当前位置: 仪器信息网 > 行业主题 > >

气相分析吸收仪

仪器信息网气相分析吸收仪专题为您提供2024年最新气相分析吸收仪价格报价、厂家品牌的相关信息, 包括气相分析吸收仪参数、型号等,不管是国产,还是进口品牌的气相分析吸收仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气相分析吸收仪相关的耗材配件、试剂标物,还有气相分析吸收仪相关的最新资讯、资料,以及气相分析吸收仪相关的解决方案。

气相分析吸收仪相关的论坛

  • 仪器怪咖-气相分子吸收光谱

    之所以叫他怪咖是我之前确实没有接触过这种仪器,论坛真是无所不能,老兵提到了这个仪器,我就上百度扫扫盲,希望跟大家分享一下。大家多沟通交流。一.气相分子吸收光谱法的测定原理和特点1.测定原理气相分子吸收光谱法(以下简称GPMAS)是基于被测成分所分解成的气体对光的吸收强度与被测成分浓度的关系遵守比耳定律这一原则来进行定量测定的;根据吸收波长的不同,也可以确定被测成分而进行定性分析。对于液体(如水样)或固体(如化学肥料)样品的测定,其测定过程是将被测成分从液相分解成气体,用载气(空气)载入GPMAS仪器的测量系统测定吸光度;对于被测的流动气体样品,则在一定的压力下直接流入测量系统测定吸光度,然后测定已知浓度的标准溶液和标准气体的吸光度,进行比较而得出样品的测定结果。2.特点与常用的分光光度法相比较,GPMAS具有以下的分析特点:①测定速度快,对水样而言,一些成分,如NO2--N、NO3--N及硫化物,从取样到测定出分析结果,约2分钟就可完成。②测定手续简便,省时、省力,易操作、易掌握。所用玻璃器皿和化学试剂较少,样品的分析成本低。③方法不使用对人体有害的化学试剂,特别是易致癌的化学试剂,如有毒汞及N-(1-萘基)-乙二胺盐酸盐等试剂,无二次污染。④抗干扰性能强,被测成分分解成气体,从液相转入气相的同时就是一个简便快速分离干扰过程,所以一般不用复杂的化学分离手续,尤其不需要去除样品颜色和浑浊物的干扰。⑤测定结果准确可靠,一般水样的加标回收率在95-105%之间,重复测定(n=6)的相对标准偏差约2%。⑥ 测定成分浓度范围宽,低浓度和高浓度均可测定,测定下限0.05mg/L,测定上限达数百mg/L。GPMAS适合用于阴离子和一些酸根的测定。与离子色谱法相比,虽然不能对多组分(在各组分浓度相差不大时)进行连续测定,但GPMAS的检测灵敏度和测定浓度范围都高于离子色谱法,它对水样的清洁度要求不高,适用于测定污水样品。离子色谱法的色谱柱易堵塞,对污水样品须做清洁处理;色谱柱须精心维护,并要适时更新,色谱柱及整机离子色谱仪价格昂贵。总之与离子色谱法相比, GPMAS也不失为一种好方法。二.气相分子吸收光谱法的发展和应用现状气相分子吸收光谱法是20世纪70年代兴起的一种简便、快速的分析手段。1976年Gresser等人首先提出该法(Gas-Phase Molecular Absorption Spectrometry,简称GPMAS)Syty最先应用该法测定了SO2,此后分析家们成功地测定了腐蚀性、挥发性的气体,如I2和Br2、H2S、NOCL、HCN、NO2和NO,Rechikov等人测定了用于半导体工艺的惰性气体混合的氢化物气体中的B、N、P、As、Sb、Si、Ge、Sn的氢化物。在水质分析方面,人们也进行了许多研究,如NO2-的测定,利用NO2-在强酸性介质中易分解的特性,将其分解成对紫外光产生吸收的氮氧化物气体,测定了NO2-。由于仅依靠NO2-的自然分解,测定灵敏度非常低,对mg/L级的NO2-根本无法检出,因而未受到分析家的重视。Syty采用GPMAS测定了硫化物,并设计了吹气反应装置(图1),把溶液中的硫化物酸化后生成H2S气体,用氮气载入测量系统进行测定,但对干扰成分的消除考虑不够,方法实用性差。

  • 求一液相分析方法

    我一产品,小分子的,在气相上容易气化分解,后来发现在240nm上有吸收,准备用液相分析,由于以前没怎么用过液相,想求助一方法,今天在液相上用甲醇、水的流动相上好像没有峰,柱子是ZORBAX SB C18,ECPLISE PLUS  C18柱子好像也不出峰。

  • 对于这类紫外吸收弱的化合物如何进行液相分析?

    对于这类紫外吸收弱的化合物如何进行液相分析?

    各位坛友,最近我手上有个项目,反应过程如下:http://ng1.17img.cn/bbsfiles/images/2013/08/201308080859_456760_1654054_3.jpg(01)→http://ng1.17img.cn/bbsfiles/images/2013/08/201308080859_456760_1654054_3.jpg(02)→http://ng1.17img.cn/bbsfiles/images/2013/08/201308080859_456762_1654054_3.jpg(03)因为这几个化合物的沸点偏高,所以不能选择气相色谱。我现在需要做的工作:建立合适的液相方法,去监测反应和中间体及成品的质量控制。我对样品进行了紫外扫描,结果与预期一样,吸收很弱。鉴于Boc对酸不稳定,所以我选择了中性流动相。我现在使用的方法:25cm的C18柱,流动相(水和乙腈),检测波长210nm,梯度洗脱。这种方法是可以看到色谱峰,但我总感觉要做成品的质量控制,有些不可靠。毕竟除了有微弱吸收的能被检出,还有一些紫外吸收更弱的不能出峰,这样报告出来的色谱纯度就有欺骗性。当然,做出来的成品我还会送去做1H NMR分析。可是NMR只能有个大概的结论,定量上还是没有色谱准确。例如,我的(03)成品送检NMR,与文献数据一致,这样我只能说样品纯度比较高,但我不能告诉别人我的样品纯度是多少。有几个问题向大家请教:(1)这类紫外吸收弱的化合物,用蒸发光检测器是不是更好一些?(2)在只有紫外检测器的情况下,如何让检测结果更可靠?(3)化合物(03)可以利用什么试剂衍生来增强紫外吸收吗?(4)关于这类化合物,大家都有什么比较好的经验?希望亲们不吝赐教,我和小伙伴们都在盼望着......http://simg.instrument.com.cn/bbs/images/default/em09506.gifhttp://simg.instrument.com.cn/bbs/images/default/em09505.gif

