当前位置: 仪器信息网 > 行业主题 > >

光子和光学材料

仪器信息网光子和光学材料专题为您提供2024年最新光子和光学材料价格报价、厂家品牌的相关信息, 包括光子和光学材料参数、型号等,不管是国产,还是进口品牌的光子和光学材料您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光子和光学材料相关的耗材配件、试剂标物,还有光子和光学材料相关的最新资讯、资料,以及光子和光学材料相关的解决方案。

光子和光学材料相关的论坛

  • 帮忙下载一篇文献"光学材料"

    [b][font='Microsoft YaHei', 宋体, sans-serif]【序号】:1[/font]【作者】:[/b][size=15px]董时[/size][b][/b][font=&]【书名】:[b][font=Helvetica, Arial, sans-serif][size=22px]光学材料[/size][/font][/b][/font][font=&]【出版社】:原创力[/font][font=&][color=#333333][b][/b][/color][/font][font=Arial][size=12px][/size][/font][b]【链接】:[url=https://max.book118.com/html/2019/0103/8060106033001143.shtm]第1章--光学材料..ppt 免费在线阅读 (book118.com)[/url][/b]

  • .采样杯、比色池光学材料对光谱重现性有什么影响?

    [font=宋体]采样杯、比色池,这些采样附件,由于所用的材料和采样光路是直接关联的,因此材料对光谱信息的影响会直接反映到样品的光谱数据上。虽然一般都采用透明石英材料来做采样附件,但是不同的石英等级,其在近红外区的光谱响应曲线也是不一样的,会直接影响到样品的光谱信息,从而对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析带来分析误差。[/font]

  • 模仿蝴蝶翅膀的微观结构 科学家开发出纳米尺度光子晶体

    科技日报讯 据物理学家组织网9月3日(北京时间)报道,澳大利亚斯威本科技大学和德国埃尔朗根-纽伦堡弗里德里希·亚历山大大学(FAU)的一个国际研究团队,通过模仿蝴蝶翅膀的微观结构,开发出一种小于人类头发丝宽度的纳米级光子晶体设备,能同时适用于线性和圆形偏振光,使光通信更迅捷更安全。 该光子晶体可以同时分割左、右圆形偏振光,其设计灵感来自于卡灰蝶,也称为黄星绿小灰蝶。它的翅膀里具有三维纳米结构,赋予其充满活力的绿色。其他昆虫也有可提供色彩的纳米结构,但卡灰蝶却有着一个重要的不同。斯威本大学的马克·特纳博士说:“这种蝴蝶的翅膀包含一个互连的纳米级螺旋弹簧巨大阵列,形成了独特的光学材料。我们用这个概念来开发光子晶体装置。” 光子晶体相当于微型偏振分光镜。偏振分光镜用于现代技术,如电信、显微镜和多媒体。但天然晶体只适用于线性偏振光,不能用于圆形偏振光。研究人员利用三维激光纳米技术,使得该光子晶体具有了天然光子晶体没有的特性,从而能适用于圆偏振光。这种微型设备包含了超过75万个微小的聚合物纳米棒。 斯威本大学微光电中心主任顾敏(音译)教授说:“我们相信已经创建了第一个纳米尺度的光子晶体手性分光镜。它有可能成为开发集成光子电路的一种有用的电子元件,在光通信、影像学、计算机信息处理技术和传感中发挥重要作用。该技术为转向纳米光子器件提供了新的可能性,使我们朝着开发可以克服超高速光网络带宽瓶颈的光学芯片更近了一步。” 该研究成果已经发表在最新一期的《自然·光子学》杂志上。(记者华凌) 总编辑圈点 自然比人的想象更丰富。看似无奇的绿光,来自一种光学装置设计者从未见过的复杂结构。卡灰蝶翅膀里的天下无双的怪异阵列,是纯属偶然的基因变异数亿年积累的产物。而有想象力的科学家,在它的启发下,制造出地球上从未存在过的光学奇观。模仿自然的美,是人类创造的原动力。 《科技日报》(2013-09-04 一版)

  • 超材料使超声波检测图像更清晰

    将声波直接转换成光学信号超材料使超声波检测图像更清晰2013年03月17日 来源: 中国科技网 作者: 刘海英 中国科技网 伦敦3月15日电(记者刘海英)超声波诊断已在医学临床上普遍应用,众所周知的B超就是其中应用最广泛和简便的一种。但受声波频段所限,目前超声波检测所得图像的清晰度还不尽如人意,会一定程度上影响诊断效果。最近,英国伦敦国王学院研究人员开发出一种新型工程材料,可有效提高超声波检测图像的清晰度,有望改进超声波技术在医疗领域的使用状况。 这种新型工程材料属于“超材料”范畴,由镶嵌在一种称为“聚吡咯”(PPy)的聚合物中的金纳米棒组成。该材料的特性在于,它可以将超声波信号转变为光学信号。目前,传统的超声诊断设备都是将超声波信号转变为电子信号,其使用受限于敏感度和声波频宽,因而在成像清晰度方面有不尽人意之处。而新型材料能够将超声波信号转变为光学信号,使得信号处理一定程度上摆脱了上述限制,进而可形成清晰度更高的图像。 研究人员指出,超声波的频率越高,其定向性和敏感度越好,其成像的清晰度也会越高。当前的超声波技术,在声波大约在50兆赫兹左右时,敏感度就会有显著的下降。而这种新型材料能够将声波转换成光学信号,不再受限于超声波段,使得超声设备在150兆赫兹内都能“看”到以前看不到的细节,在医学应用方面极具潜力。 该项目领导者、伦敦国王学院的韦恩·迪克逊教授表示,新型材料的开发具有重要意义。他指出,目前最敏感的超声波探头也会受到声波频段的限制,即使是传统的光学材料,也会因光学定位方面的严格要求而不易使用到设备当中。而新型材料则能够相对简单地配置到超声波设备当中,这意味着医学诊断和治疗领域中有可能会产生新一代超声波传感设备。 《科技日报》 2013-03-17 (二版)

  • 生产高档物镜的材料

    生产高档物镜的材料

    [img]http://ng1.17img.cn/bbsfiles/images/2005/11/200511220903_10505_1625155_3.jpg[/img]萤石,又称氟石,是工业上氟元素的主要来源,是世界上20几种重要的非金属矿物原料之一。它广泛应用于冶金、炼铝、玻璃、陶瓷、水泥、化学工业。纯净无色透明的萤石可作为光学材料,色泽艳丽的萤石亦可作为宝玉石和工艺美术雕刻原料。萤石又是氟化学工业的基本原料,其产品广泛用于航天、航空、制冷、医药、农药、防腐、灭火、电子、电力、机械和原子能等领域。随着科技和国民经济的不断发展,萤石已成为现代工业中重要的矿物原料,许多发达国家把它作为一种重要的战略物资进行储备。我国萤石资源丰富,分布广泛,矿床类型繁多,资源储量、生产量和出口量均居世界首位。

