当前位置: 仪器信息网 > 行业主题 > >

色谱峰排除方法

仪器信息网色谱峰排除方法专题为您提供2024年最新色谱峰排除方法价格报价、厂家品牌的相关信息, 包括色谱峰排除方法参数、型号等,不管是国产,还是进口品牌的色谱峰排除方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱峰排除方法相关的耗材配件、试剂标物,还有色谱峰排除方法相关的最新资讯、资料,以及色谱峰排除方法相关的解决方案。

色谱峰排除方法相关的资讯

  • 中仪标化气相色谱分析技术、维护保养及常见故障排除培训班6月23日将于长沙举办
    中仪标化(北京)技术咨询中心,是专业从事光谱、色谱、质谱等仪器分析培训、实验室培训、高级化学检验员培训的专业培训机构。 是中国分析测试协会、中国仪器仪表学会分析仪器学会团体会员单位,国家质检总局质量技术监督行业国家资格取证委托培训单位。中仪标化目前已在全国各地成功举办100多期相关培训班,每年培训来自全国各地仪器分析测试人员及实验室管理人员近千名。   中仪标化将于2014年6月23日长沙再次举办&ldquo 气相色谱分析技术、维护保养及常见故障排除&rdquo 高级培训班,邀请武杰研究员、王立研究员两位专家全面讲授近气相色谱的分析技术、维护保养及常见故障排除等内容。   【培训详情】   培训时间:2014年6月 23日-6月28日   培训地点:长沙   培训对象:各企事业单位气相色谱的管理、操作、使用、维护人员   授课专家:   武杰 研究员 中国石油科学研究院研究员、中国色谱学会副理事长、分析仪器使用维护丛书《气相色谱仪器系统》等多本著作作者,从事色谱研究多年。 王立 研究员 北京劳保研究员,色谱专家,色谱分析技术丛书《色谱分析样品处理》等著作作者,从事色谱及样品处理技术研究多年。   培训内容:详见培训通知   【报名详情】 报名官网:http://www.fxyqpx.org/Chrtrain/124_1099.html 本网报名:http://www.instrument.com.cn/training/training_info.asp?TRI_No=101101   咨询电话:010-52573244 手机:15718847789   报名传真:010-61772365   报名邮件:fxyq06@126.com
  • 中仪标化“液相色谱分析技术、维护保养及常见故障排除培训班”5月19日将于西安举办
    中仪标化(北京)技术咨询中心,是专业从事光谱、色谱、质谱等仪器分析培训、实验室培训、高级化学检验员培训的专业培训机构。 是中国分析测试协会、中国仪器仪表学会分析仪器学会团体会员单位,国家质检总局质量技术监督行业国家资格取证委托培训单位。中仪标化目前已在全国各地成功举办100多期相关培训班,每年培训来自全国各地仪器分析测试人员及实验室管理人员近千名。   中仪标化将于2014年5月19日西安再次举办&ldquo 液相色谱分析技术、维护保养及常见故障排除&rdquo 培训班,邀请刘国诠、张庆合两位专家全面讲授液相色谱的分析技术、各个领域的应用、维护保养及仪器常见故障排除。 【培训详情】 培训时间:2014年5月19日-5月24日   培训地点:西安   培训对象:各企事业单位液相色谱的管理、操作、使用、维护人员   授课专家:   刘国诠研究员、博士生导师 中科院化学所   张庆合研究员、博士后 中国计量科学研究院   培训内容:详见培训通知 【报名详情】 报名官网:http://www.fxyqpx.org/Chrtrain/124_1097.html   本网报名:http://www.instrument.com.cn/training/training_info.asp?TRI_No=101093   咨询电话:010-52573244   报名传真:010-61772365   报名邮件:fxyq06@126.com
  • 冻干机常见故障及排除方法
    一、冻干机真空度达不到指标排除方法:1.检查放气阀是否关紧。也可在抽气过程中反复开、关该阀,让外界空气吹冲阀孔,以吹除阀内可能有的杂质,从而保证阀的密封。2.真空泵与主机之间由真空管连接,检查两个连接处的卡箍是否拧紧。主机右侧抽气口的不锈钢接头,可用大扳手顺时针方向拧紧。3.检查有机玻璃罩底面是否光洁平整。“O"型橡胶密封圈是否破损。在真空泵开始工作时,用力下压有面玻璃罩片刻,有利于密封。4.检查真空泵油质量,从视油镜观察泵油是否变浊或混入杂质,一般情况下,连续工作200小时左右,需要更换真空泵油。二、冻干机的真空泵漏油检查漏油部位(主要可能是视油镜和密封垫),更换相应新配件。三、冻干机的冷阱温度偏高一般由于散热不良,或环境温度偏高所致。
  • 1583万!南昌大学绿色食品江西省实验室超高效液相色谱-三重四极杆线性离子阱复合质谱仪、体积排除色谱-多角激光散射仪等采购项目
    一、项目基本情况:1.项目编号:JXGZ2024-01-1506项目名称:南昌大学绿色食品江西省实验室超高效液相色谱-三重四极杆线性离子阱复合质谱仪采购项目采购方式:竞争性磋商预算金额:4600000.00 元最高限价:4370000.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2024F001114406超高效液相色谱-三重四极杆线性离子阱复合质谱仪(绿色)1台4600000.00元详见公告附件合同履行期限:合同签订后90天内。本项目不接受联合体投标。2.项目编号:JXGZ2024-01-1507项目名称:南昌大学绿色食品江西省实验室体积排除色谱-多角激光散射仪等进口设备采购项目采购方式:竞争性磋商预算金额:6130000.00 元最高限价:5823500.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2024F001114313油脂氧化稳定测试仪(绿色)1台370000.00元详见公告附件赣购2024F001114404中央供水(绿色)1台800000.00元详见公告附件赣购2024F001114311脂溶性维生素提取仪(绿色)1台1060000.00元详见公告附件赣购2024F001114312水分活度测试仪(绿色)1台270000.00元详见公告附件赣购2024F001114314氨基酸分析仪(绿色)1台950000.00元详见公告附件赣购2024F001114310体积排除色谱-多角激光散射仪(绿色)1台2200000.00元详见公告附件赣购2024F001114405超纯水机(绿色)4台480000.00元详见公告附件合同履行期限:合同签订后90天内。本项目不接受联合体投标。3.项目编号:JXGZ2024-01-1511项目名称:南昌大学绿色食品江西省实验室小动物活体成像系统等进口设备采购项目采购方式:竞争性磋商预算金额:5185000.00 元最高限价:4925700.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2024F001114390离心浓缩仪(绿色)2台480000.00元详见公告附件赣购2024F001114393小动物活体成像系统(绿色)1台2640000.00元详见公告附件赣购2024F001114316超微量分光光度计(绿色)1台160000.00元详见公告附件赣购2024F001114387高速冷冻离心机(绿色)1台130000.00元详见公告附件赣购2024F001114391旋转蒸发仪(绿色)4台440000.00元详见公告附件赣购2024F001114315厌氧手套箱(绿色)1台330000.00元详见公告附件赣购2024F001114317快速组织破碎仪(绿色)2台440000.00元详见公告附件赣购2024F001114392真空冷冻干燥机(绿色)1台380000.00元详见公告附件赣购2024F001114388高速冷冻离心机(绿色)1台150000.00元详见公告附件赣购2024F001114389离心机(绿色)1台35000.00元详见公告附件合同履行期限:项目交付时间:合同签订后90天内。本项目不接受联合体投标。二、获取采购文件:时间:2024年01月22日 至 2024年01月26日,每天上午0:00至12:00,下午13:00至23:30(北京时间,法定节假日除外 )(磋商文件的发售期限自开始之日起不得少于5个工作日)地点:江西省公共资源交易网方式:网上报名获取采购文件,未在规定时间内下载采购文件而导致无法上传响应文件的后果由供应商自行承担。售价:0.00元三、凡对本次采购提出询问,请按以下方式联系:1.采购人信息名称:南昌大学地址:江西省南昌市红谷滩学府大道999号联系方式:0791-839692852.采购代理机构信息名称:江西国政招标咨询有限公司地址:江西省南昌市庐山南大道348号南昌市农业科学院大楼十楼联系方式:0791-881948973.项目联系方式项目联系人:刘雨雯、朱珍珍、管晓波、江福群、柳洋华、王东虎电话:0791-88194897
  • 真空冷冻干燥机制冷系统常见的故障及排除方法
    真空冷冻干燥机制冷系统常见的故障及排除方法 真空冷冻干燥机广泛用于医学、制药、生物研究、化工和食品等领域。经冷冻干燥处理的物品易于长期保存,加水后能恢复到冻干前状态并保持原有生化特性。LGJ-18N系列立式冷冻干燥机,适用于实验室使用或少量生产,可满足大多数实验室常规冻干的要求。   真空冷冻干燥机制冷系统常见的故障及排除方法:   1)高压报警。出现高压报警的主要原因有:   ①冷却水水温过高或冷却水量不足。   ②冷凝器内部结垢,导致换热效率降低。   ③压缩机工作时,低压管道发生泄漏,从而导致外界空气进入制冷系统。   ④制冷管道存在未开足阀门或因管道被堵而造成排气不畅的情况。   解决办法:   ①降低冷却水温度或增加水流量。   ②清洗冷凝器的冷却水管路。   ③对制冷管道进行检漏,如果在工作中无法实现该项操作,可将水冷凝器上方的截止阀打开,使存在于冷凝器中的空气排放出一部分。   ④将压缩机管道.上的阀门开启到最大。   2)水压报警。水压报警的主要原因有:   ①冷却水供水压力不足或供水泵不运转。   ②水压力控制器故障。   解决办法:   ①增大外部供水压力或检修供水泵。   ②检查压力控制器的触头是否能正常工作或检查在其线路.上是否存在其他问题。   3)压缩机吸气温度异常。吸气温度异常的主要原因是膨胀阀调节不当,开启度过小或过大,导致回气量过小或过大。其解决办法是对膨阀进行调节,如回气量过大,应关小开启度,如回气量过小,应开大开启度,调节过程中以微调为主,多观察压缩机的回霜情况。   4)膨胀阀堵塞。堵塞分泌物物堵塞(脏堵)和冰堵塞两种。   ①杂物堵塞。在堵塞不严重时,可用扳手轻轻敲打阀体,经振动使阀体疏通。若不奏效或膨胀阀很快又重新堵塞,则说明堵塞严重,应拆卸膨胀阀,对膨胀阀滤网进行清洗,清洗完后重新装上即可。   ②冰堵。出现冰堵,应更换冷凝器出液端过滤器。   5)载冷剂泄漏   可用肉眼观察,查找板层,软管上的泄漏点。若发现可疑漏点,应放空板层或软管内的载冷剂,对泄漏点进行充压确认,确认后放气补好泄漏点,重新加入载冷剂并排出板层和软管内气体。
  • 【飞诺美色谱】【方法建立】基于化学模式识别和熵权TOPSIS法分析鱼腥草不同部位的差异
    基于化学模式识别和熵权TOPSIS法分析鱼腥草不同部位的差异潘玲 ,施文婷 ,张兰兰 ,文珊 ,刘权震 ,黎桃敏 ,陈丹燕 ,刘燎原(广东一方制药有限公司,广东省中药配方颗粒企业重点实验室,广东佛山 528244)DOI:10.3969/j.issn.1008-6145.2023.02.002基金信息: 国家工业和信息化部2019年产业技术基础公共服务平台项目(2019-00902-1-2);佛山市应急科技攻关专项(2020001000206)摘 要: 基于高效液相色谱(HPLC)指纹图谱比较鱼腥草不同部位(茎、叶)化学成分的差异性,并综合评价鱼腥草不同部位的质量。建立鱼腥草不同部位的HPLC指纹图谱,通过相似度评价、化学模式识别及熵权TOPSIS法对其化学成分进行差异性研究,并对其质量标志物(槲皮苷)进行含量测定。建立的HPLC指纹图谱中鱼腥草药材及其茎叶均确定了8个共有峰,指认了其中6个成分;聚类分析(CA)和主成分分析(PCA)结果表明鱼腥草叶和茎的质量差异大,叶和药材的质量较接近;偏最小二乘法-判别分析(OPLS-DA)发现4种成分是造成不同批次样品差异性的主要标志物;熵权TOPSIS法分析显示同批次鱼腥草药材与其茎叶既有相关性也有差异性,且四川产地的鱼腥草药材质量较佳;含量测定结果显示,同批次鱼腥草中的槲皮苷含量由高到低均依次为叶、药材、茎。鱼腥草不同部位HPLC指纹图谱存在显著差异。该方法可反映鱼腥草不同部位质量差异性,为鱼腥草药材的质量控制及资源开发利用提供参考。关键词: 鱼腥草; 不同部位; 化学模式识别; 熵权TOPSIS法; 槲皮苷中药特征图谱是中药整体性的化学表征,在中药质量评价方面应用广泛。化学模式识别分析包括聚类分析和主成分分析等,是用于揭示隐含于化学测量数据内部规律的一种多元分析技术,已被广泛应用于中药材及中药制剂的质量评价。逼近理想解排序法(TOPSIS)是一种多指标决策法,利用各方案与理想方案和负理想方案的欧式距离来度量方案优劣,使得属性与其效用之间呈线性变化关系,同时将多个评价指标进行合理赋权得到一个综合指标,把多维问题转化为一维问题,有效地排除主观因素的影响,明显提高多目标决策分析的科学性和准确性。笔者利用HPLC法建立鱼腥草不同部位的指纹图谱,运用聚类分析、主成分分析、偏最小二乘法-判别分析等化学模式识别方法对鱼腥草不同部位指纹图谱进行质量评价,同时运用熵权TOPSIS法对鱼腥草不同部位的槲皮苷含量进行综合排序评价,旨在全面反映鱼腥草药材及其不同部位化学成分差异,为鱼腥草药材的合理应用和资源开发提供一定的数据支撑。本文摘选自《化学分析计量》202302期,有部分改动1 主要实验部分1.1 色谱条件色谱柱:Phenomenex Luna C18柱(250 mm × 4.6 mm,5 μm,美国Phenomenex公司);流动相:A相为乙腈,B相为0.1%磷酸水溶液;洗脱方式:梯度洗脱;洗脱程序:0~10 min时,A相体积分数由6%逐渐增加至8%,10~35 min时,A相体积分数由8%逐渐增加至27%,35~37 min时,A相体积分数由27%逐渐下降至6%,37~40 min时,A相体积分数为6%;流动相流量:1.0 mL/min;柱温:30 ℃;检测波长:0~25 min时为326 nm,25~40 min时为254 nm;进样体积:10 μL。1.2 溶液配制(1)混合对照品溶液。分别精密称取新绿原酸、绿原酸、隐绿原酸、芦丁、金丝桃苷、槲皮苷对照品适量,置于同一只5 mL容量瓶中,加入90%甲醇溶液溶解并定容至标线,配制成新绿原酸、绿原酸、隐绿原酸、芦丁、金丝桃苷、槲皮苷的质量浓度分别为7.492 6、7.443 4、7.198 5、9.185 0、8.817 1、7.960 3 μg/mL的混合对照品溶液。(2)鱼腥草药材样品溶液。取鱼腥草药材样品粉末(过4#筛)约0.5 g,精密称定,置于具塞锥形瓶中,精密加入90%甲醇溶液25 mL,称定质量,超声(功率300 W,频率40 kHz)处理30 min,取出,放冷,再称定质量,用90%甲醇溶液补足减失的质量,摇匀,滤过,即得。1.3 实验方法利用HPLC法建立鱼腥草不同部位的指纹图谱,运用聚类分析、主成分分析、偏最小二乘法-判别分析等化学模式识别方法对鱼腥草不同部位各特征峰进行化学模式识别分析。2 主要结果与讨论2.1 HPLC指纹图谱的建立取18批鱼腥草药材、茎和叶样品,制备样品溶液,按色谱条件进样测定,记录色谱图。将采集到的HPLC色谱图导入中药色谱指纹图谱相似度评价系统(2012版)软件进行匹配,分别生成对照指纹图谱R1、R2和R3。2.2 化学模式识别分析2.2.1 聚类分析采用SPSS 26.0软件,以18批鱼腥草药材、茎和叶共54个样品的指纹图谱中8个共有峰的“峰面积占比”(各共有峰峰面积占共有峰总面积的比例)作为变量进行聚类分析。2.2.2 主成分分析采用SPSS 26.0软件,以18批鱼腥草药材、茎和叶共54个样品的指纹图谱中8个共有峰的“峰面积占比”作为变量进行主成分分析,分析结果与主成分因子载荷矩阵分别见下表,得分图如图所示。以特征值大于1为提取标准提取主成分,提取出前2个主成分,对总方差的累积贡献率达72.782%,表明提取的2个主成分能基本反映全部指标的信息。主成分1的特征值为4.043,方差贡献率为50.533%,载荷(绝对值)较高的峰有新绿原酸、绿原酸、隐绿原酸、金丝桃苷、槲皮苷,表明这5个成分主要反映主成分1的信息;主成分2的特征值为1.780,方差贡献率为22.249%,载荷(绝对值)较高的峰有峰4、芦丁、峰7,表明这3个成分主要反映主成分2的信息。由主成分得分图可以看出药材和叶基本聚为一类,茎单独聚为一类,与聚类分析结果一致。表 18批鱼腥草药材、茎、叶的主成分分析结果表 18批鱼腥草药材、茎、叶的主成分因子载荷矩阵注:“-”代表方向。图 18批鱼腥草药材、茎、叶的主成分得分图2.3.3 正交偏最小二乘法-判别分析正交偏最小二乘法判别分析(OPLS-DA)是一种与主成分有关的统计学方法,将数据降维后建立回归模型并对结果进行判别分析。模型通过Y轴累积解释率(R2Ycum)、模型累积预测率(Q2cum)建立模型参数,R2Ycum与Q2cum值差距越小且接近1,表示模型效果越好。采用SIMCA 14.1软件,以18批鱼腥草药材、茎和叶共54个样品的指纹图谱中8个共有峰的“峰面积占比”作为变量进行OPLS-DA分析,结果如图所示。由模型参数可知,数据矩阵的模型解释率R2Ycum=0.82,模型预测参数Q2cum=0.57,均大于0.50,表明该数学模型稳定可靠。54批样品可分成2类,鱼腥草的茎单独聚为一类,药材和叶聚为一类。以VIP值大于1为提取标准,结果表明,槲皮苷、隐绿原酸、峰4和芦丁是影响分类的主要标志性成分。文献研究表明鱼腥草中黄酮类成分具有杀菌、祛痰、止咳等作用,因此选择槲皮苷作为鱼腥草的质量标志物,对18批鱼腥草药材、茎、叶样品进行含量测定。图 18批鱼腥草药材、茎、叶的OPLS-DA分析得分图图 OPLS-DA分析VIP值2.5 熵权TOPSIS法分析对18批鱼腥草药材不同部位HPLC指纹图谱中各共有峰的峰面积进行熵权TOPSIS法分析,依次建立各样品的初始决策矩阵、标准化决策矩阵,计算得到各项指标的熵值Ej=(1.522、1.822、1.892、2.022、2.012、1.912、1.883、1.856);权重wj=(0.079、0.118、0.128、0.147、0.146、0.131、0.127、0.123);根据加权决策矩阵得到最优方案Zj+=(0.079、0.118、0.128、0.147、0.146、0.131、0.127、0.123),最劣方案Zj-均为0。计算18批鱼腥草药材不同部位与最优方案的距离(D+)、与最劣方案的距离(D-)及最优解的欧氏贴近度(Ci)。D+越小、D-越大、Ci越大,则被评价样品越优。18批药材、茎、叶的Ci平均值分别为0.159、0.063、0.300,提示叶的质量最优,药材次之,茎最差。质量排序:鱼腥草药材前三位的分别是H4、H5、H1,茎前三位的分别是S4、S5、S6,叶前三位的分别是L4、L1、L5,不同产地鱼腥草样品存在较大差异,可为优良药材资源的进一步研究与开发提供参考。3 结论笔者通过建立鱼腥草不同部位HPLC特征图谱,结合化学识别模式和熵权TOPSIS法分析鱼腥草不同部位质量差异。采用HPLC法,从鱼腥草药材、茎和叶的指纹图谱中标识出8个共有峰,通过对照品指认出其中6个成分,分别为新绿原酸、隐绿原酸、绿原酸、芦丁、金丝桃苷、槲皮苷。相似度评价结果表明,18批鱼腥草药材、茎和叶的HPLC指纹图谱与其相应对照指纹图谱的相似度均大于0.85,表明不同批次鱼腥草同一部位的整体质量较为稳定;通过聚类分析、主成分分析、正交偏最小二乘法判别分析明确各化学成分的富集部位及影响分类的主要标志性成分,可用于评价鱼腥草药材的整体质量及茎、叶各部位的质量差异;含量测定结果表明同一批鱼腥草中的槲皮苷含量由高到低均依次为叶、药材、茎;熵权TOPSIS法确定了鱼腥草中8个共有峰的权重,根据Ci值对不同部位的鱼腥草样品进行排序,可实现对鱼腥草整体质量控制以及优质种源筛选。建立的鱼腥草药材及其不同部位HPLC指纹图谱检测方法稳定可靠,通过化学模式识别和熵权TOPSIS法,对鱼腥草药材及其不同部位的HPLC指纹图谱进行分析评价,可全面、综合、系统地对样本进行质量评价和差异分析,从而比较不同部位的化学成分差异,明确化学成分的分布规律,为鱼腥草药材的质量控制和临床应用提供数据支持。引用本文: 潘玲,施文婷,张兰兰,等 . 基于化学模式识别和熵权TOPSIS法分析鱼腥草不同部位的差异[J]. 化学分析计量,2023,32(2):6. (PAN Ling, SHI Wenting, ZHANG Lanlan, et al. Analysis of the differences of Houttuynia cordata with different parts based on chemical pattern recognition and entropy TOPSIS method[J]. Chemical Analysis and Meterage, 2023, 32(2): 6.)通讯作者:陈丹燕,本科,研究方向:中药配方颗粒制备工艺与质量标准研究基金信息: 国家工业和信息化部2019年产业技术基础公共服务平台项目(2019-00902-1-2);佛山市应急科技攻关专项(2020001000206)中图分类号: O657.7文章编号:1008-6145(2023)02-0006-07本文来源:“ 化学分析计量”微信公众号