  • 液相分析基线漂移(上漂和下漂)可能产生的原因

    在HPLC分析时,经常会遇到基线漂移,根据个人经验总结如下,各位大侠看看还有什么原因会导致液相分析基线漂移?http://simg.instrument.com.cn/bbs/images/default/emyc1010.gif个人总结可能的原因有:1 柱中的流动相没有平衡,延长平衡时间,尤其在流动相中添加了有紫外吸收的添加剂。2 在梯度洗脱中,基线上漂是正常的,在空白梯度中有可能是柱子中有杂质洗出。其次是流动相中有干扰物,换流动相。3 温度不稳定(示差检测器),控温。4 在等度分析中,样品缓慢洗出,改变淋洗液强度或用梯度分析。5 样品进入检测器,吸附在池中,可能每进样一次,本底一次比一次高,很少见。

  • 【求助】怎样用液相分析紫外吸收很小的物质

    [size=3]各位大侠请帮帮忙!! 最近在用液相做[color=#f10b00]正己烷[/color]的分析,流动相(甲醇:四氯化碳=7:3)因为正己烷几乎没有紫外吸收所以几乎看不到信号。 也用过邻苯二甲酸、甲基苯等间接试剂但是效果都不是很好,信号还是很小。希望大家帮帮忙,帮我找找条件。 谢谢!![/size]

  • 吸收波长的选择

    液相分析时,一般是选主成分和杂质的等比吸收波长作为分析波长吗?

  • 工业锅炉水质和气相分子吸收光谱仪

    各位老师们,想问下锅炉水检测项目和方法必须按照GB/T1576工业锅炉水质分析么,我们想检测金属铁、铜,可以用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]么。分析频次是按照每班一次就可以是么,脱盐水的分析方法需要跟锅炉水一致么,还有大家有没有推荐的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分子吸收光谱仪除了北峪和安杰,谢谢各位老师

  • 原子吸收分析仪操作步骤

    [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析仪操作步骤(一)因水溶性及固体废弃物的基质复杂性及变异性,通常必须经过适当之前处理。固体、污泥及悬浮物质在分析前必须先加以溶解,此程序随因待测分析的金属及样品特性的不同而异。(二)所有[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]需执行适当的背景校正。 (三)由于不同厂牌及机型的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]会有差异,详细的使用说明无法格式化以适用于每一部仪器,因此分析人员在使用仪器时必须遵循该厂商的使用说明书。下列为操作应当注意事项: 1.选择适当的灯管后,通常需要先让灯管预热 15 分钟。 2.可利用这段期间调整仪器,将单光器调至正确的波长,选择适当的单光器狭缝宽度,并依照厂商的建议调整电流。 3.点火并调节燃料及氧化剂的流量,调整燃烧头及喷雾器的流速以达到最大的吸收及稳定度,保持光度计的平衡。 4.量测一系列待测元素的标准溶液,绘制吸光度对应浓度建立检量线。 5.吸入样品溶液并直接读出或由检量线测定其浓度。每分析一个或一系列样品时须同时量测一次标准溶液。 (四)检量线制作与确认 1.对于非直接读出浓度的仪器,则制作一涵盖适当浓度范围的检量线。通常亦即制备可产生 0.0 到 0.7 吸收度的空白及标准溶液。 (1)每分析一批次样品时,需制备新的检量线标准溶液。若以当天制备之检量线确认溶液(以下简称 ICV)测试结果在可接受的范围,毋需每天制备检量线标准溶液,只要经由当天制备之 ICV 确认后即可使用。若 ICV 超过可接受的规范,必须重新制备新的检量线标准溶液并重新校正仪器。检量线制备须有一个空白溶液和至少五种浓度的检量线标准溶液,此五种浓度须落在校正曲线直线区域的适当范围内。 (2)配制标准溶液所使用的酸或酸组合的种类及其浓度应与样品处理后之结果相同。 (3)先以空白溶液开始,再由低浓度至高浓度吸取标准品溶液,并记录其读值。 (4)重复多次吸取标准溶液与样品,以确保能得到每一溶液之可信赖的平均读值。 2.检量线必须是线性且相关系数 R 值至少大于 0.995以上。 (1)完成检量线制作后,必须以检量线空白及在中间浓度附近的 ICV 确认检量线。ICV 之测值偏差必须在 10 % 以内,且检量线空白所含的待测物浓度不能高于 MDL,此检量线才可认为有效。若标准曲线在指定范围内无法被确认,则应找出原因并在样品分析前重新校正仪器。 (2)每批次分析结束时 / 或每隔 10 个样品后,检量线必须以检量线空白及检量线中间浓度附近的 CCV 确认。CCV 之测值偏差必须在 10 % 以内,且检量线空白所含的待测物浓度不能高于 MDL,此检量线才可认为有效。若 CCV 测值偏差大于 10 % 以上,则应停止分析样品,找出原因并在样品分析前重新校正仪器,且在最后一个可接受的 CCV 之后的所有样品必须重新分析。 3.重复测量标准溶液的浓度,取其平均值,两次测值的相对差异百分比在 10 %以内。 4.若进行微量分析时,检量线第一点的浓度必须在实验室可定量的范围浓度,假如样品浓度值低于检量线最低点的浓度,此报告只能当成估计值。[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析仪操作要点一般火焰式[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]之操作参数包括以下五点: (1)火焰高度的调整: 每一个元素最佳的反应高度并不一样,故必须调整其高度以达到最佳吸收度。图二为铬、镁、银在不同火焰高度吸收度差异。 (2)燃料比例: 每一个元素的操作灵敏度受气燃比之影响相当大,某些元素可能适合氧化焰(Lean,因二次空气的供给,燃烧完全,焰温较高,置于此焰层内之金属多被氧化成金属氧化物。),但有些可能适合还原焰(Rich,此焰层能使含氧化合物还原,例如重金属氧化物,置于此焰中灼烧,会失去其所含的氧,被还原成金属。)。图三为铬在不同火焰操作条件下其吸收度之差异 (3)灯管电流: 电流的大小也会影响吸收度。如果灯管的电流太小,则吸收度会下降,但如果太高则可能因自身吸收效应(Self Absorption Effect)使其吸收度下降。图四为镁在不同灯管电流操作下,吸收度之差异性比较。(电流太强,会导致灯管寿命降低) (4)狭缝宽度: 狭缝太小则使进入的光能量太弱,使吸收度下降,太宽则使进入的光线太多,易造成干扰,故于分析前可参考操作手册之建议条件或是自行测试选择较适当的狭缝宽度。图五为镍在不同狭缝宽度设定下其吸收度之差异性比较。 (5)波长选择: 元素吸收灵敏度与所选择的波长有很大的关系,通常每一个元素多有数个波长可供选择,可依据分析的需求选择适当的波长。 影响仪器之干扰 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法可能面临的干扰可概分六类,(1)光谱干扰(Spectral Interference)、(2)火焰放射干扰(Flame Emission Interference)、(3)化学干扰(Chemical Interference)、(4)基质干扰(Matrix Interference)、(5)非特定性散射(Non-Specific Scatter)及(6)离子化干扰(Ionization Interference)。 (1)光谱干扰:此干扰主要是样品中存在其它元素造成的干扰。此干扰近年来因中空阴极射线技术的提升已很少发生。 (2)放射干扰:此干扰主要来自于样品放射出与欲吸收的波长相同。此干扰可藉由提高电流强度或降低狭缝宽度来解决。 (3)化学干扰:此干扰最常发生于利用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]来分析镁、钙、锶及钡等金属。最常见的干扰物种有硅酸盐、磷酸盐及铝酸盐等化合物。一般解决的方法有两种,一为利用螯合剂(EDTA)与金属错合,二为添加氯化镧与造成干扰的阴离子错合;或者可利用笑气-乙炔来解决化学干扰的问题。 (4)基质干扰:一般此干扰原因有(a)溶液中含有机溶剂而造成吸收度的增加,(b)因溶液的黏滞性较高因雾化效率下降而造成吸收度下降,(c)溶液的盐度较高而造成吸收度下降。 以上四种干扰可藉由标准添加法(Standard Addition)或是萃取法将金属自溶液中萃取出来或者改用其它的分析技术。 (5)非特定性干扰:此干扰来自样品中含有高浓度的盐类,此情形最常发生于波长在250 nm以下,此干扰可用萃取技术及背景校正来克服。 (6)离子化干扰:此干扰最常发生于低游离能元素,如碱金族及碱土族元素。解决的方法可在样品中加入比待测元素更容易解离的化合物,如分析钙时可添加1000 ppm的氯化钾溶液。 [em61]

