当前位置: 仪器信息网 > 行业主题 > >

神经生物学仪器

仪器信息网神经生物学仪器专题为您提供2024年最新神经生物学仪器价格报价、厂家品牌的相关信息, 包括神经生物学仪器参数、型号等,不管是国产,还是进口品牌的神经生物学仪器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合神经生物学仪器相关的耗材配件、试剂标物,还有神经生物学仪器相关的最新资讯、资料,以及神经生物学仪器相关的解决方案。

神经生物学仪器相关的资讯

  • 新一代测序助力神经生物学研究
    p   了解大脑以及它在行为和疾病中的作用,这种探索可不是个小任务。在过去的十年中,杜克大学Nicholas Katsanis所在的实验室已经表明,遗传学和基因组学方法对于我们了解神经生物学非常有帮助。他在2015神经科学大会上组织了一个短期课程,以帮助研究人员更好地了解基因组学的应用。 /p p   首先发言的是Shamil Sunyaev,他是哈佛大学医学院附属的布莱根妇女医院遗传学分部的一名计算基因组学研究人员。他通过一个关于简单和复杂表型的讨论来开始他题为“神经发育和神经退行性疾病基因组注释的计算方法”的演讲,,并介绍了过去的研究人员是如何在动物模型和人类中研究疾病状态的遗传的。他指出,技术的进步,特别是新一代测序(Next-Generation Sequencing, NGS)技术,让研究人员终于能确定多态性标记,定位这些标记,同时确定致病突变。Sunyaev认为,新发现是很重要的,但仍有许多未知的东西,应通过支持研究来加强探索。 /p p   接着走上演讲台的是Benjamin Neale,他是Broad研究院一名侧重于心理生物学的遗传学研究人员。Neale演讲的题目是“充分利用精神疾病的基因组数据”,一开始就强调了群体统计数据的不断变化。他指出,对于精神分裂症或自闭症(或与此有关的任何复杂性状)这样的疾病,原因不可能只有一个。孟德尔遗传学可能很有吸引力,但它并不适合我们想要研究的大多数东西。他认为,“这就像身高,没有一个基因是对应5英尺10英寸的。你的身高并非受到单个遗传影响,而是多个,它们合在一起,形成了人群的正态分布。遗传可能性是一种计算,并非个体– 如果存在遗传影响,以及基因作用的生物学过程,它会带来我们在群体中所看到的变化。” /p p   若要在研究中采取不偏不倚的态度,探索疾病的遗传因素是一种方式。这些研究有助于确定新的线索,以便更好地了解精神疾病背后的生物学机理。他探讨了精神分裂症的遗传研究,从早期的全基因组关联研究到如今利用NGS技术的更先进的探索。研究联盟对于深入了解这种疾病是十分有价值的 通过增加样本量,研究人员已经发现了一些新线索。Neale博士提醒大家,目前仍有数千个影响尚未确定,而每个影响都是相当小的。 “以高通量的方式分析遗传变异,这很了不起,但我们需要研究生物学,弄清楚这里到底发生了什么,”他说。“通过这些研究,我们将发现新的神经生物学。我们需要分析并拷问这些新线索,才能真正了解发生的事情。” /p p   出于此,Neale博士表示十分看好千人基因组计划(1000 Genomes Project),他希望由此开启不同的模式和方法,以查看新出现的de novo突变。 /p p   短期课程的第三位演讲者是哈佛大学医学院的遗传学家Steven McCarroll。在这个题为“MHC在精神分裂症中的作用”的演讲中,他介绍了一种称为Drop-Seq的技术,可研究如大脑这样复杂组织中的不同类型细胞之间的遗传改变。Drop-Seq的最终结果是来自于不同细胞类型的RNA文库,他的实验室已通过视网膜研究对此进行验证。 /p p   利用Drop-Seq,McCarroll博士及其实验室揭示了有关精神分裂症的新的生物学观点。C4补体基因中的一个SNP已知与这种疾病相关联,但它并没有与已知的任何变异相对应。他及其合作者利用分子分析来检测不同的C4基因型,发现了这个家族中有四种常见的变异,然后测定了其在死后大脑样本中的表达情况。他们发现,C4A变异对应的精神分裂症风险明显提高。进一步的研究表明,这个蛋白是补体级联中的一部分,用于标记细胞和碎片以便清除。此证据表明,这个变异可能导致在“突触修剪”的关键时期蛋白质行为发生改变,导致疾病的发生。 /p p   “当然,这只是其中一个故事。不过我希望它能鼓励人们,即使是那些复杂、多基因的疾病,这些技术也能为“(疾病过程)实际可能发生的事情”引入新的假说,”他说。“并提供新的治疗可能性。” /p p   加利福尼亚大学圣地亚哥分校基因组医学研究所的Albert La Spada分享了他自己的例子,细致的遗传变异机理研究如何引申出新的疗法。他在亨廷顿氏病上的研究将一种潜在疗法引入临床试验。这种KD3010药物经FDA批准可用于糖尿病和代谢疾病,可能有助于阻止病情恶化。La Spada博士强调了他的工作并没有完成,并强调了细致的表型分析是阻碍基因组学在大脑疾病领域上获得成功的一个巨大障碍。 /p p   “如果你正在研究一个疾病过程,你真的需要着手去完成一名系统生物学家的任务。这将需要应用多种方法才能向前推进,”La Spada博士谈道。“其次,无论你是否意识到,遗传学将伴随你的每一步,让你定义一种疾病,重新定义它,然后解析它,这样你才有望开发出一种疗法。” /p p   Alison Goate是西奈山伊坎医学院的一名遗传学研究人员。她随后上台探讨了有关阿尔茨海默病的遗传学研究工作。与她之前的同事一样,她倡导一种系统方法,并指出这些方法已经在阿尔茨海默病领域取得了最佳的效果。到目前为止,遗传学研究支持& amp #946 -淀粉样蛋白的假说,即这种疾病的可怕症状是由大脑中累积的& amp #946 -淀粉样蛋白斑块引起的。不过新的研究表明,可能有不同类型的过程,不同类型的细胞,它们出了差错,导致斑块形成。新研究正在发现淀粉样前体基因和早老素1以外的基因,包括SPI1和TREM2。Goate认为,这其中一些基因最令人感兴趣的是,它们可能不是阿尔茨海默病特异的。 /p p   “我们在深入了解时发现,这些基因可能从总体上影响了神经退行性疾病的风险– 它们与肌萎缩侧索硬化症(ALS)、额颞痴呆症和帕金森氏症相关联,”她说。“因此,我们了解到的是,它们的作用可能并不是专门清除& amp #946 -淀粉样蛋白,或许还与清除碎片有关。” /p p   Goate也为美国国家衰老研究所的阿尔茨海默病测序计划点赞。这个计划有望鉴定出与疾病相关的新基因,这包括潜在的致病基因,也可能是保护基因。“我们可以从保护因子上了解很多,”她说。“如果我们发现这些基因是保护性的,那么我们在设计药物时就可以模拟这种保护作用。” /p p   Nicholas Katsanis用一场有关神经精神疾病中的拷贝数变异的演讲作为这一天的结束。他提醒说,真正的遗传外显率有点像“独角兽”,而研究人员可能不知道如何测定它是否真的存在。他希望研究人员能花更多时间来研究保护性的等位基因,并强调需要再上一层,这样我们才能利用遗传发现来帮助治疗疾病。遗传学家和神经学家需要共同努力,以便真正了解不同等位基因对疾病表型的影响。“医学上的重测序是不够的。我们需要进行功能评估,”Katsanis博士指出。“这里可没有什么好人和坏人。等位基因以依赖相互作用的方式发挥它们的影响。因此,我们必须想办法弄明白这一切。” /p
  • 2013年Eppendorf & Science 全球神经生物学奖申请启动
    Eppendorf & Science神经生物学奖 Eppendorf & Science全球神经生物学奖是授予在神经生物学领域辛勤耕耘的青年科学家(35 岁以下),以表彰他们的非凡贡献。所有奖项的获得者都是由《Science》杂志高级编辑Peter Stern博士领衔的独立科学家所组成的委员会评出。获奖者不仅可获得25,000美元的高额奖金,其获奖论文能发表在《Science》杂志上,并得以全额资助参与美国神经科学协会年会和颁奖仪式,还将获邀参观Eppendorf 位于德国汉堡的总部。 2012年度大奖被授予美国匹兹堡大学助理教授Marlene R. Cohen博士。 申请时间 即日起至2013年6月15日 申请规则 申请者必须是在过去10年内获得博士学位的神经生物学专家,并且年龄小于(含)35周岁。申请者的研究领域必须属于神经生物学领域并从事或涉及与论文中所描述的相关工作,展示的科研成果必须在过去三年内完成 申请程序 申请者所写的论文不超过1000个单词,并提交一份完整的申请表,以及由申请者的导师、主管或熟悉申请者工作的同事所写的一封推荐信,以上文档必须用英文撰写并在线提交 评选程序 由全球顶尖的神经生物学领域专家组成评委会会在6月至8月汇总和评选所有提交方案,9月选拔并通知获奖者,当年11月公布获奖名单并举行颁奖典礼 ,并在典礼上宣布获奖者和入围者名单 填写申请表 了解更多信息请访问 http://www.eppendorf.com/prize Eppendorf 官方微博:http://weibo.com/eppendorfchina Eppendorf 中文官网:http://www.eppendorf.cn 关于艾本德 (Eppendorf) 德国艾本德股份公司于1945年在德国汉堡成立,是一家全球领先的生物技术公司。产品包括移液器、分液器和离心机以及微量离心管和移液吸头等耗材,此外还提供从事细胞显微操作的仪器和耗材、全自动移液系统、DNA 扩增的全套仪器。产品主要应用于科研、商业化的研发机构、生物技术公司以及其他从事相关生物研究的领域。2007年 Eppendorf 收购美国 New Brunswick Scientific (NBS) 公司,2012年 Eppendorf 收购德国 DASGIP 公司,拓展了其细胞培养领域的产品线。 关于艾本德中国 (Eppendorf China Ltd.) 2003年Eppendorf正式进入中国,分别在上海、北京、广州设立分公司,启动直销的经营模式,为中国客户提供更便捷的技术售后服务。目前全国雇员数量200多名,产品销售覆盖各大中型城市,是Eppendorf全球发展最快的子公司。
  • 新一届Eppendorf & Science神经生物学奖开放申请
    祝贺来自美国普林斯顿神经学研究院的Dr. Michael Yartsev荣获2013年度Eppendorf & Science神经生物学奖!Dr. Yartse使用一种罕见的动物模型——蝙蝠来研究哺乳动物大脑中有关空间记忆和导航系统的神经机制。他的研究成果不仅支持了现有假说提出的对比研究,并且也对该领域长期存在的问题提出了新的见解。他的研究成果也为在神经科学研究中使用新的动物模型开辟了新的思路。每年一度的“Eppendorf & Science神经生物学奖”是授予像Dr. Yartse这样在神经生物学领域取得非凡成就的青年科学家。Dr. Yartse是这一国际性奖项的第12位获奖者,不仅会获得25,000美金的高额奖金,并将受邀出席在美国圣地亚哥举办的2013年度神经科学大会年会。你可能就是下一位获奖者!如果你的年龄不超过35岁(含),并正在进行神经生物学领域的研究,你可能会成为2014年度新的获奖者。下届奖项申请截止日期是2014年6月15日,详情登陆 http://www.eppendorf.com/prizeEppendorf发酵工艺官方微信:Eppendorf的E课堂Eppendorf官方微博:http://weibo.com/eppendorfchinaEppendorf中文官网:http://www.eppendorf.cnEppendorf China十周年庆官网:http://tenyears.eppendorf.cnEppendorf发酵工艺网络研讨会:http://a.bioon.com.cn/eppendorf_lesson/关于艾本德(Eppendorf)德国艾本德股份公司于1945年在德国汉堡成立,是一家全球领先的生物技术公司。产品包括移液器、分液器和离心机,以及微量离心管和移液吸头等耗材,此外还提供从事细胞显微操作的仪器和耗材、全自动移液系统、DNA扩增的全套仪器。产品主要应用于科研、商业化的研发机构、生物技术公司以及其他从事相关生物研究的领域。2007年Eppendorf收购美国New Brunswick Scientific(NBS)公司,2012年收购德国DASGIP公司,拓展了其细胞培养领域的产品线。关于艾本德中国(Eppendorf China Ltd.)2003年Eppendorf在中国注册了艾本德(上海)国际贸易有限公司和艾本德中国有限公司,分别在北京、广州设立分公司,启动直销的经营模式,为中国客户提供更便捷的技术售后服务。目前全国雇员数量200多名,产品销售覆盖各大中型城市,是Eppendorf全球发展最快的子公司。
  • 2009年Eppendorf神经生物学奖揭晓
    2009 年神经生物学奖颁奖仪式已落下帷幕,此项由Eppendorf和Science 杂志共同合作的大奖授予瑞士洛桑大学整合基因组中心的教授助理Richard Benton博士。在10 月19 日芝加哥举办的全球神经生物学年会的庆祝晚宴颁奖礼上,这位科学新星同时获得了25,000 美金的奖金。   Richard Benton 博士的研究揭示了昆虫对气味物质感受机制的奥秘。若通过加入特定的化学抑制剂的方式来研究这些分子,有可能控制气味偏好的昆虫传播诸如疟疾等疾病的行为。   欲了解本次颁奖盛典和RichardBenton 博士的个人事迹,敬请登录   www.eppendorf.com/award
  • 2011 Eppendorf神经生物学奖得主造访Eppendorf
    经过组委会的层层筛选,伦敦大学的博士后研究员Tiago Branco 成为2011年度Eppendorf神经生物学奖的获得者。他同妻子Beverley Clark博士一起,在今年6月受邀造访德国艾本德股份公司总部。在此次德国之旅中,Branco博士谈及了他对于神经树突方面的开创性研究。他的卓绝研究成果获得了评委会的赞赏,并授予他2011年度的大奖。 这项奖额高达25,000美元的年度性国际大奖由全球领先的生物技术公司Eppendorf和著名的《Science》杂志联合举办,旨在奖励在神经生物学领域的杰出科学家,以表彰他们对神经生物学研究领域的非凡贡献。2012年度的奖项申请已截止,评选工作正紧张进行中。如果您的年龄在35岁(含)以下,并正在从事神经生物学研究,2013年6月15日前登录wwhttp://www.eppendorf.com/prize 在线递交您的申请,下届冠军虚位以待! Eppendorf官方微博:http://weibo.com/eppendorfchina Eppendorf中文官网:http://www.eppendorf.cn 关于艾本德(Eppendorf) 德国艾本德股份公司于1945年在德国汉堡成立,是一家全球领先的生物技术公司。产品包括移液器、分液器和离心机,以及微量离心管和移液吸头等耗材,此外还提供从事细胞显微操作的仪器和耗材、全自动移液系统、DNA扩增的全套仪器。产品主要应用于科研、商业化的研发机构、生物技术公司以及其他从事相关生物研究的领域。2007年Eppendorf收购美国New Brunswick Scientific (NBS) 公司,2012年Eppendorf收购德国DASGIP公司,拓展了其细胞培养领域的产品线。 关于艾本德中国(Eppendorf China Ltd.) 2003年Eppendorf正式进入中国,分别在北京、广州设立分公司,启动直销的经营模式,为中国客户提供更便捷的技术售后服务。目前全国雇员数量近200名,产品销售覆盖各大中型城市,是Eppendorf全球发展最快的子公司。