  • 前方高能,请避闪!!!UV-Vis-NIR在材料分析领域内的应用

    前方高能,请避闪!!!实验室解决方案分享,有仪器,有检测,还有好的知识点欢迎报名参会!【业内专家深度解读】UV-Vis-NIR在材料分析领域内的应用,2017-01-17 10:00报名地址:file:///C:\Users\zhangyan\AppData\Local\Temp\8LDO48C$8@http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2272讲座要点:1.安捷伦Cary7000全能型UV-Vis-NIR能够对光学材料进行透射、绝对反射、漫透射、漫反射、散射透射以及散射反射六种测量模式。2.该款仪器可以在同一个序列中完成对同一个样品同一个点在不同角度下的透射和反射测量。3.借助该仪器,可以通宵自动采集上百张紫外-可见-近红外光谱图,还可以在短短几分钟到几小时内完成光学组件或薄膜的光学特性表征。4.Cary7000分光光度计为光学、薄膜/涂料、太阳能和玻璃等材料的研究、开发和QA/QC提供了一站式解决方案,助您深入分析各类材料。5.本次讲座针对Cary7000 UV-Vis-NIR不同的测量模式介绍了不同的应用案例,同时针对太阳能材料行业提出了安捷伦分子光谱的全面解决方案。

  • 【转帖】光学元件使用的材料

    以前在网上看到的。在各个电磁波段,光学元件使用的材料。[B]反射镜[/B]波段 材料X-raysUltraviolet 铝Visible 铝Near infrared 金infrared 金,铜[B]透镜[/B]波段 材料X-rays Ultraviolet 熔融石英(人造水晶)Visible 玻璃Near infrared 玻璃infrared ZnSe[B]窗口(windows)[/B]波段 材料X-rays berylliumUltraviolet 熔融石英(人造水晶)Visible 玻璃Near infrared 玻璃infrared ZnSe, NaCl, BaF2注:x-rays的反射镜和透镜的材料没贴出来,我不知道是没有还是漏了。

  • 新型超材料可避免电磁波逆向反射

    中国科技网讯 据物理学家组织网近日报道,电脑芯片利用光来移动数据将更加节能,甚至可比现今使用的芯片速度更快。而实现这点的困难之一就是光穿过电磁波导时不发生逆向反射以干扰之后的传输,甚至中断激光的工作。 现今的光纤网络通常使用光电隔离器来阻止光的逆向反射。这种装置一般由钇铟柘榴石等特殊材料制成,同时只能在磁场的作用下开展工作,这使得它的体积十分庞大。另外,由于隔离器会吸收光子以避免它们发生反向散射,其同样会削弱向前移动的光学信号。 而麻省理工学院等校的科研人员描述了一种新型超材料,能够保持光子只沿一个方向移动,使游荡的光子改道,而不仅仅是吸收它们。研究人员表示,这十分重要,因为光子的损失会限制他们所能集成的设备数量,因而制约大规模集成光学器件的发展。虽然实验所用的原型很大,但却不需要另外施加磁场,因此其原则上能够生产出比当前的光电隔离器更小的光学元件。此外,构建芯片级别的超材料不需要比生成微处理器更特殊的金属,从而能够降低制造的成本。相关研究报告发表在本周出版的美国《国家科学院学报》上。 赋予新材料光聚集特性的正是成排嵌入的金属天线,它们看起来很像垂直和水平交错的小型螺旋桨。每根天线由电路与位于材料底部表面的反方向的天线相连,通过电路的电流方向则决定了电磁波的传播方向。 虽然科学家正尝试以诸多不同的途径获取芯片级别的波导,但新型超材料提供的光学波导对于制造能够控制光学信号的芯片上设备十分有用。在芯片生产中,这些天线能被轻易地嵌入硅中。但天线的小型化并非支持超材料在可见光甚至近红外频率中工作的主要障碍,工作频率同样会受到电流中晶体管转换速度的限制,目前还没有哪个晶体管的设计能够迎合可见光较高的转换速度,而这正是研究人员正在努力的方向。(张巍巍) 《科技日报》(2012-08-21 二版)

  • 新型光子芯片能测量更多光量子态

    据报道,无线电和真空管问世以来,电子计算和通信有了很大发展。今天,消费设备的处理能力和内存等级在几十年前是无法想象的。但是,随着计算和信息处理设备的体积越来越小、功能越来越强,量子物理定律强加的一些基本限制正在出现,这一领域未来的发展前景可能与光子学密切相关。光子学是与电子平行的光学基本概念,光子学理论上类似于电子,但如果用光子代替电子,光子装置处理数据的速度比电子装置快得多。量子计算机。   目前,光子学领域的基础研究仍然非常活跃,但由于缺乏重要的设备,无法进行实际应用。美国 加州在理工大学开发新的光子芯片,延迟线特别是光子量子信息处理器,可以生成和测量光量子态。   根据光子的基本特性,不同种类的光子被分为能量、动量、偏振等特征,由这些不同特征决定的光子状态称为光量子态。   这种新的光子芯片基于在光学领域广泛使用的铌酸锂材料,在芯片一侧产生所谓的光压缩状态,在另一侧测量。时钟和数据恢复/重定时光压缩状态,简单地说,据悉在量子等级中降低“噪音”的光,近年来光压缩状态技术被用于加强激光干涉引力波天文台(LIGO)的灵敏度测量,LIGO天文台是利用激光束探测引力波的探测装置,如果科学家使用基于光的量子装置处理数据,低噪音照明状态也很重要。   加州理工大学电子工程与应用物理学副教授阿尔雷扎马兰迪 (Alireza Marandi)说:“我们可以利用它突破许多传统非线性光学研究的局限,甚至打破许多传统假设。”   另一方面,据马兰迪介绍,光子芯片技术显示了以太赫兹主频运行量子光学处理器的最终发展方向,专用时钟/计时比苹果笔记本电脑MacBook Pro的计算处理器快上千倍,未来5年内可以通信。据合著者、博士后学者拉杰维尔奈尔拉 (Rajveer Nehra)介绍,该研究报告指出:“光学一直是实现量子计算最有希望的方法之一。因为在可扩展性和室温下的超高速逻辑操作中有内在的优点。但是,可扩展性应用的主要课题之一是在纳米光子学中生成和测量足够的量子状态。 电子元器件是信息技术产业发展的基石,也是保障产业链供应链安全稳定的关键。面对成千上万种功能迥异的电子元器件,以及复杂的供应渠道和货源,往往一个器件的品质就可能影响到整个产品设计,加上近期电子元器件价格大涨,如何提升采购效率降低采购成本对于控制企业产品成本,提高产品竞争力有着极其现实的意义。 随着互联网的发展,用户都在便捷地通过型号搜索并比较渠道。[b]创芯为电子[/b]为不同规模的企业提供电子元器件采购的平台。主要产品包括电源管理[url=https://www.szcxwdz.com]芯片[/url]、处理器及微控制器、接口芯片、放大器、[url=https://www.szcxwdz.com]存储器[/url] 、逻辑器件、数据转换芯片、电容、二极管、三极管 、电阻、电感、晶振等,并提供相关的技术咨询。在售商品超60万种,原?或代理货源直供,绝对保证原装正品,并满?客??站式采购要求,当天订单,当天发货,还可免费供样!

