芍药苷/牡丹皮苷 C (m/z 639.1475,同分异构体)。牡丹/芍药中生物合成的没食子单宁是没食子酸葡萄糖酯(即没食子酰葡萄糖,GGs)。如图1所示,观察到具有相邻峰间距为 152.01 Da 的 m/z 分布,表明母体分子上连续添加了没食子酸基团。在 PS 和 PL 中,检测到12个没食子酰基残基的取代产物(2GG-12GG,m/z 523.0485-2043.1581)。作者还发现了 PS 特有的成分—丹皮酚苷类(PGs),如牡丹酚甙(m/z 367.0790)、牡丹酚原甙和牡丹酚新甙(m/z 499.1212,同分异构体)。图1. 正离子模式下牡丹(左)和芍药(右)根横截面不同区域的 MALDI 质谱图3.2MALDI MSI比较PS和PL根单萜和丹皮酚苷类成分的空间分布图a中,通过 PS 和 PL 的横截面可以看到解剖结构中的物种多样性,PS 根木质部区域高度木质化;PS 韧皮部约占整个横切面的45-55%,PL 根的韧皮部仅占10-20%。图b中,可以看到 PS 和 PL 中单萜糖苷类的空间分布模式,芍药苷(m/z 519.1263,[M+K]+)及其衍生物主要分布在 PS 和 PL 的木栓层、韧皮部区域,PL 的木质部射线区,但在 PS 的木质部(木芯处)检测信号较低。此外,在图c中,可看到丹皮酚苷的空间分布,在 PS 根的木栓层和韧皮部中可以解吸出丹皮酚苷类化合物,如丹皮酚苷(m/z 367.0790)、牡丹酚原甙和丹皮酚新甙(m/z 499.1212,同分异构体)、丹皮酚苷A/B/C/D(m/z 651.1322,同分异构体)和丹皮酚苷E(m/z 661.1741),而 PL 的根中不存在丹皮酚苷类物质。图2 牡丹和芍药根的 MALDI 成像 (a. 甲苯胺蓝O染色的组织切片的光学图像;b. 单萜糖苷类(MGs)的离子图像;c. 丹皮酚苷(PGs)的离子图像)。3.3AP-SMALDI MS/MS成像分析结构异构体的空间分布由于存在高丰度 [M+K]+ 断裂困难、[M+Na]+ 丰度太低等问题,Li DHB 被应用于本实验 AP-SMALDI MS/MS 成像。如图3(a)所示,Li DHB 显示为产生芍药苷和芍药内酯苷的 [M+Li]+ 二级碎片的有效基质,其中两个差异片段 m/z 253.13(芍药内酯苷)和 m/z 255.11(芍药苷)被检测到。在 50μm 空间分辨率下进行 AP-SMALDI MS/MS 成像实验,并在 m/z 487.1777处检测到 [芍药苷/芍药内酯苷+Li ] + 的前体分子离子。前体分子离子和二级碎片离子的离子图像如图3(b)所示,显示了前体分子离子和最终产物离子的空间分布,在 PS 中,仅检测到 m/z 255.11,且主要在木栓层中观察到;在 PL 中检测到 m/z 255.11 和 m/z 253.13,二者分布趋势相似,且木栓层、韧皮部和木质部射线区的信号强度高于皮层和木质部维管束。通过 AP-SMALDI MS/MS 成像,芍药苷和芍药内酯苷的空间分布被清晰的呈现出来。作者使用 LC-MS 方法进一步验证 MALDI 成像结果,PS 和 PL 的根被人工分成木质部和木质部外两个部分。如图3(c)所示,LC-MS 结果与 MALDI 成像结果一致,在牡丹中仅检测到芍药苷;在芍药中,检测到了两者,并且在外层中观察到更高丰度的芍药苷和芍药内酯苷,因此,Li DHB 基质是可行的,以获得用于分辨异构体空间分布的不同片段。图3 MALDI MSI 及 LC-MS 验证。(a)前体物质m/z 487.18的串联质谱,分别来自芍药内酯苷和芍药苷。(b)像素大小为50μm的牡丹(PS,上)和芍药(PL下)根中芍药苷和/或芍药内酯苷的 MSI图。(c)用 LC-MS 从 PL 和 PS 根切片的不同部位相对定量芍药苷和/或芍药内酯苷。3.4MALDI MSI的PS及PL根部没食子单宁生物合成途径的空间分布分析下图4显示了在牡丹和芍药的根切片中显现的没食子酸生物合成途径和离子图像,在牡丹和芍药根中观察到总共13种参与没食子酸生物合成途径的代谢物,包括没食子酸、没食子酰葡萄糖、2GG -12GG。如图4所示,没食子酸(m/z 169.0142,[M-H]-)是合成没食子单宁的起始化合物。没食子酸主要分布于 PS 的木质部区域(木芯),广泛分布于 PL 的根部,形成层部位含量明显增高。β-葡萄糖苷作为没食子单宁的基本单元和主要的酰基供体,主要分布于 PS 的韧皮部,PL 的木质部射线和皮层。从 2GG-12GG 途径观察到没食子单宁空间分布的动态变化。2GG、3GG 主要分布于 PS 的木栓层和韧皮部区域,在 PL 中含量明显较低。4GG、5GG 主要分布在 PS 的木栓层、韧皮部和木质部中,PL 的木质部和韧皮部。其中,作为 6GG-12GG 合成的前体物质,5GG 相对均匀地分布于牡丹和芍药根中。从 6GG -12GG 的第二个序列中,复合单宁主要集中在 PS根的木质部导管区和PL的楔形木质部区域和皮层中,且覆盖面积呈明显下降趋势(尤其是 11GG 和 12GG )。图4 MALDI 质谱成像技术研究牡丹和芍药根中没食子单宁生物合成途径。(a)没食子单宁的生物合成途径。(b)从 PS (左)和 PL (右)根切片获得的参与没食子单宁生物合成途径的主要中间体的质谱成像图。3.5MALDI MSI比较PS和PL根中其他代谢物的空间分布槲皮素(m/z 303.0499,[M+H]+)主要存在于 PS 和 PL 的皮层中(图5)。单糖(m/z 219.0266,[M+K]+)、二糖(m/z 381.0794,[M+K]+)、三糖(m/z 543.1322,[M+K]+)和四糖(m/z 705.1850,[M+K]+)主要积累在 PS 的皮层和韧皮部以及 PL 的皮层和木质部射线区。脂质 PC(34:2) (m/z 796.5253,[M+K]+)和 PC(36:4) (m/z 820.5253,[M+K]+)主要分布于 PS 的根系形成层和 PL 的木质部射线区。图5 从牡丹(PS,左)和芍药(PL,右)根部切片中选取的类黄酮、糖类和脂类的离子图04 总结 本研究采用 MALDI MSI 结合 LC-MS 代谢物检测技术,系统表征了单萜和丹皮酚苷类、鞣质类、黄酮类、糖类和脂类等多种代谢产物(65种)的空间分布。用高分辨 MALDI MSI 研究了两种芍药科植物牡丹和芍药共同代谢物和特定代谢物在空间分布上的相似性和差异性,为代谢物的生物合成、运输和积累研究提供了重要信息。为了解决异构代谢物空间分布不明确的问题,作者进行了 MALDI 串联质谱成像,明确了芍药苷和芍药内酯苷的空间分布。本研究表明牡丹和芍药的皮以及中心部位都含有丰富的生物活性物质,能够为传统药材加工方法的改良提供直观的依据。此外,本研究还首次绘制了参与没食子单宁生物合成途径的前体以及中间体的空间分布图,可水解的单宁主要分布在木栓层、韧皮部等,其可能在不损害细胞质成分的情况下发挥保护作用,如对抗生物压力;鞣花鞣质倾向于在木质部区域积累,这可能与木质素具有共同的支持植物的功能。综上所述,高分辨率 MALDI MSI 提供了全面、准确的代谢物空间分布,为中药的深入研究、使用和加工方法的改良提供了独特的见解。文献地址:https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.17393「科瑞恩特」独家代理质谱成像离子源在大中华区独家代理的两款质谱成像离子源,都可搭载Thermo ScientificTM Q ExactiveTM或Obitrap ExplorisTM系列质谱仪。AP-SMALDI 5AF高分辨自动聚焦3D快速质谱成像系统,常压操作环境,空间分辨率可达到3μm,独特3D检测模式可以检测凹凸不平的样品表面,快速检测模式可达18pixel/s,全像素检测大大提高检测灵敏度,高空间分辨率和高质量分辨率使样本中的分子化合物达到最佳成像效果。MALDI ESI InjectorTM 透射式超高分辨质谱成像系统,可以同时搭载MALDI离子源与ESI离子源,既可用于传统LC-MS/MS实验,也可用于质谱成像检测,通过双离子漏斗接口实现离子源快速切换,无需拆卸,操作便捷,并且接口可以进一步升级为MALDI-2和t-MALDI检测,大大提高空间分辨率和检测灵敏度。
  • 岛津X博莱克 临床科研服务及定量代谢组学应用项目合作签约仪式圆满举行