  • 2017 Eppendorf & Science 神经生物学奖开放申请
    每年一度的“Eppendorf & Science神经生物学奖” 是由顶级科学杂志《Science》与德国 Eppendorf 公司共同颁发,授予在神经生物学领域辛勤耕耘的青年科学家,以表彰他们的非凡贡献。所有奖项的获得者都是由《Science》杂志领衔的独立科学家所组成的委员会评出,年龄在 35 岁(含)以下的青年科学家都有机会申请。来自美国西奈山医院的 Gilad Evrony 博士以其在人脑单个细胞基因组测序和分析技术的成就赢得 2016 年 Eppendorf & Science 神经生物学奖。Evrony 博士的研究发现神经元基因组存在多种突变,表明人脑中的每个神经元携带有独特的体细胞突变指纹。这种突变可以导致局灶性脑畸形,并且可能在其他未破解的神经系统疾病中发挥一定作用。这种技术还首次在人脑中重建发育系谱树,从而可以研究细胞如何增殖并迁移以构建大脑。作为全世界最具权威的学术期刊之一,《Science》杂志吸引了全世界数以万计的科研专家。Eppendorf 全力支持青年科学家的发展,科研路漫漫,我们愿与您并肩同行。或许,您就是下一位获奖者!并将赢得:25,000 美元奖金获奖论文发表在《Science》杂志上得以全额资助参与美国神经科学协会年会和颁奖仪式获邀参观 Eppendorf 位于德国汉堡的总部申请截止日期为2017 年6 月15 日。进入在线申请 : http://corporate.eppendorf.com/de/unternehmen/wissenschaftliche-awards/global-award/ Eppendorf官方微博:http://weibo.com/eppendorfchinaEppendorf官方微信:eppendorfchina关于艾本德(Eppendorf)德国艾本德股份公司于 1945 年在德国汉堡成立,是一家全球领先的生物技术公司。产品包括移液器、分液器和离心机,以及微量离心管和移液吸头等耗材,此外还提供从事细胞显微操作的仪器和耗材、全自动移液系统、DNA扩增的全系列仪器。产品主要应用于科研、商业化的研发机构、生物技术公司以及其他从事相关生物研究的领域。2007 年Eppendorf 收购美国New Brunswick Scientific (NBS) 公司,2012 年收购德国 DASGIP 公司,拓展了其细胞培养领域的产品线。关于艾本德中国(Eppendorf China Ltd.)2003 年 Eppendorf 在中国成立代表处,随后注册了艾本德(上海)国际贸易有限公司和艾本德中国有限公司,分别在北京、广州设立分公司,启动直销的经营模式,为中国客户提供更便捷的技术售后服务。目前全国雇员数量200多名,产品销售覆盖各大中型城市,是 Eppendorf 全球发展最快的子公司。
  • 且看冷冻电镜如何应用在神经生物学研究中
    p strong 仪器信息网、中国电子显微镜学会、中国电镜网联合报导 /strong strong : /strong 2015年10月18日第四届全国激光共聚焦显微技术理论与应用学术交流研讨会圆满闭幕。 /p p   在14日下午的会议中,有一个特邀报告格外地引起了笔者的注意,来自西北农林科技大学动物医学院的赵善廷教授提到他曾与高压冷冻固定技术的发明者瑞士科学家Studer博士合作,将该技术与器官型脑片培养技术(organotypic slice culture)相结合,成功地研究了与学习和记忆密切有关的长时程效应(long-term potentiation, LTP)对突触的影响。 /p p style=" TEXT-ALIGN: center" dir=" ltr" img style=" WIDTH: 450px HEIGHT: 300px" title=" 00.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201510/insimg/2f90df00-d7ca-416b-bd07-44431d4c22cd.jpg" width=" 450" height=" 300" / /p p style=" TEXT-ALIGN: center" strong 西北农林科技大学动物医学院的赵善廷教授 /strong /p p   据了解,以往的常规 a href=" http://www.instrument.com.cn/zc/1139.html" target=" _self" title=" " style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 电镜 /span /a 技术需要先用甲醛、戊二醛等化学试剂对样品进行化学固定,但这种固定方法有三个缺点包括: /p p   一、无法扑捉短暂生理过程的形态变化和特征,如神经元突触小泡内神经递质的释放;二、脱水过程用酒精等有机溶剂会造成细胞和组织皱缩,使其形态和大小发生改变;三、化学固定剂特别是戊二醛可引起蛋白质变性,使其与相应抗体结合能力下降甚至丧失,导致电镜免疫组化染色失败。 /p p   为克服化学固定的这些缺点,上世纪九十年代末,瑞士科学家Studer博士发明了一种新的物理性电镜固定技术,即高压冷冻电镜固定技术,该技术可以在不使用任何化学固定剂的条件下五十毫秒以内将组织和细胞完全固定。 /p p   虽然高压冷冻技术克服了化学固定的三大缺点,但它本身也有一个不足之处:固定的样品非常小,直径不能超过1mm,厚度不能超过& amp #956 m,从而限制了它在神经生物学研究中的应用。 /p p   为了克服高压冷冻固定技术的缺点,将其应用到神经生物学研究中,2002年,该技术发明者Studer博士与当时正在德国弗莱堡大学医学院做博士后的赵善廷博士合作,将器官型脑片培养技术和高压冷冻固定技术相结合固定神经纤维,历时五年的不断摸索,到2007年两种技术终于完美地结合在一起。赵教授在接受本网记者采访时表示,希望能够与国内相关课题组合作,为这种样品制备方法寻找更多的应用领域。 /p p style=" TEXT-ALIGN: right" 撰稿:史秀明 /p
  • 2009 Eppendorf & Science 神经生物学大奖---赢得殊荣!
    由艾本德与《科学》杂志共同颁布的神经生物学奖是该领域内国际性科研的年度大奖,获得这个享誉业内 荣誉的同时更可抱得高达25,000美圆的奖金。这项年度国际研究奖是由艾本德国际生物技术公司与《科学 》杂志于2002年联合创立,旨在鼓励青年科学家利用分子与细胞生物学的方法进行神经生物学方面的研究 。 2008年度的荣誉之冠由来自美国得克萨斯州贝勒医学院的Mauro Costa-Mattioli博士最终摘得。通过揭露 为形成长久记忆的翻译调控的重要性,Mauro Costa-Mattioli博士的研究为最终研发包括记忆力功能的衰 老和神经退行性疾病等在内的主要大脑疾病的新型治疗药物做出极大的贡献。 2009年度的评选活动已正式启动,2009年6月15日前,欢迎所有年龄35岁以下,在神经生物学领域学有所成的青年科学家自荐报名。 欲了解更多奖项的相关内容,请访问www.eppendorf.com/prize网站。 Eppendorf 中国: www.eppendorf.cn
  • 2008年Eppendorf & Science 神经生物学奖颁布
    2008年Eppendorf & Science 神经生物学奖颁布 2008年Eppendorf & Science 神经生物学奖已正式宣布,此届总额达25000美元的国际研究奖项被授予美国得克萨斯州贝勒医学院的Mauro Costa-Mattioli博士。通过揭露为形成长久记忆的翻译调控的重要性,Mauro Costa-Mattioli博士的研究为最终研发包括记忆力功能的衰老和神经退行性疾病等在内的主要大脑疾病的新型治疗药物做出极大的贡献 该奖项是由德国汉堡生物技术公司Eppendorf和国际知名的杂志《科学》共同发起。该奖项是面向所有35岁以下的所有年轻科学家,以表彰他们为神经生物学研究做出的杰出贡献。下届奖项的申请截止日期为2009年6月15日。欲了解更多奖项的相关内容,请访问www.eppendorf.com/prize网站。
  • 2012年Eppendorf&Science全球神经生物学奖申请启动
    Eppendorf & Science 神经生物学奖Eppendorf & Science 神经生物学奖是Eppendorf公司联合《Science》杂志,为鼓励全球青年科学家(35岁以下)对大脑及神经系统功能方面进行研究而设立的神经生物学奖项,奖励金额为25,000美元。这一国际性的奖项建立于2002年,至今已颁给了10位杰出的年轻神经生物学家。 参赛规则• Eppendorf & Science 神经生物学奖是一项国际性研究奖项。• 参赛者必须是在过去10年内获得博士学位的神经生物学专家,并且年龄小于35周岁。• 参赛者论文中所描述的研究必须属于神经生物学领域。• 参赛者必须从事或涉及与论文中所描述的相关工作。• 研究成果必须在过去三年已完成。• Eppendorf、《科学》杂志和AAAS的员工及其亲属不得参与本奖。参赛程序参赛材料必须用英文形式提交,参赛者必须提交下述项目:1. 一份完整的申请表 2. 参赛者所写的一篇短文,短文中描述该参赛者的工作现有的方法和在神经生物学领域领先的相关研究。短文长度不得超过1000个单词。参赛者的研究成果必须在过去三年已完成。3. 由参赛者的导师、主管或熟悉参赛者工作的同事所写的一封推荐信。4. 参赛者的简历, 包括:(1). 参赛者已发表的论文中所引用的所有文献列表。(2). 参赛者所获的各项学术奖励和专业奖项。(3). 相关专业工作经验 。(4). 与论文相关的参赛者发表的两篇文献复印件。 将上述所有材料必须以PDF格式发送电子邮件至:eppendorfscienceprize@aaas.org 请注意:如果您的联系信息在提交后发生变化,请务必告知 eppendorfscienceprize@aaas.org 或致电+1 20 2326 6513。 评选程序6月至8月:汇总和评选所有提交方案9月:选拔并通知获奖者11月:公布获奖名单并举行颁奖典礼 所有获奖者、入围者和申请人将于9月底前被告知结果。获奖者和入围者名单将在颁奖典礼上宣布。 参赛截至日期: 2012年6月15日 《Science》杂志编辑将对论文做初步评选。最优秀的前10%的论文将提交给评选委员会。评选委员会是由全球顶尖的神经生物学领域专家组成,并由《Science》杂志资深编辑Dr. Peter Stern担任主席。大部分评委由神经科学学会提名任命。论文评选主要遵循2大标准:科学水准和意义,写作风格和清晰度。 奖励 大奖得主将在最后入围的3位候选人中选出, 获取高达25,000美元的奖励金额。大奖得主的论文将发表在《Science》和《Science Online》。此外,获胜者将免费获得为期5年的《Science》和《Science Online》订阅以及价值1,000美元的Eppendorf产品。 同时,Eppendorf公司将全力资助大奖得主出席由神经科学学会举办的颁奖典礼,并提供获胜者前往Eppendorf总部德国汉堡的访问机会。 点击下载申请表 Eppendorf China Limited艾本德中国有限公司网址:www.eppendorf.cn邮箱:market.info@eppendorf.cn热线: 400 885 7200 更多信息,请访问:www.eppendorf.com/prize
  • 河北省神经生物机能重点实验室通过验收
    7月22日,开滦总医院河北省神经生物机能重点实验室建设项目,顺利通过由河北省科技厅、河北省发展和改革委员会、唐山市科技局等组成的专家组验收。  开滦总医院神经内科为河北省医学重点学科及省临床重点专科,是集临床、科研、预防、医学生临床教学和硕士研究生培养为一体的体现当代医学发展方向的大型综合性学科。已发展成为神经生物学实验室、神经平衡机能实验室、神经电生理实验室、睡眠分析实验室、神经免疫学实验室等11个实验室单元。目前已确定“神经功能的调控和可塑性机制”和“脑血管病的分子流行病学及溶栓的分子生物学机制”为主要研究方向。  截至目前,实验室已开展了大量的基础与临床科研工作,取得了38项科研成果,其中18项获得省、部级奖项。目前正在承担着科研课题15项,其中建设期内新承担国家级科研项目(包括作为研究分中心参加项目)4项。实验室已发表科研论文200余篇,出版专著9部,获国家实用新型专利1项 建设期内发表科研论文20篇,其中SCI收录6篇,出版专著2部。
  • 布鲁克公司推出世界首台用于生物学结构解析的1.1GHz高分辨率超导NMR磁体