  • 尘封往事:中国军工助力国产离子色谱仪起航——访三位中国离子色谱老专家
    1983年,我国第一台国产离子色谱仪诞生,从此打破了国外企业对中国市场的完全垄断。在那个国家外汇稀缺、酸雨严重、粮食欠收的艰苦岁月里,由三位工程师及其团队排除万难研发出来的离子色谱仪在水质检测等众多民用和军工领域立下了汗马功劳。现在他们都已经年过古稀,带着一份感恩和崇敬,仪器信息网采访了三位离子色谱老专家,为大家打开那一段尘封已久的往事。苏程远(左)刘开禄(中)赵云麒(右)  苏程远,曾用名苏文远,1937年10月出生,吉林九台人。1958年毕业于北京铁道学院(现北京交通大学)自动控制远程控制及通信专业。曾就职于呼和浩特铁路局科学技术研究所、青岛崂山电子仪器实验所、青岛科学仪器厂、中国水产科学研究院黄海水产研究所,获得国家科技进步奖两次,青岛市科学技术进步奖一次,参与起草离子色谱仪国家计量鉴定规程,1997年退休。  刘开禄,曾用名刘开录,1938年10月出生,重庆人,1959年毕业于四川大学化学系,就职于核工业北京冶金化工研究院,获国家级科技进步奖一次,国防科委、核工业成果奖七次,获得中国国务院有突出贡献专家津贴,1998年退休。  赵云麒,1942年12月出生,天津人。1964年毕业于中国科学技术大学近代化学系。曾任职于中国科学院大连化学物理研究所仪器设备研究室、核工业北京化工冶金研究院化工工艺第四研究室、核工业北京化工冶金研究院有机化工研究室。获得国家科技进步奖一次,部级科技进步奖两次,青岛市科学技术进步奖一次,1998年退休。  国产离子色谱分离技术源自原子弹的铀工业  1951年6月15日,杨承宗通过了约里奥居里夫人主持的博士论文《离子交换分离放射性元素的研究》答辩,一周之后,杨承宗收到了钱三强从北京发来的电报,希望他早日回国工作。同年秋天,他回到祖国,钱三强所长请他担任中国科学院近代物理研究所(中科院原子能所)第二研究大组的主任。刘开禄于1959年从四川大学化学系毕业后,分配到中科院原子能所五室,在杨先生的领导下开展铀化学的研究。  1960年,苏联毁约停援,撤走全部专家。刘开禄又随杨先生调到二机部五所从事铀化学研究的工作。满足原子弹爆炸的当量核原料需要从含铀万分之几的铀矿石中提取高纯铀,高纯铀中杂质的含量要求在0.1ppm以下,用于核裂变的铀235仅占天然铀的0.7%,其余99.3%为铀238。一条生产可裂变元素的途径是:在生产反应堆中,由天然铀的铀235裂变产生中子,被铀238吸收,再经过一个β 衰变就变成钚239。再用化学方法分离,就可以比较容易地从照射后的铀棒中提取纯的钚239。钚239是可裂变物质,苏联的第一颗原子弹就是用的钚239做燃料。  杨先生让刘开禄所在课题组研究铀、钚分离新技术,因为反应堆中的铀放射性非常强,当时的防辐条件要求非常高,刘开禄查阅了很多文献,设计出一种特殊的分离铀、钚和裂变产物的方法。与传统的方法相比,该方法可以使实验人员远离放射源,被称之为“无机反相层析法”。杨先生赞许了刘开禄的新思路,同时指出铀、钚分离在工业上最好的实施方法为萃取、还原。无机反相层析法很有前景,可先在分析化学上应用,再推广到小型制备分离,然后再考虑工业化大生产。他还向刘开禄介绍了他的博士论文中的主要工作之一—即用离子交换色谱分离锕系元素,叮嘱刘开禄要关注离子交换色谱。由杨先生推荐,1962年刘开禄的论文《无机反相色谱层析法》在化学通报发表,后陆续被东德化学会翻译成德文发表,英国一家杂志社翻译成英文发表。  这种方法也在分析裂变级高浓缩铀235中的硼、铬、稀土元素等杂质中得到应用,节约了众星捧月般的核爆燃料高浓缩铀235。这些成功无疑给他带来极大的鼓舞,第一次有了将无机色谱仪器化的想法。  1978年二机部五所采购了一台高效液相色谱仪,刘开禄查阅了很多相关资料,无意中找到H.Small等在1975年Anal. Chem发表的《应用电导检测器的离子交换色谱法》的论文,他如获至宝,没想到色谱分析无机离子竟然如此简单地被解决了。随后,刘开禄利用合成苯乙烯—二乙烯基苯型色谱填料的功底和经验研发了首根阴离子分离柱,他的夫人袁斯鸣也进行了阴离子交换树脂及阳离子交换树脂色谱填料的合成工作,后来它们被用在国防科委某基地的核爆裂变产物的富集和分析上。在此基础上,刘开禄经过上百次实验研制成了YSA-2型高效薄层阴离子交换树脂,并填装高效阴离子分离柱,再利用袁斯鸣提供的YS-2型阳离子交换树脂制成抑制柱,利用原有的高效液相色谱仪的泵和进样阀,又采购了一台上海第二分析仪器厂的DDS-11A型电导仪和自制简易电导检测器(包含零位调节器和毛细管电导池),组装成了离子交换色谱装置。  当时铀矿厂在进行季铵萃取新工艺的过程中,发现了萃取剂“中毒”的现象,分析室认为浸出液中含有硝酸根使其“中毒”。刘开禄用这台离子交换色谱装置定量分析出浸出液主要含有氯离子和硫酸根离子,无硝酸根离子,解决了这一争论。工业室重新制定了再生方法,使季铵萃取工艺顺利投产。  应对环境污染首台国产离子色谱仪在嘲讽中诞生  1981年秋天,刘开禄在天津举办的多国仪器展览会中第一次见到了戴安公司的Dionex14型离子色谱仪,该仪器可以很好地解决当时我国急需的微量多组分阴离子分析问题,引起了众多参观者的极大兴趣。但是,该公司一位美籍华人经理傲慢的一句话刺痛了他的心,“这是陶氏化学公司科学家的最新成就,你们几十年内不会搞出来的。”当时刘开禄的离子交换色谱装置可以测两个峰,而Dionex14离子色谱仪可以测七个峰。他那时候才知道H.Small的发明已经仪器化,并命名为离子色谱仪,他埋头图书馆查了一周文献,慢慢的,将实验室装置全面商品化成国产离子色谱仪的方案在脑中形成,后来他把想法汇报给了他的老师杨承宗,杨先生非常高兴,并让他为全面商品化准备各种零件和器材。  那个时候我们国家酸雨污染非常严重,因为家家户户取暖做饭都烧蜂窝煤,几个产粮大省连续几年都欠收,最后都上报到了国务院。北京环境保护检测中心主任吴鹏鸣上交了一份报告,要求买一百台戴安的色谱仪来测定酸雨成分。当时一台戴安离子色谱仪售价为四万美元,而我国的外汇很紧张,乒乓球运动员出国只能带二十美元。最终国务院只批准购买了四台,解放军防化研究所一台,国家环境科学院一台,上海两台。在一次无锡的环保会议上,吴鹏鸣邀请刘开禄做了国产离子色谱仪的报告,引起了极大的反响,北京矿产地质研究院分析测试研究室的高级工程师蒋仁依当天就跑到刘开禄的房间里告诉他,“只要你做出来,我给你推广。”在吴鹏鸣的大力推荐下,核工业北京第五研究所总工程师董灵英为刘开禄在所里争取经费,一共申请到了2万元开始研制离子色谱仪。“刚开始平流泵花了4000多元,阀门又是1000多元,资金还是非常紧缺。”在十分艰苦的条件下,刘开禄不断改进填料,使装有YSA-2型高效薄层阴离子交换树脂填料的分离柱能分离分析七个阴离子,使其分析指标达到Dionex14的分析水平。研制国产离子色谱仪的条件已经完全具备,刘开禄邀请赵云麒参加研制工作,赵云麒设计了可产品化的电导池,并且在二人的通力合作下,制成了完全国产化的ZIC-1型离子色谱仪离子色谱仪样机,共三台。1983年6月30日经过鉴定会专家组的评审,一直认为该仪器为国内首次研制成功,它所配备的YSP-2型阴离子色谱柱的柱效率、灵敏度、使用寿命等主要技术指标均达到国外同类产品的水平,同意小批量生产。  鉴定会主任:国家海洋局局长(前排左6)陈国珍教授  副主任:兰州大学(前排左5)丘陵教授、核工业六所总工程师(前排左4)沈言谆、北京环境监中心高级工程师(前排左8)陈禹芳  鉴定会委员:核工业北京化冶院副院长(前排左2)董灵英教授、核工业北京化冶院(二排左5)朱长恩教授、核工业北京化冶院(二排左7)殷晋尧教授、国防科工委 (前排右2)吕参谋、核工业北京化冶院科技局成果处处长(前排右3)肖兴寿教授、核工业部矿冶局科技处处长(前排左1)陈煋宇教授、核工业北京化冶院院长(前排右1)张镛  刘开禄(三排左1)、赵云麒(三排左6)、蒋仁依(二排左1)  1983年8月刘开禄和赵云麒去青岛崂山电子仪器实验所进行ZIC-1型离子色谱仪的生产试制,在与实验所的工程师周中柱、苏程远、庆永顺等人共同努力下,10月份生产出三台ZIC-1型离子色谱仪,并在当年投入市场,填补了国家空白。后来ZIC-1型离子色谱仪被国家环保局认定为酸雨检测规程的示范仪器,一下打开了环境保护分析仪器的市场,总共生产销售了近100台。  1985年6月随着苏程远被调入青岛晶体管厂,赵云麒和刘开禄又转移到青岛开始了ZIC-2型离子色谱仪研发,主要工作是研究基于刘开禄提出的双模式理论和适用于阳离子分析的“五极电导检测”电路。当时并不像现在一样模仿很盛行,而且即使想仿造戴安的仪器也不太可能。进口仪器买不起,就算有人买回来,也不可能拆开让人看。1986年中国科学院生态环境研究中心博士生导师牟世芬研究员和刘开禄编著出版了《离子色谱》,书中指出研制离子色谱仪其中核心的问题之一就是要研制出性能好的电导检测器。苏程远和赵云麒根据书中关于四极电导检测器的原理方框图进行了五极电导检测器的研究。那个时候特别困难,晶体管厂生产的产品晶体管卖不出去。厂房边有一栋从前苏联人建的别墅,苏程远和赵云麒就在里面做实验,房子是挺好的,但伙食太差,饿了吃方便面,后来吃不起了就改吃挂面。整个实验过程中他们一直盯着噪声和基线漂移的变化,并不断地设法改进,累了就在椅子上睡觉,苏程远还为此白了不少头发。最后实验成功是在1986年2月8日农历三十的下午五点钟,基线走成了。二人兴奋了一个除夕夜晚。ZIC-2型和ZIC-1型的最大区别就是电导检测电路的不同,1型为二极电导检测器,2型为五极电导检测器,性能更优良。刘开禄及其团队对新型电导检测器进行了测试和运用研究,同时对袁斯鸣研发的YSC阳离子色谱分离柱进行分离实验,验证了双模式离子色谱理论,为ZIC-2型提供了技术支持。1987年12月22日,ZIC-2型离子色谱仪通过了同样高规格的专家鉴定并投产,青岛晶体管厂因此改名为“青岛科学仪器厂”(刘开禄老师想的名字),ZIC-2型离子色谱仪和分离柱后来成为该厂的支柱产品。  取代进口定制离子色谱仪为核潜艇保驾护航  核潜艇的动力来自核反应堆产生巨大的热量,把水变成高温高压的蒸汽,然后通过透平机转化为机械能,推动核潜艇前进。在高温高压的情况下,微量的酸就可腐蚀特种钢管道,造成砂眼裂纹,非常危险。所以要求纯化水中氯离子含量低于0.1ppm。氯离子检测原来用的是英国的电化学检测器,但只能检测0.5ppm,灵敏度达不到。092号核潜艇发生过一次重大的蒸汽泄露事故,经过仔细排查确定为水质变化造成不锈钢管腐蚀。为了换掉这根裂纹特种钢管,军方可以说是费尽周折才搞到了世界上最好的耐腐蚀钢。核潜艇的走气管道是厚壁钢,要检修先要打开数十厘米厚的钢甲板。焊工一个接着一个连续焊了几天几夜,终于把旧管换成了新管。一来二去,估计几亿元的维修费就花出去了。后来相关人员在刘开禄的技术指导下,设计提供了一台小型离子色谱仪,解决了核潜艇上水质监测问题。自九十年代始的其后二十年间已经生产数十台,主要检测氯离子、硫酸根、有机酸和其他阴离子。这其中的离子色谱柱和抑制器在二十年间都是由刘开禄提供。国防工业最能代表一个国家科技的最高水平。离子色谱仪从无到有,从有变多,老专家们倾注了毕生的心血。  后记:目前国产离子色谱仪的售价在10万以上,进口离子色谱仪的售价在40万~150万,国内市场总量是每年约3000台,国内厂商大约占有20%的市场份额,远远落后于国外厂商。而如果没有国家重大科学仪器设备开发专项的支持,国产厂商的发展历程可能更加艰难。就技术方面而言,离子色谱柱是目前国产离子色谱技术最薄弱的环节,虽然早期核工业北京冶金化工研究院和中科院生态环境研究中心有少量生产,但后来没有进行持续的研发。离子色谱柱和各种填料在实验过程产生的粉尘污染和使用的挥发性化学试剂对身体危害非常大。2012年,刘开禄就是因为身体原因停止了研究工作。其夫人袁斯鸣从八十年代初就开始为全国离子色谱厂家和用户提供离子色谱柱和各种填料,一直到2008年也是因为身体原因才离开实验室。1986年苏程远和赵云麒研发成功的五级电导检测器一直延用到现在。专注应用开发的蒋仁依今年年初已去世。我们期待国产离子色谱仪的继任者能再续传奇。(编辑:王明)
  • 【技术指导】全自动凝倾点测定仪的注意事项和常见故障及排除方法
    全自动凝倾点测定仪注意事项、常见故障及排除方法A1120技术指导产品介绍产品名称:全自动凝倾点测定仪产品型号:A1120概 述:全自动凝倾点测定仪 ,用于测定变压器油、轻质润滑油的凝固点倾点值,LCD液晶图形滚动显示、人机对话界面,菜单提示输入,方便直观。具有误操作软件提示修改功能。界面清晰,易操作,打印试验数据,实现了试验全过程微机自动化注意事项1、试验前应仔细阅读使用说明书及注意事项。2、打开仪器包装,将仪器平稳的放在试验台上,开机前检查额定工作电压是否符合要求。3、正确连接水路接头,注意水源保持一定压力,压力不稳影响仪器正常工作,气压调节出厂前已效准,需调解气压时请与制造商或专业人员联系。4、更换试样时,油杯须进行清洗,试验结束后应清洗管路,保持管路清洁。常见故障及排除方法序号故障原因排除方法备注1液晶屏幕无显示1.检查电源是否插好。2.打开仪器侧板检查各插头是否有松动。2没有压力1.气泵坏。2.气路导管是否脱开,漏气。3不制冷1.制冷器坏。2.检查电源。4无水压水压开关坏。5测试数据误差大气压调解数值不准。
  • 【技术指导】全自动凝倾点测定仪的注意事项和常见故障及排除方法
    全自动凝倾点测定仪注意事项、常见故障及排除方法A1120技术指导产品介绍产品名称:全自动凝倾点测定仪产品型号:A1120概 述:全自动凝倾点测定仪 ,用于测定变压器油、轻质润滑油的凝固点倾点值,LCD液晶图形滚动显示、人机对话界面,菜单提示输入,方便直观。具有误操作软件提示修改功能。界面清晰,易操作,打印试验数据,实现了试验全过程微机自动化注意事项1、试验前应仔细阅读使用说明书及注意事项。2、打开仪器包装,将仪器平稳的放在试验台上,开机前检查额定工作电压是否符合要求。3、正确连接水路接头,注意水源保持一定压力,压力不稳影响仪器正常工作,气压调节出厂前已效准,需调解气压时请与制造商或专业人员联系。4、更换试样时,油杯须进行清洗,试验结束后应清洗管路,保持管路清洁。常见故障及排除方法序号故障原因排除方法备注1液晶屏幕无显示1.检查电源是否插好。2.打开仪器侧板检查各插头是否有松动。2没有压力1.气泵坏。2.气路导管是否脱开,漏气。3不制冷1.制冷器坏。2.检查电源。4无水压水压开关坏。5测试数据误差大气压调解数值不准。
  • 盘点!常用气相色谱分析方法
    1.归一化法  把所有出峰的组分含量之和按100%计的定量方法,称为归一化法。  各成分校正因子一致时可用该法,该法简便、准确,特别是进样量不容易准确控制时,进样浓度及进样量的变化的影响很小。  其他操作条件,如流速、柱温等变化对定量结果的影响也很小。GC应用广于HPLC。2.外标法(标准曲线法、直接比较法)  首先用欲测组分的标准样品绘制标准工作曲线。具体作法是:用标准样品配制成不同浓度的标准系列,在与欲测组分相同的色谱条件下,等体积准确量进样,测量各峰的峰面积或峰高,用峰面积或峰高对样品浓度绘制标准工作曲线,此标准工作曲线应是通过原点的直线。若标准工作曲线不通过原点,说明测定方法存在系统误差。标准工作曲线的斜率即为绝对校正因子。  当欲测组分含量变化不大,并已知这一组分的大概含量时,也可以不必绘制标准工作曲线,而用单点校正法,即直接比较法定量。单点校正法实际上是利用原点作为标准工作曲线上的另一个点。因此,当方法存在系统误差时(即标准工作曲线不通过原点),单点校正法的误差较大。因此规定,y=ax+b 。b的绝对值应不大于100%响应值是y的2%。  标准曲线法的优点:绘制好标准工作曲线后测定工作就很简单了,计算时可直接从标准工作曲线上读出含量,这对大量样品分析十分合适。特别是标准工作曲线绘制后可以使用一段时间,在此段时间内可经常用一个标准样品对标准工作曲线进行单点校正,以确定该标准工作曲线是否还可使用.  标准曲线法的缺点:每次样品分析的色谱条件(检测器的响应性能,柱温度,流动相流速及组成,进样量,柱效等)很难完全相同,因此容易出现较大误差。另外,标准工作曲线绘制时,一般使用欲测组分的标准样品(或已知准确含量的样品),因此对样品前处理过程中欲测组分的变化无法进行补偿。3.内标法  选择适宜的物质作为欲测组分的参比物,定量加到样品中去,依据欲测组分和参比物在检测器上的响应值(峰面积或峰高)之比和参比物加入的量进行定量分析的方法称为内标法。  内标法的关键是选择合适的内标物。内标物应是原样品中不存在的纯物质,该物质的性质应尽可能与欲测组分相近,不与被测样品起化学反应,同时要能完全溶于被测样品中。内标物的峰应尽可能接近欲测组分的峰,或位于几个欲测组分的峰中间,但必须与样品中的所有峰不重叠,即完全分开。一般会选择标准物质的同位素物质作为内标物。  内标法的优点:进样量的变化,色谱条件的微小变化对内标法定量结果的影响不大,特别是在样品前处理(如浓缩、萃取,衍生化等)前加入内标物,然后再进行前处理时,可部分补偿欲测组分在样品前处理时的损失。若要获得很高精度的结果时,可以加入数种内标物,以提高定量分析的精度。  内标法的缺点:选择合适的内标物比较困难,内标物的称量要准确,操作较麻烦。使用内标法定量时要测量欲测组分和内标物的两个峰的峰面积(或峰高),根据误差叠加原理,内标法定量的误差中,由于峰面积测量引起的误差是标准曲线法定量,但是由于进样量的变化和色谱条件变化引起的误差,内标法比标准曲线法要小很多,所以总的来说,内标法定量比标准曲线法定量的准确度和精密度都要好。4.标准加入法  标准加入法实质上是一种特殊的内标法,是在选择不到合适的内标物时,以欲测组分的纯物质为内标物,加入到待测样品中,然后在相同的色谱条件下,测定加入欲测组分纯物质前后欲测组分的峰面积(或峰高),从而计算欲测组分在样品中的含量的方法。  标准加入法的优点:不需要另外的标准物质作内标物,只需欲测组分的纯物质,进样量不必十分准确,操作简单。若在样品的前处理之前就加入已知准确量的欲测组分,则可以完全补偿欲测组分在前处理过程中的损失,是色谱分析中较常用的定量分析方法。  标准加入法的缺点:要求加入欲测组分前后两次色谱测定的色谱条件完全相同,以保证两次测定时的校正因子完全相等,否则将引起分析测定的误差。
