当前位置: 仪器信息网 > 行业主题 > >

红外反射检测器

仪器信息网红外反射检测器专题为您提供2024年最新红外反射检测器价格报价、厂家品牌的相关信息, 包括红外反射检测器参数、型号等,不管是国产,还是进口品牌的红外反射检测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外反射检测器相关的耗材配件、试剂标物,还有红外反射检测器相关的最新资讯、资料,以及红外反射检测器相关的解决方案。

红外反射检测器相关的资讯

  • 中国大鲵近红外反射光谱(NIRS)研究获得新进展
    近期,陕西省动物研究所大鲵科研团队与美国孟菲斯动物学会、密西西比州立大学联合攻关的&ldquo 利用近红外技术判定大鲵性别的研究&rdquo 项目取得了部分成果,在英国IM出版社的新闻通讯部分(2015年第26卷第2期)发表,并被选做杂志封面。   NIR 讯息是国际近红外光谱学协会的新闻通讯,提供最新的近红外界内新闻。它以全面,有趣的文章展示近红外光谱学的实际应用。   近红外反射光谱研究,是通过扫描样品的近红外光谱,可以得到样品的特征信息,收集数据建立模型,进而对未知样品进行准确预测。利用近红外光谱技术分析样品具有方便、快速、高效、准确和成本较低,不破坏样品,不消耗化学试剂,不污染环境等优点,广泛应用于动物生理、营养、健康,特别是动物行为、数量统计、繁殖和疾病等方面。此技术将为我国大鲵研究提供新的技术和手段。   Near infrared reflectance spectroscopy studies of Chinese giant salamanders in aquaculture production   Carrie K. Vance, Andrew J. Kouba, Hong-Xing Zhang, Hu Zhao, Qijun Wang and Scott T. Willard   http://www.impublications.com/content/nir-news-table-contents?issue=26_2   大鲵近红外扫描
  • 首个中红外波长超级反射镜制成
    来自奥地利、美国和瑞士的科学家组成的国际科研团队,研制出了首个中红外波长范围超级反射镜,有望用于测量微量温室气体或用于切割和焊接的工业激光器等领域。研究论文发表于最新一期《自然通讯》杂志。在可见光波长范围内,现有金属反射镜的反射率为99%。在近红外范围,专用反射镜涂层的反射率高达99.9997%;但迄今最好的中红外反射镜的反射率为99.99%,光子丢失率是近红外超反射镜的33倍。人们一直希望将超反射镜技术扩展到中红外领域,以促进很多领域取得重大进展,如测量与气候变化有关的微量气体、分析生物燃料,以及提升广泛应用于工业和医疗领域的切割激光器和激光手术刀的性能等。此次,研究团队研制出的中红外超反射镜的反射率高达99.99923%。为制造出中红外超级反射镜,研究团队结合传统薄膜涂层技术与新型半导体材料和方法,开发出一种新涂层工艺。为此,他们先研制出直径为25毫米的硅基板,然后让高反射半导体晶体结构在10厘米的砷化镓晶片上生长,接着将其分成更小的圆形反射镜,再将这些反射镜安装到硅基板上,得到了超级反射镜并证明了其性能。研究人员指出,这款新型超反射镜的一个直接应用是显著提高中红外气体分析光学设备的灵敏度,可准确计量微量环境标志物,如一氧化碳等。
  • 光学薄膜透射反射性能检测方法进展
    随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。本文主要介绍采用PerkinElmer紫外可见近红外光谱仪配置可变角度测试附件,直接测试样品不同角度下绝对反射率、透射率曲线,无需参比镜校准,操作简单方便,测试结果更加准确。附件为变角度绝对反射、变角度透射率测试附件,如下图所示,检测器和样品台均可以360度旋转,通过样品台和检测器配合旋转,测试不同角度下透射和反射信号。PerkinElmer Lambda1050+ 光谱仪自动可变角附件光路图图1 仪器外观图固定布局 工具条上设置固定宽高背景可以设置被包含可以完美对齐背景图和文字以及制作自己的模板下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。样品变角度透射测试采用自动可变角附件可以方便快捷的测试样品不同角度下透射数据,自动测试样品不同角度下P光和S光下透射率曲线,一次设置即可完成所有角度在不同偏振态下透射率曲线测试,无需多次操作,测试曲线如下图所示。图2 样品不同角度和偏振态下透射率测试数据样品变角度透射/反射曲线测试同一个样品,可以通过软件设置一次性测试得到样品透射和反射率曲线,如下图所示,该样品在可见波长下反射率大于99.5%,透射率低于0.5%,可同时表征高透和减反性能。图3 样品45度透射和反射曲线测试NIST标准铝镜10度反射率曲线测试采用自动可变角附件测试NIST标准铝镜10度下反射率曲线,如下图所示,黑色曲线为自动可变角附件测试曲线,红色为NIST标准值曲线,发现两条测试曲线完全重合,进一步证明测试系统的可靠性,可以准确测试样品的光学数据。图4 NIST标准铝镜10度反射率曲线测试(红色为NIST标准曲线)样品变角度全波长反射曲线测试(200-2500nm)软件设置不同的测试角度和偏振方向,自动测试样品不同角度下P光和S光偏振态下反射率曲线,如下图所示,200-2500nm整个波段下测试曲线均有优异信噪比,尤其是在紫外区(200-400nm),可以完成各波长范围的反射性能测试。图5 样品全波段(200-2500nm)变角度反射率测试不同膜系设计的镀膜样品性能验证
  • 175nm-50000nm变角度透射反射光学性能检测方法进展
    随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。本文主要介绍采用珀金埃尔默紫外/可见/近红外光谱仪和Spectrum 3红外傅里叶变换红外光谱仪,配置TAMS等可变角度测试附件,测试样品不同角度下绝对反射率、透射率数据,实现175nm-50000nm透射率、反射率等光学性能的精确表征。TAMS附件为变角度绝对反射、变角度透射测试附件,如下图所示,检测器和样品台均可以360度旋转,通过样品台和检测器配合旋转,测试不同角度下透射和反射信号。 Lambda系列分光光度计 TAMS变角度透射反射附件光路图图1 仪器外观图以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。01样品变角度透射测试采用TAMS附件可以方便快捷的测试样品不同角度下透射数据,自动测试样品不同角度下P光和S光下透射率曲线,一次设置即可完成所有角度在不同偏振态下透射率曲线测试,测试曲线如下图所示。 图2 样品不同角度和偏振态下透射率测试数据(点击查看大图)TAMS附件配套不同的偏振组件,可以自动测试样品不同波长下偏振信号,如下图测试石英样品在45度下偏振P光和S光反射数据: 图3 样品紫外波段P光和S光偏振测试(点击查看大图)02样品变角度透射/反射曲线测试通过软件设置,可一次性测试得到样品透射和反射率曲线,如下图,该样品在可见波长下反射率大于99.5%,透射率低于0.5%,可同时表征高透和减反性能。 图4 样品45度透射和反射曲线测试(点击查看大图)03NIST标准铝镜10度反射率曲线测试测试NIST标准铝镜10度下反射率数据,如下图所示,黑色曲线为TAMS测试曲线,红色为NIST标准值曲线,两条测试曲线完全重合,进一步证明测试系统的可靠性,可以准确测试样品的光学数据。 图5 NIST标准铝镜10度反射率曲线测试(红色为NIST标准曲线)04样品变角度全波长反射曲线测试(200-2500nm)软件设置不同的测试角度和偏振方向,自动测试样品不同角度下P光和S光偏振态下反射率曲线,如下图所示,200-2500nm整个波段下测试曲线均有优异信噪比,尤其是在紫外区(200-400nm),可以完成各波长范围的反射性能测试。 图6 样品全波段(200-2500nm)变角度反射率测试(点击查看大图)05不同膜系设计的镀膜样品性能验证测试样品600-1400nm下45度反射率曲线,该样品在1200nm以上属于高反射率,反射率大于99.5%,同时需要关注600-1200nm范围各个吸收峰情况,该波段下吸收峰非常尖锐,同时吸收峰较多,需要仪器具备高分辨率,从而准确测试出每一个尖锐吸收峰信号。 图7 膜系设计验证样品45度反射率测试(点击查看大图)06双向散射分布函数(BSDF)测试除了测试常规变角度透射和反射曲线外,TAMS附件可以自动测试样品不同角度下透射和反射率信号,可以得出样品不同角度下的透射分布函数(BTDF)和反射分布函数(BRDF)信号,最终得到双向散射分布函数(BSDF)。采用该附件可方便测试样品双向散射分布函数(BSDF)、双向反射分布函数(BRDF)、双向透射分布函数(BTDF)等光学参数测试,测试结果如下图所示: 图8 BRDF和BTDF测试(点击查看大图)如下图所示,测试样品不同波长下BSDF分布函数曲线(BRDF + BTDF),从而可以得出样品随不同角度下透射和反射信号变化情况。 图9 样品不同波长下BSDF(BRDF+BTDF)测试(点击查看大图)07窄带滤光片测试Lambda系列光谱仪为双样品仓设计,TAMS附件可与标准检测器、积分球检测器自由更换。对于窄带滤光片样品,即需要准确测设带通区域的透过率、半峰宽,也需要准确测试截止区吸光度值(OD值),可直接切换标准检测器进行检测。 图10 用于激光雷达的镀膜镜片透射和OD值测试数据(点击查看大图)08红外波段区变角透射反射测试珀金埃尔默傅里叶变换红外光谱仪,可广泛应用于上述红外材料光学性能测试,可测试样品在不同波段下红外透光率以及反射率,搭配变角透射及变角反射附件,可以实现不同角度下透射率及反射率测试,如下图为红外波段透射和反射测试曲线: 图11 用于Spectrum 3傅里叶红外的TAMS附件 图12 红外TAMS附件测试样品红外波段不同角度透射数据Summary综上,采用Lambda系列紫外/可见/近红外分光光度计以及傅里叶红外光谱仪,搭配TAMS、标准检测器、积分球等多种采样附件,可以组合出完备的材料光学性能测试平台,满足光学镀膜测试的多样化需求,更加准确便捷的得到样品的光学检测数据。 关注我们
  • 乐氏科技便携式傅里叶红外气体分析仪在应急监测方面的应用
    近年来,突发环境事件时有发生,在发生污染事故,造成环境污染的紧急情况下,事故发生单位和政府必须快速采取措施、锁定污染物,因此,及时开展应急监测工作是必不可少的。 根据《突发环境事件应急监测技术规范》等有关要求,发生污染事故时,需要对厂界、辐射区域范围内大气敏感点进行多方位气体监测。监测点位的设置需要根据事故现场环境及严重程度来判断,实行多点位监测。在监测过程中根据外部环境的变化及时调整采样点位。 综上所述,《突发环境事件应急监测技术规范》对污染事故应急监测提出很高的要求,由于污染事故具有突发性、不确定性、扩散速度快以及后果的不可控性等特点,为了最大程度地控制事态扩大、减轻污染危害,对事故发生初始阶段的应急监测尤为重要,同时,对应急监测设备也提出了极大的挑战。1应急监测设备必备的性能便携性:事故发生现场地点具有多样性,如:山林火灾的监测、化工厂爆炸、工业泄露、加油站爆炸、恐怖袭击的生化毒气等等,应急人员需要在短时间内携带设备前往事故现场,并在现场进行移动、穿插,这对设备的便携性提出严格要求。功能性:事故类型不同,产生的有毒、有害气体种类及气体组分是不同的,这对分析仪监测气体组分的数量、精准度以及应对复杂场景提出严苛要求。快速性:在有限的时间快速了解事故发生现场气体种类及大致含量是制止事态扩大和减轻污染危害的重要条件,这对分析仪的检测速度、分析周期提出更高要求。 乐氏科技的便携式傅里叶红外气体分析仪能够完全满足上述条件。仪器搭配了PLS偏最小二乘法作为化学计量方法,采用先进的光谱预处理方法,使得仪表在复杂的环境空气中适用性更强,测量结果更准确、更科学。是突发性环境污染事故应急监测的好帮手。2工作原理 采用傅里叶变换红外光谱技术(FTIR Spectrometer)进行气体分析。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪。主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和精细定量分析。 图1 光谱信息产生机理图2 光谱信息产生机理3产品特点测量精度高,优于标定的±2%;光谱范围宽; 高分辨率分析模式; 定性、定量种类丰富,定性可达5578种 ;分析周期短、可连续在线监测; 抗光谱干扰能力强;预热时间短。4应用案例 2022年9月,乐氏科技在某疾控防疫中心实验室现场试验,对用户提前配制好的混合有机溶剂进行现场分析(配制的样品组分包含:苯系物、三氯乙烯、二乙醇、甲酸),以检验便携式傅里叶红外气体分析仪在分析VOCs性能方面的表现。图3 实验室测试现场通过一个周期的测试,结果显示:傅里叶红外气体分析仪能够非常快速、准确地检测出实验混合物中的气体组分,并进行定量分析。图4 仪器采集的原始样品谱图样品原始谱图中包含有丰富的VOCs组分特征谱带,说明仪器红外响应非常灵敏。图5 样品原始谱图与三氯乙烯标准谱图比对两者特征谱带出现的位置及形状相似度极高,因此仪器准确地分析出了混合样品中的三氯乙烯样品。图6 样品原始谱图与苯标准谱图比对样品原始谱图与苯标准谱图在2800cm-1—3200cm-1内比对,两者特征谱带出现的位置及形状相似度极高,因此仪器精准分析出了混合样品中的苯。 通过上述多组对比,很好地证明乐氏科技便携式傅里叶红外气体分析仪在VOCs分析方面具有很高的红外灵敏度和响应,非常适合在环境空气应急检测或职业卫生检测行业的应用。
  • “最黑”材料制成高精度激光功率检测器