    加利福尼亚州阿西洛马-2019年4月8日-在第60届实验核磁共振会议上(ENC)今天,Bruker公司宣布在超高场(UHF)高分辨率NMR波谱学中取得突破性进展,该成果将应用于结构生物学和固有无序蛋白(IDPs)的研究。UHF NMR技术与X射线晶体学或低温EM等其它结构生物学分析方法互为补充,可以提供溶液和生理条件下的蛋白质分子动力学、功能性折叠以及与药物分子的结合等信息。布鲁克在2018年末成功地推出了世界上第一台稳定且均匀的标准腔 Ascend 1.1GHz NMR磁体。该磁体的开发旨在满足科学家们在研究更大分子量的蛋白质,功能无序性和大分子复合物过程中日益增加的灵敏度和更高分辨率的科学需求。最近几个月,Bruker和一些重要的UHF合作者在Bruker瑞士的GHz级磁体工厂通过一系列高分辨率和固态NMR实验展示了这一前沿技术的强大功能和优势。多年来,高分辨率NMR仅限于23.5特斯拉的磁场,相当于1.0GHz的质子(1H)共振频率。这个限值是由金属低温超导体(LTS)的物理性质决定的,第一台Avance 1000 NMR波谱仪是2009年在法国里昂的超高场磁共振中心实现的。高温超导磁体(HTS)最早发现于20世纪80年代,它为在低温下获得更高磁场打开了一扇大门,但YBCO HTS磁带制造和超导磁体技术中的巨大的挑战使得UHF进一步发展直到最近都令人望而生畏。Bruker的新型高分辨率1.1GHz磁体的推出很好地证明了新的LTS-HTS混合磁体技术的可行性,在HTS材料制造,测试和磁带连接以及UHF磁体稳定,均匀性,淬火保护和动力控制领域都取得了巨大的进步。布鲁克Biospin集团总裁Falko Busse博士说:“这款破纪录的25.9特斯拉NMR谱仪很好地展示了我们在LTS-HTS混合超导磁体领域以及UHF NMR探头和谱仪开发领域的技术能力”。“Bruker很自豪能够再次为生命科学研究界提供一种全新频率的NMR波谱仪,来推动生物化学,结构生物学和材料学走在研究的前沿。这个1.1GHz的系统也是我们开发第一个1.2GHz NMR磁体过程中的关键一步。”来自意大利佛罗伦萨大学磁共振中心和化学系的Lucia Banci和Claudio Luchinat教授是布鲁克UHF项目的长期合作伙伴,有望完成世界上第一台高分辨率1.2GHz波谱仪。在1.1GHz系统上进行实验后,他们表示:“我们对关于UHF NMR的这一重要成就表示赞赏。我们用一个3毫米TCI超低温探头在这种场强下实现了1.1GHz,不能不说这一进步十分惊人,这让我们能够在原子分辨率水平上更详细地研究固有无序蛋白质的结构。在1.1GHz谱仪上采集的实验数据很好地展示了超高场NMR实验的优点,我们期待着不久的将来能够在1.2GHz谱仪上进行实验。”“我们对布鲁克的UHF磁体技术印象深刻,这让我们可以和111 kHz魔角旋转(MAS)固态NMR探头一起进行测试。一位来自苏黎世联邦理工学院(ETH Zürich)的1.2GHz潜在用户Beat Meier教授这样说道,“明显提升的灵敏度将是生物和生物医学研究中成功的一个关键点,例如针对蛋白质复合物和阿尔茨海默-β纤维。”来自苏黎世联邦理工学院(ETH)的Matthias Ernst教授继续说道:“这种新仪器的灵敏度令人印象深刻,高速MAS下质子检测的新应用将成为可能。此类新型高温超导磁体的均匀性是无可挑剔的,符合我们对均匀性的严格要求,这也是领域里一直备受关注的问题。”德国哥廷根马克斯普朗克生物物理化学研究所主任兼研究员的Christian Griesinger博士观察到:“结合静态X射线结构,这1.1GHz数据首次定量解释了FRET(福斯特共振能量转移)效率。这一量化结果为传感器研究开发人员进一步优化钙离子传感器打下了坚实的基础,钙离子传感器是利用空间分辨荧光分析技术测量神经元中钙浓度的关键点,因此也是神经生物学中必不可少的工具。我们期待着1.2GHz波谱仪的诞生,并把它用于目前的项目中来表征固有无序蛋白质的液滴和低聚物,这些蛋白质是许多疾病的主要参与者,例如神经变性和癌症。这些重要的无序系统目前无法用结构生物学中的其他方法,如X射线结晶学或低温电子显微镜,以埃分辨率进行研究。”来自田纳西州孟菲斯市St. Jude儿童研究医院的结构生物学系主任Charalampos Kalodimos博士说,一旦工厂完成所有测试,他们有望获得世界上第一台1.1GHz NMR光谱仪。他又补充道:“我们期待着今年晚些时候,我们的机构将收到第一台1.1GHz NMR波谱仪。1.1GHz系统将是我们在动态分子机器领域进行研究的最重要的工具,例如对分子伴侣和蛋白激酶的研究。我们对布鲁克能够取得这一巨大的技术成就表示由衷的赞美。”布鲁克公司今天还宣布,它已收到德国柏林Leibniz Forschung分子药理学研究所教授Hartmut Oschkinat和Adam Lange的1.2GHz NMR系统的额外采购订单。Bruker公司现在总共已收到九台1.2GHz NMR波谱仪的采购订单,到目前为止全部都在欧洲。关于布鲁克公司布鲁克公司致力于为科学家们创造有利条件,实现技术突破,并且开发一系列全新的应用程序,以便提高人们的生活质量。科学家们借助于布鲁克公司的高性能科学仪器以及高价值分析和诊断解决方案,能够在分子、细胞和微观层面对生命和物质进行研究和探索。布鲁克公司与客户密切合作,在生命科学分子研究、应用和制药应用、显微镜和纳米分析、工业应用、细胞生物学、临床前成像、临床表型组学和蛋白质组学研究,以及临床微生物学领域推动创新,提高生产力,并且为客户实施的方案和项目助一臂之力。
  • 安捷伦科技公司与大邱庆北科学技术院合作进行神经代谢组学研究
    安捷伦科技公司与大邱庆北科学技术院合作进行神经代谢组学研究 2013 年 10 月 25 日,北京 &mdash 安捷伦科技公司(纽约证交所:A)和大邱庆北科学技术院 (DGIST) 今日宣布通过开设新的 DGIST 神经代谢组学卓越研究中心,两者将建立战略合作关系。中心将在其生物标记物的神经代谢组学研究中使用安捷伦生物分析仪,以更早地检测和诊断大脑疾病。 DGIST 是韩国顶尖的大学和研究机构之一。 神经代谢组学研究的是依靠氧气和葡萄糖来维持大脑运转的一系列生化反应。在新中心,科学家和研究者将分析大脑细胞代谢物质的变化,并研究这些变化对人体生理功能和行为的影响。 今日开幕的研究中心将作为专业知识共享中心,涵盖了美国约翰斯霍普金斯大学代谢与肥胖研究中心和大邱主要的医疗机构和医院的科研能力。 DGIST 研究中心主任 Eun-Kyoung Kim 教授说道:&ldquo 神经代谢组学卓越研究中心将有助于韩国增强在大脑科学领域的实力,使得 DGIST 能对世界领先的研究做出重要贡献。通过与安捷伦合作,我们可以继续作为大脑科学发展和研究的先锋。&rdquo 安捷伦生命科学业务部韩国和南亚太地区总经理 Rod Minett 表示:&ldquo 大脑可以说是人体最重要的器官,安捷伦支持对其的探索,以帮助科学家和医疗机构为了全人类的利益进一步推动神经科学的发展。&rdquo 该中心位于大邱,计划开展神经代谢组学研究项目,该项目也涉及到其他的研究领域,如医学、神经生物学、统计学、计算机科学和系统生物学。中心可能还将会与韩国、新加坡和澳大利亚的其他主要教育和医疗机构开展联合研究工作。同时还将训练和培养科学家、研究者和化学家,以满足神经系统科学研究领域对高技能人才的需要。 安捷伦和 DGIST 从 2012 年年底便开始合作,DGIST 通过安捷伦更早地接触到研究所需的新技术和软件开发。 关于 DGIST 大邱庆北科学技术院 (DGIST) 是大邱和庆尚北道地区第一个由政府资助的研究所,有着行业领域同大邱研究开发特区相一致的全球基础设施。 拥有世界一流的师资和校园设施,并开设有各种创新课程以培养高素质的人才,他们将会在高技术研究领域、教育机构和商业风险投资企业中扮演重要角色。该机构与大邱庆北尖端医疗综合园区通力合作,致力于医疗领域的融会贯通,包括大脑相关行业、医疗和机器人行业等。DGIST 的目标是打造成为世界一流的研究型综合性大学,旨在培养从事科学和技术的优秀人才。 关于安捷伦科技公司 安捷伦科技(NYSE 代码:A) 是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20500 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2012 财政年度,安捷伦的业务净收入为 69 亿美元。有关安捷伦科技的更多信息,请访问:www.agilent.com.cn。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 千人齐聚 中国细胞生物学学会学术大会在京召开
    “中国细胞生物学学会第十二次学术大会暨第八届全体会员代表大会”在北京隆重举行   仪器信息网北京讯 2011年7月15-18日,由中国细胞生物学学会主办,中国科学院动物研究所、生物膜与膜生物工程国家重点实验室、计划生育生殖生物学国家重点实验室共同承办的盛会——“中国细胞生物学学会第十二次学术大会暨第八届全体会员代表大会”在北京九华山庄隆重举行,会议主题为“细胞活动、生命活力”。 大会现场   1500余名来自全国各地科研院所、高等院校等单位代表参加了本次大会,中国科协副主席程东红出席会议并致辞。中国细胞生物学学会理事长裴钢院士在大会开幕式上作报告时指出,报名参加本届大会的青年学者与在校学生明显超出了预期,反映出中国细胞生物学研究的新生力量正在兴起,中国细胞生物学发展迎来了新的春天。裴钢院士还透露,最近我国利用IPS细胞克隆的小猪已经诞生,正待命名,这是我国细胞生物学研究领域的又一重大进展。 中国细胞生物学学会理事长裴钢院士在大会上作理事会工作报告   本届大会既关注细胞生物学基本科学问题,还特别关注干细胞与再生医学、生殖细胞与发育、细胞稳态与疾病、基因、蛋白与细胞工程等重要应用和交叉领域的研究进展,蒲慕明、林鸿宣、贺福初、曹雪涛、尚永丰、陈志南、候凡凡、朱学良、周琪、舒红兵等十几位著名专家作了大会报告。 报告人:中科院上海生命科学研究院蒲慕明研究员 报告题目:Development of Neuronal Polarity 报告人:中科院上海生命科学研究院林鸿宣院士 报告题目:水稻产量相关性状的遗传调控机理研究 报告人:第四军医大学陈志南院士 报告题目:肿瘤细胞生物学与转化研究的未来与发展 报告人:南方医科大学侯凡凡院士 报告题目:蛋白质氧化损伤对肾脏细胞的病理生物学作用   本届大会还设立了11个分会场,主题分别为:干细胞与再生医学、生殖细胞与发育、细胞通讯与信号转导、细胞结构与细胞行为、免疫细胞生物学、神经生物学、细胞稳态与疾病、基因蛋白与细胞工程、植物细胞生物学、细胞生物学教学、现代细胞生物学技术。每个分会场均设有主报告,其余分会场报告则从投送的摘要中遴选产生。   本次大会十分重视墙报的运用,共展示了300余篇与干细胞与再生医学、生殖细胞与发育、细胞通讯与细胞转导等相关的最新论文摘要,每个墙报前都有专人负责讲解。 墙报展厅现场   大会还特别颁发了CST杰出贡献奖、CST杰出成就奖、CST青年优秀论文奖以及CST优秀墙报奖。CST杰出贡献奖由兰州大学郑国锠教授获得,表彰其为中国细胞生物学发展做出的卓越贡献,主办方为获奖者将颁发了奖杯、证书及1万元奖金奖励。CST杰出成就奖分别由清华大学陈晔光教授和中科院上海生命科学研究院朱学良研究员获得,表彰其近五年来在细胞生物学领域内获得的重要研究成果和对我国细胞生物学发展作出的突出贡献,主办方为获奖者将颁发了奖杯、证书及6000元奖金奖励。 颁发CST杰出贡献奖、CST杰出成就奖   大会同期还举办了仪器、试剂和耗材展览活动,蔡司、碧迪、艾本德、Life Technologies、默克密理博、贝克曼库尔特、赛默飞世尔、珀金埃尔默、罗氏、尼康、赛信通、美迪希、Abcam、普洛麦格、北京傲锐东源、北京东胜创新、安迪、北京五洲东方、吉泰、优宁维等近40家知名厂商参展。 展会现场一角   据了解,细胞生物学是二十一世纪生命科学领域重要的前沿学科之一,也是当今发展最快、最活跃、与其它学科广泛交互的学科之一,本次盛会为促进我国细胞生物学领域专家的交流与合作起到了重要作用,下一届会议将于2013年在武汉召开。
  • 当超声“碰到”神经元,脑科学有了新工具——记国家重大科研仪器研制项目“基于超声辐射力的深部脑刺激与神经调控仪器”
    项目组科研人员与同行专家交流合影。 研究团队供图中国科学院深圳先进技术研究院(以下简称深圳先进院)实验室里,一台高精尖仪器一排排控制灯交替闪烁。一万多个探头发出超声波形成的操控声场,如同“上帝之手”穿过实验动物的颅骨,直抵大脑深处,精准“触碰”一些神经元,产生仅仅几微米的细微形变,被磁共振仪敏锐捕捉到。“亮了!亮了!”深圳先进院研究员郑海荣看到,磁共振图像上黑漆漆的实验动物大脑中间出现白色的小亮点,犹如在脑科学的未知宇宙中点亮一颗新的星球。2019年初,郑海荣团队迎来里程碑式的一天,这也是他们在国家自然科学基金国家重大科研仪器研制项目支持下开发“基于超声辐射力的深部脑刺激与神经调控仪器”的第4年。如今项目顺利结题,这台原创的高端科研仪器已进入产业化阶段。“科研需要一股不服输的韧劲!”回首研发历程,郑海荣向《中国科学报》表示,“6年来,一步步攻克科学难题、一个个突破工程难关,离不开整个团队攀登科学高峰的坚定信念和持久韧劲。”解脑科学“刚需”之急近年来,帕金森病、阿尔茨海默氏症、抑郁症、癫痫等脑疾病得到越来越多的关注,患者数量剧增,脑疾病带来的经济负担和社会负担越发严重,已成为我国人口老龄化面临的重要社会问题之一。然而,从科学上看,脑疾病发病机制仍不清晰,其诊治仍然是重大医学难题。“国际上脑科学研究者已经认识到,帕金森病、抑郁症等疾病多与深部脑区核团病变有关,对核团及其所在环路的神经调控是疾病治疗和科学研究的基本途径之一。”郑海荣表示。多年来,科学家将电、磁、光等技术与神经科学相结合,产生了脑深部电刺激、磁刺激、光遗传学等神经刺激与调控技术。但是,由于各自物理属性的不同,如何实现无创、精准对大脑深部进行有效调控仍面临严峻挑战。因此,脑科学面临的“刚需”是开发出一种适用于灵长类动物和人类、可无创到达大脑深部的刺激与调控工具。2013年前后,从事物理医学成像研究的郑海荣开始思考,有没有可能利用超声波来操控神经元活动。这个想法并不是天方夜谭。据了解,超声是一种机械波,医学上利用超声波在人体组织中的波散射来成像,就是大家熟悉的B超。早在几十年前,科学家曾观察到,超声波能够通过“声辐射力”让声场中的微小颗粒产生移动。不过,从来没有人尝试过专门设计一台这样的仪器,用超声波辐射力实现对大脑中神经元的“隔空探物”。基于此前对超声辐射力的研究,郑海荣团队下决心对“基于超声辐射力的深部脑刺激与神经调控仪器”进行自主研发,经多轮严格论证,2015年获得国家自然科学基金国家重大科研仪器研制项目支持。啃原创仪器“硬骨头”“虽然我们之前做过体量小一些的成像仪器,但这个项目从科学验证到工程实践面临的挑战非常大,刚开始心里也不太有底。”郑海荣坦承。一开始,他们就做好了啃“硬骨头”的打算。这台仪器共有4个关键部件,包括超声面阵辐射力产生与发射部件、超声电子指向与时间反演控制部件、磁共振导航超声刺激定位部件和多模态刺激反应监测部件。其中,超声面阵辐射力产生与发射部件中包含16384个阵元的面阵列超声辐射力发生器。“我们做的是原创仪器,不仅仪器国际上没有,连其器件和部件在国际市场上也买不到现成的,只能利用基础材料、元器件和芯片,在深圳自主设计、自主加工、自主调试和验证。”郑海荣介绍。更大的困难还在科学和工程上。他们遇到的第一道难题便是如何让超声波安全“穿过”颅骨。在体外实验阶段,研究人员已经实现了用面阵列超声换能器发射的声辐射力“点亮”神经元。为模拟动物体内环境,仪器部件被置于水中,如果跨过颅骨能“击出”水花则代表超声辐射力发挥作用。“外边(超声)打得挺激烈,(颅骨)里边却没丝毫动静、一点水花都没有,超声波几乎完全被颅骨散射和吸收了。”在前期屡败屡战的实验中,大家互相鼓励坚持下去。郑海荣说:“就像在挖一条隧道,没挖通之前总是黑暗笼罩,谁也不知道已经挖了多少,但只要确定大概的方向,坚持下去,终究会看到光明。”为打通这条“隧道”,他们回到科学理论中,引入非均匀多层介质中的“时间反演”理论,对每一个声信号通道的时空传播特征进行模拟、计算、调控与调试,实现各通道间纳秒级高精度控制,最终成功让上万个超声通道协同工作,“齐心协力”安全地穿过颅骨,精准聚焦在预定靶点,而且不引起脑组织损伤。一个通俗的解释是,就像北京2022年冬奥会开幕式《雪花》节目中,从节目结束时每位小演员的站位开始,通过“倒放”的方式确认每位小演员的出发时间、地点和行走路径。第二道难题是如何用核磁共振成像灵敏地检测到超声辐射力给神经元带来的4~5微米的精细变化。这事关刺激的精准,但超声本身“看不到”颅内自己的轨迹。为此,在项目支持下,他们坚持不懈开展攻关,发挥磁/声兼容的优势,创造性地研制了“快速磁共振射频激发与梯度编码成像技术、磁共振声辐射力成像技术”,用于监测超声辐射力刺激引起的微形变,有效地提高磁共振成像的时空分辨率和灵敏度,实现磁共振对于声波轨迹和靶点的敏感捕捉和可视化。2019年初,项目进行到第4年,研究团队终于解决这个问题,在“隧道”中迎来一束光明。合作才能融通高端科研仪器的研制不仅需要开创前沿科学理论,也要挑战诸多工程技术极限,只有团队相互协作、密切配合,才能实现共同的目标。该项目汇集了来自多家科研机构、不同学科背景的多个团队,70多位研究人员在统一的目标下开展分工合作。据郑海荣介绍,由他带领的深圳先进院团队主要承担超声辐射力高密度面阵辐射力发生器、万通道电子控制系统及实时磁共振刺激定位成像部件等仪器主体部分研制。强梯度声场设计工作主要由中国科学院声学研究所团队承担,刺激效果对标与标定工作由清华大学团队承担,神经生物学基础机制工作由浙江大学等团队承担,刺激的应用效果工作由首都医科大学、苏州大学团队承担。几年实践下来,多学科交叉团队形成了一套行之有效的工作机制和组织模式。“我们整个大仪器团队划分为12个小组,每周召开一次小组会,每月召开一次大组会,会议纪要有厚厚的几大本。”郑海荣介绍。研究成员表示,这样的机制形成了不同学科背景研究人员之间相互交流和学习、围绕同一目标共同攻关的良好氛围,为高效解决问题奠定了基础。如今,这台由中国科学家独创的高端仪器已经成为脑科学研究领域的“抢手货”。团队核心成员之一、深圳先进院研究员牛丽丽告诉《中国科学报》,目前已经有超过40家国内外科研机构使用了超声刺激仪器,主要应用在有癫痫、帕金森病、抑郁症、成瘾等疾病的小动物和非人灵长类大动物实验中,其有效性和安全性得到了验证。面向未来,让更多科学家用上这种仪器、助力人类脑疾病诊疗,是团队成员共同的期待。