  • 【网络会议】:2015年04月14日 14:00 安捷伦分子光谱在太阳能材料检测领域内的整体解决方案

    【网络会议】:安捷伦分子光谱在太阳能材料检测领域内的整体解决方案 ——Cary 5000/7000 UV-Vis-NIR及4300手持式FTIR【讲座时间】:2015年04月14日 14:00【主讲人】:张晓丹 (2012年加入安捷伦科技(中国)有限公司,任分子光谱应用工程师)【会议介绍】 安捷伦Cary7000全能型UV-Vis-NIR能够对光学材料进行透射、绝对反射、漫透射、漫反射、散射透射以及散射反射六种测量模式。同时,该款仪器可以在同一个序列中完成对同一个样品同一个点在不同角度下的透射和反射测量。借助该仪器,可以通宵自动采集上百张紫外-可见-近红外光谱图,还可以在短短几分钟到几小时内完成光学组件或薄膜的光学特性表征。Cary7000分光光度计为光学、薄膜/涂料、太阳能和玻璃等材料的研究、开发和QA/QC提供了一站式解决方案,助您深入分析各类材料。 本次讲座针对Cary7000 UV-Vis-NIR不同的测量模式介绍了不同的应用案例,同时针对太阳能材料行业提出了安捷伦分子光谱的全面解决方案。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2015年04月13日 4、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/13965、报名及参会咨询:QQ群—379196738

  • 请问有了解 WMS15材质的吗

    第一次提问题,请问有人知道WMS15这种光学材料含不含有铅?像BK7,SF11这些材料就是含铅的,不知道WMS15是不是一样。知道的朋友请帮忙解答一下,非常感谢!

  • 潘建伟等实现世界最佳单光子源

    2013年02月08日 来源: 中国科学报 作者: 蒋家平 2月4日,英国《自然》子刊《自然—纳米技术》以长文形式,发表了中国科学技术大学教授潘建伟、陆朝阳等人关于量子点脉冲共振荧光确定性高品质单光子源的研究工作。这是我国量子点光学量子调控领域发表在《自然》系列期刊上的第一篇论文。 量子点是一种通过分子束外延方法制备的纳米晶体,又被称为“人造原子”,可以为量子保密通信和光学量子计算提供理想的单光子源。此前,美国加州大学、斯坦福大学和英国剑桥大学等研究组实现了基于非共振激发量子点产生的单光子源。然而,由于单光子发射时间抖动、激子退相干等,不可避免地引起光子品质下降,光子全同性只能达到70%左右,无法进一步应用于可扩展量子信息处理。 要发展能够真正实用化的光量子信息技术,关键技术之一是实现确定性的高品质单光子源。为此,微尺度物质科学国家实验室的潘建伟、陆朝阳等在国际上首次发展了一套新颖的量子点脉冲共振光学激发、多重滤波技术,显著消除了消相干效应,解决了单光子源的确定性和高品质这两个基本问题。 实验产生的单光子源信噪比超过300:1,二阶关联函数小于1.5%,光子全同性优于97%,这些技术指标使得中国在这一领域的研究跻身世界前列,为可扩展光学量子计算和基于自旋的固态量子网络的实现奠定了基础。审稿人称赞这是一个“令人惊喜的高质量实验”。(记者蒋家平)

  • 【资料】光学计量简介

    光学计量测试包括的范围相当广泛,目前国家已在许多方面建立了计量标准和测试手段,主要包括:光度、光谱光度、色度、辐射度、激光参数、光学材料参数、光学薄膜参数、成像光学、微光像增强器及夜视仪器参数、光纤和光通信函数、光电子器件参数等计量测试。一、光度计量测试 光度量是限于人眼能够见到的一部分辐射量,是通过人眼的视觉效果去衡量的,人眼的视觉效果对各种波长是不同的,通常用V(λ)表示,定义为人眼视觉函数或光谱光视效率。因此,光度量不是一个纯粹的物理量,而是一个与人眼视觉有关的生理、心理物理量。 光度计量测试的主要参数有发光强度、亮度、照度及光通量等。发光强度的单位为坎德拉(cd),是国际单位制中的7个基本单位之一,它是不可能从其他单位直接导出的。有了坎德拉基本单位的定义,即可导出光亮、光通量及光源产生的照度和色度等单位。二、光谱光度、色度计量测试 光谱光度计量测试主要研究物质的吸收(透射)、反射、荧光和发射光谱,其主要计量测试参数有光谱规则反射比、漫反射比、光谱规则透射比、漫透射比;光谱吸收比;偏振器的消光比等。测量仪器主要有分光光度计、反射光谱仪、荧光光谱仪和摄谱仪等。 色度计量测试是指对颜色量值的计量测试。它是以三基色原理为基础,测出颜色的三刺激值,经计算可得到颜色的量值。 色度计量分为光源色和物体色两种,对光源色的计量实际上就是对光源的相对光谱功率分布的计量;对不发光的物体的透射样品或反射样品的色度计量,则是对样品的光谱透射比和光谱反射比的计量,通常使用的色度计量器具主要有标准色板、色度计、色差计以及光谱光度计等。

  • 【分享】新型纳米装置将光子变为机械能

    【分享】新型纳米装置将光子变为机械能

    新型纳米装置将光子变为机械能[img]http://ng1.17img.cn/bbsfiles/images/2009/05/200905231039_151503_1644912_3.jpg[/img]一个名为拉链空穴的小装置能够将激光变为机械能。(图片提供:Matt Eichenfield,Jasper Chan/《自然》)研究人员日前研制出一种纳米装置,能够在遭遇激光时产生振动。这种设备非常灵敏,甚至能够感知单个光子的能量。研究人员相信,它将加速光学通讯系统的发展,同时帮助科学家更为精密地探知物质的一些基本属性。 据美国《科学》杂志在线新闻报道,偏振光束似乎没有实现机械功的能力(这是因为光子作为光波的载体是没有质量的),但是它们在原子水平上却能够达到一个惊人的数量。例如,科学家目前已经能够利用激光捕捉、控制及操作单个的原子。现在的问题是相同的原理是否能够作用于纳米量级——其成分要比原子水平大得多,但在大小上仍然仅相当于一米的十亿分之一。 这也正是美国帕萨迪纳市加利福尼亚州理工学院(Caltech)的一个研究小组试图要解决的问题。首先,研究人员制造了一对外部覆盖着硅微芯片材料的厚度仅为几百纳米的支架。随后,他们利用化学手段在每个支架的表面腐蚀了一连串的小洞。研究小组将这一装置称为“拉链空穴”,这是因为它与一个拉链看起来很像。研究人员在5月14日出版的《自然》杂志上报告说,这些小洞能够引导和捕捉激光束的能量,同时使装置产生振动。而振动的频率取决于激光轰击支架的强度,参与该项研究的Caltech的物理学家Oskar Painter这样表示。 这一装置的表现就像是一部音频扬声器,后者隔膜的振动取决于放大器传送的电子信号的强度。相反,像扩音器一样,拉链空穴能够通过自身的振动改变光的强度。Painter指出,总体而言,这些功能使得拉链空穴能够扮演一部完全由光控制的微型无线电发射机和接收机的角色,但它同时要比类似大小的电子装置拥有更大的操作范围。 德国加兴市马普学会量子光学研究所的物理学家Tobias Kippenberg表示,科学家可以利用这种纳米量级的装置探究物质在量子范围的属性,而这是普通电子装置无法实现的。Painter解释说,由于这种装置的振动发生频率在每秒钟1000万次到1.5亿次之间,因此能够极大地改善原子力显微镜的分辨能力。用这种装置来研究分子和原子,每秒钟可以完成数千次操作。Kippenberg表示:“这种装置在基础研究和新应用上都具有光明的前景。”(