    据美国科学促进会网站8月18日报道,美国国家标准技术研究院利用世界最黑材料——森林状多壁碳纳米管作涂层,研制出一种激光功率检测器,可用于光通讯、激光制造、太阳能转换以及工业和卫星运载传感器等先进技术领域的高精度激光功率测量。研究论文发表在最新的《纳米快报》上。   这种新型检测器几乎不会反射可见光。在波长从400纳米的深紫,到4微米的近红外线波段,反射少于0.1%,在4微米—14微米的红外光谱中,反射少于1%。这和伦斯勒理工学院2008年报告的超黑材料相似。2009年一个日本团队也有类似研究。   正是受到伦斯勒理工学院的研究论文《世界最黑人造材料》的启发,国家标准技术研究院的科研人员对精细碳纳米管进行了较为稀疏的排列,把它作为一种热检测器的涂层,制成了用于测量激光功率的设备。碳纳米管是热的良导体,提供了一种理想的热量检测器涂层。虽然镍磷合金在某些波段能反射更少的光,但不能导热。   纽约石溪大学的合作研究人员在一种热电材料钽酸锂上,生长出了碳纳米管涂层,涂层吸收激光转换成热量,温度上升产生了电流,通过测量电流大小能确定激光的功率。涂层越黑,光吸收的效果越好,测量结果就越精确。其独特之处在于,纳米管是生长在热电材料上,而其它研究中是生长在硅材料上。   国家标准技术研究院用过各种各样的材料来做检测器涂层,包括扁平状的单壁纳米管。最新的涂层是一种竖直的森林状多壁纳米管,每根细管直径小于10纳米,长约160微米,深管有助于吸收随机散射光和任何方向的反射光。   由于技术上要求检测器能测量的反射光谱更加广泛,国家标准技术研究院用了5种不同的方法花了数百小时来测量越来越弱的反射光,结果精确度都能达到要求。研究人员计划将设备的刻度运行范围扩展到50微米甚至100微米波长,这或许可为太赫兹射线功率测量提供一种标准。
  • 能谱:傅立叶变换红外光谱仪是否成为珠宝检测领域中的“利剑“
    随着我国经济水平的提高,在日常的消费中,一些高消费品也越来越受到消费者的亲睐。比如黄金、珠宝之类的,在黄金价格下跌的时候,好多人都在买黄金,还有的爱好珠宝的消费者,都在买卖中,但是关于这些价格比较昂贵的珠宝,真假性需要专业的设备进行检测,偏光显微镜、能谱科技傅立叶红外光谱仪都是专业分析对送检的珠宝玉石里边所含的化学成份作出结论性的判断的有利器,但是珠宝检测市场还存在一定的问题:  不少消费者在买下一件或多件珠宝玉器后,为求保险,往往会先后送往不同的检测机构检测。但是在很多检测机构,为了方便顾客,都会把实验室尽量设在离消费市场更近的地方。然而,在拉近了与商家的距离后,很多消费者又会产生一种无名顾虑,怀疑检测机构会和商家合伙来坑人。当前市场上确实存在大量以假乱真、以次充好的现象,所以,对于顾客这种危机意识,检测机构能够理解,但是很多时候检测的结果不一样,让同行之间很尴尬,这样就造成了利益冲突。还有的就是在检测设备不断升级的时候,那些造假的手段也在使用不正当的手段,对珠宝进行处理,那些检测设备也不能一次检测出来。像宝石、珠宝、翡翠、等这类属于石头类的珠宝完全可以使用由天津能谱生产的iCAN9傅里叶变换红外光谱仪对它们进行了红外反射光谱测试,比较了对应的红外光谱图,红外光谱是宝石 、珠宝在红外光的照射下, 引起晶格( 分子) 、络阴离子团和配位基的振动能级发生跃迁, 并吸收相应的红外光而产生的光谱,用于宝玉石红外吸收光谱的测试方法分为透射法和反射法两种。透射光谱法提供宝玉石4000~ 2000 cm- 1 谱区的信息,主要与宝玉石中的H- O 及C- H 的伸缩振动有关, 如宝石中的结构水、有机物质以及宝石 珠宝优化处理使用的有机填料( 如树脂) 、染料等。反射光谱方法提供宝玉石的基频振动信息, 可以用来判别宝石 珠宝的种属和真伪。  以上这些都是在珠宝检测市场中存在的问题,检测突破困境,必然不可脱离检测设备,【能谱科技】傅立叶红外光谱仪红外光谱仪是这个行业中不可缺少的仪器设备,另外更需要相关的政策法规,严厉打击从事制假珠宝销售的人群,维护好消费者的合法利益。
  • 微型光谱仪之反射检测
    1、技术简介  光在两种物质分界面上改变传播方向又返回原来物质中的现象,叫做光的反射。正是因为光在物体表面发生的反射,我们的眼睛才能感知到周围的世界的颜色与景象。反射是通过光入射到物体表面后在不同波长段的反射率差异引起。光谱仪获得的反射光谱信息就像人眼所见到的视觉内容一样,但是光谱信息更为数据化、更客观。反射测量可以测试物体的颜色,或者通过判定物体的反射光谱差异进行多样品的筛选和品控。 镜面 粗糙表面图5.1 反射原理图  2、 应用说明  由于某些检测样本的特殊性,不能完全依赖于化学方法进行检测,反射光谱模型作为一种迅速、高性价比的检测方法,可以作为化学分析方法在其他应用领域的替代方案,甚至可以直接用来测试粉末状样品。反射光谱检测方法不能判定是否适用于被测目标样本的原有模样,所以还是需要尝试多次对照测试它们的反射光谱,提高光谱数据的准确性。  化学分析的方法可以用来提高最低检出限,并确定掺杂成分,但是光学的方法可以进行预先的快速查看与筛选。将反射光谱检测与化学计量学相结合,利用可见光和近红外漫反射光谱提供快速、无损的检测。在实际检测中,可以分析不同的样本之间的差异。数学上来说,主成分包含在了定义的所有波长多维空间的范围内。主成分使我们能够获得多维数据集和重要维度,然后从无意义的噪音中分离出有意义的信息。  食品安全:香料检测,香蕉成熟度分析,芒果与鳄梨区分检测等   自然环境:水体汞污染监测,农作物分析等  3 、典型产品和配置  颜色检测配置:  1. 光谱仪  2. 光源  3. 积分球:积分球可以180° 收集样品表面的反射光,所以它能尽可能多地收集样品表面的反射光。反射式积分球还能使用在弯曲表面,或者颜色测量。它能将样品表面发射的光很好地在积分球内部进行匀化,然后再耦合到光谱仪。反射光通过圆形的入射光孔径进入积分球,然后经过分球内壁涂抹的特殊涂层材料的均匀反射。图2 积分球示意图  4. 反射探头:当需要快速测量样品或者应用在样品表面非常小的采样点时,反射探头既可以测量镜面反射,也可以测量漫反射,而且可以基于光源和光谱仪的配置不同,选择不同类型的扩大波长范围的反射探头。探头的发射光和反射光是同一方向的,接收到的光是反射光的一部分,所以使用反射探头测量反射光谱是一种相对测量。图3 反射探头  5. 采样附件(光纤、滤光片、透反射支架、动态样品台等):透反射支架用来固定反射探头的标准配件,同时也可以用于透射测量。使用透反射支架,可以有效地减少光源对样品的过度加热,对于生物样品或者有机样品,还有那些低熔点的样品非常重要 动态样品台,基于样品台旋转或者直线移动来对样品进行测量,并获得测量的平均信号。这种测量方式避免了结果的多样性,提高了样品测量的均一性结果,特别是对于谷物、种子和土壤类等不均一的样品,是比较理想的选择。 图4 反射支架和样品台  6. 准直透镜:在做反射测量时,准直透镜可以使用在光纤的末端来准确地固定入射光和反射光的角度。镜面发射或者漫反射都可以使用这样的测量方式,但是我们需要固定夹具来对测量系统进行固定。准直透镜必须预先调焦来避免光束的发散,来保证获得更好的光谱。  7. 光谱仪控制软件图5 反射检测典型配置  典型配置  典型产品:高灵敏度光谱仪,光源,滤光片,积分球,透反射支架,动态样品台,准直透镜  4 、应用文章  4.1 香料掺假检测图6 不同香料检测光谱  4.2 香蕉成熟度检测图7 不同成熟度香蕉光谱图  4.3 芒果与鳄梨区分检测图8 芒果与鳄梨检测光谱  4.4 基于SPR快速检测花生过敏源图9 过敏源光谱  4.5 无人机智能农业检测 图10 无人机农业检测光谱图  4.6 农作物成分检测图11 农作物成分光谱图  4.7 水体汞污染监测图12 水体检测光谱图(来源:海洋光学)
  • 光伏材料的角度分辨反射/透射分析
    光学镀膜材料在太阳能行业应用广泛:由化学气相沉降法生成的氧化锌涂层,自然形成金字塔形表面质地,在薄膜太阳能电池领域被用于散射太阳光。将不同折射系数的高分子材料排列组成的全息滤光镜,将太阳光在空间上分成不同颜色的色带(棱镜一样),将不同响应波长的光伏电池调到每个波长的焦距处,从而形成一种新型的多结太阳能电池。位于硅太阳能电池前部的纳米圆柱形硅涂层起米氏散射的作用,因此增加了在更宽入射角范围和偏振情况下的光被太阳能电池的吸收。曲面型光电模块的渲染和原理图。3M可见镜膜能够使模块在可见光区表现为镜像,而在近红外光区变为黑色。对于所有的光学涂层——特别是那些非垂直角度接收阳光或者阳光入射的涂层,表征波长、角度和偏振测定的反射和入射就尤为关键。PerkinElmer公司的自动化反射/透射附件ARTA,可以测定任何入射角度、检测角度、S和P偏振光在250-2500nm的范围内的谱图,从而告诉我们:所有的入射光都去哪儿啦?装备了ARTA的LAMBDA紫外/可见/近红外分光光度计样品3M可见光镜膜:吸收紫外光,反射可见光,透过红外光。仪器PerkinElmer公司的LAMBDA 1050+紫外/可见/近红外分光光度计。150mm积分球,Spectralon涂层积分球包含硅和InGaAs检测器,检测样品200-2500nm的范围内的总透射谱和总反射谱。装备了150mm积分球的LAMBDA紫外/可见/近红外分光光度计ARTA,配备PMT和InGaAs检测器的积分球(60mm),能在水平面上围绕样品旋转340°,进行角度分辨测量。3M薄膜固定在ARTA样品支架上的照片实验结果用150mm积分球附件测量的3M薄膜的总反射和总透射谱图。薄膜在750nm附近具有预期的突变,在此处有将近100%的可见光反射率和约90%的红外光透射率。3M薄膜对于s(左图)和p(右图)偏振光的角度分辨反射谱图。对于所有的偏振情况,直至50˚的范围内反射到透射的转变都很急剧,但是有轻微的蓝移。对于入射角在约50˚以上的情况,s偏振光的转换终止,并且薄膜开始失去对光谱的分光功能。这种情况的一个明显后果就是在冬天或者纬度高于30˚的区域的夏季月份,曲面型光电镜片的工作效率都很低。更多详情,请扫描二维码下载完整应用报告。
  • 激光雷达:技术概述-漫反射目标在测试和校准高级驾驶辅助系统 (ADAS) 中的作用
    作者:Pro-Lite Technology Ltd 产品经理 Russell Bailey 和 Labsphere Inc 首席技术专家兼产品营销经理 Greg McKee图1 激光雷达激光雷达是一项成熟的技术,越来越多地部署在消费产品和无人驾驶车辆中。LIDAR 是 Light Detection And Ranging 的首字母缩写词。激光雷达系统已经使用了 50 多年,但直到最近,此类系统的成本仍使它们无法在大众市场中广泛应用。尽管雷达在自动驾驶汽车技术(例如自适应巡航控制系统)中被广泛应用,但LIDAR被认为是驾驶员辅助汽车的首选传感器,因为它可以精确地映射位置和距离,从而检测小物体和3D成像。它使用带有飞行时间感应的脉冲激光和固态光来测量距离。激光雷达系统的表征要求在宽反射率动态范围内补偿传感器对脉冲激光或固态光水平的响应。为此,需要使用已知和稳定反射率的大面积反射率漫反射目标板。Labsphere(蓝菲光学)的Permaflect漫反射涂层目标板,范围从5%到94%的反射率,使汽车制造商 OEM 及其供应商能够在广泛的环境条件下表征和校准其 LIDAR 系统。图2 Labsphere(蓝菲光学)的Permaflect漫反射涂层目标板激光雷达技术激光雷达最基本的形式是激光测距仪,自20世纪80年代以来已广泛应用于军事应用。激光测距仪由一个脉冲激光器(发射器)和一个光电探测器(接收器)组成。测距仪的设计可精确测量距离(所谓的“测距”),主要测量激光脉冲被反射和接收到探测器所花费的时间(这被称为“飞行时间”测量)。测距仪对准目标物并发射激光脉冲。激光击中目标,被散射,并且一部分反射光由探测器测量。由于光速非常精确,因此可以非常精确地测量测距仪和目标物之间的距离。更先进的激光雷达系统使用相同的原理,但使用光学和移动或多个探测器在二维中映射目标。这些系统通常每秒脉冲数千次,每秒可以探测到数千个点。分析该点云的数据可以创建目标区域的准确映射。激光雷达的工作方式类似于雷达和声纳,它们分别使用无线电波和声波。来自雷达和声纳的数据可用于以类似方式映射周围环境,但激光雷达系统使用的是较短波长的红外辐射,而不是较短波长的无线电波。由于使用的波长较短,激光雷达测量比雷达更准确。部署在自动驾驶汽车上的激光雷达系统通常使用扫描激光束和闪光技术来测量空间中相对于传感器的 3D 点。这些激光雷达系统通常每秒发射数千个激光脉冲,以便车辆可以对行人和其他车辆等障碍物做出反应。激光雷达允许自动驾驶汽车以高精度、高分辨率和长检测距离传送和接收物体和周围环境的反射光。目前正在开发更先进的 AI(人工智能)系统,用来预测车辆和行人路径,并做出相应反应。当您将 LIDAR 数据与定位信息(使用 GPS 或类似信息)相结合时,您就可以全面映射车辆周围环境。激光雷达的性能在很大程度上取决于所使用的激光功率和波长。出于安全原因,可使用的激光功率有一个上限。在没有更高的激光功率的情况下,你可以使用更高灵敏度的探测器,或者使用波长延伸到更远的红外(IR)的激光。由于现有激光器的技术成熟,通常使用的波长为850nm、905nm或1550nm。1550nm激光比其他选择更安全,因为超过1400nm的红外辐射不会再通过眼睛的角膜,所以不会聚焦在视网膜上,但因水对1550nm的光吸收较强,1550nm要求更多的功率来补偿。消费电子产品和自动驾驶汽车中的激光雷达激光雷达作为关键性技能与摄像头系统和其他传感器一起在自动化中应用。激光雷达系统已经在专业测绘和相关应用中商用多年。然而,直到最近几年,激光雷达才变得越来越普遍,这主要是由于自动驾驶汽车应用(无人驾驶汽车)需要更小、更便宜的设备。自上世纪90年代初以来,激光雷达已作为自适应巡航控制的基础应用于半自动驾驶汽车,而激光雷达首次应用于自动驾驶汽车是在2005年。在消费电子领域,最新一代的 Apple iPad Pro(以及现在的 iPhone 12 Pro)已将 LIDAR 传感器集成到其摄像头阵列中,专门用于成像和增强现实 (AR) 应用。LIDAR 传感器可使 iPad 正确解析真实物体相对于由相机阵列成像的 AR 物体的位置。AR 还处于起步阶段,因此 LIDAR 在智能手机和其他消费设备上的应用还有待观察,但人们对为专业应用开发的 AR 产生了极大的兴趣,其中 LIDAR 可以成为非常有用的增强功能。专业 AR 的应用多种多样,从帮助仓库工人找到最快、最安全的路径到所需零件,到辅助工程师了解复杂维修的过程。这些应用中的激光雷达可精确定位和对齐,这对于任何需要高精度的应用都很重要。漫反射目标板在激光雷达系统测试与标定中的作用多年来,Pro-Lite 和Labsphere(蓝菲光学)多年来使用漫反射板一直在支持开发 LIDAR 系统开发。