  • 分子细胞卓越中心化学生物学技术平台与Bio-protocol联合发布《高内涵成像及分析实验手册》
    ISBN: 978-1-951285-06-7《高内涵成像及分析实验手册》封面高内涵成像分析系统同时具备自动化高速显微成像功能及自动化图像定量分析功能,可对多个样品快速成像,并从图片中提取大量的数据信息,因此可在一次实验中获取多种参数的定量信息,可更好地避免传统高通量筛选检测方式带来的假阳性和假阴性结果,使得高内涵成像分析技术被越来越多地应用到药物筛选及细胞信号通路、肿瘤、神经生物学、免疫学、传染病学、干细胞等基础研究领域。建立高特异性、高灵敏度及稳定可重复的高内涵实验体系对于获得准确可靠的结论至关重要。由中国科学院分子细胞科学卓越创新中心化学生物学技术平台与Bio-protocol中国编辑部共同启动的“《高内涵成像及分析实验手册》(High-Content Imaging and Analysis Protocol eBook)”项目,旨在打造一个高内涵领域技术共享的平台,倡导国内优秀的科研团队分享自己的成熟方案及经验,促进一线科研人员间的交流与互动,有效提升科研效率。本次出版的《高内涵成像及分析实验手册》共收录33份实验方案,分为五个章节。第一章节“高内涵成像及分析概述”部分讨论了高内涵实验设计要点,第二至第五章节按照检测对象的不同分别介绍了高内涵技术在生物大分子表达与定位、细胞亚结构、细胞水平生命活动、3D培养及模式生物中的具体应用。实验方案分别从样品标记与制备、显微成像以及图像分析三个方面分享了实验细节及经验心得。(点击文末阅读原文即可浏览本手册)《高内涵成像及分析实验手册》视频精选(源自Bio-101:e1010855. DOI:10.21769/BioProtoc.1010855)《高内涵成像及分析实验手册》的出版要感谢10位专辑编委的辛苦付出:中国科学院分子细胞科学卓越创新中心的主编韩帅博士和陈铭研究员、科学顾问李林院士,特邀编委—中国科学院生物物理研究所高级工程师王娅老师,浙江大学王毅教授,上海科技大学王瑛博士,中国科学院上海药物研究所臧奕研究员,上海交通大学医学院附属瑞金医院、国家转化医学大设施(上海)张建明研究员,苏州大学张乐帅教授,中国科学院分子细胞科学卓越创新中心高级工程师赵宏伟老师。还要特别感谢包括多名院士在内的26位专家领导的课题组共87位作者参与这本手册的撰写,以及39位一线科研工作者参与评审工作。在他们的共同努力下,《高内涵成像及分析实验手册》才得以顺利发布。《高内涵成像及分析实验手册》专辑编委会《高内涵成像及分析实验手册》所有文章, 读者可以通过Bio-protocol旗下Bio-101平台,Google Scholar等多种途径免费获取(点击文末阅读原文)。读者还可以通过Q&A功能与作者在线直接交流。Q&A在线交流示例(源自Bio-101:e2003367.DOI: 10.21769/BioProtoc.2003367)后续,我们还将持续择优收录各类优质的高内涵实验方法于本手册中,诚邀更多国内外优秀同行参与本项目,分享成熟的实验方法,一起打造本领域的方法百科全书。中国科学院分子细胞科学卓越创新中心化学生物学技术平台简介为更充分实现原创性基础科研成果的社会价值,促进转化研究的开展,中国科学院分子细胞科学卓越创新中心化学生物学技术平台于2008年建立。主要以高通量实验技术为手段,利用全基因组siRNA等文库等进行功能基因组学研究,推动各研究组在生命科学各领域的创新性发现和研究,发掘新的潜在药物靶点,同时针对这些原创性新靶点进行活性化合物筛选,为创新驱动的新药筛选研发提供支持。秉承公共平台提供科研服务的理念,本平台已经为国内数十个科研院校/企业单位的上百个研究组/部门提供过技术服务,有效帮助到科研人员的论文专利和新药研发项目。Bio-protocol简介Bio-protocol于2011年在斯坦福大学创建,旨在提高科研的可重复性, 以助力科学发现。Bio-protocol期刊是Bio-protocol旗下一份同行评审的国际学术期刊,发表高质量的生命科学实验方案。至今,已发表了来自全球上万名优秀科研工作者(包括上百名院士及多名诺贝尔奖获得者)的4000多篇实验方案,并且同Science等多家国际权威科学杂志建立长期合作关系。目前,Bio-protocol期刊已被PMC,Web of Science (ESCI) 、Scopus收录。Bio-101是Bio-protocol旗下一个生命科学实验方法的共享平台, 致力于为全球生命科学研究工作者搭建一个分享、查找和讨论实验方法的开放平台, 让科研更高效。平台与Science、eLife 等期刊合作开通了“Request a Protocol”服务,已经为上万名读者解答实验相关的问题。(来源:BioscienceProtocols微信公众号)
  • 赛默飞与恩元生物达成战略合作,推动中枢神经疾病精准诊疗一体化
    2019年6月27日,上海——近日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)与上海恩元生物科技有限公司(以下简称:恩元生物)签署战略合作协议。基于合作协议,双方将依托赛默飞新型分子诊断技术平台,共同打造“中枢神经精准医学示范实验室”,推动中枢神经系统疾病的精准分型和诊疗一体化。随着精准医疗的发展,中枢神经系统疾病的诊疗也正在经历着融合与变革。作为精准医疗全面解决方案的提供者,赛默飞拥有从生物样本库、基础研究、临床应用开发到临床诊断等一系列全流程的解决方案,并致力于打造“精准医疗生态系统”。此次合作将依托赛默飞领先的新型分子诊断技术平台,与恩元生物携手建立专注于中枢神经系统疾病的精准医学示范实验室。基于“互惠互利,共同发展”的原则,示范实验室将针对基因检测技术在临床分子检测中的不同应用场景、检测技术的稳定性与准确性等方向展开深入研究及合作,覆盖疾病的辅助诊断、药物的伴随诊断、IVD试剂盒的研发生产以及生物制药和基因治疗的研发及成果转化。合作将推动中枢神经系统疾病的精准分型、精准用药以及疾病标准体系建设,为生物标志物的发现、相关生物药的研发起到指导性作用。未来,该实验室还有可能通过自建检测方法申报医学检验实验室,直接与医院开展相关研究,从而进一步推动精准医疗在中枢神经系统疾病领域的临床研究和转化。 赛默飞与恩元生物签约仪式合影 恩元生物为恩华药业的全资子公司,专注于中枢神经领域疾病的精准医疗,江苏恩华药业集团总裁孙家权先生表示:“希望通过此次战略合作,基于生物技术的发展与应用为精神科医生赋能、为患者带来更多获益。我们最终的目标是让每一个人都能够身心健康、走向美好生活。”赛默飞与恩元生物挂牌仪式合影 赛默飞中国区总裁艾礼德(Tony Acciarito)表示:“精准医疗的兴起为患有中枢神经系统疾病的患者群体带来新的希望。此次与恩元生物携手合作,赛默飞将提供新型分子诊断技术平台,帮助实现中枢神经系统疾病的精准分型和诊疗一体化,从而加速构建精准医疗生态系统,以实现赛默飞‘扎根中国、服务中国’的承诺。” # # # 赛默飞世尔科技简介赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额超过240亿美元,在全球拥有约70,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、加速药物上市进程、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们领先结合创新技术、便捷采购方案和全方位服务。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国简介赛默飞世尔科技进入中国发展已超过35年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约为5000名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京、苏州和广州等地运营。我们在全国还设立了7个应用开发中心以及示范实验室,将世界级的前沿技术和产品带给中国客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合中国市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2600名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com 江苏恩华药业股份有限公司江苏恩华始建于1978年,2008年在深圳证券交易所上市,股票代码002262,为科、工、贸一体化的医药企业,国家精神类药品定点生产单位,国家高新技术企业,国家医药百强企业,国家技术创新示范企业,国家知识产权示范单位,国家“20年20星”医药质量管理企业明星单位,国际环境认证(ISO14000)确认企业,江苏省首批创新型企业,中国麻醉药品协会副会长单位,江苏省医药行业协会副会长单位。拥有中国驰名商标。公司主要生产经营中枢神经系统用药,战略定位于中枢神经药物领域市场,主要从事中枢神经系统药物的开发、生产和销售,是一家专注于中枢神经药物细分市场的企业,重点发展抗精神病药物、麻醉科药物、抗抑郁、抗焦虑药物、抗癫痫药物、镇痛药物、催眠镇静药物、脑损伤药物、阿尔兹海默症及帕金森症等疾病领域药物。恩华药业是一个以高新技术为支点、立足国内、放眼世界的创新型医药企业。在科研、制造、环境、服务、贸易等综合领域,我们着力搭建一系列合作共赢的良好平台。恩华药业专注于人的神经、精神健康,致力于解除人类精神疾患和躯体痛苦。 上海恩元生物科技有限公司上海恩元生物科技有限公司(简称:恩元生物)作为恩华药业的全资子公司,成立于2018年10月10日。恩元生物专注于中枢神经领域疾病的精准医疗,通过基因工程、细胞工程、药物靶点的设计、研发和技术成果转化,致力于实现中枢神经领域的诊疗一体化,包括:疾病的辅助诊断、药物的伴随诊断、IVD试剂盒的研发生产,以及生物制药和基因治疗的研发和成果转化。恩元生物现有科技人员20余人,研发团队是一支来自于上海交通大学、芝加哥大学、英国莱斯特大学、乔治敦大学、复旦大学、同济大学、中国科学院等国内外顶尖高校、研究所及医院的,年轻有为,经验丰富,能力超群的精英研发团队,团队成员包括博士后、博士、海归。专业覆盖:遗传学、神经生物学、生物医学工程、生物信息学、分子生物学等。 恩元生物坐落于上海浦东新区漕河泾康桥园区,占地面积1500㎡,其中实验室面积达到1000平方米,包括PCR实验室,NGS实验室以及万级洁净度细胞实验室(目前在建)。 依托于恩华集团的强大的市场渠道,恩元2018年9月推出的第一款精神疾病药物伴随诊断产品-臻慧选TM,截止目前,恩元生物合作的医院有150家左右,完成的基因检测项目约2000例。
  • 深圳先进院跨尺度超声神经调控仪器研制取得新进展
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   日前,中国科学院深圳先进技术研究院在跨尺度超声神经调控仪器研制方面取得新进展。相关研究成果以 em A Portable Ultrasound System for Non-Invasive Ultrasonic Neuro-Stimulation /em 为题,发表在神经工程专业期刊 em IEEE Transactions on Neural Systems and Rehabilitation Engineering /em (DOI:10.1109/TNSRE.2017.2765001)上。2017年11月9日《自然》杂志在“未来用于大脑的超声技术”综述文章中引用报道了这一由郑海荣团队研制的超声神经调控仪器,并称之为神经科学和脑疾病研究带来了新武器( em Nature /em , vol. 551, pp. 257-9)。 /p p   发展无创精准的新型神经调控技术一直是神经科学和脑疾病领域的迫切需求。超声波作为一种机械波,其力学效应控制神经元电活动新机制的发现,使无创地开展神经刺激成为可能。最新发现超声瞬态刺激在分子、细胞、动物和人脑水平的神经调控科学证据,证实了超声可以控制神经元的活动。超声还可以通过不同的强度、频率、脉冲重复频率、脉冲宽度、持续时间等参数,使刺激部位的中枢神经产生兴奋或抑制效应,从而使神经功能产生双向调节的可逆性变化。这些超声神经调控技术研究成果证实,超声对神经环路的调控机制和脑疾病的发病机理等基础科学问题的研究具有重要潜力,超声作为一种新型无创的神经刺激与调控技术,在脑科学研究和脑疾病干预方面展示出光明前景。 /p p   深圳先进院超声技术团队针对跨尺度超声神经刺激所需要的各种需求,设计开发了神经刺激的专用超声辐射力发射探头及电子设备。超声物理参数包括超声辐射力大小、作用方式、频率、脉冲重复频率、强度和脉冲持续时间等都可以自由调整。同时,该仪器也设置了输出输入同步功能,可以和其他神经电生理设备同步工作以完成神经刺激和信号采集的同步获取。该新型超声神经刺激仪已经初步实现了小动物脑神经调控以及非人灵长类大动物的神经环路调控。 /p p   此外,项目组同步开发了跨尺度、动态多焦点的超声神经调控装置,涵盖了细胞、小动物、灵长类大动物研究的多个仪器,并已经成功开发了2048通道的磁共振兼容超声神经调控系统,为多点动态深脑刺激研究提供了仪器基础。目前,微/小动物神经调控设备已经成功应用到了包括浙江大学、清华大学、上海交通大学、香港理工大学、美国南加州大学、中科院昆明动物研究所、上海生命科学研究院神经科学研究所和心理研究所等十多个国内外神经生物学与脑科学实验室,在超声神经调控及声感基因(声遗传)等关键技术研究中发挥关键作用。 /p p   上述研究工作得到国家自然科学基金委国家重大科研仪器研制项目支持。 /p p style=" text-align:center " img alt=" " oldsrc=" W020171121603234843295.png" src=" http://img1.17img.cn/17img/images/201711/uepic/4c4edba5-5fc1-400b-8f97-aa23e96d8d87.jpg" style=" border-left-width: 0px border-right-width: 0px border-bottom-width: 0px border-top-width: 0px" uploadpic=" W020171121603234843295.png" / /p p style=" text-align:center " (a-b)微尺度超声神经刺激芯片;(c)便携式单通道小动物超声神经刺激仪 /p p style=" text-align:center " img alt=" " oldsrc=" W020171121599227569946.png" src=" http://img1.17img.cn/17img/images/201711/uepic/92bc7715-b146-4f49-8cc1-7fcb6aa38bf6.jpg" / /p p style=" text-align: center " 千通道级别多点动态超声神经调控换能器及系统 /p