    2024年8月28日,岛津企业管理(中国)有限公司(以下简称“岛津”)与博莱克科技(武汉)有限公司(以下简称“博莱克”)达成战略合作,在岛津上海公司就临床科研服务及定量代谢组学应用项目合作顺利举办了签约仪式。岛津分析计测事业部市场部临床和生命科学质谱产品组彭蜀莹经理主持此次签约仪式。岛津分析计测事业部市场部临床和生命科学质谱产品组彭蜀莹经理博莱克董事长兼总经理王玉兰教授致辞。博莱克董事长兼总经理王玉兰教授王教授强调,通过将博莱克的增敏探针试剂盒与岛津公司高灵敏度及稳定性强的三重四极杆液质仪相结合,必将在定量代谢组学领域开拓出一条创新之路。她对本次合作表示了殷切的期望,希望合作硕果累累,实现双方共赢,并能为广大的临床工作者提供更好的解决方案。岛津分析计测事业部吴彤彬事业部长致辞。岛津分析计测事业部吴彤彬事业部长吴彤彬事业部长首先对各位专家学者的莅临表示了最诚挚的感谢和欢迎。他谈到,拥有149年历史的岛津深知科学技术的进步离不开跨学科、跨领域的合作与交流。岛津与博莱克的合作,不仅是两家公司业务的联合,更是共同迈向科学前沿的重要一步。同时他强调,本次签约仪式只是双方合作的开始,期待未来的日子里,强强联手,优势互补,能够在临床科研与靶向代谢组学服务方面取得突破性进展,为科研人员提供更为精准、高效的技术支持。签约仪式随后博莱克董事长兼总经理王玉兰教授与岛津分析计测事业部吴彤彬事业部长正式签订合作协议。专家报告签约仪式结束后,进入专家报告阶段。南洋理工大学李光前医学院/新加坡表型中心王玉兰教授发表题为《代谢组学研究肠道菌群功能》的报告,从她多年的研究工作中,精选了几个方面进行了阐述:NMR和LCMS的方法可以结合使用;发展In-house的极性和非极性代谢物panels来克服非靶的缺点;如何使用代谢组学,通过分析肠道菌群代谢产物来鉴定它的功能。南洋理工大学李光前医学院/新加坡表型中心王玉兰教授复旦大学生命科学学院/人类表型组研究院唐惠儒教授发表题为《定量代谢组学的挑战与新进展》的报告。唐教授通过幽默风趣的表达,阐述了定量代谢组学的核心任务和技术方法,分享了在PRISE(探针增敏)、脂蛋白亚类、元素组等方法的开发过程,以及应用于桉蚊传播疟疾、极微量物质结构鉴定、COVID-19等领域的应用工作。复旦大学生命科学学院/人类表型组研究院唐惠儒教授岛津分析计测事业部市场部季晓蓉女士发表题为《岛津多质谱平台助力精准医学研究》的报告。详细介绍了岛津专为临床实验室打造的高性能三重四极杆液质联用仪LCMS-8050 CL产品特点及临床应用,同时展示了岛津配置丰富的各类质谱平台包括GC-MS、DPiMS及iMScope QT等产品在医学研究中的应用成果。岛津分析计测事业部市场部临床质谱产品专员季晓蓉女士近年来,定量代谢组学因针对性强、定量准确、灵敏度高,被广泛应用于临床医学、生命健康等领域的关联分析和机制研究。本次岛津与博莱克的合作,结合了岛津卓越的质谱技术与博莱克创新的探针试剂盒,将共同推进靶向定量代谢组学在临床医学中的应用,致力于为临床科研提供更精准的数据支持与专业服务,共同推进代谢组学的创新研究。关于岛津岛津企业管理(中国)有限公司成立于1999年,是岛津制作所的海外子公司。岛津制作所是测试仪器、医疗器械及工业设备的制造厂商,自1875年创业以来始终坚持“以科学技术向社会做贡献”,不断钻研满足社会需求的科学技术,开发生产具有高附加值的产品。并以实现“为了人类和地球的健康”这一愿望作为公司的经营思想,不断革新,不断挑战,一如既往地对科学技术发展做出贡献。关于博莱克博莱克科技(武汉)有限公司(简称博莱克,SMI)创立于2015年,位于武汉市东湖新技术开发区,专注于代谢组学在科研服务领域的技术开发与应用,被认定为国家级高新技术企业和武汉市科技“小巨人”企业。公司提供代谢组学整体方案设计、代谢组学定量检测、质谱科研试剂盒等服务及产品。本文内容非商业广告,仅供专业人士参考。
  • 南昌大学预算1730万采购4套代谢/蛋白组学研究质谱(附详细技术指标)
    p   日前, 江西省南昌大学食品学院发布发酵工程领域大型系列化研究设施(代谢组学研究质谱等)采购项目,预算1730万采购4套质谱系统,其中2套蛋白组学研究质谱,2套代谢组学研究质谱,并给出了详细的技术指标: /p p   项目编号:JXDY2020-G0067 /p p   项目名称:南昌大学食品学院发酵工程领域大型系列化研究设施(代谢组学研究质谱等)采购项目 /p p   预算金额:1730.0000000 万元(人民币) /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 103px " src=" https://img1.17img.cn/17img/images/202011/uepic/2a157889-5108-4b77-aaed-ddcd0f71e19d.jpg" title=" 微信图片_20201118100404.png" alt=" 微信图片_20201118100404.png" width=" 600" height=" 103" border=" 0" vspace=" 0" / /p p strong   技术要求 /strong /p p   strong  一、代谢组学研究质谱: /strong /p p   1.基本配置要求: /p p   1.1 四极杆-飞行时间质谱仪(配备独立 ESI、APCI 离子源):2套。 /p p   1.2系统软件:2套,包括:质谱采集分析软件、高通量定量模块软件,定性处理分析模块软 /p p   件,全景定量采集模块软件各两套。 /p p   1.3代谢组学软件:2套 /p p   1.4系统实时校正系统:2套。 /p p   1.5专业版 Microsoft Office 2016软件:2套。 /p p   1.6工作站电脑:2套,配置不低于:双核3.6G CPU,内存4GB,3× 1TB硬盘,DVD-RW,23″ /p p   液晶显示器,正版Windows10操作系统。 /p p   1.7数据分析处理服务器:2套,配置不低于Dual Intel Xeon Gold 6134 Processors,64GB /p p   DDR4 (8x8GB) 2666MHz RDIMM ECC RAM. 2x 3.5 2TB 7200rpm SATA HDD in one RAID1 Volume, /p p   8x DVD+/-RW Slimline。 /p p   1.8泵油 4 瓶。 /p p   1.9二元高压混合泵:2套。 /p p   1.10温控自动进样器:2台。 /p p   1.11控温柱温箱:2台。 /p p   1.12五通道在线脱气机:2 套。 /p p   1.13配套大型氮气发生器:1套。 /p p   1.14配套大型不间断电源:20KVA (含8小时电池、电池箱):1套。 /p p   1.15 C18 色谱柱:2根。 /p p   1.16 2 mL 样品瓶:200个。 /p p   1.17配套启动试剂及工具包:2套。 /p p   2.质谱联用仪要求技术指标: /p p   2.1 质谱主机:精确质量数四极杆-飞行时间质谱仪。 /p p   2.2质量范围(m/z):5-40000amu或更宽。 /p p   2.3分辨率:扫描速度& gt 60张谱图/秒时分辨率≥40000 FWHM。 /p p   2.4离子源: /p p   2.4.1清洗离子源时不影响系统真空。 /p p   2.4.2电喷雾源(ESI)。 /p p   2.4.3 ESI 源流速10 µ L~3mL/min,100%H2O无需分流。 /p p   2.4.4灵敏度:柱上 1 pg 利血平(m/z 609.2807),S/N& gt 2000:1。 /p p   2.4.5 离子源温度:≥700℃,保证最好的雾化效果,避免直接加热产生的热裂解。 /p p   大气压化学源(APCI)。 /p p   2.4.6 APCI 源流速 50 µ L-3mL/min,100%H2O 无需分流。 /p p   2.4.7 灵敏度:柱上 1 Pg 利血平(m/z 609.2807),S/N& gt 2000:1。 /p p   2.5质谱数据采集速度:大于60张谱图/秒同时同时仪器稳定性≤1ppm。 /p p   2.6检测器数据转换速率:& gt 25GHz。 /p p   2.7质量精确度:≤1 ppm。 /p p   2.8必须配离子聚焦装置(必须为iFunnel 离子聚焦装置或 StepWaveXS离子聚焦装置或S-lens离子聚焦装置或 Qjet 离子聚焦装置中的一种)。 /p p   2.9 DIA扫描速度& gt 80可变窗口,最窄2 Da。 /p p   2.10谱图内动态范围:& gt 105。 /p p   2.11检测器:高性能电子倍增器。 /p p   2.12工作流程:具有定性、定量和同时定性定量三种工作模式。 /p p   2.12.1完全定性分析:使用强大的信息关联数据采集模式(IDA)和高分辨、高准确质量数一级扫描和二级扫描模式,获得相应的高分辨准确质量数一级谱图和二级谱图,完成对未知物的鉴定。 /p p   2.12.2完全定量分析(高分辨 MRM 定量,MRMHR):高分辨 MRM 定量分析具有高选择性和数据可靠的特点,同一张质谱图中全质量范围都具有高分辨、准确质量质谱数据,可以用于高分辨质谱数据的定量分析。 /p p   2.12.3同时定性定量分析:一针进样,用高分辨一级质谱定量分析样品中的所有化合物,同时利用高分辨准确质量数二级质谱定性确证化合物。 /p p   2.13 质谱控制和数据分析软件。 /p p   2.13.1在一个窗口中,可以同时查看多个样本的谱图,比如通过重叠的色谱图或热流图(heat maps)进行快速简单的定性数据查看和比较。 /p p   2.13.2数据处理参数可用于大样本组,在数据处理和查看时节省时间。 /p p   2.13.3可以快速生成提取离子流色谱图,几秒钟内就可以给出几千个化合物的谱图,可用于筛查和确证。 /p p   2.13.4利用进样的 MS/MSALL 数据(所有产物的母离子),可对单张谱图独特的扫描类型产生的全部的碎片进行可视化,有助于快速理解常见的碎裂和中性丢失。 /p p   2.13.5分子式发现器和结构解析等独特的工具,可以在分子水平上详细研究和表征化合物。其主要特点是加入了同位素丰度比和质量精度来过滤元素组成,同时可通过不饱和度、N-规则等也可帮助正确解析化合物的分子式,方便快捷。 /p p   2.13.6定量软件和处理软件,可用于小分子和大分子肽类化合物,符合 GLP 的定量分析软件,内有多种不同的定量积分模式,帮助 您更合理的积分色谱峰,界面方便快捷。 /p p   2.13.7实时质量亏损触发的 IDA 功能,一级 MS 扫描可同时接 50 个以上 MS/MS 扫描,该扫描模式能够实时捕获获得母药代谢产物的一级质谱信号,进行重点关注 MSMS,获得最多的母药代谢产物,特别在蛋白和药物相互作用研究。 /p p   2.14具有智能动态背景扣除,数据采集过程中,仪器自动选择某一时间点上离子强度有显著变化的离子去进行MS/MS分析,从而避免收集与洗脱液、色谱柱等相关的背景离子,有效提高信息关联扫描的MS/MS谱图收集的效率和质量,能够很好的克服按强度低丰度化合物采集 /p p   不到MSMS的弊端。 /p p   2.15计算机工作站:商用电脑。 /p p   2.15.1 处理器规格:≥Intel 酷睿双核,主频≥3 GHz,高速缓存≥3 MB。 /p p   2.15.2 内存:≥8 GB,DDR3-1333,有可扩展空闲插槽。 /p p   2.15.3 显卡:独立显卡,显存≥1GB,具备 DVI 或 HDMI 输出接口。 /p p   2.15.4 硬盘:7200 rpm,容量≥4 TB,有可扩展空闲插槽。 /p p   2.15.5 I/O 接口:千兆网卡,USB3.0 接口。 /p p   2.15.6 显示器:尺寸≥21 英寸,最佳分辨率≥1920× 1080,具备 DVI或 HDMI 输入接口。 /p p   2.15.7 系统软件:正版 windows10专业版、工作站所需的支持软件。 /p p   2.15.8 Microsoft office 2016专业版操作软件。 /p p   2.16 计算服务器不低于此配置:Dual Intel Xeon Gold 6134 Processors. 64GB DDR4 (8x8GB) /p p   2666MHz RDIMM ECC RAM. 2x 3.5 2TB 7200rpm SATA HDD in one RAID1 Volume. 8x DVD+/-RW /p p   Slimline. /p p   3.高效液相色谱技术要求指标: /p p   3.1二元并联高压混合泵: /p p   3.1.1流量范围:0.001~5.000 mL/min,步进 0.001 mL/min。 /p p   3.1.2最大压力:18500 Psi 。 /p p   3.1.3流量准确度:& lt 0.5% 。 /p p   3.1.4流量精密度:& lt 0.05% 。 /p p   3.1.5梯度混合精确度:& lt 0.15% 。 /p p   3.1.6梯度混合类型:二元高压混合。 /p p   3.1.7滞后体积:≤150 μL。 /p p   3.2温控自动进样器: /p p   3.2.1样品位数:不少于 110 位,同时兼容孔板及常规样品瓶。 /p p   3.2.2进样体积:0.01~20μL。 /p p   3.2.3交叉污染:0.005%。 /p p   3.2.4进样精度:& lt 0.15% RSD。 /p p   3.2.5自动进样器还具有自动样品稀释。自动进样器温控范围:5~40℃。 /p p   3.3 可冷却的柱温箱: /p p   3.3.1安全性能:具备防止误开门功能,在线监测泄露情况。 /p p   3.3.2柱温箱温控范围:5~100℃。温度稳定性:± 0.1℃。温度精度:± 0.1℃。 /p p strong   二、蛋白质组学研究质谱: /strong /p p   1.基本配置: /p p   1.1 四极杆-飞行时间质谱仪(配备独立 ESI、APCI 离子源):2套。 /p p   1.2系统软件:2套,包括:质谱采集分析软件、高通量定量模块软件,定性处理分析模块软件,全景定量采集模块软件各两套。 /p p   1.3蛋白质数据采集和分析软件:2套。 /p p   1.4系统实时校正系统:2套。 /p p   1.5专业版 Microsoft Office 软件:2套。 /p p   1.6工作站电脑2套,配置不低于:双核3.6G CPU,内存4GB,3× 1TB硬 盘,DVD-RW,23″ /p p   液晶显示器,正版windows10操作系统。 /p p   1.7数据分析处理服务器:2套,配置不低于Dual Intel Xeon Gold 6134 Processors,64GB DDR4 (8x8GB) 2666MHz RDIMM ECC RAM. 2x 3.5 2TB 7200rpm SATA HDD in one RAID1 Volume,8x DVD+/-RW Slimline。 /p p   1.8泵油:4瓶。 /p p   1.9二元纳升色谱泵:2套。 /p p   1.10自动进样器:2套。 /p p   1.11控温柱温箱:2套。 /p p   1.12微流组件:2 套。 /p p   1.13 上样泵:2套。 /p p   1.14配套大型氮气发生器:1套。 /p p   1.15配套大型不间断电源:20KVA (含8小时电池、电池箱):1套。 /p p   1.16配套启动试剂及工具包:2套。 /p p   2.质谱联用仪要求技术指标: /p p   2.1质谱主机:精确质量数四极杆-飞行时间质谱仪。 /p p   2.2质量范围(m/z):5-40000amu或更宽。 /p p   2.3分辨率:扫描速度& gt 60张谱图/秒时分辨率≥40000 FWHM。 /p p   2.4离子源:清洗离子源时不影响系统真空。 /p p   2.4.1电喷雾离子源(ESI): /p p   ESI 源流速10 µ L~3 mL/min,100%H2O 无需分流。 /p p   灵敏度:柱上 1 pg 利血平(m/z 609.2807),S/N& gt 2000:1。 /p p   离子源温度:≥700℃,保证最好的雾化效果,避免直接加热产生的热裂解。 /p p   2.4.2大气压化学离子源(APCI): /p p   APCI 源流速 50 µ L~3 mL/min,100%H2O 无需分流。 /p p   灵敏度:柱上 1 Pg 利血平(m/z 609.2807),S/N& gt 2000:1。 /p p   2.4.3微流离子源组件: /p p   微流离子源耐受流速范围1-200 µ L/min。 /p p   配套喷雾针1-50 µ L/min和喷雾针50-200 µ L/min。 /p p   2.5质谱数据采集速度:大于60张谱图/秒同时仪器稳定性≤1 ppm。 /p p   2.6检测器数据转换速率:& gt 30 GHz。 /p p   2.7质量精确度:≤1 ppm。 /p p   2.8必须配离子聚焦装置(必须为iFunnel 离子聚焦装置或 StepWaveXS离子聚焦装置或 /p p   S-lens离子聚焦装置或 Qjet 离子聚焦装置中的一种)。 /p p   2.9 DIA扫描速度& gt 80可变窗口,最窄2 Da。 /p p   2.10 谱图内动态范围:& gt 105。 /p p   2.11检测器:高性能电子倍增器。 /p p   2.12工作流程:具有定性、定量和同时定性定量三种工作模式。 /p p   2.12.1完全定性分析:使用强大的信息关联数据采集模式(IDA)和高分辨、高准确质量数一级扫描和二级扫描模式,获得相应的高分辨准确质量数一级谱图和二级谱图,完成对未知物的鉴定。 /p p   2.12.2完全定量分析(高分辨 MRM 定量,MRMHR):高分辨 MRM 定量分析具有高选择性和数据可靠的特点,同一张质谱图中全质量范围都具有高分辨、准确质量质谱数据,可以用于高分辨质谱数据的定量分析。 /p p   2.12.3同时定性定量分析:一针进样,用高分辨一级质谱定量分析样品中的所有化合物,同时利用高分辨准确质量数二级质谱定性确证化合物。 /p p   2.13 质谱控制和数据分析软件。 /p p   2.13.1在一个窗口中,可以同时查看多个样本的谱图,比如通过重叠的色谱图或热流图(heat maps)进行快速简单的定性数据查看和比较。 /p p   2.13.2数据处理参数可用于大样本组,在数据处理和查看时节省时间。 /p p   可以快速生成提取离子流色谱图,几秒钟内就可以给出几千个化合物的谱图,可用于筛查和确证。 /p p   2.13.3利用进样的 MS/MSALL数据(所有产物的母离子),可对单张谱图独特的扫描类型产生的全部的碎片进行可视化,有助于快速理解常见的碎裂和中性丢失。 /p p   2.13.4分子式发现器和结构解析等独特的工具,可以在分子水平上详细研究和表征化合物。其主要特点是加入了同位素丰度比和质量精度来过滤元素组成,同时可通过不饱和度、N-规则等也可帮助正确解析化合物的分子式,方便快捷。 /p p   2.13.5定量软件和处理软件,可用于小分子和大分子肽类化合物,符合GLP 的定量分析软件,内有多种不同的定量积分模式,帮助您更合理的积分色谱峰,界面方便快捷。 /p p   2.13.6实时质量亏损触发的 IDA 功能,一级 MS扫描可同时接 50 个以上MS/MS 扫描,该扫描模式能够实时捕获获得母药代谢产物的一级质谱信号,进行重点关注 MSMS,获得最多的母药代谢产物,特别在蛋白和药物相互作用研究。 /p p   2.14 具有智能动态背景扣除,数据采集过程中,仪器自动选择某一时间点上离子强度有显著变化的离子去进行MS/MS分析,从而避免收集与洗脱液、色谱柱等相关的背景离子,有效提高信息关联扫描的MS/MS谱图收集的效率和质量,能够很好的克服按强度低丰度化合物采集不到MSMS的弊端。 /p p   2.15计算机工作站:商用电脑。 /p p   2.15.1处理器规格:≥Intel 酷睿双核,主频≥3 GHz,高速缓存≥3 MB。 /p p   2.15.2 内存:≥8 GB,DDR3-1333,有可扩展空闲插槽。 /p p   2.15.3 显卡:独立显卡,显存≥1 GB,具备 DVI或 HDMI 输出接口。 /p p   2.15.4 硬盘:7200 rpm,容量≥4 TB,有可扩展空闲插槽。 /p p   2.15.5 I/O 接口:千兆网卡,USB3.0 接口。 /p p   2.15.6 显示器:尺寸≥21英寸,最佳分辨率≥1920× 1080,具备 DVI或HDMI 输入接口。 /p p   2.15.7 系统软件:正版 windows 10 专业版、工作站所需的支持软件。 /p p   2.15.8 Microsoft office 2016 专业版操作软件。 /p p   2.16 计算服务器不低于此配置:Dual Intel Xeon Gold 6134 Processors. 64GB DDR4 (8x8GB)2666MHz RDIMM ECC RAM. 2x 3.5 2TB 7200rpm SATA HDD in one RAID1 Volume. 8x DVD+/-RW& nbsp Slimline. /p p   3.二元纳升蛋白质分离系统技术要求指标: /p p   3.1二元高压纳流液相:采用先进的无分流模式提供恒定流量的流动相。 /p p   3.2最大耐压:≥10000 psi。 /p p   3.3具备纳流梯度泵,流速范围含有:100-1000 nL/min,1-50 μL/min,或具有更宽的流速范围。 /p p   3.4配备自动进样器、柱温箱、进样针。 /p p   3.5配备上样泵,或相关上样设计。 /p p   3.6微流1-10 μL /min模块,包括柱温箱加热模块,进样针等。 /p p   注:以上“技术部分”要求为实质性条款须完全响应,否则投标无效。 /p p br/ /p
  • 许国旺研究员:代谢组学研究对色谱-质谱分析技术的挑战
    仪器信息网讯,2009年11月7日,由中国质谱学会有机质谱专业委员会与中国分析测试协会联合举办的“2009年中国有机质谱年会”在北京成功召开,会议为期三天,出席会议人数达300人。仪器信息网作为特邀媒体也应邀参加。   此次质谱年会为与会代表准备了丰富的报告内容,内容涉及生命科学、医学、药学、环境科学、食品安全、毒物分析中的质谱应用研究以及质谱仪器研发的新技术、新进展等。仪器信息网将进行系列报道。   中国科学院大连化学物理研究所许国旺研究员的研究关注的是内源性代谢,代谢组学研究就是用一系列分析化学手段,如色谱、质谱、核磁共振、光谱等,将代谢产物进行分离,然后用数据分析方法把有用的信息进行提取,最后对信息进行生物学解析。与基因组学、蛋白质组学相比,代谢组学研究的是已经发生的改变,而前两者研究的是可能发生的改变,因此在这个意义上说,代谢组学更接近于临床。 中国科学院大连化学物理研究所许国旺研究员   但是,目前代谢组学研究面临以下挑战:其一,到目前为止,任何一种分析工具都只能分析代谢组中15%的代谢物 其二,代谢物的结构鉴定一直是一个没有解决的问题。许国旺研究员认为,代谢组学研究要取得进展,分析测试平台首先要取得突破,而其中色谱和质谱是最有前途的技术。   依据此思路,许国旺研究员在代谢组学分析手段方面进行了大量的研究,课题组搭建二维色谱-质谱联用仪器,使得代谢产物中亲水化合物与疏水化合物同时分离,并且提高了分辨率,使得以高分辨质谱为核心的集成方法解决代谢组学中未知化合物的定性问题。
  • 发展准确定量技术 揭示人类代谢表型——访复旦大学人类表型组研究院唐惠儒教授
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 随着人类基因组计划工作的完成,生物医学研究进入“后基因组时代”,科研界将关注点拓展至基因型与表型的关联。随着基因组学、转录组学、蛋白质组学及代谢组学等研究方法的不断发展及相关研究的深入,“表型组及表型组学”的概念应运而生。相对于基因组学,人们对表型组学还比较陌生。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 那么,表型组学是如何诞生的?其研究对于生命科学的意义是什么?其中代谢分子表型的主要研究内容有哪些?带着这些问题,近期仪器信息网编辑特别采访了复旦大学人类表型组研究院的唐惠儒教授,与他进行了深入的交谈。 /p p style=" text-align: center line-height: 1.75em " img style=" max-width: 100% max-height: 100% width: 300px height: 363px " src=" https://img1.17img.cn/17img/images/202005/uepic/6e729c87-2c2e-49ba-b879-bad859b9228c.jpg" title=" 唐惠儒.jpg" alt=" 唐惠儒.jpg" width=" 300" height=" 363" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 复旦大学人类表型组研究院唐惠儒教授 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 表型组学与“国际人类表型组计划” /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 表型组是生物体形态、功能、行为、分子组成规律等所有生物学性状的集合,是生物体内除基因组外的另一半生命密码。表型组研究贯穿微观和宏观表型,研究基因与环境因素相互作用而影响表型形成的原理机制,寻找健康特征及疾病发生发展的表型组规律,为生物医学研究及应用提供新突破口。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 相较于其他组学,表型组学是如何诞生的呢?唐教授娓娓道来:“回顾生命科学过去上百年的研究历程,其主要目标是要回答一个问题,即基因与表型的关系。早期,人们只聚焦一个表型对应一个基因,或者一个基因对应一个表型。然而诸多研究发现,一个基因可以对应多个表型,反之,一个表型也可以与多个基因有关。因此,生命科学研究的关键问题之一,便成为‘多个基因(基因组)与多个表型(表型组)’的关联规律。表型组包括宏观与微观表型,宏观表型必定有内在的微观表型(如分子表型),而分子表型则包括蛋白质组、代谢组等信息。” /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 那么,基因与表型的关系受到哪些因素影响?唐教授举了个例子:人类学研究早就告诉我们人类起源于非洲。然而,前往欧洲和来到亚洲的人类却在外观上(即宏观表型)呈现显著的差别。换言之,迁徙至欧洲和亚洲并在当地繁衍生息的过程中,人类的面部结构、身体结构等都或多或少发生了改变,这是为何?“这应该与环境因素影响有关”。唐惠儒教授表示:“表型组正是由基因组和环境因素相互作用形成的,而两者具体如何相互作用,目前尚不十分清楚,也恰好是我们想要解析和搞明白的问题。” /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在科学家多年反复研究论证的基础上,“国际人类表型组计划(一期)”项目于2017年正式在上海启动。该项目由复旦大学联合中科院上海生命科学研究院、上海交通大学、上海市计量测试技术研究院等共同承担,是上海首批市级科技重大专项之一,国内外百余名科学家已经投身其中。项目将针对人类表型组在物理、化学和生物功能等多个层面的跨尺度、多维度特点,建立配套研究平台,制定我国人群的表型组标准化技术体系,构建中国健康人群表型图谱及数据库。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 解答基因和表型的内在机制 聚焦代谢分子表型解析 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " “我们目前的核心任务是研究分子表型,通过与其它微观表型组及宏观表型组的相关性定量分析,解析内在机制,深入认识宏观表型由哪些分子表型导致,也用分子表型预测未来将有怎样的宏观表型。”唐惠儒教授说到,复旦大学十多年来逐步建立了20余万人的泰州纵向人群队列并持续跟踪研究,发展了人类表型测量的系列技术方法与表型检测技术。事实上,研究院相关的研究还在继续进行着。”唐惠儒教授告诉编辑,一期计划的第一个目标就是要明确“健康人”的定义。如何定义“健康”,我们首先需要“测量健康”,通过大队列获得健康人群的分子表型图谱。为实现这个目标,需要建立2万个以上表型组相关的可定量检测指标,便于更精确地描绘人体的整体状态。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " “我的团队主要研究对象是代谢表型组,也就是小分子代谢物的定量组成及变化规律。通过结合核磁共振波谱、质谱及量子化学计算等多种技术,我们能够准确测量人类血液、尿液和唾液等样品中代谢物的绝对结构,定量它们的浓度及其变化规律。”