Labsphere(蓝菲光学) 更紧凑的 Spectralon® 漫反射目标板通常被军方用于测试激光测距仪。精确校准的光谱反射率与近朗伯(漫反射)反射率相结合,意味着对于这些应用,您有一个准确性、重复性的漫反射目标板可在实验室或现场测试您的系统。用于更大规模测绘或自动驾驶汽车应用的激光雷达系统需要更大的目标区域。由于大多数自然物体都会漫反射光线,因此 Labsphere (蓝菲光学)的漫反射材料是用户的自然选择,可以提供质量保证、现场测试和比较。Labsphere(蓝菲光学) 开发了 Permaflect 目标板,以满足对大面积、耐用和光学稳定目标板材料的需求。大的漫反射目标板尺寸(标准尺寸高达 1.2m x 2.4m)与校准的光谱反射率数据相结合,可以精确测量 LIDAR 范围。在 100m、200m、300m 等长距离测试距离内,则需要更大的目标板来反映目标上具有代表性的点数。Permaflect 是一种喷涂漫反射涂层,可以将其应用于大面积或 3D 形状,从而可以模拟真实世界的物体。现实世界中很少有物体像目标面板一样平坦,因此 Permaflect 涂层物体可以实现可重复的近朗伯反射率水平,例如,可以应用于人体模型以模拟行人。图3 Labsphere(蓝菲光学) Permaflect 喷涂人体模型LIDAR 漫反射目标板通常部署在室外,因此随着时间的推移,当漫反射目标板的表面暴露在大气中时,可以预期校准的反射率值会出现一些漂移。Labsphere (蓝菲光学)的漫反射材料易于清洁。为了考察是否有反射率的下降,可以使用校准的反射率计(“反射率计”),它可原位测量漫反射目标板反射率并将红外反射率的任何变化考虑到内。漫反射目标板反射率的变化将直接影响测量范围。下图显示了不同漫反射目标板反射率水平范围内反射率变化对测量范围的影响。反射率的微小变化会对较低反射率目标板的测量范围产生很大影响。例如,如果目标板的反射率从5%降低到 4%,则原先 300 m的测量范围将下降到30 m。实时了解情况发生的方法是测量目标板的反射率,然后根据此调整修正您的计算。图4 Labsphere (蓝菲光学)漫反射板反射率测试仪(反射率计)图5 在300nm波长下对物体反射率进行距离测量的模拟灵敏度Labsphere(蓝菲光学) 的激光雷达反射仪套件就是为满足这一要求而开发的。这款手持式反射计测量测量在三个波长(使用可互换的 850nm、905nm 或 1550nm LED)中的8°/半球反射率。观看Labsphere 视频库中的短视频。这可用于验证 Permaflect 目标板或测试 LIDAR 系统的任何其他对象的反射率。图6 Labsphere 开发了 Permaflect 漫反射目标板,以满足对大面积、耐用和光学稳定漫反射目标板材料的需求。
  • 盘点那些年我们用过的检测器(二) ——细说示差检测器
    液相色谱检测器种类较多,如何选择合适的检测器?以及为什么这样选择?之前的推文中我们陆续盘点了UV、DAD、ELSD等检测器,今天再跟大家聊一聊示差检测器。盘点那些年我们用过的液相检测器(一)一、RI 示差折光检测器原理简介关注我们RID是一种偏转式或者斯涅尔式折射率检测器。斯涅尔定律指出,平行光束沿着一个大于零的入射角通过一个将两种具有不同折射率的介质分开的电介质界面时,其折射率将与两种介质的折射率差幅成函数关系。二、示差检测器结构关注我们示差折光检测器结构示意图1、钨灯 2、聚光透镜 3、狭缝 4、准直镜 5、狭缝 6、检测池 7、反光镜 8、零位玻璃 9、光敏接收元件低功率、长寿命的钨灯发射出的光线经过准直透镜和狭缝后,通过参比池(参照池)和样品池(样本池),经平面镜反射回来后,再次通过光学单元,最后通过透镜聚焦到一对光传感二极管上(光传感器)。在测试期间,参比池和样品池中充满流动相。参比池随后与流路隔开,流动相仅流过样品池。如果两个池中介质的折射率没有差异,光线在通过它们时将不会发生折射。1 光束2 样本池3 参照池4 光轴(NsNr)5 光轴(Ns=Nr)6(4)和(5)在光传感器处的间距7 光传感器Ns:样本池中流动相的折射率Nr:参照池中流动相的折射率光线照射到一对光电二极管上,其中每个光电二极管都将给出一个电信号。随后这些信号会被放大,从而测得两个信号之间的差异。如果是零折射,这些信号之间的差异应该为零伏。借助一个电控机械联动装置,用户可以通过光路中的折射透镜来优化光电二极管的零偏转输出。还可以通过额外电路轻松地将信号输出校正为电子零点。1 光传感器A2 光传感器B3 光束当流动相的折射率发生变化时,通过样品池和参比池之间界面的光将被折射,从而使一个光电二极管上的光强增大,另一个电二极管上的光强减小。这种差异产生具有振幅和极性的信号,此信号被放大后,可以驱动图表记录仪。三、应用举例关注我们示差折光检测器是一种通用型检测器,只要被测组分与洗脱液的折光指数有差别就可使用。生命科学中常遇到各类糖类化合物,没有紫外吸收,一般常用示差折光检测器,她的通用性比UVD广,但灵敏度要低,对温度变化敏感,并与梯度洗脱不相容,因而限制了它的使用。应用一:麦芽糖、果糖、葡萄糖、异麦芽糖、麦芽三糖色谱条件色谱柱:月旭Xtimate® NH2(4.6×300,5μm)。流动相:乙腈:水=75:25;检测器:RID;柱温:30℃;流速:1.0mL/min;进样量:50μL。色谱图应用二:磷酸果糖二钠、蔗糖、葡萄糖、果糖色谱条件色谱柱:月旭Xtimate® sugar-Ca(7.8×300mm,8μm)。流动相:纯水;检测器:RID;温度:柱温75℃,检测器40℃;流速:0.2mL/min;进样量:10μL。色谱图四、示差检测器维护关注我们要想获得良好的实验结果,使用RID的三大法宝:第一、脱气;第二、平衡好流动相;第三、保持恒温恒压。在实际工作中我们会遇到很多典型的问题,接下来我们一起来分析一下这些问题如何破。五、使用注意事项关注我们1、正确放置溶剂瓶和废液瓶。要把溶剂瓶放在比示差监测器和溶剂泵还要高的位置,检测器出口留足够长的废液管通到下方的废液瓶,这样可以使样品池有一定背压,有利于检测信号的稳定。2、循环使用流动相。建议循环使用流动相。在没有进行分析时,打开循环阀,让流动相进行循环,这样泵就可以连续运行不必停止,一直到进行下一个分析。这样操作不仅可以节省流动相,而且检测器可以连续稳定的运行,随时进行样品分析。3、示差折光检测器不能用做梯度洗脱。由于介质的改变和压力的波动都会影响基线的稳定性,所以使用示差折光检测器时不能进行梯度洗脱。4、保证检测器的温度恒定。光学系统和流动相的温度对基线的稳定性影响很大。示差折光检测器可在比室温高5℃到55℃的范围内控温。建议将温度设为比室温高5℃,并确保柱温箱的温度与检测器保持一致。温度不宜过高,因为介质的折光指数随温度升高而降低,温度过高会使灵敏度降低。5、不可让流通池承受过大的压力。示差折光检测器流通池的反压约为1000psi,如果还要在系统里连接其他检测器。即示差折光检测器在流路系统里必须放在最后,以防压力增大时损坏流通池。6、某些溶剂随长时间存放而改变会造成基线的漂移。例如乙腈/水的混合物中乙腈的含量会降低,四氢呋喃会变成过氧化物,在吸湿性有机溶剂中的水量会增加,而保存在参比流通池中的溶剂如四氢呋喃会产生气体。因此,流动相最好做到临用现配或在有效期内使用。对于含有有机溶剂的流动相一般有效期3天,对于不含有机溶剂的流动相如纯盐或者纯水则根据室温情况,可临用现配或是配置好4℃冷藏,取用前先放置至室温。7、避免流动相和特定的色谱柱反应。某些流动相和特定的色谱柱反应,会产生长时间的噪声,例如乙腈/水流动相和氨丙基键合固定相在一起会出现这一现象。要判断长时间的噪声是否是由流动相/色谱柱的反应而产生,应该使用限流毛细管代替色谱柱,考查示差折光检测器的性能。
  • 2020红外/近红外光谱新品盘点:以应用驱动产品创新
    国外某研究机构的最新市场研究显示, 2020年全球红外光谱市场预计10亿美元,2025年将达13亿美元,复合年增长率为4.1%。作为一类比较成熟的仪器分析方法,红外光谱已经得到了广泛的应用,特别是在制药、生物研究以及食品和饮料的终端用户中应用非常广泛。而同时,这些相关行业严格的法规,以及对质量水平越来越高的追求都推动了红外光谱市场的增长。  虽然2020年COVID-19的爆发和蔓延影响了很多行业发展,也使很多工厂停工或者关闭,但同时也导致了药品和其他医疗设备产量的增加,这在一定程度上也增加了红外光谱在医疗保健和制药终端行业的需求,进而导致市场对红外光谱产品和解决方案的需求增长。  基于市场的需求,各大仪器厂家也在不断的推出新的产品。据统计,申报仪器信息网2020年度“科学仪器优秀新品评选”活动的红外/近红外光谱类仪器共计11台,其中红外光谱仪9台,近红外光谱仪2台。值得一提的是,不管是小型化、云数据管理、专用化及在线仪器等,以上新品特别注重从用户的角度考虑问题,从应用的角度着手进行产品的开发和设计。以下将根据2020年度申报新品的情况进行简单的概述:  近年来,小型化一直是仪器设计和制造的一个重要发展趋势,仪器小型化不仅能满足空间有限的分析测试现场使用需求,而且便于集成拓展,非常适合手持式/便携式仪器开发。  在本年度申报的仪器新品中,滨松光子学商贸(中国)有限公司推出了FTIR光谱仪引擎 C15511-01。基于精心重构光学干涉仪的设计思路,并采用独特的MOEMS技术,滨松光子成功开发出了一款高性能的微型化FTIR引擎。迈克尔逊光谱干涉仪和控制电路内置其中,仅手掌大小,却实现了在1.1-2.5μm区域超高的灵敏度,具有远超同类产品的高信噪比表现(10000:1),以及高光谱重现性。据悉,该产品可内置于便携式FTIR仪器中,实现整机小型化的同时,也可保证高性能的实现。  此外,荧飒光学仪器(上海)有限公司也推出了两款便携式的仪器新品:便携式傅里叶红外气体分析仪+Mobile10-G、便携式傅里叶变换红外光谱仪 Mobile10。其中,前者集成小体积长光程的9.8米气体池及内置抽气泵、电池,现场开机即可工作;后者不仅集成平板及电池,现场开机即可工作,而且具有与台式红外光谱仪一样的性能。  对于科学仪器而言,软件是一个绕不开的话题,随着应用需求的提升,用户不仅关注仪器硬件的改进,对软件及数据的云端管理也提出了新的需求。  软件在云平台和云服务方面的创新,是现代仪器发展的一个重要方向。珀金埃尔默企业管理(上海)有限公司推出的Spectrum 3™ 傅立叶变换红外光谱仪不仅提供全集成的热重-红外(TG-IR)联用(EGA4000)解决方案的FT-IR平台,涵盖近、中、远红外三个波长范围,软件自动切换光源、分束器、检测器等部件。而且,特别值得一提的是,该仪器首次将云办公软件“NetPlus”引入红外光谱检测领域,数据实现云端连接。基于Web的应用程序,允许从任何设备查看、上传/下载和管理云端数据,提供更加准确的结果、整合的工作流和团队成员间跨实验室/设备实时协作。  对于中药材的分析而言,数据分析是重点也是难点。北京鉴知技术有限公司(原同方威视拉曼)推出的IT2000中药分析仪,针对中药材质量控制,通过丰富的数据库和识别算法,一键分析实现中药饮片的真伪鉴别、品种识别、产地溯源和品质分析,光谱采集、分析、测试报告等同步自动完成。  应用拓展一直是近红外人努力的方向和目标,而找准应用环境对近红外仪器而言至关重要。很多业内人士指出,专用化和在线仪器的发展存在着较强的生命力和巨大的潜在应用市场。  瑞士万通中国有限公司推出了DS2500 L近红外光谱液体分析仪,在上一代产品的基础上,该仪器由分体式改为了一体机的形式,使得仪器本身防护等级达到了IP65。另外,其智能附件设计,为分析液体样品设计了不同光程的附件,每个附件上都带有芯片,附件插入仪器后可以被读取;荧飒光学仪器(上海)有限公司推出了为工业在线用户设计的8通道在线检测近红外光谱仪--傅里叶变换在线近红外光谱仪MASTER10-Pro,其采用完全国内自主的傅里叶变换技术,自主国产的干涉仪,立体角镜,永久准直,抗震性强。  除了红外透射、红外反射、衰减全反射(ATR)、漫反射等大家熟悉的测量方式,在本次申报的新品中,荧飒光学仪器(上海)有限公司还推出了傅里叶变换红外发射光谱仪和傅里叶变换光致发光光谱仪。红外发射光谱虽然应用范围不如红外吸收光谱广,但在一些特定研究领域有其独特的优势。荧飒光学仪器(上海)有限公司推出的傅里叶变换红外发射光谱仪 FOLI 10-RE是独立式、专用型红外发射光谱仪,其光路设计紧凑,可以明显降低辐射损失,提高辐射通量;作为一种有效的无损光谱检测手段,光致发光光谱广泛应用于半导体的带隙检测、杂质缺陷分析等。荧飒光学仪器(上海)有限公司推出的傅里叶变换光致发光光谱仪 FTPL-10具有弱信号探测能力强、测量速度快和用户操作使用简单等优势。在仪器性能方面,该仪器的光谱分辨率达到0.8nm以上,测量速度达到每秒1张谱图,信噪比超过500:1。  此外,荧飒光学还推出了旋转透射红外液体分析仪+FOLI10-RT,该仪器最多可同时配置4个不同光程的光学窗,非常适合液体的定量测量;天津恒创立达科技发展有限公司推出了MATRIX-50 傅里叶红外光谱仪,该产品采用专利的高能量红外光源,内置独特设计的反射镜,光源能量利用率远高于传统设计,可为傅立叶变换红外光谱仪的ATR及显微红外应用提供足够的能量。
  • 新型石墨烯光学探测器实现监测光谱从可见光到红外辐射
    德国亥姆霍兹德累斯顿罗森多夫(HZDR)研究中心的科学家通过在 SiC 上一个微小的片状石墨烯加上天线,开发出一种新的光学探测器。据称,这种新型探测器可以迅速的反射所有不同波长的入射光,并可在室温下工作。这是单个检测器首次实现监测光谱范围从可见光到红外辐射,并一直到太赫兹辐射。  HZDR 中心的科学家们已经开始使用新的石墨烯探测器用于激光系统的精确同步。据HZDR 物理与材料科学研究所的物理学家 Stephan Winnerl 称,相对于其他半导体,如硅或砷化镓,石墨烯可以承载具有超大范围光子能量的光,并将其转换成电信号,只需要一个宽带天线和恰当的衬底来。  石墨烯片和天线组件吸收光线,将光子的能量转移至石墨烯的电子中。这些“热电子”能够增加探测器的电阻,产生快速电信号,在短短 40 皮秒内便可完成入射光注入。  衬底的选择是提高捕光器的关键。过去使用的半导体衬底吸收了一些波长的光,但碳化硅可在光谱范围不主动吸收光。 此外,天线的作用就像一个漏斗,捕捉长波红外和太赫兹辐射。目前,科学家们已经能够将光谱范围增加为此前型号探测器的90倍,所能探测到的最短波长比最长的小 1000倍。而在可见光中,红光波长最长,紫光波长最短,红光波长仅是紫光的两倍。  该光学探测器已被 HZDR 中心采用,用于易北河中心的两个自由电子激光器的精确同步。这种精确同步对“泵浦探针”实验尤为重要,研究员使用其中一个激光器激发材料,再使用另一个具有不同波长的激光器进行测定。在这种实验中,激光脉冲必须精确同步。因此,科学家们使用石墨烯探测器如同使用秒表。精确同步的探测器可以显示出激光脉冲何时达到目标,大带宽有助于防止探测器变为潜在错误来源。该种探测器的另一个优点是,所有的测量可以在室温下进行,避免了其他探测器所需的昂贵和费时的氮气或氦气冷却过程。