  • 利用光子反弹可对角落处物体成像

    中国科技网讯 受光子放大和光子在室内被物体和墙壁反弹现象的启发,美国麻省理工学院、哈佛大学、威斯康星大学和莱斯大学的科学家利用先进的光学系统追踪反弹的光子,从而能够“看到”隐藏在屋内拐角处无法直接看到的物体。该技术在未来有望成为减灾和无损生物医学成像的无价之宝。 麻省理工大学研究生奥特克莱斯特·古普塔表示,当光子从墙上反弹并射在室内拐角处暗藏物体上被反射回来时,利用光子环绕和反弹的时间数据,他们能够获取有关物体几何形状的信息。 先进光学系统主要由超快激光器和两维超快扫描照相机组成,它们的工作频率可达每秒万亿次。科学家用它们能在1秒钟内拍摄数10亿张图像,通过分析反弹光子的运动状况“看到”室内拐角处的物体。 超快扫描照相机与其他照相机不同,它是根据光子进入照相机的时间来成像。古普塔说,这样的成像方式为人们提供了了解光子需要多长时间被反弹回来的良好途径。如果在拐角处存在某种物体的话,光子返回得越快则进入超快扫描照相机的时间就越早。他们用超快扫描照相机捕捉和计算光子数,每张图像上有3个或更少的光子。通过快速大量的成像来生产扫描图像,帮助他们决定光子传输的距离(以厘米计算)。当数据收集完成后,他们便能了解拐角处暗藏物体的基本几何形状和3维成像。 新的成像技术具有众多潜在的应用,其中包括在救灾方面的应用。古普塔认为,如果有房屋倒塌,新技术能够帮助救灾人员知道废墟内是否有人存在。事实上,新技术几乎适用于各种各样的灾害现场,特别是需要了解内部具体情况以及角落处是否有人的火灾,火灾的危险程度以及有害环境,由此人们不会冒险派人进入燃烧的房屋内,新技术可以极大地减少救灾人员可能面对的威胁。 此外,新技术十分有望被用作无损或非侵害生物医学成像,帮助医生掌握病人皮下组织的情况。这是科学家目前要着手研究的课题。古普塔表示,根据典型的时间表,研发展示到产品推出,新技术商业化需要5年至10年的时间。(驻美国记者 毛黎) 《科技日报》(2012-08-17 二版)

  • 双光子显微镜——THG成像

    [b]摘要[/b]在神经科学和神经外科中对活体大脑组织中神经元的成像能力是一项基本要求。尤其是需求一种具有测微计尺分辨率的大脑形态学的非侵入探针的开发,因为它可以在临床诊断上提供一种非侵入式光学活体组织检查的手段。在这一领域,双光子激光扫描显微镜(2PLSM)是一个强大工具,并已成为活体生物样品最小侵入性损害的高分辨率成像的标准方法。但是,(2PLSM)基于光学方法提供足够分辨率的同时,对荧光染料的需求妨碍了图像对比度的提高。本文中,我们提供了一种活体大脑组织以细胞分辨率的高对比度成像方法,无需荧光探针,使用光学三次谐波发生进行成像。我们利用细胞水平的特殊几何学和大脑组织的液体内容物来获取THG的部分相匹配,提供了一种荧光对比度机制的替代方法。我们发现THG大脑图像允许快速、无侵入性标记的神经元、白质结构、血管同时成像。而且,我们利用THG成像来引导微吸管指向活体组织中指定的神经元。这个工作是一个无标记活体大脑成像的主要步骤,并开启了活体大脑中激光引导的微注射技术发展的可能性。[b]材料与方法[/b]THG成像对于THG成像实验,我们使用了一台商业化双光子激光扫描显微镜([color=#ff0000]TrimScope, Lavision BioTec[/color])。光源是一个光学参量震荡器(Mira-OPO,APE),810nm泵浦光来自一个Ti:Sa锁模激光器(Coherent Chameleon Ultra II)。使用一个20X,0.95N.A水浸物镜(Olympus XLUMPFL-IR)将光聚焦到样品上。使用epidetection几何学描述THG实验。使用分光镜(Chroma T800lpxrxt)将背景散射THG光子从入射激光束中分离出来,用一个THG波段的带通滤波器(Chroma HQ390-70X)过滤。检测器是GaAsP高灵敏度光电倍增管(Hamamatsu H7422-40),400nm处量子效率为25%。最高分辨率成像(1024×1024像素)的典型获取时间为1.6s,我们用于目标定向实验的512 X 512像素成像时间为0.6s。 为与前向端口比较,使用了一个定制的投射端口。这个端口使用了一个1.4N.A油浸物镜,一个长波分光镜(UQG optics)和一个400nm的相干窄带滤波器。对于THG与SR-101联合实验我们用1200nm的OPO来同时产生两种信号。使用一个594nm带通和561nm隔断的分光镜将SR-101荧光从THG信号中分离。SR-101信号使用一个PMT检测(Hamamatsu H6780-20)。Nile Red和THG成像也是由1200nm的OPO同步激发。在这个案例中THG信号由投射端口测量,Nile Red荧光通过一个593∕40 nm的带宽滤波器检测。对于THG和GFP联合成像,用来泵浦OPO的Ti:Sa激光被调谐到970nm并耦合到显微镜中。组织块的GFP和THG信号使用同一个检测器连续测量。但使用一个不同的(561∕40 nm)带通滤波器检测GFP。使用显微镜软件(Imspector Pro)获取图像并以16bit 的tiff格式存储,图像分析使用Image J(MacBioPhotonics)进行。[b]主要结果[/b] [img=,575,768]http://qd-china.com/uploads/bio-product/21.jpg[/img]Fig. 1.无标记活体大脑的三次谐波显微成像(A)脑组织THG成像的epidetection几何学图示。插图:THG原理。注意基质中没有光学激发发生。(B) 树突处的聚焦激光束。通过将激光聚焦体积设定到树突直径的几倍大小,可以获得部分相匹配,显著的THG信号将会产生。(C)细胞体内的聚焦激光束。由于不好的结构相匹配状态,没有THG信号产生。(D) 小鼠大脑组织的活神经元成像。体细胞以暗影存在。 [img=,466,500]http://qd-china.com/uploads/bio-product/22.jpg[/img]Fig. 2.活体大脑组织的THG成像(A)小鼠皮质的THG图像 (B) 与A同位置的Nile Red染色的双光子荧光图像 (C) 大鼠凹陷的脑回THG图像(水平切面) (D)小鼠脑胼胝体THG图像,轴突纤维束被清晰得分辨。Movie S1是这个结构的一个3D投影 (E)小鼠大脑纹状体的THG图像(冠状面)。白质和神经元细胞清晰可见。明亮的粒状结构是垂直穿行图像平面的轴突纤维。Movie S2是这个区域的3D投影。(F)麻醉活小鼠的脑皮质上层的血管THG图像(z栈平均投影密度是50um) [img=,510,767]http://qd-china.com/uploads/bio-product/23.jpg[/img]Fig. 3. THG与双光子成像的叠加 (A)小鼠额前叶脑皮质的THG图像 (B)SR-101标记的星细胞双光子图像 (C) A、B的叠加提供了神经网络中星细胞的分布信息 (D) 小鼠额前叶皮质的THG图像 (E) GFP标记的生长抑素神经元的双光子荧光图像 (F)D、E的叠加显示了生长抑素神经元在脑前叶皮质结构中的分布 [img=,461,768]http://qd-china.com/uploads/bio-product/24.jpg[/img]Fig. 4.THG成像深度与自动化细胞检测 (A-C) 小鼠额前叶皮质的THG图像,成像深度分别为100, 200, and 300 μm 。每幅图像都是3个以2微米深度间隔独立图像的最大密度投影(D) 110 μm深度处神经元细胞的自动检测THG图像。细胞检测的运算法则定义为以红色显示的神经元 (E)红色标记:来自A-C的图像栈的细胞可见性对比。黑色标记:作为一个深度功能的平均检测到的THG密度。 [img=,531,768]http://qd-china.com/uploads/bio-product/25.jpg[/img]Fig. 5. 无标记目标定向和细胞活性(A)小鼠新大脑皮层的THG图像 (B) 在对一个神经元进行THG引导膜片钳之后同一位置的THG图像 (C)一个200um深处钳住神经元的大视野THG图像(5幅深度间隔2um的图像平均) (D)记录以100pA电流脉冲刺激B中被钳住的神经元的动力势训练 (E) 测量在THG扫描期间静止膜电位的改变。即使以最高的能量,也只观察到4%的电压变化,保持了完全的可逆性。0.8秒的周期相应于图像扫描时间。(F)最大观察到的静止膜电位Vs扫描时的激光能量。没有非线性效应出现。