唐惠儒教授透露其目标是定量测量2000-3000种小分子代谢物,当然该种类数还有望进一步突破。显而易见,新技术方法体系是实现目标的基础。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 量体裁衣 打造精准测量质谱平台 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 由于不同的分析技术各有利弊,且代谢组异常复杂,单一工具并不能满足绝对定性和绝对定量的要求。因此,发展建立适合该研究目标的代谢表型组定量测量和分析新技术体系,极具挑战但必不可少。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 不久前,Nature杂志发表了唐惠儒教授课题组与徐国良院士团队等的合作研究成果。他们建立了准确鉴定微量完全未知代谢物绝对结构的新技术,并使用该技术确定了两个完全未知的微量物质绝对结构,发现了一种全新的核酸修饰,进而阐明了修饰机制与可能的功能。该技术大大降低了准确鉴定小分子物质绝对结构的所需样品量,突破了10微克瓶颈,解决了代谢表型组精准分析面临的其中一个挑战。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 为满足代谢分子表型精准定量的需求,研究院“量身定制”了代谢组分析的专用质谱平台。唐惠儒教授表示:“就代谢组精密测量而言,我们的核心目标是方法的稳、准、敏、快、简。质谱仪器的灵敏度、稳定性是我们优先考虑的关键指标。超灵敏、超高通量的测量方法更是我们工作的‘刚需’。我们的研究涉及数十万份样本,任何分析时间的节约、效率的提高、成本的降低都是十万分重要的。基于这一系列考虑并通过实际样品的系统而严苛实验评判,我们设计并引进了多台套质谱仪建成了硬件平台。” /p p style=" text-align: center line-height: 1.75em " img style=" max-width: 100% max-height: 100% width: 600px height: 258px " src=" https://img1.17img.cn/17img/images/202005/uepic/aaae9239-a256-4a8a-890f-9b22ffc389db.jpg" title=" 实验室.jpg" alt=" 实验室.jpg" width=" 600" height=" 258" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.75em " span style=" text-align: justify text-indent: 2em " 复旦大学人类表型组研究院精准定量质谱平台 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " “在这个平台上,我们研发所需技术和方法。譬如,我们开发的方法在10分钟内能够测得2000多种代谢物的绝对浓度(单位为微摩尔每升),所有代谢物的定量灵敏度达到亚飞摩尔量级。这些技术的突破,也能够在更为广泛的领域推广应用。”唐惠儒教授说。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " “我们研发的技术必将挑战当今最优秀仪器的性能极限,对仪器提出全新要求并倒逼仪器硬件能力的提升,进而推动我们研究的深入,使仪器技术与分析方法再出现‘质的飞跃’。”唐惠儒说,“上述两方面的相互促进与推动,也是中国科学家团队和仪器公司合作的现实需求与潜在方向,我们期待着这样的深入合作携手与共同发展。” /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong span style=" color: rgb(0, 112, 192) " 代谢组学发展“日新月异” 光明未来值得期待 /span /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 唐惠儒教授深耕代谢研究领域三十余年,他认为,“代谢组学从1999年诞生至今,经历了21个春秋。这个依然朝气蓬勃的学科发展迅猛。虽然我国的代谢组学研究略晚于国际同行,但经过全国一批优秀科学家们的勤勉努力,发展迅速且成绩卓著。目前的我国的代谢组学研究水平已经在很大程度上‘比肩’国际水平。当然,我国的代谢组学事业任重而道远,前景看好而任务艰巨。目前我们依然存在从业人员体量整体偏少、整体研究水平亟待提高、国家层面重视不够、经费支持严重不足等问题。”唐惠儒教授感叹道。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 因此,唐教授认为人才培养依然是科研院所及相关学会的责任。成立于2018年的中国生物物理学会代谢组学分会,将重点关注行业的人才培养、研究水平提高、规范化、标准化等问题,通过定期举办学术会议、讲习培训班、陆续推出行业标准等一系列举措,促进我国代谢组学领域的进一步深入发展。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " & nbsp “对我国的代谢组学而言,发展才是硬道理。当行业经过蓬勃发展后,则更加需要重视发展的质量,重视长久的可持续协调发展。”唐惠儒告诉编辑,“代谢组学是新兴学科,各层面具有战略规划的前瞻性支持面与力度还有待改善。有史以来的科学实践不断表明,任何学科的大发展均始于新技术的重大突破,代谢组学也绝不会例外;新技术体系的建立与深入发展显然是从业者的一个核心任务。这个新技术体系自然包括仪器新技术的研发突破。” /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 唐惠儒认为,代谢组学的应用前景广阔,潜力可期。无论是生命过程的分子基础、病理生理的机制、药理与毒理的生物化学基础,还是环境健康与环境毒理,或者复杂体系的变化规律与质量控制等,都是代谢组学的应用领域。代谢组学在疾病的临床诊断、预后及有效干预等方面也必将为精准医学的实践提供重要关键技术。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " br/ /p p style=" text-align: right text-indent: 2em line-height: 1.75em " 采访编辑:万鑫 /p
  • 质谱组学云课堂 | 代谢组学、蛋白质组学双重盛宴来袭
    质谱组学云课堂 | 代谢组学、蛋白质组学双重盛宴来袭 蛋白质作为生命活动的功能执行者,使得质谱表征的蛋白质组学能够为生命活动提供更加贴近表型的解释,它为疾病致病机理发现、癌症的早期诊断及新型标志物研发、预后预测、精准分型、指导用药、临床样本数字化等均提供了准确全面的信息,是人类对抗疾病的一大利器。 代谢组学作为蛋白质组学的下游组学,同时也是环境暴露、治疗干预、生活习惯以及上游组学这一系列事件在人体的最终直观放大反应,也是更能直观反应生物体系的状态的组学,因此代谢组学的研究是精准医疗的重要一环。近几年,在学术前沿领域有众多的学者意识到代谢组学的重要性。赛默飞 × 华大基因赛默飞携手华大基因紧跟学术前沿,结合组学研究需求,推出基于Orbitrap在组学中的研究方案,助力组学技术的进展,紧跟热点,分享单细胞/微量样品、精准医学等相关应用。 代谢组学系列讲座 基于Orbitrap平台的代谢组学和脂质组学方案时间: 10月28日 15:00~16:30内容简介: 1. Orbitrap仪器原理、用于小分子组学的硬件优势 2. 用于小分子组学的主要软件Compound Discoverer和Lipidsearch介绍 3. 相关应用案例介绍吴珊湖,赛默飞世尔科技(中国)有限公司液质联用小分子领域应用工程师,主要支持LC-MS、LC-MSMS系列平台的应用开发,在小分子组学、杂质分析、中药定性等方面具有丰富的经验。肠道菌群与代谢组学关联分析时间: 10月28日 16:30~17:30内容简介: 1. 宏基因组/16S与代谢组关联分析方法 2. 宏基因组/16S与代谢组关联分析案例梅占龙,哥本哈根大学生物信息学博士,任华大基因质谱平台信息分析负责人。擅长代谢组学技术研究及生物信息分析,参与开发多款华大基因代谢组学分析流程。在代谢组学的应用上有丰富经验,与客户合作发表文章多篇。 扫码报名 医学蛋白质组学系列讲座 蛋白质组学在精准医学研究中的应用时间: 11月5日 15:00~16:00内容简介: 1. Orbitrap超高分辨质谱的发展及其在蛋白质组学领域的全面解决方案 2. 蛋白质组学技术在精准医疗领域的应用及进展齐英姿,赛默飞世尔科技大分子方向应用工程师,毕业于军事医学科学院国家蛋白质科学中心北京,一直从事蛋白质组学相关技术支持工作;2021年加入赛默飞世尔科技,具有丰富的蛋白质组学研究以及质谱数据分析相关经验。单细胞/微量样本的蛋白质组学技术时间: 11月5日 16:00~17:00内容简介: 1. 单细胞蛋白质组学技术的发展和现状 2. 单细胞和微量蛋白质组学技术的应用案例李思奇,哥本哈根大学生物化学博士,深圳华大基因质谱平台资深研发工程师。擅长蛋白质组学和质谱技术的开发与应用,负责多项实验技术的设计、搭建和优化,参与发表多篇SCI文章。 扫码报名扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+
  • 非变性质谱代谢组学鉴定金属结合化合物