  • 【原创】原子吸收分析方法中的仪器设置

    【原创】原子吸收分析方法中的仪器设置

    在实验过程中,如果实验结果不准确,第一个想到的就是标准溶液配制出了问题,其实在实验过程中,标准溶液的配制固然重要,但是仪器工作参数的设置也同样很重要。在实际的化验分析操作中,总是发现有的金属元素在测量时用出厂的默认设置线性就很好,而有的金属元素在测量时无论怎么设置测量参数,线性都不好或者都不成标线。在这里,就我们单位使用的北京普析通用责任有限公司生产的TAS-990[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计在测定镍(Ni)实验过程中的一些经验给大家分享。现在通过几个实验给大家详细的介绍一下仪器设置后的分析结果。实验一 出厂的仪器参数都是默认的,虽然仪器参数是按照能够让仪器正常工作来设定的,但是每台仪器之间具体参数的设定都是不一样的,因为和每台仪器所处的工作环境有关系等,所以使用时必须多进行分析使用,找到最佳的仪器参数。此实验的目的是在仪器默认参数的条件下,分析得出标准曲线线性,结果为不符合使用要求。 所有仪器工作参数不变,实验一测量得出的标准曲线浓度点和吸光度如表2-1 所示,标准曲线如图2-1所示。 [img]http://ng1.17img.cn/bbsfiles/images/2009/08/200908051502_164044_1611705_3.jpg[/img]由图2-1可以看出,整个标线有向右偏转的趋势,说明高浓度的标点实际吸光度偏小。实验二 此实验的目的为逐步调整燃烧头的角度,降低吸光度,观察标准曲线的线性的变化。实验二比实验一得出的标准曲线线性较为好转,但是仍然不符合使用要求。保持其他测量参数不变,将燃烧头顺时针偏转1个刻度,实验二测量得出的标准曲线浓度点和吸光度如表2-2 所示,标准曲线如图2-1所示。 [img]http://ng1.17img.cn/bbsfiles/images/2009/08/200908051502_164045_1611705_3.jpg[/img] 实验三 此实验的目的为将最高点浓度的吸光度控制在0.6左右,得出的标准曲线线性较好,完全符合使用要求。所以经过实际操作分析后得出仪器的最佳工作参数为在其他测量参数不变的情况下将燃烧头顺时针偏转2格。保持其他测量参数不变,将燃烧头顺时针偏转2个刻度,实验三测量得出的标准曲线浓度点和吸光度如表2-3 所示,标准曲线如图2-3所示。 [img]http://ng1.17img.cn/bbsfiles/images/2009/08/200908051502_164046_1611705_3.jpg[/img]实验四 此实验的目的为观察灯电流的变化对吸光度的影响和分析得出的标准曲线的线性。根据灯电流增大,吸光度变小的原理,其他测量参数不变,将灯电流设置为5mA,6mA,7mA,8mA,9mA,5mA-8mA吸光度仍然偏大,线性仍然不好,当灯电流高于9mA时,1mg/L的吸光度为0.000。实验四测量得出的标准曲线浓度点和吸光度如表2-4 所示,标准曲线如图2-4所示。 [img]http://ng1.17img.cn/bbsfiles/images/2009/08/200908051503_164047_1611705_3.jpg[/img]改变灯电流的大小,是为了改变空心阴极灯发射光强度的大小,从而改变整个[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计的灵敏度。从图2-4可以看出,改变了灯电流后,整个仪器性能灵敏度下降,1.0mg/L已经测不出来了。另外我曾尝试参考了《水和废水监测分析方法》(第四版)中提供的参考条件,将灯电流设置为12.5mA,空心阴极灯没有发射光。寻找原因,是因为发射光的强度太弱,灯发生了自吸收,所以没有发射光出来。实验五 准确性实验 考核NI浓度为0.50±0.023mg/L的标准样品,图2-3 标准曲线测量结果为0.490 mg/L,准确度符合要求。结果与讨论实验一的参数设置是默认设置,得出的标准曲线为y=0.2167x+0.1057(r=0.98855),最高点浓度点的吸光度为1.516;实验二的参数设置是燃烧头顺时针偏转1个刻度,其他参数不变,得出的标准曲线为y=0.1456x+0.0366(r=0.99608),最高点浓度点的吸光度为1.010;实验三的参数设置是燃烧头顺时针偏转2个刻度,其他参数不变,得出的标准曲线为y=0.0782x+0.0066(r=0.99953),最高点浓度点的吸光度为0.546;实验四的参数设置是将灯电流设置高于9mA,得出的标准曲线为y=0.1253x-0.0815(r=0.98401)。由实验一、实验二、实验三可以看出在其他参数不变的条件下,不偏转、偏转1格、偏转2格得出同一浓度点的吸光度为1.516、1.010、0.546,可以看出偏转燃烧头是减少了参与吸收的原子总量,从而降低了吸光度。