  • 关于红外发反射率的测量

    经常看到表征红外光学材料的光学性能的时候就会出现两张图:红外透过率和红外反射率。这个反射率就是常说的这个R,1=R+T+A。理论计算R=(1-n)^2 /(1+n)^2. 我想问一下红外反射率也是用红外光谱测量的吗?是反射角为多少的时候测量的?垂直入射的时候吗?看文献上从来都没有解释过。另外还有一个问题,反射光谱是怎么测量的,测得的数据就是反射率吗?补充一下测试的光学材料都是镜面抛光的。

  • 【分享】用分光光度计测量材料的光学带隙Eg

    说明:因为以前有很多人问这方面的问题,所以特意收集了些资料。注:用紫外-可见分光光度计测材料的光学带隙,这个材料一般是指非晶态半导体材料。对晶态半导体材料好像不适用。关键词:分光光度计 禁带宽度 光学带隙 Eg一。理论http://ng1.17img.cn/bbsfiles/images/2011/01/201101161637_274443_1786353_3.gif http://ng1.17img.cn/bbsfiles/images/2011/01/201101161709_274461_1786353_3.gifhttp://ng1.17img.cn/bbsfiles/images/2011/01/201101161641_274444_1786353_3.gifhttp://ng1.17img.cn/bbsfiles/images/2011/01/201101161642_274445_1786353_3.gifhttp://ng1.17img.cn/bbsfiles/images/2011/01/201101161642_274446_1786353_3.gif为了区别用电导率法测得的禁带宽度,用光吸收法测得的禁带宽度又叫光学带隙。http://ng1.17img.cn/bbsfiles/images/2011/01/201101161707_274457_1786353_3.gifhttp://ng1.17img.cn/bbsfiles/images/2011/01/201101161615_274434_1786353_3.gifhttp://ng1.17img.cn/bbsfiles/images/2011/01/201101161616_274435_1786353_3.gifhttp://ng1.17img.cn/bbsfiles/images/2011/01/201101161616_274436_1786353_3.gifhttp://ng1.17img.cn/bbsfiles/images/2011/01/201101161616_274437_1786353_3.gif对于m =2 的情况:http://ng1.17img.cn/bbsfiles/images/2011/01/201101161620_274438_1786353_3.gifhttp://ng1.17img.cn/bbsfiles/images/2011/01/201101161620_274439_1786353_3.gif二。测光学带隙的作图方法以m =2 为例,http://ng1.17img.cn/bbsfiles/images/2011/01/201101161632_274440_1786353_3.gifhttp://ng1.17img.cn/bbsfiles/images/2011/01/201101161633_274442_1786353_3.gif三。用积分球测量粉末状TiO2的带隙http://ng1.17img.cn/bbsfiles/images/2011/01/201101161644_274447_1786353_3.gifhttp://ng1.17img.cn/bbsfiles/images/2011/01/201101161645_274448_1786353_3.gif另一个相关文献(附件里):http://ng1.17img.cn/bbsfiles/images/2011/01/201101161658_274451_1786353_3.gifhttp://ng1.17img.cn/bbsfiles/images/2011/01/201101161658_274452_1786353_3.gif