    大家好,本周为大家介绍的是一篇发表在Nature Chemistry上的文章Native mass spectrometry-based metabolomics identifies metal-binding compounds1,文章通讯作者是来自美国加州大学斯卡格斯药学和药物科学学院的Pieter C. Dorrestein教授。生命活动的正常运行离不开金属的帮助,微生物获取金属的一种常见策略是通过生产小分子电离团来结合金属并形成非共价复合物。尽管结合金属的小分子具有各种生理功能和潜在的药学应用,在复杂生物成分(如微生物培养提取物)中找到金属结合化合物仍具有挑战。由于小分子-金属结合位点是多样的,金属结合情况必须通过实验来确定,常用的实验方法有电感耦合等离子体质谱(ICP-MS)、原子吸收光谱(AAS)、X射线荧光光谱(XRF)、紫外-可见吸收光谱和核磁共振(NMR)等方法,这些方法通常通量较低,且在小分子成分不确定和金属种类复杂的情况下无法判断小分子-金属结合情况。为了发现新的小分子-金属复合物,本文开发了一种非靶向LC-MS/MS方法,结合非变性质谱(native MS)和一种新的计算工具离子识别分子网络,通过相关性分析、用户定义的质量差异和MS/MS相似性匹配相关化合物。该方法能够在复杂的生物样品中筛选金属结合化合物,作者把这个方法称为非变性质谱代谢组学。一、非变性代谢组学概念小分子非靶向分析采用的萃取、样品制备和LC-MS/MS方法通常在低pH值、高比例有机相和低金属浓度的条件下,这些条件不利于金属络合。因此作者采用了非变性质谱的实验思路,考察了在较高的pH值下,小分子与金属的结合比例较高,并开发了一个两步非变性ESI-LC-MS/MS工作流程,该流程具备在线柱后pH调节和金属引入的能力(图1),在金属引入后有足够的时间形成小分子-金属复合物。使用MZmine和GNPS中的计算离子身份分子网络(IIMN)来分析数据。该实验流程是作者开发的第二代方法,此前的第一代方法使用的是双管注射泵(double-barrel syringe pump)注射氢氧化铵溶液,随后注射一种或多种金属盐。二代方法与一代的区别在于使用了HPLC二元泵进行乙酸铵溶液的补液过程,使溶剂组成和梯度更稳定。图1. 基于非变性质谱的代谢组学实验流程。二、方法考察作者首先制备了市售的铁载体标准混合物,即耶尔森菌杆菌素(1)、弧菌杆菌素(2)、肠杆菌素(3)、高铁环六肽(7)和红酵母酸(6),编号与图2相对应。标准品通过HPLC分离,然后通过第一代装置进行液相色谱后pH调节和过量(毫摩尔)氯化铁注入,仅在铁注入后观察到每种铁载体的三价铁加合物(图2a)。随后,作者进行了以下的考察:①考察了加和物峰面积呈现铁的浓度依赖性,但不完全与铁载体本身对铁的亲和力相对应,这可能由于每种载体的电喷雾效率不同以及流动相溶液组成的变化,因此作者开发了带有补流泵的第二代装置,可减少由梯度导致的溶剂组成的变化,并将有机溶剂浓度降低约50%。②考察了铁载体与铁的加和是否是非特异性加和,将能与铁结合的高铁色素分子与一系列不能结合铁的其他分子混合,同样实验流程下发现只有高铁色素结合了铁,证明加和物的形成是特异性结合(图2b)。③考察了载体的金属选择性,向载体加入生理水平(微摩尔)的金属混合物,包括铁、铜、钴、镍、锌和锰盐,发现载体对金属的选择性与文献报道一致,例如两种铁载体对铁的选择性都高于其他金属;两个相似的物质的区分,去铁胺B(DFB)可与铜结合,而去铁胺E(DFE)不能。图2. 液相后注入金属法在标准铁载体样品中的测试。接着,作者将此方法应用于谷氨酰杆菌JB182的培养提取物。该微生物是从液体奶酪培养基中分离出来的,而奶酪是一个缺铁的环境。作者利用非变性代谢组学工作流程,从培养提取物中观察到未结合铁的去铁胺E和结合了三价铁的铁胺E。去铁胺E是使用IIMN观察到的唯一结合铁的分子(图3),检测到的其他分子都不是铁结合的。图3. 谷氨酰杆菌JB182培养提取物的非变性代谢组学测试。a. 去铁胺E是使用IIMN观察到的唯一结合铁的分子;b. 标准液相方法鉴定到的去铁胺E大多没有结合金属,其3.03分钟处的MS1为图d;c. 液相后注入铁鉴定到的去铁胺E结合了金属,其3.05分钟处的MS1为图e。作者用同样的方法测试了大肠杆菌Nissle 1917提取物,并在液相后将pH调整为7(模仿大肠杆菌胞质pH),发现了一些结合铁的载体分子(图4a)及其相应的铁复合物(图4b-d),除图4标注的三种,还存在一些yersiniabactin和aerobactin的衍生物也能结合铁,共发现了至少15种额外的铁载体。衍生物的发现也说明了IIMN识别结构相似性的能力,且修饰也通常与生物合成或代谢有关。除了研究生理条件下的铁结合外,作者也尝试鉴定了锌结合分子,因为大肠杆菌Nissle的锌获取机制尚未完全阐明。使用本文的方法,作者发现了yersiniabactin及其许多衍生物也与锌结合,包括HPTzTn-COOH,这种结合也通过NMR进行了辅助验证。由此可推断yersiniabactin通过获取锌来逃避抗菌蛋白对锌的螯合,增强大肠杆菌Nissle在发炎的肠道中繁殖的能力。此外,作者还测试了比大肠杆菌Nissle基因组大十倍的酒用真菌Eutypa lata,也发现了结合铁的分子衍生物(图4e-f)图4. 非变性代谢组学方法用于鉴定细菌和真菌培养提取物。最后,作者将本方法应用到环境样品中,测试该方法是否可以在超复杂样品中识别金属结合化合物。作者分析了2017年6月浮游植物爆发期间在加州海流生态系统中收集的固相萃取的表层海洋样本。表层海水中的溶解有机质(dissolved organic matter,DOM)是十分复杂的样本,在液相后调节pH至8后,鉴定到了软骨藻酸为铜结合分子,与文献报道的一致。IIMN还分析到软骨藻酸以二聚体的形式与铜离子结合(图5),可能以类似于EDTA的构型与铜配位。图5. 非变性代谢组学方法用于鉴定表层海水中的溶解有机质。总结:本文开发的非变性代谢组学方法通过液相后补充金属或调节pH,可以从复杂的样本中识别已知的和新的金属离子载体。1. Aron, A. T. Petras, D. Schmid, R. Gauglitz, J. M. Büttel, I. Antelo, L. Zhi, H. Nuccio, S.-P. Saak, C. C. Malarney, K. P. Thines, E. Dutton, R. J. Aluwihare, L. I. Raffatellu, M. Dorrestein, P. C., Native mass spectrometry-based metabolomics identifies metal-binding compounds. Nature Chemistry 2022, 14 (1), 100-109.
  • 代谢组学| 岛津质谱助力生物标志物的研究与发现
    导读代谢组学(Metabonomics / Metabolomics)是继基因组学和蛋白质组学之后新近发展起来的一门学科,是系统生物学的重要组成部分,已经应用到了诸如动物、植物、微生物的机理研究中,着重探索、发现与疾病、医药、功能相关的生物标志物(Biomarker)。生物标志物是指“一种可客观检测和评价的特性,可作为正常生物学过程、病理过程或治疗干预药理学反应的指示因子”,寻找和发现有价值的生物标志物已经成为当前生物、医药领域的研究热点。然而,生物标志物的发现,是一场砂砾淘金、去伪存真的艰难征程,面临诸多挑战。 挑战1 生物标志物的发现,海量筛选,准入高,难度大 相比于基因组学和蛋白组学,代谢组学难度急剧增加。原因有: 1. 目标物范围更广:基因/转录组只需测4种核苷酸排列,蛋白组测20种氨基酸排列,代谢组则包含各类小分子代谢物,要进行结构鉴定可比大海捞针; 2. 需要交叉专业知识:如将代谢组学应用在生物研究中,需要分析化学背景进行分离检测,这些数据的正确解析和可视化需要有统计分析的基础;最后需要了解生物学知识以诠释数据背后的生物学意义; 3. 软硬件要求高:使用的分析体系大都属于高端仪器及其配套软件,比如色-质谱联用系统里色谱可选GC-MS,LC-MS,CE-MS,质谱根据靶向、非靶向可选QQQ,Q-TOF,IT-TOF等;海量数据采集完毕还需要专业、多功能数据分析平台解读数据,最后还要对潜在生物标志物进行结构鉴定,因此代谢组学每一步都是准入高,难度大! 挑战2 如何去伪存真,减少无意义差异物,找到真正的生物标志物 代谢组学巨大的挑战之一,是如何减少生物样品本身,或采集、保存、前处理和分离检测过程中产生“非预期”或“噪音”代谢物,从而去伪存真,找到真正的差异生物标志物: 1. 个体情绪差异、非目标病因的生理差异(近期饮食习惯、喝水量、排尿量、运动量、生病、过敏)、其他药物的耦合作用/副作用,都会对个体代谢物产生非预期的影响; 2. 在采集样本时,如血样、组织、器官,采集者参差不齐的技术熟练度也会引入其他刺激和干扰因素; 3. 样品的保存同样会引入大量干扰物或造成样品变化。比如保存前是否存在溶血,保存温度,冷冻时间长短等,都会使样品产生不可预期的变化; 4. 不同的样品前处理手段,如液液萃取、固相萃取、蛋白沉淀等,其化学、物理选择性不同;另外,操作人员的熟练度、溶液量、溶液污染、萃取柱批间差等样本外的误差,都可能会造成样品组内和组间差异。 海量的待选小分子目标物,加上上述这些“不确定性”和“科学偏差”产生比生物标志物浓度更高、响应更强的无意义组别差异物,使得代谢组学在生物标志物发现的路上,困难重重,犹如大海捞针,沙里淘金。虽然后续的统计分析会把大多数的这类干扰物去除,却不能保证最终能得到正确的生物标志物,或使其处于最显著地位。 虽然代谢组学研究困难重重,但经过多年的研究探索,科研界都认同利用代谢组学的思路发现生物标志物是方向正确、前景广阔的,相信随着分析仪器,特别是高端质谱及其配套软件和科学家研究水平的提高,越来越多有用的生物标志物会被挖掘出来造福于人类。 岛津是全球领先的质谱研发、生产厂家:从上世纪70年代开始研发扇形质谱,成功生产了世界上第一台商品化扇形磁场型质谱GCMS LKB9000;80年代开发了基质辅助激光解析电离飞行时间质谱(MALDI-TOF)和电感耦合等离子体质谱(ICP-MS),岛津科学家田中耕一先生在2002年因为MALDI离子源的研发获得了诺贝尔化学奖,因此岛津拥有深厚的质谱研发基础和实力。 目前岛津质谱的产品线齐全,有机质谱包括单四极杆质谱(SQ)、三重四极杆质谱(TQ)、高分辨质谱离子阱飞行时间质谱(IT-TOF)和四极杆飞行时间质谱(Q-TOF);无机质谱有ICP-MS;生命科学领域有MALDI-TOF、质谱显微镜等。这些质谱仪器与分离技术联用,满足科学研究的各种需求。基于岛津高端质谱,国内高校研究所发表了多篇代谢组学用于脑卒中、癌症和动物生理相关的生物标志物发现的文章,在此系列微信中挑选出典型案例,帮助读者进一步了解疾病和生理现象。