  • 日立应用|平板液晶电视中反射膜的光学评估
    液晶电视给我们的生活增添了更多光彩,几乎每家每户都在使用液晶电视获取信息或娱乐消遣。其中增亮膜、反射膜、扩散膜、导光板等是液晶模组的重要组成部分。分光光度计是检查光学组件特性的有利工具,今天我们重点介绍平板液晶电视中反射膜的评估。液晶模组内部结构液晶模组中的反射膜通过将光从导光板反射到正面来提高亮度。因此要求反射膜具有极好的反射特性,从而对光进行有效的利用。反射膜使用日立紫外-可见-近红外分光光度计UH4150搭配5°绝对反射附件、积分球检测器评估液晶显示屏中的反射膜。实验测量了三种反射膜的反射率,结果如图4所示。5°绝对反射附件 三种反射膜的反射光谱各反射膜的光反射率光源:D65视角:2°结果表明,样品C有最高的反射率,可以更好的利用光,增加显示的亮度和效果。日立紫外-可见-近红外分光光度计UH4150具有优异的平行光束特征,确保反射率和透过率的准确测定,大型样品仓和多种多样的附件,满足液晶模组中不同组件的评估。 UH4150公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 大连化物所关亚风、耿旭辉团队研制出高灵敏近红外激光诱导荧光检测器用于甲状旁腺探测
    近日,中科院大连化物所微型分析仪器研究组(105组)耿旭辉研究员、关亚风研究员团队与大连医科大学附属第二医院田晓峰教授、张宁副教授团队,大连海事大学理学院王桂秋教授团队合作,在高灵敏近红外激光诱导荧光检测器(LIF)研制及其在甲状旁腺探测中的应用方面取得新进展。  甲状旁腺(PG)主要调控人体钙磷平衡,大小约为3至8mm,术中辨认非常困难。因此,PG在颈部手术中有误切或漏切的风险。目前,术中PG辨识主要依靠外科医生经验结合病理诊断。近年来,研究表明近红外自荧光探测技术可无创、准确地辨识PG,具有较高的特异性和灵敏度。然而,目前临床应用的探测仪因体积较大、自荧光发光机制不明等原因并未得到广泛应用。  本工作中,合作团队研制了高灵敏近红外光纤式LIF并应用于PG探测。该团队设计了20°夹角光纤探头,减少了探测“盲区”和反射光的收集,相比于共线式集束探头,灵敏度提高了53.4%,短期波动和长期漂移分别降低了61.1%和58.3%;在发射光路中增设二向色镜模块,基线和噪音分别降低了96.7%和92.1%,信噪比提高约9倍。该LIF对CF790染料的检测下限为5.1×10-14mol/L,比已报道的光纤式LIF低数百倍;将研制的LIF原理样机应用于离体病变的PG样本探测,准确率高于文献报道平均水平。目前,合作团队已研制出手持式PG探测器,未来将应用于术中原位PG探测辨别。本研究对推动光纤式LIF技术的发展和PG探测辨别具有重要意义。  耿旭辉、关亚风团队长期从事高灵敏小型LIF及应用研究,采用小型、廉价的激光二极管替代激光器为光源、自主研制的硅基弱光探测器替代进口光电倍增管(PMT)探测荧光,研制出紧凑式共聚焦LIF,对荧光素检测下限为3×10-12M,功耗和开机平衡时间优于进口仪器(Talanta,2018);用高亮度、长斯托克位移荧光探针标记的抗体进行免疫荧光标记,首次定量分析了单个白血病细胞中的active caspase3蛋白,检测下限为7个分子(91pL检测体积内)(Analytical Chemistry,2019);设计了球面二向色反光镜,将检测池放置在球心而非常规的反光镜的焦点上,对荧光素钠检测下限为1.5×10-13M或8.9个荧光素钠分子(98 pL检测体积内)(Analytical Chemistry,2020)。  研究成果以“A Highly Sensitive Optical Fiber Based Near-infrared Laser Induced Fluorescence Detector (LIF) for Parathyroid Gland Detection”为题,发表在《传感器和执行器B-化学》(Sensors and Actuators B: Chemical)上。该工作的第一作者是我所105组联合培养硕士研究生段逸。以上工作得到了辽宁省“兴辽英才计划”青年拔尖人才、中国科学院青年创新促进会、国家自然科学基金等项目的资助。(文/段逸 图/王传亮)  文章链接:https://doi.org/10.1016/j.snb.2022.131879
  • 基于近红外原理测定食味值,大米食味计不断更新迭代
    食味计是日文汉字,国人从最初开始一直沿用至今,也就成为了中文专用术语。基于近红外原理的大米食味计是一款测量对象单一(糙米,精米)、检测项目固定(蛋白质、直链淀粉、水分、脂肪)、显示食味数值的专用仪器,在短波近红外波段范围内采集光谱。大米食味计的诞生与日本大米混合之后再销售的习惯有关。每年10月左右收获的新米很好吃,一旦过了第二年春天味道就差了。但有一种从初春开始就觉得既便宜又好吃的大米,这就是混合米。混合米虽然容易被认为是劣质商品,但它也是消费者和生产者为了享受美味的智慧。混合大米是为了激发大米的美味,与碾米技术一起可以说是大米销售商的秘诀。一方面抓住当地消费者的喜好,另一方面抓住大米产地的特点进行混合。大米混合的目的是:(1)稳定和提高食味,消除全年食味波动。(2)确保数量。因为优质米数量有限,所以要通过混合功能来确保口感好的大米供应数量。(3)应对大米供求情况。为了避免歉收时陷入大米不足的困境,需要将陈米混合进行销售。(4)满足消费者希望的价格。大米的销售价格主要与原料大米的价格有关,但也要根据混合大米的价格和口味来决定。大米食味的数值化能为大米混合提供更为科学的依据,由此食味计应运而生。因此食味计是一种快速鉴定大米品质的无损检测仪器。大米食味计的发展共分为三个阶段:(1)利用市售滤光片型仪器,采集粉碎后大米的长波段近红外反射光谱;(2)利用滤光片型食味计,采集整粒大米的短波段近红外透射光谱;(3)利用食味计,采集整粒大米的短波段近红外连续透射光谱。1986年,日本佐竹公司研发出了世界第一台大米食味计TB1A型(图1),当时的食味计主要用于两种情况。一是只要指定食味值,就能得到价格最便宜的混合米组合;二是一旦设定价格,可以选出食味值最高的大米混合。可有效地进行粮库管理。图1 第一台食味计第一台食味计内置德国Bran+luebbe公司的近红外仪器,先将精白米粉碎后测量近红外反射光谱,利用多元线性回归建模,预测直链淀粉、蛋白质、水分等成分的含量。C=F1log1+F2log2+……Fnlogn+F0C是成分含量,log1 ~ logn是各波长下的吸光度,F0 ~ Fn是上述权重系数。其次,前记各成分的多项式的食味用判断式代入各成分的值,算出食味值。食味判定公式主要内容为:K=(直链淀粉含量)1.0×(蛋白质含量)0.3×{15〔15-水分含量〕}0.75T=50000/K2K为食味关联值,T为食味值。T值越大越好[1]。由此得到的食味值和感官测试相关如图2所示。相关系数足以满足实际使用要求[2]。图2 感官评价与食味值的关系同期,还有另外两种原理推测食味值。一是依据大米的食味与镁、钾、氮的含量,二是依据蛋白质含量和碘呈色度程度[3]。不过,现在都是依据蛋白质、直链淀粉、脂肪、水分进行预测了。20世纪90年中期开发出对糙米和精米进行全粒测定的近红外透过型分析仪。当时有7家公司在市面上进行销售。透射型分析仪与反射型分析仪相比,采用了1100nm以下的短波长范围和低价格的硅检测器,因此分析仪的价格较低。佐竹制作所的CTA10A和CTA10B两种分析仪光源都是采用卤素灯,波长为600 ~ 1100nm,10个固定波长透过型分析仪,二极管是硅光电二极管[4]。20世纪90年代后期,估计有4000 ~ 5000台食味计应用到生产现场。后因食味值推测精度并不高,而且各制造商之间的食味计检测精度差异较大,逐渐被遗忘。还有,直链淀粉的检测精度低至0.8%∼1.2%,只能被视为参考值。另一方面,蛋白质全粒透过型检测精度为0.25%∼0.35 %,达到实用要求,作为筛选优质(低蛋白质)大米被广泛应用。水分的检测精度也在0.15%∼0.20%,与电阻式水分计毫不逊色,也被用在生产现场[5]。2010年1月,日本佐竹公司开始销售测量精度更高、轻量紧凑化的新型米粒食味计RLTA10A(图3)。历经24年的发展,食味计机型升至第四代,至今仍是主流产品。RLTA10A是机型RCTA11A的后继机种,继承了简单、快速测量功能等特点。新机型不论是在检测技术还是检测精度方面都得到了大幅提升。采用近红外透射连续波长方式,在提高测量精度的同时,实现了重量比以往机型减少20%、容积减少37%的轻量紧凑化。因为是大型彩色液晶触摸面板方式,所以操作方便,打印机内置。可以用U盘直接保存数据,还可以和佐竹公司的谷粒辨别器连接。图3 佐竹公司第四代食味计RLTA10A随着市场需求和技术的发展,1996年,佐竹公司又开发了世界首创米饭食味计(图4、5)。图4 米饭食味计图5 米饭食味计原理图该米饭食味计测量近红外光谱方法比较简单。利用两组滤光片3个波长采集反射光量(540nm,970nm)和透射光量(540nm,640nm)。好米和次米蒸出的米饭反射光有差异,用540nm的反射光观察米饭的外观。用540nm和970nm两种波长分析米饭水分差异。蒸好饭后1-2小时,540nm不论是在反射光模型还是在透射光模型中的相关系数均很高,但当蒸好饭后12∼24小时,透射光传感器的变化量往往是反射光变化量的几倍。选用640nm评价米饭变质程度,例如黄变或褐变[6]。米饭食味计共测量五项指标,具体如下:①外观。米饭的α化(糊化)程度越高,外观越闪亮。共分为10个等级,等级越高越好。②硬度。光学方法测定米粒中蛋白质含量的变化。共分为10个等级,等级越高越硬。③黏性。光学测量由直链淀粉含量变化决定的黏性。共分为10个等级,越高越有黏性。④平衡度。用粘性/硬度计算,倍数化。共分为10个等级,越高越好。⑤食味值。米饭美味度的综合评价。有光泽,越透明糊化的越好,判定为好的食味。100级评价。虽然早期在日本有多家公司生产大米食味计,时至今日主要就是佐竹公司和静冈制机公司。静冈制机公司紧随佐竹公司其后,于1989年开始销售大米食味计RA-6101,如图6所示。2016年,静冈制机公司又推出了最新一代高精度近红外食味分析仪SRE(图7),将大米食味计检测精度提高到了一个新高度。图6 静冈制机开发的第一台食味计 RA-6101图7 静冈制机食味计 SRE静冈制机对用户反映的检测精度原因进行了详细梳理,得出波长漂移占45%,温度干扰占28%,其它化学值误差占10%,其它占17%。发现波长如果发生1nm漂移,将导致0.63%的蛋白质检测误差,要想满足检测精度要求,必须把波长漂移误差控制在0.3nm以下。另外,通过统计分析找到一个与蛋白质相关性极高的特征波长,并对仪器采取控温措施,建模后蛋白质的检测精度高达SEP=0.11%,逼近化学值的检测误差。由此获得日本农林水产省和北海道设施协会的资质认定,并作为国际米食味品鉴大会唯一指定的检测设备,享誉国内外。食味计预测大米直链淀粉的精度未达标问题一直困扰着食味计的普及应用,为此,北海道生物系特定产业技术研究支援中心尝试利用近红外光谱分析制作直链含量预测模型及综合近红外光谱分析和可见光分析信息的二次建模,开发出直链淀粉含量预测标准误差(SEP)不到1%的非破坏性测量技术。利用近红外光谱分析(BR-5000、静冈制机)、可见光分析(ES-1000、静冈制机)、建模、评价按品种群制作。第一阶段,根据近红外光谱分析和参考分析值,PLS回归分析建立模型。第二阶段,近红外光谱分析的直链淀粉含量预测值(NIR)及蛋白质含量预测值(PC)、可见光分析的PP值(整粒比例、未成熟粒比例、粒长、粒宽)共6个项目为自变量进行多元回归分析建立了两个阶段的模型。对各个模型,进行直链淀粉含量预测精度的评价。其结果如图8所示,糙米的直链淀粉SEP=0.43%,精米是0.42%。满足了实际生产要求[7]。图8 大米直链淀粉二次建模(NIR+VIS)结果静冈制机即将在2024年1月中旬推出最新小型食味计TMX-1(图9),其技术特点是能计算出样本的最佳测量时间,能经常进行低噪声测量。因为得到了最佳光谱,所以信号噪声降低了,可以计算出更准确的测量值(图10)。从硬件和软件两方面好好地修正测量环境温度和样品温度引起的测量误差(图11)。测量值的校正可以通过基准样本自动进行。由于可以自动进行繁琐的偏差计算和调整,所以便于精度管理。也能降低多台导入时的机差[8]。图9 最新小型食味分析計「TMX-1」图10 新旧机型光谱示意图图11 新旧机型温度的影响示意图综观近红外仪器发展史,不论是通用仪器还是专用仪器,还没有一款仪器像食味计一样不断更新换代,足以证明食味计在大米加工应用的重要性和紧迫性。参考文献[1]佐竹专利:米の食味測定方法及び装置JPA 1987291546[2]保坂幸男:ポストハーべースト最新技術事情,農業機械学会誌第51巻 第2号[3]河野澄夫:近赤外分光分析法による非破壊品質評価,化学と生物 Vol.28, No.6,1990[4]川村周三,竹倉憲弘,伊藤和彦:近赤外透過型分析計による米の成分測定の精度とその改善,農業機械学会誌64(1): 120~126, 2002[5]夏賀元康・渡部美里・川端 匠・片平光彦:携帯型分析計による米の品質測定のための基礎研究,農業機械学会誌 75(6):393∼402,2013[6]三上隆司,柏村崇,土屋義信,西尾尚道:可視光および近赤外光 による米飯の官能値評価,日本食品科学工学会誌 第47巻 第10号2000年10月[7]川村周三(2018),第 34 回近赤外フォーラム(札幌市),近赤外分光と可視光を利用した米の自動品質検査システムの開発[8]静冈制机公司网页,https://www.shizuoka-seiki.co.jp/