  • 气相色谱常见故障及解决方法
    气相色谱仪常见故障分析与解决方法气相色谱仪由六大单元组成,任一单元出现问题都会反映到色谱图上。这里介绍前三个单元。现代的气相色谱仪很多都具备故障诊断功能,不同程度地给出仪器故障的判断。尽管如此,许多的问题像是操作失误的问题仍须靠工作人员的努力。故障和失误可以采用逐个单元检查排法,这里从分析人员的角度来讨论仪器故障的排和分析人员操作失误或操作不当引起问题的排。气相色谱仪是利用色谱分离和检测,对多组分的复杂混合物进行定性和定量分析的仪器。通常可用于分析土壤中热稳定且沸点不过500°C的有机物,如挥发性有机物、有机氯、有机磷、多环芳烃、酞酸酯等。一、气路气路的检查在故障的排中往往是有果,主要是检查:(1)气源是否足(一般要求气瓶压力须≥3MPa,以瓶底残留物对气路的污染);(2)阀件是否有堵塞、气路是否有泄漏(采用分段憋压试漏或用皂液试漏);(3)净化器是否失效(看净化剂的颜色及色谱基流稳定情况);(4)阀件是否失效或堵塞(看压力表及阀出口流量);(5)气化室内衬管是否有样品残留物及隔垫和密封圈的颗粒物(看色谱基流稳定情况);(6)喷口是否堵塞(看点火是否正常);(7)对化合物的分析,气化室的衬管和石英玻璃毛还须经过失活处理。二、色谱柱系统色谱柱是分析的心脏部分,往往色谱图上的许多问题都与色谱柱系统密切相关,为此按以下步骤检查柱系统:1.色谱柱的连接检查柱后是否有载气;柱子连接是否有问题;毛细管柱的柱头是否堵塞;切割是否平整;是否有聚酰亚胺涂层伸过柱端;毛细管柱两头插入气化室和检测器的位置是否正确;柱子是否过温运行或未老化好;密封圈选择是否合理。毛细管柱在选用密封圈时须考虑;石墨垫易变形,有好的再密封性,其上限温度是450℃;Vespe TM很坚硬,再密封性受影响,其上限温度为350℃,VG1和VG2是由石墨和 VeseyTM组成,再密封性好,可重复使用,上限温度为400℃。不锈钢填充柱在高于200℃时,可选用石墨、不锈钢或紫铜作密封圈:在低于200℃时,可选用硅橡胶或聚四氟乙烯作密封圈。玻璃填充柱可根据使用温度分别选用石墨、硅橡胶或聚四氟乙烯做密封圈。2.色谱柱的柱容量柱容量在柱分析中是很重要的影响因素。柱容量的定义:在色谱峰不发生畸变的条件下,允许注入色谱柱的单个组分的大量(以ng计)。当注入色谱柱的单个组分的量出柱容量,则出现前伸峰。柱容量与单位柱长内所存在的固定相数量有关典型的例子是采用0.25mm内径、液膜厚度为0.25m的毛细管柱,分析组分浓度为1~2,进样1L时,其分流比就须控制在1/100,这时被分析组分的量为125~175n,若分析组分浓度高于1~2,就须减少进样量或增加分流比,否则就会出现前沿峰,其他类推。3.载气的线速载气在气相色谱分析中的影响表现在载气速度影响溶质分子沿柱的移动速度,而且溶质扩散会通过载气影响色谱峰的扩,通常表现在对理论塔板高的影响上。在维持柱效低不大于20的情况下,氢气、氦气、氮气的线速分别可采用35~120cm/s、20~60cm/s、10~30cm/s,从而可以看出采用不同的载气,可适用的线速范围有很大的不同。相同载气在不同管径的气相色谱毛细管柱上的佳线速和流量也略有不同,如He可参考表15-1进行调节以获取佳分离果。内径/mm 0.10 0.25 0.32 0.53线速/(cm/s) 40~50 25-35 20-35 18-27流量/(mL/min) 0.2~0.3 0.7~1 1-1.7 2.4~3.5表1毛细管柱佳线速和流量(He)4.色谱柱的流失柱流失一直是色谱工作者关心的课题,当系统泄漏进入氧气或有样品污染,都会导致色谱柱内固定相分解,后表现在基线上,其现象与处理分别如下:①基线急上升,形成峰后呈下降趋势,这可能是因为系统曾泄漏进入氧气,这时色谱柱需老化至基线正常。②基线急上升,伴有假峰持续出现,基线到达高处后成持续下降趋势,这可能是有非挥发性样品污染色谱柱,导致过量柱流失,解决的方法是先截取色谱柱柱头0.5m,而后在高温下老化色谱柱至基线正常。③基线急上升,一直维持在某一水平,这可能是一个未知因素未被排,须想法排。5.溶剂样晶的分析许多样品分析时会出现异常现象,常见的是溶剂样品的分析,其特例为水样的分析。从气相色谱的角度来看,众所周知水不是一种理想的溶剂,主要由于以下几方面原因:①它有很大的蒸发膨胀体积;②在许多固定相中水的润湿性和溶解性较差;③水会影响某些检测器的正常检测和会对色谱柱的固定相造成化学损。在常用的色谱溶剂中,水具有大的气化膨胀体积。通常色谱仪的进样器的衬管体积200~900μL,当进1μL水样时,其气化后的蒸汽体积(大约1010μL)会膨胀溢出衬管,称为倒灌。其将导致气化的样品返入载气和吹扫气路,由于载气和吹扫气路的温度较气化室低许多,样品会凝结在这儿,在后来的分析中被气体吹入分析系统形成鬼峰。解决方法可采用加衬管体积、减小进样体积、降进样器温度、提进样器压力或增加载气流速以减少倒灌现象。水进入色谱柱,水的形态对色谱柱的固定相具有破坏性。因为水的表面能很高,而大部分毛细管柱固定相的表面能都较低,这导致水对固定相的湿润性很差,不能在色谱柱壁上形成光滑的溶剂膜均匀地流过色谱柱,而形成液滴,导致色谱柱性能变差。由于水的这种很差的润湿性和相对其他溶剂较高的沸点,通常在较低柱温的情况下,一部分水以液体状态流过色谱柱,使在水中具有良好溶解性的溶质也会表现出谱带展宽,在特的情况,表现色谱峰分裂。在柱上进样时,不挥发的化合物,如水溶性的盐类,也会被液态水带入色谱柱,污染色谱柱和分析系统。水也会引起检测器出问题:例如水会使FID和FPD灭火;当进较大水样时,为了避检测器灭火,可以加氢气流量以损失敏度为代价助于稳定火焰;水也会降ECD的敏度,为避水的影响,可采用厚液膜柱,使被分析组分保留够长时间,以保出峰时,ECD的性能可以在水流过检测器后得以恢复。严重的问题是水会引起许多固定相的降解,直接破坏色谱柱的性能。在色谱分析时,反映色谱峰分离性能下降、基流不稳、噪声。所以进水样分析及含水量较大的样品时小心。这在溶剂分析的情况也会出现。典型的是微量有机萃取物的分析,无论用二氯甲烷还是二硫化碳做溶剂,进样1μL时,体积膨胀大约为300L,当进样插管体积小于300μL时,就很容易形成倒灌。所以无论什么样品,其进样量的大小都须与进样器内插管的体积相适应,这方面多种型号的仪器都配有多种不同形式的进样插管以供选用;同时大量溶剂也会对固定相形成洗涤作用,直接破坏色谱柱的性能,在色谱分析时,反映出保留时间提前、色谱峰分离性能下降、基流不稳、噪声。所以在分析稀溶液样品时须注意溶剂和进样量的选择。三、各系统的加热控制各系统加热控制的检查多的是属于仪器上的问题,检查各系统的加热控制是否正常,一般可先用手感,后用测温计测量温度,看是否与显示。有问题先看加热元件和测温元件是否正常,然后检查温控板。常见的是加热元件和测温元件出问题,可以换相应元件。检查温控板是否有问题,可以采用换温控板后重新测试的办法,温控板有问题一般采用换板。
  • 气相色谱仪进样口压力超压检测方法与解决方案
    导 语进样口是气相分析中必不可少的模块之一,而分流/不分流进样口(简称SPL进样口)是目前气相色谱分析系统中广泛使用的进样口。跟填充柱进样口相比,SPL进样口的气路控制相对更复杂,所以在使用过程中遇到的问题也自然多一些。在日常使用过程中,遇到最多的可能就是进样口漏气报警,不管是真漏还是假漏,根本原因都是实际流量没有达到设定值(详解请点击参考往期文章《CAR1 LEAKS、PURGE LEAKS是真的吗?》)。现在我们来谈论一下气相使用过程中进样口很少出现的另外一种情况~压力超过设定值。SPL进样口的结构和各气路的功能图一01C路(英文全称:CARRIER中文,载气流路):作用是为气相系统提供载气,载气经过分子筛过滤后进入进样口。02P路(英文全称:PURGE中文,吹扫气流路):吹扫流量设定值范围为1-6ml/min,我们通常设定为3ml/min,作用是避免进样隔垫挥发物的干扰,将进样针刺穿进样隔垫时产生的碎屑横向吹出,防止掉落到玻璃衬管中造成色谱柱的堵塞。03S路(英文全称:SPLIT中文,分流流路):调整进样口压力,进而满足仪器参数中设定的色谱柱流量或者线速度等实验条件,同时排掉多余的溶剂和样品。故障判断从图一中我们可以看出SPL进样口的气路走向为载气通过C路流入进样口后再通过P路(隔垫吹扫),S路(分流)和L路(色谱柱)流出,也就是我们简称的一进三出。所以进样口的压力稳定需要四个气路都工作正常,但是当发生压力超出设定值的故障时是否和其他三路有关呢?01载气流路气流过大:C路有流量传感器可以实时显示流量数值,由于传感器故障导致气流控制异常的情况很少发生。02吹扫流路和色谱柱堵塞:吹扫流量通常设定为3ml/min;内径0.25mm或者0.32mm的色谱柱流量一般设定为1-2ml/min, 内径0.53mm的色谱柱流量可以设置到10-20ml/min。因为吹扫流路和色谱柱流路的流量设定值都比较小,所以这两个流路即便完全堵塞也不会导致分流电磁阀对进样口压力无法调节的情况发生。03分流流路堵塞:在分流模式下,大多数的样品是经过分流流路排出的,所以为了保护分流电磁阀不会被样品堵塞,在分流气路中电磁阀前串联了过滤器对样品进行吸附(通常情况下过滤器6个月需要更换,做高沸点及室温下结晶样品时建议3个月更换),因为分流流路是在仪器的顶部,温度和室温相近,液化或者凝固的样品就会保留在分流气路中。所以分流流路是最容易堵塞的,当管路堵塞到一定程度,电磁阀的开合大小就起不到调节进样口压力的作用了,会出现如下的故障现象,如图二。故障排除既然判断出故障根源在分流流路,那么分流流路中的所有气体通道都可能是故障点,进样口适配器、管路、缓冲管、过滤器以及AFC整体。01更换缓冲管和过滤器,更换步骤可以参考岛津气相软件(Labsolution)中的维护向导。02检查清洗进样口适配器,确保分流通道畅通,如图三。03确认图四所示部位的管路是否有堵塞现象,如果出现堵塞可以在通气状态下高温加热堵塞部位,使附着的高沸点杂质高温气化后被载气带出(推荐使用高温喷枪或酒精喷灯,不推荐使用打火机加热,一是加热温度不够,二是长时间按着打火机,很容易烫伤)。如果没有酒精喷灯,也可以使用坚硬的金属丝进行物理疏通。疏通前先拆下衬管避免被损坏;将进样口端色谱柱取下,拆卸掉进样口适配器,让脱落的杂质掉入柱温箱内。疏通结束后可用丙酮擦拭进样口内壁,消除污染物的附着。图三 图四04如果上述排查结束后,进样口压力仍然不能回落到设定值,则大概率是AFC故障,就需要岛津工程师上门服务。
  • 【技术指导】石油及合成液抗乳化测定仪的常见故障及排除方法和注意事项
    石油及合成液抗乳化测定仪常见故障及排除方法、注意事项A1065技术指导产品介绍产品名称:石油及合成液抗乳化测定仪产品型号:A1065概 述: 石油及合成液抗乳化测定仪是测定石油合成液与水分离能力的仪器。液晶触摸屏中文显示界面,菜单提示式输入。自动定时,精度高,准确度好。显示年月日及当前时钟等多种参数提示。恒温浴采用小缸体,人性化设计。操作简便,测量准确,外型设计美观。自动搅拌,自动定时,试管搅拌电机大臂自动升降。配有时钟等多种参数提示。可广泛应用于电力、石油、化工、商检及科研等部门适用标准:GB/T7305、GB/T7605常见故障及排除方法1、打开电源开关,电源指示灯不亮,应检查保险是否断。2、屏幕无显示,应检查连接插座是否松动。3、加热器不加热,应检查加热器是否烧断。4、升降臂不升,应检查限位开关不灵敏或损坏。注意事项1、保持仪器清洁,防止酸碱油污等沾染,特别要防止电控部分进水受潮。2、经常检查仪器接地是否良好, 以确保操作人员安全。3、浴内介质的蒸发损失应及时补充,以确保加热器必要的浸入深度。4、将搅拌浆固定在搅拌电机锁紧套内,升降臂自动落下,关闭电源开关手动旋转搅拌浆不应与试样试管相碰以免打坏试样试管,检查无误后再打开电源开关,按使用方法操作。5、仪器每次工作前应查看设置温度是否正确,防止开机干扰设置参数被改写,出现温度控制偏差。6、仪器出现故障时,请有经验的维修人员检修,切勿乱拆乱卸。7、切忌干烧加热器。请您将使用本仪器过程中发现的问题和对产品结构性能等方面的新要求及时告知本厂,以便尽早改进,更好地为您服务。
  • 《我与伍丰液相色谱不得不说的故事》----伍丰成立20周年“用户与伍丰液相的故事”征文一等奖
    我与伍丰液相色谱不得不说的故事华中科技大学 潘庆玲鉴于最近经常写微信推文此篇我与伍丰液相色谱不得不说的故事也不免写成了推文风格 您家伍丰HPLC发表了哪些文章?哇!扎心了!小硕士表示还在疯狂做实验中希望明年可以有文章吧 然后此篇投稿真的是我与伍丰HPLC的历史大大大故事不止一次问题排除不止一次工程师上门服务不止一次电话咨询 有图有真相(注:下文中陈经理是伍丰华中办事处的销售经理)“故障”排除,其实并不是故障啦只是我这个新手无数弱智的问题(现在回看这些问题真的觉得当时的自己……)嗯,我们课题组购买的是GPC说白了就是HPLC换了一个软件啦但是对于我这个刚刚做实验的小白在这里真的要感谢陈工耐心的解答 在陈经理的帮助下实验总算开始进行了然后就出现了各种“奇葩”的图谱嗯,这是一个标准物质的GPC图谱我正在做标准曲线一切看起来那么地顺利但素但素上样品出现了倒峰是什么鬼?小白表示很震惊Maybe这是流速或者进样不当产生的问题?嗯没事,加大流速多次重复实验看看这是一个低流速然后这是一个高流速 小白表示脆弱的心灵经受不住这样的打击啊换成高流速依然有倒峰的出现此处再次以及非常诚挚地感谢伍丰陈工不仅帮忙联系shodex总部而且还带来了shodex日本总部高级工程师上门亲自解答!听不懂日文的我表示很难受然后再感谢当时陪同的经理兼翻译原谅我此处没有拍摄照片如果公司有的话请贴上三位的照片日本工程师陪同经理陈经理 最后,姜还是老的辣日本的工程师完美地解释了出现倒峰的原因此处是由于我们样品的原因并不是色谱柱或者色谱系统的问题这一次的问题解决使得实验数据更加地可靠合理也为我们后面的实验提供了方向我们分析了不同的样品对同一个样品还进行了检测限的测试 最后说一些感想 一个好的产品不仅仅要产品质量好更需要售后服务好我们实验室购买过那么一两个所谓领域内顶尖品牌仪器可是最后往往联系不上客服或者直接被放鸽子到最后仪器缺少配件或是其他原因用不了 这样的对比再一次表明了一个公司的服务态度是和公司的产品质量一样重要的就像海底捞为什么那么受欢迎不仅仅是因为好吃对不对同理可对咱们科研仪器 希望伍丰能够为广大的科研用户研制更多更加好仪器也希望伍丰能够延续完美的售后服务祝愿伍丰液相越来越好祝愿自己明年能够发文章感谢导师为课题组购买了两套设备感谢导师为课题组购买了无数色谱柱感谢导师对我实验的指导感谢课题组小伙伴对我实验的帮助说的好像我的实验已经做完要发表文章了一样还是滚去做实验了啊
  • 国网江苏电科院:升级变压器高精度油色谱远程监护系统 保障江苏电网迎峰度冬
    1月9日,由国网江苏电科院自主研发并优化完善的“升级版”变压器高精度油色谱远程监护系统在特高压泰州换流站经过1个月试运行,状态保持稳定,正式投入使用,标志着江苏省变压器油色谱在线监测及缺陷预警能力建设取得新突破。油色谱分析是非停电状态下评估变压器(换流变)健康状况的关键手段,可预警其内部放电、过热等缺陷隐患,对保障设备安全稳定运行至关重要。目前,油色谱分析主要有实验室检测和在线监测两种手段。实验室检测精度高,但人工取样时效性差、人为因素干扰大且存在安全风险;在线监测相对及时,但检测误差大,可靠性和稳定性不足,误报警和漏报警现象频繁发生。为此,国网江苏电科院在省公司设备部指导下,创新提出油色谱远程监护技术路线,历时近一年成功研发出高精度油色谱远程监护系统,具体由油色谱监测装置和监护系统两部分组成。“第一代”油色谱远程监护系统已于2022年3月在特高压泰州换流站8221A相换流变部署应用,现场油色谱监测装置可将油色谱数据实时上传至后台监护系统,供特高压运维人员远程查看,监测设备运行状态。稳定运行9个月来,共排除在线监测装置误告警20余次。期间获取的近千条检测数据可证实,监护系统兼具实验室检测高精度和现场监测及时性,检测误差小于5%,重复性误差小于2%,最小检测周期为30分钟,装置稳定性以及时效性远优于传统在线监测装置(常规A级油色谱在线监测装置检测误差约为20%-30%,检测周期为1~2小时)。基于油色谱远程监护系统在检测精度和稳定性方面得良好表现,其在提升变压器异常缺陷及时预警能力方面有望发挥更重要作用。国网江苏电科院专业人员以进一步提升监测装置可靠性和降低现场安装运维难度为目标,结合“第一代”监护系统存在的问题和不足,历时近半年在完善整体结构布局、提高系统安全性能、集成和优化气源模块、装置小型化轻量化等方面对其进行了优化提升。“‘升级版’油色谱监测装置的体积减小为原来的二分之一,重量减轻了约三分之一,在相同运行条件下同等载气量的使用时间由大约40天延长至5个月左右,而且不再需要运维人员定期清理废油桶。因此‘升级版’监护系统可以在很大程度上减轻站内运维人员的工作压力,并更好地满足对变电站(换流站)现场设备状态监测可靠性的要求。”该院高级专家朱洪斌介绍,目前通过该系统实时监测特高压泰州换流站变压器油色谱情况,将根据一段时间运行情况,配合江苏公司进一步推进“升级版”高精度油色谱远程监护系统在超特高压变压器上的推广应用,作为油色谱在线监测装置的有力补充,确保准确实时掌握设备的异常发展,助力提升设备缺陷及时预警能力,保障江苏电网迎峰度冬。
  • 第11期线上讲座:气相色谱定量方法