  • 【转帖】未来材料的发展方向

    [em04] 贴一篇国家高科技部高新司司长邵立勤在首届中国高校材料院长论坛暨新材料产学研交流会上的发言: 日新月异的现代技术的发展需要很多新型材料的支持。自从第三次科技浪潮席卷全球以来,新型材料同信息、能源一起,被称为现代科技的三大支柱。新材料的诞生会带动相关产业和技术的迅速发展,甚至会催生新的产业和技术领域。材料科学现已发展成为一门跨学科的综合性学科。根据我国当前及未来发展的实际情况,新材料领域值得注意的新发展方向主要有半导体材料、结构材料、有机/高分子材料、敏感与传感转换材料、纳米材料、生物材料及复合材料。 1.半导体材料   随着高科技发展的需要,半导体及其应用研究的中心正向直接影响市场的微型或低维量子器件、改善传输质量和效率、增大功率和距离等方向发展,半导体化合物(GaAs、InAs、GaN、SiC等)具有重要的应用前景。半导体材料领域的重要研究主题有: (1)Si基积分电路设计,就材料物性而言涉及用于门(gates)电路控制的纳米尺寸电介质制造及特性研究。 (2)大能隙材料则在光电子学领域中具有关键的作用。可以预期,Ⅲ―V族化合物材料具有重要应用前景。 (3)纳米电子学及纳米物理学研究是微电子及光电子材料和器件发展的基础,涉及半导体与有机或生物分子耦合,低维器件的量子尺寸效应,半导体与超导体或磁性材料界面以及原子或分子尺度的存储问题。建立原子学模拟与连续介质力学及量子力学跨层次―跨尺度关联应是该领域中的一个重要的研究方向。 2.结构材料   Fe基、Al基、Ti基以及Mg基合金作为力学材料的主体,构成了系列结构材料,其主要功能是承担负载(如火车、汽车、飞机)。汽车用钢近年来已从一般钢铁发展为使用灿合金或特殊的高强Mg基合金,高强Ti合金在高强钢中有重要位置,不锈钢则有取代碳钢的趋势。用于军用飞机的Al合金及一般钢材则被先进的Ti合金及高分子基复合材料所取代。进一步还需要发展碳纤维增强复合材料或Al基复合材料。结构材料的主体有: (1)钢铁:钢铁材料,特别是具有多相结构和复杂成分的优质钢具有重要的应用前景和潜在优势,需要开展相应的基础研究。联系微米和纳米技术的纳米层间结构、织构以及晶界和界面都可视为改善钢铁材料的重要途径。 (2)Al合金:Al基材料及相应的沉淀硬化效应导致高强铝合金的出现,相关技术工艺已发展为"沉淀科学",它涉及"相"间晶体结构的匹配性以及合金的稳定性,特别是时效合金的稳定性直接影响航空或空间应用,因此可视为Al合金基础研究中的重要问题。 (3)Mg合金:镁及镁合金广泛应用于冶金、汽车、摩托车、航空航天、光学仪器、计算机、电子与通讯、电动、风动工具和医疗器械等领域。镁合金是最轻的工程结构材料,以其优良的导热性、减振性、可回收性、抗电磁干扰及优良的屏蔽性能等特点,被誉为新型"绿色工程材料"、21世纪的"时代金属"。 (4)Ti合金:Ti合金在军用或民用航空工业的发展中有重要位置,多相纳米尺度层状微结构问题对高强Ti基合金的特性具有重要意义,它将成为设计新Ti基合金的关键因素。 (5)结构陶瓷及陶瓷基复合材料:提高陶瓷材料的韧性和可靠性,降低陶瓷材料的制造成本是直接关系到陶瓷材料在高技术领域中应用的关键。先进结构陶瓷近年的主要发展趋势是:高延展性、超高强、超高韧、超高硬和耐高温的新材料探索。具体说来主要有:   ●向多层次、多相复合陶瓷方向发展;强韧化从纤维增韧、晶须增韧、颗粒弥散强化、相变增韧等发展到协同增韧;   ●向纳米陶瓷方向发展;   ●加强陶瓷材料的剪裁与设计,如晶界和界面设计、晶粒取向设计、多相之间的复合设计、仿生结构设计等;   ●Ti3SiC2和们Ti3AlC2等为代表的新型层状三元碳化物和氮化物陶瓷;   ●高性能多孔陶瓷材料;   ●突破低成本、高性能先进陶瓷制备工艺技术。 3.有机/高分子材料   有机/高分子材料是现代工业和高新技术的重要基石,已成为国民经济基础产业以及国家安全不可或缺的重要材料。一方面量大面广的通用高分子材料需要不断地升级改造,以降低成本、提高材料的使用性能;另一方面各类新型的高分子材料将应运而生,尤其是有机及聚合物分子或少数分子组合体的光、电和磁特性将成为高分子向功能化以及微型器件化发展的重要方向。 (1)分子材料与分子电子器件研究:该领域的主要研究方向是:新型功能分子的设计、合成与组装;分子纳米结构的构筑;分子的组装、自组装以及自组装技术在分子电子器件上的应用研究。这些分子电子器件主要包括分子电开关、分子光开关和分子电光开关的设计、分子导线、分子整流器、分子开关、分子晶体管、分子马达及分子逻辑器等。 (2)光电信息功能高分子材料研究重点主要在:   ●有机/高分子光子晶体材料:探索有机/高分子形成光子材料的途径;   ●超高密度高分子存储材料:开发存储密度高的高分子材料;   ●高分子传输材料:研究和开发应用于通讯传输的具有较高光学透过性,光学均匀,且高折射率、低光损耗的高分子塑料光纤;   ●高分子显示材料:有机/高分子电致发光材料、高分子液晶材料等,其发展方向为开发出具有高的电致发光效率、低驱动电压,具有不同发光波长(彩色)和长寿命的各种发光器件。 (3)生物医用高分子材料包括:   ●药物载体与控释材料:研究适于各类药物的新型生物降解高分子载体和控释材料的设计与合成,药物与载体的相互作用以及药物载体体系的生物医学性能(注射、口服、吸收、分布、排泄等)评价;   ●诱导组织自修复与再生材料:研究能够诱导组织自修复与再生新型生物降解材料的设计与制备,材料的形态、孔度、降解速度等与组织自修复和再生过程的相互作用关系;   ●生物医用材料的表面修饰以及生物相容性研究:研究不同结构的生物医用材料表面修饰新方法以解决材料的生物相容性问题等。

  • 双光子显微镜——毛囊再生过程活体成像

    [b]摘要[/b]组织的发生与再生依赖于细胞-细胞间相互作用和指向干细胞的信号以及它们的直接增殖。但是,引导组织适当再生的细胞行为还没有被很好的理解。运用一种新的,非侵入的双光子成像技术,我们研究了活鼠随时间推移的生理性毛囊再生。通过这种方法,我们监测了真皮层干细胞和它们的后代在生理性毛囊再生过程中的行为,并指出了间充质对它们行为的影响。承接早先的研究,干细胞在毛发再生的初始阶段处于静止状态而它们的后代处于更活跃的分生状态。除了细胞分化之外,后代细胞的协调运动也允许毛囊的快速扩张。最后,我们通过切蚀目标细胞的和长时间跟踪活毛囊展示了间充质对毛发再生的要求。因此,我们建立了一种直接原位观察毛囊内生长调控的细胞机制的方法,这使得我们可以精确调查生理性再生过程对毛囊组分的功能性要求。[b]材料与方法[/b]在原位成像中,对3周龄的小鼠通过腹膜内注射克他命和甲苯噻嗪进行麻醉,头部区域的皮肤使用机械剪毛器和脱毛膏剃光。小鼠被放在一个加热平台上,头部和耳朵通过一个自制固定台固定。一个玻璃盖被放在头耳结合部的皮肤上。皮肤的图像栈通过一台装配Chameleon Vision II (Coherent)双光子激光器的[color=#ff0000]TriM II Scope[/color][color=#ff0000](LaVision Biotech[/color][color=#ff0000])[/color]显微镜获取。一束激光(at 940 nm for GFP and 1040 nm for RFP, respectively)通过aX20水浸物镜((N.A. 1.0 Olympus)聚焦并以600Hz的频率扫描0.25到0.5mm2的视野区域。系列光学切片在5分钟内以步长2-3μm成像总深度100μm的组织。从静止阶段向生长阶段转变的几个相(静止相到生长初期相)被分析。在皮肤里使用不同的内在标记以在不同试验中定位到视野的初始区域并观察同一个毛囊。实验过程中通过鼻尖吸入气化异氟醚保持麻醉状态。三维双光子激光切蚀。使用同样的光学设备进行激光切蚀。使用900nm的激光束扫描一个10μm2的区域,以25%的激光能量持续1秒钟即可获得切蚀。根据目标深度(30-80 μm)调整切蚀参数。[b]主要结果[/b] [img=,655,507]http://qd-china.com/uploads/bio-product/11.jpg[/img]Figure 1 | 新的一次生长开始,细胞分化是在毛囊中进行空间调控的。a,静止状态毛囊。参与毛发再生的不同细胞群,包括干细胞,progeny和间充质,存在于定义的毛囊解剖隔层中。 b, 来源于双光子激光扫描显微镜系列光学切片的静止态活毛囊的三维重构。上皮细胞核(绿色)通过角蛋白14启动子(K14H2BGFP)驱动的H2B-GFP融合蛋白显影。 c, 一个progeny 分裂的例子。一个活毛囊的单独光学切片(左侧)和progeny 组分中三个处于有丝分裂期间细胞核的放大图(右侧,插图)。 d, 从几个处于早期生长阶段毛囊(n=17)中定量化细胞分裂的位置和轴 (生长初期 II)。e,垂直(左图)和水平(右图)方向干细胞分裂的两个例子。一个活毛囊的单独的光学切片(左侧插图)和处于有丝分裂中的干细胞隔层(右侧插图)的细胞核放大图。红色箭头,有丝分裂中的亲代核与子代核。图片的时间推移分别为15分钟和45分钟。标尺20 μm. [img=,629,446]http://qd-china.com/uploads/bio-product/12.jpg[/img]Figure 2 |生长过程中处于形态重组的干细胞progeny隔层. a, 毛囊生长中的向下伸展。生长状态的活毛囊三个连续时间点(3小时间隔)的光学切片,展示了progeny组分向下的伸展(左三) 。核间距增加,干细胞和progen隔层(大约生长初期 II to IIIa)中的总细胞数被定量。 (右侧, 数据表示为mean±s.e.m. (n=13-20 asterisk, P 0.0001) b,毛囊内的核重组.两个光学切片(左侧)分别跟踪和测量了同一毛囊在0时刻和4h时的(右侧)冠面和切面(xy and xz)(大约生长初期II to IIIa)(底图)。c, 生长中毛囊的向下迁移。单一光学切片表明了单个毛囊在1小时间隔连续时间点的完整的(左侧)和下部局部视图(上侧)。光学切片中的红色箭头和相应的跟踪标记了一个正在向下移动的核,5h内走过了30μm(大约生长初期IIIb)。在0h所展示的绿色核的位置以灰色表示用来比较(右下方图)。标尺20μm. [img=,575,588]http://qd-china.com/uploads/bio-product/13.jpg[/img]Figure 3 | 间充质皮肤乳头的切蚀削弱了毛发再生的启动. a, 实验设计,使用激光诱导皮肤乳头细胞切蚀来测试间充质对毛发再生的要求。b, 切蚀皮肤乳头细胞的活毛囊四个时间点的高放大率光学切片。c,包含少数切蚀皮肤乳头细胞的活毛囊的一群毛囊(黄色箭头)在三个时间点的低放大率光学切片。d,两个progeny被部分切蚀的毛囊在3个时间点的低放大率光学切片。e,切蚀皮肤乳头(上)或部分切蚀progeny隔层(下)的毛囊(作为毛囊的总长度测量)生长与对照完整毛囊的量化比较。数据表示为mean±s.e.m. (n=8-10 asterisk, P 0.0001).标尺50 μm. [img=,566,365]http://qd-china.com/uploads/bio-product/14.jpg[/img]Figure 4 | 毛囊再生的细胞机制。毛发再生的初始阶段,干细胞progeny是启动增殖的第一隔层。虽然分化数量少于干细胞progeny,但是隆突内部也检测到了细胞的分化。子代隔层是沿毛囊生长的轴向分化,而隆突内的分化方向则是随机的。毛囊经历了一个向下的延伸,其中子代内而不是干细胞隔层内的核间距增加。围绕间充质皮肤乳头的上皮细胞核重新排列并围绕间充质压缩。间充质的切蚀导致了毛囊生长的减弱。