  • 便携式红外衰减全反射光谱仪用于食品分析测试
    合适的食品质量检测方法十分重要,科学家利用众多方法来测试不同的污染物。最近一种红外衰减全反射(IR-ATR)仪器在食品检测领域流行起来,它可以在几乎不需要样品制备的情况下获取倏逝场吸收,同时促进对任何聚集状态中的分析物的无损分析。食品安全控制概念 | 图片来源:© Alexander Raths - stock.adobe.com最近发表在《应用光谱学》杂志上的一项研究介绍了一种便携式的红外衰减全反射(IR-ATR)食品分析设备,可用于分析食品行业中有重要意义的物质。该系统的核心是了解脂质中脂肪酸(FAs)的组成;由于正常的脂质成分是表征鱼类等食品的质量的特征指标,但易受环境因素如水质、捕捞季节和温度的影响,因此跟踪脂肪酸是理解脂质的真实特征以及它们如何影响食物质量的关键。该系统还使用了霉菌毒素和有机溶剂作为代表进行了测试。霉菌毒素是与真菌污染相关的有害次生代谢物,它们的存在可能对人体和家畜的健康产生有害影响,因此检测它们对于食品安全至关重要。至于有机溶剂,食品行业主要将其用于从食品基质中提取成分,但由于传统方法性能优越,导致绿色提取方法不太受欢迎。这两种物质对于食品加工都是必不可少的,这也解释了为什么除了脂肪酸之外,IR-ATR 系统还主要针对它们进行测试。用傅立叶变换红外光谱仪(FT-IR)对便携式IR-ATR设备与传统实验室IR-ATR设备进行了对比测试,以展示前者系统的潜在优势。使用了三种类型的模型系统,每种系统内都含有不同的样品:溶解在水中的N,N-二甲基甲酰胺((CH3)2NCH)(DMF)、溶解于乙醇中的硬脂酸(C17H35CO2H)以及溶解于甲醇中的DON(C15H20O6)。这些分析物作为典型的化合物类别,在中红外(MIR)光谱图中具有特征波段。通过两种系统的比较证实了的两者的多个因素,包括霉菌毒素的检测、FAs的分析以及有机溶剂的定量。值得注意的是,便携型系统的分析性能与标准型系统分析能力一致。然而,在该系统投入大规模使用之前仍需要进一步的工作要做。科学家在研究中指出:“未来研究旨在分析更复杂的系统,包括真正的鱼类样品和各种含有真菌污染物/霉菌毒素的谷类作物提取物,并采用先进的数据分析方法来开发无需标记的快速筛查方法。”
  • 【趣闻】波兰发明远程醉酒检测器
    近日,波兰发明远程醉酒检测器,仪器从路边向汽车发射射线,再通过镜面反射进入探测器。由探测器分析数据从而起到判断司机血液酒精含量的效果。该研究表明,在模拟人体呼吸的情况下该仪器能检测到低至0.1%血液酒精含量&hellip &hellip 波兰科学家发明了一种可远程检测司机是否醉驾的仪器。根据华沙军事科技大学的研究表明:该仪器通过特制曲面镜和光束来检测移动车辆中的酒精蒸汽含量从而到达检查醉驾的目的。 仪器从路边向汽车发射射线,再通过镜面反射进入探测器。由探测器分析数据从而起到判断司机血液酒精含量的效果。该研究表明,在模拟人体呼吸的情况下该仪器能 检测到低至0.1%血液酒精含量。科学家同时表明,该仪器在现实生活中对于真人能到达更加精确的测试效果。 然而,该仪器也有一些弊端。仪器的探测效果可能受到一系列诸如同车其余醉酒乘客,打开窗户,以及空调等外在因素的影响。与此同时,美国交通运输安全局,定义 酒驾人体酒精含量为超过0.05% 。因此该仪器不可能检测出所有的酒驾的司机。研究者表示:该仪器的作用在于帮助降低警察排查车辆数目,从而提高检查醉酒驾车排查效率。
  • 小知识—紫外检测器应用原理
    紫外检测器小知识  1、原理  紫外吸收检测器简称紫外检测器(ultraviolet ?detector,UVD),是基于溶质分子吸收紫外光的原理设计的检测器,其工作原理是Lambert-Beer定律,即当一束单色光透过流动池时,若流动相不吸收光,则吸收度A与吸光组分的浓度C和流动池的光径长度L成正比。物理上测得物质的透光率,然后取负对数得到吸收度。  大部分常见有机物质和部分无机物质都具有紫外或可见光吸收基团,因而有较强的紫外或可见光吸收能力,因此UVD既有较高的灵敏度,也有很广泛的应用范围,是液相色谱中应用广泛的检测器。  为得到高的灵敏度,常选择被测物质能产生大吸收的波长作检测波长,但为了选择性或其它目的也可适当牺牲灵敏度而选择吸收稍弱的波长,另外,应尽可能选择在检测波长下没有背景吸收的流动相。  紫外检测器的波长范围是根据连续光源(氘灯)发出的光,通过狭缝、透镜、光栅、反射镜等光路组件形成单一波长的平行光束。通过光栅的调节可得到不同波长。波长范围应该是根据光源来确定的,不同光源波长范围也不一样。  光波根据光的传播频率不一样而划分的。紫外的测量范围一般为0.0003---5.12(AUFS),常用为0.005---2.0(AUFS)。紫外光的范围一般指200-400 nm。吸收度单位AU (absorbance unit) 是相当于多少伏的电压,范围的大小应该适中较好,实际工作中一般就需要1AU左右。  2、用途  紫外检测器使用于大部分常见具有紫外吸收有机物质和部分无机物质。紫外检测器对占物质总数约80%的有紫外吸收的物质均可检测,既可测190--350 nm范围的光吸收变化,也可向可见光范围350---700 nm 延伸。  紫外检测器适用于有机分子具紫外或可见光吸收基团,有较强的紫外或可见光吸收能力的物质检测。一般当物质在200-400 nm 有紫外吸收时,考虑用紫外检测器。  3、优点  紫外吸收检测器不仅灵敏度高、噪音低、线性范围宽、有较好的选择性,而且对环境温度、流动相组成变化和流速波动不太敏感,因此既可用于等度洗脱,也可用于梯度洗脱。紫外检测器对流速和温度均不敏感,可于制备色谱。由于灵敏高,因此即使是那些光吸收小、消光系数低的物质也可用UV检测器进行微量分析。  不足之处在于对紫外吸收差的化合物如不含不饱和键的烃类等灵敏度很低。
  • 岛津红外拉曼光谱耦合技术——开启微塑料检测的多维度视角
    根据欧盟《饮用水中微塑料检测指令》(EU)2024/1441新规,分子振动光谱技术(红外光谱、拉曼光谱)被用于鉴别微塑料的聚合物种类,要求红外或拉曼光谱设备至少能够有效测定20 μm尺寸的微小样品。岛津推出的AIRsight红外拉曼显微镜,采用先进的红外拉曼光谱耦合技术,以其创新性设计、高度自动化操作和简洁的工作流程,实现了对微塑料的宽尺寸范围、原位及多光谱检测,为微塑料的精准检测提供了多维度的分析视角。本文将详细介绍AIRsight红外拉曼显微镜如何有效支持微塑料的检测工作,确保饮用水安全,促进环境保护和人类健康。1微塑料的高度异质性实际环境基质中的微塑料具有高度异质性,来源多样,成分复杂,理化特性各异,尺寸分布广泛。它们形状多样,可能包含多种聚合物和有机无机添加剂。在自然环境中,塑料会在光、热和生物作用下老化降解,影响其物理化学特性。这种多样性增加了微塑料检测、识别和定量的复杂性。2微塑料的分子振动光谱分析:红外与拉曼光谱的对比评估基于颗粒的分子振动光谱法(红外光谱法和拉曼光谱法)可无损快速地识别微塑料的形态和化学信息,是目前广泛用于微塑料鉴定的非破坏性化学技术。红外吸收光谱和拉曼散射光谱基于不同的原理,适合的样品有所不同,在环境基质中微塑料的识别和定量分析方面各有优势和局限性,这些与粒径、波数范围、选择定则等有关。因此,在分析和解释光谱数据时,需要综合考虑两种方法之间的重要差异,以确保选择适合的分析技术。表1:红外和拉曼分析技术的特点和获得的信息3 AIRsight红外拉曼一体显微镜,助力宽尺寸范围、原位、多光谱的微塑料检测显微红外(μ-FTIR)和显微拉曼(μ-Raman)分析耦合的多光谱方法检测微塑料,可以克服单光谱方法的粒径限制、荧光干扰、波数范围限制、选择定则决定的响应弱等问题,提升定性分析的准确度,更能应对实际环境基质中复杂样品的测试。岛津AIRsight红外拉曼一体显微镜,能够在不移动样品的情况下,使用同一显微镜,同一个软件,对样品的同一位置(微小区域)快速获得互补的红外和拉曼的多维度光谱信息,摆脱繁琐的样品转移、标记、定位工作,助力宽尺寸范围、原位、多光谱的微塑料检测。岛津AIRsight红外拉曼显微镜,除了红外拉曼合二为一之外,还有很多自动化、全功能的技术加持。它延续了岛津之前红外显微镜的全自动物镜转台的功能,可以同时安装多个物镜,如红外物镜、拉曼物镜,岛津特色的大视野相机镜头等。在显微红外模式下,可覆盖中红外全波段,透射、反射、ATR三项全能。在显微拉曼模式下,有多个激光波长可以自动切换。★ 同一位置的多光谱检测通过将红外光谱和拉曼光谱两种技术集成到一台设备中,实现了无缝切换的工作流,让需要通过多种光谱技术进行异物分析的用户摆脱繁琐的样品转移、标记、定位工作,工作效率大幅提升。从而成功推出了一种新概念的高通用性分析装置,能够满足异物分析、微塑料分析以及其它微小样品分析/样品微区分析等需求。表2:AIRsight红外拉曼显微镜的典型功能★ 透射反射ATR三项全能在显微红外模式下,AIRsight提供了三种检测模式来进行微塑料分析:透射、反射和衰减全反射(ATR),每种模式均有其独特的优势和适用场景。在进行材料分析时,应根据样品的物理特性(厚度、脆性等)、化学组成以及分析目的(定性或定量、样品表面或内部特性分析等)来选择合适的显微红外模式。在特定情况下,可能需要综合运用多种模式,以获得更为全面的分析结果。表3:显微红外的测量模式★ FTIR光谱范围宽、适用性强某些波段受限的红外光谱技术(如基于QCL红外激光器的红外成像技术),由于其固有的可用波段范围窄的限制,可能无法捕捉到某些关键的特征吸收峰信息(包括特征峰的位置、形状和强度),导致微塑料光谱图的误判,从而影响成分鉴定的准确性。相比之下,傅里叶变换红外光谱(FTIR)具有光谱范围宽、适用性强的优点,能够覆盖指纹区、静默区、C-H伸缩振动在内的高波数波段,特别适合实际微塑料样品的定性分析。岛津的AIRsight红外拉曼显微镜集成了傅里叶变换显微红外(μ-FTIR)和显微拉曼(μ-Raman)技术,不仅能提供指纹区的关键信息,还能够捕捉到C-H伸缩振动等高波数区域的信号。此外,该显微镜结合了傅里叶变换显微红外和显微拉曼的优势,能够更全面地覆盖低波数区域,从而为有机物、无机物(例如塑料中的无机添加剂)以及有机无机混合物的分析提供了强有力的支持。表4:常见部分聚合物的红外谱带位置上表信息参考《GB/T 40146-2021化妆品中塑料微珠的测定》和《T/LNEMA 002-2023城市河道中微塑料的测定 傅里叶变换微红外光谱法》。4岛津特色AIRsight红外拉曼一体机的特色应用案例★ 宽尺寸范围微塑料的识别红外拉曼*目标区域太小,无法用红外显微镜有效测定*✔ 可以在无需移动样品的情况下,结合显微红外和显微拉曼,实现更宽尺寸范围样品检测。✔ 塑料老化谱库提升了微塑料分析(光热老化塑料定性分析)的定性准确度。★ 宽波段的测试范围红外拉曼✔ AIRsight显微红外部分采用FTIR的设计方式,除了标配的液氮制冷高灵敏检测器之外,还可以同时安装一个无需液氮的DLATGS检测器,来实现完全覆盖4000 ~ 400 cm-1整个中红外区间。✔ AIRsight结合了傅里叶变换显微红外和显微拉曼的优势,能够更全面地覆盖低波数区域,助力有机物、无机物(例如塑料中的无机添加剂)以及有机无机混合物的分析。★ 显微红外的测试模式(透射/反射/ATR)选择红外✔ 如样品较厚,在进行显微透射测试前,需用金刚石压池将粒子压薄,可提高检测的准确性;或选择其它模式进行测试。✔ 显微ATR可以测量和分析黑色或深色塑料。★ 紫外降解塑料评价中拉曼激发波长的选择拉曼*选择合适的激光波长,以避免荧光干扰*✔ AIRsight红外拉曼显微镜标配532 nm和785 nm两个激光器,可以选择最适合样品的激光器。✔ 785 nm 激光能够有效分析受荧光干扰的样品。✔ 可设定光漂白时间以降低荧光干扰。自1875年成立以来,岛津秉承“以科学技术向社会做贡献”的理念,致力于实现“为了人类和地球的健康”的愿景。我们期待与您携手利用先进的分析技术共同守护水质安全,共创绿色未来!本文内容非商业广告,仅供专业人士参考。
  • Bruker和DECTRIS宣布推出具有新型EIGER2 R 500K检测器的D8TM X射线衍射系统
    p   Bruker和DECTRIS在第24届国际晶体学联合大会(IUCr)大会上宣布,EIGER2 R 500K是最新一代的混合光子计数(HPC)像素检测器,DECTRIS是实验室仪器和同步加速器束线的HPC探测器的技术领导者。 DECTRIS和BRUKER紧密合作,将卓越的2D检测器无缝集成到Bruker的D8 ADVANCETM和D8 DISCOVERTM仪器平台中,以进一步提高许多X射线衍射(XRD)应用的性能。 br/ /p p   最新一代专有的EIGER HPC检测器使XRD具备更强大的新技术优势:高帧速率可实现连续扫描模式下的2D数据采集,无空间失真的单光子计数,最高计数率和动态范围。结合Bruker D8TM X射线衍射系统,可以在0D,1D和2D模式之间切换。 /p p   这些新功能完全集成到Bruker D8TM X射线衍射系统中,通过X射线反射测量(XRR)和高分辨率衍射(HRXRD)至小角度X射线散射(SAXS和GISAXS)的薄膜分析,EIGER2 R 500K检测器能够从粉末衍射(XRPD)、微衍射(μXRD)、纹理或残余应力分析、微晶等应用中得到出色的衍射分析数据。 D8 ADVANCE或D8 DISCOVER与EIGER2 R 500K的强大组合显着扩展并加快了XRD用户的分析能力。 /p p   “从产品开发的早期阶段合作,我们能够提供的新的EIGER2 R 500K检测器能够与Bruker AXS D8 XRD系统无缝集成,这使得客户能够从发射中获得先进的检测器技术。” DECTRIS的首席执行官克里斯蒂安· 布伦尼曼(Christian Broennimann)表示。 /p p   Bruker AXS副总裁兼总经理Lutz Bruegemann博士补充说:“DECTRIS和Bruker的协调发展团队做了很多工作。使得最新的HPC检测器技术与市场上功能最强大、用户友好的XRD平台联合产生了卓越的性能,使客户能够将新的EIGER 2R 500K无缝地并入我们的D8衍射解决方案中,并用于许多重要的应用中。” /p p br/ /p
  • 你还在为药品原辅料的检测发愁吗?猛戳这里!