    答疑解惑时间:2009年4月3日---4月18日 热烈欢迎yuen72先生再次光临仪器论坛进行讲座!   自2008年以来我们已经举办了10期线上讲座,线上讲座用户参与度越来越高。线上讲座的第一期是从气相色谱开始,而我们的第十一期的线上讲座又回到气相色谱版面。本期讲座我们邀请了GC版面的专家yuen72先生就气相色谱定量方法进行了一期专题讲座。本期讲座共分两章,第一章是针对检测器的响应来进行详细阐述,第二章就对色谱定量方法来进行详细的解剖。   再次感谢气相色谱版面的专家yuen72先生提供的丰富的讲座,也感谢yuen72先生与大家一起交流心得和经验。yuen72先生,高级工程师,有15年以上石化行业色谱分析经历,拥有安捷伦、岛津等公司多种色谱仪的操作经验,国家一级化工分析竞赛命题专家,从事气相色谱讲授多年,在多本化工分析工教材中主笔色谱部分。   欢迎大家就气相色谱定量方法方面的问题前来提问,也欢迎高手前来与yuen72先生交流切磋~   参与本期活动的地址:http://www.instrument.com.cn/bbs/shtml/20090403/1819316/   相关地址:   论坛线上活动导览:http://www.instrument.com.cn/bbs/shtml/20081203/1618059/
  • 仪器专项结硕果 “薄层色谱-拉曼联用仪”前景可瞻——访海军军医大学陆峰教授
    p    span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" 2012年,“便携式薄层色谱━拉曼光谱联用仪及其药品快检支撑系统”列入国家重大科学仪器设备开发专项,该项目由中国人民解放军第二军医大学牵头承担,陆峰教授为项目牵头单位负责人,上海科哲生化科技有限公司、上海仪电分析仪器有限公司、上海交通大学、上海市食药所、山东省食药院等10余家单位参与其中。历经4年半,日前,该项目通过了组织单位的技术验收,并获得科技部仪器领域专家的好评。 /span /p p style=" TEXT-ALIGN: left" span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai"   据悉,该项目研制的薄层色谱-拉曼光谱联用仪,是世界范围内首次将薄层色谱与拉曼光谱技术相结合的创新型仪器。该专项的立项背景是什么?都取得了哪些突破性的成果?又遇到了哪些困难?仪器未来应用前景如何?日前,仪器信息网特别邀请该项目的牵头单位负责人,海军军医学大学(第二军医大学)陆峰教授解读这一研究成果。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" img title=" IMG_3047.JPG" src=" http://img1.17img.cn/17img/images/201711/insimg/c1e1c0d7-e015-4a79-a0d3-52cd24549aa5.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" strong 海军军医大学 陆峰教授 /strong /span /p p style=" TEXT-ALIGN: center" span style=" COLOR: #ff0000" strong 从需求出发 世界首台“便携薄层色谱━拉曼光谱联用仪”成果显著 /strong /span /p p strong   仪器信息网:作为“便携式薄层色谱━拉曼光谱联用仪及其药品快检支撑系统”国家重大科学仪器设备开发专项牵头单位负责人,请谈一下该项目的立项背景? /strong /p p    strong 陆峰: /strong 2012年之前,国内连续曝光多次假劣药事件,尤其像2006年的“亮菌甲素注射液事件”中,江苏泰兴化工厂将工业原料二甘醇冒充药用辅料丙二醇出售给齐二药,导致终产品引起急性肾功能衰竭 再比如2009年的“糖脂宁胶囊事件”中,降糖中成药里面非法添加了大量的“格列本脲”化学成分,导致血糖骤降,多器官损伤甚至衰竭,引起了很大的轰动。当时我就一直在想,为什么在如此严格的监管下,在中检院部署的400台药品快检车的保驾护航之下,仍有人冒天下之大不韪,不断制造着严重威胁人民生命财产安全、破坏社会稳定和谐的事件而屡禁不止呢?!经仔细分析,发现其中一个很重要的原因,还是我们的快检技术的支撑作用不够到位。 /p p   2012年,正值国家重大科学仪器设备开发专项进入第二个年头,科技部鼓励各牵头组织部门组织申报,我们第二军医大学(现已更名为海军军医大学)原来所隶属的总后卫生部(现已更名为后勤保障部卫生局)也位列其中。我们结合课题组多年来在拉曼光谱法、化学计量学、药品快检等专业研究方向上的基础积累和技术优势,将快检场景下能较好地简化复杂样品(中药)的薄层色谱技术、以及能更好实现信息与资源共享的互联网技术,与我们原有研发优势的拉曼光谱法、化学计量学软件整合起来,共同构成了“薄层色谱-拉曼光谱联用仪及其药品快检支撑系统”的核心研究内容,并与产业化单位、应用开发单位联合进行了项目申报,以期能在同一种科学仪器上,同时实现化学药假药与中药掺杂违禁化学药品的快速检测与远程智能判别。通过多家应用开发单位共同参与建设的化学药品拉曼光谱、违禁化学药品表面增强拉曼光谱的开放数据库,搭建形成硬件-软件一体化的药品快检共享平台,目标是为药品安全的保驾护航提供一套不同于中检院部署的药品快检车,或与之互补的新的解决方案。 /p p    strong 仪器信息网:据悉,“便携式薄层色谱━拉曼光谱联用仪及其药品快检支撑系统”项目现已结题,请介绍一下都取得了哪些突破性的成果?各项目承担单位的任务完成情况如何? /strong /p p    strong 陆峰: /strong 本项目从2012年10月始,历经4年半,10余家参与单位排除万难,共同努力,协同推进,取得了一系列突破性的成果,可谓来之不易:项目在仪器研制集成、快检模式制定、应用模型开发上都有不少收获,如研制了国内外首台薄层色谱-拉曼光谱联用仪,组建了20余台仪器构成的小型快检网络,开发了一键式的快检支撑系统,实现了过期药品筛查、衍生物掺杂检测等创新应用 此外还制定了多项企业标准,参与制定了一项国家标准,申请了60余项专利,并已有10来项获得授权,并取得了论文发表、人才培养等其他成果。 /p p   项目的各任务承担单位已100%地完成了任务考核指标,达到(部分超过)了预期,因此于日前顺利通过了牵头组织部门组织的技术验收。目前,我们正在依据技术验收会上专家提出的意见进行各项完善工作,以期顺利通过最后国家科技部组织的综合验收。 /p p   在项目中,我们海军军医大学药学院主要负责药品快检算法软件的研发以及整个应用开发方案的研制,并指导整个项目组推进各项技术(硬件、软件、产业化、应用开发等)研发与财务管理工作,确保按时、保质、科学、合规。 /p p    strong 仪器信息网:重大专项研究成果“薄层色谱-拉曼光谱联用仪”的创新点体现在哪些方面?可以解决哪些应用难题?您如何评价该仪器的应用前景? /strong /p p    strong 陆峰: /strong 本项目的创新主要体现在两个方面,首先,薄层色谱-拉曼光谱联用仪是国内外的第一台,这种硬件上的原始创新,对推动仪器行业创新发展的示范作用是毋庸置疑的 其次,是整个药品快检支撑系统的建设和应用,这与联用仪硬件系统互为支撑、互相推动。通过联用仪与支撑系统能实现假劣药品的高通量筛查,“一键式”的药品快检平台可在几秒内反馈准确的分析结果,这种智能、快速的反馈系统,也是目前国内外所罕见的。 /p p   专项成果主要解决中药保健品的非法添加化药检测、中药材非法染色识别、化药真伪快速鉴别等技术难题。这些应用目前主要是药检部门的需求可能更大一些,当然我们也在力推项目成果与药品生产、流通、零售企业等的合作。毕竟,从源头控制药品质量、确保用药安全才是我们的最终目标,相信这种趋势在未来的几年会越来越明朗。 /p p style=" TEXT-ALIGN: center" span style=" COLOR: #ff0000" strong “后项目”时代:仍需多方共同努力 /strong /span /p p    strong 仪器信息网:您如何评价“薄层色谱-拉曼光谱联用仪”的应用前景? /strong /p p    strong 陆峰: /strong 随着近几年国内拉曼光谱类仪器的飞速发展,拉曼光谱在各个应用领域都取得了可观的突破,前景还是很光明的。我们所研发的联用仪(既可以色谱仪-光谱仪联合使用,也可以拆分为薄层色谱仪、拉曼光谱仪单独使用)也应顺势而为,努力在药品的原辅料检测、化学药的成份检测、真伪鉴别、中药保健品与化妆品的非法添加化学成分检测方面等做出更大的贡献。 /p p   当然,鉴于目前各级药检实验室已经有较成熟的方法及仪器用于上述样品的检测,我们的产品定位主要还是在现场快检。同时,我们也需要注意与目前市场上其他原理、其他类型的快检方法与仪器的错位竞争,互补地解决各类药品(食品、保健品、化妆品等)样品的快检问题,造福于民。 /p p    strong 仪器信息网:该项目后续仪器产业化及销售情况如何?用户反馈情况怎么样? /strong /p p    strong 陆峰: /strong 本项目的仪器产业化任务是由上海仪电分析仪器有限公司与上海科哲生化科技有限公司共同承担的,两家企业密切合作、顺利对接,连续攻克了很多关键技术问题,比如自动定位斑点、增强衍生化、轨迹追踪、接口设计等,使得联用仪的工程产业化得以顺利推进。截至目前,联用仪+单用仪+相关零部件的销售额已达300余万。 /p p   目前,仪器的用户主要有山东省各地市药检机构、上海市各区药检机构,以及药检系统外的应用单位(山东省中药研究院、中科院合肥智能所等)。从反馈情况来看,用户对仪器设计及使用体验方面总体上是满意的,但仍希望在仪器稳定性、操作简便性、报告通俗性等方面不断完善,有些用户还提出了一些非常个性化的需求。这些需求,相信还将随着使用的深入而不断提出,这也鞭策我们对联用仪及支撑系统进行不间断的升级完善。总之,这项工作仍在持续中,不会随着项目结题验收而结束。 /p p    strong 仪器信息网:后续,贵课题组还将开展哪些方面的研究工作? /strong /p p    strong 陆峰: /strong 正如前面提到的,用户希望我们在仪器稳定性、操作简便性、报告通俗性以及某些个性化需求方面不断完善。每一项需求的背后,都有大量的研发工作需要开展,当然,这里有些工作与工程产业化单位的联系更密切一些。由于我们已经进入“后项目”时代,需要与工程产业化单位,乃至用户单位共同探索一种更适用于结题后的新的合作机制,这样才能把项目成果推进得更高更远。 /p p   另一方面,薄层色谱-拉曼光谱联用方法作为一种相对较新的分析方法,其自身还有很多很有意思的基础或应用基础研究工作值得开展,比如联用一体化的基底,也就是新的纳米复合材料的研究、色谱-光谱联用新接口新模式的研究、采用人工智能技术改造我们的快检支撑系统等等,都将陆续展开。当然这类研究都是开放式的,研究无止境,我们希望有更多的社会力量参与其中。 /p p   还有一点值得提及的后续工作是,已经有一些单位借助我们的“薄层色谱━拉曼光谱联用仪及其药品快检支撑系统”平台申请并获得多项国家及省部级的升级课题资助,这让我们感到非常高兴。当然,我们的项目平台也要为这些新的课题做好服务保障,互相促进,共同进步,将项目执行期间建立的这种优良传统,继续发扬光大。 /p p style=" TEXT-ALIGN: center" span style=" COLOR: #ff0000" strong 感触:科学仪器人“任重道远”! /strong /span /p p    strong 仪器信息网:作为重大仪器专项的负责人,请问在专项的实施过程中,您有什么样的心得体会?最具挑战的地方体现在哪里?又是如何克服的? /strong /p p    strong 陆峰: /strong 作为一名科研出身的高校老师,我首先或者说习惯性关注的,还是这个项目中的研究性问题或挑战,比如表面增强拉曼光谱信号的稳定性问题困扰我们很久。对于这种时有时无、或高或低的信号,分析工作者历来是非常头疼的,直到我们寻找到一种动态表面增强拉曼光谱的原理去解释它,然后去利用并控制它,这是一种挑战。 /p p   第二种挑战来自工程技术层面,这往往是研究人员容易忽视的,其实也是因为我原本不擅此道所导致的。比如薄层色谱-拉曼光谱联用过程中,对焦的实现及光谱采集参数的优化,这些对实验室根本就不是问题,但到了工程技术层面就是大问题。在这个过程中,我们的工程技术人员费了很大的心力,反复修改设计方案,反复论证与验证,才找到较好的解决方案。这种挑战,于我也是一种难得的经历,从此也深知科学与技术,是两条不同的路径。 /p p   其实,这个项目最大的挑战来自管理方面。这么大的一个项目,这么大的一个团队,这么大的经费盘子,这么多的细节和枝枝末末,各个单位、各项工作之间“犬牙交错”、“盘根错节”,甫一上手,我的内心其实是崩溃的。但崩溃完,工作还得继续。所以,收拾好心情,负重前行吧!好在,我们有一个强大的、堪于“大”挑战匹敌的“大”团队!这里要感谢国家科技部、后勤保障部、上海市科委的科学合理、张弛有度的管理,感谢“两组一委”的及时给力、切中肯綮的指导,有了他们的管理和指导,我们的研发团队才能在正确的方向上,在正确的时间做正确的努力,团结奋进,攻克一个又一个的科学与技术难关,才能按时、保质地完成项目各项考核指标与总体目标。在此,借仪器信息网平台向他们表达我最诚挚、深沉、由衷的敬意和感谢! /p p   最后一个挑战是来自这个项目本身的领域定位。我们的项目,定位在药品快检领域,而众所周知,药品是一种非常特殊的商品,药品的质量安全关系到国计民生,一直以来国家食药监局对药品的监管历来是最严格的。因此,我们的项目成果想要顺利、全面地进入药品快检或者说药品质量安全监管领域,是必须通过国家食药监局的认证或许可的。但是,这项艰巨的任务目标,不是靠我们一个团队经过四五年的努力就能达成的。目前我们正在做这方面的努力,比如接入中检院主持研发的“国家药品快速检验数据库网络平台”等。我们呼吁,药品质量安全事关每个你我,需要各方努力才能长治久安。 /p p    span style=" COLOR: #000000" strong 仪器信息网:您如何评价国产科学仪器的开发、应用及产业化现状? /strong /span /p p   strong  陆峰: /strong 经过几代科学仪器人不懈的努力,国产科学仪器在开发、应用及产业化方面都已经取得了长足的发展,某些领域甚至已经走在了世界前列。一些国产科学仪器企业的上市及良好运营,就是这种进步与发展的缩影。尤其是科技部近几年和财政部共同设置的国家重大仪器设备开发专项,已陆续投入几十亿元,启动了多批项目推动大型仪器的国产化、产业化和示范化,这给国产仪器研发单位带来了很大的激荡效应,一方面算是还一下多年的历史欠账,另一方面更重要的,是通过政策导向、机制引导,激励更多的社会力量投身到国产科学仪器的开发、应用及产业化工作中去。相信这种效应,会随着这些项目成果的落地生根、开枝散叶、开花结果,会逐渐显现、放大。 /p p   当然,发展仍会伴随着“旧弊新症”,比如关键零部件核心技术的短板、历史原因造成的招标采购中排挤国产仪器的“积习陋习”、产学研用转化机制仍存在的“堵点”等等,仍是我们科学仪器人需要直面的。不过,我相信随着制度的完善、研发实力的加强,凭着我们的智慧与努力,这样的局面会逐渐得到改善。 /p p    span style=" COLOR: #000000" strong 仪器信息网:您对国产仪器开发和应用的从业人员有什么样的建议? /strong /span /p p    strong 陆峰: /strong 尽管作为仪器专项项目负责人完成了一个项目周期的工作,但实际上我仍是国产科学仪器界的一名新人,说到对国产仪器开发和应用的从业人员的建议,更多的只是谈谈我个人的一些体会。 /p p   首先是国家的进步、时代的发展给我们提供了很好的历史机遇与很大的挑战,能不能抓住机遇?敢不敢迎接挑战?这是摆在我们(尤其是年轻)的仪器从业人员面前的重要问题 其次,也许可以出奇制胜。我国的空间站、北斗卫星、移动支付等,都是通过这个策略实现了对欧美的弯道超车。那么,我们的科学仪器产业是否也可以沿袭这个策略并做得更好 最后,也是最重要的一点,是要静下心来修炼内功。我们的仪器在开发、应用及产业化方面,许多都已经能做得跟进口仪器很“像”了,但“像”还远远不够!国家科技部的吴学梯副司长早就给我们提出了“皮实耐用”的要求,看似简单的4个字,背后需要我们在各个方面修炼内功,内外兼修,才可能将国产科学仪器真正提升到这个高度。以上3点小小的体会,与诸君共勉。 /p p style=" TEXT-ALIGN: right" 采访编辑:叶建 /p p & nbsp /p
  • 液相色谱常见问题及处理方法