  • 他们是最顶尖的生物学家,更是最恩爱的伴侣
    他们是最顶尖的生物学家,更是最恩爱的伴侣又到了一年一度的七(nue)夕(gou)节。最近几天,谷君夜观天象,明显感受到一股强大的气场——情侣们纷纷蓄势待发,准备在即将开幕的朋友圈秀恩爱大赛上拔得头筹;单身狗也提前预备好狗粮,准备迎接一大波暴击。生物狗们以为待在与世无争的学术圈就安全了?图样图森破~科学家们不仅科研实力深厚,秀起恩爱来也是碾压路人没商量的节奏。这个七夕,请享用谷君为大家献上的科学界狗粮~“战时伉俪”格蒂和卡尔科里格蒂特蕾莎科里(gerty theresa cori, 1896年8月15日-1957年10月26日)和卡尔斐迪南科里(carl ferdinand cori,1896年12月5日-1984年10月20日)夫妇是美国历史上著名的生物化学家。1947年夫妇二人以及阿根廷医生贝尔纳多奥赛一起因发现糖代谢中的酶促反应而被授予诺贝尔生理学或医学奖,是诺奖历史上罕见的“夫妻档”。格蒂?科里也因此成为美国历史上第一位获得诺贝尔奖的女性科学家。1914年,18岁的卡尔和格蒂同时考入了布拉格的卡洛斯弗尔杰南德大学医学系,成为同班同学。当时正处于一战初期,学校里还保留着安静的学习环境。两人形影不离,在热衷的生物学、化学等课程的学习中互相激励。到了1916年,战事也到达了高潮,正在念大三的卡尔被征兵入伍,经历了战斗和负伤,卡尔深切体会到了战争的残酷。直到1920年8月,历经磨难的卡尔科里和格蒂终于团聚,在维也纳举行了婚礼。卡尔和格蒂夫妇共发表了50多篇学术论文,主要着作有《结晶态肌肉磷酸化酶ⅱ辅基》、《磷酸化酶a到b的酶促转化》等。1931年,他们在一篇长达103页的研究报告中揭示了哺乳类动物碳水化合物代谢的机理,基本内容是在肌肉中肌糖原生成的乳酸随血液流入肝脏,在那里又重新合成肝糖原,这就是生物化学理论中众所周知的科里循环。科里夫妇培育了众多的生物化学领域的出色人才,在他们研究基础上继续前进的学生中竟然有5位获得诺贝尔医学生理学奖,堪称诺奖级别的导师。2004年科里夫妇被授予国家化学史里程碑来纪念他们的重大发现。“双宿双栖”詹裕农和叶公杼说起这两位科学家,可能很多人会觉得陌生,不过在华人科学家中,他们可是享有极高的知名度的神经生物学家。我国著名的生物学家、北大生命科学院院长饶毅教授就曾是这两位的弟子。詹裕农和叶公杼夫妇主要的研究方向是钾离子通道和果蝇神经发育,1986年他们在世界上首次克隆出了一种钾离子通道shaker基因,这一工作与2003年的诺贝尔化学奖主题吻合,许多科学家都为获奖名单中没有他们的名字而感到惋惜。尽管未获得诺贝尔奖,他们的工作仍然得到了许多人的肯定。从他们实验室中走出了多位华人科学家,其中包括获得science杂志“青年科学家奖”的时松海,哥伦比亚大学杨建和麻省理工学院的沈华智等等。值得一提的是,这对科学界伉俪的人生履历始终保持着惊人的一致步调,大家来感受一下:1979年,他们同时被旧金山加州大学聘为助理教授。1983年,他们同时晋升为副教授。1984年,他们同时被著名的霍华德休斯医学院聘为研究员。1985年,他们同时晋升为教授。1998年,他们同时当选为台湾中央研究院院士。1996年,他们同时当选为美国科学院院士。全程高能有木有!其实纵观整个科学界,夫妻档的科学家并不少见,但是像詹裕农和叶公杼夫妇这样在科研中各展所长、紧密合作,并且双双当选院士的科学家却十分的难得,双方可谓实力相当。2004年的全球华人生物科学家大会上,加州大学教授詹裕农和叶公杼作为唯一的一对华裔美国科学院院士夫妇一同走上了讲台,那一刻也许是他们二人最高调的一次“秀恩爱”。“院士夫妇”陈竺和陈赛娟 众所周知,我国的卫生部部长陈竺是中国科学院院士,遗传学专家。不过大家可能不太了解的是,他的夫人陈赛娟也是一位出色的科学家,中国工程院院士,细胞遗传学和分子遗传学专家,有“美女院士”的美誉。这一对夫妇称得上生物科学界的 “神仙眷侣”。1978年,陈赛娟考取了上海第二医科大学血液学专业的硕士研究生,还结识了同门师兄陈竺。 陈竺和陈赛娟在一起上课、做实验,培养了深厚的感情。1983年3月,这两位热爱科研的年轻人终于把双手牵到了一起。当婆婆许曼音知道儿子陈竺的恋爱对象是陈赛娟时,开心地表示:“早就听说她是个孝敬父母、爱好读书的人,而且还是二医掷铅球的运动员,我为儿子感到庆幸。”这也为二人今后的幸福生活拉开了序幕。尽管丈夫卫生部部长的光环总是十分得引人注目,但这并不能掩盖陈赛娟院士的成就。她在国际上首次克隆了白血病bcr基因一个长达94kb的区域,并提出了ph1染色体形成的分子模型,实现了该领域的重大突破。还曾深入开展白血病基因产物靶向疗法基础理论研究,在急性早幼粒细胞白血病研究中,首次发现一个新的人类基因,实现了当时我国生物学领域中人类疾病新基因克隆零的突破。2000年“世界杰出女科学家”颁奖仪式上,陈竺卸下领导人的光环,以一个老公的姿态温柔地出现在妻子身后,一起等待结果揭晓。当陈赛娟与大奖失之交臂的时候,陈竺轻轻搂着妻子的肩膀说:“科学意味着永不放弃!”看到这里,作为一个好奇宝宝,不禁要问,为什么科学界盛产“神雕侠侣”呢?美国国家科学基金会2010年调查显示,具有博士学位的已婚人士中,超过1/4的人的伴侣也供职于科学或工程学领域。合作是研究的关键,同一领域的夫妇能够不断地交流、启发彼此,也更了解彼此的个性和行为,理解彼此工作中的难处。很多夫妇也是在交流工作的时候情感突飞猛进的……想来也是,谁说恋爱就只能逛街看电影,实验室也可以是滋生爱情的理想场所。一起采样、一起讨论课题,这都是科学界独有的浪漫约会。只要心中有爱,处处皆可花前月下~谷君有话说:吃下这一份狗粮,感觉到的除了艳羡,更多的还是鼓舞人心的力量。挣扎在实验室里的生物狗们,千万不要气馁,现在开始发展自己的科研伴侣还来得及。今天的你也许孤单一人闷在实验室里提质粒,说不定未来的某一天,你也能手挽着女神,一同登上学术界的领奖台上呢~各位亲爱的谷粉们,除了以上这几位,生物科学界还有哪些科学家情侣呢?欢迎大家在评论中一起参与讨论噢~
  • 中国科大研发单神经元快速质谱技术 探索大脑神经元代谢奥秘
    近日,中国科学技术大学化学与材料科学学院黄光明教授与生命科学学院熊伟教授开展紧密合作,基于自行开发的单细胞电生理与质谱联合检测平台,对小鼠大脑中单个神经元开展了多种化学成分的快速质谱检测,并且可以做到同步采集电生理信号,在单细胞层次上成功完成了对神经元功能、代谢物组成及其代谢通路的研究。相关研究成果以“Single-Neuron Identification Of Chemical Constituents,Physiological Changes, And Metabolism Using Mass Spectrometry”为题,于2月21日在线发表在国际权威综合学术期刊《美国科学院院报》(Proceedings of the National Academy of Sciences of the United States of America, PNAS)上。  脑内神经细胞在细胞形态、突触连结、细胞结构、电生理以及生理功能上具有高度的多样性。不同种类的神经细胞中,其化学分子组成、含量、代谢也都有着很大的差别。因此,对脑内单个神经元的化学成分进行分析,具有重要的生物学价值。质谱分析因为具有高灵敏度、大的线性范围以及高通量分析化学分子的特点,逐渐被用于单细胞的细胞代谢分析。但目前的方法需要使用大量有机试剂对细胞进行处理,无法保持采样时细胞的活性 冗长的处理和分离过程也导致较慢的分析速度,无法短时间内完成大量单细胞分析,并缺乏来自同一细胞的电生理信号,最终导致单细胞代谢物的质谱分析无法大规模用于神经细胞的分析。近年来,中国科大黄光明教授实验室与熊伟教授实验室紧密合作,开发了能用于复杂样品的原位质谱分析方法,大大提高了分析速度,并于近期实现了针对细胞内蛋白质的直接分析(Angew. Chem. Int. Ed. 2011, 50:2503 Angew. Chem. Int. Ed. 2011, 50:9907 Anal. Chem. 2016,88:10860),同时通过电生理膜片钳技术开展了对小鼠脑内单个神经元的功能鉴定与解析(Nat. Chem. Biol., 2011 J. Exp. Med., 2012 Nat. Neurosci., 2014)。这些研究为实现单个神经细胞的高通量质谱分析、代谢物鉴定和代谢通路研究提供了重要的工作基础。膜片钳与单细胞质谱分析联用技术分析单个神经细胞示意图  该工作实现了单个神经元化学成分及代谢物的即时分析,该技术将目前神经细胞成分分析的研究推向了一个活细胞及单细胞水平,有望在单细胞层次上去研究神经生物学、代谢组学、毒理学等生命科学的重大问题,具有非常重要的应用前景。  中国科大生命学院与化学院联合培养博士后朱洪影、生命学院博士研究生邹桂昌、王宁为该文章的共同第一作者,黄光明教授和熊伟教授为共同通讯作者。该研究工作得到了科技部、国家自然科学基金委、中科院先导专项以及国家青年千人计划等资助,以及中国科大国家同步辐射实验室光电离质谱线站的仪器与技术支持。
  • Nature:走向整合的结构生物学技术
    从一类技术角度来说,直接和间接获得诺贝尔奖的技术非结构生物学莫属。经过半个多世纪的耕耘,这一技术现在到了快速收割的季节。现在代表结构生物学技术的多种技术正在走向整合,但整合技术仍然需要进一步推动和推广。   上世纪50年代,开文迪许实验室M.Perutz J.Kendrew用X-射线晶体衍射技术获得了球蛋白结构。X射线晶体衍射技术的应用,使人们可在晶体水平研究大分子的结构,在分子原子基础上解释了大分子。1962年,Waston和 Crick因基于结构生物学技术的研究结果发现了DNA双螺旋结构获得了诺贝尔生理学与医学奖,M.Pertt和J.Kendrew获得了同年的诺贝尔化学奖。   60-70年代,开文迪许实验室又发展了电子晶体学技术,研究对象主要是有序、对称性高的生物体系,如二维晶体和高对称性三维晶体。70-80年代,多维核磁共振波谱学使研究水溶液中生物大分子成为可能,溶液中生物大分子更接近于生理状态。   80年代,冷冻电子显微镜出现,这种技术不仅能够研究生物大分子在晶体状态和溶液状态的结构,且能够研究研究复杂大分子体系和超分子体系,如核糖体、病毒、溶酶体和线粒体等。   杂交或整合方法把多种结构生物学方法结合在一起,大大推动了结构生物学的研究。荧光能量共振转移(FRET)是20世纪初发现的,随着绿色荧光蛋白应用技术的发展,FRET已经成为检测活体中生物大分子纳米级距离和纳米级距离变化的有力工具,在生物大分子相互作用分析、细胞生理研究、免疫分析等方面有着广泛的应用。   冷冻电子显微镜技术通过快速冷冻的方法进行固定的,克服了因化学固定、染色、金属镀膜等过程对样品构象的影响,更加接近样品的生活状态。研究对象非常广泛,包括病毒、膜蛋白、肌丝、蛋白质核苷酸复合体、亚细胞器等等。所研究的生物样品既可具有二维晶体结构,也可是非晶体。由于对于样品分子量没有限制,突破了X-射线晶体学只能研究三维晶体样品和核磁共振波谱学只能研究小分子量样品的限制。计算机技术则可以将各种信息进行整合,从而可以获得接近真实的三维分子模拟数据。   现在结构生物学研究越来越多地依赖这种整合技术。2012年加州大学Andrej Sali等解析了26S蛋白酶体的结构。这种结构在许多神经退行性疾病的神经细胞都存在异常。现在科学家正利用这种结构作为模型开发能调节蛋白酶体活性的药物。今年另外一个小组利用整合技术分析决定感染细胞的艾滋病蛋白结构,利用这种结构开发治疗艾滋病的药物。整合技术也被用在解析核糖体结构。核糖体是细胞制造蛋白质的细胞器,是实现基因表达的关键机构。   目前的蛋白数据库存在一些问题,如这些数据主要依靠晶体结构数据,缺乏对其他相关数据的整合,这一问题给结构生物学领域提出要求应该大力推动整合技术的发展。10月6-7日,由4个机构组织了一次整合结构生物学培训班,以推动结构生物学技术的扩展和引领大家将结构和疾病结合起来研究。   参加学习的大部分学员都支持应该采用标准模式描述多方面的数据,这有利于其他学者整合和利用这些数据。但由于结构数据往往十分巨大,如何有效储存和获取这些数据仍然存在一些问题。会议结束时达成一项共识,将申请经费构建一种&ldquo 分子机器&rdquo 数据库中心。   欧洲分子生物学实验室细胞生物学家Jan Ellenberg说,获取全部分子结构的数据是结构生物学的目标,这个愿望或许能在10或20年后实现。   原文检索:   Ewen Callaway. Data bank struggles as protein imaging ups its game. Nature, 22 October 2014 doi:10.1038/514416a
  • 徕卡精准空间生物学解决方案 第一弹