而实验四改变灯电流的大小得出结果却很不理想,虽然理论上是灯电流增大,吸光度变小,但是在实际操作的过程中要考虑到空心阴极灯的自吸问题,所以在实际操作过程中不建议改变灯电流来进行实验。由实验一、实验二和实验三得出结论为减少参与吸收的原子总量可以降低吸光度,将最高点浓度点的吸光度控制在0.6左右,实验三分析得出的标准曲线完全符合要求。实验四改变灯电流后的得出的标准曲线不符合要求。改变[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计的吸光度可以从三个方面入手,一是改变空心阴极灯的发射光强度;二是改变火焰的类型;三是改变参与吸收的原子总量。空心阴极灯的设置比较难把握,因为要考虑到灯的寿命,灯光强度产生的自吸收和噪声,所以设置的时候必须要寻找一个平衡点。一般来说,每台[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计的出厂设置,都是按照这个平衡点来设置的,没有特殊需要,尽量不要修改。改变火焰类型是通过改变燃烧气流量来实现的,1300-1400ml/min是属于贫燃火焰,这个火焰的优点是温度高,氧化性强,吸收完全。在做镍的过程中,用贫燃火焰比较适宜,但是不用的元素有其适合的不同的火焰,需要具体在做之前进行测试。改变可吸收的光程和参与吸收的原子总量可以通过改变燃烧头的角度来实现,由图2-1、图2-2、图2-3可以看出,减少参与吸收的原子总量将吸光度控制在0.6左右,标线线性很好。当然,控制吸光度也可以从根本入手,也就是配制低浓度点的一系列标线,从根本上将吸光度控制住。在火焰法做[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测定过程中,仪器工作参数的设置很重要,所以在使用仪器做每个金属元素之前要根据元素的特性将仪器最佳的工作状态找好。这是我在[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]做镍元素过程中的一些体会,希望和大家一起学习,有什么不对的地方请多加指正。

  • 【讨论】气相分子吸收光谱法

    请用过的说说以下测定原来的方法好还是[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子吸收光谱法 水质 硫化物的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子吸收光谱法 水质 氨氮的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子吸收光谱法 水质 凯氏氮的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子吸收光谱法 水质 硝酸盐氮的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子吸收光谱法 水质 亚硝酸盐氮的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子吸收光谱 水质 总氮的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子吸收光谱法

  • 金相分析仪在生产中的应用

    金相分析仪在生产中的应用近年来,随着计算机技术和体视学的发展,金相分析仪图像分析仪被广泛地应用于金相分析中,使传统的金相分析技术从定性或半定量的工作状态逐步向定量金相分析方向发展。金相分析仪金相工作者多年来一直从金相试样抛光表面上通过显微镜观察来定性地描述金属材料的显微组织特征或采用与各种标准图片比较的方法评定显微组织、晶粒度、非金属夹杂物及第二相质点等,这种方法精确性不高,评定时带有很大的主观性,其结果的重现性也不能令人满意,而且均是在金相试样抛光表面的二维平面上测定,其测量的结果与三维空间真实组织形貌相比有一定差距。金相分析仪现代体视学的出现为人们提供了一种由二维图像外推到三维空间的科学,即将二维平面上所测定的数据与金属材料的三维空间的实际显微组织形状、大小、数量及分布联系起来的一门科学,并可使材料的三维空间组织形状、大小、数量及分布与其机械性能建立内在联系,为科学地评价材料提供了可靠的分析数据。

  • 关于负吸收的问题

    以前在上学的时候做过关于负吸收的可见分光度法的实验。但是,还不曾在柱层析分离的时候出现过。这次做了一个项目的杂质分离。出现了这样的现象。正相分离,使用的是二氯甲烷和乙醇(甲醇)作为流动相,硅胶最为固定相。检测波长在210nm下,粗品比较杂,小极性部分的几个峰都是很正常的,当我的目标物要出峰的时候,基线就开始向下走(这时乙醇的比例有所提高),收集这部分溶液中TLC可以看到目标物,但是这个粗品在反相分析检样的时候,并没有出现倒峰的情况,难道是溶剂吸收吗?我试过用等度去分离 到同样的位置,也会出现基线下降的问题。目标物是金刚烷的衍生物。不知道大家遇到过类似的物质分离吗?或者出现过这样的情况吗?

  • 原子吸收及气相色谱等环保仪器能应用于油品分析室吗?