    液相色谱常见问题及处理方法 HPLC灵敏度不够的主要原因及解决办法 1、样品量不足,解决办法为增加样品量 2、样品未从柱子中流出。可根据样品的化学性质改变流动相或柱子 3、样品与检测器不匹配。根据样品化学性质调整波长或改换检测器 4、检测器衰减太多。调整衰减即可。 5、检测器时间常数太大。解决办法为降低时间参数 6、检测器池窗污染。解决办法为清洗池窗。 7、检测池中有气泡。解决办法为排气。 8、记录仪测压范围不当。调整电压范围即可。 9、流动相流量不合适。调整流速即可。 10、检测器与记录仪超出校正曲线。解决办法为检查记录仪与检测器,重作校正曲线。 为什么HPLC柱柱压过高 柱压过高是HPLC柱用户最常碰到的问题。其原因有多方面,而且常常并不是柱子本身的问题,您可按下面步骤检查问题的起因。 1、拆去保护预柱,看柱压是否还高,否则是保护柱的问题,若柱压仍高,再检查; 2、把色谱柱从仪器上取下,看压力是否下降,否则是管路堵塞,需清洗,若压力下降,再检查; 3、将柱子的进出口反过来接在仪器上,用10倍柱体积的流动相冲洗柱子,(此时不要连接检测器,以防固体颗粒进入流动池)。这时,如果柱压仍不下降,再检查; 4、更换柱子入口筛板,若柱压下降,说明您的溶剂或样品含有颗粒杂质,正是这些杂质将筛板堵塞引起压力上升。若柱压还高,请与厂商联系。 一般情况下,在进样器与保护柱之间接一个在线过滤器便可避免柱压过高的问题,SGE提供的Rheodyne 7315型过滤器就是解决这一问题的最佳选择。 液相色谱中峰出现拖尾或出现双峰的原因是什么? 1、筛板堵塞或柱失效,解决办法是反向冲洗柱子,替换筛板或更换柱子。 2、存在干扰峰,解决办法为使用较长的柱子,改换流动相或更换选择性好的柱子 如何解决HPLC进行分析时保留时间发生漂移或急速变化 漂移现象 1、温度控制不好,解决方法是采用恒温装置,保持柱温恒定 2、流动相发生变化,解决办法是防止流动相发生蒸发、反应等 3、柱子未平衡好,需对柱子进行更长时间的平衡 快速变化现象 1. 流速发生变化,解决办法是重新设定流速,使之保持稳定 2、泵中有气泡,可通过排气等操作将气泡赶出。 3、流动相不合适,解决办法为改换流动相或使流动相在控制室内进行适当混合 HPLC 仪器问题 1、 我的HPLC泵压明显的偏高,请问可能的原因? 答:流速设定过高;流动相或进样中有机械杂质,造成保护柱、柱前筛板或在线过滤器阻塞;流动相粘度过大;柱温过低;缓冲盐结晶;压力传感器故障。 2、 基线不稳,上下波动或漂移的原因是什么,如何解决? 答:a.流动相有溶解气体;用超声波脱气15-30分钟或用充氦气脱气   b.单向阀堵塞;取下单向阀,用超声波在纯水中超20分钟左右,去处堵塞物   c.泵密封损坏,造成压力波动;更换泵密封   d.系统存在漏液点;确定漏液位置并维修   f.柱后产生气泡;流通池出液口加负压调整器   g.检测器没有设定在最大吸收波长处;将波长调整至最大吸收波长处   h.柱平衡慢,特别是流动相发生变化时;用中等强度的溶剂进行冲洗,更改流动相时,在分析前用10-20倍体积的新流动相对柱子进行冲洗。 3、 接头处为何经常漏液,如何处理? 答:接头没有拧紧;拧松后再紧,手紧接头以手劲为限,不要使用工具,不锈钢接头先用手拧紧,再用专用扳手紧1/4-1/2圈,注意接头中的管路一定要通到底,否则会留下死体积。接头被污染或磨损;建议更换接头。接头不匹配,建议使用同一品牌的配件。 4、 进样阀漏液是如何造成的? 答:a.转子密封损坏;更换转子密封   b.定量环阻塞;清洗或更换定量环   c.进样口密封松动;调整松紧度   d.进样针头尺寸不合适,一般是过短;使用恰当的进样针(注意针头形状)   e.废液管中产生虹吸;清空废液管 谱图问题 1、 问:造成峰拖尾的原因是什么,如何消除? 答:a.筛板阻塞;反冲色谱柱、更换进口筛板   b.色谱柱塌陷;填充色谱柱   c.有干扰物质的存在;使用更长的色谱柱、改变流动相或更换色谱柱   e.流动相PH值不合适;调整PH值,对于碱性化合物,低PH值更有利于得到对称峰   f.样品与填料表面的溶化点发生反应;加入离子对试剂或碱性挥发性修饰剂或更改色谱柱 2、 问:造成峰分叉的原因是什么,如何消除? 答:保护柱或分析柱污染;取下保护柱再进行分析。如果必要更换保护柱。如果分析柱阻塞,拆下来清洗。如果问题仍然存在,可能是柱子被强保留物质污染,运用适当的再生措施。如果问题仍然存在,入口可能被阻塞,更换筛板或更换色谱柱。样品溶剂不溶于流动相;改变样品溶剂,如果可能采取流动相作为样品溶剂。 3、 问:K值增加时,拖尾更严重,这是为什么? 答:反相模式,二级保留效应;   a.加入三乙胺(或碱性样品)   b.加入乙酸(或酸性样品)   c.加入盐或缓冲剂(或离子化样品)   d.更换一支柱子 4、 问:保留时间的波动有几种可能的原因? 答:温控不当;调节好柱温。流动相组分变化;防止流动相蒸发、反应等,做梯度时尤其要注意流动相混合的均匀。色谱柱没有平衡;在每一次运行之前给予足够的时间平衡色谱柱。 液相色谱常用符号与术语表 ACN 乙腈 Acetonitrile AUFS 满量程的吸光度单位 Absorbance units, full scale As 峰不对称因子 B 二元流动相中的强溶剂;例如:反相HPLC的甲醇/水混合液中的甲醇 BSA 牛血清白蛋白(一种蛋白质) Bovine serum albumin CAF 咖啡因(中性溶质) Caffeine CRF 色谱响应因子 Chromatographic response function;色谱图总分离度的定量指标 dc 色谱柱内径(cm) DMOA 二甲基辛胺 Dimethyloctylamine DNB 2,4-二硝基甲酰(基) 2,4-Dinitrobenzoyl dp 色谱柱填料的粒度(cm) DRYLAB 液相资源公司(LC Resources INC.)的计算机模拟软件。DRYLAB I用于等度预测,DRYLAB G用于梯度预测 F 流动相的流速(ml/min) FC-113 1,1,2-三氟-1,2,2-三氯乙烷 GPC 凝胶渗透色谱法 Gel-permeation chromatography HA 酸性溶质,能电离出A- Hex 己烷 Hexane hr 二相邻谱带之间的谷高 HVA 高香草酸 Homovanillic acid h&rsquo 峰高 h1,h2 相邻谱峰1和谱峰2的峰高 IEC 离子交换色谱法 Ion-exchange chromatography IP 离子对 Ion-pair IPC 离子对色谱法 Ion-pair chromatography J 色谱峰强度参数 K&rsquo 所给谱峰的容量因子,k&rsquo =(tR-t0)/t0=tR&rsquo /t0,tR=t0(1+k&rsquo ) k 梯度洗脱过程中,某溶质的k&rsquo 的平均值或有效值 kw 以水做流动相k&rsquo 的外推值 k1,k2 相邻谱峰1和谱峰2的容量因子 L 色谱柱长度(cm) Lc 检测器流动池光路的长度(cm) M 溶质的分子量 MC 二氯甲烷 Methylene chloride MDST 混合设计统计技术 Mixture-design statistical technique;一种优化流动相的软件 MeOH 甲醇 Methanol MTBE 甲基叔丁醚 Methyl-t-butyl ether MW 溶质的分子量 N 色谱柱塔板数 NAPA N-乙酰普鲁卡因胺 N-Acetylprocainamide(碱性溶质) N0 检测器的基线噪音 ODS 十八烷基硅烷 Octadecylsilyl P 色谱柱的压力降[通常以巴(bar)表示,也用psi;另外,也用作柱极性参数 PA 普鲁卡因胺 Procainamide(碱性物质) PAH 聚芳香烃 Polyaromatic Hydrocarbon PESOS 优化流动相的计算机软件(美国Perkin-Elmer产品) pKa 溶质酸性常数的负对数;当pH=pKa时,溶质中有一半是电离的 Rk 保留值范围,Rk=(最末谱峰k&rsquo )/(最初谱峰k&rsquo ) RRM 相对分离度图(通常N=10000) Rs 相邻二谱峰的分离度 S 当流动相中的%B改变时,测量溶质保留值的变化速率的参数 SAL 水杨酸 Salicylic Acid SEC 尺寸排阻色谱法 Size-exclusion chromatography S/N 信噪比 Signal to noise ratio t 分离时间(min)(样品进样时t=0) tp 梯度系统的滞后时间(min) TBA 四丁基铵离子 Tetrabutylammonium ion TEA 三乙胺 Triethylamine THF 四氢呋喃 Tetrahydrofuran tk 在用于校正等度洗脱溶剂强度的流动相离开梯度混合器时,梯度洗脱的时间 TLC 薄层色谱法 Thin-layer chromatography TMA 四甲基铵 Tetramethylammonium(盐) TMS 三甲基硅烷 Trimethylsilyl t0 色谱柱的死时间(min) tR 溶质的保留时间(min) tG 梯度时间(min),即梯度开始至结束的时间 t1,t2 相邻谱峰1和谱峰2的保留时间(min) ti 色谱图中第一峰的保留时间(min) tf 色谱图中最末峰的保留时间(min) △tg tf-ti tx (tf-ti)/2 UV 紫外光 Vm 色谱柱的死体积(mL),Vm=t0F VMA 香草扁桃酸 Vanillymandelic acid wm 化合物的进样量 w1,w2 相邻谱峰1和谱峰2于半峰高处(W1/2)的宽度(min) W1,W2 相邻谱峰1和谱峰2的基线宽度(min) W1/2 半峰高处的谱带宽度 xd,xe,xn 溶剂选择参数,分别用于测定溶剂的酸度、碱度和偶极性的程度 ? 分离因子,?=k2/k1 △? 梯度洗脱期间流动相成分的变化 ?o 溶剂强度参数 ? 化合物的克分子吸收系数 ? 流动相的粘度(Pa?s) ? 流动相中强溶剂的体积份数%B 二元流动相中强溶剂的体积百分比(%v) 液相色谱法简介 气相色谱不能由色谱图直接给出未知物的定性结果,而必须由已知标准作对照定性。当无纯物质对照时,定性鉴定就很困难,这时需借助质谱、红外和化学法等配合。另外大多数金属盐类和热稳定性差的物质还不能分析。此缺点可高效液相色谱法来克服。在经典液相色谱的基础上,引入了气相色谱的理论与技术,在70年代初建立了高效液相色谱分析法(以HPLC表示)。在常压下操作的液相色谱,分离一个样品往往长达几小时至几十小时,因此工作效率很低。人们曾对这种经典液相色谱法试用了柱前加压或柱后减压的办法来提高流速,以缩短分离时间,但是结果失败了。根据液相色谱理论,因为随着载液(流动相)流速的提高,板高则增大,所以柱效会显着降低。随着生产技术的提高,人们制成了细小(10?m)而高效的填充物,从而使柱效大大提高。但是随着填充物粒度的减小,柱压降显着增大,为了得到合理的载液流速,使用了高压;输液泵,使流速达到1~10mL/min。从而使分析一个多组分样品只需几分钟到几十分钟时间。随着高效固定相、高压泵和高灵敏度检测器以及电子技术和计算机技术的应用,70年代以业逐步实现了液相色谱分析的高效、高速、高灵敏和自动化操作。因此人们常称它为高效液相色谱或现代液相色谱,以区别于经典液相色谱。高效液相色谱法的分类与经典液相色谱法一致。按固定相的聚集状态不同分为液固色谱法和液液色谱法。按分离原理不同分为吸附色谱、分配色谱、离子交换色谱和凝胶色谱法四类。 高效液相色谱所用基本概念: 保留值等色谱分析有关术语,以及分配系数、分配比、塔板高度、分离度、选择性等方面均与气相色谱相一致;高效液相色谱所用基本理论:塔板理论与速率理论也与气相色谱一致。因液相色谱以液体代替气相色谱中的气体作流动相,则速率议程H=A+B/?+C?。式中:纵向扩散项(分子扩散项)B/?对板高的影响与气相色谱不同,由于液相色谱中组分分子在流动相中的扩散系数Dm仅为气相色谱中的万分之一,因此纵向扩散项对板高的影响可以忽略不计。于是影响液相色谱的主要因素是传质项Cu。由图14&mdash 可知,气相色谱(GC)的流动相流速u增大时,板高H显着增大(即柱效显着降低),而液相色谱(LC)的流速增大时,板高增大不显着(即柱效降低不显着)。这说明高效液相色谱也有很高的分离效能,此外,气相色谱的载气权数种,其性质差别也不大,对分离效果影响也不大。而液相色谱的载液种类多,性质差别也大,对分离效果影响显着。因此流动相的选择很重要,并且在选择流动相对应注意以下几点:流动相对样品有适当的溶解度,但不与样品发生化学反应,也不与固定液互溶;流动相的纯度要高(至少分析纯)、粘度要小,以免带进杂质和组分在流动相中扩散系数下降;流动相应与所用检测器相匹配,不应对组分检测产生干扰作用。高效液相色谱不但具有高效、高速、高灵敏度的特点,还由于它的流动相(载液)种类比气相色谱的流动相(载气)多,因此可选用两种或多种不同比例的液体作流动相,从机时可提高选择性。此外,液相色谱的馏分比气相色谱易于收集。便于为红外、核磁等方法确定化合物结构提供纯样品。由于高效液相色谱法具有以上特点,它适于分离、分析沸点高、热稳定性差、分子量大(大于400)的气相色谱法不能或不易分析的许多有机物和一些无机物,而这些物质占化合物总数的75~80%。因此它已广泛用于核酸、蛋白质、氨基酸、维生素、糖类、脂类、甾类化合物、激素、生物碱、稠环芳烃、高聚物、金属螯合物、金属有机化合物以及多种无机盐类的分离和分析。但是,高效液相色谱的固定相的分离效率、检测器的检测范围以及灵敏度等方面,目前还不如气相色谱法。此外对于气体和易挥发物质的分析方面也远不如气相色谱法,因此高效液相色谱法和气相色谱法配合使用可互相取长补短,相辅相成。 1.分离原理 凝胶色谱,又称空间排阻色谱。它是利用某些凝胶对混合物各组分因分子量不同,其阻滞作用也不同而进行分离、分析的方法。凝胶色谱的分离要理和其它色谱法不同,它类似于分子筛的作用,但凝胶的孔径要比分子筛大得多,一般为几百至几千埃。色谱柱内填充具有一定大小孔穴的凝胶。当样品进入色谱柱后,不同大小的样品分子(图14&mdash 2中以黑点表示)随流动相沿凝胶颗粒(图14&mdash 2中以空心圈表示)外部间隙和凝胶孔穴旁流过,体积在的分子因不能渗透到凝胶孔穴里而得到排阻,因此较为顺利地通过凝胶柱而较早地被流动相冲洗出来。中等体积的分子产生部分渗透作用,小分子可渗透到凝胶孔穴里去而受阻滞,因有一个平衡过程而较晚地被流动相冲洗出来。这样,试样组分基本上按分子大小受到不同阻滞而先后流出色谱柱,从而实现分离目的。光凝胶色谱采用水溶液作流动相进,称为过滤凝胶色谱(HFC),而用有机溶剂为流动相时,称为凝胶渗透色谱(GPC)。 2.固定相 凝胶色谱的固定相凝胶,是含有大量液体(一般是水)的柔软而富于弹性的物质,是一种经过交联而具有立柱网状结构的多聚体。根据凝胶的交联程度和含水量的不同,分了软质、半硬质和硬质三种。软质凝胶(如葡聚糖凝胶、琼脂糖凝胶等)交联度低,膨胀度大,容量大,可压宿,不能用于高压(使用压力低于3.5kg/㎝2或更低),主要用于含水体系的常压凝胶色谱,半硬质凝胶(如苯乙烯一二乙烯基苯交联共聚凝胶),容量中等,渗透性较高,压力可用到70kg/㎝2。适用于非水溶剂流动相;硬质凝胶(如多孔硅胶、多也玻球等),膨胀度小,不可压缩,渗透性好,可耐高压,适于高流速下操作。 3.流动相 在凝胶色谱中,为提高分率效率,多采用低粘度、与样品折光指数相差大的流动相。常用的流动相有苯、甲苯、邻二氯苯、二氯甲烷、1,2一二氯乙烷、氯仿、水等。 高效液相色谱仪操作步骤: 1)、过滤流动相,根据需要选择不同的滤膜。 2)、对抽滤后的流动相进行超声脱气10-20分钟。 3)、打开HPLC工作站(包括计算机软件和色谱仪),连接好流动相管道,连接检测系统。 4)、进入HPLC控制界面主菜单,点击manual,进入手动菜单。 5)、有一段时间没用,或者换了新的流动相,需要先冲洗泵和进样阀。冲洗泵,直接在泵的出水口,用针头抽取。冲洗进样阀,需要在manual菜单下,先点击purge,再点击start,冲洗时速度不要超过10 ml/min。 6)、调节流量,初次使用新的流动相,可以先试一下压力,流速越大,压力越大,一般不要超过2000。点击injure,选用合适的流速,点击on,走基线,观察基线的情况。 7)、设计走样方法。点击file,选取select users and methods,可以选取现有的各种走样方法。若需建立一个新的方法,点击new method。选取需要的配件,包括进样阀,泵,检测器等,根据需要而不同。选完后,点击protocol。一个完整的走样方法需要包括:a.进样前的稳流,一般2-5分钟;b.基线归零;c.进样阀的loading-inject转换;d.走样时间,随不同的样品而不同。 8)、进样和进样后操作。选定走样方法,点击start。进样,所有的样品均需过滤。方法走完后,点击postrun,可记录数据和做标记等。全部样品走完后,再用上面的方法走一段基线,洗掉剩余物。 9)、关机时,先关计算机,再关液相色谱。 10)、填写登记本,由负责人签字。 注意事项: 1)、流动相均需色谱纯度,水用20M的去离子水。脱气后的流动相要小心振动尽量不引起气泡。 2)、柱子是非常脆弱的,第一次做的方法,先不要让液体过柱子。 3)、所有过柱子的液体均需严格的过滤。 4)、压力不能太大,最好不要超过2000 psi。
  • 高效液相色谱日常维护要点-脱气
    大家好,高效液相色谱和其它常规分析仪器一样,为了能让高效液相色谱更好的工作、在实验的时候得到可靠的数据,首先你要保养好它,使它处于一个健康的待机状态,这样你使用它进行检测分析时就可以比较顺利地获得理想结果。而且良好规范的操作习惯还可以延长仪器使用寿命。在日常使用维护中最重要的主要有三点:脱气、过滤和冲洗。这三点属于最常规操作要求,同时也是检测分析中必不可少的流程。小编会分三期为大家讲解,今天先带大家了解下脱气的具体原因和脱气的具体方法。脱气流动相里存在气泡是HPLC系统操作过程中常见的问题、气泡会造成泵输出的问题,也能造成检测器的输出结果中出现假的色谐峰。大多数的气泡问题可以在使用流动相之前以脱气的方法来消除。下面就是小编简单总结了脱气的主要目的:1、防止由溶解(在液体中的)气体量的变动引起的检测不稳程度 。2、提高保留时间和色谱峰面积的重现性。3、防止气泡引起尖峰。4、使基线稳定,提高信噪比。5、防止由气泡的产生引起的故障,示差折射率检测器:使折射率变化UV检测器(200nm以下):溶解氧气有吸收,荧光检测器:溶解氧气有消光作用。6、减少死体积。7、防止填料氧化。脱气要求只要空气在流动相里保持溶解,气泡问题就很少会出现。原则上讲人工配备的等度洗脱流动相般不需要脱气就可以在实验中使用,但是被气体饱和的溶液也只需要非常小的压力下降就能脱气。比如当流动相通过溶剂人口的在线过滤器,或者当流动相进人压力相对低的检测器溶液池时。因为这个原因和为了能使一般的HPLC操作具有可靠性,我们强烈建议用于反相色谱的所有溶剂都必须经过脱气。脱气对于正相HPLC来说不会产生很多问题,所以使用正相色谱时脱气是可选的。需要除去的溶解在流动相里的气体量根据HPLC泵的设计不同而不同,一些泵能够承受大量溶解在流动相里的气体而另外些泵则需要彻底脱气才能达到可靠的操作效果。常用的脱气方法1.抽真空脱气法:此法可使用真空泵,降压至0.05~0.07MPa即可除去溶解的气体,用真空脱气10-15分钟可以除去60%-70%溶解在流动相的气体。但是由于真空脱气会使混合溶剂组成发生变化,从而影响到实验的重现性,因此多用于单溶剂体系的简单分析。2.氦气喷洗脱气法:氦气喷洗是除去流动相里的气体最有效的技术,主要是利用氦气在液体中溶解度比空气低的特性,在0.1MPa压力下,以约60mL/min流速通入流动相储液容器中10~15min,可以很有效地从流动相中排除溶解的空气,能排除接近80%-90%溶解的气体。采用一个高效分布式喷射流装置,一体积的氦气可从流动相中将等体积的几乎全部气体排除。3.在线脱气法:在线脱气主要优点是操作简单,低故障,并非常有效。4.加热回流法:此法的脱气效果较好。但是还是有一些不足,那就是在操作时要特别注意冷凝塔的冷却效率,否则溶剂会丢失,混合流动相的比例会有变化。5.超声波脱气法:实验室最普遍的脱气方法,主要操作就是将欲脱气的流动相置于超声波清洗器中,用超声波震荡时间不宜过长,避免温度升高导致易挥发性成分的丢失,一般在5min之内。但是相对于其他脱气方法,优点是容易操作,时间短。不足之处则是此法的脱气效果相对较差。到此需要脱气的具体原因和脱气的具体方法,在这里就差不多介绍完了。下期小编将继续带领大家去具体了解高效液相色谱日常维护要点-过滤。
  • 上海伍丰开发出奶粉中三聚氰胺的液相色谱检测方法
    近期由于食用&ldquo 三鹿奶粉&rdquo 导致婴儿死亡的事件炒的沸沸扬扬,一时间成了大城小巷人们集中议论的话题,罪魁祸首就是奶粉中的三聚氰胺在作祟。这是一种对人体有害的化学物质,长期食用将会导致肾结石,严重的甚至危及生命,特别是对于丝毫没有抵抗力的婴儿来说,其危害更是致命的!但国内某些厂商利用其能够提高含氮量的特点,作为添加剂加入进奶粉流入市场,造成了极其严重的不良影响。 本公司现针对这一现象,研制出了三聚氰胺的液相色谱检测方法,能够准确的检测出 奶粉中的三聚氰胺含量,严格控制了产品本身的质量,保证了广大消费者的利益,具体设备方法相关厂家可来电咨询!