  • 曼迪匹艾(北京)科技服务有限公司刚刚发布了光学 电子类 英文学术期刊助理编辑职位,坐标,速来围观!

    [b]职位名称:[/b]光学 电子类 英文学术期刊助理编辑[b]职位描述/要求:[/b]Photonics专注于光学,光学工程,光信息科学与工程,光学仪器及技术,光电子技术及光子学,电子科学与技术,检测技术与自动化,物理学,材料学等研究领域。详情请查看: http://www.mdpi.com/journal/photonics 一、工作职责1. 联系同行专家,组织稿件的同行评审;2. 建立与期刊主编,编委成员,作者及审稿人之间的良好沟通;3. 对稿件进行编排处理。 二、职位要求1. 光学,光学工程,光信息科学与工程,光学仪器及技术,光电子技术及光子学,电子科学与技术,检测技术与自动化,物理学,材料学等专业背景;2. 硕士及以上学历;3. 英语六级;4. 熟练office办公软件;5. 学习能力强,能适应公司高强度职业培训,例如:参加职业培训讲座和一对一导师培训管理。 三、工资待遇1. 薪酬待遇:月基本工资13000-16000,丰厚的绩效奖金;2. 五险一金,年度体检等各种福利。 四、办公地点北京市通州区翠景北里21号金成中心2105室[b]公司介绍:[/b] 曼迪匹艾(北京)科技服务有限公司成立于2008年05月29日,注册地位于北京市通州区翠景北里21号楼22层2204.2205.2206.2207,法定代表人为林树坤。经营范围包括技术推广服务;信息咨询(不含中介服务);市场调查;编辑服务;电脑图文设计、制作;技术开发;计算机技术推广服务;销售计算机软件及辅助设备、文具用品;技术进出口。(企业依法自主选择经营项目,开展经营活动;依法须经批准的项目,经...[url=https://www.instrument.com.cn/job/user/job/position/76767]查看全部[/url]

  • 曼迪匹艾(北京)科技服务有限公司诚聘光学 电子类 英文学术期刊助理编辑,坐标北京,你准备好了吗?

    [b]职位名称:[/b]光学 电子类 英文学术期刊助理编辑[b]职位描述/要求:[/b]Photonics专注于光学,光学工程,光信息科学与工程,光学仪器及技术,光电子技术及光子学,电子科学与技术,检测技术与自动化,物理学,材料学等研究领域。详情请查看: http://www.mdpi.com/journal/photonics 一、工作职责1. 联系同行专家,组织稿件的同行评审;2. 建立与期刊主编,编委成员,作者及审稿人之间的良好沟通;3. 对稿件进行编排处理。 二、职位要求1. 光学,光学工程,光信息科学与工程,光学仪器及技术,光电子技术及光子学,电子科学与技术,检测技术与自动化,物理学,材料学等专业背景;2. 硕士及以上学历;3. 英语六级;4. 熟练office办公软件;5. 学习能力强,能适应公司高强度职业培训,例如:参加职业培训讲座和一对一导师培训管理。 三、工资待遇1. 薪酬待遇:月基本工资10000-13000,丰厚的绩效奖金;2. 五险一金,年度体检等各种福利。 四、办公地点北京市通州区翠景北里21号金成中心2208室[b]公司介绍:[/b] 曼迪匹艾(北京)科技服务有限公司成立于2008年05月29日,注册地位于北京市通州区翠景北里21号楼22层2204.2205.2206.2207,法定代表人为林树坤。经营范围包括技术推广服务;信息咨询(不含中介服务);市场调查;编辑服务;电脑图文设计、制作;技术开发;计算机技术推广服务;销售计算机软件及辅助设备、文具用品;技术进出口。(企业依法自主选择经营项目,开展经营活动;依法须经批准的项目,经...[url=https://www.instrument.com.cn/job/user/job/position/68567]查看全部[/url]