    原辅料种类多?仪器操作繁琐?数据解析复杂?无法满足数据一致性要求?需要在生产现场检测?解决这些难题,一台Spectrum Two NTM帮你搞定!与其他分析方法相比,近红外测试更快速、更简单,样品无需前处理,直接通过玻璃瓶或者培养皿作为反射采样附件,对样品无破坏。原材料样品可能为多种物理形态,如液体、凝胶和固体等多种形态,这些在近红外光谱仪上都可以轻松完成测试。?样品近红外光谱:从上至下依次是:Avicel® 、聚维酮、抗坏血酸钙、羟丙基甲基纤维、硬脂酸镁Spectrum Two N系统结构紧凑,灵敏度高,可以容纳各种各样的采样附件。包括即插即用的近红外反射附件、可加热液体采样附件和远程直接采样附件,实现透过包装直接分析。强大且直观的Spectrum 10™ 软件结合了高效操作和多种傅里叶变换近红外的功能。帮助具有不同经验水平的分析人员获得样品的近红外光谱,只需片刻时间即可与参照光谱进行对比验证。原材料测试标准操作流程界面?软件同时可以提供审查跟踪、电子签名和权限控制,协助您遵循21 CFR Part 11的严格要求。体积小巧,便携式设计,可以使用Wi-Fi激活,可通过汽车电源供电,也可以用电池供电,方便您携带至不同地方使用。相关应用文章下载:《使用近红外光谱学和化学计量学鉴别真伪磷酸二酯酶抑制剂》《Spectrum Two N FT-NIR近红外光谱仪用于药品原料检测》
  • 【综述】红外隐身材料的应用及其研究进展
    随着红外探测技术的飞速发展,红外隐身材料的开发已成为一个迫切的需求。红外隐身效果受温度和红外发射率的共同影响,但以往的研究大多集中在单一因素上,从而限制了红外隐身产品的有效性。据麦姆斯咨询报道,近期,西安工程大学的科研团队在《印染》期刊上网络发表了以“红外隐身材料的应用及其研究进展”为主题的文章。该文章第一作者为陈海通,通讯作者为王进美教授。本文介绍了各类红外隐身材料的优势和局限性、近年来的研究进展以及未来发展趋势,重点包括基于不同的材料在红外隐身领域所发挥的独特作用。红外隐身原理在了解红外隐身机理之前,深入研究其探测原理有利于更好地规避和反制。隐身技术与探测技术双方是相互抵制的关系,二者都是围绕目标和背景两个对象进行展开,探测是通过不断放大目标与背景的差异,从而识别出目标,隐身则是缩小两者的差异。例如,在飞机上,不同的探测器通过六个相应的特征——声学、视觉、烟雾、雷达、红外和轨迹特征来探索它们存在的迹象。红外探测主要基于热成像原理,加之物体本身就是红外光源。红外波可以覆盖0.76~1000μm的范围,可细分为五个部分(如图1所示):近红外波(NIR,0.76~1.5μm),短红外波(SWIR,1.5~ 3μm)、中红外波(MWIR,3~8μm)、长红外波(LWIR,8~15μm)和远红外波(FIR,15~1000μm)。由于地球大气层吸收了大部分红外线,仅对3~ 5μm和8~14μm范围内的电磁波相对透明。因此,在两个大气窗口中隐藏目标的自发辐射是击败红外探测器的有效措施。图1 各种波段的比较及相应的隐身应用除此以外,材料性质、表面粗糙度和厚度等许多因素都会影响红外发射率。考虑到材料的自身特性,其红外发射率与原子核和外核电子的相对位移(正负电荷中心不一致产生的电偶极矩)密切相关,带负电的外核电子和带正电的原子核会受到外电场的影响。这三个方面体现在复介电常数、电导率和晶格振动对材料红外发射率的影响上。红外发射率的复介电常数实部依赖性主要受材料的极化度控制,与本征极化偶极矩数、离子半径、晶格常数等因素密切相关。而表面粗糙度对红外发射率的影响可归纳如下:一方面,入射辐射在物体不平整表面的漫反射增加了物体表面吸收红外辐射的机会,导致吸收率增强;另一方面,凹凸不平的表面提高了辐射体的相对辐射面积,从而增加了辐射能量和相应的发射率。此外,随着材料厚度的增加,红外发射率也会增加。金属材料的热辐射特性发生在几微米的表层,可以认为表面特性和发射率与厚度无关。对于大多数非金属介电材料,辐射都有一定的穿透深度。因此,非金属电介质和半透明材料的发射率不仅取决于它们的表面状态,还取决于样品厚度。红外隐身方法点源探测和成像探测是两种主流的红外探测方法。点源探测主要与探测距离有关,可检测到的最大距离R。为了最小化目标检测距离,红外辐射特征J越小越好。成像检测主要是利用背景与目标间的热辐射能量之差进行测试。一般来说,发射率高,物体很容易暴露在红外探测器下。为了实现红外隐身伪装,背景和目标物体之间的红外发射强度差异应该足够接近可以忽略不计。因此,降低辐射能E对于红外隐身是必不可少的。控制目标表面温度和降低目标表面发射率ε是获得良好红外隐身能力的主要途径之一。到目前为止,控制表面温度的主要方法是热隔离和热通量控制。理想的绝缘材料是空心玻璃微球(HGM)、气凝胶、热毯、纳米纤维膜、微/纳米多孔泡沫、软木和皮革等隔热材料。其中,HGM和气凝胶在红外隐身领域应用较多。但这种方法的局限性同样明显,因为环境等限制条件,有时物体的表面温度很难改变,所以当物体的T难以改变时,具有低ε的产品具有出色的红外隐身能力。根据Hagen-Rubens定律,电导率与低ε正相关。例如Cu、Ni和Al等金属,以及一些导电聚合物,如聚苯胺(PANI)是低ε材料。但是金属在可见范围内具有高反射率,这会降低视觉伪装效果。因此,金属材料一般被用作填料。目前,研究人员主要通过对金属填料进行改性来实现低发射率与低光泽度的兼容。综上所述,实现红外隐身的最佳途径是削弱和调整目标的红外辐射能量特性,同时使其尽可能接近背景。因此,将“目标+背景”的组合识别为“与背景相似的物体+背景”的组合,这样更有利于欺骗检测器。红外隐身材料隔热材料中空微珠作为隔热材料具有超微小孔隙结构、空心结构或多层结构等特点,因而具有很低的导热系数和吸水率。将其作为填料可以显著降低目标热量的传导,从而有效降低目标的红外辐射能量。2018年,焦钰钰团队开发了一种由纯无机矿物组成的玻璃微珠,该微珠会与基体表面形成一个中空气体层从而阻断热传导,因其蜂窝中空结构故,而它的导热系数很低,涂层具有非常好的隔热保温效果。同时,中空玻璃微珠可以将太阳85%以上的热量反射阻隔在基体表面。PAKDELl团队在2020年将空心微珠颗粒与TiO₂纳米粒子共混,制备了织物用隔热涂料,涂料具有良好的隔热性能并降低了织物的可燃性,另外空心微珠颗粒的存在及其浓度也会直接影响织物的近红外反射率。该团队利用红外热成像仪证明空心玻璃微珠防止涂层织物快速散热,此功能可以应用于保暖织物,还可以减少从室内空间到建筑物外的热量损失,进而有效提升红外隐身性能。凝胶系列中的气凝胶具有极低的密度、低导热性和高比表面积,是一种具有3D互穿网络的高度多孔材料。空气层分裂成小块,可以抑制热量的相对流动。此外,气凝胶骨架赋予固体热传导路径复杂而漫长,从而增强散热能力。2020年,ZHANG的团队开发了双向各向异性聚酰亚胺/细菌纤维素(b-PI/BC)气凝胶,它们具有良好的各向异性成型性、质量轻和出色的隔热性能(图2)。与单一的PI气凝胶和其他商业绝缘材料(聚氨酯和聚苯乙烯泡沫)相比,b-PI/BC气凝胶在相当大的温度范围内有效地阻止了传热,并具有稳定的隔热性能(图3)。图2 b-PI/BC气凝胶的合成流程图3 与其他商业绝缘材料相比,bPI/BC气凝胶具有良好的隔热性能此外,WU的团队在2022年通过改变CuS的添加量和热还原策略设计了rGO/CuS复合气凝胶。CuS的添加有效地调节了红外发射率和隔热性能。加热30 min后,由于其多孔结构,它会保持原始温度。因此,层压多孔结构和多组分赋予复合气凝胶隔热和红外隐身多功能性。该团队还通过简便的溶剂热法和随后的冷冻干燥制备了rGO/CuS@PCM气凝胶(图4)。它们在8 ~ 14 μm的红外发射率从0.82调节到0.59。虽然气凝胶是当前密度最小、隔热性能最好的固态材料,但其存在强度低、易碎等缺陷,在一定程度上限制了它的应用。图4 rGO/CuS@PCM气凝胶制备过程示意图相变材料相变材料(PCM)由于其卓越的热管理能力在红外隐身功能材料领域受到特别关注。目前,许多研究人员将相变材料微胶囊化再应用于红外隐身涂层中。相变微胶囊(MPCPs)是一种具有核壳结构的相变储能材料,其原理是通过相变材料的放热和吸热过程来调节温度。GU Jie团队在2021年采用二十烷作为相变材料(PCM),三聚氰胺、尿素和甲醛(MUF)作为壳材料形成微胶囊。然后,将聚苯胺(PANI)沉积在这些微胶囊的表面以形成了具有温度控制和低红外发射率的双壳微胶囊(DSM)。经测试,具有1.354 mm厚涂层的红外隐形织物可冷却高达11.2 ℃,并且控温过程持续27 min,红外发射率达到0.794。该面料在实际使用中具有显著的红外隐形效果和良好的耐用性(图5)。图5 红外隐形织物的红外图像然而传统的PCM通常表现为具有固定转变温度的刚性固态或流动液态,极大地限制了它们的应用,特别是在多波段隐身和多场景中。因此,很多团队在这方面进行了改良,例如2023年DENG团队首次设计并构建了一种用于同步视觉/红外隐身的本征柔性自愈合相变薄膜。该相变膜具有固-固相变行为,转变温度(从38.8 ℃到51.1℃)和热函(从79.7 J/g 到116.7 J/g)可调,该相变薄膜可定制不同颜色和多种配置,在多场景下展现极佳的视觉隐身功能。此外,该相变薄膜具有热管理能力,并在各种温度下对目标物表现出红外隐身性能,且具有长期循环稳定性(500次循环)和出色的柔性。此外,PCM与气凝胶结合的复合材料也可以达到优秀的红外隐身效果,在2019 年,LYU的团队首先制备了Kevlar纳米纤维气凝胶(KNA)薄膜,然后与PCM结合以获得KNA/PCM薄膜,发现具有热管理功能的KNA/PCM复合薄膜在太阳光照的室外环境中表现出优秀的红外隐身性能。在此基础上该团队还提出了一种由隔热层(KNA薄膜)和红外吸收表面层(KNA/PCM)组合的结构,以隐藏红外检测中的热目标。与其他红外隐身材料相比,KNA−KNA/PCM组合结构涂层靶材由于优异的隔热性和超低红外透过率,红外隐身性能更优秀。这样的结构在未来军事和工业领域的应用具有巨大的潜力,为红外隐身技术提供了更有效的解决方案。纳米结构材料纳米结构材料在很宽的频率范围内表现出均匀的吸波特性。因此,它在红外和雷达波隐身材料的应用较多。由于红外光的波长远大于纳米颗粒的尺寸,导致纳米材料对红外光具有高透过率,使红外探测器接收到的反射信号变得很微弱,从而实现红外隐身效果。为了促进材料的多通道相容性,由两种或多种组分组成的纳米复合材料显著增强目标的红外隐身性能。研究发现,核壳纳米复合材料可以通过核和壳组分的相互修饰来调节。由于壳成分存在于核壳结构的外表面上,所以表面功能的操纵可以有效地满足不同的应用需求。近年来,由结构核和功能壳组成的核壳纳米复合材料在低发射领域受到越来越多的关注。例如WANG团队通过在SiO₂颗粒表面上层层组装剥离的LDH(层状双氢氧化物)纳米片和DNA生物分子,成功制备了SiO₂@DNA-LDH(图6)纳米复合材料,并测试了样品在8~14 μm波长下的红外发射率值,发现SiO₂@DNA和SiO₂@LDH的红外发射率值分别降至0.732和0.658。以DNA插层LDH为功能壳构建SiO₂@DNA-LDH核壳纳米复合材料,由于DNA和LDH纳米片之间的氢键或静电相互作用,以及DNA-LDH壳层形成加强的物理限制,红外发射率值进一步降低至0.458。图6 (a)SiO₂和(b)SiO₂@DNA-LDH纳米复合材料的扫描电子显微镜(SEM)图像,(c)原始SiO₂(d)、(e)和(f)SiO₂@DNALDH纳米复合材料的透射电子显微镜(TEM)图像此外,纳米金属材料在隐身材料中的应用同样备受关注。ZnSe因其在红外区域优异的非线性光学性能,Co在红外区的良好吸收特性,为过渡金属的掺杂提供了选择。但一种材料的微观结构会影响其光学特性,例如吸收、反射和透射。尽管ZnSe和Co具有良好的红外特性,但其电子空间分布仍然较差,不利于材料的吸收和光传导。Ga表现出高电子浓度和结构保护特性。因此,将Ga元素引入到材料中,不仅可以控制材料的微观结构,还可以改善材料的空间电子态分布。2021年PAN等人通过PLD(脉冲激光沉积)在不同的Ar气体下制备了一种适用于抗近红外探测的纳米CoGaZnSe多层薄膜。通过XRD(X射线衍射)、拉曼光谱和模拟研究了薄膜的微观结构发现通过控制生长压力来改变晶体特性、键合和电子的空间分布。在不同压力下获得的薄膜具有不同的透射率。根据这一特性,将具有不同透光率的薄膜与多层薄膜相结合,可以减少红外反射。该团队将多层薄膜涂在普通衣服的表面,然后使用红外探测器进行测试。结果表明,CoGaZnSe多层薄膜的抗近红外检测率最高可达86%,大大降低红外探测的量子效率。碳基复合材料碳材料以其质量轻、比表面积大、机械强度高和良好的导电性等的特性,彻底改变了隐身技术领域。炭黑、碳纳米管以及石墨烯的使用为合成轻质、多功能和智能红外隐形材料提供了新的可能性。例如,可以使用低发射率材料改性的碳纳米管用于屏蔽目标的红外辐射;可以通过石墨烯的添加巧妙地实现温度的动态调节,从而改善静态微/纳米结构只能改变热发射率,固定的热管理材料不能根据需求和环境调节温度的缺点。因此,碳基复合材料为红外隐身领域的设计和性能控制提供了高度的灵活性(图7)。图7 碳材料在红外隐身方面的优势零维材料炭黑作为全球生产最丰富的碳形式之一炭黑(CB),是碳基材料最早使用的原材料。但是单独添加炭黑会增强红外波段吸收,这对红外隐身不利。涂料的三个部分分别为添加剂、填料和黏合剂。