  • 汇通色谱发布制备型二维液相色谱系统新品
    制备型二维制备液相色谱系统原理:特点:1.集样品的净化与浓缩及分离测定于一体,能起到样品预处理的作用,分析柱受到的污染少,而且大大减少了溶剂用量,避免大量样品的手工前处理工作,可以直接进样分析,加快了分析速度;2.进样量大,灵敏度高,适合做大量样品的痕量分析;3.联用降低样品损失和遭受污染的风险,消除了水蒸气及光照的负面影响,提高方法的可靠性和重要性;4.能从复杂的多组分中排除干扰物质,有选择性的针对感兴趣组分分析;5.容易实现自动化。应用条件: 1.样品组分必须被两种或两种以上的色谱模式分离。这些分离维应该显示出不同的选择性;2.经一种模式分离的样品组分不应该在其后续的分离维中被混合。制备型2D-LC设备流程图:一维和第二维分离模式的分离—富集原理如图所示该装置的一维分离可以将复杂的天然产物分离成18个可重复获得的组分或有效部位,第二维分离使其进一步分离,得到单体化合物,全部的分离工作在计算机控制下,极大地提高了系统性分离制备的效率,为植物提取物全组分纯化,药物杂质多组分纯化提供了高效、可靠的平台。植物提取全组分纯化植物提取物化学成分组成极为复杂,建立一种高效、高通量、系统性地分离制备植物提取物的方法是植物提取物全组分纯化的先决条件。传统的色谱分离方法对于复杂的植物提取物体系存在色谱分辨率低、峰容量低、样品峰重叠等一系列问题,难以实现高通量、系统性的分离制备。而二维色谱的分离制备因为其良好的正交性、更高的峰容量、较高的分辨率和高通量等特点,具有广阔的应用前景。应用实例 : 1、葛根中葛根异黄酮的分离纯化2、多粘菌素的分离纯化创新点:这款产品在以下几个方面进行了创新: (1)在线样品捕集并导入二维分析,这需要在系统设计和软件控制方面做较多的优化; (2)是自动化软件控制,通过多维柱选择阀和软件协同作用,实现一次进样,自动化高纯馏分的收集; (3)是正交模式应用,对于二维液相色谱,唯有保持较高正交性,才能实现最大的分离效果。汇通色谱基于自身在填料选择、流动相优化,以及分析二维液相色谱上多年积累的经验,将多方面的技术整合成新一代的制备型二维液相色谱系统。 制备型二维液相色谱系统
  • 液相色谱仪的使用方法介绍
    液相色谱仪的品牌、种类很多,各家的使用方法也不尽一样,主要看你是那一款的液相色谱仪,当初购买设备时,厂家的工程师会培训使用方法。高效液相色谱仪与结构仪器的联用是一个重要的发展方向。液相色谱-质谱连用技术受到普遍重视,如分析氨基甲酸酯农药和多核芳烃等;液相色谱-红外光谱连用也发展很快如在环境污染分析测定水中的烃类,海水中的不挥发烃类,使环境污染分析得到新的发展。液相色谱仪的使用方法:内容:1 开机1.1 打开电脑。1.2 打开液相色谱各个模块的电源。1.3 双击桌面“仪器—联机",进入联机界面。1.4 排气:1.4.1 手动旋开泵处冲洗阀(逆时针旋转约1圈)。1.4.2 右键单击“泵"图标区域,选择“方法̷"选项,进入泵编辑画面,设流速:5ml/min(一般为3-5ml/min),点击“确定"。1.4.3 右键单击“泵" 图标,点击“控制̷"选项,选中“ON",点击“确定",则系统开始冲洗,直到管线内(由溶剂瓶到泵入口)无气泡为止,(一般为5分钟),切换通道继续冲洗,直到所有要用通道无气泡为止。1.4.4 右键单击“泵" 图标,点击“方法̷"选项,设流速:0ml/min,手动旋紧冲洗阀。1.4.5 右键单击“泵"图标,点击“方法̷"选项,按照方法要求选择合适比例的流动相,设流速:1.0ml/min。1.4.6 同理右键单击“柱温箱",“检测器"图标,点击“方法̷"选项,按照方法的要求设置温度,波长,点击“控制" 选项,“ON"打开柱温箱和检测器。2 编辑方法2.1 点击“方法"-“编辑完整方法"开始编辑完整方法。2.2 选中除“数据分析 "外的三项,进入下一选项卡。2.3 方法信息:在“方法注释"中加入方法的信息(如:This is for test!)。进入下一选项卡。2.4 泵参数设定:在“流速"处输入流量, 如1.0ml/min,停止时间:如10 min(该停止时间仅为做一个样品需要的时间),按照要求选择合适比例的流动相配比,如乙腈:水=75:25,A为水,B为乙腈,则设置B:75%即可。进入下一选项卡。2.5 自动进样器参数设定: 选择“洗针进样"----可以输入进样体积和洗瓶位置,进入下一选项卡。2.6 柱温箱参数设定: 在“温度"下面的空白方框内输入所需温度,如:40度。进入下一选项卡。2.7 UV检测器参数设定: 在“波长"下方的空白处输入所需的检测波长,如254nm。点击确定。2.8 在“ 运行时选项表 "中,选中“ 数据采集",点击“确定"。2.9 从“方法"菜单,选中“方法另存为̷",输入一方法名,如“测试",点击“确定。3 单次采集3.1 从“运行控制"菜单中,选择“样品信息"选项,选择合适的路径,在“数据文件"中选择 “前缀/计数器",输入样品瓶的位置,点击“确定"。3.2 基线平稳后约10分钟,从“运行控制"菜单中选择“运行方法"。4 多次数据采集4.1 按照步骤2 编辑完整方法。4.2 点击“序列"-“序列表",输入“样品瓶"“样品名称",“进样次数",选择合适的“做样方法"4.3 点击“序列"-“序列参数",选择序列数据的保存路径(序列会自动生成以“序列名称-时间" 为名称的文件夹保存数据),数据建议以选择 “前缀/计数器"保存。4.4 从“序列"菜单,选中“序列另存为̷",输入一序列名,如“测试",点击“确定。4.5 从“运行控制"菜单中选择“运行序列"。5 数据分析(脱机状态使用)5.1 双击“仪器 —脱机"图标 进入的脱机画面。5.2 从“视图"菜单中,点击“数据分析"进入数据分析画面。5.3 从“文件"菜单选择“调用信号",选中您的数据文件名。点击“ 确定",则数据被调出。(如预建立标准曲线,应先打开浓度较低的标样图谱。)5.4 做谱图优化:从“图形"菜单中选择“信号选项"。从“范围" 中选择“满量程" 或“自动量程" 及合适的时间范围或选择“自定义量程" 调整。反复进行,直到图的比例合适为止。点击“ 确定"。6 积分:6.1 从“积分"菜单中选择“积分事件"选项,选择合适的“斜率灵敏度",“峰宽",“最小峰面积",“最小峰高"。点击 ,自动加载积分参数。6.2 点击左边“&radic "图标,将积分参数存入方法并退出“积分事件"。6.3 如积分结果不理想,则修改相应的积分参数,直到满意为止。7 标准曲线7.1 点击“校正"-“校正设置",输入“含量单位"。7.2 点击“校正"-“新建校正表",点击确定。输入“化合物名称"和“含量",点击“确定",按照提示删除其他组分。7.3 至此完成单级校正,如要增加校正级别,应从“文件"菜单选择“调用信号",选中您的数据文件名(第二个标样),点击“校正"-“添加级别",点击确定,输入“含量",依次增加校正级别。8 打印报告8.1 从“报告"菜单中选择“设定报告"选项,点击“定量结果"框中“定量"右侧的黑三角,选中“外标法",其它选项不变,点击“ 确定"。8.2 从“报告"菜单中选择“打印报告",则报告结果将打印到屏幕上,如想输出到打印机上,则点击“报告" 底部的“打印"钮。8.3 点击“文件"-“另存为"-“方法",把数据分析方法保存,下次分析可直接在“文件"-“调用"-“方法"下,将该方法调出使用。(调用的方法中含有积分方法,标准曲线方法和打印报告方法)9 关机9.1 关机前,先关紫外灯,用相应的溶剂(甲醇或乙腈)充分冲洗系统大约30分钟。(色谱柱最终应保存在甲醇或乙腈中)9.2 退出化学工作站,依提示关泵,及其它窗口,关闭计算机。9.3 关闭Agilent 1260各模块电源开关。10 其它注意事项10.1 当样品运行时,切勿打开自动进样器前遮盖,否则进样过程停止。10.2 系统发生漏液时,机器会检测到并停止进样,状态指示灯为红色。检查擦干并安置好漏液处,擦干漏液传感器,单击ON按钮,系统重新初始化。10.3 注意紫外灯使用寿命,切勿来回开关紫外灯。高效液相色谱法只要求样品能制成溶液,不受样品挥发性的限制,流动相可选择的范围宽,固定相的种类繁多,因而可以分离热不稳定和非挥发性的、离解的和非离解的以及各种分子量范围的物质。与试样预处理技术相配合,HPLC所达到的高分辨率和高灵敏度,使分离和同时测定性质上十分相近的物质成为可能,能够分离复杂相体中的微量成分。随着固定相的发展,有可能在充分保持生化物质活性的条件下完成其分离HPLC成为解决生化分析问题最有前途的方法。由于HPLC具有高分辨率、高灵敏度、速度快、色谱柱可反复利用,流出组分易收集等优点,因而被广泛应用到生物化学、食品分析、医药研究、环境分析、无机分析等各种领域。上海嘉鹏科技有限公司专业生产:紫外分析仪、三用紫外分析仪、暗箱式紫外分析仪、暗箱三用紫外分析仪、暗箱紫外分析仪、手提式紫外分析仪、三用紫外分析仪暗箱式、紫外检测仪、部分收集器、恒流泵、蠕动泵、凝胶成像系统、凝胶成像分析系统、化学发光成像分析系统、光化学反应仪、旋涡混合器、漩涡混合器、玻璃层析柱、梯度混合器、梯度混合仪、核酸蛋白检测仪、玻璃层析柱、荧光增白剂测定仪、馏分收集器、切胶仪、蓝光切胶仪、层析系统等产品。欢迎来电咨询。
  • 色谱柱柱压又又又不正常了?
    柱压问题在我们所熟悉的基本色谱分离方程式中,分离度R和柱效(N)、选择因子(a)以及容量因子k' 相关,和柱压无关。 但柱压(P)仍是HPLC方法中的最重要参数之一,因为柱压反映了色谱柱的内部状况。——色谱分离基本方程 现今能承受400 bar压力的HPLC泵很常见,色谱柱如在远低于上限的压力下正常运行,不需要我们重点关注;当柱压升高接近上限或者柱压有异常升高,往往意味着色谱柱出状况了,需及时进行维护和补救,严重时色谱柱就已报废了。本节将详细考察柱压问题并提出可行的解决方案。 柱压方程不难看出,对填充色谱柱,柱压与黏度 (η)、柱长 (L)和流速 (F)成正比,与填料粒径(d p)以及柱管半径(r)的平方成反比。K0是比渗透性系数,对填充床,其值约为0.001。(通过此公式可近似计算出给定色谱条件下的理论柱压。只有当新柱实际测得的柱压和理论柱压相差很大,才能说柱压存在问题。)黏度 (η)取决于流动相溶剂的选择,为降低柱压,反相色谱中倾向于选择低黏度的乙腈,而不是高黏度的异丙醇。当然选择时还需考虑溶剂强度、极性、分析物的溶解度以及和分析物兼容性等。柱长(L)增加可以提高分离度(R),流速(F)提高能加快分离,但都会导致柱压上升,选择确定这些运行参数时,需综合平衡和折中。填料粒径对柱压影响极大,dp降低一倍,柱压将增加4倍。UHPLC中采用的sub-2 μm填料,柱压超过普通HPLC泵的400Bar上限很多。提高柱温可降低黏度η,相应降低柱压。在梯度洗脱时,黏度随流动相组成的变化而改变,柱压也会处在不断变化中。对水/甲醇流动相体系,在55:45时,黏度和柱压有个极大值。内径的影响同样很大,根据线流速相同柱压相同的原则,4.6mm内径的色谱柱流速为1ml/min,约相当于在2.1mm内径色谱柱上的0.2ml/min流速,在10mm半制备色谱柱上的5ml/min,计算公式为v=1.0ml/min x(内径r/4.6)2。所以在换不同内径色谱柱时,请及时调整流速,以免因高柱压损伤色谱系统。Tips柱压下降的原因一般是仪器系统的连接有泄漏,柱压不稳定一般认为是流路中有气泡或空穴,和色谱柱相关的柱压问题是一般都是柱压上升。色谱柱构造图1 Compress型不锈钢色谱柱的基本构造 图2 Modular Column基本构造通过观察色谱柱基本构造,不难想象,和柱压相关最大的是进口端筛板(inlet frit)以及其后面1-2cm长度的柱头填料。筛板上有比填料粒径小的小孔,筛板上的小孔或柱头填料的间隙被部分堵塞,是柱压上升的主要原因。有以下几类情况可能导致这种情况:1填料破碎和使用后有填料粉末生成填料破碎一般在装柱过程中发生,装柱压力过大或所选硅胶机械强度过低所至,设定柱压出厂标准可解决。而流动相中高pH值缓冲盐使硅胶溶解并重新形成填料粉末,则会堵塞出口端筛板。这种情况下反冲不起作用,只有更换后筛板,不过打开承压的后筛板,对柱床会有不好影响。2颗粒物堵塞引起柱压上升和对策可能堵塞进口端筛板(前筛板)和柱头填料间隙的颗粒物来源有:样品(制样时灰尘和滤纸等带入);进样阀密封圈磨损;流动相(溶剂本身含有和配制过程进入);液相仪器中泵阀密封圈的磨损;缓冲盐析出(一般在梯度运行和进样时盐的溶剂环境改变导致);水和缓冲盐流动相内生长的细菌,也是颗粒物来源的一种,可堵塞筛板和填料间隙。应避免将这类流动相在室温下久放,可放入冰箱存放。对此,我们能做的预防措施和解决办法有:1) 预防措施过滤:样品(甚至标准品)和流动相过滤,既预防了筛板、柱头和毛细管堵塞,又能减少进样阀、活塞杆和截止阀等仪器关键部件的磨损。普通用0.45um孔径滤膜过滤样品和流动相,对使用2um以下填料的超高压柱的,可用0.20um滤膜。滤膜材质有再生纤维素、聚四氟乙烯、尼龙、硝酸纤维和醋酸纤维等,须根据和样品溶剂及分析物的适应性慎重选择。使用在线过滤器:在线过滤器内装有可更换的滤片,滤片孔径一般有2um和0.5um两种。安装位置有两个可选择:在进样器和色谱柱之间时,对样品和流动相中的颗粒物都有效;在泵和进样器之间,则只对流动相有过滤作用。使用保护柱:保护柱是缩小版的色谱柱,内含带填料的可更换的柱芯,安装在进样阀和色谱柱之间,用于防止色谱柱的化学污染为主,也有过滤颗粒物的作用。2) 故障排除反冲色谱柱:不连接检测器,直接将堵在前筛板上的颗粒物冲出排到废液瓶中。开始时反冲压力可低于正常使用压力,待颗粒物有冲出后,逐步提高冲洗压力。有时颗粒物已非常牢固嵌入到筛板内部,反冲不一定凑效,早反冲、勤反冲相对效果更好。有的厂商为避免堵塞,使用了较大孔径(2-5um)的前筛板,这种情况反冲会将填料冲出。换筛板:一般不建议这样做,因为换筛板会带走粘在筛板上的部分填料,使柱床的均一性受影响,导致柱效下降。不过如果反冲不能解决问题,也只能不得已而为之,要不然就要把色谱柱报废了。如果系统中不接色谱柱,柱压仍然高,说明泵出口到色谱柱之间的其它部位,包括进样器、在线过滤器和保护柱等有堵塞,可逐一排查。为了减少死体积,毛细管都做得尽可能的细,也可能被堵。3化学污染物引起柱压上升和对策来源同样是样品、流动相和系统,不过来源于样品的污染最普遍,特别是对复杂基体样品未经前处理或前处理不够的时候。化学污染物主要有:分子量很大的化合物、盐类、脂质、蜡类、油脂、腐殖酸、蛋白质等其它生物来源的物质。像盐类这样的保留能力极小的污染物会在死体积处很快从柱中洗脱出去,检测器一般对此类物质响应不大,有时表现为干扰峰、基线波动、斑点甚至负峰。保留能力中等的污染物,会被慢慢洗出色谱柱,表现为宽峰、基线馒头形波动和基线缓慢漂移。对强保留的污染物,一般流动相强度不足以将其从柱中洗出,会逐步在柱头累积。有时,累积在柱头的污染物可作为新固定相对分析物起作用,引起保留时间改变、峰拖尾和峰分叉等。污染物在柱头累积到一定程度,如果不采取措施,会堵塞填料间隙,引起柱压上升。最好的办法是选用合适的溶剂冲洗溶解这些物质,同时又不对填料本身有损害。如聚合物柱中累积的蛋白类污染物可用pH13-14的强碱溶液洗掉,但这种方法不适合硅胶基质色谱柱。1) 预防措施2) 故障排除已经累积很多污染物,用甲醇或乙腈简单冲洗不奏效,推荐使用下面方法清洗反相柱100%甲醇---100%乙晴---75%乙晴/25%异丙醇---100%异丙醇---100%二氯甲烷---100%正己烷用每种溶剂冲洗至少10个柱体积,对于250mm×4.6mm的分析柱,合适的冲洗流速是1~2ml/min。最后用10柱体积的异丙醇过渡,然后回到原来的流动相体系。
  • 非手性杂质的超高效合相色谱分析方法开发