    空间生物学背景介绍 空间生物学(Spatial Biology)是一门涉及生物组织内细胞和结构的空间排布以及它们在三维空间中相互关系和相互作用的学科。这种研究方法探索了细胞和组织在空间中的布局、分布和相互联系,以揭示生物体内的复杂生物过程和功能。 传统的生物学研究主要关注细胞和分子水平的功能和相互作用,但忽略了细胞和组织的空间信息。然而,细胞和组织在组织结构中的位置和相互关系对于其功能和行为至关重要。在组织内,相同类型的个体细胞可能因其微环境的变化而表现出不同的行为。转录组学和蛋白质组学方法,例如质谱、测序,通常只提供有限区域的信息,往往难以拼凑起来。相反,基于显微成像的技术可以使研究人员能够从整体上观察蛋白质和其他生物标志物,并在单个细胞水平上进行跟踪,以更好地理解整个组织全貌。 空间生物学研究的重要工具包括多色成像技术、高分辨率显微成像技术、3D图像重建和分析软件等。通过这些技术,研究者可以同时可视化和分析多种生物标志物或分子在组织中的空间分布,进而了解细胞类型的分布、细胞内信号传递的网络、细胞迁移和组织重塑等重要过程。 在医学研究中,空间生物学的应用极为广泛。例如,在癌症研究中,了解肿瘤内不同类型的细胞和细胞间的相互作用可以为癌症的早期诊断、治疗策略和预后评估提供重要信息。在神经科学中,通过揭示神经元的空间排布和连接方式,我们可以更好地理解大脑的功能和神经系统疾病的发生机制。在免疫学领域,研究细胞在淋巴器官或感染部位的空间分布和相互作用可以提供有关免疫应答的重要见解。 总而言之,空间生物学为我们提供了在细胞和组织层面深入研究生物系统的能力。通过空间分析和定量测量,我们能够更好地理解生物体内的结构和功能,促进疾病诊断和治疗的进步,并为药物开发和治疗策略的优化提供新的见解。通过空间生物学的研究,我们可以揭示生物体内的奥秘,并为解决重大生物医学问题做出贡献。 徕卡精准空间生物学解决方案 徕卡显微系统精准空间生物学解决方案提供从样本取材,到H&E成像、多色荧光成像、超多色荧光成像到图像分析,再到激光显微切割技术连接下游的精确分析技术(如质谱等),从整体到微观,覆盖基因组、蛋白组和代谢组学领域,解析生物体的结构、功能和疾病。 点击此处申请样机试用 相关产品 超多标组织成像分析整体解决方案 Cell DIVE AI图像分析软件 Aivia 徕卡显微咨询电话:400-630-7761 关于徕卡显微系统徕卡显微系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的领先的厂商之一。徕卡显微成像系统一贯注重产品研发和最新技术应用,并保证产品质量一直走在显微镜制造行业的前列。 徕卡显微系统始终与科学界保持密切联系,不断推出为客户度身定制的显微解决方案。徕卡显微成像系统主要分为三个业务部门:生命科学与研究显微、工业显微与手术显微部门。徕卡在欧洲、亚洲与北美有7大产品研发中心与6大生产基地,在二十多个国家设有销售及服务分支机构,总部位于德国维兹拉(Wetzlar)。
  • 时空多尺度神经环路活体成像技术
    成果名称 时空多尺度神经环路活体成像技术 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 成果简介: 光学成像技术是研究系统神经生物学的一个极其重要的手段。其中,通过光学成像技术手段跟踪简单模式生物神经环路中的信息传递来指导研究高等动物神经系统的动力学机制,是破译大脑信息处理功能的最有效途径之一。但是,目前光学显微成像技术的最高时间分辨率处于几十毫秒量级,尚无法捕捉动作电位在神经环路中的快速精细运动。因此,对神经元、神经环路活体光学成像技术开展研究,同时实现高空间分辨率和高时间分辨率的显微成像十分必要。 2012年,生命科学学院陶乐天研究员申请的&ldquo 时空多尺度神经环路活体成像技术&rdquo 项目获得了第四期&ldquo 仪器创制与关键技术研发&rdquo 基金的资助。在该基金的资助下,申请人课题组购置了关键配件,开展了相关实验,有力地推动了仪器的研制工作。课题组基于其成员在光学系统研制和成像技术领域的丰富经验,利用高性能sCMOS科学级相机和高速光学调制器件,采用图像分块、分时复用技术和自适应光学波前像差实时校正技术,成功研制了一套时间分辨率达到5毫秒、空间分辨率达到0.5微米的显微成像系统,并将该系统应用于模式生物(线虫)神经环路的活体成像实验研究中。 应用前景: 目前该项目已经顺利结题,相关成果正在神经科学基础研究中进行推广。这项技术在神经环路的结构、发育、形成、维护研究领域的应用,将为新一代神经精神疾病的诊断、治疗技术提供科学依据和新的思路。
  • 仪器图谱一览:合成生物学背后的力量
    合成生物学被称为“第三次生物技术革命”,指的是在工程学思想指导下,对生物分子和生物体进行有目标的设计、改造、甚至创建非天然功能的生物分子和“人造生命”,正在催生新一代生物制造技术。生物合成技术是我国经济绿色可持续发展,实现双碳目标、建设制造强国的重大方向,是继互联网、IT之后又一个“万亿”级别规模的市场,正在引发新一轮的国际竞争。据麦肯锡全球研究院的数据表明,超过60%的物质产品能够由生物技术进行生产,未来10-20年,生物技术将为全球每年带来2-4万亿美元的直接经济收益。合成生物学区别于传统生命科学的根本原因在于其本质为工程学思想,可将生物系统定向改造成高效细胞系统,从而进行规模化生产、加工。其主要路线分为“自上而下”和正向工程学策略,对现有的生物系统进行再设计;另一种路线则是具有目标导向,“自下而上”地对现有生物或基因序列进行重新设计。合成生物产业链由工具层、平台层和应用层组成。工具层主要指的是基础研究和使能技术、平台层指的是合成生物平台的构建、应用层指的是具体的应用领域。合成生物学从基础研究到应用开发的整个过程中都离不开科学仪器。而高端的科学仪器由于其研发周期长、技术难度大、投入高等难点,再加上国外厂商起步早的先发优势,上游科学仪器市场多被国外头部企业垄断,大多科研院所在购买高端科学仪器设备的时候也多依赖进口,例如赛默飞、丹纳赫、安捷伦等。然而国产科学仪器企业在政策的加持下,国产替代的步伐日益加快,许多国产企业已经在某些细分领域可以与国外品牌相媲美甚至实现了超越。未来,我们相信整个科学仪器行业将会在国家出台的一系列政策、用户对国产仪器需求的增加、高端人才的涌入等众多有利因素的加持下蓬勃发展。国产科学仪器厂商也将不断加快国产替代的步伐,在越来越多的细分领域涌现出更多的优质高端产品。
  • ACCSI 2024:火热的合成生物学产业,对仪器设备需求有哪些?
    在科技飞速发展的当下,合成生物学正受到国内外的高度关注。在国家政策的大力支持和市场需求的日益增长下,该领域对科学仪器设备的需求已呈现快速增长的态势。“十三五”将合成生物技术列为引领产业变革的颠覆性技术之一,“十四五”更加强调对合成生物技术的应用。在国家宏观战略指引下,合成生物学研究和产业发展一路高歌猛进,迎来了重要的发展机遇,已成为未来生物产业发力的一个关键方向。今年年初,工业和信息化部、教育部等七部门联合发文表示全面布局未来产业,加快合成生物等前沿技术产业化,北京、上海、深圳等地纷纷发文表示支持合成生物学产业发展。据中商产业研究院发布的报告显示,2022年中国合成生物市场规模约为67.36亿元,而到2024年,这一数字预计将增长至105.16亿元。点击上方图片查看大会完整日程参与报名那么当前合成生物学的产业现状发展如何?该产业对仪器设备又有哪些需求?第十七届科学仪器发展年会(ACCSI 2024)——第六届生命科学仪器发展论坛给你答案!本届生命科学仪器发展论坛特别邀请到了山东大学方诩教授就合成生物学领域的产业发展及设备需求进行分析。报告嘉宾:方诩报告题目:《合成生物学产业发展及仪器设备需求分析》嘉宾简介:现任山东大学微生物技术国家重点实验室、国家糖工程技术研究中心教授兼博士生导师、欧美同学会(中国留学人员联谊会)留日分会理事,济南市留学人员联谊会副会长,济南市政协委员、山东省循环经济协会副秘书长、中国可再生能源学会生物质能专业委员会常委、中国草学会能源草类专业委员会副理事长、中国生物发酵产业协会微生物育种分会理事、山东省高层次人才发展促进会现代农业专业委员会委员等职。先后入选教育部新世纪优秀人才,泰山产业领军人才。曾任山东省秸秆生物炼制技术重点实验室主任。获得国内外20项以上发明专利授权。荣获“山东青年五四奖章”、国家技术发明二等奖、生物工程学报优秀论文奖、山东省留学人员回国创业奖、中国轻工业联合会科技进步奖三等奖、山东省循环经济十大创新科技成果、中国循环经济协会科学技术二等奖等奖项。~~~~~生命科学仪器发展论坛日程~~~~~内容嘉宾主持人:袁旭军全国卫生产业企业管理协会精准医疗分会 副会长生命科学仪器成果转化痛点与商业化成功要素宋明轩中国科学院苏州生物医学工程技术研究所副研究员 /苏州国科医工科技发展(集团)有限公司总裁合成生物学产业发展及仪器设备需求分析方诩山东大学教授 /山东恒鲁生物科技有限公司董事长华大智造测序仪自主创新突破之路彭欢欢深圳华大智造科技股份有限公司 副总裁、中国区总经理超快速、多脑区双光子显微镜及产业化思考杨鹏苏州中科医疗器械产业发展有限公司 副总经理主持人:李兆坤仪器信息网 生命科学资深编辑分析超速离心仪器软件和检测器的开发李文奇清华大学 蛋白质研究技术中心蛋白质制备与鉴定平台主管/高级工程师极瞳S-CLASS,新一代高通量非标记分子互作分析系统陈雍硕极瞳生命科技(苏州)有限公司 市场总监融资租赁/经营性租赁——生物医药企业提高资本配置效率的新思路牛童国药控股(中国)融资租赁有限公司 高级厂商合作经理AI 驱动的全自动类器官/3D细胞模型培养新范式诸葛丽琼美谷分子仪器(上海)有限公司 高级市场沟通经理主持人:边玮中国科学院分子细胞科学卓越创新中心 细胞分析技术平台主任/正高级工程师多维活细胞结构光超分辨显微席鹏北京大学教授 /北京艾锐精仪科技有限公司首席科学家超分辨&高通量光学显微成像技术及产业化路径思考李辉中国科学院宁波材料技术与工程研究所 研究员单分子定位超分辨成像整体解决方案及其生物医学应用潘雷霆南开大学教授 /宁波纳微成像生物科技有限公司创始人、首席科学家fMOST系列技术以及相关进展程柯武汉沃亿生物有限公司 市场营销部总监主持人:刘立东仪器信息网 生命科学资深编辑可无创免抽血动态监测循环(肿瘤)细胞的光学活体流式细胞仪魏勋斌北京大学副院长、教授 从50年商业化应用,展望流式细胞技术在转化医学中的发展赵雨晋碧迪医疗器械(上海)有限公司 生物科学大中华区科研市场及销售总经理阻抗流式技术:单细胞表征新方法王文会清华大学 副教授多功能单细胞无损无标记分析系统叶安培北京大学电子学院,教授 / 北京雅谱光仪科技有限公司首席顾问圆桌论坛(议题:生命科学公共平台建设仪器设备更新需求等)主持人:边玮中国科学院分子细胞科学卓越创新中心 细胞分析技术平台主任/正高级工程师参会嘉宾(按公司首字母顺序排序):李文奇:清华大学 蛋白质研究技术中心蛋白质制备与鉴定平台主管/高级工程师孙正龙:深圳湾实验室 生物影像平台主管(资深技术专家)/博士徐晓雪:首都医科大学 副主任技师张蕾:厦门大学 实验中心副主任熊缨:上海科技大学 分子细胞平台主任姜民:复旦大学脑科学研究院 影像平台主任/博士王策:苏州医工所 研究员方三华:浙江大学医学院 公共技术平台执行副主任/博士俞珺璟:中科院分子细胞科学卓越创新中心 细胞分析技术平台副主任谭莉:上海脑科学与类脑研究中心 高级工程师蔡文娟:中国科学院分子植物科学卓越创新中心 高级工程师边玮:中国科学院分子细胞科学卓越创新中心 细胞分析技术平台主任/正高级工程师苏黎:北京大学医药卫生分析中心细胞分析室 副主任/高级工程师李晓明:上海科技大学生命科学与技术学院 分子影像平台主管(资深技术专家)/博士苏芳:中山大学孙逸仙纪念医院 基础与转化医学研究中心南海分部流式平台主管技师孙菲菲:国科大杭州高等研究院生命健康学院 公共技术平台负责人/博士吴航军:浙江大学冷冻电镜中心 执行副主任/博士原丽华:原中国科学院苏州纳米技术与纳米仿生研究所 高级工程师刘春春:清华大学 细胞功能分析平台主管(资深技术专家)/博士房中则:天津医科大学 教授樊峥:中国科学院微生物研究所 高级工程师关于ACCSI 2024:为促进中国科学仪器行业健康快速发展,搭建科学仪器行业“政、产、学、研、用、资、媒”等各方有效交流平台,“第十七届中国科学仪器发展年会(ACCSI2024)”将于2024年4月17-19日在苏州狮山国际会议中心召开。ACCSI2024以“融合创新,质领未来”为主题,力争对往年中国科学仪器产业最新进展进行较为全面的总结,在最短的时间内把最新的产业发展政策、最前沿的行业市场信息、最新的技术发展趋势、最新的科学仪器研发成果等,以多种形式呈现给各位参会代表。官网链接:https://www.instrument.com.cn/accsi/2024/联系方式:参加展团或参会报名:17600646530 黄女士赞助及媒体合作:13552834693 魏先生微信添加accsi2006或发邮件至accsi@instrument.com.cn (注明单位、姓名、手机)咨询报名。
  • 细胞生物学研究的利器——仪器平台负责人经验谈
    细胞是生命的最小单位,细胞生物学是生命科学研究的重要领域。有专家说,“了解了细胞,我们就能了解生命”。细胞生物学是研究生命活动的一个重要前沿学科方向,这一学科分支众多,主要关注细胞形态结构、细胞生命活动功能、细胞遗传调控以及细胞与其生命活动环境当中的各种关系,而这一系列的研究离不开科学仪器的帮助。仪器信息网特别向中国科学院分子细胞科学卓越创新中心细胞分析技术平台约稿,以下内容为中科院分子细胞科学卓越创新中心科技条件处处长张文娟和中科院分子细胞科学卓越创新中心细胞分析技术平台主任边玮联合撰写,两位老师根据多年从业经验,详细介绍了8种在细胞生物学研究中应用到的“利器”。以下为供稿内容:荧光显微成像技术和流式细胞分析/分选技术是生命科学研究尤其是细胞生物学研究中应用最广泛、最频繁、需求量最大的实验技术手段。在中国科学院分子细胞科学卓越创新中心细胞分析技术平台18年的建设历程中,结合细胞生物学学科发展过程中不断提升的实验需求,平台经历了多次技术迭代、仪器功能升级、应用场景拓展和设备研发深入探索,已建立成为一个以荧光显微成像、流式细胞检测及分选和电子显微成像3个专业技术部门为核心,以严谨细致的科研服务为宗旨,以科研技术应用及创新为目标的细胞生物学研究技术装备体系。从荧光显微镜到超高分辨率荧光显微成像技术,从2激光4色流式细胞检测到光谱流式细胞分析技术,一路行来积累了一些经验,现将点滴体会分享如下。一、以荧光显微成像技术为代表的多种光学成像手段细胞生物学科研实验可以运用细胞和组织的显微成像技术,通过从几十纳米超高分辨率到厘米级大尺度的3D成像,获取生物大分子的时间及空间信息。荧光显微镜、激光共聚焦显微镜、活细胞工作站、超高分辨率显微镜、双光子显微镜、光片显微镜等是大型显微成像平台技术建立中不可缺少的仪器类型。1. 荧光显微镜荧光显微镜是研究中使用的最基础的成像实验工具,科研级荧光显微镜常规配有UV、BLUE、GREEN激发的荧光滤色块组,可以加配适合CFP、YFP及CY5等观察和成像的荧光滤色块组,结合制冷型彩色CCD或CMOS、软件及高性能计算机,实现明场和荧光显微成像获取显微图像和动态视频图像。图像采集分析软件能够对图像进行分析测量及后期图像处理。正置荧光显微镜可以配有微分干涉组件,匹配不同物镜4x、10x、20x、40x、60x调节组件可以获取样品形貌图像以及偏振光图像。倒置荧光显微镜通常配有相差组件,同时匹配长焦相差物镜,获取样品相差形貌图像。荧光光源有全光谱白光LED灯(寿命≥25000小时)、长寿命金属卤素灯荧光光源(寿命≥2500小时)、氙灯(寿命约1200小时)、高压汞灯等。由于传统高压汞灯使用额定寿命低(200小时),更换汞灯需要调光路,灯泡在使用过程中光效降低明显,灯熄灭后要等待冷却才能重新启动,点燃灯泡后不能立即关闭,一般需要等15min,且压力很高,紫外线强烈,使用中存在安全隐患,已逐步被取代。