其中实现红外隐身的关键在于各种填充物。金属填充物可以显着降低红外发射率,例如铝。但是金属对可见光的强烈反射与视觉隐身相冲突。2019年,LI和他的团队将直径为30~45 nm的炭黑纳米粒子直接喷涂到纳米多孔硅渐变折射薄膜上的5μm厚可转移阳极氧化铝(AAO)模板上。经实验测试,该薄膜在2.5~15.3 μm范围内平均吸光度为97.5%,远高于纳米多孔硅和AAO模板。此外,带有炭黑的AAO模板可以很容易地转移到其他结构上,可以更好地隐藏不同物体的热特性,从而进一步隐身。其本质是光通过AAO模板在内部多次反射,而随机的炭黑颗粒充当散射中心。通过炭黑和纳米多孔硅对光的进一步吸收和捕获,使复合结构能够实现非常低的反射率。因此,炭黑需要与具有较低红外发射率的材料结合使用,才能实现良好的隐身性能。一维材料碳纳米管兼具轻质、可控、高导电、形貌可调和优异机械性能的碳纳米管成为红外隐身复合材料的中流砥柱。许多文献表明,碳纳米管的强度是钢的100倍,密度是钢的六分之一。此外,碳纳米管具有约6 000 W/mK的高导热率,且导电率远高于铜。这些优势将成为多壁和单壁碳纳米管在红外隐身领域应用的关键。低红外发射率材料能以涂层和复合材料的形式制备。2016年,CHU团队成功开发了银颗粒改性碳纳米管纸(SMCNP),并制备了一种具有超低红外发射率的SMCNP/玻璃纤维增强聚合物(GFRP)复合材料用于红外隐身,以解决飞行器中金属添加剂和纤维增强聚合物(FRP)复合材料难以形成整体的问题。此外,静电纺丝是生产薄膜的独特方法。静电纺丝可以生产2纳米到几微米的纤维。2018年,FNAG等人通过静电纺丝制备聚偏二氟乙烯(PVDF)纤维膜和单壁碳纳米管(SWNT)改性PVDF(命名为SWNT/PVDF)(图6)。壳聚糖处理后,将金纳米粒子浸入金溶胶中并搅拌以修饰薄膜。在静电力的作用下,Au纳米粒子牢固且非常均匀地固定在两种纤维的表面。研究发现,PVDF和Au-PVDF纤维膜的红外发射率值分别为0.82和0.76,而SWNT/PVDF和Au-SWNT/PVDF薄膜的值分别低至0.77和0.68,说明单壁碳纳米管与金颗粒结合后性能更好。二维材料石墨烯石墨烯具有独特的二维蜂窝状晶格结构,从而赋予其相互连通的多孔结构、高表面积、良好的导热性和优异的导电性等性能,被广泛应用于催化、电池、生物医药等领域。然而,石墨烯在传统红外隐身领域,如降低涂层发射率、隔热、吸收热辐射等,既没有表现出突出的性能,也不具备足够的潜力与其强大的性能相匹配,这是因为蜂窝结构对波的散射有强烈的影响。此外,基于热辐射产生原理,由于石墨烯的能隙为零,所以石墨烯本身不发射热辐射。因此,石墨烯很难以传统的方式直接制造具有极低发射率的材料。但石墨烯可以通过石墨烯层中的离子液体嵌入和外部电压调制,将红外发射率控制在0.3~0.7的范围内。2021年,SHI的团队通过组合石墨烯纳米片和Fe₃O₄纳米粒子,显着增强微波吸收且提供轻巧而坚固的支撑。该团队将其进一步集成到具有隔热性能的PI气凝胶中,并使用聚乙二醇(PEG)作为相变材料,获得了一种新型的兼容电磁和红外的双隐形薄膜。PI/石墨烯/Fe₃O₄杂化气凝胶薄膜具有多孔结构,导热系数低,可以抑制红外热辐射,使其具有红外隐身性。为防止温度随外界不断发生变化,上部采用PI/石墨烯/Fe₃O₄气凝胶/PEG薄膜,既能提供低温显热吸收,又能提供高温潜热吸收,最终实现双重热缓冲,从而更好地协调热力学与红外隐身的关系。图8 (a) (S1) PI/石墨烯/Fe₃O₄混合气凝胶薄膜、(S2) PI气凝胶/PEG复合薄膜和(S3) PI/石墨烯/Fe₃O₄气凝胶/PEG复合薄膜在加热和冷却过程中记录的红外热成像图像。根据红外热像分析格式确定的(b)加热和(c)冷却过程中温度随时间变化的图像光子晶体光子晶体是一种新型结构材料,由于其光子带隙和光子局域化两个特性使得控制物体的自发辐射成为可能。通过调节光子晶体的结构,可以使光子带隙处于特定红外电磁波段,最终在红外波段具备高反射率与低发射特性。利用光子晶体禁带的高反射、低辐射等特点,可以改变目标的红外辐射特性,以干扰探测器的捕获光谱,使其无法被红外线侦察装置侦测到,从而实现红外隐身。目前,光子晶体在红外隐身材料的研究主要集中在一维光子晶体材料和三维光子晶体材料,这两种材料由不同折射率的介电层堆叠而成。由于一维光子晶体易于设计和制造,近年来许多研究人员对其进行了深入研究。例如DONG Qi等人开发了基于ZnS/Ge的一维光子晶体(1DPCs),在波长3~5 μm处测量反射光谱,得到了95.1%的平均反射率;使用ET-10红外发射仪测得平均发射率低至0.054,完全满足红外隐身需求。三维光子晶体的制造方法有微机械加工法、半导体工艺法、激光全息干涉法等。由于三维光子晶体在不同方向上存在很好的对称性,因此利用上述制造方式能够成功得到具有禁带的光子晶体结构,例如层叠的硅棒排列制备三维光子晶体可以有效减少红外波段带隙内目标的红外辐射,并增强带隙外的红外辐射。此外,以钨为代表的三维金属叠层结构具有更宽的禁带,可以选择性地控制辐射。这两种光子晶体红外隐身材料结构复杂,价格昂贵,不利于大规模应用。而胶体基元自组装法因方法简便、容易操作、成本低廉、重复性好等优势,成为一种相对普遍的实验室制备光子晶体方法。LI团队使用机械强度高、化学稳定性强和高温稳定性好的聚苯乙烯胶体微球采用逐层法制备了红外吸收波长为3.30 μm和3.42 μm的三维光子晶体材料,并通过气液界面自组装制备单层聚苯乙烯光子晶体膜。该材料实现了3~5 μm可探测波段红外辐射特性的调制,满足红外隐身要求。总结与展望在过去的几十年里,研究人员对红外隐身材料性能的研究主要集中在调整发射率和温度控制进行热管理这两个方面,而对其机理研究不够深入。随着电子技术和先进探测器的不断发展,单波段隐身材料已难以适应现代军事环境。因此,隐身材料的研究需要向多波段兼容隐身方向发展。其中,突破的关键是弄清楚各个电磁频段之间的内在联系。例如对于红外-可见隐身,光谱和背景光谱特性应尽可能一致(0.38 ~ 0.76 μm),需要一个合适的ε来减小目标与背景之间的红外辐射差异(8 ~ 14 μm、3 ~ 5 μm和1 ~ 2.5 μm)。而对于雷达红外兼容隐身,雷达吸波材料需要高吸收率和低反射率,而红外隐身材料需要高反射率和低ε,这就要求综合考虑隐身机理、制备工艺、材料稳定性和兼容性等问题。目前,实验室制备的样品量很少。如何让合成和设计的材料可以大规模生产,并具有其他优良特性,以确保它们可以在实际环境中使用,仍然是一个很大的挑战。其中,可调整、简便的合成路线备受关注。如何设计具有综合特性的产品也是未来发展的方向之一。例如,耐高温是一个重要因素,因为受保护设备(如飞机)的外表面热平衡温度,飞行时高度很高,普通涂层无法提供隐身性。此外,飞机、舰船等军事装备通常在浓烟、潮湿、气候恶劣的环境下工作,容易产生腐蚀缺陷。因此,耐蚀性对于提高军事装备的质量和可靠性具有重要意义。为适应环境变化,开发智能隐身材料势在必行。传统的伪装防护技术是静态的,缺乏环境适应性。智能隐身材料具有感知、信息处理、自主指挥和对环境信号作出最佳反应的功能。因此,如何设计能够主动适应环境的智能隐身材料是伪装隐身技术进一步提高军事目标在复杂战场环境中的生存和突防能力的重要发展趋势。
  • 近红外应用 | 水果在线分选检测
    当我们走进水果店时,会发现同一种水果会分不同的价格售卖,而影响价格的主要原因是其品质,这时我们就会产生疑问 ➙什么样的荔枝核小而甜?什么样的西瓜皮薄瓤多脆又甜?我们今天来分享一些关于:如何用科学的方法区分不同品质的水果(当然也能区分同一类水果的不同产地与品种)随着生活质量提高和消费水平的改变,消费者对于水果品质不同的需求也就促成了水果的销售分级处理;利用非接触式水果分选检测技术,不断细分果品,以便满足不同消费市场的需求。什么是水果分选?一般来说,将其分为四类:大小、重量、外观品质(颜色、新鲜度)、内部品质 其中在内部品质分选中,主要判断的指标如下:糖度硬度酸度内部缺陷然而传统的破坏性检验方法不仅成本高,还造成资源浪费,因此光谱无损检测的方法成为一大趋势。水果分选机因其具有检测速度快、可同时检测多种内部成分等优点,近年在农产品内部品质检测方面发展迅速。其基本原理是:当用近红外光照射水果时,不同的水果内部成分对于不同波长的光学吸收和散射程度不同,而内部光谱也会随着水果内部成分质量分数的不同而发生变化。利用这一特性,即可根据近红外光谱特征分析水果中的主要成分及其质量分数。为什么是近红外光谱?近红外光谱近红外光谱属于分子振动光谱的倍频和主频吸收光谱,主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,具有较强的穿透能力。近红外光主要是对含氢基团X-H(X=C、N、O)振动的倍频和合频吸收,其中包含了大多数类型有机化合物的组成和分子结构的信息。由于不同的有机物含有不同的基团,不同的基团有不同的能级,不同的基团和同一基团在不同物理化学环境中对近红外光的吸收波长都有明显差别,且吸收系数小,发热少,因此近红外光谱可作为获取信息的一种有效的载体。近红外光照射时,频率相同的光线和基团将发生共振现象,光的能量通过分子偶极矩的变化传递给分子;而近红外光的频率和样品的振动频率不相同,该频率的红外光就不会被吸收。因此,选用连续改变频率的近红外光照射某样品时,由于试样对不同频率近红外光的选择性吸收,通过试样后的近红外光线在某些波长范围内会变弱,透射出来的红外光线就携带有机物组分和结构的信息。通过检测器分析透射或反射光线的光密度,就可以确定该组分的含量。近红外光谱优劣势但是近红外经过两百多年的发展与应用开发,仪器的进步与算法的革新,仪器制造商与科学家们已经可以将越来越多的劣势规避,从而更好地发挥了近红外不消耗化学试剂,不污染环境等优点,因此也受到越来越多人的青睐。应用案例基于近红外光谱技术检测水果糖度(水分/黑心病【可见+近红外】)主要过程:(1)选取具有代表性的水果(2)通过漫反射或透射方式采集水果样品相关光谱数据;(3)对光谱数据预处理,消除不同因素对水果模型精度带来的误差,选择更有代表性样品的光谱数据;(4)采用国家和国际认证的化学分析方法测量水果样品成分的准确含量;(5)建立预测模型(6)未知水果样品近红外光谱的采集,然后用所建立的预测模型预测未知样品的成分含量。(7)用标准的化学分析方法测量未知水果样品成分的含量,验证所建立预测模型的准确性,然后对预测模型进行校正和优化。典型装置设计:三大功能模块:光路模块、附件模块、数据处理模块光路模块的光源对待测水果样品进行有效照射,通过光纤传递给光纤探头,再将透过水果样品的光谱信息进行收集,并通过光纤传递给数据处理模块的光谱仪。通过微处理器进行处理、计算和分析,从而完成对待测水果样品糖度的预测,在显示屏上获取结果,实现水果糖度的无损检测。由于水果的尺寸大小、果肉薄厚,糖酸度有高有低,且分布不均的情况,在光谱采集模块中有多种方式:图片来源:仪器信息网以下图为实际的光谱采集谱图案例▼▼▼脐橙原始光谱采集(可见+近红外)苹果吸收光谱(可见+近红外)香蕉的不同反射光谱(近红外)并做归一化平均草莓反射光谱(可见+近红外)正常与不同腐变程度的苹果透射光谱比较图(可见+近红外)化学计量学建模在完成光谱采集后,数据处理成为整个装置的核心步骤。再建立准确化学值与光谱信息之间的化学计量学模型。化学计量学模型的建立主要包括两个过程:校正和预测硬件:光谱采集模块① 光谱仪(近红外系列光谱仪,可见-近红外光谱仪)② 光源(海洋光学提供集成和光路设计方案,解决客户在光学部分的担忧;因集成到在线设备,我们推荐使用高度可集成化、高稳定性的光源,以适应在线设备的光路设计和长时间稳定运行。) ③ 光谱收集附件(可选配/定制/也可空间光耦合的光纤、准直镜附件,帮助客户解决系统中光传输和耦合问题。)软 件① 光谱读取软件定制/二次开发(Omnidriver/Seabreeze)② 近红外光谱建模软件(可根据需求选取不同建模软件)③ 数据传输与分选机制协议定制针对不同的水果产线和分选机制,为客户定制数据传输模块及协议方式。由于通讯方式的差异及需求差异,我们还可以为客户进行光谱仪器协议、固件等开发,实现同样光谱设备在不同应用中发挥其不同长处。理由1:触发准确性在水果分选设备产线中,光谱仪工作在外触发模式,当传输带送入一个水果到测量位置,立即触发光谱仪开始积分,积分时间100ms,因此对触发的准确性要求很高。而竞争对手的产品外触发时间不准确,如果产线使用的是高功率卤钨灯,多停留一段时间就有可能造成水果的热损伤。理由2:量产能力性机器人自动校正并保证每台设备的精准校调,确保每条产线的分选标准一致。理由3:量身定制在线系统中如果出现系统故障会影响整条产线的正常运行,我们可为客户定制系统运行自测协议,减少人为检验步骤,提高生产效率。本文来源:海洋光学关于海洋光学海洋光学作为世界领先的光学解决方案提供商,应用于半导体、照明及显示、工业控制、环境监测、生命科学生物、医药研究、教育等领域。其产品包括光谱仪、化学传感器、计量检测设备、光纤、透镜等。作为光纤光谱仪的发明者,如今海洋光学在全球已售出超过40万套的光纤光谱仪。关于爱蛙科技爱蛙科技(iFrogTech)是海洋光学官方授权合作伙伴,提供光谱分析仪器销售、租赁、维护,以及解决方案定制、软件开发在内的全链条一站式精准服务。如需了解更多详情或探讨创新应用,可拨打400-860-5168转5895客服电话。
  • 如何精确测定LED灯反射板的反射率?