  • 许国旺:基于代谢组学的新高效液相色谱质谱法
    “色谱技术中德论坛”作为慕尼黑上海分析生化展同期活动之一,于2012年10月16日隆重召开。论坛由“复杂样品分离分析”联合研究中心主办,作为中德科学和技术交流的良好纽带,“色谱技术中德论坛”轮流在德国慕尼黑和中国上海两地举办,色谱领域的优秀中德科学家在此次论坛中就最新科研进展和热点问题进行了深入探讨。   在本次论坛上,中科院大连化学物理研究所许国旺研究员做了题为“基于代谢组学的新高效液相色谱质谱法”的精彩报告。 中科院大连化学物理研究所许国旺研究员   许国旺研究员从事液相色谱/毛细管电泳方法在生命科学中的应用研究。现为大连化物所生物技术部生物分子高分辨分离分析题目组组长、代谢组学研究中心主任、中国色谱学会副理事长兼秘书长、中国化学会理事、国家烟草局科学技术委员会成员。2003年起被聘为国家科学技术奖(轻工组)评委。   代谢组学的目标是分析生物体中尽可能多的代谢产物,对于寻找新的代谢标记物,代谢组学是一个有用的工具,通常使用的方法包括NMR和MS法,但至今为止,由于代谢组的复杂性和各种方法本身的缺陷,每种分析方法只能获得整个代谢组的10%-15%的数据,对于基于MS方法,尽管峰容量可以提高,但由于共存的痕量代谢物,较低的电离效率等影响,仍然影响到代谢物的检测。由于高浓度的代谢物很容易检测到,而研究发现,不同的疾病所产生的不同的代谢产物是很相似的,这些现象严重的干扰了新的代谢标记物的发现。   为解决这些问题,许国旺课题组研究出一种新策略,包括两个关键点:第一,通过方法降低代谢产物极性,使得MS敏感性提高。第二,通过利用基于数据库MRM检测方法,进行靶向代谢组分析。通过这一策略,可以使代谢物分析的敏感性和稳定性大大提高。
  • 安捷伦与贝勒医学院合作建立代谢组学质谱中心
    安捷伦与贝勒医学院日前宣布他们已经在BCM Alkek中心合作建立了安捷伦质谱卓越中心,用于分子的研究。   安捷伦为该中心提供两套质谱系统用于代谢组学的研究工作:6495三重四极杆LC/MS系统和6550 iFunnel QTOF LC/MS系统,包括可切换的GC APCI接口。系统还包括安捷伦的质谱软件:Mass Hunter software、Mass Profiler Professional等。   &ldquo 代谢组学发展的重要意义不仅在于生命科学研究,在许多应用中,已经导致了对更多分析功能的需求,&rdquo Alkek中心主任Arun Sreekumar在一份声明中说。&ldquo 贝勒和安捷伦已经确定了几个共同研究的方面&mdash &mdash 代谢组学、脂类组学、临床研究、疾病研究,我们相信可以一起获得实质性进展。&rdquo
  • 750万!同济大学代谢组学质谱分析系统采购项目
    项目编号:0811-234DSITC0239项目名称:代谢组学质谱分析系统预算金额:750.0000000 万元(人民币)最高限价(如有):750.0000000 万元(人民币)采购需求:代谢组学质谱分析系统/壹套(项目预算:人民币750万元,可以采购进口产品)合同履行期限:合同签订之日起至合同内容履行完毕止本项目( 不接受 )联合体投标。获取招标文件时间:2023年02月20日 至 2023年02月27日,每天上午9:00至11:30,下午13:00至16:30。(北京时间,法定节假日除外)地点:微信公众号“东松投标”方式:关注微信公众号“东松投标”,完成信息注册,即可购买招标文件。售价:¥700.0 元,本公告包含的招标文件售价总和对本次招标提出询问,请按以下方式联系。1.采购人信息名称:同济大学地址:上海市四平路1239号联系方式:袁老师 021-659856142.采购代理机构信息名称:上海东松医疗科技股份有限公司地址:上海市宁波路1号申华金融大厦11楼联系方式:刘韵、王悦 0086-21-63230480转8606、86273.项目联系方式项目联系人:刘韵、王悦电话:0086-21-63230480转8606、8627
  • 大连化物所在多维液相色谱-质谱技术用于代谢组深度覆盖研究中获进展
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   近日,中国科学院大连化学物理研究所高分辨分离分析及代谢组学研究组(1808组)在利用多维液相色谱-质谱技术用于代谢组深度覆盖研究中取得新进展,相关研究结果被 em Analytical Chemistry /em 杂志收录。 /p p   酰基辅酶A是一类重要的代谢物,在许多生物过程中发挥作用。由于其性质差异较大,很难用一种方法同时分析它们。为此,该课题组建立了一种同时覆盖短链、中链和长链酰基辅酶A的在线二维液相色谱-质谱轮廓分析方法。首先通过第一维分析将具有不同链长的酰基辅酶A分离成性质不同的两个馏分,并在线转移至分别针对短链酰基辅酶A和中链、长链酰基辅酶A的平行柱分析系统,实现一次进样同时有效的分离短链、中链和长链酰基辅酶A。利用该方法从肝组织提取物中鉴定到90种酰基辅酶A,是迄今为止最大肝组织酰基辅酶A数据集。该方法具有覆盖度广、通量高、重复性好等优势,适用于组织、细胞等生物样品分析。 /p p   在另一个研究中,针对传统方法对代谢物分析覆盖度不足的问题,该团队发展了同时分析代谢组和脂质组的新型二维液相色谱—质谱仪器,实现一个方法对代谢组和脂质组组分的全覆盖。与传统方法两次分析相比,该方法尤其适合于少量样品的大规模代谢组学研究。进一步地,该研究组利用自主设计的新型停留接口技术实现第一维馏分预分离和全二维液相色谱分离的串联,构建了新型的在线三维液相色谱-质谱系统并用于非靶向代谢组学分析。 /p p   此项工作对改善代谢物分析的覆盖度有促进作用。研究工作得到了国家自然科学基金项目和国家重点研发计划的资助。 /p p style=" text-align:center " img alt=" " oldsrc=" W020171214416709546337.jpg" src=" http://img1.17img.cn/17img/images/201712/uepic/b59d5fef-e7a6-44ec-8c29-b9859898f2a4.jpg" uploadpic=" W020171214416709546337.jpg" / /p p style=" text-align: center " 大连化物所在多维液相色谱-质谱技术用于代谢组深度覆盖研究中获进展 /p
  • 绘云生物质谱试剂盒获医疗注册证,创始人为代谢组学专家、欧洲科学院院士贾伟
    7月3日,深圳市绘云生物科技有限公司的同型半胱氨酸测定试剂盒(液相色谱—串联质谱法)正式获得广东省药品监督管理局二类医疗器械注册证(注册证编号:粤械注准20232401152)。本产品用于体外定量测定人血清中同型半胱氨酸的浓度,临床上主要用于高同型半胱氨酸血症的辅助诊断及心血管病风险的评价。试剂盒由校准品1~4、质控品1~2、内标准品、还原剂、沉淀剂、稀释液、96孔深孔板和96孔V底板、96孔板铝式覆膜、96孔板硅胶垫组成。其中校准品1~4:含同型半胱氨酸和牛血清白蛋白的冻干粉 质控品1~2:含同型半胱氨酸和牛血清白蛋白的冻干粉 内标准品:含氘代同型半胱氨酸和氢氧化钠的水溶液 还原剂:含二硫苏糖醇的固体粉末 沉淀剂:含甲醇 稀释液:含抗坏血酸的水溶液。  仪器信息网进一步查询到绘云生物的相关信息,2017年,贾伟教授创立深圳绘云生物科技有限公司,瞄准大健康及慢病管理的全新领域,运用现代生物技术,开发慢病诊断、预警及干预的创新技术产品。绘云生物曾于2017年获天使轮融资,2021年完成A轮融资。公司专注于医学健康,开展精准医疗和大健康产业相关产品的研发,着力推动个体化医疗服务进展,是一家集科技服务、健康检测及产品研发为一体的高新科技企业。绘云生物科技有限公司致力于研制和生产在医疗领域、研究领域以及商业实验中使用的体外诊断试剂。除了体外诊断试剂,绘云生物科技有限公司还提供诊断检测以及代谢组学技术服务。
  • 代谢组学专家Gary J. Patti获2024年美国质谱年会Biemann奖