LED灯有诸多优点,如光效率高、发热少、寿命长、稳定性高、可调节光强、即开即用,由光纤导入显微镜,更换灯泡时无需调整光路,是荧光显微镜首选最优质的荧光光源。目前市场上荧光显微镜明场光源已由高亮度LED灯代替卤素灯,使用寿命超过20000小时,光强度可通过旋钮调节,也可配合灰度滤光片调节。显微镜公司会根据用户的实验需求、应用方向和预算,设计相应的配置技术方案,提供优质的售前售后服务。2. 激光共聚焦显微镜激光共聚焦显微镜是基于点扫描共聚焦成像原理,实现多通道荧光成像、Z-stack成像、time-lapse成像、多点成像、拼图成像等,有ZOOM成像、ROI成像、光谱扫描、多维扫描(xyz、xyt、xyzt、xy扫描)等多种成像模式。激光共聚焦显微镜主要由全自动荧光显微镜、激光光源、扫描装置、检测系统及专用软件和图像工作站组成。显微镜配备10x、20x、40x、63x等高数值孔径共聚焦专用物镜和高精度全电动载物台,精准控制步进精度;多功能同步控制软件和图像工作站可以在获图过程中实时调节参数,也可以对图像进行后期的重构和分析;搭配特定的硬件和软件模块,还可以进行FRET、FRAP、FLIM、FCS等功能成像和分析。常用的固体激光器波长有405nm、458nm、488nm、514nm、561nm、638nm,也可根据实验需求配置592nm、660nm、775nm等更多波长激光器,功率约30-100nw。气体激光器有多谱线Ar离子激光器(发射波长458nm、476nm、488nm、496nm、514nm),氦氖543nm激光器和氦氖633nm激光器,由于使用寿命较短、损耗快,已逐步被固体激光器取代。新一代连续光谱白光激光器能够在440-790nm步进1nm任一波长最佳激发样品荧光,最大程度提高激发效率,更适合于实验中新型染料应用。检测系统一般有3-4个荧光通道和1个透射光通道,可实现多通道荧光成像和明场成像,通过光栅或棱镜分光可进行光谱扫描成像。探测器为光电倍增管PMT,超高灵敏度GaAsP检测器更有利于捕捉微弱荧光信号从而获得更好信噪比的高质量荧光图像。近年来基于Confocal平台搭配超高分辨模块(如Lighting技术、Airyscan 2技术等)实现了超高分辨率显微成像,成像分辨率可达到XY120nm,Z轴200nm。优化的高分辨扫描技术、共振扫描技术等提高了扫描成像速度,可在更短的采集时间内以更大视野和超高分辨率实现低光毒性高质量成像3. 活细胞成像宽场活细胞成像设备是借助高精度的Z轴防漂装置、CO2气体及温控装置、灌流装置、专用物镜和高分辨率制冷型CCD或SCMOS等元件,进行长时程活细胞形态及荧光标记信号的追踪。转盘共聚焦显微成像系统运用双转盘技术,极大的减少了对样品的光漂白和光毒性,采集荧光信号选用科研级sCMOS/EMCCD相机具有高光电转换量子效率和低读出噪音优势,加上超级复消色差物镜、超高分辨率模块(如Sora、SR)结合deconvolution 专业的图像软件和高性能图像工作站分析处理,获得具有高信噪比、高时空分辨率的动态图像。4. 超高分辨率荧光显微成像多种光学原理实现的超高分辨率荧光显微成像STED、SIM、STOM、TIRF等技术已经在生命科学研究中应用,由Stefan W. Hell团队推出的easy STED、easy 3D STED、自适应照明技术以及新型超高分辨率专用荧光染料的应用,免去了复杂手动校准光路过程,降低了光漂白和光毒性,提高了仪器的实用性和稳定性,获得更高分辨率和成像深度,是超高分辨率活细胞成像和3D成像的高端技术设备。国内已有多个研究团队推出超高分辨率显微成像仪器,Sparse-SIM实现了活细胞光学成像空间分辨率60nm的突破,集GI-SIM/ TIRF-SIM/3D-SIM/nonlinear SIM的多模态结构光超分辨成像系统实现了更快的成像速度、更长的成像时程和更高的图像分辨率,能够满足生物学研究中大多数荧光成像实验的需求。超高分辨率荧光显微成像成为可视化活细胞分子动态变化的新技术,使细胞生物学研究进入了新时代,其技术的发展和应用将对生命科学研究产生重大影响。5. 光片显微成像实验动物大尺度组织3D荧光显微成像一直是困扰生物研究的技术难题,运用双光子显微成像技术可以在活体动物组织上实现超过300µm的成像深度。光片显微成像技术由于采用片层激发和面成像技术,减少了光漂白和光毒性,大大提高了成像速度和图像的信噪比,结合组织透明化技术的研发和应用,实现了几厘米的组织3D荧光显微成像。针对不同实验动物组织的各种基于水溶性、有机溶剂、水凝胶等的透明化方法经过不断应用探索,科研人员在平台技术支撑下成功获取了实验鼠脑组织、肝脏、肾脏、心脏、肺、肌肉、胰腺、乳腺、脂肪、睾丸、类器官甚至骨组织等的3D图像。对于实验动物胚胎、小型实验动物(线虫、果蝇、斑马鱼等)的活体发育过程也能够运用光片显微成像技术进行3D动态捕获。光片显微成像图像结果的输出和重构处理分析是实验中面临的瓶颈,改进数据存储、输出和图像处理技术势在必行,同时新的理论技术的发展、相关硬件技术的改进以及制样方法的开发都将促进光片荧光显微技术的应用。目前有多个商品化国际品牌设备,国内研发团队的产品日渐成熟,且已经在DEMO过程中深受用户的认可和依赖,尤其在透明化样品制备技术及图像数据的输出和处理等瓶颈技术方面都有深受关注和切实的优化,使得光片显微成像整体实验流程更加顺畅。6. 组织切片高通量成像和光谱成像组织切片高通量成像设备可完成100-200片组织切片全自动明场、偏光和多通道荧光显微成像,兼容26x76mm、52x76mm、102x76mm多尺寸玻片数字化扫描成像,在图像采集程序设置、自动对焦、采集速度、灵敏度、大视野成像及拼接、成像模式快速切换等技术要素上有很优异的特色,专业软件可批量分析处理图像数据同时兼容第三方数据分析软件,是组织切片形态学、病理学研究和蛋白质功能研究的有利工具。最新推出的组织切片多光谱荧光标记技术和光谱成像技术满足了光谱范围更广的荧光标记和显微成像实验需求,光谱成像范围达到440 nm –780nm,实现100个以上标志物自动化、超多重生物标志物检测和高速显微成像。借助专业的图像分析软件进行后续图像的光谱拆分、定量分析和更多个性化分析。二、流式细胞分析/分选技术1. 流式细胞分析流式细胞分析技术能够对细胞群、细胞亚群乃至单个细胞进行多参数、快速的定性/定量分析,分析速度可达每秒上万个细胞。流式细胞分析仪主要由液流系统、光学系统和电子系统构成,相较于荧光显微成像设备,仪器运行时在系统稳定性和操作复杂性等方面都对使用者的技术掌握程度和操作能力有较高的要求。流式细胞分析仪配备多种波长激光器,通常有355nm、405nm、488nm、561nm、640nm及其它波长激光器,根据实验需求配置检测通道的滤光片组。流式细胞分析多采用单管上样模式,也可借助孔板上样装置实现96和384孔板高通量上样和数据读取功能。声波聚焦技术将待测细胞精确聚焦在样本流的中心位置,最大限度避免细胞堵塞,从而实现在提高样本通量的同时,保证读取样品速度及获取的数据质量和精度。多色荧光分析是流式细胞分析技术发展的必然趋势,目前传统滤片式流式细胞分析仪已经能够选择26种不同波长激光器,且可同时安装9个激光器,支持多达50个高性能检测器,提高灵敏度并降低了噪声,从硬件水平上支持48色荧光标记细胞样品的采集和分析。而光谱型流式细胞技术的诞生,为多色荧光分析打开了全新的技术之门,目前商品化设备可以配置7个波长激光器和188个检测器,覆盖360nm – 920nm光谱范围,能够提供更为精确和全面的荧光信号信息,可从混合细胞群体中检测微弱信号和稀有细胞群体,同时自发荧光探测功能、光谱数据库信息以及光谱数据解析算法都可以为科研人员获得更高保真度的数据和更精准的分析解读提供便利,同时也使得科研人员意识到随之而来的多色流式细胞样品制备技术的挑战。质谱流式技术独辟蹊径地将质谱技术和流式分析技术相结合,采用金属标记抗体避开了荧光串色和自发荧光的困扰问题,检测通道数量可达上百个。但金属标记抗体高昂的实验成本一直是限制其广泛应用的制约因素。除大家熟悉的Fluidigm公司等国外厂商外,近年来国内已有至少两家本土化公司推出国产同类设备并配备专业团队进行抗体标记技术研发,国内外已有多个团队和商业公司针对质谱流式技术进行进一步的开发,有望提高检测速度,降低实验成本。2.流式细胞分选流式细胞分选实验面对的是分选后细胞活性、目标细胞得率、样品是否污染等诸多情况,与仪器的校准情况、液流稳定性、喷嘴孔径、细胞浓度、细胞状态、目的细胞比例、标记荧光强度、分选速度、分选时长等因素甚至环境情况密切相关。仪器使用者需要在仪器调试、清洗维护等方面投入大量精力和时间以保障细胞分选实验的顺利进行。在大型流式细胞技术平台,为保障多用户、多研究方向的流式细胞分选实验需求,流式细胞分选仪器通常会配置4-7个激光器,实现二路、四路甚至六路分选和孔板分选。全光谱超高速流式细胞分选仪配置高达9个激光器和60个检测器,既可以选择传统补偿模式进行数据分析,也可以切换成全光谱分析模式,以进行更精细的细胞亚群鉴定。由于流式细胞检测和分选实验样品是单细胞悬液,样品的浓度、特性、目标细胞比例、多色荧光试剂的设计等等因素都构成了流式细胞样品的复杂性和实验的不确定性,因此充分做好实验前的准备工作,保证较好的待测样品质量、充足的试剂耗材储备、良好的仪器状态、技术人员高超的技能等都将促进实验取得高质量结果。三、结语生命科学前沿研究的实验需求与高端仪器技术发展相互依赖、相互促进、相辅相成。激光显微切割技术、单细胞捕获技术、大颗粒样品分选技术,以及成像流式技术、成像质谱流式技术、在体流式细胞技术、光电关联成像技术等跨类别的技术融合,专业图像分析和处理软件的功能开发,为科研人员带来更优质实验结果、更多实验需求想象空间的同时,技术和仪器设备本身也将在应用中不断创新、完善和突破。近年来随着国家在大型科研仪器和关键部件研制领域项目的大力支持和投入,国内大型仪器技术快速发展,如超高分辨率荧光显微成像系统、光片显微成像系统、超快三维荧光成像系统、拉曼单细胞分选仪、质谱流式细胞分析仪等等国产高端仪器都信心满满地走进科研单位,出色的承担前沿科研实验,性能和品质在实际运行中不断改进和完善。相信在不远的将来,实验室里常规配备的是国产显微镜,仪器平台运行的是品质优异的国产激光共聚焦显微成像系统和国产流式细胞分析分选仪,大型共享技术平台能有更多的国产高端仪器,彻底摆脱卡脖子困境。除此之外,面向未来的科研发展范式,大型科研仪器的运行管理也将会成为一门需要科研人员、技术人员和管理人员认真钻研的学科。本文作者:张文娟 中科院分子细胞科学卓越创新中心 公共技术中心常务副主任,高级工程师张文娟,中科院分子细胞科学卓越创新中心公共技术中心常务副主任,高级工程师。2007年于复旦大学获得生物信息学博士学位, 2007年-2012年先后在复旦大学及美国贝勒医学院从事表观遗传学博士后研究工作。曾获中国博士后科学基金、2006年度上海市科技进步2等奖。2008年,被世界500强美国Honeywell公司上海总部研发中心聘为科学顾问(兼)。 2009年获The Lalor Foundation Travel Award,2011和2012年为International Society for Developmental Origins of Health and Disease(DOHaD)会员。2012年9月回国担任中科院生化与细胞所科研处副处长(副研究员),2013年8月起全面主持科研处工作。2015年2月起担任条件建设管理中心主任/公共技术服务中心执行副主任(高级工程师),2017年起任科技条件处处长/上海生命大型仪器区域中心管委会办公室主任。主要负责技术平台管理体系及条件建设的整体规划与组织实施,统筹科研设备和试剂耗材采购,协调装备研制项目管理。2019年度获上海市大型科学仪器设施共享服务先进个人(管理类)。2019年起任《分析测试技术与仪器》第八届编委。边玮:中科院分子细胞科学卓越创新中心 细胞分析技术平台主任边玮:中科院分子细胞科学卓越创新中心细胞分析技术平台主任。2004年参与筹建细胞分析技术平台,致力于平台的基础建设、人才队伍建设、技术建立和新技术发展,全面负责细胞分析技术平台的运行管理和服务共享。擅长激光共聚焦显微成像、超高分辨率荧光显微成像、活细胞成像、多光谱荧光成像、透明化样品光片成像、组织切片高通量扫描成像和实验室培养细胞及组织切片制样技术,熟悉流式细胞检测分析分选技术、电子显微镜生物样品制备和成像、实验室用超纯水系统等相关大型仪器分析技术,高度关注相关仪器设备和行业技术发展状态。作为项目负责人承担三项中科院仪器设备功能开发项目,两项上海市专业技术人才知识更新工程急需紧缺人才培养项目。现任上海显微学学会理事会理事,生命科学专业委员会主任。中国电子显微学学会理事会理事。《生命的化学》杂志编辑委员会编委。关于中国科学院分子细胞科学卓越创新中心中国科学院分子细胞科学卓越创新中心(简称分子细胞卓越中心)成立于2015年,依托中国科学院原上海生命科学研究院生物化学与细胞生物学研究所(简称生化与细胞所)建设及管理。分子细胞卓越中心致力于生命科学前沿基础研究与应用基础研究,依托分子生物学国家重点实验室、细胞生物学国家重点实验室、上海市分子男科学重点实验室,开展基因调控、RNA与表观遗传学,蛋白质科学,细胞信号转导,细胞与干细胞生物学,癌症和其他重大疾病机理等领域的研究。2020年,中心以第一单位/通讯作者发表高水平论文144篇;IF≥10的代表性论文76篇,其中Cell 3篇、Nature Methods 1篇、Nature Genet 1篇、Cancer Cell 4篇、Immunity 1篇、Nature Cell Biology 1篇、Cell Research 5篇。
  • 北大成功研制新一代微型显微镜 可实时记录神经元进行脑分析