    本单位有原子吸收、离子色谱、荧光、紫外可见、气相色谱等仪器。现在公司想要开展油品分析业务,主要业务为润滑油分析,请问润滑油检测的主要指标是什么?需要哪些仪器?原来的环保仪器可以用来分析润滑油中的重金属及烃类吗?

  • 【求助】新手,疑惑,到底什么样的样品用液相分析?什么样的样品用气相分析?

    今天拿到一液体样品(化学试剂),要测其纯度,因为能够很好的溶于乙腈和水,就走了一针,想着怎么也该出个大峰,结果20分钟走完,啥也没有,于是反思:(1)是不是该样品不适合液相分析?更进一步说,什么样的样品可以进行液相分析呢?分析之前需要了解样品的哪些特性呢?请专家指教(2)是不是紫外检测器的波长不合适,254nm不出峰?这个该怎么才能知道呢?请专家指教!

  • 【分享】图像分析仪在金相分析中的应用

    近年来,随着计算机技术和体视学的发展,图像分析仪被广泛地应用于金相分析中,使传统的金相分析技术从定性或半定量的工作状态逐步向定量金相分析方向发展。  金相工作者多年来一直从金相试样抛光表面上通过显微镜观察来定性地描述金属材料的显微组织特征或采用与各种标准图片比较的方法评定显微组织、晶粒度、非金属夹杂物及第二相质点等,这种方法精确性不高,评定时带有很大的主观性,其结果的重现性也不能令人满意,而且均是在金相试样抛光表面的二维平面上测定,其测量的结果与三维空间真实组织形貌相比有一定差距。现代体视学的出现为人们提供了一种由二维图像外推到三维空间的科学,即将二维平面上所测定的数据与金属材料的三维空间的实际显微组织形状、大小、数量及分布联系起来的一门科学,并可使材料的三维空间组织形状、大小、数量及分布与其机械性能建立内在联系,为科学地评价材料提供了可靠的分析数据。

  • 【分享】图像分析仪在金相分析中的应用

    图像分析仪在金相分析中的应用近年来,随着计算机技术和体视学的发展,图像分析仪被广泛地应用于金相分析中,使传统的金相分析技术从定性或半定量的工作状态逐步向定量金相分析方向发展。 金相工作者多年来一直从金相试样抛光表面上通过显微镜观察来定性地描述金属材料的显微组织特征或采用与各种标准图片比较的方法评定显微组织、晶粒度、非金属夹杂物及第二相质点等,这种方法精确性不高,评定时带有很大的主观性,其结果的重现性也不能令人满意,而且均是在金相试样抛光表面的二维平面上测定,其测量的结果与三维空间真实组织形貌相比有一定差距。现代体视学的出现为人们提供了一种由二维图像外推到三维空间的科学,即将二维平面上所测定的数据与金属材料的三维空间的实际显微组织形状、大小、数量及分布联系起来的一门科学,并可使材料的三维空间组织形状、大小、数量及分布与其机械性能建立内在联系,为科学地评价材料提供了可靠的分析数据。 由于金属材料中的显徽组织和非金属夹杂物等并非均匀分布,因此任何一个参数的测定都不能只靠人眼在显微镜下测定一个或几个视场来确定,需用统计的方法对足够多的视场进行大量的统计工作,才能保证测量结果的可靠性。如果仅靠人的眼睛在显微镜上进行目视评定,其准确性、一致性和重现性都很差,而且测定速度很慢,有些甚至因工作量过大而无法进行。图像分析仪以先进的电子光学和电子计算机技术代替人眼观察及统计计算,可以迅速而准确地进行有统计意义的测定及数据处理,同时具有精度高、重现性好,避免了人为因素对金相评定结果的影响等特点,而且操作简便,可直接打印测量报告,目前已成为定量金相分析中不可缺少的手段。 图像分析仪是对材料进行定量金相研究的强有力工具,也是日常金相检验的好帮手,可以避免人工评定带来的主观误差,从而也避免了扯皮现象。虽然在日常金相检验中,不可能也不必每次都使用图像分析仪,但当产品质量出现异常或金相组织级别处于合格与不合格之间而无法判别时,则可以借助图像分析仪对其进行定量分析,得出准确结果,确保产品质量。图像分析仪在金相分析中的应用,拓展了金相检验的检测项目,促进了检测水平的提高,对于提高检测人员的素质也是十分有益的。 图像分析仪的系统由金相显徽镜和宏观摄像台组成的光学成像系统,其用途是使金相试样或照片形成图像。金相显微镜可直接对金相试样进行定量金相分析;宏观摄像台适用于分析金相照片、底片及实物等。 为了能用计算机存贮、处理和分析图像,首先需将图像数字化。一帧图像是由不同灰度的一种分布所组成,用数学符号表示为j=j(x,y),x、y为图像上像素点的坐标,j则表示其灰度值。所以,一帧图像可以用一个m×n阶矩表示,矩中每个元素对应于图像中一像素点,aij的值即表示图像中属于第i行第j列的像素点的灰度值。CCD摄像机(电荷耦合器件摄像机)就是一种图像数字化设备。金相试样上的显微特征经过光学系统后在CCD上成像并由CCD实现光电转换和扫描,然后作为图像信号取出,由放大器进行放大,并量化成灰度级以后贮存起来,从而得到数字图像。 计算机根据数字图像中需测量特征的灰度值范围,设定灰度值阈值T。对于数字图像中任何一个像素点,若其灰度大于或等于T,则用白色(灰度值255)来代替它原来的灰度;若小于T则用黑色(灰度值0)来代替原来的灰度,可以把灰度图像转化为只有黑、白两种灰度的二值图像,然后再对图像进行必要的处理,使计算机能方便对二值图像进行粒子计数、面积、周长测量等图像分析工作。若采用伪彩色处理,则可把256个灰度级转换成对应的彩色,使灰度很接近的细节和其周围环境或其他细节易于识别,从而改善图像,更利于计算机处理多特征物图像。 图像分析仪通常都具有下列基本图像处理、分析功能:图像采集。 图像增强和处理:包括阴影校正,伪彩色处理,灰度变换,平滑、锐化;图像编辑等。 图像分割。 二值图像处理:包括形态学处理(腐蚀、膨胀、骨胳化等),二值图像的算术运算、联接、自动修补等。 测量:包括特征物统计,对其周长、面积、X/Y投影、轴长、取向角等参数进行统计测量。 数据输出。

  • 请教:气相分子吸收光谱法

    近日国家环保总局出了几个标准,采用[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子吸收光谱法测定氨氮、总氮、凯氏氮等项目,对此比较感兴趣。但是说来惭愧,对该方法以及所用仪器一无所知,有没有在使用该方法或对此比较熟悉的同行介绍一下相关知识,特别是仪器的生产厂商以及价格、使用情况等信息?谢谢!