    前言LED灯具有长寿命、安全可靠、节能环保等优点,在家用照明设备、显示屏、公共设施场所以及景观装饰等方面应用广泛,如汽车上的照明设备、景区内各种图案的装饰灯。LED灯通常由光源、外壳组成,光源装有反射板可以有效利用光源的能量,因此反射板的反射率会直接决定LED灯的光利用效率。而评价反射板的反射率,常用的检测仪器是紫外分光光度计。检测实例我们选取了生活中常见的一种LED灯,拆开发现反射板的四周是弧形表面,为获得准确的反射率,要对中间的平整表面进行测定,如图中红色圆圈标注的位置。但这个位置的直经只有5mm,如此小的测量位点,要使仪器光源的光斑中心完全照射到测定位置非常困难。图1 LED灯的反射板为了解决这类微小样品的测定难题,日立特别研发了微小样品全反射/漫反射测量系统定制附件,确保光源的光斑中心完全照射到测定位置。而且日立UH4150紫外-可见-近红外分光光度计的样品仓空间足够大,可以轻松安装这个附件。 测定时使用铝制平面镜作为标准参考,利用铝制平面镜的绝 对反射率将LED灯反射板的反射率的相对值转换为绝 对值,得到的反射板的全反射光谱如图所示。图2 LED灯反射板的反射光谱测定结果表明该反射板的反射率高达90%,可以有效利用LED灯光源的光通量,提高照明效率。 想获取更多信息,请拨打电话:400-630-5821。
  • Sanotac发布蒸发光散射检测器技术 高性能的ELSD 检测器
    全新的Omnitor低温型蒸发光散射检测器(ELSD检测器)重磅上市!三为科学蒸发光散射检测器技术团队通过独创的卧式结构,全新的光散射光路设计,智能的自动化功能、友好的用户界面和多平台控制,Omnitor蒸发光散射检测器可以为不同层次和需求的用户提供不同的实验体验。 三为科学本次推出全新ELSD900和ELSD6000两个型号蒸发光散射检测器参加慕尼黑分析仪器展览,新产品几个亮点:一、仪器内部温度场合理设计使体积小到26*19*46cm,和液相色谱泵同等宽度;二、定量重复性达到RSD6≤1.5%,最小检测浓度为≤5.0×10-6 g/mL (胆固醇-甲醇溶液)。三、信号稳定、噪音低,信号噪音 三为科学技术总监姜总向我们介绍Omnitor的仪器性能、参数和工程设计等方面已经达到国外品牌蒸发光散射检测器的同等品质,这两款检测器非常适合制药、药物开发、质保/质控、食品质量检测、保健品和精细化学品分析领域中化合物的分析和中草药、天然药物、食品科学领域天然产物活性成分分离纯化过程中的在线检测。这两款检测器可以消除梯度洗脱时溶剂峰的干扰,大大提高药物化合物库筛选效率。 姜总还向我们介绍了品牌蒸发光散射检测器应该具备的技术特点:紧凑的结构——独创的全新光散射光路和卧式仪器结构,并且对仪器内部温度场进行合理设计,仪器结构紧凑合理安全、长寿命——16项仪器自检,多重安全设计,避免流动相进入检测室检测性能优异——定量重复性达到RSD6≤1.5%,基线噪声低至0.01 mV,漂移小方便用户使用——10组方法存储管理(25个参数),多重报警模式,雾化管前置,便于用户观察和清洗智能温控——漂移管辅助快速降温系统可以完成不同方法间的快速切换,喷嘴加热及雾化管角度调整功能为高端用户提供个性化实验参数定制需求灵活的输出——0.3 ~ 30倍的连续增益调整,提供输出自动归零功能,-1000 mV ~ 1000 mV的偏置模拟输出,并且提供数字输出功能控制采集软件——色谱系统软件符合FDA 21CFR Part 11要求,具有审计追踪功能,可以与任何主流HPLC系统联用多重通讯模式——RS232,RS-485,USB,LAN(TCP/HTTP),可编程外部事件接口绿色节能——提供待机模式,检测器低功耗状态,同时节省50%以上氮气消耗,多重方式开启待机模式(内部、远程、定时器) 会议期间,ELSD9000蒸发光散射检测器得到仪器厂家和分析化学专家的充分认可,来自化学、医疗、食品、环境和医药产业的科技研发人员对ELSD9000的产品性能、结构设计、软件功能给予很大的肯定。 作为专业科学仪器生产企业,三为科学致力于制备液相色谱、蛋白纯化系统、色谱通用检测器的研究。对于行业热衷的液相色谱使用通用的检测器,ELSD9000和ELSD6000蒸发光散射检测器为广大分析检测和药物分离纯化领域的科学家提供了液相色谱通用检测器的解决方案和理想的性价比。在致力于优质色谱通用检测器的国产化的道路上,我们任重路远!
  • 近红外应用 | 你鞋是真的吗?
    在线上各大电商平台和线下各种促销专柜,琳琅满目的选择中,买到真正喜欢的正品鞋好难啊。因而催生了许多新兴产业,比如倒买倒卖的黄牛,比如假鞋制造产业,鱼龙混杂真假难辨。假冒品每年会给企业和消费者造成数十亿美元的损失,假鞋制造商使用与原品牌相同的材料,甚至相同的技术。因此,仿冒品的鉴别也越来越难。真假球鞋的鉴别究竟有多难?如何才能科学鉴别真假球鞋呢?下面来跟大家分享一下如何使用近红外光谱技术来鉴别真假球鞋。如何才能鉴别?近红外光谱按美国材料检测协会的定义就是指在780-2526nm范围内的光。一束近红外光照射纺织品时,纺织品中的某些成分就会吸收其中特定的光,改变分子的自身状态,产生近红外光谱。近红外光谱分析技术与传统成分检测技术比有效率高、速度快、适用范围广等很多优势。为将真假鞋区分开,制造商正使用近红外漫反射光谱和简单的光谱数据处理技术,帮助美国一认证公司检测每双价值100美元以上的知名品牌运动鞋的劣质材料。为快速检测鞋子的某些部分,并提供有借鉴意义的数据。将反射探头的光纤两端分别连接到NIR Quest光谱仪和光源HL-2000。在Ocean View软件中选择反射测量模式,使用WS-1漫反射标准白板,建立100%参考光谱。使用反射探头观察检测鞋子(正品和仿冒混合在一起)中每个样品的不同区域,并将产生的光谱保存以供分析。我们测量了鞋子的橡胶鞋底,皮革外部,鞋舌外部,内衬面料,甚至鞋带。检测结果如何?下图按顺序分别为橡胶鞋底、白色皮革和鞋舌的近红外反射光谱,我们检测到样本之间的特征光谱确实存在一些差异,但此差异太微弱,不足以用来识别假冒产品。 ▲橡胶鞋底▲白色皮革 ▲鞋舌对内衬面料采集光谱,采集时间小于1s。从下图中可看出,有多个光谱区域内可明显看出差异。至少对于这些高端运动鞋样品而言,内衬面料(蓝色线)是区分正品和仿冒鞋的关键。▲内衬面料结论假冒商品影响到每个人,比起掺假婴儿配方奶粉和伪造货币,假鞋可能没那么严重,但它仍然会贬低品牌价值并提高消费者的消费价格。本文初步证实了近红外光谱真假鞋鉴定的可行性。PS:你鞋是真的吗?买台光谱仪来测测!本文来源:海洋光学关于海洋光学海洋光学作为世界领先的光学解决方案提供商,应用于半导体、照明及显示、工业控制、环境监测、生命科学生物、医药研究、教育等领域。其产品包括光谱仪、化学传感器、计量检测设备、光纤、透镜等。作为光纤光谱仪的发明者,如今海洋光学在全球已售出超过40万套的光纤光谱仪。关于爱蛙科技爱蛙科技(iFrogTech)是海洋光学官方授权合作伙伴,提供光谱分析仪器销售、租赁、维护,以及解决方案定制、软件开发在内的全链条一站式精准服务。如需了解更多详情或探讨创新应用,可拨打400-860-5168转5895客服电话。
  • 《中国药典》红外光谱法增订漫反射和显微模式
    2024年02月20日,药典委发布《红外光谱法草案公示稿(第一次)》(详见附件)。红外光谱法(亦称红外分光光度法)是在 4000~400cm-1 波数范围(2.5~25µm波长范围)内测定物质的吸收光谱,用于化合物的鉴别、检查或含量测定的方法。在中红外谱区,吸收带反映了官能团的分子振动信息,其中 1500cm-1以下区域称为“指纹区”,信息丰富且复杂。除部分光学异构体及长链烷烃同系物外,几乎没有两个化合物具有相同的红外光谱,据此可以对化合物进行定性和结构分析;化合物对红外辐射的吸收程度与其浓度的关系在一定条件下符合朗伯-比尔定律,是红外光谱法定量分析的依据。红外光谱法在制药领域被广泛应用于实验室的化学和物理分析,同时也是过程分析技术(PAT)的有效工具。其中,化学分析方面包括原辅料、剂型、生产中间体和包装材料的鉴别和确认;药物中药物活性成分的定量;以及气体、无机物中的杂质定量;化学合成的反应监测等。物理分析方面主要应用于固态性质的测定,如药物多晶型鉴别或检查。本草案在《中国药典》0402 红外分光光度法的基础上修订了如下内容:1. 对通则结构做了调整;2. 增订了红外光谱法的应用范围、谱图表示单位;3. 测量模式部分补充了原理,并增加了漫反射和红外显微镜的内容; 4. 仪器部分提出仪器校验的要求及系统适用性方案; 5. 定性定量方法部分对原描述进行了精简概括,并补充了必要内容;增订了 “谱图比对和结果判断方法”,补充了定量分析的具体方法并给出方法验证方案等。附件:0402 红外光谱法草案公示稿(第一次).pdf
  • 网友调查显示:蒸发光散射检测器异军突起
    仪器信息网讯 日前,仪器信息网网友公布了其近日在做仪器信息网仪器论坛做的一个关于我国液相色谱仪检测器配置的调查结果(原贴网址:http://bbs.instrument.com.cn/shtml/20130630/4824110/)。   本次调查从2011年11月开始,到2012年5月结束,历时一年半,共在仪器信息网的液相色谱版块收集了157个样本,调查了可紫外检测器、蒸发光散射检测器、二极管阵列检测器、示差折光检测器、荧光检测器、电化学检测器、质谱、核磁共振等八类检测器的分布情况。   从其调查结果显示,配置排名前三的检测器为:紫外检测器(27%)、二极管阵列检测器(22%)、荧光检测器(14%)。   具体结果分析:   1、紫外检测器还是液相色谱的主导,因为它可以检测大部分液相色谱可以检测的化合物。VWD和DAD两项的投票基本一致,只是现在检测器在可变波长与二极管阵列的价格上有很大出入,VWD相对价格便宜,所以仪器配置的比例还是更高。   2、示差折光检测器已经商品化很多年,再加上其独特的检测领域,特别是GPC分析仪器上的配置,所以它还占有很大比例。   3、异军突起的我想应该是蒸发光散射检测器(ELSD)了,它的出现没有多少年,而它的配置居然占到了12%。目前虽然ELSD的很多检测方法没有标准化,但是中国药典在一部已经有很多采用了ELSD检测,而中药的分析,也是药品分析中的重要组成,很多药品企业应该都会考虑它。 另微博网友@野菠萝是祖国花朵不是热带水果认为,因为蒸发光散射检测器是通用性的检测器,可以弥补示差折光检测器的灵敏度、梯度的不足 另外,蒸发光散射检测器的方法可以平移到HPLC-MS,非常适合经费有限才起步的小公司。免得到做质谱的时候,临时开发方法,拖延进度。   4、荧光检测器由于其灵敏度高,而且在液相领域应用也很广,检测机构一般都会配置。   5、而目前有几个检测器,比如电化学检测器、电喷雾检测器等,这些都具有专一行,通用性差,所以基本都是专用液相配置的多。
  • 如何测量绝对反射与相对反射?
    1. 前言光照射到物体上,由于物体的表面不同,通常会发生两种反射,镜面反射和漫反射,如图所示。图1 光在物体表面的反射示意图对于玻璃、镀膜基板、滤光片等表面光滑的零部件,镜面反射率是评价其光学特性的重要参数,测定反射率最常用的仪器是紫外可见近红外分光光度计。日立紫外产品线丰富,波长测试范围涵盖紫外可见区域到近红外区域,可以满足样品不同波长下的测量需求。2. 应用数据镜面反射根据测量方式的不同,分为相对反射率和绝对反射率。客户需要根据样品特征,选择不同的测量方式。日立具有5°到75°固定入射光角度的镜面反射附件,适用于多种样品的镜面反射测量。图2 绝对反射测量图3 相对反射测量绝对反射率通常使用V-N法进行测量,直接获得样品的反射特性,应用广泛。但是对于低反射率的样品,使用相对反射测量,可以有效扩大动态范围。 2.1 石英基板的相对反射率测量 • 测量附件图4 5o 相对反射附件• 测量结果 使用紫外可见分光光度计U-3900 的5o相对反射附件,以BK7玻璃为参考标准品测定石英基板的相对反射光谱。结果表明石英基板的相对反射率约为80%。 图5 石英基板的相对反射率通过日立U-3900的选配程序包,使用相对反射率得到转换后的绝对反射率,如下图所示。如果直接测定石英基板的绝对反射率,光谱易受噪声影响。图6 石英基板转换后的绝对反射率2.2 铝平面镜和金平面镜的绝对反射率金平面镜表面涂有金膜,该金膜在红外区域具有高反射率。铝平面镜是表面涂有铝膜,在可见光区到近红外区有较高的反射率和较小的角度依赖性。两者常作为相对反射测量时的标准面。• 测量附件图7 5 o绝对反射附件• 测量结果 使用紫外可见近红外分光光度计UH4150的5°绝对反射附件分析了金平面镜和铝平面镜的绝对反射率。 图8 金平面镜和铝平面镜的绝对反射率 结果表明,在可见光区域,铝平面镜的反射率超过80%。金平面镜的反射率在可见光区域较低,但其在近红外区域的反射率较高。因此在测量样品的相对反射率时,如果需要关注近红外区域,可以使用在近红外区具有高反射率的金平面镜作为标准面。 3. 结论样品的镜面反射率有两种测量方式,相对反射率和绝对反射率。对于低反射性样品,使用相对反射附件测量其相对反射率,可以获得信噪比良好的光谱,如玻璃基板上薄膜的反射率。对于通常的样品,可以直接使用绝对反射附件测量其绝对反射率。日立提供多种镜面反射测量附件,还可根据客户需求量身定制,满足各种样品的镜面反射率测量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制