    p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201705/insimg/d524002c-f06f-4221-a09b-ea5520ae7810.jpg" title=" QQ截图20170531163243.png" width=" 600" height=" 424" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 424px " / /p p & nbsp & nbsp & nbsp & nbsp 进入新千年,脑科学研究成为热点。工欲善其事,必先利其器。若要更好的探索人类大脑,就必须有更好的仪器与工具。目前,各国脑科学计划的一个核心方向就是打造用于全景式解析脑连接图谱和功能动态图谱的研究工具。 其中,如何打破尺度壁垒,整合微观神经元和神经突触活动与大脑整 体的活动和个体行为信息,是领域内亟待解决的一个关键挑战。 /p p   近日,自然杂志子刊 Nature Methods 发布了来自于中国在这方面的研究进展。该论文主要展示了《超高时空分辨微型化双光子在体显微成像系统》的研究成果——新一代高速高分辨微型化双光子荧光显微镜成功研制,并获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。 /p p   该研究成果源自于国家自然科学基金委员会计划局组织的国家重大科研仪器设备研制专项,当时共有9个项目入选。北京大学程和平院士主导的《超高时空分辨微型化双光子在体显微成像系统》就是其中之一,当时也获得了7200万元的经费支持。 /p p   过去三年,北京大学分子医学研究所、信息科学技术学院、动态成像中心、生命科学学院、工学院,联合中国人民解放军军事医学科学院组成跨学科团队,完成了的这一研发工作。团对成功研制新一代高速高分辨微型化双光子荧光显微镜,并获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。研究论文2016年12月提交,2017年5月29日正式在自然杂志子刊 Nature Methods 发布。 /p p   根据官方提供的信息,产品相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,其横向分辨率达到 0.65μm,成像质量可达商品化大型台式双光子荧光显微镜水平,并优于美国所研发的微型化宽场显微镜。该显微镜采用双轴对称高速微机电系统转镜扫描技术,成像帧频已达 40Hz(256*256 像 素),同时具备多区域随机扫描和每秒 1 万线的线扫描能力。 /p p   此外, 采用自主设计可传导 920nm 飞秒激光的光子晶体光纤,该系统首次实现了微型双光子显微镜对脑科学领域最广泛应用的指示神经元活动 的荧光探针(如 GCaMP6)的有效利用。 /p p   同时采用柔性光纤束进行 荧光信号的接收,解决了动物的活动和行为由于荧光传输光缆拖拽而 受到干扰的难题。未来,与光遗传学技术的结合,可望在结构与功能 成像的同时,精准地操控神经元和神经回路的活动。 /p p   值得一提的是,该显微镜重仅 2.2 克,可在小动物头部颅窗上,实时记录数十个神经元、上千个神经突触的动态信号 在大型动物上,还有望实现多探头佩戴、多颅窗不同脑区的长时程观测。 /p p   之所以说这一研究成果意义重大,主要是因为它为脑科学、人工智能学科的研究提供了重要的高端仪器。具体来说,微型双光子荧光显微成像技术改变了在自由活动动物中观察细胞和亚细胞结构的方式,可用于在动物觅食、哺乳、跳台、打斗、嬉戏、 睡眠等自然行为条件下,或者在学习前、学习中和学习后,长时程观察神经突触、神经元、神经网络、远程连接的脑区等多尺度、多层次动态变化。 /p p   事实上,成像技术一直是推动生命科学进步的主要动力。历史上,X射线、全息照相法、CT计算机断层成像、电子显微镜、MRI核共振成像、超高分辨率显微成像技术都推动了科学技术的进步,也都获得了Nobel奖。 /p p   在今天的发布会之前,该成果在 2016 年底美国神经科学年会、2017 年 5 月冷泉 港亚洲脑科学专题会议上报告后,得到包括多位诺贝尔奖获得者在内的国内外神经科学家的认可。冷泉港亚洲脑科学专题会议主席、 美国著名神经科学家加州大学洛杉矶分校的 Alcino J Silva 教授认为,“ 这款显微镜将改变我们在自由活动动物中观察细胞和亚细胞结构的方式??系统神经生物学正在进入一个新的时代,即通过对细胞群体中可辨识的细胞和亚细胞结构的复杂生物学事件进行成像观测,从而更加深刻地理解进化所 造就的大脑环路实现复杂行为的核心工程学原理。” /p p   这项技术研发成功的同时,团队也成立了一家叫做”超维景“的公司,并获得了来自协同创新基金、西科天使的融资,公司将会在符合北大政策的前提下,由北大支持进行商业化推广。团队接下来的重心仍是技术迭代、新产品研发。 /p p br/ /p
  • 中科大科学家发展单神经细胞 质谱技术研究取得进展
    p   近日,国际综合研究权威期刊《美国国家科学院院报》(PNAS)发表了题为《Single-Neuron Identification Of Chemical Constituents, Physiological Changes, And Metabolism Using Mass Spectrometry》的研究论文。该研究由中国科学技术大学生命学院神经退行性疾病研究中心暨中国科学技术大学脑资源库熊伟教授研究组与中科大化学学院黄光明教授研究组合作完成。该研究依托电生理膜片钳以及电喷雾离子源技术建立的稳定的单神经元胞内组分取样和质谱组分分析技术,对小鼠海马、前额叶、杏仁核、纹状体等脑区单个神经元内的数千种化学小分子进行了快速质谱检测,并且可以做到同步采集电生理信号,在单细胞层次上成功地完成了对神经元功能、代谢物组成及其代谢通路的研究。这项研究首次利用化学质谱方法直接无稀释的检测单个神经元中多种神经递质、代谢物、脂质等化学小分子,实现了单个神经元化学成分及代谢物的即时分析,该技术将目前神经细胞成分分析的研究推向了一个活细胞及单细胞水平,有望在单细胞层次上去研究神经生物学、代谢组学、毒理学等生命科学的重大问题,具有非常重要的应用前景。 /p p   大脑中有亿万个神经细胞,这些神经细胞在细胞形态,突触连结,细胞结构,电生理以及生理功能上具有高度的多样性。不同种类的神经细胞中,其化学分子组成、含量、代谢也都有着很大的差别。因此,对脑内单个神经元的化学成分进行分析,则具有重要的生物学价值。质谱分析因为具有高灵敏度,大的线性范围以及高通量分析化学分子的特点,逐渐被用于单细胞的细胞代谢分析。但目前的方法需要使用大量有机试剂对细胞进行处理,无法保持采样时细胞的活性 冗长的处理和分离过程也导致较慢的分析速度,无法短时间内完成大量单细胞分析 并缺乏来自同一细胞的电生理信号 最终导致单细胞代谢物的质谱分析无法大规模用于神经细胞的分析。 /p p   此研究成功建立了一套稳定的单细胞质谱分析技术,并对不同年龄段的小鼠海马、杏仁核、纹状体等脑区单个神经元中的谷氨酰胺、谷氨酸以及GABA等化学小分子进行定性、定量分析并对其进行神经元分类,最后利用该技术成功鉴定单个神经元内谷氨酰胺的代谢路径。这项方法的成熟与普及,必会为后续单个神经元组分分析、神经元分类以及病理状态下单个神经元中组分变化分析提供强有力的手段。 /p p   该项工作由中科大生命学院博士后朱洪影、生命学院博士研究生邹桂昌、王宁在熊伟教授和黄光明教授的共同指导下完成。该研究工作得到了国家自然科学基金委重大研究计划、科技部、中科院战略性先导科技专项(B类)以及国家青年千人计划等的资助。该工作还得到中国科学技术大学同步辐射实验室光电离质谱线站的仪器与技术支持。 /p
  • 分子生物学仪器何时入驻各大环监站?
    本周是第三十七届“中国水周”,今年活动主题是“精打细算用好水资源,从严从细管好水资源”。央视网新闻直播间在中国水周活动中,从环境DNA检测、水质“指纹”、水资源概念厂等方面,展现管好水资源,需要发挥的科技力量。《重点流域水生态环境保护规划》中提出构建“三水统筹”(水资源、水环境、水生态)系统治理新格局,随着国家的政策标准不断完善,治理力度不断加大,水生态环境持续改善,已经从水环境质量监测到水生态监测发展。中国环境科学研究院首席科学家/国家长江生态环境保护修复联合研究中心副主任宋永会提到:水生态环境管理的思路,由过去的污染治理为主,向水资源、水生态、水环境三水统筹转变。从生态系统整体性和流域系统性出发,全面推进三水统筹,着力实现有河有水、有鱼有草、人水和谐,人民群众对美好生态环境的获得感、幸福感和安全感正在不断提升。环境DNA监测环境DNA监测,是通过采集游离在水体中的生物DNA,包括体液、脱落的皮肤、排泄物等,揭示水体中可能存在的生物物种。中国环境科学研究院环境基准与风险评估国家重点实验室副主任赵晓丽:环境DNA检测正是利用分子生物学的技术,将生物体向水体中排放的少量DNA进行一个扩增和放大,再通过基因测序的方法获得其中大量的生物学信息,从而实现一个快速高灵敏分析的这样的一个目的。类似环境DNA检测这样的科技手段正在长江环境保护和修复中,发挥着更大的作用。中国环境科学研究院首席科学家/国家长江生态环境保护修复联合研究中心副主任宋永会:治理水污染,保护水环境是一项系统工程,通过科技创新解决难点问题,提供综合方案,支撑了长江保护修复攻坚战,提升了水生态环境治理体系和治理能力现代化水平。水质指纹科技创新不仅帮助我们监测水生态,也用来监管水环境。水质指纹污染溯源技术就是这样一项水环境监管技术,被称为水环境治理的“福尔摩斯”。在中国环境科学研究院的实验室里,利用这种污水指纹的技术,可以对废水样本寻根溯源。而检测出的污水荧光图谱,从形象上来说,和人类的指纹有几分神似。科学家们根据污水显示的三维荧光图谱,能够很快找到污染源。中国环境科学研究院流域水环境污染综合治理研究中心主任高红杰谈到,不同的废水有机物的组成是不太相同的。正是因为这些物质存在,所以在做三维荧光光谱的时候,才会出来这些峰值。也就是说每一个废水都具有自己独特的这个荧光光谱。去年,四川省生态环境科学研究院的专家遇到沱江某小流域高锰酸盐指数出现波动超标现象难题时,如何尽快找到污染源,成为精准治污、改善水质的关键,便是依靠水质指纹技术,最终锁定重点点位。水资源概念厂在江苏宜兴,有座全国首个水资源概念厂,能够将污水变废为宝、充分利用资源。被该水资源概念厂处理过的污水,大大优于环太湖流域地方排放标准。与传统污水处理厂不同,概念厂通过厌氧工艺对污泥进行厌氧消化,厌氧微生物将有机质转化成沼气,可以进行发电。最后产生的营养土,还能用来种菜。有机营养土经过无害化处理后,可以进行资源还田,进行资源化利用的尝试。
  • 徕卡精准空间生物学解决方案 第三弹
    空间生物学(Spatial Biology)是一门涉及生物组织内细胞和结构的空间排布以及它们在三维空间中相互关系和相互作用的学科。这种研究方法探索了细胞和组织在空间中的布局、分布和相互联系,以揭示生物体内的复杂生物过程和功能。 空间生物学研究的重要工具包括多色成像技术、高分辨率显微成像技术、3D图像重建和分析软件等。通过这些技术,研究者可以同时可视化和分析多种生物标志物或分子在组织中的空间分布,进而了解细胞类型的分布、细胞内信号传递的网络、细胞迁移和组织重塑等重要过程。 总而言之,空间生物学为我们提供了在细胞和组织层面深入研究生物系统的能力。通过空间分析和定量测量,我们能够更好地理解生物体内的结构和功能,促进疾病诊断和治疗的进步,并为药物开发和治疗策略的优化提供新的见解。通过空间生物学的研究,我们可以揭示生物体内的奥秘,并为解决重大生物医学问题做出贡献。 DMi8倒置荧光显微镜 DMi8倒置荧光显微镜是徕卡光学集大成者,拥有开放式的设计理念,光学扩展模块含有两个新型无限远接口,三个相机接口以及激光防护工具,可以进行各类型的荧光成像实验甚至是高端的TIRF实验。 ► 方案特点 适配各类型的荧光实验。 提供其他空间转录组技术流程中的HE明场成像或免疫荧光成像,用来选择感兴趣的区域。 搭载Synapse 高级同步快速板消除了系统组件间的瓶颈,通过集成的实时控制器,直接与所有硬件组件、相机和外围设备关联从而大大加快了成像速度。 可以升级或集成第三方的组件,满足各类型实验的需求,如TIRF。 通过DMi8获取的各类肿瘤组织切片荧光成像 THUNDER高分辨率组织成像系统 THUNDER高分辨率组织成像技术是一种用于记录高分辨率、多色、全景、三维成像的技术。通过THUNDER技术有效地消除厚组织切片的离焦信号,获取高分辨率和深度成像的数据。高精度的电动对焦驱动,帮助实现精确的全景组织区域成像。搭配不同的荧光染色方法,可以实现10色以内的荧光成像。 ► THUNDER技术原理 THUNDER技术采用硬件加软件的整体解决方案,在宽场成像原理下,通过计算清除(Computational Clearing)和自适应反卷积(Adaptive Deconvolution)的方法,有效的减少离焦信号的干扰,保留焦平面的信号,从而提高对比度,改善图像质量并提供更多细节信息供进一步分析。XY轴分辨率能达到136nm,Z轴分辨率能达到264nm,是一种广泛受到学术界认可的宽场高分辨率成像技术。 新一代Live THUNDER,通过实时THUNDER技术,在预览的模式下,实现高分辨率条件下的视野寻找,提高实验工作效率。 成年雄性大鼠大脑切片,70μm; 绿色:NeuN神经元,红色:星形胶质细胞,蓝色:细胞核; 数据来自广州医科大学附属第二医院 ► 方案特点 更高的分辨率,THUNDER技术实现XY 136nm,Z 264nm,更细节的细胞生物学信息。 更深的成像深度,成像深度可达150μm,更加适配厚样本成像,如脑组织、类器官等。 更多的颜色(生物标记物),可以实现10色以内的荧光成像,获得更丰富的空间信息。 更清晰的成像模式,全景组织成像时,可以在每个视野实时聚焦,确保每个区域成像的清晰度。 可升级THUNDER-LMD(激光显微切割)一体机,从高分辨率成像,到高精确切割,提取纯净、单一的细胞/组织。 神经元深度成像 ► 应用案例 肿瘤免疫微环境(TIME)在滤泡性淋巴瘤的发生发展过程中起着至关重要的作用。 人淋巴瘤样本。panel中所包含指标为Ki67(增殖)、CD3(免疫细胞)、CD4(辅助T细胞)、CD8(杀伤性T细胞)、FOXP3(调节T细胞)、CD163(M2巨噬细胞)。 TSA试剂盒来自览微生物科技(上海)有限公司 深度探究微环境内细胞分布与空间关系,通过Aivia分析软件,将淋巴瘤组织进行细胞自动识别与分类分析(不同的颜色代表不同的细胞类型)。 常规宽场成像(左)、THUNDER高分辨率宽场成像(中)、Aivia细胞分割与圈选(右)THUNDER高分辨率带来高精确度的细胞识别与分析。 ► 科研成果发表(部分) 1.Serpine1 mRNA confers mesenchymal characteristics to the cell and promotes CD8+ T cells exclusion from colon adenocarcinomas. Polo-Generelo, S., Rodríguez-Mateo, C., Torres, B. et al. Cell Death Discov. (2024). 2.Protein tyrosine phosphatase PTPRO represses lung adenocarcinoma progression by inducing mitochondria-dependent apoptosis and restraining tumor metastasis. Dai, Y., Shi, S., Liu, H. et al. Cell Death Dis (2024).欢迎报名参与徕卡线上直播会议 与徕卡工程师云端沟通 徕卡显微咨询电话:400-630-7761 关于徕卡显微系统 徕卡显微系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的领先的厂商之一。徕卡显微成像系统一贯注重产品研发和最新技术应用,并保证产品质量一直走在显微镜制造行业的前列。 徕卡显微系统始终与科学界保持密切联系,不断推出为客户度身定制的显微解决方案。徕卡显微成像系统主要分为三个业务部门:生命科学与研究显微、工业显微与手术显微部门。徕卡在欧洲、亚洲与北美有7大产品研发中心与6大生产基地,在二十多个国家设有销售及服务分支机构,总部位于德国维兹拉(Wetzlar)。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制