  • 【分享】-----原子吸收分析仪操作步骤

    [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析仪操作步骤(一)因水溶性及固体废弃物的基质复杂性及变异性,通常必须经过适当之前处理。固体、污泥及悬浮物质在分析前必须先加以溶解,此程序随因待测分析的金属及样品特性的不同而异。(二)所有[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]需执行适当的背景校正。(三)由于不同厂牌及机型的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]会有差异,详细的使用说明无法格式化以适用于每一部仪器,因此分析人员在使用仪器时必须遵循该厂商的使用说明书。下列为操作应当注意事项:1.选择适当的灯管后,通常需要先让灯管预热 15 分钟。2.可利用这段期间调整仪器,将单光器调至正确的波长,选择适当的单光器狭缝宽度,并依照厂商的建议调整电流。3.点火并调节燃料及氧化剂的流量,调整燃烧头及喷雾器的流速以达到最大的吸收及稳定度,保持光度计的平衡。4.量测一系列待测元素的标准溶液,绘制吸光度对应浓度建立检量线。5.吸入样品溶液并直接读出或由检量线测定其浓度。每分析一个或一系列样品时须同时量测一次标准溶液。(四)检量线制作与确认1.对于非直接读出浓度的仪器,则制作一涵盖适当浓度范围的检量线。通常亦即制备可产生 0.0 到 0.7 吸收度的空白及标准溶液。(1)每分析一批次样品时,需制备新的检量线标准溶液。若以当天制备之检量线确认溶液(以下简称 ICV)测试结果在可接受的范围,毋需每天制备检量线标准溶液,只要经由当天制备之 ICV 确认后即可使用。若 ICV 超过可接受的规范,必须重新制备新的检量线标准溶液并重新校正仪器。检量线制备须有一个空白溶液和至少五种浓度的检量线标准溶液,此五种浓度须落在校正曲线直线区域的适当范围内。(2)配制标准溶液所使用的酸或酸组合的种类及其浓度应与样品处理后之结果相同。(3)先以空白溶液开始,再由低浓度至高浓度吸取标准品溶液,并记录其读值。(4)重复多次吸取标准溶液与样品,以确保能得到每一溶液之可信赖的平均读值。2.检量线必须是线性且相关系数 R 值至少大于 0.995以上。(1)完成检量线制作后,必须以检量线空白及在中间浓度附近的 ICV 确认检量线。ICV 之测值偏差必须在 10 % 以内,且检量线空白所含的待测物浓度不能高于 MDL,此检量线才可认为有效。若标准曲线在指定范围内无法被确认,则应找出原因并在样品分析前重新校正仪器。(2)每批次分析结束时 / 或每隔 10 个样品后,检量线必须以检量线空白及检量线中间浓度附近的 CCV 确认。CCV 之测值偏差必须在 10 % 以内,且检量线空白所含的待测物浓度不能高于 MDL,此检量线才可认为有效。若 CCV 测值偏差大于 10 % 以上,则应停止分析样品,找出原因并在样品分析前重新校正仪器,且在最后一个可接受的 CCV 之后的所有样品必须重新分析。3.重复测量标准溶液的浓度,取其平均值,两次测值的相对差异百分比在 10 %以内。4.若进行微量分析时,检量线第一点的浓度必须在实验室可定量的范围浓度,假如样品浓度值低于检量线最低点的浓度,此报告只能当成估计值。[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析仪操作要点一般火焰式[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]之操作参数包括以下五点:(1)火焰高度的调整:每一个元素最佳的反应高度并不一样,故必须调整其高度以达到最佳吸收度。图二为铬、镁、银在不同火焰高度吸收度差异。(2)燃料比例:每一个元素的操作灵敏度受气燃比之影响相当大,某些元素可能适合氧化焰(Lean,因二次空气的供给,燃烧完全,焰温较高,置于此焰层内之金属多被氧化成金属氧化物。),但有些可能适合还原焰(Rich,此焰层能使含氧化合物还原,例如重金属氧化物,置于此焰中灼烧,会失去其所含的氧,被还原成金属。)。图三为铬在不同火焰操作条件下其吸收度之差异 (3)灯管电流:电流的大小也会影响吸收度。如果灯管的电流太小,则吸收度会下降,但如果太高则可能因自身吸收效应(Self Absorption Effect)使其吸收度下降。图四为镁在不同灯管电流操作下,吸收度之差异性比较。(电流太强,会导致灯管寿命降低)(4)狭缝宽度: 狭缝太小则使进入的光能量太弱,使吸收度下降,太宽则使进入的光线太多,易造成干扰,故于分析前可参考操作手册之建议条件或是自行测试选择较适当的狭缝宽度。图五为镍在不同狭缝宽度设定下其吸收度之差异性比较。(5)波长选择:元素吸收灵敏度与所选择的波长有很大的关系,通常每一个元素多有数个波长可供选择,可依据分析的需求选择适当的波长。影响仪器之干扰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法可能面临的干扰可概分六类,(1)光谱干扰(Spectral Interference)、(2)火焰放射干扰(Flame Emission Interference)、(3)化学干扰(Chemical Interference)、(4)基质干扰(Matrix Interference)、(5)非特定性散射(Non-Specific Scatter)及(6)离子化干扰(Ionization Interference)。 (1)光谱干扰:此干扰主要是样品中存在其它元素造成的干扰。此干扰近年来因中空阴极射线技术的提升已很少发生。(2)放射干扰:此干扰主要来自于样品放射出与欲吸收的波长相同。此干扰可藉由提高电流强度或降低狭缝宽度来解决。(3)化学干扰:此干扰最常发生于利用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]来分析镁、钙、锶及钡等金属。最常见的干扰物种有硅酸盐、磷酸盐及铝酸盐等化合物。一般解决的方法有两种,一为利用螯合剂(EDTA)与金属错合,二为添加氯化镧与造成干扰的阴离子错合;或者可利用笑气-乙炔来解决化学干扰的问题。(4)基质干扰:一般此干扰原因有(a)溶液中含有机溶剂而造成吸收度的增加,(b)因溶液的黏滞性较高因雾化效率下降而造成吸收度下降,(c)溶液的盐度较高而造成吸收度下降。以上四种干扰可藉由标准添加法(Standard Addition)或是萃取法将金属自溶液中萃取出来或者改用其它的分析技术。 (5)非特定性干扰:此干扰来自样品中含有高浓度的盐类,此情形最常发生于波长在250 nm以下,此干扰可用萃取技术及背景校正来克服。(6)离子化干扰:此干扰最常发生于低游离能元素,如碱金族及碱土族元素。解决的方法可在样品中加入比待测元素更容易解离的化合物,如分析钙时可添加1000 ppm的氯化钾溶液。