    Michael D. Jones、Andrew Aubin、Paula Hong和Warren Potts 沃特世公司(美国马萨诸塞州米尔福德市) 应用优势 1.正交法进行药物杂质分析 2.用于药物杂质分析的 UPC2 方法 3.对杂质采用超临界流体色谱分析符合 ICH 指南和法规要求 沃特世解决方案 ACQUITY UPC2&trade 系统 ACQUITY UPC2色谱柱套装 Empower® 3软件 ACQUITY® SQD质谱仪 关键词 UPC2,药物杂质,稳定性指示方法,降解分析,方法开发,甲氧氯普胺,合相色谱 简介 超高效合相色谱 (UPC2&trade )以亚2 µ m颗粒为固定相,采用超临界流体二氧化碳作为主要流动相成分。合相色谱是一种使用少量溶剂即可实现高速分析的分析工具,尤其是在分析杂质时,相比于反向液相色谱(LC),合相色谱的正交方法更有利于发现未知杂质。合相色谱的方法开发不同于液相和气相色谱的方法开发策略,后者已经基本成熟。为了简化这个过程,我们需要研究一种系统的方法,用于开发非手性物质的合相色谱方法。 了解药品和药物材料中的杂质分布是一个重要步骤,样品纯度的评估可帮助制药公司在药物开发过程中做出决策,推进药物上市进程。杂质分布将确定供应商所提供原材料的质量、成品的保质期、合成途径和防止伪造的知识产权保护。色谱图的正交对比有助于生产商作出最明智的决策。在本应用纪要中,实验采用ACQUITY UPC2系统分析甲氧氯普胺及其相关杂质。如图1所示,甲氧氯普胺(胃复安)是一种止吐药,可以治疗胃灼热、胃溃疡以及由化疗导致的恶心。方法开发研究了色谱柱和溶剂,以确定优化特异性和峰形的合适方法条件。 图1. 甲氧氯普胺的化学结构。 实验 UPC2条件 系统:配备PDA和SQD检测器的ACQUITY UPC2系统 色谱柱:ACQUITY UPC2 BEH 2-EP 3.0 × 100 mm,1.7 µ m 流动相A:CO2 流动相B:含1 g/L甲酸铵的甲醇/乙腈(50:50)溶液,加2%的甲酸 清洗溶剂: 70:30的甲醇/异丙醇 分离模式:梯度;溶剂B在5.0 min内由2%增加至30%;达到30%后,保持1 min 流速:2.0 mL/min CCM 反压:1500 psi 柱温:50 ℃ 样品温度:10 ℃ 进样体积: 1.0 µ L 运行时间: 6.0 min 检测条件: PDA 3D通道:PDA,200到410 nm;20Hz PDA 2D通道:270 nm,4.8 nm分辨率(补偿500到600 nm)SQD MS:150到1200 Da;ESi+和ESi- 补液流速:不需要 数据管理: Empower 3软件 样品描述 分离度溶液由甲氧氯普胺和八种相关杂质制备而成,将其置于TruView&trade 最大回收样品瓶中等待进样,如表1所示。杂质的浓度为甲氧氯普胺标准品浓度的0.1% w/w。分离度溶液用于色谱分析方法开发。 表1. 甲氧氯普胺杂质标准品、峰的名称、质量数和欧洲药典分类列表。 结果与讨论 系统筛选 方法开发过程对色谱柱、改性剂和改性添加剂进行了系统筛选,以获得最佳分离结果。初始的配置通过四种改性剂对四种UPC2色谱柱进行了筛选。&ldquo 改性剂&rdquo 是强溶剂流动相,有利于洗脱极性较强的分析物。所使用的四种溶剂分别是甲醇、含0.5%甲酸的甲醇、含2 g/L甲酸铵的甲醇和含0.5%三乙胺的甲醇。筛选过程采用溶剂B在5 min内从5%增加至30%,达到30%时保持1 min的常用梯度。总筛选时间仅两个多小时。对比各色谱柱所得峰可以发现,含有甲酸铵的甲醇总体上可提供最好的峰形,如图2所示。方法筛选过程中通过查看ACQUITY SQD提供的质谱图实现峰跟踪。对于极性较强的分析物,选择性(&alpha )有很大不同。在这些对比实验中,流动相保持恒定,因而不断变化的&alpha 是由[固定相 &ndash 溶质]相互作用所导致。 图2. 色谱柱筛选结果。改性剂(B)是含有2 g/L甲酸铵的甲醇。溶剂B在5 min内从5%增加至30%,达到30%时保持1 min。 基于这些结果,UPC2 2-EP固定相是最佳的色谱柱选择,可以为大多数分析物提供更好的峰形和分离度。UPC2 CSH Flouro-Phenyl色谱柱可以提供较好的选择性和峰形;但是,杂质C未能按预期分离成两个峰。这种未知现象将在未包括在本应用纪要中的另一组实验中进一步考察。1 梯度斜率的影响 在反相LC中,梯度斜率是控制选择性和分离度的常用工具。使用UPC2 2-EP固定相,延长总的梯度运行时间可以降低梯度斜率。斜率的改变对色谱图基本没有影响,仅使峰6和7之间的选择性发生改变,如图3所示。 图3. 归一化的x轴叠加显示甲氧氯普胺,采用延长的12 min和35 min梯度运行时间,其斜率较6 min的筛选实验更小。使用原始梯度;溶剂B由5%增加至30%。 不同洗脱溶剂的影响 使用变化率较平缓的梯度并未增加峰与峰之间的分离度。为提高分离度,将低极性非质子有机溶剂(乙腈)与甲醇(极性较强的洗脱溶剂)以不同比例混合。乙腈的添加提高了分离度,扩展了峰之间的分离间隔。这些现象证明本方法可在方法开发中发挥重要作用,如之前发表的结果所示。1 图4. 如叠加图中突出部分所示,在改性剂成分中添加乙腈后,后部洗脱分析物的分离度明显提高。 在添加剂筛选过程中,我们也考察了每种杂质各自的标准品。甲酸可以优化杂质H的峰形;但是,它会影响其它相关物质的色谱分析性能。添加剂的浓度也会对峰形产生影响。为了得到更理想的峰形,浓度需要高于反向LC的常用浓度。增加甲酸的浓度可以进一步改善杂质H的峰形,如图5所示。但是,杂质F的峰形受到了影响,如图6所示。组合使用甲酸和甲酸铵可同时获得两种添加剂的优势,使全部的分离均获得最佳峰形。在改性剂中使用添加剂甲酸和/或甲酸铵对过期样品进行分析所得结果如图7所示。在此对比实验中使用过期样品使我们能够更好地评估已知杂质在存在未知杂质条件下的选择性和峰形。如图7所示,解决峰形问题最终会影响色谱分离的效率、分离度和灵敏度。 图7. 过期甲氧氯普胺样品的分析,改性剂中分别添加不同的添加剂成分。将甲酸铵和甲酸组合,称之为&ldquo 类缓冲液&rdquo 系统,此系统可使样品中的所有分析物均获得最佳峰形。所使用的改性剂为50:50的甲醇/乙腈。 评估特异性 在确定可对选择性、分离度和峰形产生积极影响的方法条件后,各变量同时获得了优化。实验使用甲氧氯普胺和杂质(对照)的标准混合物和过期的样品混合物对最终方法进行了评估,如图8所示。有关未知杂质的进一步考察,请参阅沃特世(Waters® )应用纪要。2 图8. 采用&ldquo 实验&rdquo 部分中列出的最终方法条件对甲氧氯普胺对照混合物和降解混合物进行的对比分析。 结论 本实验使用ACQUITY UPC2系统成功对甲氧氯普胺及其相关物质进行了非手性分析。了解杂质结构的特性有利于方法开发。实验中分析的多种杂质包括胺类、羟基、酯类和羧酸。能够影响选择性、分离度和峰完整性的主要方法变量分别是固定相、改性剂的洗脱强度和添加剂的组成。最后甲氧氯普胺相关物质的分析方法展示了此方法对过期甲氧氯普胺样品的特异性。 本方法开发过程通过色谱柱筛选处理中的对比实验揭示了多种[固定相 &ndash 分析物]相互作用。更多的相互作用需要在已发表的研究基础3-6上进行进一步的探索。了解这些方法变量相互作用的影响将有助于创建一种更加适用的方法开发技术。 参考文献 1. Jones MD, et al.Analysis of Organic Light Emitting Diode Materials by UltraPerformance Convergence C hromatography Coupled with Mass Spectrometry (UPC2 /MS).Waters Application Note 720004305EN.2012 April. 2. Jones MD, et al.Impurity Profiling Using UPC2 /MS. Waters Application Note 720004575EN.2013 Jan. 3. West C, Lesellier E. A unified classification of stationary phases for packed column supercritical fluid c hromatography.J Chromatogr A. 2008 May 1191(1-2):21-39. 4. West C, K hater S, Lesellier E. C haracterization and use of hydrophilic interaction liquid c hromatography type stationary phases in supercritical fluid c hromatography.J Chromatogr A. 2012 Aug 1250:182-95. 5. Lesellier E. Retention mec hanisms in super/subcritical fluid c hromatography on packed columns.J Chromatogr A. 2009 Mar 1216(10):1881-90. 6. Zou W, Dorsey JG, C hester T L. Modifier effects on column efficiency in packed-column supercritical fluid c hromatography.Anal Chem.2000 Aug 72(15):3620-6.
  • 最强实用攻略 | 方法开发时,如何选择 C18 色谱柱?
    在色谱方法开发过程中,分离度、柱效、峰形是考察色谱柱选择性是否合适的主要性能指标。方法开发中的分离度根据分离度(Rs)公式,分离度的影响因素主要有柱效(N)、选择性(α)和保留因子(或称容量因子,k):(公式 1)公式1作为分离度改善的理论基础。通常,方法开发过程中,通过提高化合物保留 (k)、提高柱效 (N)、以及提升选择性 (α) 来达到分离度的改善。选择性因子(α):(公式 2)式中 k1 和 k2 分别是第一个峰和第二个峰的保留因子。根据公式 1 和公式 2,当选择性因子提高 0.1 时,对分离度的贡献是 Rs 大约为原来的 1.8 倍。因此选择性的改变对分离度的改善效果显著,如图 1 所示。图 1. 分离度与柱效、选择性、保留因子的关系与选择性有关的因素:固定相:选择不同化学修饰的键合相(不同的 C18 柱或其它键合类型色谱柱)流动相:调整有机相的类型、pH 值、盐浓度、两相比例等柱温方法开发中的色谱柱选择在色谱固定相的选择和使用中,最常用的键合相类型是十八烷基硅烷键合硅胶(C18)。不过,由于固定相物理特性与化学修饰的差异,使得不同的 C18 选择性不尽相同。选择色谱柱时,如果一种类型的 C18 柱分离度不足,就可以选择与之选择性差异较大的 C18 柱来进行优化。以 Agilent InfinityLab Poroshell 系列中的 C18 液相色谱柱为例:Poroshell 120 EC-C18 为封端的碳十八固定相,对酸性、碱性、中性化合物都有良好的选择性,已经成为方法开发的首选,也是在 Agilent 1260 Infinity II 四元泵液相色谱系统中标配的色谱柱。与 EC-C18 柱不同,Poroshell 120 SB-C18 柱却是不封端的碳十八固定相。由于裸漏的硅醇基存在,可与待分离物发生氢键、离子间作用等,因此 SB-C18 的选择性与封端的 C18 柱存在显著差异。可以利用这个特点,在方法开发时 SB-C18 和 EC-C18 通常可以作为方法开发的起始色谱柱。另外,SB 的全称是 StableBond,顾名思义意为“稳定的键合相”,这里说的稳定,主要是在C18硅烷长链的两侧采用异丁基进行立体的保护,使得 SB-C18 在低 pH 下有较好的耐受性能。同样采用 Poroshell 120 的硅胶,HPH-C18 与 EC-C18 和 SB-C18 又有所不同。在进行键合之前,在 Poroshell 硅胶的表面多孔层,先进行了有机杂化处理,再进行 C18 键合和封端修饰,得到的 HPH-C18 色谱柱具有了高 pH 耐受的特点。因此,表面化学结构的差异,三种常用的 Poroshell C18 柱,在选择性上具有显著区别。表 1 列出了以 EC-C18 为基准,HPH-C18 与 SB-C18 的相似度因子 Fs。当 Fs 因子大于 3.0 时,固定相选择性存在差异。表 1. 三种固定相选择性差异比较(以 EC-C18 为基准)问渠哪得清如许,为有源头活水来,新产品 Poroshell CS-C18 上市!Poroshell 色谱系列在色谱分析行业已经得到了广泛的认可,安捷伦也一直在拓展 Poroshell 系列色谱柱的产品线。2020 年 11 月,安捷伦推出了新产品 Poroshell CS-C18 柱,进一步拓展了 C18 固定相的类型。该固定相是在 Poroshell实心核颗粒的表面多孔层在进行高 pH 耐受的杂化处理之后,再进行 C18 键合、封端和正电荷修饰,其中使用的键合相还进行了侧立基的保护。这样 CS-C18 固定相的表面,不仅具有 C18 提供的疏水作用、而且还具有正电荷的离子作用,选择性也与其它的 C18 键合相有显著差异。同时,硅烷链侧立基保护、多孔硅胶表面杂化处理,使得固定相pH耐受范围得到了拓宽。在 Poroshell C18 的四种 C18 键合相中,涵盖了 RPLC 模式下的主要作用力,选择性彼此之间有显著差异,见图 2。利用这些固定相的选择性差异,可以方便地进行方法开发中的色谱柱选择。图 2. Poroshell 的 4种 C18 固定相应用实例碱性条件下选择性差异在 pH=10 的体系下,耐碱的 CS-C18 与 HPH-C18 选择性存在显著差异。图 3. 农药组分在碱性体系下 LC-MSMS 色谱图结果比较酸性条件下选择性差异在酸性体系下,不同 Poroshell C18 柱的保留、分离度有显著差异。图片图 4. 阿片类药物在酸性体系下 HPLC 分析色谱图比较峰形及载样量比较在酸性体系下,在碱性药物阿米替林的杂质分析时,采用 CS-C18 与传统封端的 C18 柱进行比较,CS-C18 柱对碱性组分具有更好的峰形、载样量和分离度。图 5. 不同色谱柱对阿米替林及杂质(0.25%)不同进样量分析结果比较酸性体系下 LC/MS 灵敏度比较在甲酸体系下,在进行液质联用分析时,CS-C18 柱提供可更好的灵敏度、响应和峰形。图 6. 甲酸体系中低浓度标样(50ng/ml) 在 LC/MS/MS 中灵敏度比较安捷伦 &bull 618618 活动期间2024 年 6 月 3 日 ~ 30 日Agilent Poroshell 120 2.7um 全线 6 折!参考文献:1. L. R. SNYDER , J. J.KIRKLAND, J. W. DOLAN. Introduction to Modern Liquid Chromatography, ThirdEdition.2. 液相色谱手册-液相色谱柱与方法开发指南. 安捷伦科技.5990-7595CHCN3. Agilent InfinityLabPoroshell 120 CS-C18 助您将 pH 值用作方法开发工具. 安捷伦科技. 5994-2274ZHCN4. 使用 Agilent InfinityLab Poroshell 120 CS-C18 色谱柱改善碱性分析物的峰形. 安捷伦科技. 5994-2094ZHCN
  • 2020版药典专辑 液相色谱方法转换工具重磅上线
    0512高效液相色谱法“方法转换” 2015版与2020版药典中“色谱参数调整”比较2015年版《中国药典》0512通则规定:品种正文项下规定的色谱条件(参数),除填充剂种类、流动相组分、检测器类型不得改变外,其余如色谱柱内径与长度、填充剂粒径、流动相流速、流动相组分比例、柱温、进样量、检测器灵敏度等可适当调整。 2020版药典全面增订“色谱参数允许调整的范围”,品种项下条件不再是固定的,本次增订内容提供了“使用不同粒径、内径色谱柱的液相色谱方法转换的操作准则”,用户可依据通则进行HPLC法向UHPLC法转换,可有效较少单针分析时间,提高分析通量,减少仪器用电耗能、人工成本、废液处理成本、试剂成本。注:表格来自《中国药典》2020年版四部 0512通则 可通过相关软件计算表中流速、进样体积和梯度洗脱程序的调整范围,并根据色谱峰分离情况进行微调。 岛津方法转换应对方案 面对标准变化和用户需求,岛津提供“方法转换工具”、超高效液相色谱仪、色谱柱整体解决方案助力用户应对方法转换。 岛津方法转换工具 岛津方法转换工具特点• 全中文界面,操作简便,既支持独立运行,亦可嵌入LabSolutions工作站运行,可兼容不同的岛津机型,产品系列、型号和产品图可视化。• 内置ChP(中国药典2020年版)计算公式,自动计算流速、进样体积、梯度洗脱程序;内置流速自定义输入框,如调整,软件自动同步计算调整后的梯度程序。• 内置梯度模式、混合器体积、最大进样体积、死体积及检测池体积选择项目,方便用户进行系统匹配。• 可实现梯度开始时间或梯度程序的调节,梯度表折线图及转换前后梯度叠加图显示可视化;速度提升倍数、节约溶剂量显示可视化,助力成本核算。• L/dP值自动计算,自动计算参考范围(0512通则色谱参数允许调整的范围),自动检查是否超范围与超出参考范围提示(红色标记,评价区文字提示)。• 仪器系统压力预测,自动提示是否超出型号耐压限值并给出提示,指导选择合适型号仪器与色谱柱可为仪器选型和色谱柱规格选择提供参考。 使用方法1点击初始方法和目标方法下对应系列按键,进入设置界面,选择转换前后的仪器型号,梯度模式和混合器体积。2先后输入当前HPLC使用色谱柱和计划转换后UHPLC使用色谱柱规格,需注意L/dp 值应在原有数值的-25%~+50%范围内。3左侧输入转换前HPLC色谱方法条件,软件自动计算转换后条件数值。4左侧梯度表输入当前HPLC梯度程序,右侧即会自动转换为UHPLC梯度。5评价区智能提示超限项目。 使用注意事项为获得良好方法转换效果及高匹配色谱图表现,建议使用同一品牌同一系列(如Shim-pack系列)或者性能相近的色谱柱。 对于梯度分析, 系统延迟体积对于分析影响较大,需要注意HPLC和UHPLC使用仪器混合器体积差异,并在软件设置模块输入相应参数。 不同LC平台选择和对应色谱柱选择岛津多系列HPLC可以满足用户不同分析需求,选择和 LC 液相系统更为匹配的色谱柱可以获得更高的分离效率,如下表格总结了针对不同的液相系统配置如何选择色谱柱。 应用案例 赤芍配方颗粒HPLC转化为UHPLC法 转换成UHPLC法后,分析效率提升至原来的3倍以上。转换成UHPLC法后,特征峰顺序、数量、RRT、相对峰面积均符合标准规定。 银杏叶提取物UHPLC法转化为HPLC法 转换前后,各色谱峰出峰顺序和个数保持一致,指纹图谱相似度均达到0.90以上。
  • 色谱图出现双峰了?别慌,给我三分钟帮你解决!