    近日,ASMS美国质谱年会组委会公布了2024年的ASMS各大奖项的获奖者名单,其中Biemann奖章的获得者是圣路易斯华盛顿大学Gary J. Patti教授。该奖项是授予其职业生涯早期的个人,以表彰其在基础质谱或应用质谱方面的重大成就。  Gary J. Patti因其在代谢组学领域的开创性工作获得2024年ASMS Biemann奖章。具体而言,Gary开发了创新的实验策略和计算算法,利用稳定同位素标记来理解代谢在生物学中的动态作用。Gary所创建的资源是该领域的黄金标准,他的工作是代谢组学应用于生物学研究的典范。Gary在代谢组学方面的三大主要贡献包括:  1. 对具有生物学意义的质谱离子进行“鉴定”   2. 绘制标记营养物质的综合去向图   3. 追踪相邻细胞和组织之间在体内交换的代谢物。Gary J. Patti课题组介绍(https://www.pattilab.com/research/)    Patti教授实验室的研究高度跨学科。除了由多样化的科学家和博士后组成的团队外,团队还包括来自多个不同项目的博士生,这些项目包括生物化学、癌症生物学、化学、计算和系统生物学、发育生物学、分子细胞生物学以及分子遗传学和基因组学。其研究有三个互补的主题。专注于不同领域的团队成员紧密合作,一个领域的进展常常能激发另一个领域的发展。
  • 399万!潍坊医学院附属医院高分辨率代谢组学质谱系统采购项目
    项目编号:SDGP370000000202202002405 项目名称:潍坊医学院附属医院高分辨率代谢组学质谱系统采购项目 预算金额:399.0万元 最高限价:399.0万元 采购需求:标的标的名称数量简要技术需求或服务要求本包预算金额(单位:万元)A高分辨率代谢组学质谱系统 1 详见附件 399.000000 合同履行期限:详见附件 本项目不接受联合体投标。
  • 170万!南方科技大学代谢组学高分辨质谱检测系统采购项目
    项目编号:3324-DH2231H4121(SZDL2022001442)项目名称:代谢组学高分辨质谱检测系统采购项目预算金额:170.0000000 万元(人民币)最高限价(如有):170.0000000 万元(人民币)采购需求:标的名称数量单位简要技术需求(服务需求)代谢组学高分辨质谱检测系统采购项目1套详见招标文件 合同履行期限:详见招标文件。本项目( 不接受 )联合体投标。
  • 北京协和医学院药物研究所靳洪涛、贺玖明团队成果:空间代谢组整合网络毒理学和质谱成像探究何首乌D组分肝毒性机制
    何首乌(PM)作为传统中药具有广泛的药理活性且临床应用广泛,其肝毒性一直备受关注,但由于其多成分、多靶点的特性,其毒性物质和机制尚未阐明。前期研究发现PM 70%乙醇提取物中,D组分(95%EtOH洗脱,PM-D的肝毒性最高,然而PM-D的肝毒性机制尚不清楚。  2022年8月,北京协和医学院药物研究所靳洪涛、贺玖明团队在Journal of Ethnopharmacology发表了题为“Integrated spatially resolved metabolomics and network toxicology to investigate the hepatotoxicity mechanisms of component D of Polygonum multiflorum Thunb”,提出系统整体的中药毒理研究策略,整合网络毒理学和空间质谱成像技术探究何首乌D组分肝毒性的潜在靶点及代谢机制,为何首乌肝毒性机制发现及中草药的相关组分药理毒理机制研究提供了新的方法和技术支持。  研究背景  前期基于斑马鱼胚胎模型对何首乌不同组分及单体成分进行肝毒性评估,发现何首乌D组分的急性毒性和肝毒性明显高于其他提取物,并分离鉴定了PM-D中27个化学成分,主要包含蒽醌类、多酚类、蒽酮类、二蒽酮类等,进一步以斑马鱼胚胎模型的表型终点(肝脏大小、肝脏灰度值和卵黄囊面积)评价何首乌D组分中主要化学成分的毒性,发现蒽醌和二蒽酮类与其他成分相比具有显著的肝毒性。前期的毒性筛选确定潜在毒性物质基础有助于进一步阐明其肝毒性分子机制。  本研究首次整合了网络毒理学和质谱成像技术应用于中药毒理机制研究,网络毒理学基于系统和整体的角度衡量复杂的“成分-靶点-疾病”网络关系为中药毒性机制探索提供了新的思路。基于质谱成像技术衍生的空间分辨代谢组学技术可在保留空间位置信息的基础上揭示生物组织中代谢物的时空分布特征,有助于理解代谢活动时空变化与组织病理和生理功能之间的关联和作用机制。以何首乌D组分的肝毒性机制研究为例,两种方法的整合应用为中药药理毒理机制研究提供新的研究策略。  技术流程    研究结果  1、病理及生化指标  急性毒性实验中,14 d内所有剂量均未观察到小鼠死亡或异常毒性症状且大体解剖未见明显病理改变。2g/kg剂量反复给药7天后,组织病理学检查发现给药组肝细胞肿胀,肝窦轻度扩张,少量微肉芽肿,肝细胞轻度变性/坏死等改变,血清生化分析显示,血清AST活性和TBIL含量显著升高,ALT和ALP活性水平呈上升趋势(图1)。  图1 | PM-D给药后小鼠病理及生化指标变化  2、毒性物质的定量检测  PM-D中蒽醌类化合物大黄素和大黄素-8-β-D-葡萄糖苷的含量分别为3,989.820 μg/g和12,677.423 μg/g (图2)。反式-大黄素-大黄素二蒽酮和顺式-大黄素-大黄素二蒽酮含量分别为1,847.708 μg/g和1,455.940 μg/g(图3)。    图2 | HPLC谱图  标准溶液(A)和样品溶液(B), 大黄素-8-β-D-葡萄糖苷(1)和大黄素(2)    图3 | MS谱图  标准溶液(A)和样品溶液(B), 反式-大黄素-大黄素二蒽酮(1)和顺式-大黄素-大黄素二蒽酮(2)。  3、网络毒理学分析  3.1PM-D肝毒性靶点和网络构建  经药物靶点预测和疾病靶点收集共获得了30个目标靶点网络构建结果显示mTOR、PIK3CA、AKT1、EGFR、ERBB2、ESR1、RPS6KB1、CTNNB1是核心的相关靶点(图4)。    图4 | 网络构建及靶点分析  (A)共同靶标集合  (B)药物-靶点-疾病网络  (C)PPI网络。  3.2 GO和KEGG富集结果分析  GO富集结果主要集中在生物过程中,涉及细胞内信号转导的正调控、TOR信号、对外来生物刺激的响应、细胞对内源性刺激的反应、激酶活性的正向调节、MAPK级联调控、凋亡过程的调控、活性氧代谢过程的调控等(图5A)。KEGG的富集信号通路主要包括PI3K-Akt信号通路、ERBB信号通路、AMPK信号通路、mTOR信号通路、肝细胞癌、HIF-1信号通路、Ras信号通路及MAPK信号通路等(图5B)。  图5 | GO富集分析(A)和KEGG富集分析(B)  3.3分子对接  分子对接结果显示大部分核心毒性成分都能与靶点紧密结合,二蒽酮类化合物顺式-大黄素-大黄素二蒽酮(Cis-emodin-emodin dianthrones),反式-大黄素-大黄素二蒽酮(Trans-emodin-emodin dianthrones),Polygonumnolide C4相较于其他成分结合能更低。 图6 | PM-D中成分与核心靶点的分子对接分析  (A)结合能热图分析 (B-D)结合构象可视化:  (B)反式-大黄素-大黄素二蒽酮- mTOR   (C)反式-大黄素-大黄素二蒽酮- EGFR   (D)Polygonumnolide C4- mTOR。  4.质谱成像分析  4.1高分辨、高覆盖、高灵敏的代谢物成像  质谱成像在单个像素点提取的代谢物峰可达数万种,覆盖了丰富的代谢物。作者发现两种含量较高的药物成分大黄素和大黄酸相关代谢产物仅在药物组的肝脏中高度富集。内源性代谢物精氨酸和牛磺胆酸等分布具有区域特异性(图7)。  图7 |AFADESI-MSI可视化PM-D给药后代谢物变化 (A)负离子模式下平均质谱  (B-E)内外源性化合物的空间可视化:大黄素(B), 大黄酚(C),精氨酸(D),牛磺胆酸及牛磺去氧胆酸(E)。  4.2代谢轮廓分析及差异代谢物鉴定  差异代谢物经过MS/MS鉴定,并采用MassImager软件可视化其空间分布特征,代表性差异代谢物的质谱图像如图8所示, 可观察到精氨酸、鸟氨酸、脯氨酸、牛磺酸类和肉碱类代谢物显著上调,部分脂质类代谢物显著下调。  图8 | 代表性差异代谢物质谱成像图  4.3通路富集分析  基于通路富集的结果,构建了包括已鉴定的关键生物标志物在内的代谢网络,揭示了胆汁酸合成、嘌呤代谢、脂肪酸氧化、三羧酸(TCA)循环和脂质代谢等参与了PM-D致肝毒性过程的代谢变化(图9)。图9 | 代谢网络分析  研究讨论  本研究首次应用质谱成像技术可视化PM-D中关键代谢物在肝脏中的分布并首次对PM中毒性成分二蒽酮类化合物进行定量检测及网络药理学分析预测潜在毒性靶标为何首乌毒性物质基础研究及潜在肝毒性靶点发现奠定了新的基础。  空间分辨代谢组学进一步挖掘出何首乌D组分的肝毒性生物标志物,包括氨基酸、酰基肉碱、胆汁酸、脂类等。基因富集和代谢网络综合分析表明,何首乌D组分的毒性机制可能涉及氧化应激、线粒体损伤和AMPK通路等导致的胆汁酸代谢、能量循环、嘌呤代谢和脂质代谢的紊乱相关,该研究有望为临床诊断和监测何首乌肝毒性的发生发展提供参考,并作为代谢适应和重编程的资源,以指导未来临床预后研究,为探索中药毒性机制提供新思路。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制