  • 气相分析操作条件的确定

    在气相色谱分析中,我们要快速有效的分离一个复杂的样品,并获得满意的结果,除了要选择一根最佳色谱柱以外,还要对分离操作条件进行仔细的选择。色谱柱的好坏关系到分离的效果,而分离条件的设置又影响着色谱柱的分离。色谱柱和分离操作条件之间是是相辅相成的关系。本文将主要介绍气相分析操作条件的确定。初始操作条件的确定确定初始操作条件;色谱柱形式的选择;分离条件优化;程序升温。1、确定初始操作条件 进样量要根据样品浓度、色谱柱容量和检测器灵敏度来确定。样品浓度不超过mg/ml时填充柱的进样量通常为1~5μL,而对于毛细管柱,若分流比为50:1时,进样量一般不超过2μL。如果这样的进样量不能满足检测灵敏度的要求,可考虑加大进样量,但以不超载为限。进样口温度主要由样品的沸点范围决定,还要考虑色谱柱的使用温度。即首先要保证待测样品全部气化,其次要保证气化的样品组分能够全部流出色谱柱,而不会在柱中冷凝。原则上讲,进样口温度高一些有利,一般要接近样品中沸点最高的组分的沸点,但要低于易分解组分的分解温度,常用的条件是250~350℃。实际操作中,进样口温度可在一定范围内设定,只要保证样品完全汽化即可,而不必进行很精确的优化。注意,当样品中某些组分会在高温下分解时,就应适当降低汽化温度。必要时可采用冷柱上进样或程序升温汽化(PTV)进样技术。 色谱柱温度的确定主要由样品的复杂程度和汽化温度决定。原则是既要保证待测物的完全分离,又要保证所有组分能流出色谱柱,且分析时间越短越好。组成简单的样品最好用恒温分析,这样分析周期会短一些。特别是用填充柱时,恒温分析时色谱图的基线要经程序升温时稳定得多。对于组成复杂的样品,常需要用程序升温分离,因为在恒温条件下,如果柱温较低,则低沸点组分分离得好,而高沸点组分的流出时间会太长,造成峰展宽,甚至滞留在色谱柱中造成柱污染;反之,当柱温太高时,低沸点组分又难以分离。 毛细管柱的一个最大优点就是可在较宽的温度范围内操作,这样既保证了待测组分的良好分离,又能实现尽可能短的分析时间。一般来讲,色谱柱的初始温度应接近样品中最轻组分的沸点,而最终温度则取决于最重组分的沸点。升温速率则要依样品的复杂程度而定。建议毛细管柱的尝试温度条件设置为:OV-1(SE-30)或SE-54柱:从50℃到280℃,升温速率10℃/min;OV-17(OV-1701)柱:从60℃到260℃,升温速率8℃/min;PEG-20M柱:从60℃到200℃,升温速率8℃/min。 检测器的温度是指检测器加热块温度,检测器温度的设置原则是保证流出色谱柱的组分不会冷凝同时满足检测器灵敏度的要求。大部分检测器的灵敏度受温度影响不大,故检测器温度可参照色谱柱的最高温度设定,而不必精确优化。载气流速的确定相对容易一些,开始可按照比最佳流速(氮气约为20cm/s,氦气约为25cm/s,氢气约为30cm/s)高10%来设定。然后再根据分离情况进行调节。原则是既保证待测物的完全分离,又要保证尽可能短的分析时间。用填充柱时,载气流速一般设为30ml/min。空气,300~400ml/min;氢气30~40ml/min;氮气(尾吹气)30~40ml/min。2 、色谱柱形式的选择2、色谱柱形式的选择 当欲测组分之间的相互分离系数很小时,即使对各种操作条件加以探讨,为使它们完全分离仍必须采用理论塔板数(N)大的色谱柱。理论塔板数N按一般填充柱≤微填充柱≤填充毛细管柱≤空心毛细管柱的顺序增加。由于N不同,有时色谱图也不相同。3 、分离条件优化3、分离条件优化 事实上,当样品和仪器配置确定之后,一个色谱技术人员最经常的工作除了更换色谱柱外,就是改变色谱柱温和载气流速,以期达到最优化的分离。柱温对分离结果的影响要比载气的影响大。简单地说,分离条件的优化目的就是要在最短的分析时间内达到符合要求的分离结果。气相分析条件的确定1、色谱柱的选择色谱柱是决定色谱分离的核心,因此首先要有一根高效的、对被分析对象有效的色谱柱。 主要从色谱柱的材料、固定相、半径、膜厚等方面进行选择。气相用色谱柱首先需要确定要使用的是填充柱还是毛细管柱。如果是做法规分析,则必须按有关法规的要求选择色谱柱。如一些产品的质量检验,尽管用毛细管柱可以得到更好的分析结果(分离效率高、分析速度快),但若国家标准或行业标准规定用填充柱,那你就应该用填充柱,否则你的分析结果不被法规所认可。对于新的或更新的方法,如果没有非常具有说服力的理由使用填充柱的话,推荐使用毛细管柱。2、载气流速的选择气相色谱最常用的载气是:氢气、氮气、氩气、氦气。 由速率理论可知,载气流速慢有利于传质,有利于组分的分离,但分析时间会加长;如果载气流速快有利于加快分析速度,减少分子扩散,但分离度降低。有时为了缩短分析时间,加大流量,但此时分离效果并不好。可见载气流速的快慢都会降低柱效。经过长时间的实验,发现对于一般色谱仪而言,载气流量为20-100ml/min。目前我们分析液化气用的是热导检测器,载气用的是氢气,其流量控制是30 ml/min。分析戊烷发泡剂用的是氢火焰离子化检测器,载气用的是氮气、燃烧气氢气和氧气,这三种气体的体积比是氮气:氢气:氧气为1:1:10,分析效果都是较好的。3、进样技术的选择在气相色谱分析中,一般采用注射器或六通阀门进样。在考虑进样技术的时候,以注射器进样为主来研究。a、进样量如果在进样过程中进样量大会导致:分离度小;保留值变化难于定性;峰高和峰面积与进样量不成线性关系,不能定量。 进样量与气化温度、柱容量和仪器的线性响应范围等因素有关。进样量应控制在瞬间气化,达到规定分离要求和线性响应的允许范围内。填充柱冲洗法的瞬间进样量:液体样品或固体样品溶液一般为0.01~10μl,气体样品一般为0.11~10ml,在定量分析中,应注意进样量读数准确。b、注射器里空气的排除 用微量注射器抽取液体样品,只要重复地把液体抽入注射器又迅速把其排回样品瓶,就可以将空气排除。还有一种更好的方法,那就是用计划注射量的约2倍的样品置换注射器3~5次,每次取到样品后,垂直拿起注射器,针尖朝上,留在注射器里的空气都应当跑到针管顶部,推进注射器塞子,空气就会全部被排掉。c、保证进样量的准确 用经置换过的注射器取约计划进样量2倍左右的样品,垂直拿起注射器,针尖朝上,让针穿过一层纱布,这样可用纱布吸收从针尖排出的液体。推进注射器塞子,直到读出所需要的数值。用纱布擦干针尖。至此准确的液体体积已经测得,需要再抽若于空气到注射器里。如果不慎推动柱塞,空气可以保护液体使之不被排走。d、进样手法 双手拿注射器。用一只手(通常是左手)扶针插入垫片,注射大体积样品(即气体样品)或柱前压力极高时,要防止从气相色谱仪注样器来的压力把注射器活塞弹出(即用右手的大拇指按压住活塞顶部)。 让针尖穿过垫片尽可能深的进入进样口,压下注射器活塞停留1秒钟,然后尽可能快而稳地抽出针尖(抽出的同时继续压住注射器活塞)。e、进样时间 进样时间长短对柱效率影响很大。若进样时间过长,遇使色谱区域加宽而降低柱效率。因此,对于冲洗法色谱而言,进样时间越短越好,一般必须小于1秒钟。4、柱温的选择 柱温的选择十分关键,它将直接影响分离效能和分析速度。提高柱温,有利于降低组分在气液相中的传质阻力,有利于提高柱效, 同时纵向分子扩散项系数增大,提高分析速度,但柱选择性变差,分离度降低。 柱温适宜有利于组分的分离,但温度过低,被测组分可能在柱中冷凝,或者传阻力增加,使色谱峰扩张,甚至于拖尾,温度高有利于传质,但柱温高,分配系数变小,不利于分离。 对于沸程不太宽的简单样品,可采用恒温模式。在分析气体时,如选用的是气液分配色谱,可在50℃或常温下分析,如选用的是气固色谱,柱温要相应提高。 对于沸程相对较宽的复杂样品,如在一恒定的温度下分离,随着保留时间的增加,峰宽迅速增加,导致保留较弱的组分重叠,而保留较强的组分又因为分析时间长,张起峰展宽,峰高下降。 由于在气相色谱中,改变温度对组分的分离改变最为明显。可通过程序