  • 利用激光可快速高效创建单光子

    为研究原子的纠缠态和自旋波等提供了便利条件科技日报 2012年04月21日 星期六 本报讯 据物理学家组织网4月19日报道,美国佐治亚理工学院的物理学家利用激光从超冷的铷原子气体云内激发单个原子,开发出了一种能快速、有效创建单光子的新方式,并有望应用于光量子信息处理之中。相关研究结果发表在当日出版的《科学快讯》(《科学》杂志快速在线版)上。 这套新的单光子系统为研究原子的纠缠态和自旋波等提供了“肥沃的土壤”。科研人员能相当高效地将里德伯激发转化为单光子,随时获取所需的状态,速度可比现有系统快近千倍。 里德伯原子是指一个价电子被激发到高量子态的高激发原子。其价电子离原子实很远,能级结构类似于氢原子。为了获取里德伯原子,研究人员利用激光照射数百个密集的铷87原子。它们都被激光所冷却,并被限制在光学晶格中。激光照射将使单个原子从铷原子气体云中转化为接近电离的里德伯态。原子处于这种高度激发的状态时,将在10微米至20微米的范围内,与其他里德伯原子发生强烈的相互作用。通过修改单个里德伯原子的能量水平并在其周围保有相应的空间,可阻止额外的原子被转化为里德伯态。 一旦高度激发的原子被制成,科学家便可利用额外的激光场将激发转化为具有同样统计属性的量子光场。由于场由单个里德伯原子生成,其只包含一个光子,这可被用于多种协议之中,对于量子信息系统等领域的研究也十分重要。研究人员表示,在首次实验中,生成的单光子的性能已超过了其他类型的单光子。随着效率和生产率的进一步提升,以及和“长寿的”量子存储器的融合,这一单光子来源或可实现光量子的信息处理。 下一步,研究团队将致力开发两个光场之间的光子量子闸。如若成功,将支持他们制成原子和光的复杂纠缠态,这将为量子网络和量子计算添加宝贵的性能。(张巍巍)

  • 为什么ICPMS的炬管产生带电离子而ICPOES中产生特定波长光子?

    刚刚看到ICPMS的培训材料,它里面是这么比较ICPMS和ICPOES的炬管功能的区别的:“在ICP-OES中,炬管通常是垂直放置的,等离子体激发基态原子的电子至较高能级,当较高能级的电子“落回”基态时,就会发射出某一待测元素的特定波长的光子。在ICP-MS中,等离子体炬管都是水平放置的,用于产生带正电荷的离子,而不是光子。实际上,ICP-MS分析中要尽可能阻止光子到达检测器,因为光子会增加信号的噪音。正是大量离子的生成和检测使ICP-MS具备了独特的ppt量级的检测能力,检出限大约优于ICP-OES技术3~4个数量级。”但我还是没搞明白,为什么炬管从竖着放变成横着放就能从产生光子变成产生带电离子了呢?希望有大虾答疑解惑~~~

  • 光子晶体 reflectance 超过100%,如何解释?

    氧化钛光子晶体测紫外可见反射谱,其中有一个样品reflectance超过100%,在150%附近了,重复了很多次了,不知道如何解释。用硫酸钡做基线,仪器是 Cary 5000 Spectrophotometer 带的 The Praying Mantis accessory上做的。由于是光子晶体,因此样品是块体材料( 2 mm),这个有影响?

  • 江苏度微光学科技有限公司诚聘区域销售工程师,坐标杭州市,你准备好了吗?

    [b]职位名称:[/b]区域销售工程师[b]职位描述/要求:[/b]主要职责:根据部门总体市场策略,编制销售计划,完成客户拜访量,完成销售指标;全面掌握市场变化和竞争对手情况,了解客源市场分布,对公司营销策略、广告、售后服务等提出合理化参考意见;负责投标工作的开展;定期提交销售分析和总结报告。岗位要求:本科及以上学历;物理/生物光子学/化学/材料相关专业;工作年限3年以上熟悉光学成像、光谱表征方法,熟悉共聚焦显微镜、拉曼、荧光光谱仪、激光器、光电探测器等,有相关销售经验者优先;熟悉大学院校、科研机构等销售渠道,有相关渠道开拓经验者优先;具备亲和力以及优秀的沟通能力;我们希望你具备这些能力,抵抗社会佛系大潮1. 超强学习能力产品不断在迭代,市场永远在变化,你必须时刻保持学习的状态。技术上精益求精,业务上更能学无止境。2. 勇于突破,敢于承担不墨守成规,能够在自己的岗位独立并主动承担责任。如果你希望找一份安逸养老的工作,度微光学不适合你哟。3. 团队协作精神在一个快速成长型公司,你必须学会与团队内部其他成员合作,共同完成任务。1个人前行会很快,但是团队一起前行,才能走的远。4. 逻辑清晰,擅长表达无论是与内部不同职能人员配合还是搞定客户,首先你必须让别人理解你在说什么。[b]公司介绍:[/b] 江苏度微(Dowell photonics)光学科技有限公司一直致力于为客户提供量身定制、个性化服务和体验,从基本、简单的光学成像及光谱模块(光源、显微镜、光谱仪、探测器等)到多功能、复杂的显微成像及光谱系统解决方案(共聚焦拉曼、荧光、双光子荧光显微成像系统、显微高光谱等)。凭借专业的技术,设计巧妙、灵活的光学模块,让您的实验测试、研发生产不再受仪器功能所限,为您组建、扩展、升级多功能光谱测试系统...[url=https://www.instrument.com.cn/job/user/job/position/68663]查看全部[/url]

  • 江苏度微光学科技有限公司刚刚发布了区域销售经理职位,坐标杭州市,敢不敢来试试?

    [b]职位名称:[/b]区域销售经理[b]职位描述/要求:[/b]主要职责:根据部门总体市场策略,编制销售计划,完成客户拜访量,完成销售指标;全面掌握市场变化和竞争对手情况,了解客源市场分布,对公司营销策略、广告、售后服务等提出合理化参考意见;负责投标工作的开展;定期提交销售分析和总结报告。岗位要求:本科及以上学历;物理/生物光子学/化学/材料相关专业;工作年限5年以上精通光学成像、光谱表征方法,精通共聚焦显微镜、拉曼、荧光光谱仪、激光器、光电探测器等,有相关销售经验者优先;熟悉大学院校、科研机构等销售渠道,有相关渠道开拓经验者优先;具备亲和力以及优秀的沟通能力;具备管理潜质。我们希望你具备这些能力,抵抗社会佛系大潮:1. 超强学习能力产品不断在迭代,市场永远在变化,你必须时刻保持学习的状态。技术上精益求精,业务上更能学无止境。2. 勇于突破,敢于承担不墨守成规,能够在自己的岗位独立并主动承担责任。如果你希望找一份安逸养老的工作,度微光学不适合你哟。3. 团队协作精神在一个快速成长型公司,你必须学会与团队内部其他成员合作,共同完成任务。1个人前行会很快,但是团队一起前行,才能走的远。4. 逻辑清晰,擅长表达无论是与内部不同职能人员配合还是搞定客户,首先你必须让别人理解你在说什么。[b]公司介绍:[/b] 江苏度微(Dowell photonics)光学科技有限公司一直致力于为客户提供量身定制、个性化服务和体验,从基本、简单的光学成像及光谱模块(光源、显微镜、光谱仪、探测器等)到多功能、复杂的显微成像及光谱系统解决方案(共聚焦拉曼、荧光、双光子荧光显微成像系统、显微高光谱等)。凭借专业的技术,设计巧妙、灵活的光学模块,让您的实验测试、研发生产不再受仪器功能所限,为您组建、扩展、升级多功能光谱测试系统...[url=https://www.instrument.com.cn/job/user/job/position/68662]查看全部[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制