    各位小伙伴在做实验过程中通常会遇到各种奇奇怪怪的问题,其中色谱峰出现双峰可以说是经常会遇见的一类问题。遇见双峰了该怎么去解决呢,这里听小编慢慢道来。HPLC分析中,在色谱柱正常,样品灵敏度足够,分析方法合适,色谱峰在出峰时间较短的条件下(不包括梯度),峰型应对称而尖锐。但是,在对样品了解程度不够,方法不妥,样品处理方法及进样方式不合理下,会出现各种意想不到的问题,而对色谱峰难以作出合理的解释,尤其对于新手更是如此。色谱双峰指的是一种物质,但在色谱图中出现双峰,这种情况分为四种原因。 1.色谱柱堵塞或污染 如果你分析样品时发现每个色谱峰都出现双峰(出峰越快,出现双峰的可能性越少),尤其采用单一纯物质时,可以判定色谱柱出问题(柱头受损或柱头固定相变脏或流失)。如果进样量少,原来色谱柱正常,色谱峰的形状多为一大峰带一小峰,不一定拖尾,这一般应是柱头端堵塞,将色谱柱反接冲洗维护,一般情况下可以解决。如果峰拖尾,双峰强弱相差不大,柱头填料受污染或键合相流失可能性更大,这时可以对色谱柱维修处理或者使用新的色谱柱,维修建议交由厂家处理。 2.溶剂极性及进样量不合适许多小伙伴对此可能不以为然,一般的书籍和文献都不会提到这方面的内容,而这确是双峰产生的一个很重要的原因。目前HPLC分析多为反相色谱,流动相多为甲醇、乙腈、水,以及各种添加剂以改善分离性能。样品一般用与流动相相溶的溶剂溶解,溶解方法是用流动相溶解,但是很多情况是不一致的。当用极性强度大的试剂做溶剂时,如纯甲醇、纯乙腈,纯乙醇,而分析体系中以水为主,样品进样量大,如20ul,单一的纯物质出双峰,第二峰比第yi峰小(每次都不太一样),且拖尾,保留时间会提前(相对进样量少而言),将进样量减少一半以上,峰型将变为正常。这是样品的溶剂与流动相极性相差太大,而流动相来不及将其稀释达到平衡造成的。 另一个原因是,进样量不一定大,但浓度很大,色谱图上的双峰紧靠在一起,基本上齐高,不拖尾(如果出峰很快,也可能是色谱柱问题)。将样品稀释再进样就可以了,这是由于进样量过大,色谱柱过载造成的。 3.样品的特性和PH值不了解有些样品由于其化学结构的特点,存在互变异构现象,而这种互变异构体无法分开,而是以一个动态平衡存在。在色谱分析时,在一个特定的条件下,一种物质将出现双峰,甚至三峰。这时一般双峰靠的很近,基本齐高,不拖尾,条件稍一变化,尤其改变pH,双峰现象将消失。 pH对峰形的影响在缓冲液流动相平衡过程中非常明显,当连续进样时,受pH的连续变化影响会经常遇到这种双峰的情况。另外,在样品分析时,流动相的pH尽量远离被分析物的等电点,否则也容易引起双峰的产生。在用离子对试剂分析时,选择不好条件也会容易引起双峰的产生。 4.仪器参数设置不合理参比波长设置错误,例如设置分析波长254nm,参比波长400nm,这个对于大多数化合物可能没影响。但是如果被测化合物,在400nm处也有强的紫外吸收,比254nm更高。这样其出峰时,由于背景的抵扣作用,本来一个峰会变成对称的二个峰,而且如果将二峰之间的峰谷反转180度,恰好是一个完整的峰。这时要将参比波长设置更大,或者取消。 以上就是小编给各位小伙伴整理的出现双峰的原因和对应解决方案,高效液相色谱是一套非常精密的分析系统,一旦出现异常峰形需要认真排查原因,找到合适解决方案。各位小伙伴若还有任何疑问,欢迎咨询我们的当地销售或经销商。
  • 使用超高效合相色谱系统测定雌二醇(Estradiol)色谱纯度
    目的 采用沃特世ACQUITY UPC2&trade 系统对雌二醇进行杂质分析,能获得和美国药典(USP)方法相当或者更好的结果。 背景 目前,美国药典(USP)检测雌二醇(estradiol)色谱纯度的方法使用4.6 x 250 mm的硅胶柱和含有2,2,4-三甲基戊烷、正丁基氯、甲醇45:4:1的流动相,流速2 mL/min。由于许多实验室都想限制脂肪烃和氯化物溶剂的使用,所以必须对替代性的色谱方法,如超临界流体色谱(SFC)进行评估。沃特世ACQUITY UPC2系统被用于开发测定雌二醇色谱纯度的方法。Ultra Performance Convergence Chromatography&trade (UPC2&trade )得到的结果直接和由目前的美国药典检测雌二醇杂质的方法对比。两种方法检测的结果相似,与美国药典使用的正相HPLC方法相比,UPC2方法检测雌二醇杂质的灵敏度更高。此外,使用UPC2时,样品的运行时间大大缩短,每次分析的总成本也显著降低(基于溶剂用量和废液处理成本计算)。 使用UPC2方法测定雌二醇的色谱纯度,其速度是目前正相HPLC方法的3倍,而单次分析的成本降低100多倍。 解决方案 使用现行美国药典方法制备和分析雌二醇,如图1所示。HPLC分析的结果同ACQUITY UPC2系统分析的结果(使用相同的样品制备方法)进行对比,如图2所示。 UPC2方法的条件如下: 色谱柱: ACQUITY UPC2 BEH,2.1 x 150 mm,1.7 微米 流动相: A=CO2 B=1:1甲醇/异丙醇 背压: 130 bar/1880 psi 柱温: 45 ° C 检测: UV /PDA,280 nm 两种测试方法得到的结果对比见表1。正相HPLC方法和UPC2均检出至少5种含量小于0.1%(按面积计算)杂质。两种方法在0.01%范围内峰的信噪比约为3:1,UPC2结果得到的值稍高。UPC2方法测得的最大杂质(以面积计约0.05%)的信噪比为16:1,正相HPLC方法测得的为9:1。这些实验结果清晰地表明,ACQUITY UPC2系统可成功地用于分析雌二醇中的微量杂质。UPC2方法的运行时间明显短于正相HPLC方法所用的时间(20min对比60min),从而提高了实验室的生产率。对每次运行的成本分析表明,正相HPLC的溶剂成本5.89美元,而使用UPC2,每次运行的成本仅为0.05美元。正相HPLC方法所产生需要处理的混合氯化物废液为108Ml2,2,4-三甲基戊烷、9.6mL正丁基氯和2.4mL甲醇。UPC2方法产生的需处理废液为甲醇和异丙醇各0.60mL。分离中使用的CO2通过实验室排气管排出。使用UPC2方法,废液处理成本降低了150倍之多。2,2,4-三甲基戊烷、9.6mL正丁基氯和2.4mL甲醇。UPC2方法产生的需处理废液为甲醇和异丙醇各0.60mL。分离中使用的CO2通过实验室排气管排出。使用UPC2方法,废液处理成本降低了150倍之多。 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 # # # 联系方式: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • 干货!色谱方法开发中小技巧
    p style=" text-indent: 2em text-align: justify margin-top: 10px " strong 什么时候需要缓冲溶液 /strong /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 在反相色谱分析中,流动相的pH值一般在2-7之间,当分析物在反相条件下可离解,或样品的pH值在2-7之外时,就需要缓冲液,在反相条件下可离解的化合物一般有氨基和羧基,他们的pKa在1-11之间,选择正确的缓冲液pH值可保证可离解的官能团处于一种形式,离子形式或中性化合物的形式;如果样品的pH值对柱子有伤害,则缓冲溶液可使其变温和或减小其危害,常规硅胶基质色谱柱的pH耐受范围2-8。 /p p br/ /p p style=" text-indent: 2em text-align: justify margin-top: 10px " strong 如何选择缓冲液pH值 /strong /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 在选择缓冲液pH值之前,应先了解被分析物的pKa,高于或低于pKa两个单位的值,有助于获得良好的峰形,溶液PH值高于或低于两个pKa两个单位,化合物99%以一种形式存在。一种形式存在的化合物才能获得好的尖锐的峰。 /p p br/ /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 如何确定适当的pH适用范围(仅适用于反向色谱法分析离子化合物方法开发中流动相pH的确定) /p p br/ /p p style=" text-indent: 2em text-align: justify margin-top: 10px " strong 一.考察离子化合物的pKa值 /strong /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 在反相色谱分析中通常不要求化合物精确的pKa值,我们可以通过查阅文献或者根据化合物的结构按照下图中列出的主要酸碱官能团在水溶液的pKa值进行推测。 /p p style=" text-align: center margin-top: 10px text-indent: 0em " img src=" https://img1.17img.cn/17img/images/201904/uepic/590117c7-6710-4381-b4a5-7cb151e02bbb.jpg" title=" 1.JPG" alt=" 1.JPG" width=" 450" height=" 452" style=" width: 450px height: 452px " / /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 注意:按照上表中官能团进行估算时分子中相邻基团的不同会导致pKa出现1-2个单位的差异。对于酸性化合物,当含有吸电子基团时会导致酸性增强,pKa值相应降低;对于碱性化合物,当含有吸电子基团时会导致碱性降低,pKa值相应降低。 /p p br/ /p p style=" text-indent: 2em text-align: justify margin-top: 10px " strong 二.根据化合物pKa值推测流动相相应使用的pH /strong /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 先看下流动相pH对酸碱化合物的影响: /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 流动相pH对不同pKa化合物的保留时间的影响 /p p style=" text-align: center margin-top: 10px text-indent: 0em " img src=" https://img1.17img.cn/17img/images/201904/uepic/0861dd26-0bd7-49a6-a3c3-c4518ceac792.jpg" title=" 2.JPG" alt=" 2.JPG" width=" 474" height=" 345" style=" width: 474px height: 345px " / /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 根据这幅图,我们可以看出,当流动相的pH约等于化合物的pKa时,可以最大限度的调整化合物的保留时间。此时改变0.1个单位的pH可以使得保留因子k变化10%,可引起分离度± 2.5个单位的变动。但此时需要进行精确控制流动相的pH,这要求把流动相pH控制在0.02个单位以内,在实验室很难控制,重现性较差,成为分析的瓶颈。 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 但我们实验时可以将pH范围放宽,只要将流动相pH控制在化合物pKa值± 1.5个单位的范围内(上图所示的II范围内)就可以对化合物保留行为产生比较明显的影响,此时进行分离选择性较好。同时为了更好地控制保留行为的重现性,需要控制缓冲液的pH在± 0.1个单位以内(当流动相pH控制范围较窄时建议使用缓冲盐的质量进行控制,比pH计进行控制效果更优)。 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 通过以上三点分析我们可以得出,待分析化合物的pKa与确定流动相的pH有很大的关系。主要依据化合物出峰时间、化合物的峰型及所需要分离目标的化合物综合考虑来确定流动相的pH。 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 可能有人会发现第二点和第三点是有些矛盾的,这时候就需要对自己的实验进行初步的探索,看看是否pH值会对化合物的峰型产生影响(有的专家认为该观点缺乏理论和实践的支持)或者是否需要准确调节pH在化合物pKa± 1.5范围内进行提高选择性。 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 在做实验时发现有的物质会因稀释液pH使用不当产生峰分叉的现象,调节稀释液的pH即可解决峰的分叉;有时流动相pH在化合物的pKa± 2的范围内时离子化合物并没有出现峰分叉、峰型不好现象。 /p p br/ /p p style=" text-indent: 2em text-align: justify margin-top: 10px " strong 三.根据流动相pH值测定所需要的缓冲盐 /strong /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 1.缓冲液选择主要依据: /p p style=" text-indent: 2em text-align: justify margin-top: 10px " (1)缓冲溶液的pKa和缓冲容量 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " (2)溶解度 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " (3)紫外吸收 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 2.对以上三点进行说明 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " (1)一般缓冲溶液的pKa值与流动相的pH相等时缓冲能力最大,pKa与流动相的pH相差越大,缓冲液的缓冲能力越差。一般要求流动相的pH与缓冲液的pKa值不能超过± 1.0个单位,当缓冲溶液浓度较高时可以放宽范围到1.5个单位。常用的缓冲液的缓冲范围见下图: /p p style=" text-align: center margin-top: 10px text-indent: 0em " img src=" https://img1.17img.cn/17img/images/201904/uepic/029e58fc-3929-4a7f-a90a-7e3d67092f48.jpg" title=" 3.JPG" alt=" 3.JPG" width=" 654" height=" 474" style=" width: 654px height: 474px " / /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 缓冲溶液的浓度一般在5-50mmol,因过低导致缓冲能力不足(可通过调整进样体积查看化合物峰型的变化,如果出现拖尾或者前沿现象,说明缓冲溶液的能力不足);缓冲液浓度过大会导致与有机相混溶时盐的析出,对仪器、色谱柱都会产生损伤,而且使得基线不好。一般初始摸索方法时推荐使用25mmol。 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " (2)根据缓冲液溶解度:在酸性缓冲溶液中,如磷酸盐,缓冲液溶解度顺序:钠盐<钾盐<铵盐;有研究发现,当pH=7时10mmol的磷酸钾在85%甲醇或者75%乙腈中可以溶解,在pH=3时,在85%甲醇或者85%乙腈中可以完全溶解(此测试通过使用容器将不同比例的混合溶剂进行混合,观察大约30min,是否有沉淀产生,否则就要降低缓冲液的浓度或者有机相的含量,在梯度洗脱时尤为注意)。 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " (3)根据化合物的吸收波长:在pH≤3.5,6.0≤pH≤8.5或者pH≥11.0磷酸盐缓冲液是不错的选择。而甲酸盐和乙酸盐缓冲液的范围是2.5~6.0,适用于210纳米或者更高吸收的检测波长。 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 3. 缓冲盐的作用: /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 缓冲盐的种类或者浓度对选择性的改变会很小,只是起到缓冲作用,提高化合物的保留时间的稳定性。 /p p br/ /p p style=" text-indent: 2em text-align: justify margin-top: 10px " strong 高效液相色谱法中选择缓冲盐的注意事项 /strong /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 在高效液相色谱法中,分离酸或碱缓冲溶液对维持流动相恒定pH和提高保留时间的重现性都非常重要。 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 怎么选择缓冲液: /p p style=" text-indent: 2em text-align: justify margin-top: 10px " Pka和缓冲容量 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 溶解度 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 紫外吸光度(使用UV检测器) /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 挥发性(MS蒸发光散射检测器) /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 离子对性质 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 稳定性和仪器的兼容性 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 根据以上的理论,流动相缓冲容量取决于缓冲盐的pka,缓冲盐浓度,流动相pH。 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 当缓冲液中溶质的的两种形态(HA和 A-)浓度相等时,即缓冲盐的pka与流动相pH相等时,缓冲能力最大。当流动相的pH与缓冲盐的pka相差越大,缓冲盐的缓冲容量就越小。因此缓冲的pka与流动相的pH相差不能超过± 1.0个单位。 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 流动相的缓冲容量一般与缓冲液浓度成正比关系,通常浓度范围为5~25mmol/l。 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 样品溶解在流动相中可以避免在反相色谱过程中发生缓冲能力的问题,尤其是流动相缓冲液浓度较低或注入样品量较大的时候尤为重要。 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " strong 当缓冲容量偏低时,可以从以下方面调节缓冲容量 /strong : /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 1、减少缓冲液pKa与流动相pH之间的差异(可调节pH或更换缓冲液) /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 2、矿大流动相pH和溶质pKa之间的差异(当差异足够大时,溶质倍完全离子化或者保持非离子化形式此时缓冲液显的不重要了) /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 3、增加缓冲液浓度 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 4、减少样品进样体积 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 5、调节样品的pH与流动相的一致。 /p p br/ /p
  • 正相色谱,出峰漂移,月旭带你一探究竟!
    正相色谱是我们色谱分离中一种常用的分离模式。其分离原理是基于固定相的极性大于流动相,通过吸附作用,实现不同极性物质之间的分离。正相色谱的优势是可用于分离反相色谱不保留或极性较强的化合物,且适用于绝不溶于水的物质分离。但是正相色谱也有困扰我们的难题。经常会有老师在使用正相色谱柱时出现出峰保留时间漂移的情况,有些是使用的正相柱子,样品出峰不断地有前移的趋势,有些是新买的正相柱子分离样品保留时间和原有的旧柱子不一致等。这到底是怎么回事呢,出现这类保留时间漂移的问题又该如何解决呢?今天小旭就带大家一探究竟。首先我们简单介绍下正相色谱+➱ 定义:固定相的极性大于流动相,基于固液吸附的原理,分离不同极性的样品。➱ 洗脱顺序:极性低的物质先被洗脱出来。流动相的极性越强,洗脱能力也越强。➱ 常见的正相色谱柱有:硅胶柱,二醇基柱,氨基柱,氰基柱。➱ 常用的流动相:主要试剂:烷烃(戊烷,己烷,庚烷,辛烷),芳香烃(苯,甲苯,二甲苯),二氯甲烷,四氯化碳。辅助试剂:甲基-t-丁基醚(MTBE),乙醚,四氢呋喃(THF),乙酸乙酯,乙腈,丙酮等。正相色谱的优势是可用于分离反相色谱中不保留或极性较强的化合物,且适用于绝不溶于水的物质分离,还可用于拆分异构体。但正相色谱中,却易出现保留时间漂移的情况。这究竟是什么原因呢?原来正相色谱柱的固定相,特别是硅胶柱中未改性的裸硅胶,其中的硅醇基的极性特别强,其对流动相中甚至是实验环境中的水分含量非常敏感。而由于正相色谱中固定相的水分含量常常是个影响选择性的关键参数,流动相中的水分含量通常影响保留时间和分离度。我们知道大部分溶剂都含有小部分的溶解水,比如正己烷在20℃下,其水分含量是0.0111%w/w。因此正相色谱中出现保留时间波动较大的问题,大多可归因于固定相或流动相中水分含量的变化,而填料可能还是完好的。那么正相色谱中,出现这种固定相或者流动相中的水分含量影响物质保留时间的问题,该如何解决呢?小旭给大家分享两个解决方法:1、去除固定相上的水分用含2.5%二甲氧基丙烷(dimethoxypropane)和2.5%冰醋酸的正己烷冲洗色谱柱30个柱体积;2、使用水分含量可控的流动相(比如:用水半饱和)半饱和流动相配置方式:将无水的非极性流动相分成两半;其中一半中加入一定量水,并混匀搅拌约一小时,静置分层后,将多余的水相全部除去;将两部分非极性流动相重新混合在一起就配成了“半饱和”流动相。快来看一个案例吧~ ● ● ● ● ● ● ● ➱ 售后案例背景客户新买的Topsil® (拓谱)Silica硅胶柱,在做一个老项目时,目标化合物的保留时间出现了漂移。同时对比旧柱子上目标化合物的保留时间是在10min左右,而新柱子的目标化合物的保留时间却出现在了20min左右。色谱条件:色谱柱:月旭Topsil® Silica(4.6×250mm,5μm)。流动相:乙酸乙酯/正己烷/甲醇/正丙醇=60/40/2/1;检测波长:256nm;柱温:30℃;流速:1.0mL/min;进样量:100μL。➱ 售后排查月旭实验室对该项目进行了验证,发现的确在新柱子上目标化合物的保留时间与客户实验室的做样结果一致,在20min左右。继而月旭实验室对该方法流动相中的主要试剂乙酸乙酯和正己烷进行了水半饱和的操作,使用水半饱和的流动相重复了实验,样品中目标物的保留时间稳定在了14min左右,与客户实验室用旧柱子做样的保留时间基本一致。如下图。通过月旭实验室的排查验证,流动相用水半饱和的方法,完美解决了客户在应用正相色谱柱时出现目标峰保留时间漂移的问题。我们回访客户后,还有彩蛋哦~产品详情
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制