  • 原子吸收光谱仪最佳分析条件选择

    俗话说的好,要想马儿跑,就要给马喂草!要想原子吸收光谱仪能够正常的工作,不优化仪器条件可以吗?在日常实验中,大家是如何优化原子吸收光谱仪的分析条件的?欢迎大家讨论!

  • 原子吸收分析仪操作要点[推荐]

    [color=red][B]也是来源于网上,感觉不错推荐给大家,这也许早有人发表过望多见谅![/B][/color]一般火焰式[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]之操作参数包括以下五点: (1)火焰高度的调整: 每一个元素最佳的反应高度并不一样,故必须调整其高度以达到最佳吸收度。图二为铬、镁、银在不同火焰高度吸收度差异。 (2)燃料比例: 每一个元素的操作灵敏度受气燃比之影响相当大,某些元素可能适合氧化焰(Lean,因二次空气的供给,燃烧完全,焰温较高,置于此焰层内之金属多被氧化成金属氧化物。),但有些可能适合还原焰(Rich,此焰层能使含氧化合物还原,例如重金属氧化物,置于此焰中灼烧,会失去其所含的氧,被还原成金属。)。图三为铬在不同火焰操作条件下其吸收度之差异 (3)灯管电流: 电流的大小也会影响吸收度。如果灯管的电流太小,则吸收度会下降,但如果太高则可能因自身吸收效应(Self Absorption Effect)使其吸收度下降。图四为镁在不同灯管电流操作下,吸收度之差异性比较。(电流太强,会导致灯管寿命降低) (4)狭缝宽度: 狭缝太小则使进入的光能量太弱,使吸收度下降,太宽则使进入的光线太多,易造成干扰,故于分析前可参考操作手册之建议条件或是自行测试选择较适当的狭缝宽度。图五为镍在不同狭缝宽度设定下其吸收度之差异性比较。 (5)波长选择: 元素吸收灵敏度与所选择的波长有很大的关系,通常每一个元素多有数个波长可供选择,可依据分析的需求选择适当的波长。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制